
7

Shell-type constitutive equations

In this chapter we assume that the constitutive equation for a 3D body is
given and we derive various forms of constitutive equation for shells. The
elastic materials, compressible and incompressible, are considered.

The shell-type constitutive equations are discussed as follows: for the
3D shells in Sect. 7.1, while for the shells for which the normal strain is
recovered in Sect. 7.2. The correction factors for the transverse shear are
derived in Sect. 7.3.

7.1 Constitutive equations for 3D shells

Introduction. The 3D shells, by definition, have a non-zero normal strain
and two formulations belong to this class:

1. the so-called “solid-shells”, which have nodes on the top and bottom
surfaces bounding the shell and use the translational degrees of free-
dom but not rotations. The “solid-shell” element, which is a counter-
part of the four-node shell element, has eight nodes and three dofs per
node, see [100, 199, 241]. The normal strain κ33 must be enhanced
and properly approximated, see [31].

2. the shells based on Reissner kinematics with two additional normal
stretch parameters, see Sect. 6.6.1. The normal stretch parameters
enhance the shell kinematics but require additional equilibrium equa-
tions. They can be treated as elemental variables and eliminated at
the element’s level.

The 3D shells are not within the scope of this book but the constitu-
tive equations for them have relatively simple forms and, hence, they are
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instructive. The constitutive equations for 3D shells can assume the fol-
lowing forms:

1. The 3D constitutive equations, written for 3D stresses and strains, can
be used without any modification, see Sect. 7.1.1. They are particularly
useful for non-linear complicated constitutive laws, e.g. for plasticity.

2. The shell-type constitutive equations, which are written for shell stress
and couple resultants. They can be formulated either in the incremen-
tal form, see Sect. 7.1.2, or in the general form, see Sect. 7.1.3. They
are particularly useful for linear constitutive laws, especially when they
can be integrated over the thickness either analytically as for the linear
SVK material or numerically as for layered composites.

7.1.1 Incremental 3D constitutive equations

Assume that the strain E is a polynomial of the normal coordinate
ζ ∈ [+h/2,−h/2], i.e. E(ζ), and all components of E are non-zero.
Let S designate the stress which is work-conjugate to E. The VW of
the stress S is

δW =
∫

V
δE · S dV . (7.1)

To define the tangent matrix, we calculate the directional derivative of
δW which yields

∆δW =
∫

V
[δE · (C∆E) + S ·∆δE] dV , (7.2)

where C .= ∂S/∂E denotes the 3D constitutive operator. Note that

1. To calculate the integral over the volume V we have to integrate over
the thickness h and over the reference surface A, see Sect. 10.5.

2. The stress S is updated by using the incremental constitutive equa-
tion

∆S = C∆E (7.3)

at Gauss points. This form is general and applies to arbitrary non-
linear materials.

In this approach, the modifications related to shells are minimal:

1. For shells based on the Reissner kinematics, the strain E(ζ) = ε+ ζκ
is used,
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2. The shell stress and couple resultants can be obtained in the post-
processing phase but are not required to obtain the solution. The shell
stress and couple resultants are defined as the following integrals:

Ni
.=

∫

h
ζi S(ζ) µ dζ, i = 0, ..., L, (7.4)

where ζi denotes the i-th power of ζ, µ
.= detZ, and Z is

the shifter tensor, see eq. (5.10). The same Gauss points over the
thickness are used as in the integration of ∆δW.

7.1.2 Incremental constitutive equations for shell resultants

Below, we derive the shell resultants and the constitutive (stiffness) ma-
trices assuming that strain E is represented as the polynomial of the
normal coordinate ζ,

E(z) = E0 + ζ E1 + ... + ζL EL, (7.5)

where the number of terms L is arbitrary. This form encompasses the
first-order as well as the second-order kinematics of a shell as special cases.
Separating the integration over the thickness from the integration over the
reference surface and using eq. (7.5), the VW of stress S of eq. (7.1)
becomes

δW =
∫

A
[δE0, δE1, ..., δEL]




N0

N1
...
NL


 dA, (7.6)

where A is the area of the reference surface. The shell stress resultants
for the stress S are defined as

Ni
.=

∫

h
ζi S(ζ) µ dζ, i = 0, ..., L. (7.7)

The shell form of ∆δW(ζ) is defined as ∆δΣ
.=

∫
h ∆δW(ζ) µ dζ,

and, upon integration of eq. (7.2) over the thickness and by using eq. (7.5),
we obtain



100 Shell-type constitutive equations

∆δΣ =
∫

A
[δE0, δE1, ..., δEL]




C0 C1 ... CL

C1 C2 ... CL+1
...

...
. . .

...
CL CL+1 ... CL+L







∆E0

∆E1
...
∆EL




+ [N0,N1, ...,Ni]




∆δE0

∆δE1
...
∆δEi


 dA, (7.8)

where the shell constitutive operators are defined as

Ck
.=

∫

h
ζk C(ζ) µ dz, k = 0, ..., 2L, (7.9)

where k indicates the power of the thickness coordinate ζ.
The stress and couple resultants are updated by the incremental con-

stitutive equations



∆N0

∆N1
...
∆NL


 =




C0 C1 ... CL

C1 C2 ... CL+1
...

...
. . .

...
CL CL+1 ... CL+L







∆E0

∆E1
...
∆EL


 . (7.10)

This form is effective if we calculate the shell constitutive operators Ck

only once, as for linear materials.

For strain linear over shell thickness. For shells based on the Reissner kine-
matics, we use a linear representation of strain

E(ζ) = E0 + ζ E1 = ε + ζκ (7.11)

and the shell stress and couple resultants are

N0
.=

∫

h
S(ζ) µ dζ = N, N1

.=
∫

h
ζ S(ζ) µ dζ = M. (7.12)

The shell form of the VW of stress, eq. (7.8), becomes

∆δΣ =
∫

A

{
[δε, δκ]

[
C0 C1

C1 C2

] [
∆ε
∆κ

]
+ [N,M]

[
∆δε
∆δκ

]}
dA, (7.13)

where the shell constitutive operators are
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C0
.=

∫

h
C(ζ) µ dζ, C1

.=
∫

h
ζ C(ζ) µ dζ, C2

.=
∫

h
ζ2C(ζ) µ dζ.

(7.14)
In general, the integrals in the definitions of N, M, and Ck are
evaluated numerically, although for simple materials analytical integration
is also possible.

