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Modification of transverse shear stiffness
of shell element

In order to improve the performance of a four-node shell element in bend-
ing, the transverse shear energy and stiffness must be treated in a special
way. The two main problems are the transverse shear locking (TSL) and
the poor performance of very thin elements. These problems also appear
for beams, which are simpler and more suitable for analytical studies.

13.1 Treatment of transverse shear stiffness of beams

To identify the problems related to the transverse shear, it suffices to con-
sider the linear kinematics and small rotations of the Timoshenko beam.

Timoshenko beam equations. For the Timoshenko beam, the membrane,
transverse shear, and bending strain components are as follows:

εxx = ux,x, 2εzx = w,x − θ
.= γ, κxx = −θ,x, (13.1)

where u is a tangent displacement, w is the normal displacement, and
θ is the rotation angle of the middle line of the beam. The strain energy
is

W .=
∫ L

0
(Wε + Wγ + Wκ) dx, (13.2)

where

Wε
.=

1
2
EA ε2

xx, Wγ
.= k 2GAε2

zx =
1
2
k GA γ2, Wκ

.=
1
2
EI κ2

xx.

Besides, k = 5/6 is the shear correction coefficient and L is the beam
length. For a rectangular cross-section of the beam of height h and width
b, the area is A = bh, and the moment of inertia is I = bh3/12.
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Transverse shear strain for large rotation beam. Consider a straight (not
curved) beam in the 13-plane (XZ-plane). The transverse shear strain
of a beam in the ortho-normal basis {tk} (k = 1, 3) is as follows:

ε13 = 1
2x0,x · a3. (13.3)

The form of this strain is identical for the Green strain and the symmetric
right stretch strain. The rotation tensor is

Q = c (t1⊗t1+t3⊗t3)+s (t3⊗t1−t1⊗t3), s
.= sin θ, c

.= cos θ, (13.4)

where θ is the rotation angle about the axis t2. Then a3
.= Qt3 =

c t3−s t1. Besides, x0,x = (y0+u0),x = tα +u,x, where u = ut1+wt3.
For a straight beam, t1,x = t3,x = 0, and eq. (13.3) becomes

2ε13 = x0,x · a3 = −s− u,x s + w,x c. (13.5)

For small rotations, θ ≈ 0, we have s ≈ θ and c ≈ 1 and neglecting
the second order term u,x θ, we obtain the linearized transverse shear
strain of eq. (13.1).

13.1.1 Reduced integration of transverse shear energy

Transverse shear locking. The transverse shear locking (TSL) is a patho-
logical phenomenon plaguing elements based on the Reissner hypothesis
and low-order approximations. It manifests itself in two ways:

1. an artificial over-stiffening of an FE model is observed for coarse
meshes. The solution is too small, compared to the analytical solu-
tion, see Fig. 13.1. In other words, the solution is “locked”.
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Numerical solution
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Fig. 13.1 Locking of numerical solution.
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2. The rate of the mesh convergence deteriorates and a much denser mesh
is necessary to obtain an accurate solution. In the mesh limit, however,
the solution is correct.

The TSL is caused by two factors:

1. improper approximation of the transverse shear strain, due to non-
matching approximations of particular terms and

2. high values of the (transverse shear stiffness/bending stiffness) ratio
for very small thickness h. This ratio is proportional to 12/h2, so
the thickness is a critical parameter.

We stress that the TSL is not caused by finite computer representations
and arithmetic and its presence can be shown in an analytical way, e.g.
considering pure bending of a beam element. The first papers on the sub-
ject were [226, 227].

Transverse shear locking of two-node beam. Assume that the element’s cen-
ter is located at x = 0, see Fig. 13.2. Then x = (l/2) ξ, where
ξ ∈ [−1,+1], l is the element’s length, and we differentiate as follows:

( · ),x = ( · ),ξ

(
dx

dξ

)−1

=
2
l

( · ),ξ. (13.6)

X

z

l

Fig. 13.2 Two-node beam element.

To derive a two-node beam element, we use the approximations

w(ξ) =
2∑

I=1

NI(ξ) wI , θ(ξ) =
2∑

I=1

NI(ξ) θI , (13.7)

where ( · )I designates the nodal values and the linear shape functions
are

N1(ξ)
.=

1
2
(ξ − 1), N2(ξ)

.=
1
2
(ξ + 1). (13.8)
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For these approximations, the components of εxz(ξ) of eq. (13.1) are as
follows:

θ(ξ) = 1
2(1− ξ) θ1 + 1

2(1 + ξ) θ2, w,x(ξ) =
1
L

(w2 − w1), (13.9)

i.e. θ(ξ) is a linear function, while w,x(ξ) is a constant function. We
see that approximations of these two components do not match up, which
has negative consequences.

For pure cylindrical bending of the two-node beam element, see Fig. 13.3,
the nodal displacements w2 = w1 and the nodal rotations θ1 = −θ and
θ2 = θ. Hence, θ(ξ) = ξ θ and w,x = 0, so we obtain

2εxz(ξ) = ξ θ, (13.10)

which is a linear function of ξ. The analytical value of εzx(ξ) for pure
bending is zero and is obtained from the above formula only at one point,
ξ = 0, i.e. at the element’s center. This observation is exploited by the
reduced integration technique described in the sequel.

MM

=1=-1 =0

1 2

X

z

L

Fig. 13.3 Pure cylindrical bending of two-node beam element.

Remark on transverse shear locking of three-node beam element. Note
that the TSL also appears for the three-node beam element based on
quadratic shape functions. However, the TSL does not appear for pure
bending, but for the transverse loads shown in Fig. 13.4. Two points,
ξ = ±1/

√
3, at which the approximated εzx(ξ) yields analytical values

can be found as a solution of a quadratic equation, see [94].

Reduced integration (SRI and URI) of transverse shear energy. To avoid the
TSL, we can use the numerical Gauss integration based on the points at
which εzx is correct.

For instance, for a two-node beam, we may use the one-point integra-
tion rule using the point ξ = 0, while, for the three-node beam, we may
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Fig. 13.4 Bending of three-node beam element by force P and distributed load q.

use the two-point integration rule exploiting the points, ξ = ±1/
√

3.
Fortunately, in both cases, the under-integration does not yield spurious
zero eigenvalues of the tangent matrix.

Two forms of the reduced integration are in use. Within the Selective
Reduced Integration (SRI) technique, only the transverse shear strain en-
ergy is under-integrated. However, for a two-node beam, we can uniformly
under-integrate all terms of the strain energy and the element’s rank still
remains correct. Such a technique is called the Uniform Reduced Inte-
gration (URI). If the reduced integration technique yields spurious zero
eigenvalues of the tangent matrix, then it must be additionally stabilized.

