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Basic geometric definitions for shells

In this chapter, the basic geometric definitions needed to develop the shell
FEs are provided. The shell can be intuitively but imprecisely defined as a
3D body, which has one dimension much smaller than the other two. More
precisely, the shell is a surface in a 3D space equipped with a thickness,
which is much smaller than the size of the surface. This implies a specific
geometrical description of shells.

5.1 Coordinates and position vector

Normal coordinates for shells. For the initial configuration of a shell, we use
the normal coordinates, see Fig. 5.1, the characteristic feature of which
is that one coordinate is normal to the reference surface. The coordinates
involved are defined as follows:

1. The reference shell surface is parameterized by the coordinates ϑα

(α = 1, 2). This surface is selected arbitrarily, but most often the
middle surface is used for this purpose; this is not suitable, e.g., for
composites with non-symmetric stacking sequence of layers. The mid-
dle surface is equidistant from the top and bottom surfaces bounding
the shell. Various types of coordinates can be used as ϑα.

2. The direction normal to the reference surface is parameterized by the
coordinate ζ ∈ [−h/2,+h/2], where h is the initial shell thickness.
We can also use the natural coordinate ξ3 ∈ [−1, +1], which is more
convenient in numerical integration over the thickness. The relation
between these coordinates is ζ = (h/2) ξ3.
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Fig. 5.1 Normal coordinates at a shell cross-section for initial configuration.

Selection of coordinates ϑα. Various types of coordinates can be used as
ϑα.

1. In the FE method, the natural coordinates ξα ∈ [−1, +1] are used
as ϑα. The corresponding tangent natural vectors g1 and g2 are
skew, i.e. neither unit nor perpendicular. The natural coordinates are
arguments of the shape functions for finite elements, see Chap. 10.

2. In analytical derivations, the orthonormal coordinates Sα can be
used as ϑα, see Chap. 6. They are associated with the orthogonal
and unit vectors t1 and t2, in the plane tangent to the reference
surface. Using them, we do not have to distinguish between co-variant
and contra-variant components of vectors and tensors, and derivations
are simplified.

Position vectors for shells. The position vector in the initial configuration
is split as follows:

y(ϑα, ζ) = y0(ϑ
α) + ζ t3(ξα), α = 1, 2, (5.1)

where y0 is the position of the reference surface and t3 is the vec-
tor normal to this surface, called the director, see Fig. 5.2. Besides,
y(ϑα, ζ = const.) defines the lamina while y(ϑα = const., ζ) defines
the fiber of a shell.

We also assume that the normal coordinates are convected, which
means that a position of a selected point is identified by the same pair
(ϑα, ζ) in the initial configuration and in each deformed configuration.
The position vector in the deformed configuration is split as follows:
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x(ϑα, ζ) = x0(ϑα) + d(ϑα, ζ), (5.2)

where x0 is the current position of the reference surface and d is the
out-of-plane vector defined by kinematical assumptions. Note that d is
also called the deformed or current director. For the Reissner hypothesis,
d is not normal to the current reference surface, see Sect. 6, but it is
normal for the Kirchhoff hypothesis, see Sect. 6.3.4.

Various formalisms in shell description. Typically, the displacement and ro-
tation vectors are represented in the reference ortho-normal basis {ik},
to enable linking of finite elements of various spatial orientation. Different
formalisms are obtained as a result of the following two choices:

1. Various bases can be used to represent the position vectors y and x.
a) The local Cartesian basis {tc

k} at the element center. Then, first,
the displacement and rotation components must be transformed
from the reference basis to this local basis and, later, the tangent
stiffness matrix and the residual vector generated in this local basis
must be transformed back to the reference basis {ik}.

b) The reference Cartesian basis {ik}. Then, to apply various shell
assumptions (and techniques related to the FE method), we must
transform strain components to the local Cartesian basis {tk}.