The stress and couple resultants can be updated using the incremental
constitutive equations

[
∆N
∆M

]
=

[
C0 C1

C1 C2

] [
∆ε
∆κ

]
. (7.15)

If cross-sectional properties are symmetric w.r.t. ζ = 0, then C1 = 0 and
the constitutive equations are uncoupled, which means that ∆N depends
only on ∆ε, and ∆M only on ∆κ, i.e.

[
∆N
∆M

]
=

[
C0 0
0 C2

] [
∆ε
∆κ

]
. (7.16)

Finally, we recall that this formulation requires non-zero normal compo-
nents of ε and κ, so it is suitable only for 3D shells.

7.1.3 General form of constitutive equations for shell resultants

In this section, the constitutive equations are derived in a general (non-
incremental) form and the shell stress and couple resultants are used.
The shell strain energy is obtained by the analytical integration over the
thickness and two types of material are considered: (A) the linear SVK
material and (B) the incompressible material.

A. Linear SVK material

The first-order isotropic elastic St.Venant–Kirchhoff (SVK) material is
linear and is applicable only to small strain problems. The standard form
of the strain energy function for the SVK material is

W(E) .= 1
2λ (trE)2 + G trE2, (7.17)

where E is a symmetric strain, and λ, G are Lamé constants. The
energy is defined per unit volume of the initial (non-deformed) configura-
tion. The constitutive equations are S .= dW(E)/dE and, for the SVK
material, we obtain the Hooke’s law
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S = λ tr(E)I + 2GE, (7.18)

where the identities d(trE)/dE = I and d(trE)2/dE = 2E were used.

The form of the strain energy of eq. (7.17) is only valid for a symmetric
E because, for a non-symmetric E, it yields S12 = 2GE21. For non-
symmetric E, we should replace trE2 by tr(EET).

Strain energy for shell. Assume that the strain is expressed as a linear
polynomial of the thickness coordinate ζ, i.e. E = ε + ζκ, where ε
and κ are symmetric shell strains. For this derivation, we assume that
all components of these strain are non-zero. Then

trE = trε + ζtrκ, (trE)2 = (trε)2 + 2ζ(trε)(trκ) + ζ2(trκ)2, (7.19)

E2 = ε2+ζ(εκ+κε)+ζ2κ2, trE2 = trε2+2ζtr(εκ)+ζ2trκ2. (7.20)

Substituting these expressions into the strain energy (7.17) and integrating
over the thickness, we obtain

Σ
.=

∫ +h
2

−h
2

W(E(ζ)) µ dζ = h W(ε) +
h3

12
W(κ), (7.21)

which is the shell strain energy per unit area of the reference surface in
the initial configuration. Note that the couplings (trε)(trκ) and tr(εκ)
dropped out because the integral of terms depending linearly on ζ is
zero.

Shell constitutive equations. A kinematically admissible variation of the
shell strain energy is

δΣ =
∂Σ

∂ε
· δε +

∂Σ

∂κ
· δκ. (7.22)

The stress and couple resultants are defined as

N .=
∂Σ

∂ε
= h

dW(ε)
dε

, M .=
∂Σ

∂κ
=

h3

12
dW(κ)

dκ
(7.23)

and then the variation of the shell strain energy can be concisely written
as

δΣ = N · δε + M · δκ. (7.24)
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Because, the derivatives dW(ε)/dε and dW(κ)/dκ have analogous
forms as dW(E)/dE, hence, the constitutive equations for the stress
resultants and the couple resultants are

N = h [λ (trε)I + 2G ε] , M =
h3

12
[λ (trκ)I + 2G κ] . (7.25)

Note that the distribution of the shear stresses over the thickness is
parabolic and the constitutive equations for the components Nα3 and
Mα3 have to be corrected, see Sect. 7.3.

B. Incompressible Mooney–Rivlin material

Consider a class of second-order hyper-elastic materials which undergo
an isochoric (or volume-preserving) deformation. Because the relation
between the initial volume dV and the current volume dv is
dv = detF dV , the incompressibility of the material is defined by the
condition

detF = 1, (7.26)

where F is the deformation gradient. This definition implies that the
third invariant of the right Cauchy–Green tensor C is equal to one,
I3(C) .= detC = (detF)2 = 1. Thus, the strain energy of incompressible
materials depends only on the two first principal invariants of C,

I1(C) .= trC, I2(C) .= 1
2

[
(trC)2 − trC2

]
. (7.27)

Below, we define two classical incompressible materials:

1. The so-called neo-Hookean material is defined by the following strain
energy function:

W̃(I1(C)) .= c1 [I1(C)− 3] , (7.28)

where c1 is a material constant. This energy function depends only
on the first invariant of C.

2. The Mooney–Rivlin is the material is defined by the following strain
energy function,

W̃(Iα(C)) .= c1 [I1(C)− 3] + c2 [I2(C)− 3] , α = 1, 2, (7.29)

where c1, c2 are material constants. This energy function depends
on the two first invariants of C.
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For more details on incompressible materials, see [81, 159, 93, 116].

For membranes, the strain energy for the incompressible material can
also be expressed in terms of principal stretches. Then the incompress-
ibility condition is applied to the Ogden’s form of the strain energy of
eq. (7.93).

Formulation for right stretching tensor U. The incompressibility condition
can also be formulated in terms of the third invariant of the right stretching
tensor U,

I3(U) .= detU = 1. (7.30)

This form is obtained from the polar decomposition F = QU, for which

detF = det(RU) = (detR)(detU) = detU = 1, (7.31)

as detR = 1 for R ∈ SO(3). Hence, for the incompressible material,
the strain energy depends on the two first principal invariants of U, i.e.
W̃ = W̃(I1(U), I2(U)), where the principal invariants of U are

I1(U) .= trU, I2(U) .= 1
2

[
(trU)2 − trU2

]
. (7.32)

The constitutive equation for the symmetric Biot stress tensor is

TB
s

.=
∂W(U)

∂U
+ p I =

∂W̃(I1(U), I2(U))
∂U

+ p I. (7.33)

Using the chain rule, we obtain

∂W̃
∂U

=
∂W̃
∂I1

∂I1

∂U
+

∂W̃
∂I2

∂I2

∂U
, (7.34)

where ∂I1/∂U = I and ∂I2/∂U = I1I −U. Thus, the constitutive
equation can be rewritten as a linear polynomial of U, i.e. TB

s = β0I +
β1U, where β0 and β1 are scalar coefficients depending on the
invariants.

