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Plane four-node elements with drilling
rotation

The drilling rotation, as a degree of freedom, is particularly important
for shell elements, but the 2D elements with drilling rotations are much
simpler and, hence, very useful in developing and testing specific ways of
incorporating the drilling rotation terms. We designate the 2D elements
with drilling rotations as “2D+drill”.

The drilling rotation is defined as the rotation vector normal to the
tangent plane of the element. However, for 2D elements, the normal di-
rection is defined by one vector t3, normal to the plane of element, so
it suffices to consider the angle of drilling rotation, ω. The nodal drilling
rotations of a 2D+drill element are shown in Fig. 12.1.
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Fig. 12.1 Nodal drilling rotation angles ωI (I = 1, 2, 3, 4) of plane four-node
element.

The drilling rotation can be incorporated into the 2D+drill elements,
and shell elements as well, in two ways:

1. Using the so-called Allman shape functions which approximate the
element’s displacements in terms of nodal displacements uI and
nodal drilling rotations ωI . The classical approach based on Allman
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shape functions uses the potential energy functional and is valid only
for small drilling rotations. The generalized version, valid for finite
rotations, is described in Sect. 12.7.

2. Using bilinear shape functions and the drill RC equation, which is
extracted from the RC equation, skew(QTF) = 0, as discussed in
detail in Sect. 3. This equation can be implemented in a finite element
in several ways, see Sect. 12.3. Some of them use the weak forms,
and correspond to the 3D mixed functionals incorporating rotations of
Sect. 4. The drill RC for shells was derived in Sect. 6.2. The 2D+drill
elements based on bilinear shape functions are described in Sect. 12.6.

Chronologically, the approach based on the Allman shape functions was
first, but tests indicate that the elements based on the drill RC equation
perform slightly better.

Crucial for a good performance of 2D+drill elements is the use of
EADG enhancement, which also affects the RC equation and, for this
reason, is more suitable than the EAS enhancement. The EADG method
was discussed in Sect. 11.4.3; its extension to formulations with rotations
is given in Sect. 12.4.

All the four-node elements described in sequel are developed for finite
(unrestricted) drilling rotations.

12.1 Basic relations for drill RC equation

Drill RC for shells. In the RC of eq. (3.8), we neglect the terms which do
not depend on the drilling rotation. Then, only the components 12 and 21
of this equation remain and we denote

[
skew(QTF)

]
12

.= rω, where

rω
.= 1

2(x0,1 · a2 − x0,2 · a1) (12.1)

or, in terms of tangent displacement components u, v and the drilling
rotation ω,

2rω
.= −(v,2 + u,1 + 2) sinω + (v,1 − u,2) cos ω. (12.2)

In this way, the tensorial RC, skew(QTF) = 0, is reduced to the scalar
drill RC, rω = 0.



314 Plane four-node elements with drilling rotation

Three forms of drill RC for 2D problem. We can obtain an alternative but
equivalent form of the drill RC equation considering a 2D problem, for
which we have

F =
[
F11 F12

F21 F22

]
, Q =

[
cosω − sinω
sinω cosω

]
, (12.3)

where ω is the drilling rotation angle, and we obtain

skew(QTF) =
[

0 −rω

rω 0

]
, (12.4)

where rω
.= 1

2(A sinω + B cosω), A
.= F11 + F22 = u1,1 + u2,2 + 2, and

B
.= F12 − F21 = u1,2 − u2,1. Hence, the RC equation, skew(QTF) = 0,

is reduced to one scalar equation,

rω
.= 1

2(A sinω + B cosω) = 0. (12.5)

Using this equation, we can formulate the constraint for the drilling rota-
tion in one of the following forms:

1. For rotations |ω| < π/2, we can divide eq. (12.5) by cosω to obtain

ω∗ = − arctan
B

A
. (12.6)

Hence, the first form of the drill RC is defined as

c
.= ω − ω∗ = 0. (12.7)

2. For large rotations, the constraint can be written for an increment.
For ω

.= ωn + ∆ω∗, using trigonometric identities, we obtain

sinω = sn cos∆ω∗ + cn sin∆ω∗, cosω = cn cos∆ω∗ − sn sin∆ω∗,

where sn
.= sin ωn and cn

.= cos ωn. For |∆ω∗| < π/2, we can
divide by cos∆ω∗ and, from eq. (12.5), we obtain

∆ω∗ = − arctan
Asn + Bcn

Acn −Bsn
. (12.8)

Hence, the second form of the drill RC is defined as

c
.= ∆ω −∆ω∗ = 0. (12.9)

3. We can directly use eq. (12.5) for large rotations and define the third
form of the drill RC as follows:

c
.= rω = 1

2 (A sinω + B cosω) = 0, (12.10)

where A and B depend on u. This form of the drill constraint
can be linearized using symbolic differentiation.
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Rotational invariance of drill RC equation for 2D problems. Consider compo-
nents of displacement and rotation tensors in the reference Cartesian basis
{ik}.

Let a 2D body be located in the {i1, i2}-plane and its deformation,
except for the thickness change, also takes place in this plane. The orien-
tation of the local ortho-normal basis {tk} is defined by the rotation
tensor R, i.e. tk = Rik. The normal vector t3 coincides with i3. For
Q and F, we use the representations of eq. (12.3) and, additionally, we
define

R .=
[
cosα − sinα
sinα cosα

]
. (12.11)

Define the following back-rotated matrices:

Q∗
.= RTQR, F∗

.= RTFR, (QTF)∗
.= RT (QTF)R, (12.12)

where ( · )∗ designates a back-rotated object. We can check that
QT
∗F∗ = (QTF)∗ and that

skew(QT
∗F∗) = skew(QTF)∗ = skew(QTF). (12.13)

As a consequence, in the local basis {tk}, we can use the drill RC
equation in terms of components in the global basis {ik}.

Remark. The above property does not hold for 3D problems, for which
F, Q, and R are 3 × 3 matrices. We checked this for the canonical
parametrization of the rotation tensor. For 3D problems, only the property
QT
∗F∗ = (QTF)∗ holds and, hence, only

skew(QT
∗ F∗) = skew(QTF)∗ (12.14)

can be used in the implementation of the element.

Calculation of drilling rotation for given displacement. Calculation of the drill-
ing rotation for the given displacement u is a post-processing operation,
but is not trivial because the equation involved is non-linear w.r.t. drilling
rotation angle.

Assume that the displacement u is given and we wish to calculate
the drilling rotation, ω. The above-defined three forms of the drill RC
can be used as follows:

M1. Equation (12.6) is used, so the rotation is restricted, i.e. ω < |π/2|.
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M2. Equation (12.8) is used with the update formula ω = ωn + ∆ω,
where ωn is known. Besides, A and B depend on the known u.
No iterations are needed. The increment is restricted, i.e. ∆ω < |π/2|,
but the total rotation ω is not.

M3. Equation (12.10) is used with the Newton method,

∆ω = −rω/rω,ω, ω = ωn + ∆ω. (12.15)

Iterations are needed. Formally, ∆ω is not restricted but the radius
of convergence of the Newton method is.

Summarizing, M2 and M3 are incremental and can be used to obtain
arbitrarily large drilling rotations.

Example. Drilling rotation for rigid body rotation. The above defined methods
can be compared for a rigid rotation of a body, for which

F .=
∂x
∂y

=
[
cosα − sinα
sinα cosα

]
, (12.16)

where α is the angle of a rigid rotation. Then, A
.= F11 + F22 = 2 cos α

and B
.= F12 − F21 = −2 sin α (see the definitions following eq. (12.4)),

and we can calculate ω for increasing values of α using the methods
defined above. The solutions are shown in Fig. 12.2. The solutions by
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Fig. 12.2 Drilling rotation calculated by three formulas. ∆α = 10o.

M2 and M3 coincide; they are unrestricted and ω = α, as required. The
solution by M1 is restricted, i.e. ω < |π/2|.
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The solutions were obtained for ∆α = 10o, but larger steps were also
tested. M2 performs correctly for up to ∆α = 89o, due to the restricted
domain of arctan, while M3 for up to ∆α = 69o; for larger steps, it
converges to some shifted (incorrect) values.

Note that even ∆α = 69o is above the capabilities of current algo-
rithms, e.g. the energy and momentum conserving algorithm ALGO-C1
for rotational rigid body dynamics can perform similar steps, but then the
accuracy is poor, see Sect. 9.4.3.

12.2 Difficulties in approximation of drill RC

Approximation of drilling rotation. The drilling rotation is approximated by
the bilinear shape functions NI(ξ, η) of eq. (10.3) as follows:

ω(ξ, η) =
4∑

I=1

NI(ξ, η) ωI , (12.17)

where ωI are the drilling rotations at the corner nodes, see Fig. 12.1,
and the natural coordinates ξ, η ∈ [−1, +1]. Hence, the drilling rotation
is analogously approximated as displacements, see eq. (10.7).

Difficulties in approximation of the drill RC equation. For the equal-order bi-
linear the approximations of displacements and the drilling rotation, the
drill RC equation of the four-node element is incorrectly approximated.

To illustrate the problem, we consider a 2× 2 square element with the
center located at the origin of the Cartesian coordinate system. Then the
Cartesian coordinates are equal to the natural coordinates, i.e. x = ξ and
y = η, and the Jacobian matrix is an identity matrix.

The bilinear approximation functions for displacements and drilling
rotations can be written as

u(ξ, η) = u0 + u1 ξ + u2 η + u3 ξη, v(ξ, η) = v0 + v1 ξ + v2 η + v3 ξη,

ω(ξ, η) = ω0 + ω1 ξ + ω2 η + ω3 ξη, (12.18)

where ui, vi, ωi (i = 0, . . . , 3) are functions of nodal values of the
respective components. We consider the linearized form of the drill RC of
eq. (12.10), i.e.

c
.= ω +

1
2
(u,η − v,ξ) = 0, (12.19)
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where u,η = u1,2 and v,ξ = u2,1. Using the above approximation
functions, grouping the terms, we obtain
[
ω0 +

1
2
(u2 − v1)

]
+

(
ω1 +

1
2
u3

)
ξ +

(
ω2 − 1

2
v3

)
η + ω3 ξη = 0. (12.20)

The constant and linear terms do link the displacement and rotational
parameters, indeed, but the bilinear (underlined) term contains only the
rotational parameter ω3. This last term may lead to wrong solutions in
certain situations for the reason explained below.

Let us rewrite the constraint in the form c(ξ, η) .= c0+c1ξ+c2η+ω3ξη.
If we use the penalty method, then the weak form of this constraint is

1
2

∫ +1

−1

∫ +1

−1
c(ξ, η)2 dξdη = 2c2

0 +
2
3
(c2

1 + c2
2) +

2
9
ω2

3, (12.21)

i.e. ω3 does not vanish upon integration. As a consequence, the penalty
method enforces the condition ω3 = 0 which, generally, is incorrect and
can yield an over-stiffened solution.