2. Various coordinates can be used to parameterize the position vectors
y and x and, as a consequence, as intermediate variables for differ-
entiation in the deformation gradient:
a) For natural coordinates {ξα, ζ}, the current position vector x =

x(ξα(y), ζ(y)), and the deformation gradient is as follows:

F .=
∂x
∂y

=
∂x
∂ξα

⊗ ∂ξα

∂y
+

∂x
∂ζ

⊗ ∂ζ

∂y
, (5.3)

this form is used, e.g., in Sect. 10.4.
b) For orthonormal coordinates {Sα, ζ}, the current position vector

x = x(Sα(y), ζ(y)), and the deformation gradient is as follows:

F .=
∂x
∂y

=
∂x
∂Sα

⊗ ∂Sα

∂y
+

∂x
∂ζ

⊗ ∂ζ

∂y
, (5.4)

this form is used, e.g., in Chap. 6.
Besides, the natural coordinate ξ3 ∈ [−1, +1] can be used instead of
ζ ∈ [−h/2,+h/2].
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5.2 Basic geometric definitions
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Fig. 5.2 Local bases {ĝα, t3} and {gα, t3} for initial configuration.

Tangent basis varying over thickness. For the initial (non-deformed) con-
figuration, the position vector y = y(ϑα, ζ) is given by eq. (5.1). The
vectors tangent to the reference surface at arbitrary lamina ζ are ob-
tained by differentiation of eq. (5.1),

ĝα(ζ) .=
∂y(ζ)
∂ϑα

= gα + ζ t3,α, α = 1, 2, (5.5)

where gα
.= ∂y0/∂ϑα. These vectors are neither unit nor mutually or-

thogonal, i.e.

ĝα(ζ) · ĝα(ζ) = 1 + 2ζt3,α · gα + ζ2t3,α · t3,α 6= 1 (no sum. over α),

ĝ1(ζ) · ĝ2(ζ) = ζ(t3,1 · g2 + t3,2 · g1) + ζ2t3,1 · t3,2 6= 0,

but still ĝα is normal to t3 because

ĝα · t3 = gα · t3 + ζt3,α · t3 = 0,

where gα · t3 = 0 by definition, and t3,α · t3 = 0, as a result of
differentiation of t3 · t3 = 1 w.r.t. ϑα. Hence, ĝα is parallel to gα,
and tangent to the reference surface.
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Co-basis to tangent basis varying over thickness. The co-basis {ĝα, t3} is
also designated as the basis dual (or reciprocal) to {ĝα, t3}. The vectors
ĝα are defined as

ĝα · ĝβ = δα
β , ĝα · t3 = 0. (5.6)

This definition provides three equations for ĝ1 and three for ĝ2, from
which they can be directly determined. Alternatively, we can construct
the co-basis as follows.

The conditions ĝ1 · ĝ2 = 0 and ĝ1 ·t3 = 0 imply that ĝ1 is normal
to ĝ2 and t3. Similarly, ĝ2 is normal to ĝ1 and t3. Hence, we
can construct

ḡ1 = ḡ2 × t3, ḡ2 = t3 × ḡ1, (5.7)

where ḡα
.= ĝα/‖ĝα‖ are auxiliary unit vectors. The so-defined ḡα

have a proper direction, but their length is incorrect, i.e. ḡ1 · ĝ1 6= 1 and
ḡ2 · ĝ2 6= 1. Hence, we define, ĝ1 .= A ḡ1 and ĝ2 .= B ḡ2, and from
the conditions ĝ1 · ĝ1 = 1 and ĝ2 · ĝ2 = 1, we obtain A = 1/(ḡ1 · ĝ1)
and B = 1/(ḡ2 · ĝ2). Finally, the vectors of the co-basis are as follows:

ĝ1 =
ĝ2 × t3

(ĝ2 × t3) · ĝ1

, ĝ2 =
t3 × ĝ1

(t3 × ĝ1) · ĝ2

, (5.8)

and they belong to the plane spanned by ĝα.