The invariants of C in eq. (7.29) can be written as functions of the
invariants of U,

I1(C) = I2
1 (U)− 2I2(U), I2(C) = I2

2 (U)− 2I1(U) I3(U), (7.35)

where, for I3(U) = 1, the second one is reduced to I2(C) = I2
2 (U) −

2I1(U). Thus, the Mooney–Rivlin strain energy of eq. (7.29) is, in terms
of the invariants of U, as follows:
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W̃(Iα(U)) = c1

[
I2
1 (U)− 2I2(U)− 3

]
+ c2

[
I2
2 (U)− 2I1(U)− 3

]
. (7.36)

Assume that the right stretching tensor is a linear polynomial of the
thickness coordinate ζ of the shell, i.e. U = e + ζk, where e and
k are the symmetric shell strains. Then the invariants of U can be
expressed as

I1(U) = I1(e) + ζI1(k), I2(U) = I2(e) + ζA + ζ2I2(k), (7.37)

I3(U) =
1
6

[
I3(e) + ζB(e,k) + ζ2B(k, e) + ζ3I3(k)

]
, (7.38)

where the auxiliary scalars are

A
.= I1(e) I1(k)− tr(ek), (7.39)

B(a,b) .= 6
[
I2(a) I1(b) + tr(a2b)− I1(a) tr(ab)

]
, (7.40)

for the second rank tensors a and b. Note the presence of the coupling
terms in A and B(a,b), which render that the second and third
invariant of U are not expressible in terms of the invariants of e and
k. For the squares of invariants of U, which are also present in eq. (122),
we have

I2
1 (U) = I2

1 (e) + 2ζI1(e) I1(k) + ζ2I2
1 (k), (7.41)

I2
2 (U) = I2

2 (e) + ζ2A2 + ζ4I2
2 (k) + 2ζI2(e) A

+ 2ζ2I2(e) I2(k) + 2ζ3I2(k) A, (7.42)

where
A2 = I2

1 (e) I2
1 (k)− 2I1(e) I1(k) tr(ek) + [tr(ek)]2 . (7.43)

Note that for the assumed approximations of U, the strain energy is
the second order polynomial of ζ for the neo-Hookean material and the
fourth order polynomial for the Mooney–Rivlin material.

Strain energy for shell. Let us define the shell strain energy density per
unit area of the middle surface in the initial configuration, as the integral
of the strain energy over the thickness, i.e.

Σ̃(Iα(U)) .=
∫ +h

2

−h
2

W̃(Iα(U)) µ dζ. (7.44)
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The integration over the thickness renders that the terms of W̃(Iα(U))
multiplied by even powers of ζ are equal to zero and the shell energy
splits as follows:

Σ̃ = c1 Σ̃1 + c2 Σ̃2, (7.45)

where

Σ̃1 = h
[
I2
1 (e)− 2I2(e)− 3

]
+

h3

12
[
I2
1 (k)− 2I2(k)

]
, (7.46)

Σ̃2 = h
[
I2
2 (e)− 2I1(e)− 3

]
+

h3

12
[
A2 + I2(e)I2(k)

]
+

h5

80
I2
2 (k). (7.47)

In the neo-Hookean component Σ̃1, the terms depending on e and k
are separated, leading to uncoupled constitutive equations. On the other
hand, the component Σ̃2 contains coupling terms such as I1(e)I1(k),
I2(e)I2(k), tr(ek), and some products and powers of them.

Shell constitutive equations. For symmetric e, δe, k, and δk, the
variation of the shell strain energy may be written as

δΣ̃(e,k) = NB
s · δe + MB

s · δk, (7.48)

where the stress and couple resultants are defined as

NB
s

.=
dΣ̃

de
, MB

s
.=

dΣ̃

dk
. (7.49)

To facilitate further differentiation, we calculate the following derivatives:

∂tr(ek)
∂e

= k,
∂ [tr(ek)]2

∂e
= 2tr(ek) k,

∂A2

∂e
= 2A D(k), (7.50)

∂tr(ek)
∂k

= e,
∂ [tr(ek)]2

∂k
= 2tr(ek) e,

∂A2

∂k
= 2A D(e), (7.51)

where the auxiliary tensor is defined as

D(A) .= I2(A),A = I1(A) I−A. (7.52)

The derivatives of the shell strain energy are

∂Σ̃1

∂e
= 2he,

1
2

∂Σ̃2

∂e
= h [I2(e)D(e)− I] +

h3

12
π(k, e), (7.53)
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∂Σ̃1

∂k
= 2

h3

12
k,

1
2

∂Σ̃2

∂k
=

h3

12
π(e,k) +

h5

80
I2(k)D(k), (7.54)

where the term which couples the contribution of e and k is defined
as follows:

π(a,b) .= A D(b) + 1
2I2(b) D(a). (7.55)

Using the above equations, the following coupled constitutive equations
for the shell are obtained:

NB
s = c1 [2he] + c22

[
h (I2(e)D(e)− I) +

h3

12
π(k, e)

]
, (7.56)

MB
s = c1

[
2
h3

12
k
]

+ c22
[
h3

12
π(e,k) +

h5

80
I2(k)D(k)

]
. (7.57)

Note that these constitutive equations for the hyper-elastic incompress-
ible material have been obtained without any simplifications of the strain
energy and have quite a complicated form. In numerical implementations,
the incremental forms are much more convenient.

7.2 Reduced shell constitutive equations

The reduced shell constitutive equations are obtained by using the normal
strain recovered from an auxiliary condition. This recovery is performed
because the standard Reissner hypothesis yields the normal strains ε33

and κ33 equal to zero, as we can see in

1. Eqs. (6.40)–(6.41) for the non-symmetric relaxed right stretch strain,
2. Eqs. (6.48)–(6.49) for the symmetric relaxed right stretch strain, and
3. Eqs. (6.54)–(6.55) for the Green strain.

The zero values of the normal strains are non-physical and inaccurate,
which can be easily shown for membranes, see eq. (7.73) and Fig. 7.1.

For the Kirchhoff shells, the components of strain are usually evaluated
as follows:

εαβ ∼ hκ(αβ) = O(η), ε3β ∼ hκ3β = O(ηθ), ε33 = O(νη). (7.58)

where η is the maximum eigenvalue of the Green in-plane strains and ν
is the Poisson’s ratio. The small parameter θ is defined in [171], p. 111,
eq. (6.3.4). We note that a special methodology, proposed in [119, 120] and
later successfully developed in [129, 173, 174], must be used to construct
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consistent approximations to the strain energy. Obviously, ε33 is not
negligible compared to the other strain components.

