
Chapter 13
Embedding Interconnection Networks
in Crossed Cubes

Emad Abuelrub

Abstract The hypercube parallel architecture is one of the most popular
interconnection networks due to many of its attractive properties and its suitability
for general purpose parallel processing. An attractive version of the hypercube is
the crossed cube. It preserves the important properties of the hypercube and most
importantly reduces the diameter by a factor of 2. In this chapter, we show the
ability of the crossed cube as a versatile architecture to simulate other interconnec-
tion networks efficiently. We present new schemes to embed complete binary trees,
complete quad trees, and cycles into crossed cubes.
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networks � quad trees

13.1 Introduction

Hypercube architectures are loosely coupled parallel processors based on the binary
cube network. Parallel computers based on the hypercube topology have gained
widespread acceptance in parallel computing. Recently, many machines based on
the hypercube have been designed and made commercially available. The hypercube
offers a rich interconnection topology with large bandwidth, logarithmic diameter,
simple routing and broadcasting of data, recursive structure that is naturally suited
to divide and conquer applications, and the ability to simulate other interconnection
networks with minimum overhead [3, 13, 19]. Due to the popularity of the hyper-
cube, many variations of the hypercube topology have been proposed to improve on
its properties and computational power [7,13,17,20]. Efe [6] proposed an attractive
version of the hypercube called the crossed cube, where preliminary studies proved
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that the crossed cube preserves many of the attractive properties of the hypercube
and more importantly reduces the diameter by a factor of 2 [1, 2, 4, 6, 8, 11, 15].
This implies that the crossed cube has an advantage over the hypercube when data
communication is of major concern. It is well known that for parallel architectures,
data communication cost dominates computation cost. Therefore, it is worthwhile
to make comparative studies on crossed cubes and other interconnection networks,
and explore the advantages provided by them. The problem of embedding one inter-
connection network into another is very important in the area of parallel computing
for portability of algorithms across various architectures, layout of circuits in VLSI,
and mapping logical data structures into computer memories.

The importance of binary trees comes from the fact that this class of structures
is useful in the solution of banded and sparse systems, by direct elimination, and
captures the essence of divide and conquers algorithms. Embedding binary trees
into other interconnection networks attracted the attention of many researchers.
Barasch et al. have considered embedding complete binary trees into generalized
hypercubes [3]. Dingle and Sudborough considered simulation of binary trees and
X-trees on pyramid networks [5]. Quad trees are becoming an important technique
in the domain of image processing, computer graphics, robotics, computational ge-
ometry, and geographic information systems [16, 18]. This hierarchical structure
is based on the principle of recursive decomposition, which is similar to divide
and conquer methods. Mapping quad trees into other interconnection networks at-
tracted the attention of many researchers [1]. The problem of embedding rings or
cycles into other interconnection networks has been studied by many researchers.
It is well known that rings can be embedded into hypercubes using cyclic Gray
codes [19]. Latifi and Zheng [11] generalized the cyclic Gray code method to
embed rings into twisted cubes. Many researchers have addressed the problem of
embedding rings into hypercubes in the presence of faults. On the other hand, other
researchers addressed the problem of embedding rings into fault-free and faulty
topologies [8, 11, 12, 14] or the Hamiltonicity of such structures in fault-free and
faulty environments [9, 10, 15].

The remainder of this chapter is organized as follows. In Section 13.2, we es-
tablish a few preliminary definitions and notations. Section 13.3 explains straight
forward scheme to embed complete binary trees into the crossed cubes. Section 13.4
presents a recursive technique to embed complete quad trees. In Section 13.5, we
extend the Gray code scheme to embed cycles into the crossed cube. Finally,
Section 13.6 concludes the chapter and discusses some future possible work.

13.2 Definitions and Notations

In this chapter, we use undirected graphs to model interconnection networks. Each
vertex represents a processor and each edge a communication link between proces-
sors. The embedding of a guest graph G D .VG;EG/ into a host graph H D .VH;EH/

