
Chapter 15
An Adaptive Multibiometric System
for Uncertain Audio Condition
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Abstract Performances of speaker verification systems are superb in clean noise-
free conditions but the reliability of the systems drop severely in noisy environ-
ments. In this study, we propose a novel approach by introducing Support Vector
Machine (SVM) as indicator system for audio reliability estimation. This approach
directly validate the quality of the incoming (claimant) speech signal so as to
adaptively change the weighting factor for fusion of both subsystem scores. The
effectiveness of this approach has been experimented to a multibiometric verifi-
cation system that employs lipreading images as visual features. This verification
system uses SVM as a classifier for both subsystems. Principle Component Anal-
ysis (PCA) technique is executed for visual features extraction while for the audio
feature extraction; Linear Predictive Coding (LPC) technique has been utilized. In
this study, we found that the SVM indicator system is able to determine the quality
of the speech signal up to 99.66%. At 10 dB SNR, EER performances are observed
as 51.13%, 9.3%, and 0.27% for audio only system, fixed weighting system and
adaptive weighting system, respectively.

Keywords Biometric verification system � reliability estimation � support vector
machine

15.1 Introduction

Biometric speaker verification is a technology that utilizes behavioral and physio-
logical information of speech signal for the purpose of authentication of individual
for identity claim. According to [1, 2], the advantages of using speech signal trait
for biometric systems are that the signal is natural and easy to produce, requiring
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little custom hardware, has low computation requirement and is highly accurate in
clean noise-free conditions. However, in uncontrolled conditions, the reliability of
the system drops severely as the signal to noise ratio (SNR) of the speech signal
decreases. One of the solutions to overcome these limitations is by implementing
fusion approach to the biometric system [3].

Research on fixed weighting fusion approach can be found in [4]. This study re-
ported the fusion of scores produced independently by speaker recognition system
and face recognition system using a weighted merged score. The optimal weight
was found by maximizing the performance of the integrated system on one of the
available training sets. In another case, a weighted product approach to fuse two
voice features i.e. static and dynamic and three face features i.e. eye, noise and
mouth was evaluated [5]. The tan-estimators were used for score normalization
and weighted geometric average was used for score combination. Reference [5]
combined different biometric cues i.e. voice, lip motion and face image. Reference
[6, 7] integrated the scores of speech and lip modality using weighted summation
fusion. In another experiment, information from speaker verification system (SVS)
and profile verification system (PVS) using a weighted summation fusion was com-
bined [7]. In [9], fuse-HMM that integrates the audio and visual features of speech
were reported. In this method, the learning algorithm maximizes the two HMMs
separately and consequently fuse the HMM by Bayesian fusion method. The exper-
imental results showed that the fuse-HMMs constantly performed better than the
unimodal method under clean and low noise conditions. But under stronger noise
level, the performance of the fusion systems is worse compared to the speech only
system. Multistage information fusion by taking both feature fusion and decision
fusion approach was implemented in [10]. The study observed that the multistage
system achieves significant improvement over both feature fusion and decision fu-
sion system at different SNR levels.

For the adaptive weighting fusion approach, the reliability estimation of the cur-
rent speech signal is performed either relying on the statistic based measure or
directly based on the quality of the speech signal. The weight for fusion scheme
is adapted correspondingly to the quality of the current input (claimant) speech
signal instead of using the optimum weight that is estimated from the available
training set. This approach is more advantageous especially when the system is im-
plemented in uncertain environment conditions. Two methods have been proposed
for the statistics based reliability measures i.e. entropy of a posteriori probabilities
and dispersion of a posteriori probabilities. The reliability information can be ob-
tained by the shape of a posteriori probabilities distribution of HMM states, GMM
and MLP as studied in [11–13], respectively. A high entropy interprets low con-
fidence hence signifies very unreliable input. Consequently, a mapping function
between the entropies and the corresponding weight is calculated. On the other hand,
study based on the quality of the speech signal was reported in [13]. This study de-
scribed the use of voicing index as audio reliability measure. Implementation of the
degree of voicing index as reliability measure is also reported in [14].

