
Chapter 10
Macro Cell Placement: Based on a Force
Directed Flow

Meththa Samaranayake and Helen Ji

Abstract Macro cells are used more and more in current designs as they provide
the benefit of reusability directly resulting in the decrease in design time and cost.
However, there lies a gap in the EDA industry for macro-cell placement tools. This
chapter looks at the implementation of a force-directed macro-cell placement tool
that is developed to target the gap in industry.

Keywords Macro-cell � placement � force directed � EDA � graph drawing

10.1 Introduction

The past few years have seen an exponential rise in the growth rate of the semi-
conductor industry. The increase in usage and demand of electronic devices among
consumers has resulted in the need to provide better and faster design methods. The
designers are pushed to their limits in meeting these demands whilst juggling the
constraints of power and performance of ever shrinking circuits. To help designers
meet their targets, EDA (Electronic Design Automation) tools are used to help fully
or partially automate the design processes. One of such important backend processes
is the placement component.

The placement problem simply is the problem of finding the ideal locations for
each cell in a circuit achieving as many or all of the placement objectives. The
two main objectives that every placement tool has to achieve for today’s fixed die
design are,

� Overlap free layout
� Fit in the given placement area

M. Samaranayake (�) and H. Ji
Department of Engineering and Technology, Manchester Metropolitan University,
Chester Street, Manchester M1 5GD UK
e-mail: meththa.t.samaranayake@stu.mmu.ac.uk; h.ji@mmu.ac.uk

S.-I. Ao and L. Gelman (eds.), Electronic Engineering and Computing Technology,
Lecture Notes in Electrical Engineering 60, DOI 10.1007/978-90-481-8776-8 10,
c� Springer Science+Business Media B.V. 2010

105

meththa.t.samaranayake@stu.mmu.ac.uk
h.ji@mmu.ac.uk


106 M. Samaranayake and H. Ji

Other objectives may include minimization of wirelength, congestion, area, run time
etc. The optimal solution will be one that satisfies all of the given criteria. Achieving
such a placement solution is far from possible and even the simplest of cell place-
ment problems are defined to be NP-hard. The consequence of falling short of a
good placement could result in an unroutable design or a slower and/or larger chip.
This will cost time and money to either correct the placement at a later stage or re-do
the design.

In the past, designs mainly carried standard cells but as the complexity and
components increased, Macros were utilized to reduce the complexity of circuits.
Macros can mainly be seen as black boxes that are designed to carry out specific
tasks such as implementation of a logic function (e.g. an IP block). It can also be
on-chip memories that are common in SoC (System on Chip) designs. Increased
use of Macro cells help designer’s reuse of their designs which in turn helps reduce
design time and cost.

Previous work [1, 2] has looked at the possibility of using graph-drawing algo-
rithms as the basis of a Macro-cell placement tool. In this work, the authors have
extended the capabilities of the algorithms in order to achieve better placements of
cells. The two algorithms used in the work are those authored by Kamada and Kawai
[3] and by Fruchterman and Reingold [4] (referred to as KK and FR respectively).
They were chosen for their ability to handle undirected graphs, their simplicity in
implementation, their speed as well as the criteria they follow to produce aestheti-
cally pleasing graphs. In many cases, these criteria are shared by good placements.

10.2 Placement Tools

There are many standard cell placement tools currently available both academi-
cally and commercially within the EDA community. Several of them are capable
of mixed-mode cell placement i.e. designs that contain both standard cells and mod-
ules, but there are only a few placement tools specifically for macro cells. This is
because standard cells used to govern most of the circuit designs up till recent times.
Recent changes have seen designs to contain Macro-based designs such as mem-
ory blocks and IP blocks (Intellectual Property) and furthermore, the hierarchical
design methodology intended to tackle design complexity has resulted in macro-
dominated designs at the top level. Even though mixed mode placement tools can
handle macros, for designs that contain a majority of macros these tools may not
place the cells in the best interest of the macros giving the need for a dedicated
macro cell placer.