From ĝβ(ζ) .= ∂y/∂ϑβ of eq. (5.5) and ĝα · ĝβ = δα
β , we can

deduce the following definition of a vector of the co-basis:

ĝα(ζ) .=
∂ϑα

∂y(ζ)
. (5.9)

Shifter (translation) tensor Z. The tangent vectors of eq. (5.5) can be alter-
natively expressed as

ĝα(ζ) = gα + ζt3,α = (G0 − ζB)gα = Z(ζ) gα, (5.10)

where G0
.= gα ⊗ gα is the metric tensor and B .= −t3,α ⊗ gα is the

curvature tensor, both for the reference surface and symmetric. Hence, the
shifter tensor, Z(ζ) .= G0 − ζB, maps the vectors gα at the reference
surface onto the vectors ĝα at an arbitrary lamina ζ, accounting for
the curvature of the reference surface. For a flat geometry, i.e. when the
curvature B = 0, we have Z(ζ) = G0 i.e. the dependence on ζ
vanishes.
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The shifter tensor for the co-basis vectors ĝα can be found by making
use of the condition ĝα(ζ) · ĝα(ζ) = 1 (no summation over α). Using
the shifter tensor Z for ĝα and an auxiliary (unknown) tensor A for
ĝα, we have to satisfy the condition (Zgα) · (Agα) = 1 or transforming
further, (ATZgα) · gα = 1. As gα · gα = 1, hence ATZgα = gα

must hold. Therefore, a symmetric A .= Z−1 is a shifter for the co-basis
vectors, i.e.

ĝα(ζ) = Z−1(ζ) gα. (5.11)

The inverse Z−1(ζ) can be easily found in terms of components of G0

and B,

(Z)ij =
[
G11 − ζB11 G12 − ζB12

sym. G22 − ζB22

]
,

(Z)−1
ij = µ−1

[
G22 − ζB22 −G12 + ζB12

sym. G11 − ζB11

]
, (5.12)

where µ
.= detZ = detG0 − ζ(G11B22 + G22B11 − 2G12B12) + ζ2 detB.

The inverse of the shifter can be rewritten as

Z−1(ζ) = µ−1
[
(detG0)G−1

0 − ζ(detB)B−1
]

= µ−1 [tr(G0 − ζB)I− (G0 − ζB)] , (5.13)

where the last form does not use the inverse of G0 and B. It is
obtained from the Cayley–Hamilton formula, which, e.g., for B is as
follows:

B2 − I1 B + I2 I = 0, (5.14)

where I1 = trB = 2H and I2 = 1
2(trB− trB2) = detB = K. Besides,

H
.= 1

2trB is the mean curvature and K
.= detB is the Gaussian

curvature. Multiplying eq. (5.14) by B−1, we obtain I2 B−1 = I1I−B,
which provides the last form of eq. (5.13). In a similar way, we modify
the term for G0.

For a flat geometry, i.e. when the curvature B = 0, we obtain µ =
detG0, and Z−1(ζ) = G−1

0 .

Deformation gradient and identity tensor. Assume the initial position vec-
tor of the shell as in eq. (5.1). For the current position vector x =
x(ϑα(y), ζ(y)), the deformation gradient can be written as

F .=
∂x
∂y

=
∂x
∂ϑα

⊗ ∂ϑα

∂y
+

∂x
∂ζ

⊗ ∂ζ

∂y
= x,α ⊗ ĝα + x,ζ ⊗ t3, (5.15)
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where ∂ϑα/∂y(ζ) = ĝα by eq. (5.9) and ∂ζ/∂y = t3 = t3 by eq. (5.1).
Note that

F ĝα = x,α, Ft3 = x,ζ . (5.16)

The identity tensor is defined as the second-rank tensor obtained from
the deformation gradient for the current position vector x assumed as
equal to the initial position vector y, i.e.

I .= F|x=y = ĝα ⊗ ĝα + t3 ⊗ t3. (5.17)

This definition guarantees that the approximations of I and F over ζ
are consistent, and that the approximated F = I for a rigid body motion.
A similar reasoning can be applied to the rotation tensor Q ∈ SO(3),
see the application in eqs. (6.13) and (6.15).

To express eq. (5.11) in the basis on the reference surface, we use
ĝα(ζ) = Z−1(ζ) gα and then the simplicity of the above forms of F and
I disappears.

