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Abstract The use of heterogeneous architectures in embedded systems together
with the increasing complexities of hardware and software, the increased pres-
sure to deliver full-featured products with reduced time-to-market, and the fact
that more embedded systems are using dedicated hardware components (ASIC)
and software running on processors is more and more increasing the complexity
of designing embedded systems. This ongoing increase in complexities can be over-
come with the proper usage of high-level system design techniques such as System
Level Design tools and methodologies. In System Level Design, specification lan-
guages are used to build high level models of the entire system, to allow fast design
space exploration. Models of Computations (MoC) are used as the underlying for-
mal representation of a system. This article specifically investigates the specification
and modeling of the computation process used in the co-design approach and its
activities. Popular models of computations are presented and compared. Various
specification languages for designing embedded are described and compared.
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18.1 Introduction

18.1.1 Embedded Systems

Embedded systems are special-purpose systems which are typically embedded
within larger units providing a dedicated service to that unit [1]. In most embedded
systems, the product manufacturer provides a function-specific software applica-
tion, and end-users have limited access to altering the application running on the
system. Examples of embedded systems include consumer electronics products (i.e.
cell phones, PDAs, microwaves, etc.), transport control systems, plant control sys-
tems and defense systems.

Vahid et al. [2] describe the characteristics of embedded systems that differentiate
them from other digital systems:

� Single-functioned. Embedded systems repeatedly perform a specific function.
� Reactive and real time. Many embedded systems, especially in the control

domain, are reactive systems and must continually react to changes in the en-
vironment and meet timings constraints without delay.

� Tightly constrained. Embedded systems have tight constraints on design metrics.
For example, embedded systems must have minimum design costs, must have
small form factors and consume minimum power, especially for portable sys-
tems, must meet real time requirements, must be safe and reliable, and must have
short time-to-market cycle.

A typical heterogeneous embedded system consists of: dedicated hardware parts
(ASIC), programmable processors such as microprocessor and ASIP1 components
(i.e. DSP and microcontrollers), memory for data and code, peripherals such A/D,
D/A and I/O units, and buses connecting the above components [3].

Traditionally, hardware synthesis tools (logic synthesis and behavior synthesis)
have been used to increase productivity. However, hardware synthesis is not suffi-
cient since embedded systems use more software content [4]. In addition, hardware
synthesis methods focus on designing a single hardware chip, where more embed-
ded systems are using heterogeneous architectures.

The complexities in designing embedded systems motivate the need for using
more efficient tools and design methodologies. System Level Design is a methodol-
ogy to help address these complexities, and enable SoC designs.

18.2 System Level Design

System Level Design is concerned with addressing the challenges encountered in
designing heterogeneous embedded systems. In System Level Design, complexities
are managed by (1) starting the design process at the highest level of abstraction

1 Application Specific Instruction-Set Processor.
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(System Level), (2) utilizing automated design methodologies to enable step-wise
refinements during the design process (3) reusing Intellectual Property (IP) compo-
nents when feasible [5, 6].

The goal of System Level Design is to implement System Level specifica-
tion on target architecture by refining the specification into a set of target-specific
specifications.

Designing at a higher level of abstraction reduces the number of components
with which the designer has to deal with, and thus increasing design productivity.
This paradigm shift in design requires methodologies and automated tools to support
design at higher levels abstractions.

18.2.1 System Level Design Approaches

There are three main system level design approaches: hardware/software co-design,
platform-based design and component-based design [7].

� Hardware/Software co-design (also referred to system synthesis) is a top-down
approach. Starts with system behavior, and generates the architecture from
the behavior. It is performed by gradually adding implementation details to the
design.

� Platform-based design. Platform-based design maps the system behavior to
predefined system architecture. An example of platform-based design is shown
in [8].

� Component-based design is a bottom-up approach. It assembles existing het-
erogeneous components by inserting wrappers between these components. An
example of component-based design is described in [9].

18.3 Hardware/Software Co-design

Hardware/Software co-design can be defined as the cooperative design of hard-
ware and software in order to achieve system-level objectives (functionality &
constraints) by exploiting the synergism of hardware and software [6, 7]. While
hardware implementation provides higher performance, software implementation
is more cost effective and flexible since software. The choice of hardware versus
software in co-design is a trade-off among various design metrics like performance,
cost, flexibility and time-to-market. Figure 18.1 shows the flow of a typical Hard-
ware/Software co-design system.