The SRI technique works very well for beams; the accuracy of the SRI
integration and the full integration is compared in [103], Tables I and II,
for the example of a cantilever beam loaded by a transverse force.

Why poor approximation of transverse shear strain locks the solution. Consider
only the transverse shear and bending strain components in the beam
strain energy of eq. (13.2), which can be rewritten as follows:

2W/EI =
∫ l/2

−l/2

(
κ2

xx + α ε2
xz

)
dx, α

.=
k2GA

EI
. (13.11)

For a rectangular cross-section, when A = bh and I = bh3/12,

α =
24kG

Eh2
=

12k

(1 + ν)
1
h2

.

If the thickness h → 0, then α → ∞, and the component α ε2
xz =

α (εxz−0)2 can be interpreted as the penalty term enforcing the condition
εxz = 0. This condition is physically correct for h → 0.

The problem appears when εxz is not properly approximated within
an element because then, not εxz = 0, but some other condition is
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enforced. This can be shown for pure bending, for which 2εxz(ξ) = ξ θ,
see eq. (13.10). Then, the transverse shear term is

∫ l/2

−l/2
ε2
xz dx =

l

2

∫ 1

−1
ε2
xz dξ =

l

12
θ2, (13.12)

and, eq. (13.11) becomes

2W/EI =
∫ l/2

−l/2
κ2

xx dx + α
l

12
(θ − 0)2. (13.13)

We see that for α →∞, the condition θ = 0 is enforced, which is non-
physical and causes an over-stiffened response (locking) of the two-node
beam element.

13.1.2 Residual Bending Flexibility (RBF) correction

Introduction. Low-order elements, such as a two-node Timoshenko beam
element and a four-node Reissner shell element, seriously lock for the
sinusoidal bending shown in Fig. 13.5a, because this form of deformation
cannot be properly represented by linear (or bilinear) shape functions. To
remedy this problem, we can use the corrected value of the transverse
shear stiffness defined as follows:

(GA)∗ .= cRBF GA, (13.14)

where cRBF is a scalar coefficient determined by the method of the
Residual Bending Flexibility (RBF), which is described below. Note that

1. the RBF correction does not affect the cylindrical (pure) bending
shown in Fig. 13.5b, for which the transverse shear strain is zero. This
type of bending is improved by the reduced integration of the trans-
verse shear energy or proper sampling of the transverse shear strain.

2. The RBF correction is beneficial for extremely thin elements when the
elemental aspect ratio (l/h) is very large. For this case, we also can
use the scaling down of [103], discussed in the sequel.

The RBF correction was proposed for beams in [198] and adapted for
shells in [138].
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Fig. 13.5 Bending of beam: a) Sinusoidal bending. b) Cylindrical (pure) bending.

RBF correction for beam. For two-node Timoshenko beams, the RBF cor-
rection amounts to using, in computations, the corrected value of a trans-
verse shear stiffness

(GA)∗ =
(

1
GA

+
l2

12EI

)−1

, (13.15)

where the second term, l2/(12EI), is designated as the residual bending
flexibility (RBF) and l is the element’s length. For a rectangular cross-
section when A = bh and I = bh3/12, we can define the corrected
shear modulus

G∗ .=
(GA)∗

A
=

h2EG

h2E + l2G
=

(
1
G

+
l2

h2E

)−1

. (13.16)

The RBF term does not vanish since l 6= 0, and dominates for l/h >√
E/G =

√
2(1 + ν). If the RBF term strongly dominates, i.e. when

l/h À
√

E/G, then we can neglect 1/(GA) in eq. (13.15), which yields

(GA)∗ ≈ 12EI

l2
and G∗ ≈

(
h

l

)2

E. (13.17)

These formulas are well suited for elements of large (l/h) aspect ratios.

Derivation of the RBF correction for a beam. The derivation below is for a
small strain/small rotation beam, but the obtained corrected transverse
shear stiffness is subsequently tested also on non-linear problems.

We drive a two-node Discrete Kirchhoff (DK) beam element with the
normal displacement approximated by a cubic polynomial

w(ξ) = a0 + a1 ξ + a2 ξ2 + a3 ξ3, ξ ∈ [−1, +1]. (13.18)

Using the boundary conditions: w(−1) = w1, w(+1) = w2, w,ξ(−1) =
(w,ξ)1, and w,ξ(+1) = (w,ξ)2, we can determine the coefficients ai

(i = 0, 1, 2, 3) and rewrite eq. (13.18) as
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w(ξ) = N1(ξ) w1 + N2(ξ) w2 + N3(ξ) (w,ξ)1 + N4(ξ) (w,ξ)2, (13.19)

where the Hermitian shape functions are

N1(ξ)
.=

1
2
− 3ξ

4
+

ξ3

4
, N2(ξ)

.=
1
2

+
3ξ

4
− ξ3

4
,

N3(ξ)
.=

1
4
(1− ξ − ξ2 + ξ3), N4(ξ)

.=
1
4
(−1− ξ + ξ2 + ξ3), (13.20)

see Fig. 13.6.
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Fig. 13.6 Hermitian shape functions N1, N2, N3, and N4.

The Kirchhoff constraint, ε13 = 0, yields the relation θ = w,x.
Applying this constraint to discrete points, namely to the boundary nodes,
and using w,x = (2/l)w,ξ, we obtain (w,ξ)1 = (l/2) θ1 and (w,ξ)2 =
(l/2) θ2. Hence, the normal displacement becomes

w(ξ) = N1(ξ) w1 + N2(ξ) w2 +
l

2
[N3(ξ) θ1 + N4(ξ) θ2] , (13.21)

where θ1 and θ2 are the nodal rotations. This form of w is used in the
sequel, as it conforms with the boundary conditions for the cases shown
in Fig. 13.5. Note that we can separate the terms for the cylindrical and
sinusoidal bending as follows:

l

2
[N3(ξ) θ1 + N4(ξ) θ2] =

l

8
[(1− ξ2)︸ ︷︷ ︸
cylindrical

(θ1 − θ2) + (−ξ + ξ3)︸ ︷︷ ︸
sinusoidal

(θ1 + θ2)],

(13.22)
and if θ1 = ±θ2, then only one type of bending remains.

Let us now define components of the strain energy of the DK beam
element:
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1. the bending energy

Wκ
.=

l

4

∫ +1

−1
EI κ2 dξ, κ = − 4

l2
w,ξξ, (13.23)

where the bending strain κ = −θ,x ≈ −w,xx for the Kirchhoff con-
straint.

