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3D formulations with rotations

In this chapter, the formulations including rotations as an independent
(primary) variable are derived for a 3D continuum. The derived functionals
amount to various forms of the potential energy modified by the Rotation
Constraint; their extensions to the Hu–Washizu and Hellinger–Reissner
functionals are provided in Sect. 12. Some of these 3D formulations are
used in subsequent chapters as a basis for derivation of shell equations.

Extended configuration space. The classical configuration space of the non-
polar Cauchy continuum is defined as

C .= {χ : B → R3}, (4.1)

where χ is the deformation function defined over the reference configu-
ration of the body B. In the present section, we consider the extended
configuration space, defined in terms of the deformation function χ and
rotations R ∈ SO(3). We do not account for gradients of rotations,
similarly as in the pseudo-Cosserat continuum, see [59, 128, 238]. The
rotations are generated by the (left) skew-symmetric tensor δθ̃

.= δRRT

(in the sense explained for the weak form AMB equation), and are treated
in two different ways:

• remain unconstrained, as in the Cosserat-type continuum. Then the
extended configuration space is defined as

Cext
.= {(χ,R) : B → R3 × SO(3)}. (4.2)

Note that χ does not belong to the classical configuration space. This
approach to rotations is quite popular in shells, which can be treated
as pseudo-Cosserat surfaces, see e.g. [244, 52, 200] and the papers cited
therein.
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• are constrained, either by the polar decomposition of F equation
(3.2) or the RC equation (3.8). Then the extended configuration space
is defined as

Cext
.= {(χ,R) : B → R3 × SO(3) | χ ∈ C}, (4.3)

where C is the classical configuration space. Note that χ is required
to belong to C, i.e. it is identical as for the classical non-polar Cauchy
continuum, see [128, 238, 74, 175, 13]. This approach is used in [252,
253, 254], to define the second-order kinematics of shells.

The basic formulation of this chapter is given for the nominal stress from
which the formulations for other types of stress are derived. The formu-
lations based on the Biot stress, see [191, 42, 249], and the formulations
based on the second Piola–Kirchhoff stress, see [99, 214], are presented.
Several variational principles are also summarized in [9].

Four-field (4-F) formulation exploits the polar decomposition equation,
while the three-field (3-F) formulations are based on the RC equation.
Two-field (2-F) formulations are obtained by regularization of the 3-F
functionals, except the one for unconstrained rotations.

Finally, we note that both approaches, i.e. with constrained and uncon-
strained rotations, can be applied to shells. The 3-F and 2-F formulations
are used in subsequent chapters as the basis for derivation of shell equa-
tions.

4.1 Governing equations

Balance equations and boundary conditions. The local balance equations
and the boundary conditions are

1. linear momentum balance (LMB):

DivP + ρRb = 0 in B, (4.4)

where P is the nominal stress tensor (its transpose is the first Piola–
Kirchhoff stress), ρR is the mass density for the reference (initial)
configuration, and b is the body force.

2. angular momentum balance (AMB):

F×P = 0 or skew(PFT ) = 0 in B, (4.5)

where F = Gradχ and detF > 0.
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3. boundary conditions (BC):

χ = χ̂ on ∂χB and Pn = p̂ on ∂σB, (4.6)

where ∂χB and ∂σB denote disjoint parts of the boundary ∂B
on which the deformation and traction boundary conditions are spec-
ified. The outward normal vector is denoted by n and p̂ is the
external load (surface traction) which we assume as not depending on
deformation.

Weak form of basic equations. The weak form of eqs. (4.4)–(4.6) is obtained
by calculating their scalar products with the respective admissible fields
and integrating over the volume B or the surface traction BC area ∂σB
of the initial configuration.