To improve accuracy, we can calculate the normal strains from auxil-
iary conditions, such as (a) the zero normal stress (ZNS) condition, see
Sect. 7.2.1, or (b) the incompressibility condition, see Sect. 7.2.2. This
approach using the recovery is classical and most often used despite several
difficulties involved such as:

1. the auxiliary conditions are not always fully physically justified, e.g.
the ZNS condition in case of the multi-layer shells,

2. the reduced constitutive laws are often difficult to derive for some con-
stitutive equations and are very complicated. For the ZNS condition,
this problem can be alleviated by using the incremental form of the
constitutive equations, see Sect. 7.2.1.

3. the reduced constitutive equations can be more difficult to solve than
the original 3D equations, e.g. for the J2 plasticity, where the 2D yield
surface is not spherical and the radial return algorithm cannot be
applied.

The recovery of the normal strain renders that the constitutive equations
are more accurate but also more complicated.

7.2.1 Reduced constitutive equations for ZNS condition

For thin membranes, we can use the plane stress conditions

S31(z) = 0, S32(z) = 0, S33(z) = 0, (7.59)

where S31 and S32 are transverse shear stresses and S33 is the
normal stress, all in the local Cartesian basis {tk}. However, for the
Reissner shells, only the condition for the normal stress is acceptable,

S33(z) = 0, (7.60)

while the transverse shear strains must remain unconstrained. This ZNS
condition was used for the Kirchhoff shells in the classical works [153, 171,
172].

A. Incremental formulation in stresses

In the 3D formulation of Sect. 7.1.1, the incremental constitutive equation
(7.3) is written for stresses as ∆S = C∆E and can be rewritten as
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[
∆Sv

∆S33

]
=

[
Cvv Cv3

C3v C33

] [
∆Ev

∆E33

]
, (7.61)

where (·)v denotes a vector of tangent components arranged in the
order {11, 22, 12}. Besides, dimCvv = 3 × 3, dimCv3 = 3 × 1, and
dimC3v = 1 × 3. This equation involves only the tangent components
and the normal components 33, while the transverse shear components
were omitted for simplicity.

From the condition of a zero increment of the normal stress, i.e. ∆S33 =
0, and the last (scalar) equation of eq. (7.61), we can calculate the normal
strain increment

∆E33 = − 1
C33

C3v ∆Ev, (7.62)

for which the first (matrix) equation of eq. (7.61) becomes

∆Sv = Cvv∆Ev + Cv3∆E33 = C∗ ∆Ev, (7.63)

where the constitutive matrix is defined as

C∗ .= Cvv − 1
C33

Cv3C3v. (7.64)

The above-reduced incremental constitutive equation (7.63) and the re-
duced constitutive matrix C∗ are for tangent components and both
account for the increment of normal strain, i.e. the change of thickness.
The normal strain is updated as

Ei
33 = Ei−1

33 + ∆E33, (7.65)

where ∆E33 is given by eq. (7.62), and Ei−1
33 is the value for the

previous iteration.

Remark. Note that this incremental procedure is quite general and can be
applied to any non-linear hyper-elastic materials, e.g. to the compressible
neo-Hookean materials, which are generalizations of the incompressible
neo-Hookean material of eq. (7.28). For instance, in [212], the strain energy
function has the form

W .=
λ

2
(lnJ)2 −G lnJ

︸ ︷︷ ︸
compressible part

+
G

2
(trC− 3), (7.66)

where J
.= detF. For F = I, we obtain W = 0 and the constitutive

operator is reduced to the one for the SVK material. A simpler form of the
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compressible part is obtained when the first term is replaced by the first
term of its series expansion at J = 1, i.e. (lnJ)2 = (J −1)2 +O(J −1)3;
other forms of this part are listed in [116], p. 160.

Remark. A very simple scheme of treating the normal strain was used
for shells in [101]. The nonlinear governing equations are solved itera-
tively and the normal strain is evaluated for the last available solution,
so its value lags one iteration behind. This certainly somehow impairs the
convergence rate, but it is acceptable as long as the iterations converge.

B. Incremental formulation in stress resultants and couple resultants

For the constitutive equations of Sect. 7.1.2, we use the recovery procedure
for the shell stress and couple resultants, which is analogous to that for
stresses. Note that the condition S33(z) = 0 implies, by eq. (7.12), the
zero values of shell resultants, i.e. N33 = 0 and M33 = 0. We use these
conditions in the incremental form

∆N33 = 0, ∆M33 = 0. (7.67)

We assume that the shell constitutive equations are decoupled, as in
eq. (7.16), and consider them separately.

For the first of eq. (7.16), ∆N = C0 ∆ε, we use the condition ∆N33 =
0, and the results are analogous to these for stresses, if we replace

E → ε, ∆S33 → ∆N33, ∆E33 → ∆ε33, C→ C0, C∗ → C∗0.
(7.68)

For the second of eq. (7.16), i.e. ∆M = C2 ∆κ, we use the condition
∆M33 = 0, and the results are analogous to these for stresses, if we
replace

E → κ, ∆S33 → ∆M33, ∆E33 → ∆κ33, C→ C2, C∗ → C∗2.
(7.69)

For the recovered ∆ε33 and ∆κ33, the normal strain of a shell is
linearly approximated in z,

∆E33(z) = ∆ε33 + z ∆κ33. (7.70)

The example of the 2D beam indicates that the recovery of both normal
strains is beneficial, although each one for a different deformation, see
Table 7.1.
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C. Constitutive equations for SVK material using ZNS condition

For the linear SVK material, the procedure of the previous section is re-
duced to the classical procedure using the general form of the ZNS condi-
tion. In terms of components, the SVK strain-energy function of eq. (7.17)
has the following form:

W(E) .=
λ

2
(E11 + E22 + E33)

2

+ G
(
E2

11 + 2E2
12 + E2

22 + E2
33 + 2E2

13 + 2E2
23

)
(7.71)

and the constitutive equations are

S11 = λ (E11+E22+E33)+2GE11, S22 = λ (E11+E22+E33)+2GE22,

S33 = λ (E11 + E22 + E33) + 2GE33, (7.72)

S12 = 4GE12, S13 = 4G E13, S23 = 4GE23.

