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Rotations for 3D Cauchy continuum

In this chapter we consider the classical configuration space of the non-
polar Cauchy continuum, defined as

C .= {χ : B → R3}, (3.1)

where χ is the deformation function defined over the reference configu-
ration of the body B. The rotations are calculated from the deformation
gradient, F .= ∇χ , and are not independent variables.

3.1 Polar decomposition of deformation gradient

In the non-polar Cauchy media, the rotations associated with deformation
can be obtained by the polar decomposition of the deformation gradient,
which appears in two forms: right and left. The right polar decomposition
is given by the formula

F = RU, (3.2)

where U .= (FTF)
1
2 is the right stretching tensor (symmetric and pos-

itive definite) and R = FU−1 ∈ SO(3) is a rotation tensor. The left
polar decomposition is

F = VR, (3.3)

where V .= (FFT )
1
2 is the left stretching tensor, also symmetric and

positive definite. Then the rotation tensor is calculated as R = V−1F ∈
SO(3).
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Uniqueness of polar decomposition. The proof of uniqueness of the decom-
position (3.2) follows the standard lines, and is given, e.g., in [115], p. 77
or [159], p. 93.

Properties of U. The properties of U result from the properties of
C = FTF. First, C is symmetric as (FTF)T = FT (FT )T = FTF.
Symmetry of U can be shown directly by using the Cayley–Hamilton
theorem, see [236], eq. (2.7). Another way is to note that C

1
2 is an

isotropic function, i.e.

QC
1
2 QT = (QCQT )

1
2 , (3.4)

for an arbitrary Q ∈ SO(3), thus, by Serrin’s theorem, it can be repre-
sented as C

1
2 = a0I + a1C + a2C2. Hence, U = C

1
2 is symmetric as

a polynomial of symmetric tensors.

Next, C is positive definite, which can be shown by considering a
line element, dx = FdX, where detF 6= 0 and dX 6= 0. A square of
a length of the line element is positive, i.e.

dx · dx = (FdX) · (FdX) = dX · (FTFdX) > 0, (3.5)

where the last form is a definition of positive definiteness of FTF = C.
By the definition of a square root function in spectral representations, also
U = C

1
2 is positive definite.

Algorithm for calculation of U for given C. The eigenvalues of C are real
and positive and its eigenvectors are pairwise orthogonal. Denote these
eigenvalues as λ2

i and the eigenvectors as vi (i = 1, 2, 3), and arrange
them as matrices as follows:

Λ = diag
[
λ2

1, λ2
2, λ2

2

]
, Q = [v1|v2|v3],

where Λ is a diagonal matrix and Q is an orthogonal matrix. Then
C is represented as

C = QT ΛQ, (3.6)

where the position of Q and QT can be interchanged. The standard
steps to calculate U = C

1
2 are shown in Table 3.1. Note that U is not

diagonal but is symmetric and positive definite. The algorithm to find a
square root of a symmetric positive definite 3×3 matrix is described, e.g.,
in [75]. Note that for U = QT Λ

1
2 Q, we obtain F = RU = RQT Λ

1
2 Q,

which is a relation for the deformation gradient in which the stretches and
the orthogonal tensors are separated.
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Table 3.1 Calculation of square root of C.

1. calculate eigenvectors of C: Q

2. rotate forward C: QCQT = Λ

3. calculate square root of Λ: Λ
1
2 = diag

hp
λ2

1,
p

λ2
2,
p

λ2
2

i

4. rotate backward Λ
1
2 : QT Λ

1
2 Q = C

1
2 = U.

Properties of R. Orthogonality of R is shown as

RTR = (U−1)TFTFU−1 = U−1U2U−1 = I. (3.7)

From this condition we obtain det(RTR) = (detR)2 = 1, i.e. a relation
for the square of the determinant. To establish the sign of detR, we
note that detR = det(FU−1) = (detF)/(detU). Positive definiteness
of U implies that the principal stretches λi > 0 and, hence, detU =
λ1λ2λ3 > 0. Besides, we must take detF > 0 to exclude annihilation
of line elements and negative volumes, see [159], pp. 85 and 87. Hence,
(detF)/(detU) > 0 and, therefore, detR = +1.

3.2 Rotation Constraint equation

Instead of calculating R as FU−1, we can find a tensor Q ∈ SO(3),
by solving the RC equation

C
.= skew(QTF) = 0. (3.8)

This it permitted because the equations QTF = U and skew(QTF) =
0, are equivalent, which is shown below.

1. skew(QTF) = 0 ⇒ QTF = U.