LMB. For eq. (4.4), we calculate the volume integral of its scalar product
with the kinematically admissible variation of deformation δχ, i.e. such
that δχ = 0 on ∂uB,

∫

B
(DivP + ρRb) · δχdV = 0. (4.7)

Using the formula for the divergence of a product of two tensors, e.g. [33]
eq. (5.5.19), we obtain

DivP · δχ = Div(PT δχ)−P · ∇δχ. (4.8)

For the first r.h.s. term, we use the divergence theorem, e.g. [33] eq. (5.8.11),
∫

B
Div(PT δχ) dV =

∫

∂B
(PT δχ) · n dA =

∫

∂B
(Pn) · δχdA. (4.9)

For the second term, we note that ∇δχ = δF. Then the weak form of
the LMB is

∫

B
(P · δF− ρRb · δχ) dV −

∫

∂B
(Pn) · δχdA. (4.10)

AMB. For eq. (4.5), we calculate a volume integral of its scalar product
with a skew-symmetric (left) tensor δθ̃,

∫

B
skew(PFT ) · δθ̃ dV = 0. (4.11)
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If δθ̃ generates rotations, i.e. {δθ̃ : δR .= δθ̃ R}, which we can assume
for the extended configuration space but not for the classical one, the weak
form AMB becomes

∫

B
skew(PFT ) · (RT δR) dV = 0. (4.12)

BCD. For the displacement BC, eq. (4.6), we calculate a surface integral
of a scalar product with δ(Pn),

∫

∂χB
(χ− χ̂) · δ(Pn) dA = 0. (4.13)

BCT. For the traction BC, eq. (4.6), we calculate a surface integral of a
scalar product with a kinematically admissible variation δχ,

∫

∂σB
(Pn− p̂) · δχdA = 0. (4.14)

Remark. Note that, compared to the classical 1-F formulation in terms
of χ only, the weak form AMB equation is different while the other
equations are the same. To explain the expression that δθ̃ generates
rotations, we transform δR .= δθ̃ R by using δ( ) = ˙( ) δt, where the
superimposed dot denotes the time-derivative. This yields a differential
equation, Ṙ− ˙̃

θ R = 0, to which we append the initial condition R(t=
0) = R0. From this equation we can calculate (generate) R for an
assumed ˙̃

θ; for details see Sect. 9.4.

Virtual work of stress, strain energy, constitutive law. Below, the VW of the
nominal stress P is transformed to four equivalent forms. Next, the
corresponding strain energy functionals are defined and the respective
constitutive laws are derived.

a. Strain energy W(U). The VW of the nominal stress P · δF can be
expressed as

P · δF = sym(RTP) · δU, (4.15)

where R and U are obtained from the polar decomposition equa-
tion F = RU. Taking a variation of this equation, we have δF =
δR(RTR)U + RδU, where δRRT .= δθ̃, and δθ̃ = −δθ̃T , i.e. is
skew-symmetric. Then
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P · δF = P · (δθ̃F) + P · (RδU) = (PFT ) · δθ̃ + sym(RTP) · δU,

and the first term vanishes as a scalar product of a symmetric PFT

(which is a consequence of the AMB: skew(PFT ) = 0) and a skew-
symmetric δθ̃.

The strain deduced from the r.h.s. of eq. (4.15) as the work conjugate
to sym(RTP), is the right stretch strain,

H .= (FTF)1/2 − (IT I)1/2, (4.16)

where I is consistent with F, see eq. (5.17).

Assume that the strain energy density per unit non-deformed volume,
W, is a function of U. W(U) satisfies the material objectivity
(frame indifference) requirement, because U is a polynomial of C, i.e.
U = C

1
2 = a0I + a1C + a2C2, as discussed below eq. (3.2). A variation

of the strain energy is

δW(U) = ∂UW(U) · δU. (4.17)

The term sym(RTP) · δU can be treated as δW and, hence, from
eqs. (4.15) and (4.17), we obtain the constitutive law

sym(RTP) = ∂UW(U). (4.18)

This CL is used in the 4-F formulation for the nominal stress.

b. Strain energy W(C). The VW of the nominal stress P · δF can be
expressed as

P · δF = 1
2S · δC, (4.19)

where S is the second Piola-Kirchhoff stress tensor and C .= FTF is the
right Cauchy–Green deformation tensor. The above formula is obtained
by using P = FS for which the AMB, skew(PFT ) = skew(FSFT ) = 0,
implies S = ST . Equation (4.19) is obtained by the following transfor-
mations:

(FS) · δF = S · (FT δF) = S · sym(FT δF) = S · δ(1
2F

TF) = 1
2S · δC.

The strain deduced from the r.h.s. of eq. (4.19) as the work conjugate
to S, is the Green strain,

E .= 1
2(FTF− IT I). (4.20)
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This strain can be obtained from the change of the square of the length
of an infinitesimal line element, dx = (∂x/∂y) dy = Fdy,

dx · dx− dy · dy = (Fdy) · (Fdy)− (Idy) · (Idy) = 2dy · (Edy). (4.21)

Note that I is consistent with F, see eq. (5.17).