Some leading edge mixed-mode placement tools identified are Capo [5], Dragon
[6], FastPlace [7] and APlace [8]. The Capo tool is based on a combination of sim-
ulated annealing and recursive bisection techniques and handles macro cells mainly
by the help of the floorplanner Parquet [9]. Capo placement tool has a secondary
method of placing macro cells where it shreds them to smaller sub-cells. These
sub-cells are connected by two pin nets ensuring that they are placed close to one



10 Macro Cell Placement: Based on a Force Directed Flow 107

another. The design is then solved as a standard cell placement problem. FastPlace
and APlace tools are based on analytical techniques and incorporates macro-cell
placement within its normal placement flow. In FastPlace, the macro-cells are given
priority during legalization stage where overlaps are resolved between macros be-
fore standard cells. Dragon is a hybrid placement tool that combines the use of
simulated annealing with min-cut partitioning. To accommodate macro cells, it
modifies the min-cut algorithm so that the partitions can be of different sizes. All
these placement tools were designed for standard cells and as a result, with the ex-
ception of the Capo placer, these tools do not consider factors such as macro pin
locations, cell orientation, soft macro cells and fixed cell support etc. Due to the
capabilities of the Parquet floorplanner, Capo can handle all factors affecting macro
cells aside from pin handling.

A Java based macro-cell placer [10] based on a force directed placement algo-
rithm has been identified to be different from traditional force directed algorithms.
In this work, the cell shapes and sizes have been considered when developing the
force equation. A limitation of this tool is that it does not handle placement on a
fixed placement area and instead treats the chip as a soft cell with a variable size
and aspect ratio. The pads of the chip are also not fixed; therefore, the positions are
found with the use of the force directed algorithm at a later stage.

A macro-cell placement method based on net clustering and force directed
method is proposed in literature [11]. This approach is unique such that, it treats the
nets as the placement components. In the graphs they draw, the nodes represent the
nets whilst an edge only exists for the nets that share one or more cells. The forces
on the nets determine the initial locations for the cells. Pin locations are determined
last, suggesting that this placement tool is mainly focused on soft cell macros. This
work reiterates the importance of the pin locations and cell orientation in macro cell
placement. Another limitation seen is that the tool only handles connected graphs,
again limiting the type of designs that can be processed.

Looking at both macro-cell placers identified above, a common disadvantage rec-
ognized is that both tools are not standardized – inputs are not of industry recognized
LEF/DEF format [12] but formats limited to the tool. This has limited the tools from
reading in standard designs currently available, therefore disabling measuring their
quality of placement. The same is true for outputs where they are not given out in
any standard format so that the placement can be processed by a routing tool.

10.3 Standard Cells Versus Macro-cells

Macro-cell placement is not as straightforward as standard cell placement. In stan-
dard cell placement, the cells are of uniform height and are restricted to rows in
which they must sit in. These restrictions allow the placement tools to be more pre-
cise in choosing locations for the standard cells and to allocate routing resources.
Macro cells on the other hand do not have such restrictions. They can be of any
height, width and shape (L, T and U shapes though the most common is rectangular)



108 M. Samaranayake and H. Ji

and are not restricted to a specific location of the placement area. As a result,
choosing a good placement for macro-cells can be much harder as the permutations
of locations they can be placed-at are unbounded. Similarly, the different shapes of
the cells can bring in unwanted limitations on finding placements. This can bring
negative results such as more expensive computations and longer runtimes.

It has been found that the size of macro-cells can sometimes be a considerable
amount of the total area; sometimes even up to half of the placement area. This
can have a significant impact on the finalizing the positions of cells with respect to
others. Therefore, it is necessary to give due consideration to the magnitude of cells
and the impact they can have on other cells.

As well as cell position, cell size has a significant impact on the position of pins.
Unlike in standard cell placement, pin locations can have a significant impact on
wirelength, routability and congestion of the chip. To overcome this, the placement
tool will need to handle extra features such as cell mirroring and cell rotation to
consider the best possible cell orientation in order to minimize the above-mentioned
costs and to place the pins in the best locations possible.

Fixed cells are also an important factor that needs to be looked at during cell
placement. There are times when one or more components of the design need to be
placed in a fixed position within the placement area. For macro-cells, these fixed
cells will create a blockage on the area on which cells are to be placed and will need
to be given due consideration during the placement process.

It is seen that there are important differences between standard cell designs and
macro-cell designs and these differences need to be given appropriate priority dur-
ing placement. It further reaffirms the need for macro-cell placement tools that are
separate from standard cell placement tools. Not doing so will result in poor place-
ments and increased design costs in terms of wirelength, congestion and routing
resources etc. that is detrimental for both designers and manufacturers alike.