To alleviate this problem, we remove the bilinear term from eq. (12.20),
and use the equation which is only linear in ξ and η, i.e.

[
ω0 +

1
2
(u2 − v1)

]
+

(
ω1 +

1
2
u3

)
ξ +

(
ω2 − 1

2
v3

)
η = 0. (12.22)

In a symbolic derivation of an element, the bilinear term can be removed
in one of the following ways:

1. Using the linear expansion of eq. (12.20) at the element’s center,

c(ξ, η) .= cc + ξ(c,ξ)c + η(c,η)c, (12.23)

where the subscript c denotes the element’s center, see also eq. (12.28).
2. Evaluating this equation at the mid-points of the element’s edges,

(ξ, η) = (0,±1), (ξ, η) = (±1, 0), (12.24)

where either ξ or η is zero, so the bilinear term in eq. (12.20) is
always zero.

The lack of an equation for ω3 means that the tangent matrix for the
drill RC has one spurious zero eigenvalue; the associated eigenvector Θ2

is shown in Fig. 12.9b. The simplest way of treating this deficiency is
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to apply eq. (12.143), which provides the stabilization matrix Kstab
ωω of

eq. (12.144), so we have

Kωω + Kstab
ωω , (12.25)

where Kωω is the rank-deficient matrix obtained by differentiating twice
the drill RC term modified as given either in eq. (12.23) or in eq. (12.24).

Expansion of QTF product. The linear expansion of c(ξ, η) of eq. (12.23)
can be obtained in the following way. First, we expand Q and F at the
element’s center,

Q(ξ, η) .= Qc + ξ Q,ξc +η Q,ηc, F(ξ, η) .= Fc + ξ F,ξc +η F,ηc, (12.26)

where ( ),ξc
.= ( ),ξ|c and ( ),ηc

.= ( ),η|c. Then, we calculate the QTF
product, in which we retain only the constant and linear terms,

QT (ξ, η)F(ξ, η) ≈ QT
c Fc + ξ

(
QT

c F,ξc + QT
,ξcFc

)
+ η

(
QT

c F,ηc + QT
,ηcFc

)
,

(12.27)
while bilinear and quadratic terms are omitted. Finally,

c(ξ, η) .=
[
skew(QTF)

]
12

, (12.28)

i.e. we calculate the skew-symmetric part of the matrix and, provided that
the matrix is given in the local Cartesian basis, we use the 12 component.

Enhancement resulting from bi-quadratic approximations of displacements. An-
other way of addressing the problem with the bilinear term in eq. (12.20) is
to enhance displacements in such a way that ω3 is linked with enhancing
parameters.

The enhancing modes can be selected upon analysis of bi-quadratic ap-
proximations of displacements of the nine-node Lagrangian element shown
in Fig. 12.3. For the bi-quadratic approximations, the vector of shape
functions is defined as

N .= {P1Q1, P3Q1, P3Q3, P1Q3, P2Q1, P3Q2, P2Q3, P1Q2, P2Q2}, (12.29)

where each component is a product of Pi and Qj , i, j ∈ {1, 2, 3},
defined as

P1
.= 1

2(ξ2 − ξ), P2
.= 1− ξ2, P3

.= 1
2(ξ2 + ξ),
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Fig. 12.3 Numeration of nodes on a nine-node Lagrangian element.

Q1
.= 1

2(η2 − η), Q2
.= 1− η2, Q3

.= 1
2(η2 + η).

Using N for each displacement component separately, we have

u = u0 + u1 ξ + u2 η + u3 ξη + u4 ξ2 + u5 η2 + u6 ξη2 + u7 ξ2η + u8 ξ2η2,

v = v0 + v1 ξ + v2 η + v3 ξη + v4 ξ2 + v5 η2 + v6 ξη2 + v7 ξ2η + v8 ξ2η2,

where ui, vi (i = 0, . . . , 8) are functions of nodal values of respective
displacement components.

For simplicity, we consider a 2 × 2 square element with the center
located at the origin of the Cartesian coordinate system. Then the bilinear
term of the drill RC of eq. (12.19) yields the equation

u7 − v6 + ω3 = 0. (12.30)

Using this equation, the ξη mode of drilling rotation is linked with
the ξ2η and ξη2 modes of displacements. These modes are not avail-
able in a four-node bilinear element, but can be included as the EADG
enhancement.

Let us assume the incompatible displacements in the form

uinc = q5 ξ2η, vinc = q6 ξη2, (12.31)

where q5, q6 are unknown multipliers. Then

Gξ
2

.=




∂uinc

∂ξ
∂uinc

∂η

∂vinc

∂ξ
∂vinc

∂η


 =

[
2q5 ξη q5 ξ2

q6 η2 2q6 ξη

]
,

where we have the ξη term on the diagonal. This matrix should be added
to Gξ in eq. (11.71) for the EADG enhancement.

We implemented the element based on the potential energy, the EADG4
enhancement, and the above-defined enhancement, but the displacements
and rotations in Cook’s membrane example of Sect. 15.2.7 were excessive.
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12.3 Implementation of drill RC in finite elements

Overview. The drilling rotations are included in shell elements with the
purpose of having three rotational degrees of freedom at each node and
to facilitate linking the elements of various spatial orientation. Several
methods can be applied to develop the finite element with the drilling
rotation.

1. Basic method. The basic method amounts to appending the drill RCs
evaluated at some points to the elemental set of equations. The method
is simple but the tangent matrix is non-symmetric.

2. Methods of constrained optimization. The methods of constrained opti-
mization, see [136, 72, 29], yield a symmetric tangent matrix, but are
more complicated than the basic method. The optimization problem is
defined as follows:

min
(u,Q)

F (u) subject to c(u,Q) = 0, (12.32)

where F is the governing functional and c(u,Q) = 0 is the set of
constraints related to the drill RC equation. Note that

1. various functional can be used as F , including the potential energy
FPE, the HR functional FHR, and the HW functional FHW of
Sect. 11.1. However, for each functional, an optimal finite element must
be developed separately.

2. Several forms of the constraint can be formulated for the drill RC
equation, including strong and weak (integral) forms,

3. Several methods can be used to solve this problem of constrained op-
timization; in our elements we use either the penalty method or the
Perturbed Lagrange method.

Below, for simplicity, we consider the potential energy FPE(u) .=
∫
B W(u)

dV − Fext. The extended functional which is constructed for the above-
constrained optimization problem includes the part related to the drill RC
equation, which can be written in two forms:

A. Strong form. Let us write the constraint related to drill RC equation as
c = 0. We can evaluate c(ξ, η) at four selected points within an element
and form a vector, c .= {c1, c2, c3, c4}, which is used by the strong forms
discussed below.
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The penalty method is based on the following extended functional,

F ′
PE(u,Q) .= FPE(u) +

γ

2
c · c, (12.33)

where γ > 0 is the penalty parameter. Minimization is performed w.r.t.
the nodal values of (u,Q). The definition of γ depends on material
coefficients and the element’s volume, to preserve the same degree of pe-
nalization for various volumes.

The perturbed Lagrange method is based on the following extended
functional

F ′
PE(u,Q, λ) .= FPE(u) + λ · c +

1
2γ

λ · λ, (12.34)

where λ
.= {λ1, λ2, λ3, λ4} is a vector of Lagrange multipliers, with each

multiplier for c = 0 written at a point within an element. Minimization
is performed w.r.t. nodal values of (u,Q) and the elemental vector λ.

B. Weak (integral) form. The part related to the drill RC can also be formu-
lated in an integral form, resembling the form of the strain energy, which
is an integral over the element volume,

∫
B W(u) dV . Let the drill RC

have the form c(ξ, η) = 0.
The penalty method is based on the following extended functional:

F ′
PE(u,Q) .= FPE(u) +

∫

B

γ

2
c2 dV , (12.35)

where γ > 0 is the penalty parameter. Minimization is performed w.r.t.
the nodal values of (u,Q). The volume of the element is automatically
accounted for by the integral formulation, so it suffices to relate γ to
material coefficients.

The perturbed Lagrange method is based on the following extended
functional:

F ′
PE(u,Q,λ) .= FPE(u) +

∫

B

(
λ c +

1
2γ

λ2

)
dV , (12.36)

where λ is the Lagrange multiplier which must be approximated (as-
sumed) over the element. Minimization is performed w.r.t. the nodal values
of (u,Q) and the elemental parameters of λ.

The weak forms correspond to the variational formulations of Sect. 4,
and were used in implementation of our elements.
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12.3.1 Selected methods to include the drill RC

Below we discuss selected methods used to include the drilling rotations
in FE equations, such as the basic method, the penalty method, and the
Perturbed Lagrange method.

1. Basic method

The basic method consists of two steps:

1. The drill RC equation is expanded as specified by eq. (12.23), and
evaluated at four selected points within an element, which yields the
equation rω = 0, where rω

.= {rω1, rω2, rω3, rω4}. The linearized
(Newton) form of this equation is

Kωu∆uI + Kωω∆ωI = −rω, (12.37)

where uI
.= {u1,u2,u3,u4} and ωI

.= {ω1, ω2, ω3, ω4} are vectors
of displacements and drilling rotations at nodes, and the matrices are

Kωω
.=

∂rω

∂ωI
, Kωu

.=
∂rω

∂uI
.

The drill RC equation can be used in one of the forms specified in
eqs. (12.7), (12.9), and (12.10); in computations, we used the last one.

2. Equation (12.37) is appended to the set of FE equations for a purely
displacement problem, K ∆uI = −r, where

r .=
∂FPE(uI)

∂uI
, K .=

∂r
∂uI

.

This yields [
K 0
Kωu Kωω

] [
∆uI

∆ωI

]
= −

[
r
rω

]
. (12.38)

This is a set of equations for an element. By aggregation of such sets for
all elements, we obtain the global tangent matrix, which must be non-
singular to provide a unique solution. The increments of displacements
and drilling rotations at nodes are computed together.

Note that the matrix in eq. (12.38) is non-symmetric, which is a disad-
vantage, as symmetric solvers are faster. If a non-symmetric solver is used
for other reasons, then this formulation also is suitable.

Consider stability of the basic formulation. We assume that the bound-
ary conditions are accounted for in the set (12.38). From the first equation
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of (12.38), we calculate ∆uI = −K−1r and using it in the second equa-
tion, we obtain

∆ωI = −K−1
ωω(rω −KωuK−1r). (12.39)

Let us write this equation at uI = 0 and ωI = 0. Then, the residuals
ru = 0, rω = 0, and r = −p, where p is a vector of external loads
for translational dofs, and we obtain

∆ωI = −(K−1
ωωKωuK−1) p. (12.40)

Hence, to uniquely compute the solution, K and Kωω must be invert-
ible. Note that

1. elimination of ω3 from eq. (12.20) means that Kωω becomes
singular and must be stabilized, as given by eq. (12.25).

2. The drill RC cannot be evaluated at mid-side edge points, as then Kωω

has complex eigenvalues, see the example below. The Gauss points or
the corner nodes are good locations.