Assume that the strain energy density per unit non-deformed volume,
W, is a function of C. To satisfy the frame indifference requirement,
W must remain the same for the observer transformation x+ = Ox+c,
where O ∈ SO(3), ([239] p. 44). The observer transformation yields
F+ = OF and the right Cauchy–Green tensor is invariant, i.e. C+ =
(F+)TF+ = FTOTOF = FTF = C. If W is a function of C, then
W(C+) = W(C), and this requirement is satisfied. A variation of the
strain energy is as follows

δW(C) = ∂CW(C) · δC. (4.22)

The term 1
2S · δC can be treated as δW and, hence, from eqs. (4.19)

and (4.22), we obtain the constitutive law

S = 2 ∂CW(C). (4.23)

This CL is used in the formulations for the second Piola–Kirchhoff stress.

c. Strain energy W(QTF). The VW of the nominal stress P · δF can be
expressed as

P · δF = (QTP) · δ(QTF), (4.24)

where Q ∈ SO(3), and (QTF) is non-symmetric.

Proof. First,

P · δF = tr(QQTPδFT) = tr(QTPδFTQ) = (QTP) · (QTδF).

Next, we use QT δF = δ(QTF)− δQTF. Then,

(QTP) · (QT δF) = (QTP) · δ(QTF)− (QTP) · (δQTF),

where the 2nd component,

(QTP) · (δQTF) = tr(QTPFTδQ) = tr(δQQTPFT) = δθ̃ · (PFT) = 0,
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as δQQT .= δθ̃ is skew-symmetric and PFT is symmetric as a conse-
quence of the AMB: skew(PFT ) = 0. This ends the proof. ¤

The strain deduced from the r.h.s. of eq. (4.24), as the work conjugate
to (QTP), is the non-symmetric relaxed right stretch strain

H̃n
.= QTF− IT I, (4.25)

where I is consistent with F, see eq. (5.17).

Assume that the strain energy density per unit non-deformed volume,
W, is a function of QTF. Note that if skew(QTF) → 0, then QTF →
U and W(QTF) → W(U) which satisfies the material objectivity
(frame indifference) requirement, as discussed earlier. A variation of the
strain energy is

δW(QTF) = ∂QTFW(QTF) · δ(QTF). (4.26)

The term (QTP) · δ(QTF) can be treated as δW and, hence, from
eqs. (4.24) and (4.26), we obtain the constitutive law

(QTP) = ∂QTFW(QTF). (4.27)

We note that the above CL is applicable only to the unconstrained for-
mulation, with rotations restricted neither by the polar decomposition
equation nor by the RC equation.

d. Strain energy W(sym(QTF)). The sum of the VW of the nominal stress
and the weak form of the RC equation can be expressed as

P · δF + δskew(QTP) · skew(QTF)
= sym(QTP) · δsym(QTF) + δ[skew(QTP) · skew(QTF)], (4.28)

where we applied eq. (4.24) to the first component and the split into
symmetric and skew-symmetric parts,

(QTP) · δ(QTF) = sym(QTP) · symδ(QTF) + skew(QTP) · skewδ(QTF).

Besides, commuting of the operations of taking a symmetric (or skew) part
and taking a variation, i.e. symδ(·) = δsym(·) and skewδ(·) = δskew(·),
is accounted for.
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The strain deduced from the first term on the r.h.s. of eq. (4.28), as
the work conjugate to sym(QTP), is the symmetric relaxed right stretch
strain,

H̃ .= sym(QTF)− sym(IT I), (4.29)

where I is consistent with F, see eq. (5.17).

Assume that the strain energy density per unit non-deformed volume,
W, is a function of sym(QTF). Note that if skew(QTF) → 0, then
sym(QTF) → U and W(sym(QTF)) → W(U), which satisfies the
material objectivity (frame indifference) requirement, as discussed earlier.
The variation of the strain energy is

δW(Ũ) = ∂ŨW(Ũ) · δŨ, (4.30)

where Ũ .= sym(QTF) is the relaxed right stretch tensor. The first term
of eq. (4.28), sym(QTP) · δsym(QTF), can be treated as δW and,
hence, from this first term and eq. (4.30), we obtain the constitutive law

sym(QTP) = ∂ŨW(Ũ). (4.31)

This CL is used in the 3-F formulation for the nominal stress.
Using the Biot stress TB

s
.= sym(QTP) of eq. (4.50), we can rewrite

eq. (4.31) as follows:
TB

s = ∂ŨW(Ũ). (4.32)

This CL is used in the formulations for the Biot stress.