2. the transverse shear energy

Wγ
.=

l

4

∫ +1

−1
GA γ2 dξ, γ =

EI

GA

2
l

κ,ξ, (13.24)

where the transverse shear strain γ = −(EI/GA) κ,x is recovered
from the equilibrium equation Q = −M,x, in which we used M =
EI κ and Q = GAγ.

Using these energies, we can define the ratio of the shear energy to the
total energy

c
.=

Wγ

Wκ +Wγ
. (13.25)

For the sinusoidal bending of Fig. 13.5b, we have w(ξ) = l
4 ξ(ξ2 − 1) θ

and the above formulas yield

Wκ =
6EI

l
θ2, Wγ =

72(EI)2

GAl3
θ2, cRBF

.= c =
12EI

12EI + GAl2
, (13.26)

where cRBF does not depend on the rotation θ ! Note that these
formulas are for the beam element based on cubic displacements (13.18),
but we shall apply the coefficient cRBF to the two-node Timoshenko
beam element, which is based on linear displacements and rotation.

Sinusoidal bending of very slender beam. Consider the sinusoidal bending of
a very slender beam element, for which h/l ¿ 1. Then, for the DK beam
element based on cubic displacements, the bending energy dominates in
eq. (13.26), i.e. Wκ ÀWγ , so

W .= Wκ +Wγ ≈ Wκ =
6EI

l
θ2, (13.27)

where Wγ is neglected. On the other hand, for a two-node Timoshenko
element with linear approximations of θ and w, the sinusoidal bending
yields
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W .= Wκ +Wγ = Wγ =
GA l

2
θ2, (13.28)

i.e. only the transverse shear energy is non-zero. These two energies are
equal if GA = 12EI/l2, so we define (GA)∗ .= 12EI/l2 which has
the form of eq. (13.14). For this corrected transverse shear stiffness, the
two-node Timoshenko element with linear approximation of w yields
almost identical nodal rotations as the DK beam element based on a cubic
approximation of w.

13.1.3 Scaling down of transverse shear stiffness

For extremely thin beam and shell elements, we obtain very inaccurate
solutions. This is attributed to disparity between the orders of bending
and shear terms, which means that, due to the finite computer precision,
the bending stiffness is annihilated.

Then, either the RBF correction or the method of scaling down the
transverse shear stiffness proposed in [103] can be applied. The most im-
portant difference between these two methods is that the scaling down
does not pertain to any particular form of deformation, while the RBF
method does.

In the method of scaling down the transverse shear stiffness, the anni-
hilation of the bending stiffness is prevented by the following strategy:

1. We find the maximum aspect ratio of an element, (l/h)max, for which
the accuracy is still correct. This value is determined by a numerical
experiment and 104/16 for beams and 105/8 for plates was found
in the cited work.

2. For the aspect ratios which are larger than the maximum aspect ratio,
i.e. for l/h > (l/h)max, we scale down the transverse shear stiffness

(GA)∗ .= s GA, s
.=

(
h

l

)2 (
l

h

)2

max

. (13.29)

The scaling factor s is plotted in Fig. 13.7 and we see that it tends
to zero for l/h →∞. Then the strain energy of a beam is

2W =
∫ l/2

−l/2

[
EIκ2

xx + (GA)∗ ε2
xz

]
dx. (13.30)
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Fig. 13.7 Scaling factor for (l/h)max = 104/16.

Alternatively, we can scale down the ratio of the shear stiffness to the
bending stiffness α of eq. (13.11),

α∗ .= s α, (13.31)

so the strain energy of eq. (13.11) becomes

2W/EI =
∫ l/2

−l/2

(
κ2

xx + α∗ ε2
xz

)
dx. (13.32)

Both above forms of the strain energy are equivalent. Note that the above
scaling down is in accord with eq. (13.27) for sinusoidal bending of a very
slender beam.

Scaling down parameter s. The scaling down parameter s of eq. (13.29)
can be obtained by the simple reasoning presented below. The estima-
tion of energy components of a two-node Timoshenko beam element is as
follows:

1. the bending energy

Wκ
.=

1
2

Eh3

12

∫ l

0
θ2
,x dx ≈ 1

2
Eh3

12
(θ2 − θ1)2

l
, (13.33)

2. the shear energy

Wγ
.=

1
2
kGh

∫ l

0
(w,x − θ)2 dξ

≈ 1
2
kGh

[
(w2 − w1)2

l
− 2(w2 − w1) θc + θ2

c l

]
, (13.34)

where θc
.= 1

2(θ1 + θ2) is the rotation at the element’s center.
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The order of the bending stiffness Sκ and the shear stiffness Sγ is as
follows:

Sκ
.=

∂Wκ

∂θα
∼ h3

l
, Sγ

.=
∂Wγ

∂θα
∼ hl, α = 1, 2, (13.35)

and their ratio is
Sκ

Sγ
=

(
h

l

)2

. (13.36)

We see that, for the aspect ratio (l/h) → ∞, the ratio (Sκ/Sγ) → 0.
Because Sκ is much smaller than Sγ , the bending stiffness is annihi-
lated due to finite computer precision. The effect of disparity between the
bending and shear term is alleviated if we scale down as in eq. (13.29).

13.1.4 Numerical tests for beams

Test 1. Transverse shear locking of cantilever. One boundary of a cantilever
is fixed while at the other one a vertical force P = 1 is applied. The
data is as follows: E = 3 × 106, ν = 0.3, L = 100, h = 3, b = 1.
The two-node Timoshenko beam element is integrated using either one-
or two-point Gauss integration of the transverse shear energy.

The mesh convergence for the linear test is shown in Fig. 13.8, where
the normalizing value is 4.9416 × 10−2. We see that the element with
the two-point integration converges very slowly while the element using
one-point integration converges quickly. The difference is significant, as
four elements with one-point integration provide better accuracy than
100 elements with two-point integration.

Test 2. Eigenvalues. Effect of the RBF correction. Two types of two-node Tim-
oshenko beam elements are checked:

1. the element designated as “Linear” is based on linear shape functions.
The bending and membrane energy is integrated using either one point
at the element’s center or two Gauss points, while the shear strain
energy is integrated at the element center,

2. the element designated as “Allman” is based on Allman-type shape
functions so the displacement vector is approximated as follows:

u0 = uL
0 −

l

8
(1− ξ2)(θ2 − θ1)n, (13.37)
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Fig. 13.8 Cantilever loaded by vertical force. Effect of integration rule for trans-
verse shear.

where uL
0 is approximated by linear shape functions, θ1, θ2 are

nodal rotations, and n is a vector normal to the element. (For more
details on Allman shape functions, see Sect. 12.7.) The bending and
membrane energy is integrated using two Gauss points, while the shear
strain energy is integrated by one Gauss point, at the element’s center.