For simplicity, in the sequel we neglect the transverse shear strain compo-
nents. From the ZNS condition S33 = 0 and for S33 of eq. (7.72), we
can calculate the normal strain

E33 = −c0 (E11 + E22), c0
.=

λ

λ + 2G
=

ν

1− ν
, (7.73)

where c0 is plotted for ν ∈ [0, 1
2 ] in Fig. 7.1. We see that 0 ≤ c0 ≤ 1,

and always is greater than ν, which is shown as a straight line in this
figure. Note that ν is used in the estimation ε33 = O(νη) of eq. (7.58).

0.10.0 0.2 0.3 0.4 0.5

n

0.2

0.0

0.4

0.6

0.8

1.0

c0

Fig. 7.1 Coefficient c0 for ν ∈ [0, 1
2 ].
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Using eq. (7.73), the strain energy (7.71) becomes

W∗(Ev)
.=

1
2
c1(E2

11 + E2
22) + c2 E11E22 +

1
2
c3 E2

12, (7.74)

where

c1
.=

4G(λ + G)
λ + 2G

=
E

1− ν2
, c2

.=
2Gλ

λ + 2G
=

Eν

1− ν2
, c3

.= 4G =
2E

1 + ν
.

(7.75)
This form of strain energy depends only on the tangent components
{11, 22, 12}.

The reduced constitutive equations Sv(εv)
.= ∂W∗(Ev)/∂Ev and the

reduced constitutive matrix Cvv
.= ∂Sv(Ev)/∂Ev are as follows:




S11

S22

S12


 =




c1 E11 + c2 E22

c2 E11 + c1 E22

c3 E12


 , Cvv =




c1 c2 0
c2 c1 0
0 0 c3


 . (7.76)

The inverse of the constitutive matrix is

C−1
vv =




d1 d2 0
d2 d1 0
0 0 d3


 , d1 =

λ + G

G(3λ + 2G)
,

d2 =
−λ

2G(3λ + 2G)
, d3 =

1
4G

. (7.77)

The eigenvalues of the constitutive matrix are

eigvCvv =
{

2G

λ + 2G
(3λ + 2G), 4G, 2G

}

=
{

E

1− ν
,

2E

1 + ν
,

E

1 + ν

}
. (7.78)

For ν ∈ [0, 1
2 ], the smallest eigenvalue of Cvv is E/(1 + ν) = 2G.

Finally, we note that the strain energy of eq. (7.74) can be expressed
using the constitutive matrix Cvv as follows:

W∗(Ev)
.=

1
2

Ev · (CvvEv). (7.79)
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For in-plane strain linear over shell thickness. For shells, we use the in-plane
strains which are linear in the normal coordinate, i.e. Ev(ζ) = εv + ζκv.
Using the strains of this form in eq. (7.73), we obtain the normal strain
of the shell as a linear polynomial of ζ,

E33(ζ) = ε33 + ζκ33, (7.80)

where ε33 = c0 (ε11 + ε22) and κ33 = c0 (κ11 + κ22). Hence, we obtain
a linear approximation of the normal strain when the in-plane strains are
linear in ζ.

Using Ev(ζ) = εv+ζκv, and integrating the strain energy of eq. (7.74)
over the thickness, we obtain the shell strain energy as a sum of the mem-
brane energy and the bending energy

Σ
.=

∫ +h
2

−h
2

W∗(Ev(ζ)) µ dζ = h W∗(εv) +
h3

12
W∗(κv). (7.81)

We can rewrite eq. (7.76) as Sv = Cvv Ev and use it in the definition
of eq. (7.12) to obtain the constitutive equations for the shell stress and
couple resultants

Nv
.=

∫ +h
2

−h
2

Sv(ζ) µ dζ = hCvvεv, Mv
.=

∫ +h
2

−h
2

ζ Sv(ζ) µ dζ =
h3

12
Cvvκv.

(7.82)

D. Effects of normal strain recovery for 2D beam

Consider a straight 2D beam in the {t1, t3}-plane, where {tj} (j = 1, 3)
is the local ortho-normal basis associated with the initial configuration.
For the standard Reissner hypothesis, x(ζ) = x0 + ζQ0t3, we can split
the non-symmetric relaxed right stretch strain, H̃n

.= QT
0 F − I, as

follows: H̃n(ζ) = ε + ζκ, where the components in {ti} are

ε11 = x0,1 · a1 − 1, 2 ε13 = x0,1 · a3, ε33 = 0, (7.83)

κ11 = ω,1, κ13 = 0, κ33 = 0,

where ai
.= Q0 ti. The 3D formulation is reduced to a 2D formulation

by setting the 21 and 23 components of stress and strain to zero
and recovering ε22 from the condition σ22 = 0. Then, for the SVK
material, we obtain the following beam-type constitutive equations:
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N11 = Ch (ε11 + νε33) , N33 = Ch (νε11 + ε33) ,

N13 = k Ch
1− ν

2
(2ε13), (7.84)

M11 = C
h3

12
(κ11 + νκ33) , M33 = C

h3

12
(νκ11 + κ33) ,

where C = E/(1− ν2), E is the Young’s modulus, ν is the Poisson’s
ratio, and k is the shear correction factor. Note that only the components
{11, 33, 13} are involved.

The normal strains ε33 and κ33 are equal to zero in eq. (7.83),
but we can recover them as follows. The condition N33 = 0 yields
ε33 = −ν ε11. Similarly, κ33 can be recovered using the condition
m33 = 0, which yields κ33 = −ν κ11. Due to the recovery, the normal
strain is linearly approximated over ζ,

H̃n33(ζ) = ε33 + ζκ33 = −ν(ε11 + ζκ11). (7.85)

Using the recovered normal strains, the constitutive relations of eq. (7.84)
become

N11 = Ch
(
1− ν2

)
ε11 = Eh ε11, N11 = C

h3

12
(
1− ν2

)
κ11 = E

h3

12
κ11.

(7.86)
Comparing these forms with N11 of eq. (7.84) for ε33 = 0 and M11

of eq. (7.84) for κ33 = 0, we see that, in both cases, the strain recovery
renders that the stiffness is reduced by the factor

(
1− ν2

)
.

Numerical test. The slender cantilever test is described in Sect. 15.3.1,
Fig. 15.13. The cantilever is modeled by 100 two-node beam elements and
loaded by either the stretching force Px = 1 or the bending moment
Mz = 1, or by the transverse force Py = 1.

The linear solutions are presented in Table 7.1, where the tip’s displace-
ment and rotation are reported. We see that for Px = 1, the recovery
of ε33 is beneficial, while the recovery of κ33 has no effect. On the
other hand, for Mz = 1 and Py = 1, the situation is opposite and
only the recovery of κ33 is beneficial. Without the recovery of κ33, the
solutions are too stiff and the error is 9%, as ν = 0.3.
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Table 7.1 Slender cantilever. Effect of recovery of normal strains for different loads.