In this study, we propose a novel approach by introducing Support Vector Ma-
chine as indicator system for audio reliability measure. The development of this
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system is made up of three modules i.e. an audio front-end module, a visual
front-end module and a fusion module. For audio front-end module, a vector of
LPC coefficients is computed from the autocorrelation vector using Durbin recur-
sion method. For the visual front-end module, lipreading features are employed to
the system. Lipreading features are the sequence of lip images while the speaker ut-
ters the words for example, zero to nine. Several researches using lip information as
features to recognition systems have been reported. As in [15], shape and intensity
information from a person’s lip were used in a speaker recognition system. The uti-
lization of geometric dimension such as height, width and angle of speaker’s mouth
as features was also investigated [16]. Apart from lip contour-based features, pixel-
based features i.e. Discrete Cosine Transform (DCT) has also been experimented
as features for person recognition in [17]. The overall architecture of the proposed
adaptive weighting fusion system is illustrated in Fig. 15.1.

The database used in this study is the Audio-Visual Digit Database (2001) [18].
The database consists of video and the corresponding audio recording of people
reciting digits zero to nine. The video recording of each person is stored as a
sequence of JPEG images with a resolution of 512 � 384 pixels while the corre-
sponding audio recording provided is a monophonic, 16 bit, 32 kHz, WAV format.
For the purpose of evaluating the systems in noisy conditions, the clean testing audio
data are corrupted into 30, 20 and 10 dB SNR data by using the simulated additive
white Gaussian noise (AWGN). Due to the objective of this research is to investi-
gate the biometric system in uncertain audio condition, no artificial degradation was
imposed to the visual data. However, some natural challenges such as facial expres-
sion, pose and illumination invariant are occurred within the sequence of the images
and from session to session.

Fig. 15.1 An adaptive multibiometric system
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15.2 Support Vector Machine Classifier

Support vector machine (SVM) classifier in its simplest form, linear and separable
case is the optimal hyper plane that maximizes the distance of the separating hyper
plane from the closest training data point called the support vectors [19, 20].

From [19], the solution of a linearly separable case is given as follows. Consider
a problem of separating the set of training vectors belonging to two separate classes,
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with a hyperplane, hw; xiCb D 0. The hyperplane that optimally separates the data
is the one that minimizes
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which is equivalent to minimizing an upper bound on VC dimension. The solution
to the optimization problem, Eq. (15.2) is given by the saddle point of the Lagrange
functional (Lagrangian)
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where ˛ are the Lagrange multipliers. The Lagrangian has to be minimized with
respect to w; b and maximized with respect to ˛ � 0. Eq. (15.3) is then transformed
to its dual problem. Hence, the solution of the linearly separable case is given by,
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with constrains, ˛i � 0; i D 1; : : : ; L and
LP
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Subsequently, consider a SVM as a non-linear and non-separable case. Non-
separable case is considered by adding an upper bound to the Lagrange multipliers
and non-linear case is considered by replacing the inner product by a kernel func-
tion. The solution of the non-linear and non-separable case is given as:
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Non-linear mappings (kernel functions) that can be employed are polynomials,
radial basis functions and certain sigmoid functions. In this study, polynomial kernel
has been employed.

15.3 Visual Front-End Subsystem

In order to locate the lips on a face, techniques for face detection and lip localization
have been used in this study [21, 22]. In the first task, we implement a color-based
technique and template matching algorithm to segment human skin regions from
non-skin color. For the lip localization task, hue/saturation color thresholding has
been employed in order to differentiate the lip area from the face [21,22]. As demon-
strated in [23], the detection of the lip in hue/saturation color is much easier owing
to its robustness under a wide range of lip colors and varying illumination condition.
Our lipreading database has 22,200 images in total size 64� 64 pixels from 37 per-
sons. For each person, 60 sequences of images (with ten images per sequence) have
been utilized.

Consequently, Principle component analysis (PCA) technique or also known
as Karhunen–Loeve method is used for dimensionality reduction. This statistical
method aims to obtain an optimum linear subspace from a covariance matrix of a
set of samples [24]. This technique executes linear projection on the original sam-
ples that maximizes the scatter (variance) of all projected samples. This technique is
beneficial for reducing storage capacity because the projected features are presented
in a lower dimensionality space compared to the original sample space. Theory of
PCA technique for feature extraction can be simply stated as follows. Given a set
of N sample images xi ; i D 1; 2; : : : ;M where each image in the set is litho-
graphically re-ordered in L2 dimensional space and belongs to one of the c classes
fC1; C2; : : : ; Ccg. By considering a linear transformation mapping, the original
sample in L2 dimensional space are then transformed into a P -dimensional feature
space, where P 
 M 
 L2. The new transformed features yi ; i D 1; 2; : : : ;M

is known as subspace and the process of transforming is called projection. In PCA,
the transformation process is executed by the following linear transformation:

yi D U T xi ; : : : i D 1; 2; : : : ;M (15.6)

where U 2 <L2�P represents matrix of Eigen pictures in L2 � P and P corre-
sponding to the P largest Eigen values.

