Chapter 12

A Novel Transform Domain Based Hybrid
Recurrent Neural Equaliser for Digital
Communication Channel

Susmita Das

Abstract Efficient neural network based adaptive equalisations for digital
communication channels have been suggested in recent past. Recurrent neural
network (RNN) exhibits better performance in nonlinear channel equalization prob-
lem. In this present work a hybrid model of recurrent neural equaliser configuration
has been proposed where a Discrete Cosine Transform (DCT) block is embed-
ded within the framework of a conventional RNN structure. The heterogeneous
configuration on the RNN framework needs training and involves updation of the
connection weights using the standard RTRL algorithm, which necessitates the de-
termination of errors at the nodes of the RNN module. To circumvent this difficulty,
an adhoc solution has been suggested to back propagate the output error through this
heterogeneous configuration. Simulation study and bit-error-rate performance anal-
ysis of the proposed Recurrent Transform Cascaded (RTCS) equaliser for standard
communication channel models show encouraging results.

Keywords Recurrent neural network - equaliser - bit error rate - discrete cosine
transform - normalization

12.1 Introduction

Channel equalization is a powerful technique for compensating intersymbol inter-
ference in a dispersive communication channel, the nonlinearities introduced by the
modulation/demodulation processes and the noise generated in the system. How-
ever, linear equalisers do not perform well on channels with deep spectral nulls or
with nonlinear distortions. Researchers have shown that nonlinear equalisers based
nonlinear theory exhibit better performance than linear equalisers in applications
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where the channel nonlinear distortions exist [1, 2]. When the channel itself has
nonlinear characteristics or nonlinear channel distortions are too severe to ignore,
even the Decision Feedback Equaliser cannot recover the corrupted signals effec-
tively. Since neural networks (NN) [3] can perform complex mapping between its
input and output space, and are capable of forming complex decision regions with
nonlinear decision boundaries, many types of NNs have successfully applied in
channel nonlinear equalization problem [2].The use of NN’s is justified by not-
ing that in most cases, the boundaries of the optimal decision regions are highly
nonlinear, thus requiring the use of nonlinear classifiers, even with linear channels.
Efficient neural network based adaptive equalisations for digital communication
channels have been suggested in recent past. Different ANN architectures such as
multilayer perceptron (MLP), radial basis function (RBF) etc. and many novel ar-
chitectures and efficient training algorithms have been proposed in the literature
[4]. Moreover structure selection for an ANN equaliser has always been a point of
concern because a less complex structure is much easier to implement in real-time
using VLSI, DSP chips etc. and also more suitable for typical applications like time
varying channels in mobile communication system, optical recording media [5] etc.

Among the techniques based NN, Recurrent Neural Network (RNN) [6, 7]
equalisers are proposed to solve the nonlinear channel equalization problem. RNN
has shown better performance than feed forward neural network, because it ap-
proximates infinite impulse response (IIR) filter while feed forward neural network
approximates FIR filter, which makes it attractive in the presence of channels with
deep spectral nulls. In addition, RNN is more attractive for their small size [8].
Results from the simulations show that the RNE with simple size can yield a sig-
nificant improvement in performance relative to the equalisers with linear filter,
and outperform MLP equalisers of larger computational complexity in no mini-
mum phase, partial response, and nonlinear channel equalizations cases. Complex
versions of the RNE based on a real time current learning (RTRL) algorithm are
developed to process complex signals [9]. Although various algorithms and hybrid
structures [10, 11] have improved the performance of RNE, the computational bur-
dens would become greater. In summary, the heavy computational load and low
convergence speed have limited the practical applications of RNE.

In this paper, a hybrid configuration has been proposed where a Discrete Cosine
Transform (DCT) block is embedded within the framework of a conventional RNE
structure. A signal vector is mapped from a given domain to another when fed to a
transform block and basically the transform block performs a fixed filtering opera-
tion. The basic difference between the transform block and the neural block is that
while adaptive weights are associated with the later, fixed weights are inherent in the
former. Hence, this cascaded network representing a heterogeneous configuration
has been proposed to solve the conventional RNE problem keeping the complexity
of the weight adaptation less. It is obvious that the transform block does not re-
quire any weight adaptation, but the RNN module needs updation of the connection
weights using the standard RTRL algorithm, which necessitates the determination
of errors at the nodes of the RNN module. To circumvent this difficulty, an adhoc so-
lution has been suggested. The primary objective of the proposed work is to design
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cascaded RNE on reduced structural framework with faster convergence keeping in
mind real-time implementation issue.