10.4 Force Directed Graph Drawing Algorithms

Graph drawing algorithms are mainly concerned about nodes lacking any size or
shape, whereas for cell placement cell sizes need to be given due consideration. A re-
cent published work introduces methods of successfully modifying graph-drawing
algorithms to incorporate dimensions to nodes [13]. This work is mainly aimed to-
wards general graph drawing algorithms and the criteria they use for graph drawing
include,

� Vertices are not to overlap
� Edges are not to cross vertices

For this work, the first criterion directly applies, as the objective of the placement
tool is to produce a non-overlapping placement. The second criterion also applies as
it tends to place directly connected cells together, but it could be too conservative if
routing is allowed to be over-the-cell. One of the limitations of this work [13] is that
the node orientation is fixed and cannot be mirrored or rotated.



10 Macro Cell Placement: Based on a Force Directed Flow 109

Force directed graph-drawing algorithms generally tend to be analogous to the
classic problem of Hookes law for a spring system. Most of the current force di-
rected algorithms follow the footsteps of Eades’ spring embedded algorithm [14].
Hooke’s law simply stated that the force exerted by an extended spring is propor-
tional to the length of the spring. Eades modeled the graph as a system of rings
in place of the nodes and springs for edges. His formula for the forces exerted by
the springs differed Hooke’s law by the former taking both attraction and repulsion
forces in to consideration. The aim of all the force directed algorithms is to find
zero-force locations for all nodes – i.e. state of equilibrium for that system.

A comparison [15] of several force-directed algorithms has been carried out
where KK and FR algorithms were the two main contenders. It was identified that
KK is successful in achieving high computation speed, minimizing the computation
time. Even though FR is quick in giving aesthetically pleasing layouts, it is said to
suffer from long run times when the number of nodes/edges exceeds 60. One cannot
declare a certain algorithm to be the best where each has its pros and cons and how
relevant each algorithm is depends on the application [15].

KK Algorithm [3] is concerned about general undirected, connected graphs. It
has the ability to handle weighted graphs such that edges with higher weighting are
longer than those with a lower weighting. One advantage in this algorithm is that
it introduces a “graph theoretic distance” which defines a minimum edge length in
order to minimize node overlaps. The main objective of the algorithm is to find a
balanced formulation of the spring forces within the system. The graph drawing
criteria followed by KK [3] are,

� Reduce number of edge crossings.
� Distribute the vertices and edges uniformly.

Comparing these criteria with those of the macro-cell placement tool, it can be seen
that both are related to the ‘good placement criteria’. Reducing number of edge
crossings results in directly connected cells being placed close to each other. The
second criterion allows the nodes to be evenly distributed within the placement area
as well as show any symmetry within the layout. This not only is an advantage for
graph drawing where the aesthetics are improved, but for cell placement, by illus-
trating the cell connections in an uncomplicated manner. It is worth pointing out
that symmetry is a very important heuristic for placement. While most of place-
ment tools have difficulty in incorporating it into their algorithms, the KK algorithm
handles it neatly.

The main objectives of the FR algorithm are to achieve a visually pleasing graph
with increased speed and simplicity. Following Eades work, the FR algorithm also
makes use of both attraction and repulsion forces, but takes it one-step further by
defining that the attraction forces only to be calculated for neighboring nodes whilst
repulsion forces are calculated for all nodes within the graph.

Looking at the criteria followed by FR [4] when drawing graphs, it is seen that
two main points are considered.

� Vertices connected by an edge should be drawn near each other.
� Vertices should not be drawn too close to each other.



110 M. Samaranayake and H. Ji

The first criteria does apply for the cell placement tool as the cells connected to one
another will need to be close to each other in order to minimize wirelength. This
can be further enhanced by edge weights to ensure that cells connected to edges with
higher weights are as close as possible. Unfortunately, the current implementation of
the FR algorithm does not contain support for edge weights. The second criterion is
set quite vaguely and according to literature [4] it depends on the number of nodes
and the placement area. Literally, this should mean that the nodes do not overlap
each other, which is directly applicable to the objectives of the placement tool.

FR algorithm uses a method similar to simulated annealing to control the ‘cooling
schedule’ of the algorithm, which controls the number of sweeps it goes through in
optimizing the layouts. This can be both advantageous and disadvantageous. It is
advantageous such that it helps limit the displacement prohibiting the algorithm to
be trapped in local minima. It is disadvantageous such that the number of sweeps is
kept at a constant so that the algorithm does no check on the quality of placement
before ending the sequence.