The transformed lip features are then used for the verification process using SVM
as classifier. Clean training visual data and clean testing visual data are used for this
purpose. In order to model the classifier discriminatively, each speaker model is
trained using 3, 6, 10 and 20 client data as well as with 108, 216, 360 and 720
imposter data, respectively. Thus, four types of speaker models are developed for
each speaker. During testing, each type of speaker model from each speaker is tested
on 40 client data and 1,440 .40 � 36/ imposter data from the other 36 persons.
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15.4 Audio Front-End Subsystem

Linear Predictive Coding is a time domain analysis that approximates a speech
sample as a linear combination of past speech samples. A unique set of predictor co-
efficients are determined by minimizing the sum of the squared differences between
the actual speech samples and the linearly predicted ones [25, 26]. The parameter
values that have been used at each stage of the experiment are also indicated. A set
of feature vector computed from each frame consists of 14 cepstrum coefficients.
Let assume the relation between the present sample x.n/ and first-order linear com-
bination of the previous p samples as in Eq. (15.7). Consequently, LPC cepstrum
coefficients can be derived through the LPC model.

x.n/ � ˛1x.n � 1/C � � � C ˛px.n � p/ (15.7)

For a time sequence x.n/, complex cepstrums Ocn are represented as below:
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Experiments for audio only biometric system are divided into two categories. Firstly,
to evaluate the system using different numbers of training data and secondly, to
evaluate the system based on different SNR levels. Clean training speech data and
clean testing speech data are used for this purpose. In order to model the classifier
discriminatively, each speaker model is trained using 3, 6, 10 and 20 client data as
well as with 108, 216, 360 and 720 imposter data, respectively. Thus, four types of
speaker models are developed for each speaker. During testing, each type of speaker
model from each speaker is tested on 40 client data and 1,440 .40 � 36/ imposter
data from the other 36 persons.

Consequently, three experiments are conducted in order to evaluate the system
based on different SNR levels. For this purpose, clean data are used for speaker mod-
eling. Each speaker model is trained using 20 client training data and 720 .20� 36/
imposter training data. Three levels of corrupted testing data i.e. 30, 20 and 10 dB
SNR data are used. During testing, speaker model from each speaker is tested on
40 client data and 1,440 .40� 36/ imposter data from the other 36 persons for each
level of the corrupted signals.
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15.5 Fusion System Implementation

Speech quality measurement is done by developing an indicator system which is
based on SVM classification technique. By modeling the clean data features as sam-
ple type C1 and the noisy data features as sample type �1, the system is used to
discriminate the incoming speech signal either as high quality or low quality speech
signals. Modeling data are taken from the training data set. The indicator system is
constructed to differentiate clean speech signal (high quality) from 30, 20 and 10 dB
SNR speech signal (low quality). We have used 2,960 training data and 5,920 testing
data for this task. This system is capable to achieve 99.66% accuracy.

In fixed weighting approach, the weight to be used for the fusion system is esti-
mated by first running the audio subsystem and visual subsystem separately using
the enrollment data. The fusion system is a soft fusion system that uses raw scores
from audio and visual subsystems. The scores from each subsystem are then nor-
malized by using min-max normalization technique. In this case, the minimum and
maximum scores are transformed to 0 and 1, respectively. The normalized values
are then combined by using a weighted summation fusion. In order to calculate the
optimum weight, wopt;w is varied from 0 to 1 in steps of 0.2. The overall perfor-
mance in each step is then evaluated and the optimum weight, wopt is defined at
which the weight, w give the highest performance. The optimum weight is calcu-
lated at w D 0:4 in this experiment. For the adaptive weighting approach, each audio
testing data is first checked for its quality by the audio reliability indicator system.
After the speech quality measurement process is completed, the system will decide
the weight for the fusion process. If the indicator system determines the current
speaker’s speech signal as clean speech signal, the optimum weight is employed for
the fusion system otherwise the visual only system is executed.

15.6 Results and Discussions

Figure 15.2 shows the performances of the visual only system using 3, 6, 10 and 20
training data. By increasing the numbers of training data to the system, a great im-
provement in the GAR is observed. At FAR of 0.1%, the GAR of the 3 training data
system is 85%. By using 6 and 10 training data, the percentage of GAR increases to
96%. Subsequently, the system reaches to 98% GAR when 20 training data are used.
Almost 100% GAR is found for 3, 6, 10 and 20 training data systems when the FAR
is equal to 35%, 4%, 3% and 0.2%, respectively. EER performances are observed
as 0.27%, 0.94%, 1.15% and 2.70% for system using 20, 10, 6 and 3 training data,
respectively.