Example. Consider the single trapezoidal element of Fig. 15.1b, obtained
for d = 0.5, and E = 106, ν = 0.3, h = 0.1. The standard element
Q4 and the basic method for the drill RC were used.

The eigenvalues of Kωω obtained for various locations of the evalu-
ation points are shown in Table 12.1 and we see that they differ and do
not depend on the element’s shape, a specific property of Kωω! For the
mid-side nodes, we obtain two complex eigenvalues!

Table 12.1 Basic method. Eigenvalues of Kωω.

Drill RC evaluated at Eigenvalues (truncated)
trapezoidal element
Gauss points 2 1.15 1.15 0.66
corner nodes 2 2 2 2
mid-side nodes 2 1+i 1-i 0
square element
Gauss points 2 1.15 1.15 0.66
corner nodes 2 2 2 2
mid-side nodes 2 1+i 1-i 0

Besides, we consider stretching the element in a vertical direction. Two
parallel and equal forces are applied at the top nodes, while the bound-
ary conditions eliminating rigid body modes are applied to displacements
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at the bottom nodes. The calculated drilling rotations are shown in Ta-
ble 12.2, and we see that they are different for various location of the
evaluation points. These differences vanish for a square element, d = 0.

Table 12.2 Basic method. Drilling rotations for stretched element.

Drill RC evaluated at Drilling rotation at nodes
trapezoidal element
Gauss points 0.310 0.210 0.581 0.771
corner nodes 0.280 0.195 0.574 0.756
square element
Gauss points 0 0 0 0
corner nodes 0 0 0 0

2. Penalty method

The penalty method is a classical method of solving problems of con-
strained optimization, [72, 29]. Generally, it is defined as a sequence of
unconstrained optimization problems, which are solved for selected in-
creasing values of the penalty parameter, [72] eq. (12.1.4). However, for
efficiency reasons, the shortcut method is used in practice and not a se-
quence of problems, but a single unconstrained optimization problem is
solved for a largish value of the penalty parameter. Hence, some errors
are inevitable and we try to minimize them by selecting a suitable value
of the penalty parameter; this issue is discussed in Sect. 12.3.2.

The penalty method can be used with the drill RC term in one of the
previously mentioned two forms:

1. the strong form of eq. (12.33), for which we can consider several lo-
cations to evaluate the drill RC, similarly as for the basic method.
For the penalty method, however, the matrix Kωω has no complex
eigenvalues, for any of the considered locations.

2. the weak form of eq. (12.35), for which the drill RC is evaluated at
Gauss points. Because of the integral form, the weak form automati-
cally accounts for the element volume, so it suffices to relate the penalty
coefficient γ to material coefficients.

Note that if the strong form is evaluated at Gauss points, then the only
difference between these two forms are the determinants of the Jacobian
used in the weak form.
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The scalar drill RC equation can be used in one of the three forms
specified in eqs. (12.7), (12.9), and (12.10); in computations we used the
last one.

The weak form is discussed in detail below.

Relation of weak form of eq. (12.35) to variational formulation of Sect. 4. Recall
the formulation based on the second Piola-Kirchhoff stress and the 3-F
functional of eq. (4.65). This functional was regularized in Ta, which is
the Lagrange multiplier for the RC equation (3.8). Then, using the Euler–
Lagrange equation for δTa, i.e. Ta = γ skew(QTF), we obtained the
2-F functional of eq. (4.73), which we repeat it here as

F̃ 2PK
2 (χ,Q) .=

∫

B

[W(FTF) + FP
RC(χ,Q)

]
dV + Fext, (12.41)

where the penalty term for the RC equation is

FP
RC(χ,Q) .=

γ

2
skew(QTF) · skew(QTF). (12.42)

If we restrict our considerations to a 2D problem, then the RC equation
is reduced to the drill RC equation. For Q and F of eq. (12.3), we
obtain skew(QTF) of eq. (12.4), for which

FP
RC(χ,Q) =

γ

2
2 r2

ω. (12.43)

Comparing this expression for FRC with the drill term in the weak
form, eq. (12.35), which is (γ/2) r2

ω, we see that the difference between
them is the multiplier 2, which is a result of two identical (except for the
sign) terms of the skew-symmetric matrix. Hence, functional (12.41) fully
corresponds to the weak form of eq. (12.35).

Linearized equations. The standard procedure of consistent linearization
of the functionals for the penalty method yields the following linearized
(Newton) equations:

([
K 0
0 0

]
+ γ

[
Kuu Kuω

Kωu Kωω

]){
∆uI

∆ωI

}
= −

{
r + γru

γrω

}
, (12.44)

where
ru

.=
∂FRC

∂uI
, Kuu

.=
∂ru

∂uI
, Kuω

.=
∂ru

∂ωI
,
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rω
.=

∂FRC

∂ωI
, Kωω

.=
∂rω

∂ωI
, Kωu

.=
∂rω

∂uI
.

The tangent matrix is symmetric, unlike the one for the basic method
of eq. (12.38). The above-defined vectors and matrices do not depend on
the penalty parameter γ; its value is selected as described in the next
section.

Elimination of ω3 from eq. (12.20) means that Kωω becomes singular
and must be stabilized, as given by eq. (12.25), to ensure its invertibility.

Let us write eq. (12.44) at uI = 0 and ωI = 0. Then the residuals
ru = 0, rω = 0, and r = −p, where p is a vector of external loads
for translational dofs, and we obtain

([
K 0
0 0

]
+ γ

[
Kuu Kuω

Kωu Kωω

])[
∆uI

∆ωI

]
=

[
p
0

]
. (12.45)

We assume that the boundary conditions are accounted for in this set
and consider the stability requirements for the following two particular
solution processes.

A. From the second equation of the set (12.45), we calculate

∆ωI = −K−1
ωωKωu∆uI (12.46)

and use it in the first equation, which yields

(K + γK1) ∆uI = p, (12.47)

where K1
.= Kuu −KuωK−1

ωωKωu. Hence, the stability requires invert-
ibility of Kωω and K + γK1.

B. Much more complicated stability conditions are obtained if we change
the order in which ∆ωI and ∆uI are calculated. Then, from the first
equation of the set (12.44), we calculate

∆uI = K−1
∗ (p− γKuω∆ωI), (12.48)

where K∗
.= K + γKuu, and using it in the second equation, we obtain

∆ωI = −K−1
∗∗ KωuK−1

∗ p, (12.49)
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where K∗∗
.= Kωω − γKωuK−1

∗ Kuω. To obtain a stable formulation,
we need the invertibility of K∗ and K∗∗, so we have to satisfy two
conditions,

detK∗(γ) 6= 0, detK∗∗(γ) 6= 0. (12.50)

They are too complicated to determine analytically which values of γ are
not admissible.

Neither one of the solution processes A and B is applicable to a gen-
eral problem, involving many elements and boundary conditions for dis-
placements and drilling rotations. Then we have to consider the whole set
(12.44) and invertibility of the global tangent matrix is required.

Remark on the Augmented Lagrange method. We have also implemented
the Augmented Lagrange (AuL) method as an extension of the penalty
method, requiring only minor modifications of the code. The update for-
mula for the Lagrange multiplier of [179] was applied and several approx-
imations of the Lagrange multiplier were tested. In linear tests, the AuL
method performs identically to the penalty method, but in nonlinear tests,
e.g. in the pinched hemisphere with a hole of Sect. 15.3.8, the performance
was worse than that of the penalty method.

Example. Single element. Consider a single element of Fig. 15.1b, with
E = 106, ν = 0.3, h = 0.1. The non-enhanced element Q4 and the
penalty method for the drill RC were used.

The matrix K1 of eq. (12.47) was calculated for two element shapes,
trapezoid (d = 0.5) and square (d = 0), and the boundary conditions
were either applied or not applied. In all these cases, K1 = 0. Hence,
the correct solution,

∆uI = K−1p, ∆ωI = −K−1
ωωKωu∆uI , (12.51)

is obtained for any value of γ > 0; this is a feature of the so-called exact
penalty method. A similar result is obtained for the formulation with the
drilling rotation being a local variable, discontinuous across the element’s
boundaries.

The determinants of matrices K∗ and K∗∗ for selected values of γ
are given in Table 12.3. We see that they are all non-zero, as required.
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Table 12.3 Determinants of K∗ and K∗∗ for the penalty method.

Multiplier γ detK∗ detK∗∗
trapezoidal element
1 1022 10−6

G/1000 1023 104

G 1038 101

1000 G 1056 1028

3. Perturbed Lagrange method

The Perturbed Lagrange method belongs to the class of the Lagrange–
Newton methods of the constrained optimization, see [136, 72, 29], to
which the popular SQP (Sequential Quadratic Programming) method also
belongs. For this class, the Newton method is used to find the stationary
point of the Lagrange function w.r.t. the basic variables and the Lagrange
multipliers.

In the Perturbed Lagrange method, a small perturbation term is de-
fined in terms of the Lagrange multipliers and added to the standard
Lagrange function. In computational contact mechanics, which involves
inequality constraints, this method was used, e.g., in [157, 222]. For con-
tact problems, the role of the perturbation component is to fill in the zero
sub-matrix when the gap is open, see [261], eqs. (5.58) and (9.75).

The Perturbed Lagrange method can also be applied to the drill RC
problem and it enables us to treat the Lagrange multipliers as local vari-
ables and to eliminate them on the element’s level. Besides, we can use
a simple symmetric solver on the element’s level because there is no zero
diagonal blocks.

The Perturbed Lagrange method can be used with the drill RC term
in two forms: either the strong form of eq. (12.34) or the weak form of
eq. (12.36). For both, we can use the scalar drill RC equation in one of the
three forms specified in eqs. (12.7), (12.9), and (12.10); in computations
we use the last one.

Relation of weak form of eq. (12.36) to variational formulation of Sect. 4. Recall
the formulation based on the second Piola-Kirchhoff stress, and the three-
field functional of eq. (4.65). This functional was regularized in Ta, where
Ta is the Lagrange multiplier for the RC equation (3.8), which yielded
the 3-F functional of eq. (4.71), which we repeat here in the following
form:
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F̃ 2PK
3 (χ,Q,Ta) =

∫

B

[W(FTF) + FRC(χ,Q,Ta)
]

dV − Fext, (12.52)

where

FPL
RC(χ,Q,Ta)

.= Ta · skew(QTF)− 1
2γ

Ta ·Ta (12.53)

and γ ∈ (0,∞) is the regularization parameter. If we restrict our con-
siderations to a 2D problem, then the RC equation is reduced to the drill
RC equation. For Q and F of eq. (12.3), from skew(QTF) we obtain
rω, as in eq. (12.4). Besides, the Lagrange multiplier is assumed to be in
the following form:

Ta
.=

[
0 −T
T 0

]
. (12.54)

see eq. (12.56) for more details. For these representations, we obtain
Ta · skew(QTF) = 2Trω and Ta ·Ta = 2T 2, and eq. (12.53) becomes

FPL
RC(χ,Q,Ta) = 2

(
T rω − 1

2γ
T 2

)
. (12.55)

Comparing this expression with the drill term in the weak form eq. (12.36),
which is λ c + (1/2γ)λ2, we see that the difference between them is the
multiplier 2, which is a result of two identical (except for the sign) terms of
the skew-symmetric matrices. Hence, functional (12.41) fully corresponds
to the weak form of eq. (12.36).