We see in Table 13.1 that both elements have identical eigenvalues and
the second eigenvalue, which is associated with the transverse shear, is
decreased about 33 times by the RBF correction.

Table 13.1 Non-zero eigenvalues of two-node beam elements based on Green strain.
E = 106, ν = 0.3, h = 0.1, l = 1, b = 1.

Shape functions Non-zero eigenvalues
no transverse shear stiffness
Linear 0.2000E+06 0.1667E+03
Allman 0.2000E+06 0.1667E+03
with transverse shear
Linear 0.2000E+06 0.8013E+05 0.1667E+03
Allman 0.2000E+06 0.8013E+05 0.1667E+03
transverse shear with RBF correction
Linear 0.2000E+06 0.2424E+04 0.1667E+03
Allman 0.2000E+06 0.2424E+04 0.1667E+03

Test 3. Sinusoidal bending of simply supported beam. The beam is simply
supported and loaded by two end moments M1 = M2 = 1, which gener-
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ate the sinusoidal bending of Fig. 13.5a. The results for the Timoshenko
beam element (“Linear”) with/without the RBF correction are shown in
Table 13.2. We see that, for a single element, the solution obtained with-
out the RBF correction is severely locked, but the RBF correction is a
perfect remedy. Note that h/l ∈ [0.0001, 0.01] and the coefficient cRBF

assumes values greatly differing from 1!

For comparison, also the solution for three-node beam element is pro-
vided. This element is based on parabolic shape functions and uses the
two-point Gauss URI. The Assumed Strain (AS) method of [94] for the
membrane and transverse shear strains, with two sampling points and the
three-point Gauss integration yields exactly the same results.

Table 13.2 Sinusoidal bending by two-node beam element. Effect of RBF correc-
tion. E = 2.11× 1011, ν = 0.3, h = 0.0002, l = 2, b = 2 .

Rotation at node 1
No of elements 1 2 10 100
no RBF 7.3934E-08 1.7773 2.3460 2.3694
RBF 2.3697 2.3697 2.3697 2.3697
three-node beam 2.3697 2.3697 2.3697 2.3697
h/l of element 0.0001 0.005 0.001 0.01
cRBF 3.119E-08 1.247E-7 3.119E-06 3.119E-04

Test 4. Linear and non-linear cantilever beam. The data is the same as in
Test 1. Two finite-rotation two-node Timoshenko beam elements, based
on either “Linear” or “Allman” shape functions, and either with or without
the RBF correction are used. In the linear test, the load P = 1, while in
the nonlinear one, the initial load increment ∆P = 10 and the arc-length
method is used.

The mesh convergence for the linear test is shown in Fig. 13.9a, where
the normalizing value is 4.9416 × 10−2, and the exact solution is ob-
tained, even for one element. In the non-linear test, see Fig. 13.9b, the
reference solution is obtained for 10 elements for which the effect of the
RBF correction vanishes. For the mesh of two elements based on “Linear”
shape functions and without the RBF correction, the solution is almost
exact, while the correction yields a slightly too soft solution. For the same
mesh, the solutions for the element based on the “Allman” shape functions
are correct only up to a certain load but for the 10-element mesh they are
close to the reference solution in the whole range.
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Fig. 13.9 Cantilever loaded by vertical force. Effect of the RBF correction.
a) Linear test. Mesh convergence. b) Nonlinear test.

Test 5. Extremely thin cantilever beam. The purpose of this test is to compare
the scaling down of the transverse shear stiffness of eq. (13.29) with the
RBF correction for the extreme thinness in a linear example involving the
transverse shear. The value (l/h)max = 104/16 was used for the scaling
down.

One boundary of a cantilever is fixed, while at the other one, a vertical
force P is applied. The data is as follows: E = 106, ν = 0.3, L = 100,
b = 1, the load P = 1. The two-node Timoshenko beam element
based on one-point Gauss integration is used and 100 elements are applied.
Hence, the length of a single element is l = 1, while the thickness is
varied, h = 10n, n ∈ [0,−8].

The results are given in Table 13.3, where the normal displacement
w and the rotation θ at the beam’s tip are presented. We see that,
for the not modified element, the accuracy is acceptable only for up to
(l/h) = 10−4, while for the RBF correction and the scaling of eq. (13.29),
the accuracy is good even for (l/h) = 10−8. We note a 5% error appearing
for both these methods for h = 10−5.

13.1.5 Curvature correction

Two-node beam elements are typically defined by node positions and are
straight. If they are used for curved beams or arches and coarse meshes,
then the accuracy can be improved if we account for curvature. The cur-
vature can be defined by specifying either normal vectors at nodes or the
height of the arch, which is assumed as circular.



380 Modification of transverse shear stiffness of shell element

Table 13.3 Thin limit of two-node beam. Modifications of transverse shear.

h standard RBF correction shear scaling, eq. (13.29)
n w θ w θ w θ
0 4.0002E+00 6.0000E–02 4.0003E+00 6.0000E–02 3.9999E+00 6.0000E–02

–1 3.9999E+03 6.0000E+01 4.0000E+03 6.0000E+01 3.9999E+03 6.0000E+01
–2 3.9999E+06 6.0000E+04 4.0000E+06 6.0000E+04 3.9999E+06 6.0000E+04
–3 4.0003E+09 6.0006E+07 4.0000E+09 6.0000E+07 3.9999E+09 6.0000E+07
–4 4.0239E+12 6.0230E+10 4.0000E+12 6.0000E+10 3.9999E+12 6.0000E+10
–5 2.1911E+14 6.7033E+12 4.2253E+15 6.3521E+13 4.2259E+15 6.3531E+13
–6 1.8068E+16 1.2498E+15 4.0000E+18 6.0000E+16 3.9999E+18 6.0000E+16
–7 2.2518E+17 5.4043E+16 4.0000E+21 6.0000E+19 3.9999E+21 6.0000E+19
–8 –6.9175E+18 -9.2234E+18 4.0000E+24 6.0000E+22 3.9999E+24 6.0000E+22

Consider a 2D circular arch 1-3-2 bent by two opposite horizontal forces
P , see Fig. 13.10a. If a straight (not curved) two-node element linking
nodes 1 and 2 is used, then the forces P do not cause bending in this
element, which is incorrect, comparing to the arch. This can be corrected,
e.g., by the method of rigid links, which introduces two rigid links 1-A
and 2-B, and shifts the straight two-node element to the position defined
by points A and B. Then, the forces P cause bending in this element,
similarly as in the arch.
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Fig. 13.10 Curvature correction for arch. a) Straight element and rigid links.
b) Transformation for rotation.