is an injective mapping f from VG to VH, where VG, EG and VH, EH are the vertex



13 Embedding Interconnection Networks in Crossed Cubes 143

and edge sets of G and H, respectively, and where jVHj � jVGj. We consider a
complete binary tree of height n� 1, a complete quad tree of height n� 1, and a cy-
cle of size n, denoted CBn, CQn, and Cn, respectively, as guest graphs and a crossed
cube of dimension n, denoted XQn, as a host graph. Two cost functions, dilation and
expansion often measure the quality of an embedding. If u and v are two nodes in
G, then the distance from u to v, d D .u; v/, is the length of the shortest path from u
to v. The Dilation (D) is the maximum distance in H between the images of adjacent
vertices of G, D D maxfd(f(u), f(v)), where u–v 2 EGg. The Expansion (E) is the
ratio of the cardinality of the host vertex set to the cardinality of the guest vertex
set, E D jVHj=jVGj. Minimizing each of these measurements has a direct implica-
tion on the quality of the simulation of the guest network by the corresponding host
network. The dilation of an embedding measures how far apart neighboring guest
processors are placed in the host network. Clearly, if adjacent guest processors are
placed far apart in the host network, then there will be a significant degradation in
simulation due to the long length of the communication path between them. The
expansion of an embedding measures how much larger is the host network than the
guest network during the simulation. We want to minimize expansion, as we want
to use the smallest possible host network that has at least as many processors as
in the guest network. In reality, we usually have a fixed size host network and we
may have to consider many-to-one embedding for larger guest networks. When the
size of the guest network is not equal to the size of the host network in terms of
the number of processors, then we try to find the smallest host network that has at
least as many processors as the guest network. Such a host network is referred to as
the optimal host network. There is a trade off between dilation, which measures the
communication delay, and expansion, which measures processor utilization, such
that one can achieve lower expansion at a cost of greater dilation and vice versa.

A hypercube of dimension n, denoted by Qn, is an undirected graph consisting of
2n vertices labeled from 0 to 2n � 1 and such that there is an edge between any two
vertices if and only if the binary representation of their labels differs in exactly one
bit position. A complete binary tree of height n�1, denoted by CBn, is an undirected
graph consisting of 2n�1 vertices and such that every vertex of depth less than n�1
has exactly two sons and every vertex of depth n� 1 is a leaf. A complete quad tree
of height n � 1, denoted by CQn, is an undirected graph consisting of .4n � 1/=3
vertices and such that every vertex of depth less than n�1 has exactly four sons and
every vertex of depth n � 1 is a leaf. A cycle of size n, denoted Cn, is an undirected
graph consisting of n vertices labeled from v1 to vn, such that node vi is a neighbor
with node v.IC1/mod n; 1 	 i 	 n. A path .vo; v1; v2; : : : ; vn�1/ is a sequence of
nodes such that each two consecutive nodes are adjacent. A path in a graph G is a
Hamiltonian path if all its nodes are distinct and they span G. A cycle or a circuit is
called a Hamiltonian circuit if it traverses every node of G exactly once.

The crossed cube is defined recursively as follows. Let G be any undirected la-
beled graph, then Gb is obtained from G by prefixing every vertex label with b.
Two binary strings x D x1x0 and y D y1y0, each of length two, are pair-related if
and only if .x; y/ 2 f.00; 00/; .10; 10/; .01; 11/; .11; 01/g. Now, we define a crossed
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Fig. 13.1 The crossed
cube XQ3

cube of dimension n, denoted XQn, as an undirected graph consisting of 2n vertices
labeled from 0 to 2n � 1 and defined recursively as following:

1. XQ1 is the complete graph on two vertices with labels 0 and 1.
2. For n > 1, XQn consists of two copies of XQn�1 one prefixed by 0, XQ0

n�1,
and the other by 1, XQ1

n�1. Two vertices u D 0un�2: : :u0 2 XQ0
n�1 and v D

1vn�2: : :v0 2 XQ1
n�1 are adjacent, if and only if:

(a) un�2 D vn�2, if n is even.
(b) For 0 	 i 	 b.n� 1/=2c, u2iC1u2i and v2iC1v2i are pair-related.

Figure 13.1 shows crossed cubes of dimension 3. XQn is constructed recursively
based on the construction of XQn�1 by pasting together a copy of XQ0

n�1 and the
mirror image of XQ1

n�1, then adding the appropriate links between the two copies
according to the pair-related relationship.

13.3 Embedding Complete Binary Trees

This section describes our scheme to embed a complete binary tree CBn into a
crossed cube XQn with dilation two and unit expansion. Our scheme is based on
the inorder labeling to embed CBn into XQn in a straight forward way. The inorder
embedding is constructed by Algorithm Embedding Complete Binary Tree (ECBT).

Algorithm ECBT

1. Begin
2. Label the nodes of the complete binary tree based on the inorder traversal using

binary representation
3. Map each node of the complete binary tree to the node in the crossed cube with

the corresponding binary representation
4. End

Theorem 13.1. For all n, the inorder labeling of the complete binary tree embeds
CBn within the crossed cube XQn with dilation two.