Approximation of FPL
RC . Various approximations of the functional FRC of

eq. (12.55) can be considered for a four-node element, and we selected the
following ones:

1. the Lagrange multiplier is assumed as a contravariant matrix in the
basis {gc

k} and is transformed to the local orthonormal basis {tc
k}

as follows:

Ta = JLc

[
0 Ta(ξ, η)

−Ta(ξ, η) 0

]
JT

Lc =
[

0 T
−T 0

]
, (12.56)

where Ta(ξ, η) is the assumed representation of the Lagrange multi-
plier, and T

.= (detJLc) Ta(ξ, η), as the JLc(·)JT
Lc operation on a

skew-symmetric matrix yields a skew-symmetric matrix. This T was
used in eq. (12.54). The Jacobian is local, as both bases are located
at the element’s center.
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2. A linear approximation of the assumed representation of the Lagrange
multiplier,

Ta(ξ, η) .= q0 + ξ q1 + η q2, (12.57)

where q0, q1, q2 are local multipliers eliminated on the element’s level.
3. A linear expansion of the drill rotation constraint, c = 0, at the

element center of eq. (12.28), for which the bilinear term of the drill
RC of eq. (12.20) is eliminated.

Linearized equations. The standard procedure of consistent linearization
of the functionals for the Perturbed Lagrange method yields the following
linearized (Newton) equations:




K Kuω KuT

KT
uω Kωω KωT

KT
uT KT

ωT − 1
γKTT







∆uI

∆ωI

∆Ta


 = −




r + ru

rω

rT


 , (12.58)

where the vectors and matrices obtained from FPL
RC of eq. (12.55) are as

follows:

ru
.=

∂FRC

∂uI
, Kuu

.=
∂ru

∂uI
, Kuω

.=
∂ru

∂ωI
, KuT

.=
∂ru

∂Ta
,

rω
.=

∂FRC

∂ωI
, Kωω

.=
∂rω

∂ωI
, Kωu

.=
∂rω

∂uI
, KωT

.=
∂rω

∂Ta
,

rT
.=

∂FRC

∂Ta
, KTω

.=
∂rT

∂ωI
, KTu

.=
∂rT

∂uI
, KTT

.=
∂rT

∂Ta
.

Note that Kuu = 0. The total matrix is symmetric because K = KT ,
Kωω = KT

ωω, KTT = KT
TT , as well as Kωu = KT

uω, KTu = KT
uT , and

KTω = KT
ωT .

Let us write the set of eq. (12.58) for uI = 0 and ωI = 0. Then the
residuals ru = 0, rω = 0, rT = 0, and r = −p, where p is a vector
of external loads for translational dofs. For the applied approximations of
displacements and drilling rotations, we obtain




K 0 KuT

0 0 KωT

KT
uT KT

ωT − 1
γKTT







∆uI

∆ωI

∆Ta


 =




p
0
0


 . (12.59)

In the standard Lagrange multiplier method, the perturbation term is
neglected in eq. (12.55) and, then in the above matrix, the perturbation
matrix KTT is a zero matrix.
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Because, the bilinear terms are omitted in the representations of
eqs. (12.57) and (12.23), the element has one spurious zero eigenvalue
and can be stabilized, as given by eq. (12.25). Then, eq. (12.59) becomes




K 0 KuT

0 Kstab
ωω KωT

KT
uT KT

ωT − 1
γKTT







∆uI

∆ωI

∆Ta


 =




p
0
0


 , (12.60)

where the matrix Kstab
ωω is provided by stabilization, and the number of

zero eigenvalues is three, as required.

Stability of solution for local Lagrange multiplier. Assume that the parameters
qi of the Lagrange multiplier Ta are local variables, which are discon-
tinues across the element boundaries and are eliminated on the element
level. Then, first we calculate ∆Ta from the third equation of (12.60),

∆Ta = γ K−1
TT (KT

uT ∆uI + KT
ωT ∆ωI), (12.61)

which is feasible because the perturbation matrix −(1/γ)KTT is non-
singular. Then, we use this ∆Ta in the other two equations of eq. (12.60),
which yields

([
K 0
0 0

]
+ γ

[
Kuu Kuω

Kωu Kωω

])[
∆uI

∆ωI

]
=

[
p
0

]
, (12.62)

where
[
Kuu Kuω

Kωu Kωω

]
.=

[
KuTK−1

TTKT
uT KuTK−1

TTKT
ωT

KωTK−1
TTKT

uT KωTK−1
TTKT

ωT + Kstab
ωω

]
.

Note the similarity of this set of equations to eq. (12.45) obtained for the
penalty method. Stability requires invertibility of the whole above tangent
matrix.

The local Lagrange multipliers are used in our elements based on the
Perturbed Lagrange method.

12.3.2 Selection of regularization parameter for drill RC

Introduction. The regularization parameter γ is used by the two meth-
ods discussed earlier, the penalty method and the Perturbed Lagrange
method. The value of γ affects the solution and should ensure satisfac-
tion of the following requirements:
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1. Displacements yielded by the element with drill rotations should be
identical to those yielded by an analogous element without drill rota-
tions; this requirement is incorporated in the definition of the extended
configuration space, see eq. (4.3).

2. For coarse meshes, displacements for the formulations with and with-
out drill rotations are similar but not identical; the former are slightly
stiffer. However, in the mesh limit, i.e. for the element’s size tending
to zero, the displacements should converge to the displacements of an
element without drill rotations.

3. Drill rotations should converge in the mesh limit from the same side as
the displacements, i.e. either from below for the fully integrated (FI)
elements or from above for the reduced integrated (RI) elements.

Extreme values of γ can cause the following problems:

1. Too large values of γ can yield an ill-conditioned tangent ma-
trix; this is a characteristic deficiency of the penalty method. The ill-
conditioning is typically cured by using, instead of the penalty method,
the Augmented Lagrangian method, in which the Lagrange multiplier
is updated iteratively, and smaller values of γ can be used. This
approach is beneficial for non-linear problems which are solved itera-
tively, but not for the linear ones which are solved without iterations.

Though γ cannot be too large, it should still ensure a correct trans-
fer of drilling rotations, see the numerical example “Bending of slender
cantilever by end drilling rotation” of Sect. 12.8.2. This is an impor-
tant issue but often forgotten when attention is focused on avoiding
over-stiffening (locking).

2. Too small values of γ cause the tangent matrix K to be rank
deficient. In particular, γ = 0 yields four spurious zero eigenvalues
for a four-node bilinear element.

Numerical examples of Sect. 12.8.2 show that a wide range of values of
γ exists for which solutions are almost constant and accurate.

Selection of the penalty value in contact mechanics. The methods of con-
strained optimization are widely used and tested in contact mechanics,
[261, 133]. The penalty method is a basic method in this area and is used
in the shortened form consisting of a single unconstrained optimization
problem. Hence, selection of an optimal value of the penalty parameter
requires an error analysis, which takes into account the roundoff errors and
the perturbation errors due to the penalty method, see [69, 70, 157, 155].
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Typically, such an analysis is limited to linear constrains such that one
equation constrains displacements at some points. Note that the drill RC is
more complicated, as it is a nonlinear equation involving several variables
of a different type, including tangent displacements and drill rotations.

Currently, the Augmented Lagrangian method is very popular in con-
tact mechanics and in this method the question of an optimal penalty
value is less acute because smaller values of the penalty can be used, see
e.g. [222].

Upper bound on the penalty parameter γ for drill RC. The theoretical consid-
erations, which provide the bounding value of the penalty parameter γ,
are given in [99], where equations of linear elasticity with a non-symmetric
stress tensor are considered. For the formulation based on the potential
energy, the variational problem is written in the form

Bγ(u, ψ̃;v,ω) = f({v, ω}), ∀ {v,ω} ∈ U, (12.63)

where u is the displacement vector and ψ̃ a skew symmetric tensor
for an infinitesimal drilling rotation. The corresponding trial fields are
denoted as v and ω. Besides,

Bγ(u, ψ̃;v,ω) =
∫

Ω
(sym∇v) · [C (sym∇u)] dΩ

+
∫

Ω
(skew∇v− ω) · γ(skew∇u− ψ̃) dΩ (12.64)

is the symmetric bilinear form and

f({v, ω}) =
∫

Ω
v · f dΩ (12.65)

is continuous. Besides, C is the (rank 4) constitutive tensor.

Well-posedness of a discrete variational problem depends, among the
other things, on the U-ellipticity of Bγ . It requires that a constant
η > 0 exists such that

Bγ(u, ψ;v, ω) ≥ η ‖{v, ω}‖2
U , ∀ {v, ω} ∈ U, (12.66)

where
‖{v, ω}‖U = ‖v‖2

V + ‖ω‖2
W , ∀ {v, ω} ∈ U,

‖v‖2
V =

∫

Ω
‖∇v‖2 dΩ, ∀v ∈ V, ‖ω‖2

W =
∫

Ω
‖ω‖2 dΩ, ∀ω ∈ W.
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Note that U = V ×W , where V and W are the spaces relevant to
the BVP. By using the estimation of the minimum eigenvalue of C for
an isotropic material,

min
ε=εT , ε 6=0

ε · (C ε)
‖ε‖2

= 2G, (12.67)

and Korn’s inequality,

‖sym∇v‖2 ≥ ck ‖∇v‖2, (12.68)

where the constant ck = 1/2 for the Dirichlet problem, we obtain

Bγ(v, ω;v, ω) ≥ G

2
‖∇v‖2 + (G− γ)‖skew∇v‖2 +

γ

2
‖ω‖2. (12.69)

Any 0 ≤ γ ≤ G is appropriate but the second term in the estimate
vanishes for γ = G, so we obtain

Bγ(v, ω;v,ω) ≥ G

2
(‖∇v‖2 + ‖ω‖2

)
, (12.70)

which is in accord with eq. (12.66). The value γ = G was subsequently
numerically tested in [102].

Numerical tests of our elements of Sect. 12.8.2 confirm that, generally,
the value γ = G is a good choice. However, in several situations, a
modification of this value is beneficial.

Selection of value of the penalty parameter γ for drill RC. The shell finite ele-
ments are very complicated as they (i) involve a large number of variables,
(ii) are non-linear, which means that problems are solved iteratively and
the number of terms is very large, and (iii) are generated using a complex
methodology which cannot easily be accounted for in theoretical consid-
erations.