The displacements and rotation for node A are defined as

∆uA = ∆u1, ∆wA = ∆w1, ∆βA = ∆β1 + Z ∆u1, (13.38)

where only the rotation at node A is corrected and it depends on the
rotation at node 1, the horizontal displacement ∆u1 at node 1, and the
offset Z, see Fig. 13.10b.

The offset Z corresponds to the length of the rigid links. Its magnitude
is arbitrary and must be somehow selected. We have tested two values:
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Fig. 13.11 Curvature correction. Center of gravity of arch.

• Z = H, where H is the height of arch, see Fig. 13.11, and
• Z = yc, where yc is the vertical coordinate of the center of gravity

of an arch of a constant thickness in the local frame {tc
1, t

c
3},

yc = d− (r −H), d = r cos(α/4), (13.39)

where α = α1 + α2 = arccos(t1
3 · tc

3) + arccos(t2
3 · tc

3). This definition
of α involves normal vectors at nodes 1, 2, and at the center, and
can also be applied to shapes which are not exactly circular.

Note that the curvature correction must be performed in the local or-
thonormal basis at the element’s center {tc

k}. Besides, the curvature
correction slightly impairs a convergence rate of the Newton method, com-
paring to that for the uncorrected element, but accuracy is improved.

Numerical example. The circular arch is shown in Fig. 13.12. The left
boundary is fixed, while at the right one, the horizontal force P is
applied and the vertical displacement is constrained to zero. The RBF
correction and the curvature correction are tested, using the two-node
finite-rotation Timoshenko beam element with one-point integration.

Pu

r

a

Fig. 13.12 Circular arch. E = 3× 106, ν = 0.3, r = 300, α = 90o, h = 3.

The mesh convergence in a linear test is shown in Fig. 13.13a, where
the normalizing reference value of the horizontal displacement is 3.3422.
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Fig. 13.13 Circular arch. Effect of the RBF and curvature corrections.
a) Linear test: mesh convergence. b) Nonlinear test.

c) Comparison of two elements “Linear” and “Allman” with/without corrections.
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The best accuracy is obtained for both corrections combined together and
when the offset Z = yc. For the one-element mesh, the obtained result is
not as exact as it was for a straight cantilever, but still the improvement is
impressive; one corrected element provides an accuracy comparable with
that for 25 uncorrected elements.

The results of a nonlinear test are shown for 5- and 20-element meshes
in Fig. 13.13b. The offset Z = yc is used and its values are as follows: for
20 elements Z = 0.17346 ≈ 0.06h, while for five elements Z = 2.7687 ≈
0.92h, i.e. is of the order of the thickness. The load increment is ∆P = 10.

For five elements, the RBF correction has a stronger effect than the
curvature correction but both corrections combined together produce the
best result. The RBF correction itself halves the difference between the
solutions for 20 and five elements without the RBF. The solution for 20
elements is used for reference, as then the effect of both corrections is
negligible.

Finally, we compare the two earlier presented finite-rotation two-node
Timoshenko elements, “Linear” and “Allman”, the eigenvalues of which
are given in Table 13.1. The mesh of five elements is used and solutions are
obtained for two cases: (1) no corrections, and (2) with both corrections
applied. The reference solution is obtained for a 20-element mesh, and is
identical for both elements. Comparing the curves in Fig. 13.13c, we see
that the “Allman” element performs better than the “Linear” element,
and that the corrections improve the accuracy of both.

13.2 Treatment of transverse shear stiffness of shells

The problems caused by the transverse shear strains, such as the transverse
shear locking and a poor performance of very thin elements, also appear
for shells, for which we can generalize the techniques developed and tested
for beams in Sect. 13.1.

Transverse shear strain for shell. For the Reissner kinematics, the transverse
shear strain components in the ortho-normal basis {tα} are

εα3 = ε3α = 1
2x0,α · a3, (13.40)

where the differentiation is performed w.r.t. Sα. The above form of the
transverse shear strains is identical for the Green strain and the symmetric
right stretch strain.
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13.2.1 Selective Reduced Integration

The first remedy which was invented to circumvent the transverse shear
locking (TSL) in a four-node plate element was the Selective Reduced
Integration (SRI) proposed in [103]. The bending energy was integrated
using the 2×2-point Gauss scheme, while the transverse shear energy was
integrated by the reduced one-point scheme. Note that the plate element
has only three dofs/node, i.e. the normal displacement w, and two
tangent rotations θα.

However, differently from two-node Timoshenko beams, the under-
integration of the transverse shear energy of a plate yields two spurious
zero eigenvalues. The associated zero-energy modes are as follows: (i) the
hourglass mode w = ξη and θα = 0, and (ii) the in-plane twisting
mode θ1 = −η, θ2 = ξ and w = 0, see [103], Fig. 10. According
to this paper, the first mode can be removed by 2 × 2 integration of the
(∂w/∂xα)2 term in the transverse shear energy, while the second mode
vanishes for a mesh with the rigid body modes removed.

Note that two schemes of integration of the transverse shear strain en-
ergy make the SRI complicated and inconvenient for materially nonlinear
problems. This provided the motivation for further work, resulting in the
ANS technique described in the next section.

For four-node shell elements, the under-integration of the transverse
shear energy causes rank deficiency (two spurious zero eigenvalues), simi-
larly as for plate elements, and, for this reason, is not currently used.

13.2.2 Assumed Natural Strain method

Overview. In the Assumed Natural Strain (ANS) method each strain com-
ponent is treated separately; it is sampled at selected points and approx-
imated over the element domain.

For example, the transverse shear strain ε13(ξ, η) is sampled at two
points (ξ = 0, η = ±1) and approximated by a function which is con-
stant in the ξ-direction and linear in the η-direction. This means that
in unidirectional bending in the ξζ-plane, the rectangular four-node shell
element performs identically as the two-node beam element.

The constant approximation in the ξ-direction corresponds to the re-
duced one-point integration in the ξ-direction but, when we use the ANS
method, we can apply the standard 2 × 2-point Gauss integration to all
terms, including the transverse shear strain energy.
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The ANS method was gradually developed in several works, including
[138, 104, 139, 18, 19]. The works preceding [18] are well characterized
in [141], pp. 401–3. The controversy existed over the optimal position of
points in the direction in which the strain is linearly approximated and
two values were in use: ±1/

√
3 and ±1. Currently, the latter one is

considered as better.

Note that the assumed strain method is also used in nine-node shell ele-
ments for which more sophisticated sampling and approximation schemes
are used to eliminate the transverse shear and membrane locking, see
Sect. 14.4.