Generally, Hardware/Software co-design consists of the following activities:
specification and modeling, design and validation [6].
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Fig. 18.1 Flow of a typical co-design system

18.3.1 Specification and Modeling

This is the first step in the co-design process. The system behavior at the system
level is captured during the specification step [3]. Section 18.4 provides details about
specification and modeling, including Models of Computation.

18.3.2 Design and Refinement

The design process follows a step-wise refinement approach using several steps to
transform a specification into an implementation. Niemann [3] and O’Nils [6] define
the following design steps:

Tasks assignment, Cost estimation, Allocation, Hardware/Software partitioning,
Scheduling, and Co-synthesis. Niemann [3] classifies several design steps as part of
co-synthesis: Communication synthesis, Specification refinement, Hardware syn-
thesis and Software synthesis.

18.3.3 Validation

Informally, validation is defined as the process of determining that the design, at dif-
ferent levels of abstractions, is correct. The validation of hardware/software systems
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is referred to as co-validation. Methods for co-validations are [9,10]: Formal verifi-
cation andSimulation. A comparison of co-simulation methods is presented in [11].

18.4 Specification and Modeling

Specification is the starting point of the co-design process, where the designer spec-
ifies the system’s specification without specifying the implementations. Languages
are used to capture system specifications. Modeling is the process of conceptualiz-
ing and refining the specifications. A model is different from the language used to
specify the system. A model is a conceptual notation that describes the desired sys-
tem behavior, while a language captured that concept in a concrete format. A model
can be captured in a variety of languages, while a language can capture a variety of
models [2].

Two approaches are used for system specification, homogeneous modeling where
one specification language is used for specifying both hardware and software com-
ponents of a heterogeneous system and heterogeneous modeling which uses specific
languages for hardware (e.g. VDHL), and software (e.g. C) [6, 12].

18.4.1 Models of Computation

A computational model is a conceptual formal notation that describes the system
behavior [2]. Ideally, a Model of Computation (MOC) should comprehend concur-
rency, sequential behavior and communication methods [10]. Co-design systems use
computational models as the underlying formal representation of a system. A variety
of Models of Computation have been developed to represent heterogeneous systems.

The following is an overview of common MOCs based on the work in Cortes
et al. [10] and Bosman [13].

18.4.1.1 Finite State Machines (FSM)

The FSM model consists of a set of states, a set of inputs, a set of outputs, an output
function, and a next-state function [14]. A system is described as set of states and
input values can trigger a transition from one state to another. FSMs are commonly
used for modeling control-flow dominated systems. The main disadvantage of FSMs
is the exponential growth of the number of the states as the system complexity rises
due the lack of hierarchy and concurrency. To address the limitations of the classical
FSM, researches have proposed several derivates of the classical FSM. Some of
these extensions are described below.

� SOLAR [15] is based on the Extended FSM model (EFSM), which can sup-
port hierarchy and concurrency. In addition, SOLAR supports high level
communication concepts including channels and global variables. It is used to
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represent high-level concepts in control-flow dominated systems, and it is mainly
suited for synthesis purposes. The model provides an intermediate format that
allows hardware/software designs at the system-level to be synthesized.

� Hierarchical Concurrent FSM (HCFSM) [3] solve the drawbacks of FSMs by
decomposing states into a set of sub-states. These sub-states can be concurrent
sub-states communicating via global variables. Therefore, HCFSMs supports
hierarchy and concurrency. Statecharts is a graphical state machine language
designed to capture the HCFSM MOC [2]. The communication mechanism in
statecharts is instantaneous broadcast, where the receiver proceeds immediately
in response to the sender message. The HCFSM model is suitable for control
oriented/real time systems.

� Codesign Finite State Machine (CFSM) [16,17] adds concurrency and hierarchy
to the classical FSM, and can be used to model both hardware and software. It is
commonly used for modeling control-flow dominated systems. The communica-
tion primitive between CFSMs is called an event, and the behavior of the system
is defined as sequences of events. CFSMs are widely used as intermediate forms
in co-design systems to map high-level languages, used to capture specifications,
into CFSMs.