Prove of the theorems presented in this chapter is omitted due to the limited
space. However, the reader can refer to [1] for more details. As an illustration to
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Fig. 13.2 The inorder
embedding of CB3 into XQ3

the resulted embedding, in the lowest level, each edge from a left child to its parent
is mapped to the corresponding crossed cube edge between the images of the two
nodes, while the edge between a right child to its parent is mapped to a path of length
two, from the right child to the left child and from the left child to the parent. In the
higher level, each edge from a left child, or a right child, to its parent is mapped to
the corresponding crossed cube edge between the images of the two nodes. In all
higher levels, each edge from a left child, or a right child, to its parent is mapped to
a path of length two. Notice that the inorder embedding is very simple and straight
forward, as shown in Fig. 13.2.

13.4 Embedding Complete Quad Trees

This section describes our recursive scheme to embed a complete quad tree CQn

into its optimal crossed cube XQ2n�1 with dilation two and unit expansion. We pro-
ceed in four steps. In the first step, CQn is decomposed into a four complete quad
sub trees; a left complete quad sub tree ACQn�1 with root a, a left middle com-
plete quad sub tree BCQn�1 with root b, a right middle complete quad sub tree
CCQn�1 with root c, a right complete quad sub tree DCQn�1 with root d, and a
root r. In the second step, XQ2n�1 is decomposed into four sub cubes XQ00

2n�3,
XQ01

2n�3, XQ11
2n�3, and XQ10

2n�3. In the third step, ACQn�1 is embedded
into XQ00

2n�3, BCQn�1 is embedded into XQ01
2n�3, CCQn�1 is embedded into

XQ11
2n�3, DCQn�1 is embedded into XQ10

2n�3, and the root r is embedded into
one of the unused nodes in XQ00

2n�3. In the last step, we construct CQn by finding
the paths r � a; r � b; r � c, and r� d, each of at most length two. The embedding
process is continued recursively by decomposing the complete quad sub trees and
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the crossed sub cubes, repeating the above steps, until we reach the leaves of the
complete quad tree. At the bottom level of the complete quad tree, each complete
quad sub tree with five nodes is mapped into a crossed sub cube of dimension 3.
Next, we present Algorithm Embed Complete Quad Tree (ECQT) that uses a re-
cursive divide and conquers technique to embed a complete quad tree CQn into its
optimal crossed cube XQ2n�1.

Algorithm ECQT

Let ıi be the binary string of length n with a 1 in position i and 0 in all other
positions, �k be the binary string of length k with 0 in all positions, and ˚ be the
xor operator.

1: Begin
2: Decompose CQn to ACQn�1, BCQn�1, CCQn�1, DCQn�1, and r
3: Decompose XQ2n�1 to XQ00

2n�3, XQ01
2n�3, XQ11

2n�3, and XQ10
2n�3

4: Map the quad sub trees into the crossed sub cubes as follows:

.a/ Embed ACQn�1 into XQ00
2n�3, BCQn�1 into XQ01

2n�3, CCQn�1 into
XQ11

2n�3, and DCQn�1 into XQ10
2n�3. a, b, c, and d will appear at

addresses 000�2n�4, 010�2n�4, 110�2n�4, and 100�2n�4, respectively
.b/ Translate the embeddings in XQ00

2n�3 and XQ10
2n�3 by complementing

the .2n � 3/th bit of each node. Formally, if a tree node was mapped to
address x then after the translation it will appear at address x˚ı2n�3. After
the translation, the left root a and the right root d will appear at addresses
001�2n�3 and 101�2n�4, respectively. Therefore, the final position of a, b, c,
and d are 001�2n�4, 010�2n�4, 110�2n�4, and 101�2n�4, respectively

.c/ Map the root r into the node with label 0 in XQ00
2n�3

5: Construct CQn from ACQn�1, BCQn�1, CCQn�1, DCQn�1, CQn, and r by
finding the four paths r � a; r � b; r � c, and r � d . The edges r-a and r-b of
CQn are mapped to paths of length one in XQ2n�1, while the edges r-c and r-d
are mapped to paths of length two. The shortest paths from r to c and from r to d
are 000�2n�4 � 010�2n�4 � 110�2n�4 and 000�2n�4 � 100�2n�4 � 101�2n�4,
respectively

6: End

Theorem 13.2. For all n, Algorithm ECQT maps the complete quad tree CQn within
the crossed cube XQ2n�1 with dilation two and unit expansion (Figs. 13.3 and 13.4).