Restriction on curvature of a shell. Let us estimate the contribution of the
term related to the shell curvature to the norm of the tangent vector.
Using eq. (5.5), we obtain

‖ ĝα‖ = ‖gα + ζt3,α‖ ≤ ‖gα‖+ ‖ζt3,α‖, (5.18)

where ‖gα‖ = (gα · gα)
1
2 , ‖t3,α‖ = (t3,α · t3,α)

1
2 . We may safely omit

the second term, related to curvature, when

h

2
‖t3,α‖ ¿ ‖gα‖. (5.19)

For a cylindrical surface, this restriction becomes

h

2R
¿ 1, (5.20)

see the example of Sect. 5.3 and eq. (5.36). If eq. (5.19) holds, then the
ζ-dependent part of the shifter Z(ζ) can be omitted, i.e. we use ζB ≈ 0,
which implies

Z(ζ) ≈ G0, Z−1(ζ) ≈ G−1
0 , µ

.= detZ = detG0. (5.21)

Further simplifications are obtained for the orthonormal coordinates Sα,
see the next paragraph.
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Remark. The above restriction on the curvature of the reference surface
is not used in the shell FEs derived in this work. It is used only in some
analytical derivations, e.g. in Chap. 6.

Note, however, that there are FEs in use where this restriction is ap-
plied for efficiency. The curved shell structures can be analyzed by such
elements provided that the discretization error is minimized by using a
sufficiently large number of elements and by a suitable choice of their
shapes and positions.

Simplifications for orthonormal coordinates Sα. The orthonormal coordi-
nates Sα are often used as ϑα in analytical derivations, see e.g.
Chap. 6. These coordinates are associated with the tangent orthonormal
vectors tα, which are used instead of gα.

For the reference surface, ζ = 0, we denote gα = tα, where tα

are unit and orthogonal by the definition of coordinates Sα. Defining
tα .= ĝα(ζ)|ζ=0, we obtain from eq. (5.8)

t1 =
t2 × t3

(t2 × t3) · t1
= t1, t2 =

t3 × t1

(t3 × t1) · t2
= t2, (5.22)

i.e. the basis and the co-basis on the reference surface are identical. Hence,
we do not distinguish between co-variant and contra-variant components
of vectors and tensors, and derivations are simplified.

For the orthonormal coordinates, the metric tensor G0 = I, and
detG0 = 1. The shifter tensor and its inverse of eq. (5.12) become simpler,

(Z)ij =
[
1− ζB11 −ζB12

sym. 1− ζB22

]
, (Z)−1

ij = µ−1

[
1− ζB22 ζB12

sym. 1− ζB11

]

(5.23)
or

Z−1(ζ) = µ−1
(
I− ζK B−1

)
= µ−1 [I− ζ(2HI−B)] , (5.24)

where µ
.= detZ = 1− ζ(2H)+ ζ2K. For the restriction on curvature of

eq. (5.19), we obtain µ ≈ detG0 = 1, µ−1 = 1, and Z−1(ζ) ≈ G−1
0 =

G0 = I. As a consequence, some expressions are significantly simplified.

Remark. Geometry of the four-node finite element is approximated by
the bilinear shape functions, so it is either flat (planar) or a hyperbolic
paraboloid (h-p) surface. For a planar element, H = 0, and K = 0,
i.e. it consists of only parabolic points. For the h-p element, H is a
complicated function and K < 0, i.e. it consists of hyperbolic points
only.



Example: Geometrical description of cylinder 57

5.3 Example: Geometrical description of cylinder

Consider a cylindrical shell shown in Fig. 5.3. Its middle surface can be
parameterized in a standard manner by cylindrical coordinates: the radius
R, the angle θ (measured in the {i1, i3}-plane, and starting from i1)
and the generator coordinate, t. The reference Cartesian basis is denoted
by {ik}.
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Fig. 5.3 Local basis {tk} for a cylinder.

A position vector of an arbitrary point on the surface is given by y =
ykik, where y1 = R cos θ, y2 = −t, y3 = R sin θ. The length of a
circumferential arc on the cylinder is

S1 =
∫ θ

0

√
y2
1,θ + y2

3,θ dθ = θR. (5.25)

Next, we introduce the arc-length surface coordinates: one along a circum-
ference, S1 = θR, and the other along a generator, S2 = t. Then, the
components of the position vector are

y1 = R cos
S1

R
, y2 = −S2, y3 = R sin

S1

R
, (5.26)

and their non-zero derivatives are ∂y1/∂S1 = − sin(S1/R), ∂y2/∂S2 =
−1, ∂y3/∂S1 = cos(S1/R). Hence, the tangent vectors of the local basis
associated with the arc-length coordinates are

t1 =
∂y
∂S1

= − sin
S1

R
i1 + cos

S1

R
i3, t2 =

∂y
∂S2

= −i2, (5.27)
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i.e. t1 and t2 are unit and orthogonal. Components of the metric tensor,
G0