4.2 4-F formulation for nominal stress

In this section, we describe a four-field formulation including rotations
derived from the balance equations in terms of the nominal stress, see
[74, 10], which has the following features:

• the rotations Q are constrained by the polar decomposition equation
(3.2),

• the strain energy and the CL are defined for the right stretch strain of
eq. (3.12).

To the set of governing equations (4.4)–(4.6), we append the following
equations:

1. Polar decomposition equation:

F−RU = 0, (4.33)
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2. Constitutive law of eq. (4.18):

sym(RTP) =
∂W(U)

∂U
, (4.34)

which all furnish a mixed formulation in terms of four fields {χ,R,U,P}.

Weak form of basic equations. A weak form of the governing equations,
(4.4)–(4.6), is given by eqs. (4.10) and (4.12)–(4.14). For the polar de-
composition equation, (4.33), we calculate a volume integral of a scalar
product of this equation with δP,

∫

B
(F−RU) · δPdV = 0. (4.35)

VW equation. Adding the above weak form (scalar) equations, we obtain
the VW equation

∫

B
{P · δF + δ [P · (F−RU)]} dV − δFext = 0, (4.36)

where
δFext

.= δFb + δFσ + δFχ, (4.37)

δFb
.=

∫

B
ρRb · δχdV , δFσ

.=
∫

∂σB
(Pn− p̂) · δχdA,

δFχ
.=

∫

∂χB
(χ− χ̂) · δ(Pn) dA.

Proof. The integrand of eq. (4.36) is obtained as follows. Adding the
scalar equations (4.10) and (4.12)–(4.14), we obtain

P · δF + δP · (F−RU) + skew(PFT ) · (δRTR), (4.38)

which can be transformed to the following equivalent form

P · δF + δ [P · (F−RU)] , (4.39)

as follows. Note that the first terms of both equations are identical. The
second term of eq. (4.39) can be rewritten as

δ[P · (F−RU)] = δP · (F−RU)+P ·δF−P · (δRU)−P · (RδU), (4.40)
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where the first term is equal to the second term of eq. (4.38). The second
and fourth terms cancel out because

P · (RδU) = tr(PδURT) = tr(RTPδU) = (RTP) · δU
= sym(RTP) · δU = P · δF,

where the last form was obtained on use of eq. (4.15). The third term is
equal to the third term of eq. (4.39) because

P · (δRU) = P · (δRRTF) = tr(PFTRδRT)
= (PFT ) · (δRRT ) = −skew(PFT ) · (RT δR),

which ends the proof. ¤

Four-field potential. On use of eqs. (4.15) and (4.18), we have P · δF =
sym(RTP) · δU = ∂UW(U) · δU. Thus, from eq. (4.36) we can deduce
the four-field functional

FP
4 (χ,R,U,P) .=

∫

B
[W(U) + P · (F−RU)] dV − Fext, (4.41)

where P is a Lagrange multiplier for the polar decomposition equation
(4.33). Besides, the functional of external forces

Fext
.= Fb + Fσ + Fχ, (4.42)

where the functionals for the body force, the (deformation independent)
external loads and the displacement boundary conditions are defined as

Fb
.=

∫

B
ρRb ·χdV , Fσ

.=
∫

∂σB
p̂ ·χdA, Fχ

.=
∫

∂χB
(Pn) · (χ− χ̂) dA.

Remark. In this formulation, the right stretch U is not a function of
χ but an independent tensorial variable. It must be parameterized in
a way ensuring that it is symmetric and positive definite; the latter can
be achieved by expressing U in terms of its principal values, taken as
squares of some parameters, and a rotation tensor. We see that U intro-
duces six additional variables in a complicated form, and that’s why other
simpler formulations were developed; they are presented in the following
sections.
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4.3 3-F formulation for nominal stress

In this section, we describe a three-field formulation including rotations,
in terms of {χ,Q,Ta}, which has the following features:

• the rotations Q are constrained by the Rotation Constraint (RC),
eq. (3.8),

• the strain energy and the CL are defined for the relaxed right stretch,
eq. (3.12).