Recovered strains Px = 1 Mz = 1 Py = 1
ux × 104 uy × 102 ω × 103 uy ω × 102

none 0.91 5.46 1.0920 3.6402 5.46
ε33 1.00 5.46 1.0920 3.6402 5.46
κ33 0.91 6.00 1.2000 4.0002 6.00

Ref. 1.00 6.00 1.2000 4.0000 6.00

7.2.2 Reduced constitutive equations for incompressibility condition

The incompressibility condition, eq. (7.26) or (7.30), can be exploited in
two ways:

1. It can be appended to the potential energy, i.e. Π
′
(χ, p) .= Π(χ) +∫

V p (detGradχ − 1) dV , where the pressure p serves as the La-
grange multiplier. Note that unless p is included as a variable, the
calculated stress is determined up to the pressure, see [239], pp. 70–72.
This method is generally applicable, see [218] and the literature cited
therein.

2. It can be treated as an auxiliary equation to recover the normal strain
for shells made of an incompressible material. This application is of
interest in this section and two formulations are presented below:
a) For membranes, the description is given in terms of principal

stretches and we assume that all strains are constant over the thick-
ness, see Sect. 7.2.2A,

b) For arbitrary shells, we assume that all components, except the
normal one, are linear polynomials of ζ. Hence, the recovered
U33 is a rational function of ζ, and the question arises of how
many terms in the expansion should be retained, see Sect. 7.2.2B.

A. Membranes. Description in principal stretches

The principal directions of the right stretching tensor U are defined as
follows:

Q ∈ SO(3) : QUQT = Û, (7.87)

where Û = diag{λ1, λ2, λ3} and λi (i = 1, 2, 3) are the principal
stretches. For isotropic materials, the Biot stress T̂B

s is coaxial with Û
and, hence, also QTB

s QT = T̂B
s holds, where T̂B

s = diag{t1, t2, t3}
and ti are the principal values of the Biot stress. Note that Q can
vary during deformation.
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For membranes, the stretches λi are constant over the thickness.
Besides, the transverse shear stresses and strains are equal to zero, so one
principal direction is normal to the membrane; we designate it as λ3. As
a consequence a one-parameter rotation Q describes the orientation of
the tangent principal axes.

To find the principal directions in the tangent plane, we note that the
Cauchy–Green tensor C .= FTF = U2 has the same principal directions
as U, but has a simpler form. Hence, instead of eq. (7.87), we use the
equation Ĉ = QCQT , where

Ĉ .=
[
Ĉ11 Ĉ12

Ĉ12 Ĉ22

]
, Q .=

[
cos θ − sin θ
sin θ cos θ

]
, C .=

[
C11 C12

C12 C22

]
(7.88)

and θ is the angle defining the first principal direction. From the condi-
tion Ĉ12 = 0, we find θ(Cαβ) and, next, Ĉ11(Cαβ) and Ĉ22(Cαβ),
where α, β = 1, 2. Besides, we have the relations to stretches

λ2
1 = Ĉ11(Cαβ), λ2

2 = Ĉ22(Cαβ), (7.89)

which are used to calculate the derivatives needed in constitutive equa-
tions, see eq. (7.100).

For incompressible materials, we can use the incompressibility condi-
tion of eq. (7.30) written in terms of the principal stretches, det Û =
λ1λ2λ3 = 1, to calculate the normal stretch

λ3 = (λ1λ2)−1, (7.90)

and, next, to obtain the reduced strain energy.

Ogden’s strain energy. The Ogden form of the strain energy is an isotropic
function of principal stretches

W(λi) =
∑

r

µr

αr
[λαr

1 + λαr
2 + λαr

3 − 3] , i = 1, 2, 3, (7.91)

where µr and αr are the material constants, see [158, 159]. The
number of terms r is selected to characterize a particular material, e.g.
for rubber r = 3 is used. The principal values of the Biot stress are
obtained as

ti
.=

∂W(λj)
∂λi

, i, j = 1, 2, 3. (7.92)
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For incompressible materials, we can use λ3 of eq. (7.90), and then the
reduced strain energy depends only on two stretches

W∗(λα) =
∑

r

µr

αr

[
λαr

1 + λαr
2 + (λ1λ2)−αr − 3

]
, α = 1, 2 (7.93)

and the principal values of the Biot stress are

t∗α
.=

∂W(λβ)
∂λα

, α, β = 1, 2. (7.94)

Strain energy depending on invariants of U. Assume that the strain energy
is a function of the principal invariants of U which, in turn, are expressed
by stretches λi,

W̃(Ii(U)) = Ŵ(Ii(Û)), i = 1, 2, 3, (7.95)

where the principal invariants of Û are as follows:

I1(Û) = λ1 + λ2 + λ3, I2(Û) = λ1λ2 + λ2λ3 + λ3λ1, I3(Û) = λ1λ2λ3.
(7.96)

The constitutive equation for the principal values of the Biot stress is
calculated as

ti
.=

∂Ŵ(Ij(Û))
∂λi

=
∂Ŵ
∂Ij

∂Ij

∂λi
, i, j = 1, 2, 3. (7.97)

Using λ3 of eq. (7.90) in the two first invariants, we obtain

I∗1 (Û) = λ1 +λ2 +(λ1λ2)−1, I∗2 (Û) = λ1λ2 +(λ1)−1 +(λ2)−1. (7.98)

The strain energy becomes a function of λ1 and λ2, i.e. W̃(Ii(U)) =
Ŵ(I∗α(Û)), α = 1, 2, and the constitutive equation is calculated as

t∗α
.=

∂Ŵ(I∗β(Û))
∂λα

=
∂Ŵ
∂I∗β

∂I∗β
∂λα

, α, β = 1, 2. (7.99)

Remark. The above formulas are simple, but the computational proce-
dure for rubber-like membranes is not trivial because the relation between
the stretches and strain components is complicated. For instance, the con-
stitutive equation for the Ogden energy is
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Sαβ =
∂W(λγ)
∂Eαβ

=
∂W(λγ)

∂λ1

∂λ1

∂Eαβ
+

∂W(λγ)
∂λ2

∂λ2

∂Eαβ
, α, β, γ = 1, 2,

(7.100)
where the derivatives ∂λ1/∂Eαβ and ∂λ2/∂Eαβ are computed by
using eq. (7.89) and are complex. The computational procedure for the
formulation in terms the second Piola–Kirchhoff stress and Green strain
is given in [86].