For this reason, theoretical predictions of the value of γ provide only
a general guidance, while a reliable and practically meaningful value of
γ must be the result of proper testing. To avoid repeating the process
of selection of γ for each BVP, a set of suitable benchmark tests must
be used. These problems are solved for a range of values of γ and for
each, the segment in which the solution is accurate and almost constant
is identified. The final single value of γ should be problem-independent,
so we must choose the value which is correct for all benchmark tests. In
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this task, plots of the obtained displacements and drilling rotations vs. γ
are particularly useful.

Generally, the value of γ should account for the element’s volume
and the material characteristics.

1. In the weak formulation, eq. (12.35), the element volume is accounted
for by integration, so the penalty number does not have to include
it. But for the strong formulation of eq. (12.33), it must be explicitly
included in γ.

2. The material characteristics are accounted for by linking γ to one of
the eigenvalues of the constitutive matrix. For instance, for the SVK
material and the plane stress conditions, the eigenvalues of the consti-
tutive matrix C are given by eq. (7.78) and the smallest eigenvalue
is E/(1 + ν) = 2G. Hence, it is reasonable to relate the value of γ
to the shear modulus G.

Hence, in the weak formulation, we use the definition

γ = εG, (12.71)

where ε is a scaling factor. In the numerical tests in Sect. 12.8.2, we
select the value of ε.

Method of calculating γ for shells of [189]. In this work, the stiffness matrix
for a single shell element is divided into parts related to displacements u
and rotation parameters ψ as follows:

K =
[
Kuu Kuψ

Kψu Kψψ

]
(12.72)

and only diagonal sub-matrices Kuu and Kψψ are considered. They
consist of the classical part (C) and the part for the drill RC (D),

Kuu = KC
uu + γ KD

uu, Kψψ = KC
ψψ + γ KD

ψψ. (12.73)

Each of the sub-matrices is considered separately and maximum absolute
values of their diagonal terms are compared

γu =
max |diagKC

uu|
max |diagKD

uu|
, γψ =

max |diagKC
ψψ|

max |diagKD
ψψ|

. (12.74)

The penalty parameter is defined as
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γ =
1

100
min(γu, γψ), (12.75)

where the value 1/100 was selected by numerical experiments. The value
of γ is calculated only once per analysis, at the beginning, for the linear
stiffness matrix.

This method relies on the fact that the diagonal terms of Kuu and
Kψψ are much larger than the off-diagonal ones, which allows us to avoid
costly eigenvalue analyses.

12.4 EADG method for formulations with rotations

The Enhanced Assumed Displacement Gradient (EADG) method for 2D
elements was discussed in Sect. 11.4.3; below it is extended to the
2D+drill elements.

Consider the two-field (2-F) functionals with rotations of Sect. 4 and
denote them as F2(χ,Q). Let us rewrite eq. (11.70), defining the EADG
method, as

F .= ∇χ + H̃, (12.76)

where ∇χ = I +∇uc. In the EADG method, we add two independent
fields to F2(χ,Q): the nominal stress P and the field F, and construct
the following 4-F functional

F4(χ,Q, F,P) .= F2(Q,F) +
∫

B
P · (∇χ− F) dV , (12.77)

where P is a Lagrange multiplier for the formula linking ∇χ and the
independent F. Note that now F2(Q,F) involves the independent F.
By using eq. (12.76), this functional becomes

F4(χ,Q, H̃,P) = F3(χ,Q, H̃) +
∫

B
P · H̃ dV , (12.78)

in which we have the enhancing H̃. If the enhancing H̃ is orthogonal
to the stress, i.e.

∫
B P · H̃ dV = 0, then the last term of eq. (12.78)

vanishes and we obtain the 3-F functional

F3(χ,Q, H̃), (12.79)

which does not depend on P and is used in the element’s implementation.
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In this way we can obtain the 3-F enhanced functionals for particular
forms of F2(χ,Q). For instance, for the functionals F̃ 2PK

2 (χ,Q) of
eq. (4.73) and F ∗∗

2 (χ,Q) of eq. (4.77), we obtain

F̃ 2PK
3 (χ, H̃,Q) .=∫

B

{
W

[
(∇χ + H̃)T (∇χ + H̃)

]
+ FRC(χ, H̃,Q)

}
dV − Fext, (12.80)

F ∗∗
3 (χ, H̃,Q) .=∫

B

{
W

[
QT (∇χ + H̃)

]
+ FRC(χ, H̃,Q)

}
dV − Fext, (12.81)

where the RC term has the penalty form

FRC(χ, H̃,Q) .=
γ

2
skew[QT (∇χ + H̃)] · skew[QT (∇χ + H̃)]. (12.82)

The RC term is also enhanced by H̃, which is not possible within the
EAS method. These functionals were used in [255].

Modification of the EADG method motivated by the EAS method. The EAS
method has a certain advantage over the EADG method in non-linear
2D problems, i.e. is slightly faster and converges better. The enhancement
of F is needed in the drill RC equation, so it should be retained in its
original form, but we can simplify the Cauchy–Green deformation tensor
C to a form which is similar to that implied by the EAS method.

1. For the EAS method, see eq. (11.62), the enhanced Cauchy–Green
tensor is

C .= FTF + Gξ, Gξ .=
[

q1ξ q3ξ + q4η
q3ξ + q4η q2η

]
, (12.83)

where, for simplicity, we omitted the Jacobians.
2. In the EADG method, the enhancing modes are added to the defor-

mation gradient, see eq. (12.76), and the Cauchy–Green deformation
tensor is

C = FTF + FT H̃ + H̃TF + H̃T H̃. (12.84)

Let us use the EADG4 enhancement of eq. (11.71) in which, for sim-
plicity, we omit the Jacobians. Then, we have

H̃ =
[
ξ q1 η q3

ξ q4 η q2

]
, F =

[
F11 F12

F21 F22

]
(12.85)
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and the last three components of eq. (12.84) involve the enhancement
and are

FT H̃ =
[
r1 ξ r3 η
r4 ξ r2 η

]
, H̃TF =

[
r1 ξ r4 ξ
r3 η r2 η

]
, H̃T H̃ =

[
r5 ξ2 r7 ηξ
sym. r6 η2

]
,

where the coefficients ri (i = 1, . . . , 7) do not depend on ξ and η.
The structure of these three components can be compared with the
structure of Gξ for the EAS method of eq. (12.83):
a) the sum

FT H̃ + H̃TF =
[

2r1ξ r3ξ + r4η
r3ξ + r4η 2r2η

]
(12.86)

has a similar structure as the Gξ enhancement of the EAS
method, i.e. the diagonal terms are linear (and incomplete) in ei-
ther ξ or η, while the off-diagonal terms are sums of linear terms
in ξ and η.

b) the component H̃T H̃ contains terms of a higher order than those
in eq. (12.83) for the EAS method and, hence, this term can be
safely omitted from eq. (12.84).

The above modifications make the element slightly faster, and slightly
stiffer, but the difference is small. For instance, in Cook’s tapered
panel example of Sect. 15.2.7, the difference in the displacement and
drill rotation of the tip is < 0.2%.

Finally, note that we can also consider the following simplification:

FT H̃ + H̃TF ≈ H̃ + H̃T =
[

2q1ξ q3ξ + q4η
q3ξ + q4η 2q2η

]
, (12.87)

and then similarity to the Gξ enhancement of the EAS method is
even closer. However, this version does not work well in the twisted
ring example of Sect. 15.3.15.

12.5 Mixed HW and HR functionals with rotations

HW functionals with rotations. Consider the classical form of the 3-F Hu–
Washizu (HW) functional of eq. (11.1). To obtain the HW functional
with rotations, the Lagrange multiplier method is applied to eq. (11.1),
which yields the five-field functional
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FHW5(u,Q, σ, ε,Ta)
.=∫

B

{W(ε) + σ · [E(∇u)− ε] + Ta · skew(QTF)
}

dV − Fext, (12.88)

where Ta
.= skew(QTFS) is the Lagrange multiplier for the RC equa-

tion. Two functionals derived from eq. (12.88) are particularly useful.

A. the 4-F functional, obtained by regularization of eq. (12.88) in Ta,
and elimination of Ta,

F̃HW4(u, σ, ε,Q) .=∫

B

{W(ε) + σ · [E(∇u)− ε}+ FP
RC(∇u,Q)

]
dV − Fext, (12.89)

where the RC term has the penalty (P) form of eqs. (12.42) and (12.43).
B. the 5-F functional obtained by regularization of eq. (12.88) in Ta,

F̃HW5(u,Q, σ, ε,Ta)
.=∫

B

{W(ε) + σ · [E(∇u)− ε] + FPL
RC(∇u,Q,Ta)

}
dV − Fext, (12.90)

where the RC term has the perturbed Lagrange (PL) form of eqs. (12.53)
and (12.55).

HR functionals with rotations. Let us take the above HW functionals with
rotations and apply the same procedure which was used to obtain the
Hellinger–Reissner functionals of eqs. (11.4) and (11.7). Then we obtain
the HR functionals with rotations applicable to linear elastic materials.

A. From the 4-F functional of eq. (12.89), we obtain

F̃HR3(u,Q, σ) .=∫

B

[−1
2σ · (C−1σ) + σ ·E(∇u) + FP

RC(∇u,Q)
]

dV − Fext, (12.91)

where the penalty (P) form of the RC is given by eqs. (12.42) and
(12.43).

B. From the 5-F functional of eq. (12.90), we obtain

F̃HR4(u,Q, σ,Ta)
.=∫

B

[−1
2σ · (C−1σ) + σ ·E(∇u) + FPL

RC(∇u,Q,Ta)
]

dV − Fext, (12.92)

where the perturbed Lagrange (PL) form of the RC term is given by
eqs. (12.53) and (12.55).
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For non-linear materials, we use the incremental forms of the above
HW and HR functionals, obtained for the increments of displacements,
stress and strain of eq. (11.5).

EADG method for HW and HR functionals. In Sect. 12.4, we described the
EADG method for the 3D potential energy functionals with rotations
derived in Sect. 4; for the HW and HR functionals with rotations, the
procedure is simpler.

For the HW and HR functionals, the EADG method can be incorpo-
rated without using additional independent fields P and F and the
term

∫
B P · (∇χ − F) dV , which was used in eq. (12.77). This is be-

cause we already have the independent fields σ and ε and the term∫
B σ ·(E(∇u)−ε) dV , which can be used instead. Hence, it suffices to re-

place ∇u by ∇u+ H̃ in E(∇u), which is in accord with eq. (12.76).
We note that the orthogonality of stress and the enhancing field is not
required.

The EADG enhancement is applied to the HW functionals with rota-
tions of eqs. (12.89) and (12.90), and the HR functionals with rotations
of eqs. (12.91) and (12.92).

12.6 2D+drill elements for bilinear shape functions

The characteristics of each 2D+drill four-node element (with the drilling
rotation), which are presented below, consists of three parts:

1. the designation of the plane (2D) four-node element (without the
drilling rotation) of Sect. 11, which is being extended by inclusion
of the drilling rotation,

2. the specification of the mixed functional on which the element is based,
3. the description of the treatment of the functional for the drill RC,

FRC. The weak (integral) forms of the drill RC was used; the penalty
method is implemented as specified in Table 12.4, while the Perturbed
Lagrange method as specified in Table 12.5.