From skew(QTF) = 0 we have QTF = FTQ = (QTF)T , i.e. QTF
is symmetric. Using this symmetry, we have

(QTF)2 = (QTF)(QTF) = (QTF)T (QTF) = FTQQTF = U2. (3.9)

It remains to show that QTF 6= −U. Because U2 = C is positive
definite, so also is (QTF)2. By the definition of a square root function
in a spectral representation, also QTF = [(QTF)2]

1
2 is positive definite,

similarly as U obtained from C. This implies that eigenvalues of QTF
are positive, similarly as principal stretches λi, and that QTF = +U.
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Remark. We can also compare signs of QTF and U by examining
signs of their scalar invariants, but the results are not conclusive because of
the first invariant. Both the third invariants are positive, as det(QTF) =
(detQT )(detF) = detF > 0 and also detU = λ1λ2λ3 > 0, as principal
stretches λi > 0. Also, the second invariants are positive, as

tr(QTF)2 = tr(FTF) = F · F > 0, (3.10)

using eq. (3.9), and trU2 = λ1λ2 +λ2λ3 +λ3λ1 > 0 as λi > 0. For the
first invariants, we have trU = λ1 + λ2 + λ3 > 0 as λi > 0, but there
is a problem with tr(QTF). For instance, for the 2D case, when

Q =
[
cosω − sinω
sinω cosω

]
, F =

[
F11 F12

F21 F22

]
, (3.11)

we obtain tr(QTF) = Q ·F = cosω(F11+F22)+sinω(F21−F12). Noting
that detF = F11F22 − F12F21 > 0, and even assuming small rotations,
ω ≈ 0, for which tr(QTF) ≈ (F11 + F22) + ω(F21 − F12), it is still
difficult to determine the sign of this invariant.

2. QTF = U ⇒ skew(QTF) = 0.

From the symmetry condition, U = UT , we obtain (QTF) = (QTF)T ,
which can be rewritten as skew(QTF) = 0.

This ends the proof that the conditions skew(QTF) = 0 and QTF =
U are fully equivalent. ¤

Finally, we note that the RC equation provides a link between the
deformation gradient and the rotations, and can be used to derive mixed
formulations including rotations, see Sect. 4.

Relaxed stretching tensors. Using the product QTF, which was a basis
of the RC equation, we can define two relaxed right stretching tensors:

1. the symmetric relaxed right stretching tensor

Ũ .= sym(QTF). (3.12)

If skew(QTF) = 0, then sym(QTF) = U, as in the proof above.
2. the non-symmetric relaxed right stretching tensor

Ũn
.= QTF. (3.13)

If skew(QTF) = 0, then QTF = sym(QTF) = U. The tensor Ũn

is used in the two-field formulation with unconstrained equations, see
Sect. 4.6.
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3.3 Interpretation of rotation Q

The rotation Q provided by the RC equation can also be physically
interpreted in the range of large rotations, if we parameterize F in
terms of rotations and stretches of a pair of initially ortho-normal vectors.
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Fig. 3.1 Deformation of a pair of vectors t1 and t2.

Consider a 2D (planar) body, and denote by t1 and t2 two
ortho-normal vectors associated with the non-deformed configuration, see
Fig. 3.1. Under deformation, each of these vectors is rotated and stretched,

t∗1 = Ft1 = λ1Q1t1, t∗2 = Ft2 = λ2Q2t2, (3.14)

where λ1, λ2 > 0 are scalar stretch parameters and Q1, Q2 are two
rotation tensors, each depending on one rotation angle βα, α = 1, 2.
The length of t1 and t2 is preserved if λ1 = λ2 = 1 and the angle
between them remains unchanged for β1 = β2. Note that we can define
the deformation gradient as F = λ1Q1 (t1⊗t1)+λ2Q2 (t2⊗t2) because
products of it with t1 and t2 yield expressions of eq. (3.14).

For the representations

F = Fαβ tα ⊗ tβ,

Qα(βα) = cα (t1 ⊗ t1 + t2 ⊗ t2) + sα (t2 ⊗ t1 − t1 ⊗ t2), (3.15)

where sα = sinβα and cα = cosβα, from eq. (3.14) we obtain

F11 = λ1 c1, F12 = λ2 (−s2), F21 = λ1 s1, F22 = λ2 c2, (3.16)
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which are algebraic and nonlinear formulas for Fαβ in terms of four new
parameters {λ1, λ2, β1, β2}.

Next, we shall find a relation between the rotation angles βα and
the angle ω of the rotation Q using the RC equation. For Q(ω) =
cosω (t1⊗t1+t2⊗t2)+sinω (t2⊗t1−t1⊗t2), the RC equation becomes

(F21 − F12) cos ω − (F11 + F22) sinω = 0. (3.17)

Using the components of the deformation gradients of eq. (3.16), we obtain

[λ1s1 − λ2(−s2)] cosω − (λ1c1 + λ2c2) sin ω = 0. (3.18)

Assuming cosω 6= 0, and (λ1c1 + λ2c2) 6= 0, we obtain

tanω =
λ1s1 + λ2s2

λ1c1 + λ2c2
≈ s1 + s2

c1 + c2
, (3.19)

where the last form was obtained for small stretches, λα ≈ 1. Using
trigonometric identities,

tanω ≈ tan
β1 + β2

2
. (3.20)

Hence,

ω ≈ 1
2
(β1 + β2) + kπ, k = 0, . . . , K, (3.21)

i.e. the angle ω yielded by the RC is an average of rotations of vectors
t1 and t2. This result, obtained for large rotations, provides a clear
physical interpretation of Q.