Incompressibility condition for small strains. For small strains, we can obtain
an alternative expression for the incompressibility condition. Consider the
following linear Taylor expansions at λ1 = λ2 = λ3 = 1,

detU .= λ1λ2λ3 = 1 + dλ1 + dλ2 + dλ3 + O(dλ2
1, dλ2

2, dλ2
3), (7.101)

tr(U− I) .= λ1+λ2+λ3−3 = dλ1+dλ2+dλ3+O(dλ2
1,dλ2

2,dλ2
3). (7.102)

Hence,
detU− 1 = tr(U− I) = trH, (7.103)

with the second-order accuracy. Thus, for small strains, the incompress-
ibility condition detU = 1 can be replaced by the condition trH = 0.

B. Arbitrary shells

Consider the incompressibility condition of eq. (7.30), which is expressed
in terms of the right stretching tensor. Let us write this condition as

detU = U31D31 − U32D32 + U33D33 = 1, (7.104)

where the minors are

D31
.= U12U23−U13U22, D32

.= U11U23−U13U12, D33
.= U11U22−U2

12.
(7.105)

The normal component U33 appears in this equation only once and can
be calculated as

U33 =
1

D33
(1− U31D31 + U32D32), (7.106)

where the r.h.s. depends on all components of U except the normal one.

We denote the U without the 33 component by U∗, and assume
that it is a linear polynomial of ζ, i.e. U∗ = e∗ + ζk∗. Then U33

is a rational function of ζ with a polynomial of the third order in the
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nominator, and a polynomial of the second order in the denominator.
Hence, unless the denominators are equal to zero, U33(ζ) is infinitely
times differentiable and we can perform the Taylor series expansion of it
around the middle surface, retaining as many terms as necessary,

U33(ζ) = (U33)0 + (U33,ζ)0 ζ + 1
2 (U33,ζζ)0 ζ2 + O(ζ3), (7.107)

where we can denote (U33)0
.= e33 and (U33,ζ)0

.= k33 to keep the
notation consistent. The so-recovered e33 and k33 can be used in U.

A rigorous analysis of the question of how many terms of the expan-
sion should be retained is difficult, see [202], because we must define, in
advance, the class of deformation and geometry which is analyzed. Some
insight provides the example given below in which we determine accuracy
of the linear expansion of the normal strain.

Example. Inversion of a spherical cap. The example of an inversion of a
spherical cap is solved analytically in [232]. The current position vec-
tor is assumed as x(ζ) = x0 +λ(ζ) n̄, where n̄ is a unit vector normal
to the deformed middle surface and λ(ζ) is the extension function. The
deformed configuration also has a spherical shape, so λ(ζ) is obtained
analytically, see eq. (6.4) therein. The obtained normal strain has the fol-
lowing form:

ε33(ξ̂)
.=

∂λ

∂ζ
=

(1 + h
R ξ̂)2

[
1 + η3 − (1 + h

R ξ̂)3
]2/3

, (7.108)

where ξ̂ = −(ζ + h/2)/h, ξ̂ ∈ [−1, 0] and η is the in-plane stretch of
the reference surface. We see that ε33 is a complicated function of ξ̂, but
a constant approximation of it is sufficient for the following limit cases:

1. Thin and/or flat shells. For h/R → 0, we have ε33(ξ̂) → 1/η3.
2. Large stretches. For η → ∞, we have ε33(ξ̂) → 0, i.e. the normal

strain vanishes. In reality, for the inflated structures made of rubber-
like materials, η ≤ 10.

The relative error of a linear expansion of ε33(ξ̂) at the middle surface
(ξ̂ = −0.5) is given in Table 7.2. We see that, when the 1% error at the
external surface is acceptable, the linear approximation of ε33 can be
used for a range of values of η and h/R.
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Table 7.2 Relative error [in %] for linear expansion of normal strain ε33.

η h/R
0.2 0.1 0.05 0.01 0.001

0.5 14.95 4.98 1.53 0.070 0.00080
1.0 8.57 2.42 0.67 0.030 0.00030
1.5 3.54 0.83 0.20 0.008 0.00008
2.0 2.37 0.51 0.12 0.005 0.00005
5.0 1.61 0.32 0.07 0.003 0.00003

10.0 1.57 0.31 0.07 0.003 0.00003

7.3 Shear correction factor

The value of the shear correction factor k can be determined in several
ways, see [259, 260]. Below, for the assumption that the distribution of
the in-plane stresses is linear across thickness, we find that the transverse
shear is parabolic and determine the value of the shear correction factor.

3D equilibrium equations and traction boundary conditions. The 3D equilib-
rium equations in a local Cartesian basis {ti} at the reference surface
of a shell are as follows:

σαβ,α + σ3β,3 = 0, σα3,α + σ33,3 = 0, (7.109)

where σij (i, j = 1, 2, 3) is the stress (symmetric). We assume that the
body force bi = 0. The indices α, β = 1, 2 correspond to the tangent
(in-plane) directions and the index 3 to the normal direction of the basis
{tk}, see Fig. 7.2.

+ z s

h/2

q+

+

q-

t a
-

t a

t3

ta

h/2

s (z) = s
ab ab ab

0 1

In-plane stress

Bottom

surface

Middle

surface

Top

surface

Fig. 7.2 The external loads and distribution of in-plane stress.

The transverse shear stress σ3β and the transverse normal stress σ33

have to satisfy the traction boundary conditions at surfaces bounding the
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shell,

σ3β|ζ=+h
2

= τ+
β , σ3β|ζ=−h

2
= τ−β , (7.110)

σ33|ζ=+h
2

= q+, σ33|ζ=−h
2

= q−, (7.111)

where τ+
β and τ−β are the tangent components while q+ and q−

are the normal components of the external load on the top and bottom
surfaces, respectively.

Distribution of transverse shear stress. We assume that the in-plane stresses
are linear over the thickness, i.e. σαβ(ζ) = σ0

αβ + ζσ1
αβ, where ζ ∈

[−h/2, +h/2]. Using the equilibrium equations (7.109), we determine the
distribution of the transverse shear stress σ3β over the thickness.