12.6.1 EADG4 elements based on potential energy

The elements characterized below have two features: (i) they extend the
EADG4 element without the drilling rotation of Sect. 11.4.3 and (ii) are
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Table 12.4 Implementation of the penalty method (P) for drill RC.

1. weak (integral) form of drill RC, as in eq. (12.35), functional FRC of eq. (12.42),

2. expansion of QT F product of eq. (12.27), for which drill RC is given by eq. (12.28),

3. stabilization of spurious mode of eq. (12.25).

Table 12.5 Implementation of the Perturbed Lagrange method (PL) for drill RC.

1. weak (integral) form of drill RC, as in eq. (12.36), functional FRC of eq. (12.53),
Lagrange multiplier tensor of eq. (12.56) and representation of eq. (12.57).

2. expansion of QT F product of eq. (12.27), for which drill RC is given by eq. (12.28),

3. stabilization of spurious mode of eq. (12.25).

based on the potential energy functional with rotations of eq. (4.73). Two
elements were selected:

1. Element EADG4+P, which has the following features:
a) the penalty method is implemented as specified in Table 12.4,
b) it uses four additional parameters, the multipliers of the EADG

modes.
2. Element EADG4+PL, which has the following features:

a) the Perturbed Lagrange method is implemented as specified in Ta-
ble 12.5,

b) it uses seven additional parameters: four multipliers of the EADG
modes and three parameters of the Lagrange multiplier.

As show the numerical tests, these 2D+drill elements perform very well
for coarse distorted meshes, despite a small number of parameters. In non-
linear tests, the second (PL) element has a larger radius of convergence.

12.6.2 Assumed stress HR5-S elements

The elements characterized below are based on the HR functionals with
rotations of eqs. (12.91) and (12.92). Their 2D counterparts were described
in Sect. 11.5.1. The same five-parameter representation of eq. (11.126) is
used for stress. No enhancement is applied.
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1. Element HR5-S+P which has the following features:
a) the penalty method is implemented as specified in Table 12.4,
b) it uses five additional parameters, which are multipliers of the stress

modes.
2. Element HR5-S+PL which has the following features:

a) the Perturbed Lagrange method is implemented as specified in Ta-
ble 12.5,

b) it uses eight additional parameters: five multipliers of the stress
modes and three parameters of the Lagrange multiplier.

As show the numerical tests, these 2D+drill elements are worse for coarse
distorted meshes than, e.g., the EADG4 element. They show a substantial
decrease of accuracy, comparing to their 2D counterparts.

12.6.3 Assumed stress/enhanced strain HR7-S elements

A poor performance of the 2D+drill HR elements based on the five-
parameter representation of stresses caused that we considered the seven-
parameter representation of stresses and the strain enhancement. No such
2D elements are described in Sect. 11.5 because they perform identically
to the HR5-S element but use more modes, so are less effective.

The assumed stress/enhanced strain elements are based on the HR
functionals of eqs. (12.91) and (12.92) additionally enhanced, by replacing
∇u by ∇u+ H̃, as described in Sect. 12.5. In these functionals, u, Q
are the compatible fields, while σ, ε, Ta, H̃ are the assumed fields.
Besides,

1. the assumed stress and the increment of the assumed stress are con-
structed as follows:

σa = Jc σξ JT
c , ∆σa = Jc ∆σξ JT

c , (12.93)

which is the transformation rule for the contravariant components of
a tensor of eq. (11.124), and σξ contains the seven-parameter rep-
resentation in terms of the skew coordinates

σξ .=
[
q1 + q2 yS q5 + q6 xS + q7 yS

sym. q3 + q4 xS

]
. (12.94)

Besides, ∆σξ has a structure of σξ, with the multipliers qi

replaced by ∆qi.
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2. The EADG enhancement of eq. (11.71) is used in the form

H̃g
.= Jc Gξ

g J−1
c

(
jc

jg

)
, Gξ .=

[
0 η q8

ξ q9 0

]
, (12.95)

where the EADG2 representation involves two parameters.

Two elements were developed:

1. Element HR7+EADG2+P which has the following features:
a) the penalty method is implemented as specified in Table 12.4,
b) it uses nine additional parameters: seven multipliers of stress modes

and two multipliers of the EADG enhancement.
2. Element HR7+EADG2+PL which has the following features:

a) the Perturbed Lagrange method is implemented as specified in Ta-
ble 12.5,

b) it uses 12 additional parameters; nine parameters identical as in the
previous element, and three parameters of the Lagrange multiplier.

As show the numerical tests, the above elements perform very well for
coarse distorted meshes, better than the EADG4 element. In non-linear
tests, the second (PL) element has a much larger radius of convergence.

Remark. Note that we can also consider a different seven-parameter rep-
resentation

σξ .=
[
q1 + q2 yS + q6 xS q5 − q7 xS − q6 yS

sym. q3 + q4 xS + q7 yS

]
, (12.96)

where some parameters are repeated in the diagonal and off-diagonal
terms. This representation was used in several earlier papers on mixed (or
hybrid) methods; (i) in Cartesian coordinates in [223] and (ii) in oblique
coordinates in [184]. More recently, it was also used in [265, 177], but in
different forms; the relation between these forms was established in [256],
eqs. (38) and (41).

Both these seven-parameter representations are equally good for the
2D elements, but for the 2D+drill elements, the representation (12.96) is
slightly worse and, for this reason, is not used here.

12.6.4 Assumed stress and strain HW14-SS elements

The elements characterized below are based on the non-enhanced HW
functionals with rotations of eq. (12.89) or eq. (12.90). Their 2D coun-
terparts were described in Sect. 11.5.2.
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1. Element HW14-SS+P which has the following features:
a) the penalty method is implemented as specified in Table 12.4,
b) it uses 14 additional parameters: five multipliers of the stress

modes of eq. (11.126), and nine multipliers of the strain modes
of eq. (11.140).

2. Element HW14-SS+PL which has the following features:
a) the Perturbed Lagrange method is implemented as specified in Ta-

ble 12.5.
b) it uses 17 additional parameters: fourteen parameters identical as

in the previous element, and three parameters of the Lagrange
multiplier.

As show the numerical tests, these 2D+drill elements are worse for coarse
distorted meshes than, e.g., the EADG4 element. They show a substantial
decrease of accuracy compared to their 2D counterparts.

12.6.5 Assumed stress and strain/enhanced strain HW18-SS elements

A poor performance of the 2D+drill HW elements based on five-parameter
representation of stress caused that we considered the seven-parameter
representation of stresses and the strain enhancement. No 2D elements of
this type are described in Sect. 11.5 because they perform identically to
the HW14-S element but are less effective, as they use more modes.

The assumed stress and strain/enhanced strain elements characterized
below are based on the HW functionals with rotations of eqs. (12.89)
or (12.90) additionally enhanced, by replacing ∇u by ∇u + H̃, as
described in Sect. 12.5. In these functionals, u, Q are the compatible
fields, while σ, ε, Ta, H̃ are the assumed fields. Besides,

1. the assumed stress and the increment of the assumed stress are con-
structed as follows:

σa = Jc σξ JT
c , ∆σa = Jc ∆σξ JT

c , (12.97)

which is the transformation rule for the contravariant components of
a tensor of eq. (11.124) and σξ contains the seven-parameter rep-
resentation in terms of the skew coordinates

σξ .=
[
q1 + q2 yS q5 + q6 xS + q7 yS

sym. q3 + q4 xS

]
. (12.98)

Besides, ∆σξ has a structure of σξ but with qi replaced by ∆qi.
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2. The assumed strain is constructed as

εa = J−T
c εξ J−1

c , (12.99)

using the transformation rule of eq. (11.139) for the covariant compo-
nents of a tensor. The nine-parameter strain representation of εξ is
given by eq. (11.140), i.e.

εξ
.=

[
q8 + q9 yS + q10 xS q14 + q15 xS + q16 yS

sym. q11 + q12 xS + q13 yS

]
. (12.100)

3. The gradient of displacements is enhanced as follows:

∇u .= ∇uc + H̃, (12.101)

where ∇uc is the gradient of compatible displacements and H̃ is
the assumed enhancing field constructed as follows using the EADG
method:

H̃g = Jc Gg J−1
c

(
jc

jg

)
, G =

[
0 yS q17

xS q18 0

]
, (12.102)

where g indicates the Gauss point.

Two elements were developed:

1. Element HW18-SS+EADG2+P which has the following features:
a) the penalty method is implemented as specified in Table 12.4,
b) it uses 18 additional parameters: seven multipliers of the stress

modes, nine multipliers of the strain modes, and two parameters
of the EADG2 enhancement.

2. Element HW18-SS+EADG2+PL which has the following fea-
tures:
a) the Perturbed Lagrange method is implemented as specified in Ta-

ble 12.5.
b) it uses 21 additional parameters: 18 parameters identical as in the

previous element, and three parameters of the Lagrange multiplier.

As show the numerical results of linear tests, e.g. of Table 12.6, the above
elements with drilling rotation

1. perform identically to the HR7-S+EADG2 elements with the drilling
rotation. Thus, the equivalence of linear HR and HW 2D elements
established in [257] is maintained by the present 2D+drill formulation.

2. Perform very well for coarse distorted meshes, better than the EADG4
element.
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12.7 2D+drill elements for Allman shape functions

Historical note. The Allman shape functions were first successfully applied
to 2D triangles in [1, 27] and later extrapolated to 2D quadrilaterals in
[55], where a procedure of transforming an eight-node serendipity element
to a four-node element with nodal drilling rotations was proposed. This
procedure is commonly used in Allman-type quadrilaterals, although it
needs to be modified for large drilling rotations.

At first, the Allman shape functions were treated as a way to im-
prove accuracy of low-order elements. Soon their ability to incorporate
the drilling rotation was appreciated; this was before the role of the RC
equation was recognized. The Allman shape functions can be applied in
two types of four-node elements:

1. 2D+drill elements. In [144] Table 1, it is stressed that such elements
are eight times faster than, e.g., eight-node elements without drilling
dofs, with only slightly less accuracy in small strain problems.

2. Shell elements, where the presence of the drilling rotation in the mem-
brane part is an advantage, as it allows us to use a three-parameter
representation of rotations and to treat all rotational dofs in the same
way.

An overview of the works on four-node quadrilaterals based on the
Allman shape functions is given in [255] and it includes such papers as [117,
113, 235, 144, 109, 112, 87, 203]. This overview provided the motivation
for the formulation which generalizes the Allman shape functions to handle
large rotations and uses the EADG enhancement.