To the set of governing equations (4.4)–(4.6), we append the following
equations:

1. Rotation Constraint:

C
.= skew(QTF) = 0, (4.43)

2. Constitutive Law of eq. (4.31):

sym(QTP) =
∂W(Ũ)

∂Ũ
, Ũ = sym(QTF), (4.44)

which furnish a formulation in terms of three fields {χ,Q,P}. Com-
paring with the four-field formulation of the previous section, the right
stretch tensor U is not present.

Strain energy and constitutive law. If Q = R, where R ∈ SO(3) satisfies
the polar decomposition equation, then, by eq. (4.15), δW = P · δF =
sym(RTP) · δU, i.e. the tensor sym(RTP) is work-conjugate to U.
Let us assume the existence of the strain energy W in terms of the
relaxed stretch strain Ũ = sym(QTF). Using Ũ in place of U in
eq. (4.34), we obtain the constitutive law (4.18).

Weak form of basic equations. A weak form of the governing equations
(4.4)–(4.6), yields eqs. (4.10) and (4.12)–(4.14). For the RC, eq. (4.43),
we calculate a volume integral of a scalar product of this equation with a
skew-symmetric tensor δskew(QTP),

∫

B
skew(QTF) · δskew(QTP) dV = 0. (4.45)

The reason for using here a variation of skew(QTP) will become obvious
in the sequel.
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VW equation. Adding the scalar eq. (4.10), (4.13)–(4.14) and (4.45), we
obtain

∫

B

[
P · δF + δskew(QTP) · skew(QTF)

]
dV − δFext = 0, (4.46)

where δFext is defined in eq. (4.37). The integrand can be further
transformed to the form given by eq. (4.28), i.e.

∫

B

{
sym(QTP) · symδ(QTF) + δ[skew(QTP) · skew(QTF)]

}
dV

− δFext = 0. (4.47)

Note that the AMB, eq. (4.5), was exploited in the derivation of eq. (4.28),
and earlier of eq. (4.24), but its weak form of eq. (4.12) is not present in
the integrand of eq. (4.46).

Three-field potential. On the basis of eq. (4.47), by using the CL of
eq. (4.32), we can define the three-field potential

FP
3 (χ,Q,P) .=

∫

B

[W(sym(QTF)) + skew(QTP) · skew(QTF)
]

dV−Fext,

(4.48)
where Fext is defined in eq. (4.42). This also proves that the use of
δskew(QTP) in eq. (4.45) was indeed correct.

Remark 1. The right stretch U can also be eliminated from the four-
field formulation in another way. Note that we can rewrite the Lagrange
term of the functional of eq. (4.41) as P·(F−RU) = (RTP)·(RTF−U),
and further split it into a symmetric part and a skew part,

(RTP) · (RTF−U) = sym(RTP) · [sym(RTF)−U
]

+skew(RTP) · skew(RTF). (4.49)

If we assume that U .= sym(RTF), i.e. adopting the relaxed right
stretch of eq. (3.12), then the first term of eq. (4.49) vanishes, and
FP

4 (χ,R,U,P) of eq. (4.41) reduces to the three-field functional of
eq. (4.48), with R in place of Q.
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Remark 2. If we use in eq. (4.47) the CL sym(QTP) = ∂ŨW of
eq. (4.31), then the nominal stress P remains only in the term
skew(QTP). Hence, we can define a skew-symmetric tensor Ta

.=
skew(QTP) with only three components and abandon using P with
nine components. That is the basic motivation behind using the Biot stress
in the next section.

4.4 3-F and 2-F formulations for Biot stress

In this section, we describe a three-field formulation in terms of {χ,Q,Ta},
developed in [42, 191]. This formulation can be obtained from the three-
field formulation for the nominal stress tensor, which is described in the
previous section, just by introducing the definition of the Biot stress. A
two-field formulation, which is valid only for an isotropic material, is also
presented.

Biot stress. Define the tensor T .= QTP, where Q ∈ SO(3), and
split it into the symmetric and skew-symmetric parts, T = TB

s + Ta,
where

TB
s

.= symT = sym(QTP), Ta
.= skewT = skew(QTP). (4.50)

The symmetric part TB
s is called the Biot stress, or the Biot–Lure stress,

or the Jaumann stress. Having TB
s , Ta, and Q, we can uniquely

calculate P.