The audio only system performances using 3, 6, 10 and 20 training data are
showed in Fig. 15.3. The increment of the numbers of training data increases the
performance of GAR. At FAR of 1%, the GAR of the 3, 6, 10 and 20 training data
systems are 83%, 93%, 94% and 96%, respectively. This study observes that the
performance of 20 training data system is capable to accomplish almost 100% GAR
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Fig. 15.2 ROC curve for visual only system
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Fig. 15.4 System performances in clean condition

at FAR of 7% compared to FAR of 20%, 25% and 50% for the 10, 6 and 3 train-
ing data systems, respectively. System performances based on EER are observed as
1.79%, 2.70%, 3.50% and 6.60% for system using 20, 10, 6 and 3 training data,
respectively.

The performance of the adaptive weighting, fixed weighting and audio only
system in clean condition are given in Fig. 15.4. The 100% GAR performance is
evaluated at FAR is equal to 0.004% for the adaptive weighting and fixed weight-
ing system compared to 35% GAR performance for the audio only system at the
same percentage of FAR. On the other hand, it is observed that the audio only sys-
tem reaches nearly 100% GAR at FAR of 7%. System performances based on EER
are observed as 0.067%, 0.067% and 1.79% for adaptive weighting system, fixed
weighting system and audio only system, respectively.

The performance of the adaptive weighting, fixed weighting and audio only sys-
tem based on 30 dB SNR data are given in Fig. 15.5.

Hundred percent of GAR performance is evaluated for the adaptive weighting
system at FAR equal to 0.3% compared to FAR equal to 1% for fixed weighting
system. The GAR performance at the FAR equal to 0.3% for fixed weighting system
is 96% meanwhile GAR performance for the audio only system is 18% at the same
FAR percentage. System performances based on EER are observed as 0.29, 0.87
and 17.02% for adaptive weighting system, fixed weighting system and audio only
system, respectively.

The performance of the adaptive weighting, fixed weighting and audio only sys-
tem based on 20 dB SNR data are given in Fig. 15.6. The 100% GAR is evaluated at
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Fig. 15.5 System performances at 30 dB SNR level
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Fig. 15.7 System performances at 10 dB SNR level

FAR is equal to 0.3% for the adaptive weighting system compared to 60% GAR for
fixed weighting system at the same FAR percentage. In contrast, the fixed weighting
system reaches to 100% GAR at FAR equal to 11%. At the FAR 0.3%, the audio
only system simply attains 4% GAR. System performances based on EER are ob-
served as 0.27%, 6% and 40.75% for adaptive weighting system, fixed weighting
system and audio only system, respectively.

The performance of the adaptive weighting, fixed weighting and audio only sys-
tem based on 10 dB SNR data are given in Fig. 15.7.

The 100% GAR performance for adaptive weighting system is evaluated at FAR
equal to 0.3% while for fixed weighting system is found at FAR of 35%. In con-
trast, the performance at FAR of 0.3% for fixed weighting system is 48% GAR
meanwhile GAR performance for audio only system is evaluated as 0% at the same
FAR percentage. System performances based on EER are observed as 0.27%, 9.3%
and 51.14% for adaptive weighting system, fixed weighting system and audio only
system, respectively.

15.7 Conclusions

The performances of the adaptive weighting, fixed weighting and audio only system
at different SNR levels have been reported for comparison. This study proved that
the proposed SVM indicator system is viable for estimating the quality of speech
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signal and the implementation of the adaptive weighting approach is imperative for
uncertain audio condition. The advantage of using the adaptive weighting instead of
fixed weighting is to avoid unreliable scores to be fused together in fusion systems
that can spoil the accuracy of the total scores. By using the adaptive weight fu-
sion approach, the performances of the verification systems can be further enhanced
when high quality speech signal is obtained. Besides, in corrupted speech signal
environment, the system performances can still be maintained by adjusting the fu-
sion weight by using the visual only systems. However, the effectiveness of this
approach depends on the performance of the audio indicator system and visual ver-
ification system. Future work will be devoted on all SNR levels and different types
of noises. Noise eradication techniques will also be experimented to the audio and
visual subsystems so as to enhance the system performance.
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