Covariant components of transverse shear strains. In eq. (13.40), for the
transverse shear strain, the differentiation is performed w.r.t. Sα, but
the position vector x0 is approximated in terms of the natural coordi-
nates ξ, η ∈ [−1, +1]. Hence, we have to express the derivatives w.r.t.
Sα by the derivatives w.r.t. ξ, η.

Let us form the vector of components of the transverse shear strain of
eq. (13.40), [

ε13

ε23

]
=

[
1
2x0,1 · a3

1
2x0,2 · a3

]
, (13.41)

where the differentiation is performed w.r.t. Sα and the position vector
x0 is approximated as x0(ξ, η) =

∑4
I=1 NI(ξ, η) x0I . Then we transform

[
1
2x0,1 · a3

1
2x0,2 · a3

]
=

4∑

I=1

[
1
2NI,1 x0I · a3

1
2NI,2 x0I · a3

]
=

4∑

I=1

[
NI,1

NI,2

]
sI (13.42)

where the auxiliary scalar sI
.= 1

2x0I ·a3. To calculate the derivatives of
shape functions, we can use eq. (2.46),

[
NI,1

NI,2

]
= J−T

[
NI,ξ

NI,η

]
, (13.43)

with the Jacobian inverse J−1 defined by eq. (10.56). Then

4∑

I=1

[
NI,1

NI,2

]
sI = J−T

4∑

I=1

[
NI,ξ

NI,η

]
sI = J−T

[
1
2x0,ξ · a3

1
2x0,η · a3

]
, (13.44)

and the differentiation is performed w.r.t. ξ, η. Hence, eq. (13.41) can be
rewritten as
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[
ε13

ε23

]
= J−T

[
εξ
13

εξ
23

]
, (13.45)

where
εξ
13

.= 1
2x0,ξ · a3, εξ

23
.= 1

2x0,η · a3. (13.46)

Note that eq. (13.45) transforms the covariant (α3) components of a ten-
sor into Cartesian components, similarly as in eq. (2.27). The covariant
components εξ

α3 are interpolated within the ANS method in a specific
way which is described below.

The ANS method. The Assumed Natural Strain (ANS) method consists of
the following steps:

1. The covariant components εξ
α3 of eq. (13.46) are evaluated (sam-

pled) at the mid-side points of element edges, at two points for each
component, see Fig. 13.14. The sampled values are denoted as εM

α3,
M = 5, 6, 7, 8.
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Fig. 13.14 Location of sampling points to evaluate εξ
13 and εξ

23.

2. The components εξ
α3 are approximated over the element domain as

follows:
εξ
13(ξ, η) = 1

2

[
(1− η) ε5

13 + (1 + η) ε7
13

]
, (13.47)

εξ
23(ξ, η) = 1

2

[
(1− ξ) ε6

23 + (1 + ξ) ε8
23

]
, (13.48)

where the sampled values εM
α3 are used. These approximations

are constant in the direction in which the derivative is calculated in
eq. (13.46) and linear in the other direction, which means that the
ANS method is orientation-dependent.
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3. At the Gauss integration points, the transverse shear strain εα3 is
evaluated by eq. (13.45),

[
ε13

ε23

]
= J−T

Lc

[
εξ
13

εξ
23

]
, (13.49)

where the Jacobian is local (L) and evaluated at the element center
(c). Note that the Jacobian is not approximated by the ANS method !
We have also tested the version with the Jacobian matrix not taken at
the center but at the Gauss Points, i.e. using JL not JLc. It also
passes the bending patch test and the difference of both solutions in
other tests is negligible.

The ANS method effectively removes the transverse shear locking and is
used in four-node shell elements as a standard.

Test 1. Unidirectional bending in ξζ-plane. Consider a 1 × 1 square element
shown in Fig. 13.15. Nodes 1 and 4 are fixed, while at nodes 2 and 3 we
apply: (i) the displacement vector u = [0, 0, 0.1]T , and (ii) the rotation
vector ψ = [0, 0.01, 0.01]T . The rotations are small so the forward-
rotated normal vector can be computed as a3 = t3 + ψ × t3.

The transverse shear εξ
23 is equal to zero, while the distribution of

εξ
13 obtained for bilinear approximations is shown in Fig. 13.15. In the

ANS method, εξ
13 is sampled at points 5 and 7, and approximated by

eq. (13.47). Hence, for the unidirectional bending in the ξζ-plane, we
obtain εξ

13(ξ, η) which is constant in both directions!
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Fig. 13.15 Transverse shear εξ
13 for unidirectional bending.
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Fig. 13.16 Tip deflection for pure bending. a) Thin limit. b) Mesh convergence.

Test 2. Pure bending of slender cantilever. In this example, we compare re-
sults obtained by the same shell element either with or without the ANS
procedure.

The data for the cantilever is defined in Sect. 15.3.1 and the cantilever
is shown in Fig. 15.13. The mesh of m × 1 four-node shell elements is
used.

The bending moment M = 0.1 is applied, for which the analytical
displacement at the cantilever’s tip is w = ML2/(2EI) = −6, where
I = bh3/12. Two numerical tests were performed using the four-node
shell element:

1. Test of thin limit, in which thickness h was changed, see Fig. 13.16a.
100 elements were used and the moment M was scaled by h3, to
make results independent of thickness. When the ANS procedure is
not applied, then the response is too stiff, due to the TSL.

2. Test of mesh convergence with the number of elements m changed.
The results are shown in Fig. 13.16b. We see slow convergence when
the ANS procedure is not applied, caused by the TSL.

13.2.3 RBF correction for shells

The motivation for using the RBF correction to four-node shell elements
is analogous as for two-node beam elements, see Sect. 13.1.2. Note that
for the shell element, we can have a two-directional sinusoidal bending, see
Fig. 13.17, which can be rendered by bending moments applied to nodes.

The way in which the RBF correction can be applied to four-node shell
elements is described in [138], p. 178 and some additional suggestions are
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Fig. 13.17 Sinusoidal bending of four-node shell element.

given in [140], p. 104. Usefulness of the RBF correction for higher-order
hierarchical p elements is acknowledged in [142], p. 184.

In our implementation of the RBF correction for a four-node bilinear
element and an isotropic elastic SVK material, we use the corrected shear
modulus G∗ of eq. (13.16) separately for each direction, i.e.