The main difference between the FR and KK algorithm is that the FR algorithm
can handle disconnected graphs. Even though this is not an absolute requirement
compared to the objectives of the placement tool, it does give an advantage as to
the type of designs the algorithm will be able to handle. Authors of KK [3] points
out that even though KK algorithm does not support disconnected graphs, it can be
easily extended to do so without a significant delay in time as follows.

Partition the graph to its connected components giving each component a region of area
proportional to its size, with each component laid out independently.

FR algorithm puts this theory into practice in its technique in handling disconnected
graphs. Authors of FR names this technique as the “grid variant option” where
the placement area is divided into a grid and nodes are given locations within the
grid. Changes are made to the calculation of the repulsion forces; for each node,
the repulsion forces are calculated from the nodes within the current grid as well
as those in neighboring grids, unlike the basic algorithm which calculated repulsion
forces for all nodes.

Another difference between the two algorithms is that KK does not specify a
clear placement area for the graph whereas FR implements support for a customiz-
able placement area. Whilst for graph drawing this may not be very important, it
does carry greater significance in cell placement where the cells are expected to
be placed within the given placement area in order for the placement to be legal.
It is believed that limitation on placing components within the placement area can
be imposed upon in later stages when being used in the placement tool. Table 10.1
summarizes the basic capabilities of the two algorithms.

10.5 Implementation Details

Initial work carried out [1] has proved that both KK and FR are good candidates as a
basis for a macro-cell placement tool. The basic algorithms of both KK and FR were
while sufficient as graph drawing algorithms, lacked the necessary functionalities to



10 Macro Cell Placement: Based on a Force Directed Flow 111

Table 10.1 Comparison of Kamada-Kawai and Fruchterman-Reingold algorithms

KK algorithm FR algorithm

Undirected graphs Undirected graphs
Cannot handle disconnected graphs Can handle disconnected graphs
Objective is to evenly distribute nodes and
edges

Objective is to place nodes close to each
other

Does not respect boundary conditions Nodes are placed within the given
boundary

Supports the use of edge weights Current implementation cannot handle
edge weights

be used as a module placement algorithm. Further modifications were introduced
to the algorithms in-order to function better. The basic implementations of the two
algorithms were taken from the peer reviewed Boost [16] library.

10.5.1 Non-zero Size Vertices Implementation

Traditional force directed algorithms tend to treat the cells as points that do not
posses any size or shape. The edges do not connect to any pins but to the nodes
that represent the cells. This method may be acceptable for standard cell design [10]
but in Macro cell placement it can cause inaccuracies of positions, wirelength, area,
congestion etc. due to the cell dimensions. Recent literature [13, 17, 18] has been
found to carry out work regarding the implementation of different size nodes for
graph drawing.

The simplest method of representing a cell is to consider the node to be circular
[2]. However, previous work showed that for macro-cell placement, circular nodes
could introduce inaccuracies of the actual dimensions and shapes of the cells. Cells
with high aspect ratios can overlap one another requiring further work towards le-
galizing the placement. To tackle this, the elliptic spring method [13] was applied to
FR algorithm. The attraction and repulsion forces for the cells are calculated such
that assuming the nodes are elliptical in shape. The values of the forces are selected
based on the condition if the source and target nodes are overlapping or not. All the
modules are assumed rectangular shaped and the width and height of each cell is
used to calculate the radii of the elliptical vertex that will represent the module.

For KK, this method could not be applied. During the flow of the algorithm, KK
constantly calculates the distance between the boundaries of the connecting nodes.
Whilst considering the nodes as circular, this was easily achievable. However, if the
nodes were to be considered elliptical, this would cause much complexity in the
algorithm increasing the runtime significantly; therefore this was not applied to KK.



112 M. Samaranayake and H. Ji

10.5.2 Fixed Node Support

Another feature that was lacking within the graph drawing algorithms was support
to handle fixed nodes. This is especially useful when designers may specify loca-
tions for some of the cells to be fixed or for the placement of the IO (Input Output)
pads, which communicate with the external world. In force directed algorithms,
since there are attraction and repulsion forces that affects all cells, it was needed to
ensure that the forces emitted by the fixed cells were still being taken into account
whilst the forces felt upon the fixed cells do not cause the fixed cell to displace as is
illustrated in Fig. 10.3.

The algorithm of FR was altered so that the fixed nodes are treated equally
as movable cells during force calculation. During displacement calculations, fixed
nodes are ignored and for added measure ignored during positional updating of the
cells as well. This has shown to be a more accurate method of force calculation for
the algorithm when containing fixed cells.