The organization of this paper is as follows. In Section 12.2, cascaded RNE
equaliser based on the hybrid technique utilizing the modified version of the RTRL
algorithm used to train it are described in detail. In Section 12.3, the performances
of the proposed equaliser through various simulations for linear and nonlinear chan-
nels are illustrated. Finally, Section 12.4 summarizes the research work.

12.2 Proposed Hybrid Recurrent Neural Equaliser

A real-valued discrete cosine transform block followed by power normalization
block is cascaded with an RNN module at the output end as given in Fig. 12.1.
Power normalisation technique [9] is applied to the transformed signals and the final
output of the proposed structure is evaluated as a weighted sum of all normalised
signals. In order to update the connection weights of this cascaded framework, a
novel idea has been developed based on propagation of the output error through
the network in the light of the conventional BP algorithm. The transform block does
not require any weight adaptation as it consists of fixed weights, but the RNN mod-
ule needs updation of the connection weights using the standard RTRL algorithm,
which necessitates the determination of errors at the nodes of the RNN module. But
this estimate cannot be accomplished directly by using BP algorithm due to posi-
tioning of the transform block close to the output end, so problem is encountered
here in propagating the final output error back into the network. To circumvent this
difficulty, an adhoc solution has been evolved and error estimation at the input end
of the transform block is done from the knowledge of the error at its output by con-
sidering its inverse transform. The mathematical expressions governing this concept
are described in subsequent section.

12.2.1 Training Algorithm of Hybrid Neural Structure

The proposed structure shown in Fig. 12.1 consists of nr processing units in the RNN
module with nx external inputs and a transform block. A step by step procedure
has been adopted to update the weights of the neural network as mentioned below.
Sensitivity parameters {P 1{1} of all RNN nodes are intialised to zero. The input
signal to the proposed equaliser structure is represented by a m x I vector x(n) =
[r(n),rn—1),... ... ,r(n—m+1)]T.

Input signal vector to the RNN module is defined as u(n), [th element of which is

yim), 1=<j=<nr

for 1 <1 <(nr+nx) (12.1)
xi(n), 1<i<nx

up(n) = %
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Fig. 12.1 Hybrid neural —
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The output of jth neuron of the RNN module at time index » is given by

1 — e 0cim)

Where the net internal activity is described by

nx+nr

ci(m) =Y wu)-w (), 1=<k=<nr (12.3)
=1
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where W denotes nr by (nx 4 nr) weight matrix of the RNN module. Sigmoid
activation functions (F) with slope parameter ¢ for neurons of the RNN module
have been considered. Input signal vector to the transform block can be expressed
as z(n), whose jth element is denoted as,

zj(n) =yjm).j =nr (12.4)

Here all the processing units of the RNN module act as visible units giving exter-

nally reachable outputs. The jth element of the output from the transform block
(DCT) is defined as

zrj(n) = DCT {z;(n)} = Tz;(n) (12.5)

The 7pqth element of the N X N transforms matrix 7 is defined as

1
— p=0,¢g=0,1,...... JN —1
- VN
Pa = [2 2g + 1
— cosm, p=12,... N—1;,9q=0,1,...,N —1
N 2N

(12.6)

Transformed signal yz(n) is then normalised by the square root of their power
B (n) which can be estimated by filtering the signal an exponentially decaying win-
dow of scaling parameter y € [0, 1] as derived in the literature [12, 13] and shown
below.

The jth element of the normalized signal becomes

o zj(m)
zvj(n) = —m (12.7)
and
Bj(n) =y Bj(n—1) + (1= y)zF;(n) (12.8)

The small constant ¢ is introduced to avoid numerical instabilities when signal power
Bj(n) is close to zero.

The final output of the hybrid structure at time index n, y,(n) is expressed as the
weighted sum of all normalized signals from the transform blocks.