18.4.1.2 Discrete-Event Systems

In a Discrete Event system, the occurrence of discrete asynchronous events triggers
the transitioning from one state to another. An event is defined as an instantaneous
action, and has a time stamp representing when the event took place. Events are
sorted globally according to their time of arrival. A signal is defined as set of events,
and it is the main method of communication between processes [10]. Discrete Event
modeling is often used for hardware simulation. For example, both Verilog and
VHDL use Discrete Event modeling as the underlying Model of Computation [11].
Discrete Event modeling is expensive since it requires sorting all events according
to their time stamp.

18.4.1.3 Petri Nets

Petri Nets are widely used for modeling systems. Petri Nets consist of places, tokens
and transitions, where tokens are stored in places. Firing a transition causes tokens to
be produces and consumed. Petri Nets supports concurrency and is asynchronous;
however, they lack the ability to model hierarchy. Therefore, it can be difficult to
use Petri Nets to model complex systems due to its lack of hierarchy. Variations
of Petri Nets have been devised to address the lack of hierarchy. For example, the
Hierarchical Petri Nets (HPNs) proposed by Dittrich [18].

� Hierarchical Petri Nets (HPNs) supports hierarchy in addition to maintaining
the major Petri Nets features such as concurrency and asynchronously. HPNs
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use Bipartite2 directed graphs as the underlying model. HPNs are suitable for
modeling complex systems since they support both concurrency and hierarchy.

18.4.1.4 Data Flow Graphs

In Data Flow Graph (DFG), systems are specified using a directed graph where
nodes (actors) represent inputs, outputs and operations, and edges represent data
paths between nodes [3]. The main usage of Data Flow is for modeling data flow
dominated systems. Computations are executed only where the operands are avail-
able. Communications between processes is done via unbounded FIFO buffering
scheme [10]. Data Flow models support hierarchy since the nodes can represent
complex functions or another Data Flow [6, 10].

Several variations of Data Flow Graphs have been proposed in the literature such
as Synchronous Data Flow (SDF) and Asynchronous Data Flow (ADF) [18]. In
SDF, a fixed number of tokens are consumed, where in ADF the number of tokens
consumed is variable. Lee [19] provides an overview of Data flow models and its
variations.

18.4.1.5 Synchronous/Reactive Models

Synchronous modeling is based on the synchrony hypothesis, which states that
outputs are produced instantly in reaction to inputs and there is no observable de-
lay in the outputs [12]. Synchronous models are used for modeling reactive real time
systems. Cortes in [11] mentions two styles for modeling reactive real time systems:
multiple clocked recurrent systems (MCRS) which is suitable for data dominates
real time systems and state base formalisms which is suitable for control dominated
real time systems. Synchronous languages such as Esterel [15] is used for capturing
Synchronous/Reactive Model of Computation [11].

18.4.1.6 Heterogeneous Models

Heterogeneous Models combine features of different models of computation. Two
examples of heterogeneous models are presented.

� Programming languages [20] provide a heterogonous model that can support
data, activity and control modeling. Two types of programming languages: im-
perative such as C, and declarative languages such as LISP and PROLOG. In
imperative languages, statements are executed in the same order specified in the
specification. On the other hand, execution order is not explicitly specified in

2 A graph where the set of vertices can be divided into two disjoint sets. U and V such that no edge
has both end-points in the same set.
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declarative languages since the sequence of execution is based on a set of logic
rules or functions. The main disadvantage of using programming languages for
modeling is that most languages do not have special constructs to specify a sys-
tem’s state [3]

Program State Machine (PSM) is a merger between HCFSM and programming lan-
guages. A PSM model uses a programming language to capture a state’s actions
[20]. A PSM model supports hierarchy and concurrency inherited from HCFSM.
The Spec Charts language, which was designed as an extension to VHDL, is capable
of capturing the PSM model. The Spec C is another language capable of capturing
the PSM model. Spec C was designed as an extension to C [2].

18.4.2 Comparison of Models of Computation

A comparison of various Models of Computation is presented by Bosman [13],
and Cortes et al. [10]. Each author compares MOCs according to certain criteria.
Table 18.1 compares MOCs based on the work done in [10, 13].