The KK algorithm was modified to filter out the fixed nodes during the energy
minimization calculations. This was accomplished in a manner that, whilst mini-
mizing the energy function for the movable cells, the affect made from fixed nodes
are still felt. Again, this has been proven successful in implementation.

10.5.3 Input/Output Format

Not all placement tools follow a single format for input and output. This hinders
benchmarking and comparison of placement tools. It is with this in mind that it was
thought best to use the industry standard formats; the Cadence LEF/DEF file format.
The LEF/DEF format is written in ASCII format and can be easily understood. The
DEF file contains all the information relevant to the design, constraints, layout and
netlist information whilst the LEF file contains the library information of all the
cells and modules within the design as well as information regarding layers, vias
and core area information. In order to read in the necessary information for the
placement tool, a parser was developed. The parser reads data in from the two files,
extracts the necessary data and saves it into a text file, which can then be read in by
the placement algorithms. It is hoped that in the future, this will be integrated within
the placement algorithm itself so that the data input will be a one-step process.

Once the algorithms have generated a placement, it will output the summary in
text format and plot the placement in order to inspect the results achieved. In future,
it is hoped to output the data into a DEF file such that the final placements then
can be routed. Routing congestion is another important quality measurement of the
placement.



10 Macro Cell Placement: Based on a Force Directed Flow 113

10.6 Experimentation and Results

With the implementation of different features to the algorithms, they were sim-
ulated under different conditions to identify their strengths and weaknesses. To
start, the two algorithms were subjected to a selection of graphs, some with known
golden topologies. Cells of different dimensions were used to observe the impact
the changes described in this chapter. The simulations were run on an Intel Pentium
IV PC running at 3.2 GHz and with 2 GB of RAM.

Table 10.2 compares the results obtained through this exercise. The runtime and
HPWL (Half-perimeter wirelength) are the cost factors looked at during the experi-
mentation to evaluate the performance of the algorithms. The first two columns show
previous results of KK and FR whilst using circular nodes. The results shown for
the FR are those obtained for the grid option, which allows the use of disconnected
graphs and with elliptical nodes. As it was not possible to use elliptical nodes for
KK, the placement of KK was taken as an initial placement and further enhanced by
FR signified as the KK FR flow. Figure 10.1 gives the placement of FR with circular
nodes, FR with elliptical nodes and that of KK FR for graph5 and graph6.

It is noted that the runtime of FR algorithm has increased due to the increased
complexity of the algorithm by the changeover from circular nodes to elliptical
nodes. Wirelength has seen in increase as well, however, this can be said to be
due to the reduction in overlap where the elliptical nodes has allowed the cells to
be better placed. This is further apparent in Fig. 10.1a where we see in the previous

Table 10.2 Comparison of runtime (ms) and wirelength (�m) results from previous work (marked
as old) and from current work

KK (old) FR (old) FR KK FR

Time WL Time WL Time WL Time WL

G1 0 360 15 369 15 416 0 415
G2 15 390 15 364 15 412 0 366
G3 15 509 16 522 15 648 15 588
G4 46 1,281 15 1,163 2,187 1,489 1,296 1,461
G5 78 1,072 31 1,011 3,812 1,060 2,750 1,051
graph1 0 429 0 446 1,312 576 484 631
graph2 15 231 0 235 1,125 318 343 257
graph3 15 619 15 624 93 843 15 820
graph4 15 23 15 32 15 27 0 45
graph5 15 321 0 366 1,390 371 15 361
graph6 16 887 15 819 2,171 919 1,281 982
graph7 343 975 140 751 125 877 156 723
graph8 46 763 46 786 2,625 1,042 31 1,080
graph9 296 980 78 999 93 1,276 171 1,082
graph10 31 157 15 147 15 127 578 131
graph11 219 480 93 459 109 461 124 461



114 M. Samaranayake and H. Ji

Fig. 10.1 Placement results of graph5 (above) and graph6 (below) as achieved by (a) FR old,
(b) FR with elliptical nodes, and (c) KK FR placement flow

work FR has overlaps between the actual cells. However in Fig. 10.1b the reduction
in overlaps is visible due to the fact that long rectangles are better represented by
the elliptical nodes.

Looking at the results achieved by KK FR, it is seen that for the same designs,
runtime is less than when FR is applied on its own. It is believed that the initial
placement given by KK has helped FR to reduce the complexity of the placement
problem and therefore achieves better placements in a lower amount of time.