Yo(n) = gj(n)zn j(n) (12.9)
Jj=1

Where g denotes the weight matrix at the output end of the proposed network.
The error at the equaliser output at time index 7 is en by,

e(n) = do(n) — yo(n) (12.10)
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With the knowledge of the output error, the errors at all the nodes of RNN module
can be evaluated in order to facilitate the updation of weights using RTRL algorithm.
But this is not possible directly as already explained before and hence a technique
has been employed to tackle the situation.

At first the error e(n) is back propagated through various connection paths. Then
the error at the jth output of normalization block is computed as given by

ex;(n) =e(m)-g;m), 1, 1=<j<nr (12.11)

The error terms at the output of the transform block 87 () can be calculated using
the following approach. The power normalisation can be considered as a process,
whose operation is quite similar to the nonlinear transformation produced by sig-
moid activation function of a neuron. This concept helps to calculate the error
terms (i.e., local gradients) at the output of the transform block using the follow-
ing equation

Ay k(1)
0y (n)

= enj (M) (ynk )/ yricm) {1 = (1 = y)yF ()} (12.12)

87j(n) = en;j(n)

Further, to propagate the error back through the transform block and to estimate the
error magnitudes at the input side of the transform block, Inverse Discrete Cosine
Transform (IDCT) is applied. This provides an estimate of the error at the input end
of the transform block.
The error at the jth processing unit of the RNN module at time index n is
given by
errmn—node; (n) = IDCT {81 (n)} (12.13)

Application of RTRL algorithm involves primarily the evaluation of sensitivity pa-

rameter, a triply indexed set of variables { p 1{1} defined in literature [06].

dy;(n)
dwu(n)’

P/{z(”)= keAand/ e AUB

where, A = {1,2,...,nr} and B = {1,2,...,nf}.

The sensitivity parameters { p 1{1 are updated as follows

phn+1) = F' {c;(m)} [Z wii(n) - ply(n) + dyus (n)} (12.14)

i=1
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where, I < j <nr,and 1 <1 < (nr + nx)
F'{cjm)} = {1~ y;@+1)?}(¢/2) and
0y is termed as Kronecker delta as given by,
0k = 1 for j = k and zero otherwise.

While the incremental weight change Ag; (n) is calculated using BP algorithm,
RTRL algorithm computes the incremental weight change Awy,(n).

Ag;j(n)=0-e(n)-zy;j(n), 1=<j <nr (12.15)

AWk[(l’l) =A- Z €IV rpn—node ; (I’l) . p,g,(n), 1 =< k <nr and 1 < [ < (nr —+ nx)
i=1
(12.16)

where, A and 0 are learning-rate parameters of the RNN module and the output layer
respectively.
The connection weights are updated as given below.

gin+1)=g;(n)+ Agj(n) (12.17)
wu(n + 1) = wy(n) + Awy(n) (12.18)

The objective here is to minimise the cost function i.e. to change the weights in
the direction that minimizes J(n). The recursion process of updating weights of the
cascaded network continues till a this predefined condition is achieved.

12.3 Simulation Study and Discussions

An exhaustive computer simulation study has been undertaken for evaluating the
performance of all the proposed neural equaliser structures based on FNN topolo-
gies for a variety of linear and non-linear real communication channels models. The
simulation model of an adaptive equaliser considered is illustrated in Fig. 12.2. In
the simulation study the channel under investigation is excited with a 2-PAM sig-
nal, where the symbols are extracted from uniformly distributed bipolar random
numbers {—1, 1}. The channel output is then contaminated by an AWGN (Additive
White Gaussian Noise). The pseudo-random input and noise sequences are gen-
erated with different seeds for the random number generators. For mathematical
convenience, the received signal power is normalised to unity. Thus the received
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Fig. 12.2 Simulation model of channel equaliser in training phase

signal to noise ratio (SNR) is simply the reciprocal of the noise variance at the input
of the equaliser. The power of additive noise has been taken as 0.01, representing a
SNR of 20dB.