For rigid body rotation, the length of vectors t1 and t2 is constant,
and their rotation angles are identical, i.e. λ1 = λ2 = 1, and β1 = β2 = β.
Then, eq. (3.14) becomes

Ft1 = Q(β) t1, Ft2 = Q(β) t2 (3.22)

and the deformation gradient F = Q(β) (t1 ⊗ t1 + t2 ⊗ t2) = Q(β)I =
Q(β). Hence, eq. (3.21) becomes

ω = β + kπ, (3.23)

i.e. the angle ω yielded by the RC is equal to the angle β of the rigid
body rotation.

Summarizing the above two cases, we see that, in general, Q cannot
be interpreted as a rigid rotation. This is also true for the rotation R
yielded by the polar decomposition of F, because R = Q.



28 Rotations for 3D Cauchy continuum

3.4 Rate form of RC equation

The rate form of the RC equation has the advantage that it can be equiv-
alently expressed in terms of the angular velocity and the spatial velocity
gradient.

Differentiation w.r.t. time of the RC equation (3.8) yields

skew(Q̇TF + QT Ḟ) = 0. (3.24)

From the definitions of the spatial (left) angular velocity, ω̃∗ .= Q̇QT ,
and the spatial velocity gradient, ∇v .= ḞF−1, we obtain

Q̇ = ω̃∗Q, Ḟ = ∇vF, (3.25)

for which, eq. (3.24) becomes

skew
(
QTAF

)
= 0, where A .= −ω̃∗ +∇v. (3.26)

Next, we apply the rotation-forward operation, Q (·)QT and rewrite
eq. (3.26) as

AV−VAT = 0, (3.27)

where V .= QUQT = FQT is the left stretching tensor, symmetric
and positive definite. The split of A into a symmetric part and a skew-
symmetric part yields A = As + Aa, where As

.= sym∇v and
Aa

.= −ω̃∗ + skew∇v. Then eq. (3.26) becomes

(AsV−VAs) + (AaV−VAT
a ) = 0. (3.28)

Note that the first part,

AsV−VAs = 2 skew(AsV) = 0, (3.29)

because a skew part of a symmetric tensor is equal to zero. Hence, only
the second part of eq. (3.28) remains,

AaV + VAa = 0, (3.30)

in which Aa is skew-symmetric, and V is symmetric and positive
definite. By Lemma 3.1 in [214], this equation is satisfied only if Aa = 0,
which yields

ω̃∗ − skew∇v = 0. (3.31)

This relation is equivalent to the rate form of the RC equation of eq. (3.24).
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3.5 Rotations calculated from the RC equation

Assume that F is given, and find the rotations from the RC equation.

The solution of the RC of eq. (3.8) is trivial for a rigid rotation, when
F = Q, as then skew(QTF) = skew(QTQ) = skew I = 0, i.e. the RC
equation is an identity.

For large rotations, the RC of eq. (3.8) yields a system of non-linear
equations for {ψ1, ψ2, ψ3}, where ψi

.= (ψ)i and ψ is the rotation
vector, e.g. the canonical vector of eq. (8.79). Methods of solution of these
nonlinear equations for a 2D problem are discussed in Sect. 12.1.

If we assume that rotations are small, then Q ≈ I + ψ̃, where
ψ̃ = ψ × I ∈ so(3). Then the RC equation becomes

C
.= skew(QTF) = skew

[
(I + ψ̃)TF

]
= skewF+skew(ψ̃TF) = 0. (3.32)

These are three equations which can be rewritten as



−F31 −F32 (F11 + F22)
F21 −(F11 + F33) F23

(F22 + F33) −F12 −F13







ψ1

ψ2

ψ3


 = −




F12 − F21

F13 − F31

F23 − F32


 ,

(3.33)
where Fij

.= (F)ij . Note that for F = I, the determinant of the matrix
is equal to 8 and the r.h.s. vector is equal to zero. Hence, a unique solution
exists and is equal to zero.

A unique solution does not exist, e.g., when (i) the off-diagonal com-
ponents are equal to zero, i.e. Fα3 = F3α = 0 and F12 = F21 = 0, and
(ii) at least one of the following conditions for the diagonal components is
satisfied: F11 = −F22 or F11 = −F33 or F22 = −F33.
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