12.7.1 Allman-type shape functions

The Allman-type shape functions for a quadrilateral element are obtained
by the procedure, which has two characteristic features:

1. the hierarchical shape functions are used for displacements of an eight-
node 2D element,

2. the hierarchical mid-side displacements are expressed by corner drilling
rotations,

which means that the element displacements become functions of corner
displacements and corner drilling rotations, i.e.

u(ξ, η, uI)︸ ︷︷ ︸
8-node, 2D

= u(ξ, η, uI , ωI)︸ ︷︷ ︸
4-node, 2D+drill

, I = 1, 2, 3, 4. (12.103)
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Hierarchical shape functions for displacements of 2D quadrilateral. The dis-
placements of the eight-node 2D quadrilateral of Fig. 12.4 can be ap-
proximated as follows:

u(ξ, η) =
4∑

I=1

NI(ξ, η) uI +
8∑

H=5

NH(ξ, η) ∆uH , (12.104)

where NI(ξ, η) are the standard bilinear shape functions of eq. (10.3),
and NH(ξ, η) are the hierarchical shape functions, defined as

N5(ξ, η) = 1
2(1− ξ2)(1− η), N7(ξ, η) = 1

2(1− ξ2)(1 + η),

N6(ξ, η) = 1
2(1− η2)(1 + ξ), N8(ξ, η) = 1

2(1− η2)(1− ξ). (12.105)

Note that uI are the nodal displacement vectors, while ∆uH are the
hierarchical displacement vectors at mid-points of the element boundaries,
see Fig. 12.7.

1 2

6

7

8

5

34

Fig. 12.4 Numeration of nodes of eight-node element.

The shape functions for a selected mid-side node of the hierarchical
eight-node element and the Lagrange nine-node element are shown in
Fig. 12.5. More details on the differences between these two families of
shape functions can be found, e.g., in [268] Chap. 8.

To express the hierarchical displacement ∆uH in eq. (12.104) in
terms of nodal drilling rotations ωI , we consider a single boundary of a
quadrilateral element and treat it as a beam. Note that

1. In the classical Allman formula, only one component of ∆uH is
linked with the nodal drilling rotations, this one which is normal to
the beam. Hence, this formula is valid only for small drilling rotations.

2. For large drilling rotations, the form of the Allman approximations
involving two components of ∆uH must be used and was derived in
[255]. Another possibility is to use the incremental formulation, but
this precludes the straightforward use of automatic differentiation.
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Fig. 12.5 A shape function for a mid-side node of: a) hierarchical eight-node ele-
ment, b) Lagrangian nine-node element.

Classical Allman shape functions. To determine the mid-side hierarchical
displacement ∆uI in eq. (12.104), we select one boundary of a quadri-
lateral, e.g. defined by nodes 1-5-2, and further consider a planar beam
along it, see Fig. 12.6.
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Fig. 12.6 Classical Allman shape functions: small rotation of a selected boundary.

When the rotation ω is small, then the normal displacement compo-
nent u2 is much bigger than the tangent component u1 and we may
write

u ≈ w t2, (12.106)

where w
.= u2 is the normal displacement and t2 is a vector normal

to the boundary, and a director of the beam.
Let us define the shape functions for the beam,

M1(ξ)
.= 1

2(1− ξ), M2(ξ)
.= 1

2(1 + ξ), M0(ξ)
.= 1− ξ2, (12.107)

where M1(ξ) and M2(ξ) are linear functions and M0(ξ) is a bubble
function. The rotation and the normal displacement are approximated as
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ω(ξ) = M1(ξ)ω1 + M2(ξ) ω2,

w(ξ) = M1(ξ) w1 + M2(ξ) w2 + M0(ξ) ∆w, (12.108)

where M0(ξ) multiplies the hierarchical mid-side displacement ∆w.
Note that ω1, ω2 and w1, w2 are the nodal values, while ∆w
is unknown. However, ∆w can be linked with the nodal rotations as
follows.

To calculate the hierarchical mid-side displacement ∆w, we use the
condition related to the transverse shear strain ε12 of the beam,

(ε12,ξ)|ξ=0 = 0, (12.109)

i.e. we set to zero the first derivative of the shear strain at the mid-point
of the edge.

The transverse shear strain of the beam undergoing small rotations is
defined as

ε12 = −ω + w,1, (12.110)

where ( ),1
.= ∂/∂S1, and S1 is the arc-length coordinate in the

direction t1. Hence, ( ),1 = (1/L)( ),ξ, where L is the length of the
boundary. For the approximations of eq. (12.108), the transverse shear
strain becomes

ε12(ξ, η) =
1
L

(w2 − w1 − 4∆w ξ) + M1(ξ) ω1 + M2(ξ) ω2, (12.111)

from which, using the condition (12.109), we obtain

∆w = −L

8
(ω2 − ω1). (12.112)

This is the classical formula for the hierarchical mid-side normal displace-
ment. Then we can write the vector of hierarchical mid-side displacement
for all boundaries as follows:

∆uH
.= −LJK

8
(ωK − ωJ)nJK , H = 5, 6, 7, 8, (12.113)

where J = H − 4, K = mod(H, 4) + 1, and LJK is the length of the
boundary JK. Here, nJK is the vector normal to the initial element
boundary. This formula can be directly used in eq. (12.104), which then
depends only on nodal displacements and on nodal drilling rotations.
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Fig. 12.7 Allman shape functions for large rotations of a selected boundary.

Allman-type shape functions for finite drilling rotation. To determine the mid-
side hierarchical displacement ∆uI in eq. (12.104), we select one bound-
ary of a quadrilateral, e.g. defined by nodes 1-5-2, and consider a planar
beam along it, see Fig. 12.7.

When the rotation ω is large we have to account for both components
of the displacement vectors,

u = u1 t1 + u2 t2. (12.114)

To calculate the hierarchical mid-side displacement ∆u, we can use
two conditions related to the transverse shear strain ε12 of the beam,

(ε12,ξ)|ξ=0 = 0, (ε12,ξξ)|ξ=0 = 0, (12.115)

i.e. we set to zero the first and the second derivatives of the shear strain
at the mid-point of the edge. These conditions were proposed in [255].

The transverse shear strain of a beam undergoing large rotations is
defined as

ε12
.= 1

2x,1 · a2, (12.116)

where x is the current position vector and the current director is
a2

.= Qt2, where Q is the drilling rotation tensor. For small rota-
tions and t1,1 = t2,1 ≈ 0, eq. (12.116) yields the transverse shear strain
of eq. (12.110). However, in the derivation which follows, the magnitude
of rotations is not restricted.

For this reason, instead of the approximation of the normal displace-
ment component w we approximate the whole displacement vector

u(ξ) = M1(ξ)u1 + M2(ξ)u2 + M0(ξ) ∆u, (12.117)
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where ∆u is the hierarchical mid-side displacement vector. The drilling
rotation ω(ξ) is approximated as in eq. (12.108).

We apply these approximations to particular terms of the transverse
shear strain of eq. (12.116), and then separate the constant terms, indi-
cated by “0”, and the terms depending on ξ, in the following way:

1. The derivative of the current position vector is x,1 = (y + u),1 =
t1 + u,1, thus for the assumed shape functions, we obtain

u,1 =
2
L

u,ξ =
2
L

u0
,ξ +

2
L

∆u(−2ξ), (12.118)

where u0
,ξ

.= 1
2(u2 − u1) is the constant part of u,ξ and L is the

side length.
2. The forward rotated director is expressed as a2

.= Q0t2 = c t2 − s t1,
where the drilling rotation tensor Q = c (t1⊗t1+t2⊗t2)+s (t2⊗ t1−
t1⊗t2), s

.= sin ω and c
.= cosω. For the assumed shape functions

ω(ξ) = ω0 + ξ ω,ξ and we obtain

s = sin(ω0 + ξ ω,ξ) = s0 cos(ξ ω,ξ) + c0 sin(ξ ω,ξ),

c = cos(ω0 + ξ ω,ξ) = c0 cos(ξ ω,ξ)− s0 sin(ξ ω,ξ),

where s0
.= sinω0, c0

.= cosω0, for ω0
.= ω(ξ = 0), and the

derivative ω,ξ = 1
2(ω2 − ω1). Hence,

a2 = c t2 − s t1 = cos(ξ ω,ξ)a0
2 − sin(ξ ω,ξ)a0

1, (12.119)

where a0
2

.= c0 t2 − s0 t1 and a0
1

.= s0 t2 + c0 t1.

Next, eqs. (12.118) and (12.119) are inserted into eq. (12.116).

Using the conditions (12.115), we obtain the following components of
∆u:

(∆u·a0
1) =

L

8
ω,ξ

(
t1 +

2
L

u0
,ξ

)
·a0

2, (∆u·a0
2) = −L

4
ω,ξ

(
t1 +

2
L

u0
,ξ

)
·a0

1,

(12.120)
and the hierarchical mid-side displacement vector can be expressed as

∆u = (∆u · a0
1) a0

1 + (∆u · a0
2) a0

2. (12.121)
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Mid-side displacement vector for small strains. If we assume that strains are
small, i.e. (i) ε12 ≈ 0 and (ii) ε11 ≈ 0, then we have

t1 +
2
L

u0
,ξ = (y + uL),1 =

2
L

(y + uL),ξ =
2
L

1
2(x2 − x1)

(i)≈ 2
L

1
2Lc a0

1

(ii)≈ a0
1,

(12.122)
where uL .= M1(ξ)u1 + M2(ξ)u2. Due to assumption (i), the rotated
vector a0

1 is used instead of the vector which passes through nodes, while
by (ii), the current and initial element lengths are equal, i.e. Lc ≈ L.
Because a0

1 · a0
1 = 1 and a0

1 · a0
2 = 0, eq. (12.120) is reduced to

(∆u · a0
1) ≈ 0, (∆u · a0

2) ≈ −L

4
ω,ξ, (12.123)

and the vector of hierarchical displacements of eq. (12.121) is

∆u = −L

4
ω,ξ a0

2 = −L

8
(ω2 − ω1)a0

2. (12.124)

Assuming, additionally, that the rotations are small, i.e. ω0 ≈ 0, we have
c0 ≈ 1 and s0 ≈ 0 and so a0

2
.= c0 t2 − s0 t1 ≈ t2, i.e. the vector

normal to the current boundary a0
2 is replaced by the vector normal to

the initial element boundary t0
2. Thus, for small rotations, eq. (12.124)

yields the classical formula

∆u = −L

4
ω,ξ a0

2 = −L

8
(ω2 − ω1) t0

2. (12.125)

In numerical calculations we use eq. (12.124) in the form valid for all
boundaries,

∆uH
.= −LJK

8
(ωK − ωJ)nJK , H = 5, 6, 7, 8, (12.126)

where J = H − 4, K = mod(H, 4) + 1, and LJK is the length of
the boundary JK. This formula can be directly used in eq. (12.104),
which then depends only on corner displacements and on corner drilling
rotations.

Remark 1. Note that nJK is the vector normal to the current element
boundary, not to the initial one, as in eq. (12.113). Hence, nJK is a
function of nodal displacements, but we freeze this dependence and do not
differentiate nJK w.r.t. nodal displacements. The fact that nJK is
updated is similar to the co-rotational formulation.
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Remark 2. The proposed generalization of the classical procedure leads
to a new form of Allman shape functions, involving two components of
the mid-side displacement. This new form becomes particularly simple for
small strains/large rotations. Using this new form, we can exploit the Total
Lagrangian description and automatic differentiation. For small rotations,
the new form is reduced to the classical one.