VW equation. Introducing the definitions of TB
s and Ta of eq. (4.50)

into eq. (4.47), we obtain the VW in the form∫

B

{
TB

s · symδ(QTF) + δ[Ta · skew(QTF)]
}

dV − δFext = 0, (4.51)

where δFext is defined in eq. (4.37), but with P replaced by QT.

Three-field potential. For the symmetric TB
s we can use the CL, eq. (4.32),

i.e. TB
s = ∂ŨW. On the basis of this CL and eq. (4.51), we can define

the three-field potential

FB
3 (χ,Q,Ta)

.=
∫

B

[W(sym(QTF)) + Ta · skew(QTF)
]

dV − Fext,

(4.52)
in which Ta is the Lagrange multiplier for the RC equation. Besides,
Fext is defined in eq. (4.42), but with P replaced by QT.
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Euler–Lagrange equations. Because of this new variable, Ta, we have to
check whether the Euler–Lagrange equations for FB

3 yield the governing
equations (4.4)–(4.6) and (4.43). Using eq. (4.30) and (4.32), we obtain
the following variations of the strain energy (4.52):

δχW(sym(QTF)) = TB
s · δχŨ = TB

s · (QT δF) = (QTB
s ) · δF,

δQW(sym(QTF)) = TB
s · δQŨ = TB

s · (δQTF) = −δθ̃ · skew(QTB
s FT ),

where δQ .= δθ̃ Q. The variations of the RC term are

δχ[Ta · skew(QTF)] = δχ[(QTa) · F] = (QTa) · δF,

δTa [Ta · skew(QTF)] = δTa · skew(QTF), (4.53)

δQ[Ta · skew(QTF)] = (δQTa) · F = tr(δθ̃QTaFT)

= −δθ̃ · skew(QTaFT ).

Hence, the first variation of FP
3 of eq. (4.48) is

δFB
3 (χ,Q,Ta) =

∫

B

[
A · δF + δTa · skew(QTF)− δθ̃ · skew(AFT )

]
dV

− δFext, (4.54)

where A .= Q(TB
s + Ta) = QT = P. We see that δFB

3 is identical
as a sum of eqs. (4.10), (4.12)–(4.14) and (4.45), which now is rewritten
as

∫
B skew(QTF) · δTa dV = 0. Hence, the Euler–Lagrange equation

are identical to eqs. (4.4)–(4.6) and (4.43), and hence FB
3 is a correct

potential for the formulation including rotations.

Remark. Another form of elimination of U from the four-field func-
tional of eq. (4.41), is to use the Legendre transformation

W(U)−TB
s ·U = −Wc(TB

s ), (4.55)

where Wc is the complementary energy density, which requires the
constitutive relation to be invertible, ∂Wc/∂TB

s = U. This approach is
described in [9], eq. (3.36).

AMB for isotropic material. For an isotropic material, we can show that the
AMB equation is satisfied when the skew-symmetric stress vanishes, i.e.
Ta = 0. Rewrite the AMB eq. (4.5), as

QTFT − FTTQT = 0. (4.56)
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If the RC is satisfied, then we have F = QFTQ and QTF = U. Using
them in the AMB, we obtain Q (TU − UTT )QT = 0 and the split
T = TB

s + Ta yields

TaU + UTa = TB
s U−UTB

s . (4.57)

For an isotropic material, TB
s and U are a work-conjugate pair, so

they are co-axial and commute. Hence, the r.h.s. of eq. (4.57) vanishes and
the AMB is reduced to

TaU + UTa = 0. (4.58)

Note that U is symmetric and positive definite, while Ta is skew-
symmetric, hence the assumptions of Lemma 3.1 in [214] are satisfied.
Using this lemma, eq. (4.58) is satisfied only when Ta = 0, which
completes the proof. ¤

When the RC is not satisfied or the material is not isotropic, then
Ta 6= 0 and must remain in the functional.