10.7 Future Work and Conclusion

In conclusion it can be said that the use of elliptical nodes has helped the FR graph
drawing algorithm find more accurate placements than when using circular nodes.
Even though it was not possible to apply elliptical nodes to KK algorithm, initial
work carried out here has suggested that the algorithm will be successful in gener-
ating initial layouts which can then be improved by a secondary algorithm. Future
work will focus on optimizing those added features and in developing the idea of
having multiple algorithms within the placement flow to reduce the runtime and pro-
duce higher quality placements. In addition, further work will include establishing
techniques to use pin locations to optimize wirelength by means of rotating and/or
mirroring of cells. The experiments carried out so far have given positive results in
achieving good layouts even with the presence of cell dimensions.



10 Macro Cell Placement: Based on a Force Directed Flow 115

References

1. Samaranayake, M., Ji, H., Ainscough, J.: A force directed macro cell placement tool. The 2009
International Conference of Electrical and Electronics Engineering, London, 1–3 July 2009

2. Samaranayake, M., Ji, H., Ainscough, J.: Force directed graph drawing algorithms for Macro
cell placement. World Congress on Engineering, London, 2–4 July 2008

3. Kamada, T., Kawai, S.: An algorithm for drawing general undirected graphs. Inform. Process.
Lett. 31:15 (1989)

4. Fruchterman, T.M.J., Reingold, E.M.: Graph drawing by force-directed placement. Softw.-
Pract. Exp. 21:1129–1164 (November 1991)

5. Adya, S., Chaturvedi, S., Roy, J., Papa, D.A., Markov, I.L.: Unification of partitioning,
placement and floorplanning. International Conference of Computer Aided Design, pp. 550–
557, November 2004

6. Cong, J., Kong, T., Shinnerl, J.R., Xie, M., Yuan, X.: Large-scale circuit placement: gap and
promise. IEEE/ACM International Conference on Computer-Aided Design, pp. 883–890, 2003

7. Viswanathan, N., Pan, M., Chu, C.: FastPlace 3.0: a fast multilevel quadratic placement
algorithm with placement congestion control. Asia and South Pacific Design Automation
Conference, pp. 135–140, 23–26, January 2007

8. Kahng, A.B., Reda, S., Wang, Q.: APlace: A general analytic placement framework. Interna-
tional Symposium of Physical Design, pp. 233–235, San Francisco, CA, April 2005

9. Adya, S., Markov, I.L.: Fixed-outline floorplanning: enabling hierarchical design. IEEE
Trans.VLSI Syst. 11:1120–1135 (December 2003)

10. Mo, F., Tabbara, A., Brayton, R.K.: A force-directed macro-cell placer. International Confer-
ence on Computer-Aided Design, pp. 177–180, San Jose, CA, November 2000

11. Alupoaei, S., Katkoori, S.: Net-based force-directed macro cell placement for wirelength opti-
mization. IEEE Trans. VLSI Syst. 10:824–835 (December 2002)

12. Sanrarini, M.: Open source website offers LEF/DEF formats. EE Times (2000)
13. Harel, D., Koren, Y.: Drawing graphs with non-uniform vertices. Proceedings of Working Con-

ference on Advanced Visual Interfaces, pp. 157–166 (2002)
14. Eades, P.: A heuristic for graph drawing. Congressus Numerantium, pp. 149–160 (1984)
15. Brandenburg, F.J., Himsholt, M., Rohrer, C.: An experimental comparison of force-directed

and randomized graph drawing algorithms. Symposium on Graph Drawing, pp. 76–87, 20–22
September 1995

16. Boost. http://www.boost.org/. Accessed September 2007
17. Wang, X., Miyamoto, I.: Generating customized layouts. In: Brandenburg, F.J. (ed.) Graph

Drawing, vol. 1027, pp. 504–515. Springer, Berlin (1996)
18. Gansner, E., North, S.: Improved force-directed layouts. In: Whitesides, S.H. (ed.) Graph

Drawing, vol. 1547, pp. 364–373. Springer, Berlin (1998)


	10 Macro Cell Placement: Based on a Force Directed Flow
	10.1 Introduction
	10.2 Placement Tools
	10.3 Standard Cells Versus Macro-cells
	10.4 Force Directed Graph Drawing Algorithms
	10.5 Implementation Details
	10.5.1 Non-zero Size Vertices Implementation
	10.5.2 Fixed Node Support
	10.5.3 Input/Output Format

	10.6 Experimentation and Results
	10.7 Future Work and Conclusion
	References