18.4.3 Specification Languages

The goal of a specification language is to describe the intended functionality of a
system non-ambiguously. A large number of specification languages are currently
being used in embedded system design since there is no language that is the best
for all applications [3]. Below is a brief overview of the widely used specification
languages [2, 6]:

18.4.3.1 Formal Description Languages

Examples of formal languages are LOTOS and SDL.

� LOTOS is based on process algebra, and used for the specification of concurrent
and distributed system.

� SDL used for specifying distributed real time systems, and based on extended
FSM.

18.4.3.2 Real Time Languages

Esterel & StateCharts are examples of real time languages.

� Esterel is a synchronous programming language based on the synchrony hypoth-
esis. It is used for specifying real time reactive systems. Esterel is based on FSM,
with constructs to support hierarchy and concurrency.
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� StateCharts is graphical specification language used for specifying reactive
system. StateCharts extend FSM by supporting hierarchy, concurrency and
synchronization.

18.4.3.3 Hardware Description Languages (HDL)

Commonly used HDL are VHDL, Verilog and HardwareC.

� VHDL is IEEE standardized HW description language.
� Verilog is another hardware description language, which has been standardized

by IEEE.
� HardwareC is a C based language designed for hardware synthesis. It extends

C by supporting structural hierarchy, concurrency, communication and synchro-
nization.

18.4.3.4 System Level Design Languages (SLDL)

System Level Design Languages (SLDL) are used to capture specification and
model embedded system at the system abstraction level. With the increased time-
to-market pressure, and to enable SoC designs, SLDS need to be able to specify
and model all aspects of the system at higher abstraction level (at the System Level).
This will allow early design space exploration to evaluate various design alternatives
early in the design process. Most current SLDLs lack built-in support for specify-
ing and modeling ALL aspects of a heterogeneous embedded system at the System
Level. Some of these deficiencies are lack of support for:

� RTOS modeling at the System Level. This is important for modeling real time
embedded system, and determining if the scheduling policy will meet time con-
straints and deadline at the System Level before committing to a specific RTOS
implementation.

� Composing Heterogeneous models with multiple MoCs.
� Estimating power consumption at the System Level.

Examples of SLDL are SpecC and SystemC.

� SpecC [14] is system level design language based on ANSI C. It was devel-
oped at the University of California, Irvine to improve traditional HDL languages
such as VHDL. The SpecC language models systems as a hierarchal network of
behaviors and channels [3]. SpecC supports behavior and structural hierarchy,
concurrency, state transition, exception handling, timing aspects and synchro-
nization. Built on the SpecC language is the SpecC design methodology.

� SystemC [21] is a CCC library based language designed by the OpenSystemC
Initiative (OCSI) group to improve traditional HDL languages.
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18.4.4 Requirements for Specification Languages

Gajski in [14] and Niemann in [3] describe the requirements for specification
languages:

� Hierarchy is an important feature of a specification language. Two types of hi-
erarchy: (1) behavior hierarchy which allows a behavior to be decomposed of
sub-behaviors, (2) structural behavior which allows a system to be specified as
a set of interconnected components, where these components can be specified as
sub-components as well.

� State transition is important for modeling control and reactive embedded
systems.

� Concurrency a large number of embedded systems consist of tasks that are work-
ing concurrently.

� Synchronization needed when concurrent parts of exchange data.
� Exception handling exceptions such as reset and interrupts often occur in em-

bedded systems. When an interrupt occurs, the system has to transition to a new
state to handle the interrupt. Once the interrupt is serviced, the system has to go
back to point prior to interrupt. Specification languages should be able to model
exceptions.

� Timing is an important aspect of specifying real time embedded systems.
Two timing aspects have to be specified when dealing with embedded sys-
tems: Functional timing which represents the time consumed for executing a
behavior, and timing constraints which represent a range of time for executing a
behavior.

� Formal verification desirable for specification languages since it provides a
mechanism to verify the use of formal mathematical methods.

� Support for RTOS modeling is important for the specification of real time systems
that will use a RTOS to implement dynamic scheduling.

Table 18.2 shows a comparison of different specification languages.
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