Two-field functional for isotropic material. To obtain a two-field functional
which does not depend on TB

a , we regularize FB
3 of eq. (4.52) in Ta

as follows

F̃B
3 (χ,Q,Ta)

.= FB
3 (χ,Q,Ta)− 1

2γ

∫

B
Ta ·Ta dV , (4.59)

where γ ∈ (0,∞) is the regularization parameter. In the volume integral
in F̃B

3 , which is affected by the regularization, the integrand is

W(sym(QTF)) + Ta · skew(QTF)− 1
2γ

Ta ·Ta. (4.60)

A variation of F̃B
3 w.r.t. Ta yields the Euler–Lagrange equation:

γ skew(QTF)−Ta = 0, for δTa in B. From this equation, we calculate
Ta and use it in eq. (4.60), which becomes

W(sym(QTF)) +
γ

2
skew(QTF) · skew(QTF), (4.61)

in which the second term is the RC equation skew(QTF) = 0 imposed
by the penalty method. Then, the two-field functional, not depending on
Ta, is defined as

F̃B
2 (χ,Q) .=

∫

B

[
W(sym(QTF)) +

γ

2
skew(QTF) · skew(QTF)

]
dV−Fext.

(4.62)
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The corresponding VW equation is
∫

B

[
TB

s · δsym(QTF) + γ skew(QTF) · δskew(QTF)
]

dV − δFext = 0.

(4.63)
This equation can be used only for isotropic material.

4.5 3-F and 2-F formulations for second Piola–Kirchhoff stress

In this section, we assume that the strain energy W is a function of
the right Cauchy–Green tensor C, and we obtain the formulations with
rotations in terms of the second Piola–Kirchhoff stress S. The governing
equations for such a formulation are obtained by using P = FS in
eqs. (4.4)–(4.6), and by appending the RC of eq. (4.43). From the outset,
we assume that S = ST , i.e. that the LMB of eq. (4.5) is satisfied, as in
[214]. The CL for S is given by eq. (4.23).

Weak form of basic equations. We modify the VW of eq. (4.47) as follows:
(i) we use P = FS in the term

δ[skew(QTP) · skew(QTF)] = δ[skew(QTFS) · skew(QTF)],

(ii) we use the strain energy W(C) in terms of the right Cauchy–Green
tensor C,

∂ŨW(Ũ) · symδ(QTF) = ∂CW(C) · symδ(FTF),

where eqs. (4.19) and (4.22) were used. This yields the VW equation,
∫

B

{
∂CW(C) · symδ(FTF) + δ[Ta · skew(QTF)]

}
dV −δFext = 0, (4.64)

where Ta
.= skew(QTFS) is used to change the variables, i.e. instead of

S with six components, we use Ta with only three components. δFext

is defined in eq. (4.37), but with P replaced by FS.

Three-field potential. From eq. (4.64), we can deduce the three-field poten-
tial

F 2PK
3 (χ,Q,Ta)

.=
∫

B

[W(FTF) + Ta · skew(QTF)
]

dV − Fext, (4.65)

where Ta is the Lagrange multiplier for the RC equation. Besides, Fext

is defined in eq. (4.42) but with P replaced by FS.
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Euler–Lagrange equations. Because of this new variable, Ta, we have
to check whether the Euler-Lagrange equations for F 2PK

3 of eq. (4.65)
yield the governing equations (4.4)–(4.6) and (4.43).

By using eqs. (4.19) and (4.23), we obtain a variation of the strain
energy δχW(FTF) = (FS) ·δF. The variations of the RC term are given
by eq. (4.53). Hence,

δF 2PK
3 (χ,Q,Ta) =∫

B

[
A · δF + δTa · skew(QTF)− δθ̃ · skew(QTaFT )

]
dV − δFext,(4.66)

where A .= FS + QTa and δθ̃
.= δQQT . The term A · δF can be

transformed further. Using the formula for the divergence of a product of
two tensors, see [33] eq. (5.5.19), and δF = ∇δu, we obtain

DivA · ∇δu = Div(AT δu)−A · ∇δu.

The second term contributes to the equilibrium equation, while the first
term is transformed on use of the divergence theorem, see [33] eq. (5.8.11),
as follows

∫

B
Div(AT δu) dV =

∫

∂B
(AT δu) · ndA =

∫

∂B
(An) · δudA.

We see that this term contributes to the traction BC. Finally, the follow-
ing Euler–Lagrange equations are obtained

DivA + ρRb = 0 in B,

skew(QTaFT ) = 0 in B, (4.67)

skew(QTF) = 0 in B,

An = p̂ on ∂σB.

These equations will be equal to the governing equations (4.4), (4.6) and
(4.43) when Ta = 0, as then the second of the above equations is
trivially satisfied and A = FS = P. The proof that Ta = 0 is given
below.