13.5 Embedding Cycles

Given a cycle C2n with 2n nodes, consider the problem of assigning the cycle
nodes to the nodes of the crossed cube XQn such that adjacency is preserved.
Now, given any two adjacent nodes in the cycle, their images by this embed-
ding should be neighbors in the crossed cube through some dimension i, where
1 	 i 	 n. We can view such an embedding as a sequence of dimensions crossed



13 Embedding Interconnection Networks in Crossed Cubes 147

Fig. 13.3 Embedding CQ1 into the sub cube XQ3

Fig. 13.4 Embedding CQ3 into XQ5

by adjacent nodes. We call such a sequence the embedding sequence, denoted by
ES D .d1; d2; : : : ; d2n/, where di 2 f1; : : : ; ng for all 1 	 i 	 2n. Figure 13.5
shows two different embeddings of the cycle C23 into the crossed cube XQ3. It is
more convenient to view the embedded cycle as will as the crossed cube in the way
shown in Fig. 13.5. The embedding sequence of C23 is ES D .1; 3; 1; 2; 1; 3; 1; 2/.
For example, in the first part of Fig. 13.5, notice that nodes 000 and 001 are con-
nected by a link through dimension 1, 001 and 111 are connected by a link through
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Fig. 13.5 The embedding
sequence

dimension 3, 111 and 110 are connected by a link through dimension 1, 110 and 100
are connected by a link through dimension 2, and so on. The embedding sequence
ES can be generated using Algorithm ES.

Algorithm ES

Let n be the dimension of the crossed cube and let the vertical bar be the concate-
nation operator.

1: Begin
2: ES  1

3: For i  3 to n do
4: ES  ES ji jES
5: ES  ES j2jES j2
6: End

The embedding sequence is generated by applying Algorithm ES on n, where n is
the dimension of the crossed cube. The number of nodes in the crossed cube is equal
to the number of nodes in the embedded cycle, which is 2n nodes. Thus, the em-
bedding sequence of the cycle C24 is ES D .1; 3; 1; 4; 1; 3; 1; 2; 1; 3; 1; 4; 1; 3; 1; 2/

and the embedding sequence of the cycle C25 is ES D .1; 3; 1; 4; 1; 3; 1; 5; 1; 3;

1; 4; 1; 3; 1; 2; 1; 3; 1; 4; 1; 3; 1; 5; 1; 3; 1; 4; 1; 3; 1; 2/. The embedding sequence cor-
responds to the extended binary-reflected Gray code embedding of a cycle into a
crossed cube. The binary-reflected Gray code is the most common technique to em-
bed a cycle into a fault-free hypercube. Notice that the same embedding sequence
may result in different embeddings of C2n into XQn depending on the crossed cube
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node that initiates the cycle construction. Among all different embeddings, we are
interested in one kind. The embedding when the node that initiates the cycle con-
struction in the crossed cube is the upper leftmost node, node with label 0. This
will not violate the generalization of the technique since the crossed cube is node
and vertex symmetric [9], which means that we can relabel the nodes, where any
node can be labeled as node 0, and hence initiates the construction of the cycle. In
Fig. 13.5, the cycle is initiated by node 000 in the first part, while it is initiated by
node 001 in the second part.

Theorem 13.3. For every n, Algorithm ES will generate the embedding sequence
to construct a cycle of size 2n in a crossed cube of dimension n.

Next, we present Algorithm Hamiltonian Circuit (HC) that uses a recursive divide
and conquers technique to embed a cycle C2n into a crossed cube XQn.

Algorithm HC

1: Begin
2: Partition XQn into 2n�3 disjoint crossed cubes, each of dimension 3
3: Embed the cycle C23 into each sub cube using the embedding sequence ES D
.1; 3; 1; 2; 1; 3; 1; 2/

4: Connect the 2n�3 cycles, each of size 8, through the upper, or lower, links to come
up with a cycle of size C2n

5: End

Theorem 13.4. For every n, Algorithm HC will embed a Hamiltonian cycle of size
2n in a crossed cube of dimension n.

Note the use of the upper links of dimension n when the embedding sequence is
generated by node 0, while the lower crossed links of dimension n are used when
the embedding sequence is generated by node 1, as shown in Fig. 13.6.

Fig. 13.6 The recursive construction of the cycle C2n in a fault-free environment
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13.6 Conclusions and Future Work

This chapter has presented different schemes to show the ability of the crossed cube
as a versatile architecture to simulate other interconnection networks efficiently. We
present new schemes to embed complete binary trees, complete quad trees, and
cycles into crossed cubes. A good problem will be to improve the dilation on em-
bedding trees into crossed cubes. Another interesting problem is to generalize the
schemes to embed trees and cycles in the presence of faults.
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