.= tα ⊗ tα, are

G11 = t1 · t1 = 1, G12 = t1 · t2 = 0, G22 = t2 · t2 = 1. (5.28)

For the arc-length coordinates, a unit length of tangent vectors is a general
property, see [230] p. 6, while their orthogonality is implied here by a
specific choice of S1 and S2. The unit vector normal to the surface
can be obtained as

t3 = t1 × t2 = cos
S1

R
i1 + sin

S1

R
i3, (5.29)

and its derivatives are

t3,1 =
1
R

(
− sin

S1

R
i1 + cos

S1

R
i3

)
=

1
R

t1, t3,2 = 0. (5.30)

Hence, the curvature tensor is B .= −t3,α ⊗ tα = − 1
Rt1 ⊗ t1, at its

components in the basis {tα} are

B11 = −t3,1 · t1 = − 1
R

, B12 = −t3,1 · t2 = 0, B22 = −t3,2 · t2 = 0.

(5.31)
Then, the mean curvature H

.= 1
2trB = −1/(2R) and the Gaussian

curvature K
.= detB = 0.

Let us construct a shell-like body by equipping the cylindrical surface
with the thickness h. Then the position vector is y(ζ) = y0 + ζ t3,
where ζ ∈ [−h/2, +h/2]. For an arbitrary ζ, the basis vectors defined
by eq. (5.5) are

t̂1(ζ) =
(

1 +
ζ

R

)
t1, t̂2(ζ) = t2, (5.32)

where the mid-surface tangent vectors of eq. (5.27) and the derivatives of
eq. (5.30) are used. We see that the basis vector t̂1(ζ) has a direction
of t1, but its length varies with ζ, see Fig. 5.4. This has a obvious
consequence that, e.g. for a displacement vector u constant over ζ,
the component u1(ζ) .= u · t̂1(ζ) varies with ζ. This also implies a
nontrivial form of the shifter tensor of eq. (5.10), which becomes

Z(ζ) =
(

1 +
ζ

R

)
t1 ⊗ t1 + t2 ⊗ t2. (5.33)
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Fig. 5.4 Tangent vector t̂1 at characteristic values of coordinate ζ.

We can easily check that t̂1(ζ) = Z(ζ) t1 and t̂2(ζ) = Z(ζ) t2, indeed.
Besides, µ

.= detZ = 1 + (ζ/R).

Now, we can examine the basis vector t̂α(ζ) = tα+ζt3,α, and estimate
a contribution of the second term resulting from the shell curvature. Thus,

‖ t̂α‖ = ‖tα + ζt3,α‖ ≤ ‖tα‖+ ‖ζt3,α‖, (5.34)

where ‖t1‖ = (t1 · t1)
1
2 = 1, ‖t2‖ = (t2 · t2)

1
2 = 1, and ‖t3,1‖ =

(t3,1 · t3,1)
1
2 = 1/R, ‖t3,2‖ = (t3,2 · t3,2)

1
2 = 0. For ζ = ±h

2 , we obtain

‖t̂1‖ ≤ 1 +
h

2R
, ‖t̂2‖ = 1. (5.35)

The second term of ‖t̂1‖ is negligible when

h

2R
¿ 1, (5.36)

which illustrates the restriction of eq. (5.19).

The vector t̂2(ζ) given by eq. (5.32) is a unit vector and, hence, we
can easily obtain the co-basis, i.e.

t̂1(ζ) =
(

1 +
ζ

R

)−1

t1, t̂2(ζ) = t2, (5.37)

and check that t̂1 · t̂1 = 1, t̂2 · t̂2 = 1, t̂1 · t̂2 = 0, and t̂2 · t̂1 = 0,
indeed. The inverse of the shifter is

Z−1(ζ) =
(

1 +
ζ

R

)−1

t1 ⊗ t1 + t2 ⊗ t2, (5.38)

and, using eq. (5.33), we can check that indeed Z−1(ζ)Z(ζ) = I.
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