Proof. Eq.(4.67)2 is post-multiplied by Q, and transformed as follows:

2 skew(QTaFT )Q = QTaFTQ−FTT
a QTQ = QTaFTQ + FTa. (4.68)
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From eq. (4.67)3, we have FTQ = QTF and, on the left polar decom-
position F = VQ, where V is the left stretching tensor, we obtain

QTaQTVQ+VQTa = T∗
aVQ+VQQTT∗

aQ = (T∗
aV+VT∗

a)Q, (4.69)

where T∗
a

.= QTaQT is the forward-rotated Ta. Hence, eq. (4.67)2
yields

T∗
a V + VT∗

a = 0. (4.70)

Because T∗
a is skew-symmetric and V is symmetric and positive

definite, the assumptions of Lemma 3.1 in [214] are satisfied. With this
lemma, the above equation is satisfied only when T∗

a = 0. Hence, Ta =
QTT∗

aQ = 0, which ends the proof. ¤

Two-field functional. We can regularize the functional (4.65) in Ta as
follows:

F̃ 2PK
3 (χ,Q,Ta) = F 2PK

3 (χ,Q,Ta)− 1
2γ

∫

B
Ta ·Ta dV , (4.71)

where γ ∈ (0,∞) is the regularization parameter. It can be shown that
the correct Euler–Lagrange equations of F̃ 2PK

3 are obtained not only
when γ →∞, but for any value of γ. A variation of F̃ 2PK

3 w.r.t. Ta

yields the following Euler–Lagrange equation for δTa in B,

skew(QTF)− 1
γ
Ta = 0. (4.72)

From this equation we calculate Ta = γ skew(QTF), and use it in
eq. (4.71). Then we can define a two-field functional

F̃ 2PK
2 (χ,Q) .=

∫

B

[
W(FTF) +

γ

2
skew(QTF) · skew(QTF)

]
dV − Fext,

(4.73)
with the penalty term for the RC equation. We have to check that the
Euler–Lagrange equations for F 2PK

2 yield the governing equations (4.4),
(4.6) and (4.43); the proof is given in [214], eqs. (22)–(25). This functional
is typically used in numerical implementations.

Remark. In this formulation, the rotations Q appear only in the RC,
but not in the other governing equations. Hence, we can first solve the
problem for χ and determine Q afterwards, which can be done in two
ways, using either the RC equation or the polar decomposition of F, as
discussed earlier. This method cannot be used in the Reissner-type shells,
where Q appears also in the governing equations.
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4.6 2-F formulation with unconstrained rotations

In this section, we describe a two-field formulation in terms of {χ,Q},
which has the following features:

• neither the polar decomposition equation (3.2), nor the RC equation
(3.8) are used to constrain rotations Q.

• the strain energy and the CL are defined for the non-symmetric relaxed
right stretch eq. (3.12).

To the set of governing equations, eqs. (4.4)–(4.6), we only append the
constitutive law, eq. (4.27),

(QTP) = ∂QTFW(QTF), (4.74)

where QTF is non-symmetric.

VW equation. Adding weak forms of the governing equations, i.e. eqs. (4.10),
and (4.13)–(4.14), and applying eq. (4.24), we obtain

∫

B
(QTP) · δ(QTF) dV − δFext = 0, (4.75)

where δFext is defined in eq. (4.37). Note that the AMB, eq. (4.12),
was exploited in derivation of eq. (4.24) and, hence, it does not appear
explicitly in eq. (4.75).

Two-field potential. Using eq. (4.74), we obtain

(QTP) · δ(QTF) = ∂QTFW(QTF) · δ(QTF).

Hence, on the basis of this equation and eq. (4.75), we can define a two-
field potential

F ∗
2 (χ,Q) .=

∫

B
W(QTF) dV − Fext, (4.76)

where Fext is defined in eq. (4.42).

Remark. Note that F ∗
2 (χ,Q) can be additionally constrained by the

RC equation, skew(QTF) = 0, by using the penalty method. Then,

F ∗∗
2 (χ,Q) .=

∫

B
W(QTF)+

γ

2
skew(QTF) · skew(QTF) dV −Fext, (4.77)

where γ ∈ (0,∞) is the penalty parameter. Note that the argument of
W is different to that in eq. (4.62).
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