G∗
1 =

(
1
G

+
l21

h2E

)−1

, G∗
2 =

(
1
G

+
l22

h2E

)−1

, (13.50)

where l1 and l2 are the lengths of vectors connecting opposite mid-
side points. The most straightforward implementation is to express the
transverse shear strain energy for a single element as follows:

Wγ = 2h

∫ +1

−1

∫ +1

−1

(
G∗

1 ε2
13 + G∗

2 ε2
23

)
J dξdη, (13.51)

where h, G∗
1, and G∗

2 are constant over the element. Then the
element passes the bending patch test and performs well for bending but,
unfortunately, yields erroneous results for twist. This can be observed,
e.g., in the linear test of a slender cantilever modelled by one layer of
four-node elements, see Sect. 15.3.1. For h = 0.01 and twisting by a pair
of end forces, the rotation rx of the tip is too large by about 38%, see
the example in the sequel. That is why a more sophisticated approach is
needed.

To avoid an excessive twist, it was proposed in [140], p. 104 to apply
the full RBF correction to the average values of the (sampled) transverse
shear strains, while 4% of the correction to the remaining parts of them.
This idea is reconsidered below.

Note that the RBF correction is implemented on top of the ANS
method which we use for the transverse shear strain, see Sect. 13.2.2.
(Note that the version of the ANS method which we use is different from
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that used in [138].) The approximations (13.47) and (13.48) of the ANS
method can be rewritten as follows

εξ
13(ξ, η) = 1

2

(
ε5
13 + ε7

13

)
+ η 1

2

(
ε7
13 − ε5

13

)
= εave

13 + η εd
13, (13.52)

εξ
23(ξ, η) = 1

2

(
ε6
23 + ε8

23

)
+ ξ 1

2

(
ε8
23 − ε6

23

)
= εave

23 + ξ εd
23, (13.53)

where, in the final forms, we distinguish the average values “ave” and the
differences “d” of the sampled strain components. Then the transverse
shear strains of eq. (13.49) are

[
ε13

ε23

]
= J−T

Lc

[
εave
13 + η εd

13

εave
23 + ξ εd

23

]
, (13.54)

where

J−1
Lc =

[
J̄11 J̄12

J̄21 J̄22

]
(13.55)

is evaluated at the element center i.e. is constant in ξ and η. Hence,
the 13-component is a linear function of ξ and η,

ε13 = (J̄11ε
ave
13 + J̄21ε

ave
23 ) + J̄21ε

d
33 ξ + J̄11ε

d
13 η

= ε̄ave
13 + ε̄d1

13 ξ + ε̄d2
13 η, (13.56)

where the parts “ave” and “d” are separated and “d” is additionally split
into parts “d1” and “d2” multiplied by ξ and η respectively. The
definitions of the ε̄α3 terms are obvious. As we shall see below, separation
of these parts in the strain energy requires additional simplifications.

The Jacobian determinant for a four-node bilinear element is J(ξ, η) =
J0 + J1ξ + J2η, see eq. (10.63). Both ε13 and J are linear functions
of ξ and η and the integration yields
∫ +1

−1

∫ +1

−1
ε2
13 J dξdη =

4(ε̄ave
13 )2J0 +

4
3

[
(ε̄d1

13)
2 + (ε̄d2

13)
2
]
J0 +

8
3

[
ε̄ave
13 (ε̄d1

13J1 + ε̄d2
13J2)

]
, (13.57)

where the “ave” and “d” terms in the last bracket are coupled. Two ways
of treating of this coupling can be used.



Treatment of transverse shear stiffness of shells 391

1. The first way is in the spirit of the suggestion of [140], p. 104. The
separation of the “ave” and “d” terms can be achieved by using a
simplified form of ε2

13,

ε2
13 ≈ (ε̄ave

13 )2 + (ε̄d1
13)

2 ξ2 + (ε̄d2
13)

2 η2, (13.58)

obtained by omitting the linear terms. The bilinear term is also omitted
as it yields zero in integration. For the simplified ε2

13,

∫ +1

−1

∫ +1

−1
ε2
13 J dξdη ≈ 4

3

[
3(ε̄ave

13 )2 + (ε̄d1
13)

2 + (ε̄d2
13)

2
]
J0, (13.59)

in which the terms “ave” and “d” of the sampled strains are separated.
(Note that the same result of integration is obtained for the full form
of ε2

13 and J(ξ, η) ≈ J0.) Finally, the integrand of the strain energy
(13.51) is modified as follows:

G∗
1 ε2

13 ≈ G∗
1 (ε̄ave

13 )2 + G∗
1c (ε̄d1

13)
2 ξ2 + G∗

1c (ε̄d2
13)

2 η2, (13.60)

where the additionally corrected shear modulus is defined as

G∗
1c

.=
(

1
G

+ a
l21

h2E

)−1

, a
.=

c

c + (1− c) (l1/l2)
2 , (13.61)

where c is a corrective coefficient, designated as ε in [138]. Besides,
(l1/l2) is the element aspect ratio, as the average size of an element in
each direction is l1

.= 1
2(−x1 + x2 + x3− x4) and l2

.= 1
2(−y1− y2 +

y3 + y4), where xI and yI are coordinates of nodes I = 1, 2, 3, 4
in the local Cartesian basis at the element’s center, {tc

k}. Too small
values of c can cause problems with the conditioning of the stiffness
matrix; the value 0.04 is selected in [138].

Similar expressions can be obtained for ε23,

G∗
2 ε2

23 ≈ G∗
2 (ε̄ave

23 )2 + G∗
2c (ε̄d1

23)
2 ξ2 + G∗

2c (ε̄d2
23)

2 η2, (13.62)

where the additionally corrected shear modulus is defined as

G∗
2c

.=
(

1
G

+ b
l22

h2E

)−1

, b
.=

c

c + (1− c) (l2/l1)
2 . (13.63)

2. In our treatment of the coupling, the full RBF correction is applied to
the average values but a fraction of it is applied to the whole remaining
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part, not to the differences of the transverse shear strains, as in the
previous method. Then we modify the integrand of the strain energy
(13.51) as follows:

G∗
1 ε2

13 ≈ G∗
1 (ε̄ave

13 )2 + G∗
1c

[
ε2
13 − (ε̄ave

13 )2
]
, (13.64)

G∗
2 ε2

23 ≈ G∗
2 (ε̄ave

23 )2 + G∗
2c

[
ε2
23 − (ε̄ave

23 )2
]
, (13.65)

where G∗
1c and G∗

2c are defined in eqs. (13.61) and (13.63).
This formula was implemented for shell elements based on the po-

tential energy; the modifications necessary for the mixed functionals
are described below. This method works very well as we can see in the
example presented in the sequel.