Equalisation of different types of channel models (both linear and non-linear
type) are attempted in order to establish the efficacy of the proposed equaliser struc-
tures based on RNN topology and to prove their robustness. It has been already
reported in the literatures [6, 7], that a two-unit, one input, one output RNN is a
non-linear IIR model which is sufficient to model many communication channels.
Considering this aspect, all the proposed cascaded equalisers in RNN framework
are compared with a conventional RNN equaliser (CRNN) with two recurrent units
and one external input sample from the channel output. Further the TDRNN struc-
ture has two nodes in RNN module followed by a 2 x 2 DCT block with power
normalisation and a summing unit at the output end.

For a comparative study and analysis purpose the number of training samples
presented to the proposed equaliser considered here are restricted to 200 sam-
ples only as it is observed that their performances are quite satisfactory. The BER
performance comparison of the proposed equaliser structures based on RNN topol-
ogy has been carried out after all the structures has undergone a training phase
(200 samples) The weight vectors of the equalisers are frozen after the training stage
is over and then the performance test is continued. The BER performances for each
SNR are evaluated, based on 107 more received symbols (test samples) and aver-
aged over 20 independent realizations. All the proposed equalisers in RNN domain
require fewer samples in training phase for satisfactory BER performance. Simula-
tion results demonstrate this advantages offered by these structures. For the RTCS
structure, the number of processing units remains the same as the CRNN equaliser.
After the input signal is preprocessed in the RNN module, it is fed to the DCT trans-
form block for further processing. As expected, such a proposed structure performs
better than a CRNN due to the further signal de-correlation in the transform block
followed by power normalization.

An example of a three tap channel characterized by

Hi(z) = 0.407 — 0.8157~" — 0.40772 (12.19)
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Fig. 12.3 BER performance of the proposed hybrid equaliser for channel H;(z)

RTCS equaliser show distinct SNR gains of about 4.4 dB at a prefixed BER level of
10~* over a conventional RNN equaliser which is quite encouraging (Fig. 12.3).

In order to prove the robustness and consistency in performance of all the
proposed neural structures, equalisation of nonlinear channels is simulated. Such
nonlinear channels are frequently encountered in several places like the telephone
channel, in data transmission over digital satellite links, especially when the signal
amplifiers operate in their high gain limits and in mobile communication where the
signal may become non-linear because of atmospheric nonlinearities. These typi-
cal channels encountered in real scenario and commonly referred to in technical
literatures [4, 6] are described by the following transfer functions.

Hy(z) =(1+05z271)—091405771) (12.20)
Hs(z) = (0.3482 + 0.87047~" + 0.3482772)
+.2(0.3482 + 087047 + 0.3482 772)? (12.21)

For the nonlinear channel H(z), the proposed RTCS equaliser results a significant
2dB gain in SNR level at a prefixed BER of 10™* over the CRNN equaliser in
Fig. 12.4 which clearly justifies their application for such type of channel. RTCS
equaliser in Fig. 12.5 shows distinct SNR gains of about 4 dB at a prefixed BER
level of 10~ over a conventional RNN equaliser in channel H(z). For all the exam-
ples proposed structure performance is approaching the optimal Bayesian equaliser.
Further it is noticed that increasing the number of training samples of the conven-
tional RNN equaliser to 1,000 samples does not yield comparable performance.
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12.4 Conclusion

A real-valued transform is a powerful signal decorrelator which performs whitening
of the signal by causing the eigen value spread of an auto-correlation matrix to
reduce. The proposed neural equalisers with hybrid structures have outperformed
their conventional counterparts to a large limit and require less number of samples
in training phase simultaneously. The basic objective of this research of developing
reduced network configurations remains and hence, while cascading is employed,
it is ensured that under no circumstances this main purpose be defeated. It is inter-
esting to note that recurrent neural structure with two nodes cascaded with a 2 x 2
DCT block with power normalization can outperform the conventional equaliser.
As Bit Error Rate performance is a significant measure of channel equalization and
proposed hybrid neural structure has an edge over conventional ones and even it is
observed that it is close to the theoretically optimal Bayesian equalisers. Further a
reduced structure has low computational complexity. Hence this hybrid ANN ar-
chitecture has opened up new directions in designing efficient adaptive nonlinear
equalisers and can be implemented in DSP processors for real — time applications.
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