Integrating eq. (7.109)1 w.r.t. ζ (or 3), we have

σ3β(ζ) = C − ζσ0
αβ,α −

ζ2

2
σ1

αβ,α. (7.112)

By the boundary condition at the bottom boundary, σ3β|ζ=−h
2

= τ−β , we
obtain

σ3β(ζ) = τ−β −
(

h

2
+ ζ

)
σ0

αβ,α +
(

h2

8
− ζ2

2

)
σ1

αβ,α. (7.113)

There is no another constant to account for the condition at the top bound-
ary ζ = +h/2, but it is satisfied, as shown below. The integral of
eq. (7.109)1 over the thickness yields the relation

∫ +h
2

−h
2

σαβ,α dζ + (τ+
β − τ−β ) = hσ0

αβ,α + (τ+
β − τ−β ) = 0. (7.114)

On the other hand, for the top boundary, eq. (7.113) yields

σ3β (+h/2) = τ−β − hσ0
αβ,α (7.115)

and, by eq. (7.114), the r.h.s. of this equation is equal to τ+
β . Hence,

σ3β(ζ) of eq. (7.113) satisfies both the boundary conditions.

We can rewrite eq. (7.113) in several equivalent forms. By using σ0
αβ,α

calculated from eq. (7.114), we rewrite eq. (7.113) as

σ3β(ζ) =
1
2

(
1− 2ζ

h

)
τ−β +

1
2

(
1 +

2ζ

h

)
τ+
β +

(
h2

8
− ζ2

2

)
σ1

αβ,α (7.116)
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or, using the natural coordinate ζ̄
.= 2ζ/h ∈ [−1, +1],

σ3β(ζ̄) = S1(ζ̄) τ−β + S2(ζ̄) τ+
β +

h2

8
S3(ζ̄) σ1

αβ,α, (7.117)

where the component functions are

S1(ζ̄) .=
1
2

(
1− ζ̄

)
, S2(ζ̄) .=

1
2

(
1 + ζ̄

)
, S3(ζ̄) .= 1− ζ̄2, (7.118)

see Fig. 7.3. For the zero boundary conditions, τ+
β = τ−β = 0, we obtain

a very simple formula

σ3β(ζ̄) =
h2

8
(1− ζ̄2) σ1

αβ,α. (7.119)

Concluding, for the in-plane stress linearly distributed over the thickness,
the distribution of the transverse shear stress is parabolic in ζ̄.

S3

S2S1

z
-

0
0 1

1

-1

Fig. 7.3 Component functions for transverse shear stress.

Transverse shear stress in terms of shell resultants. We can express σ3β of
eq. (7.117) in terms of the stress and couple resultants.

For the membrane stress σαβ(ζ) = σ0
αβ + ζσ1

αβ , the in-plane stress
and couple resultants are

Nαβ
.=

∫ +h
2

−h
2

σαβ(ζ) dζ = hσ0
αβ , Mαβ

.=
∫ +h

2

−h
2

ζσαβ(ζ) dζ =
h3

12
σ1

αβ.

(7.120)
We calculate σ1

αβ = (12/h3) Mαβ from the last formula and use it in the
transverse shear stress of eq. (7.117),
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σ3β(ζ̄) = S1(ζ̄) τ−β + S2(ζ̄) τ+
β +

3
2h

S3(ζ̄) Mαβ,α. (7.121)

For this form of σ3β, the transverse shear stress and couple resultants
are

N3β
.=

∫ +h
2

−h
2

σ3β(ζ) dζ =
h

2
(τ+

β + τ−β ) + Mαβ,α, (7.122)

M3β
.=

∫ +h
2

−h
2

ζ σ3β(ζ) dζ =
h2

12
(τ+

β − τ−β ). (7.123)

For the zero tangent loads, τ̂−β = τ̂+
β = 0, these resultants are reduced to

N3β = Mαβ,α, M3β = 0, (7.124)

where the first equation is a well-known formula linking the bending mo-
ment and the transverse shear resultant. By using it in the transverse
shear stress of eq. (7.121), we obtain

σ3β(ζ̄) =
3
2h

S3(ζ̄) Mαβ,α =
3
2h

S3(ζ̄)N3β, (7.125)

which depends on the transverse shear resultant. The last form is identical
to eq. (20.5)2 of [153], p. 573.

Remark. Note that for the zero tangent loads, we have M3β = 0 in
eq. (7.124) and, hence, by the inverse constitutive equation, the first-order
shell strain κ3β = 0. Then we can omit the term with κ3β in the shell
strain energy.

Shear correction factor. We can use the parabolic transverse shear stress to
derive the shear correction factor. Note that, for the Reissner kinematics,
the transverse shear strain is linear in ζ and cannot match the parabolic
shear stress of eq. (7.125).

For the SVK material, the complementary energy density is

Wc
.=

1 + ν

2E
(σ2

11 + σ2
22 + σ2

33 + 2σ2
21 + 2σ2

31 + 2σ2
32)

− ν

2E
(σ11 + σ22 + σ33)2, (7.126)

where E is Young’s modulus and ν is the Poisson’s ratio. For simplicity,
we separate the term for the transverse shear stress,
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W3β
c

.=
1 + ν

E
σ2

3β, β = 1, 2. (7.127)

For the transverse shear stress of eq. (7.125), the shell (integral) counter-
part of W3β

c becomes

Σ3β
c

.=
∫ +h

2

−h
2

W3β
c (ζ) dζ =

1 + ν

E

6
5h

N2
3β. (7.128)

Then the inverse constitutive equations for the transverse shear strain is

ε3β
.=

∂Σ3β
c

∂N3β
=

6
5h

2(1 + ν)
E

N3β, (7.129)

from which we can obtain the constitutive equation for the transverse
shear stress resultant

N3β =
5
6

E

2(1 + ν)
h ε3β = k Gh ε3β, (7.130)

where G
.= E/[2(1+ν)] is the shear modulus and k = 5/6 is the shear

correction factor. This factor accounts for the parabolic distribution of
σ3β corresponding to the linear distribution of σαβ over the thickness,
and was obtained in [190]. Equation (7.130) corresponds to eq. (20.12)2
of [153], p. 574.

Finally, we note that the shear correction factor can also be derived
for the shearing moment M3β but it is rarely used, as usually the strain
energy of κ3β is omitted in shell elements, as the second order quantity.

Summarizing, three results were obtained for shells in this section:

1. the formula for distributions of σ3β over the shell thickness, eq. (7.116)
or (7.117),

2. the motivation for omitting the first-order shell strain κ3β in the
strain energy, see eq. (7.124), and the remark which follows,

3. the shear correction factor for constitutive equation for N3β, eq. (7.130).
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