RBF correction for mixed formulations of shells. For the Hellinger–Reissner
functional and the Hu–Washizu functional, the modifications related to
the RBF correction are as follows:

Hellinger–Reissner functional. Normally, the stress corresponding to the
assumed strain is calculated as σa

13 = 2Gεa
13, while with the RBF

correction, we compute

σa
α3 = 2G∗

α (ε̄a
α3)

ave + 2G∗
αc [εa

α3 − (ε̄a
α3)

ave] , α = 1, 2, (13.66)

where (ε̄a
α3)

ave is the average value of the assumed strain.

Hu–Washizu functional. The strain energy corresponding to the assumed
strain is calculated as in eq. (13.65), i.e.

W(εa
α3) = G∗

α [(ε̄a
α3)

ave]2 + G∗
αc

{
(εa

α3)
2 − [(ε̄a

α3)
ave]2

}
, α = 1, 2,

(13.67)
while the other parts are not modified.

Linear example: Twisted cantilever. Consider the slender initially flat can-
tilever of Sect. 15.3.1, see Fig. 15.13, twisted by a pair of vertical trans-
verse forces Pz = ±1. One layer of four-node shell elements is used and
the shell thickness, h = 0.01.

The displacements and rotations at the tip node obtained by a lin-
ear analysis are presented in Table 13.4. Comparing the results obtained
without the RBF correction for the 100×1-element mesh and the 100×9-
element mesh, we see that the RBF correction is not needed for the twist.
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Because we use the RBF correction to improve the sinusoidal bending,
we have to select such a value of c for which the results of twist are un-
affected. The value c = 0 yields almost exact results, but, unfortunately,
then the problem with conditioning of the stiffness matrix appears. This
problem disappears for c = 0.01; a slightly higher value c = 0.04 is
suggested in [138].

For reference, we use the solution obtained by the shell element with
six dofs/node of FEAP, described in [235]. This is the Discrete Kirchhoff
Quadrilateral (DKQ) element, with linear kinematics (small strains and
rotations), based on the Allman shape functions and with the bending
part of [20].

Table 13.4 Effect of the RBF correction for characteristic values of c. Twist of
slender cantilever by forces Pz = ±1. Shell element EADG4-PL-Warped.

Mesh RBF Displacement Rotations
correction uz/102 rx/102 ry

100× 1 no 3.8897 7.7788 -3.9001
100× 9 no 3.8922 7.7828 -3.8987
100× 1 yes, c=0 (*) 3.8896 7.7787 -3.9001

yes, c=0.005 (*) 3.8973 7.7933 -3.8995
yes, c=0.01 3.9050 7.8082 -3.8986
yes, c=0.04 3.9508 7.8980 -3.8899
yes, c=0.1 4.0419 8.0784 -3.8633

100× 1, FEAP 3.8929 7.785 -3.9000

(*) Conditioning problem: D-max/D-min ≈ 1010

13.2.4 Miscellaneous topics

EAS method for transverse shear strains. Recall that eq. (13.45) specifies a
transformation of the covariant transverse shear strains to the local ortho-
normal basis [

ε13

ε23

]
= J−T

[
εξ
13

εξ
23

]
. (13.68)

Within the EAS method, we can assume the following representation for
the enhanced transverse shear components

[
εenh
13

εenh
23

]
= J−T

c

[
ξ q1 + ξη q2

η q3 + ξη q4

](
jc

j

)
. (13.69)
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Such a representation was used in [201], eqs. (97) and (98). The role of
(jc/j) is identical to that for the membrane enhancement. The enhance-
ment is added to the compatible part of the transverse shear strains treated
by the ANS method.

Discrete Kirchhoff (DK) elements. If the transverse shear is negligible, then
we can exploit this fact using the Kirchhoff constraint, εα3 = 0, at
selected discrete points to modify the shape functions. This leads to the
so-called Discrete Kirchhoff (DK) family of elements; beams, plates, and
shells. This concept is considered in [246, 247].

1. The two-node Discrete Kirchhoff Beam (DKB) is based on a cu-
bic approximation of normal displacement w, see eq. (13.18), and
a quadratic approximation of rotation θ. First, the Hermitian-type
shape functions are obtained for w which are expressed by values of
w and w,ξ at nodes and, next, two DK constraints are applied at
these nodes, which yields eq. (13.21). Additionally, one DK constraint
is applied at the element center to accommodate the quadratic term
of the rotation.

2. The four-node Discrete Kirchhoff Quadrilateral (DKQ) for plates was
proposed in [20]. The approach to plates is a natural extension of the
concept for the DK beam and was used as the bending part of several
shell elements in [117, 113, 235].

3. Several Discrete Kirchhoff Triangle (DKT) plate and shell elements
can also be found in the literature.

The DK elements are based on polynomials of relatively high order and
perform very well in bending, including sinusoidal bending, and twisting.
However, they neglect the transverse shear energy and can be used only
for thin shells.

Kirchhoff limit for transverse shear constrained to zero. The formulation based
on the Reissner hypothesis can be constrained by enforcing the RC
skew(QTF) = 0 for the α3 components only, which means that the trans-
verse shear strain εα3 = 0.

As an example, we analyze the cantilever shown in Fig. 15.13; the data
is defined in Sect. 15.3.1, but the thickness h = 10n, where n ∈ [−3, +3].
The mesh consists of 100 two-node Timoshenko beam elements. The 13-
component of skew(QTF) = 0 is enforced using the penalty method
with γ = 2Gh× 103.
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The original and constrained Reissner solutions are shown in Ta-
ble 13.5. The tip displacement w is affected by the constraint and
indeed forced to attain the Kirchhoff limit 4 × 10−3n for h > 10−1.
Note that w of the original element is bigger than w of the constrained
element!

The tip rotation θ is in accordance with the Kirchhoff solution 6×
10−2−3n for the whole range of h, except for the very thin beam of
h = 10−3, for which the solution is destroyed by the penalty method.

Table 13.5 Effect of 13-component of skew(QT F) = 0 on Timoshenko beam.

Thickness Solution Displacement Rotation
n type w θ

+3 original 3.1600E–07 6.0000E–11
constrained 4.1298E–09 6.0000E–11

+2 original 7.1199E–06 6.0000E–08
constrained 4.0012E–06 6.0000E–08

+1 original 4.0311E–03 6.0000E–05
constrained 3.9999E–03 6.0000E–05

0 original 4.0002E+00 6.0000E–02
constrained 3.9999E+00 6.0000E–02

–1 original 3.9999E+03 6.0000E+01
constrained 3.9999E+03 6.0000E+01

–2 original 3.9999E+06 6.0000E+04
constrained 4.0009E+06 6.0050E+04

–3 original 4.0003E+09 6.0006E+07
constrained 5.3823E+08 1.1540E+07

Kirchhoff limit 4× 10−3n 6× 10−2−3n
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