Pure bending of Allman quadrilateral. Let us consider the question of whether
the Allman shape functions are able to reproduce the analytical solution
for the problem of pure bending of a square membrane. We assume that
the membrane is 2× 2 and the boundaries are parallel to the global basis
{ik} (k = 1, 2), see Fig. 12.8.

x

h

n34

n12

1

i2

i1

2

34

Fig. 12.8 Pure bending of the Allman quadrilateral.

First, we consider the analytical solution for pure bending of a square
membrane

u(ξ, η) = Aξη, v(ξ, η) = B (1− ξ2), (12.127)

where A and B are scalar coefficients, see [98] p. 244, Fig. 4.7.2. For the
analytical solution, we obtain

• the displacement gradient

∇u .=
[
u,ξ u,η

v,ξ v,η

]
=

[
Aη Aξ
−2Bξ 0

]
, (12.128)

• the linear strain

ε
.= sym∇u =

[
u,ξ

1
2(v,ξ + u,η)

sym. v,η

]
=

[
Aη 1

2(A− 2B) ξ
sym. 0

]
.

(12.129)
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Next, we consider the Allman element. For pure bending, the rotations
of corner nodes are as follows:

ω1 = ω, ω2 = −ω, ω3 = −ω, ω4 = ω (12.130)

and the differences of rotations are

ω2 − ω1 = −2ω, ω3 − ω2 = 0, ω4 − ω3 = 2ω, ω1 − ω4 = 0.

From eq. (12.126) we obtain ∆u6 = 0 and ∆u8 = 0, i.e. the mid-
side displacements for the sides which remain straight in pure bending are
equal to zero. Thus, we consider only the sides which change the curvature,
for which n12 = −i2, n34 = i2, and L12 = L34 = 2 and

∆u5
.= −L12

8
(ω2 − ω1) (n)12 = −2

8
(−2ω) (−i2) = −1

2
ω i2, (12.131)

∆u7
.= −L34

8
(ω4 − ω3) (n)34 = −2

8
(2ω) i2 = −1

2
ω i2, (12.132)

i.e. their mid-side displacements are equal, in accordance with our in-
tuition. Substituting these expressions into eq. (12.104), we obtain the
following form of the hierarchical part of displacements

8∑

H=5

NH(ξ, η) ∆uH = N5(ξ, η) ∆u5 + N7(ξ, η) ∆u7 = vA i2, (12.133)

where vA(ξ) .= −1
2(1 − ξ2) ω = −1

2M0(ξ) ω is the displacement compo-
nent in the i2 direction which depends on the bubble function M0(ξ) and
the drilling rotation ω. Hence, eq. (12.104) can be separately written for
each component as follows:

u(ξ, η) = u0 + ξ u1 + η u2 + ξη u3, (12.134)

v(ξ, η) = v0 + ξ v1 + η v2 + ξη v3 − 1
2
(1− ξ2) ω, (12.135)

where the contribution of vA(ξ) is underlined. For the above approxi-
mations, we obtain

• the displacement gradient

∇u .=
[
u,ξ u,η

v,ξ v,η

]
=

[
u1 + η u3 u2 + ξ u3

v1 + η v3 + ξ ω v2 + ξ v3

]
, (12.136)
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• the linear strain

ε
.= sym∇u =

[
u,ξ

1
2(v,ξ + u,η)

sym. v,η

]
=

[
u1 + η u3 ε12

sym. v2 + ξ v3

]
,

(12.137)
where 2ε12 = (u2 + v1) + ξ u3 + η v3 + ξ ω.

The vA appears only in v,ξ and ε12. Besides, the 11 and 22 compo-
nents of ∇u and ε are incomplete linear polynomials of ξ and η.

Remark. We can compare eqs. (12.136) and (12.137) for the Allman
shape functions with eqs. (12.128) and (12.129) for the analytical solu-
tion. Concerning the displacement gradient (∇u)12, we see that the ξ ω
term introduced by vA is necessary to reproduce the analytical solution.
The effect of this term is similar to that of the EADG2 enhancement for
the Q4 element,

Gξ =
[

0 q2η
q1ξ 0

]
. (12.138)

On the other hand, the strain representation is sufficient to reproduce
the analytical solution, even without using the Allman shape functions.
Nonetheless, the ξω term introduced into ε12 by the component vA

positively de-enhances it, similarly to the EADG2 enhancement. The close
relation between the Allman shape functions and the EADG2 enhance-
ment is also confirmed by numerical tests.

12.7.2 EADG2x enhancement of Allman quadrilateral

The study of a 2D beam under the in-plane shear load of Sect. 7.2.1,
Table 7.1, provides a rational background for using specific enhancing
strain modes for the Allman quadrilateral. The strain recovery can be
interpreted as a form of strain enhancement in which we add two modes,
{1, ζ}, to the normal strain E33 and where {ε33, κ33} are multipliers,
see eq. (7.85). Only the recovery of κ33 and the ζ-mode are important for
bending, which is the observation crucial for selecting proper enhancing
modes for the Allman element.

The Allman element (standard, without enhancement) identically per-
forms in the above numerical test as the beam without the κ33 recovery.
Hence, we can enhance the Allman element using the EADG method, see
Sect. 11.4.3, and the following two modes,
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Gξ =
[
ξ q1 0
0 η q2

]
, (12.139)

designated as EADG2x. In consequence, the strain components ε11 and
ε22 are enhanced, as shown below.

For simplicity, we consider a square 2 × 2 element, with the center
located at the origin of the Cartesian coordinate system. Then the Carte-
sian coordinates are equal to the natural coordinates, i.e. x = ξ and
y = η, and the Jacobian matrix is an identity matrix. Then, for the
EADG method, eq. (11.71) is reduced to H̃ .= Gξ. For eq. (11.70), the
linear strain can be split into two parts

E = 1
2(F + FT − 2 I) = 1

2 [∇u + (∇u)T ] + 1
2(H̃ + H̃T ), (12.140)

where the strain enhancement

1
2(H̃ + H̃T ) =

[
ξ q1 0
0 η q2

]
. (12.141)

We see that the strain components ε11 and ε22 are indeed enhanced.

12.7.3 Special techniques for Allman quadrilateral

Even if we use the classical Allman shape functions and do not use the
EADG2x enhancement, we still need to implement the two techniques
which are described below.

Stabilization of spurious modes. A characteristic feature of Allman quadri-
laterals are additional zero eigenvalues.

+1

+1

+1

+1

Mode Q1

+1

+1-1

-1

Mode Q2

Fig. 12.9 Spurious modes Θ1 and Θ2 for Allman’s quadrilateral.



358 Plane four-node elements with drilling rotation

1. If the formulation is based on the potential energy functional, then
the two spurious modes shown in Fig. 12.9 are obtained. These modes
can be eliminated using the penalty method and, e.g., the stabilization
functions of [144],

P1 = 10−6 GV Θ2
1, Θ1

.=
1
4

4∑

I=1

(ωI − ωc), ωc
.= 1

2(ux,y − uy,x)c,

(12.142)

P2 = 10−3 G V Θ2
2, Θ2

.=
1
4
(ω1 − ω2 + ω3 − ω4), (12.143)

where ωI are the nodal rotations and V is the element volume.
Note that ωc is identical to that obtained from the linearized drill
RC equation at the element’s center. It seems, however, that the form
of Θ1 should rather be Θ1

.=
(

1
4

∑4
I=1 ωI

)
− ωc.

The tangent matrix yielded by P2 is as follows:

Kstab
ωω =

1
8
10−3 GV

︸ ︷︷ ︸
multiplier




1 −1 1 −1
−1 1 −1 1

1 −1 1 −1
−1 1 −1 1


 . (12.144)

Its eigenvalues are {4, 0, 0, 0} × multiplier, i.e. only one eigenvalue is
non-zero.

2. If the formulation is based on the functional incorporating the drill
RC equation, then only one spurious mode is obtained. It is identical
to Θ2 and is eliminated by eq. (12.143). It suffices to enforce the drill
RC at one point to obtain the correct rank and the center of element
is a natural choice.
Note that eq. (12.143) can be rewritten as Θ2

.= 1
4h · ωI , where

h .= [1,−1, 1,−1] is the hourglass mode. After implementation of this
function, the number of zero eigenvalues is three for our elements.

Adaptation of procedure of [Jetteur, Frey, 1986]. The Allman quadrilaterals
have problems with passing the membrane patch test for the boundary
conditions b2 and b3 described in Sect. 15.2.3. This problem can be
circumvented by the procedure of [117]. Below, this procedure is gener-
alized to also work for non-linear strains.

In [117], the part of membrane strains computed from the drilling ro-
tation ω is modified as follows:

ε̃(ω) = ε(ω)− 1
A

∫

A
ε(ω) dA, (12.145)
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where ε(ω) is the strain obtained from the hierarchical displacements

u(ωI)
.=

8∑

H=5

NH(ξ, η) ∆uH (12.146)

of eq. (12.104) and A is the element area. We see that, in eq. (12.145),
the average value of ε(ω) for the element is subtracted from ε(ω), with
the purpose of minimizing the effect of ε(ω) on the constant strains
which are checked in the patch test. Consider two cases:

• For linear strains, ε
.= sym∇u, and eq. (12.145) can be replaced by

B̃I ωI =
(
BI − 1

A

∫

A
BI dA

)
ωI , (12.147)

where BI
.= ∂ε(ωI)/∂ωI , see [235], eq. (5.1)–(5.6).

• For non-linear strains, ε(ωI) is complicated and therefore we re-
place eq. (12.145) by the formula for the gradient of the displacements
depending on ωI , i.e.

∇̃u(ωI) = ∇u(ωI)− 1
A

∫

A
∇u(ωI) dA, (12.148)

where the integral is evaluated by a 2 × 2 Gaussian quadrature. This
formula enabled our Allman elements to pass the patch tests for the
boundary conditions b2 and b3, see Table 15.4.

This procedure slightly changes some of the eigenvalues but does not
change the number of zero eigenvalues.

12.7.4 Allman+EADG2x elements

The Allman+EADG2x element is based on the Green strain and is valid
for large drilling rotations. It uses the EADG2x enhancement and was
developed using the techniques of Sect. 12.7.3. The drill RC was enforced
at the element’s center.

The extended functionals with drilling rotations are used to formulate
two elements:

1. Element Allman+EADG2x+P which has the following features:
a) the penalty method is implemented as specified in Table 12.4,
b) it uses two additional parameters, which are multipliers of the en-

hancing modes.
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2. Element Allman+EADG2x+PL which has the following features:
a) the Perturbed Lagrange method is implemented as specified in Ta-

ble 12.5. Only one parameter is used in the representation of the
Lagrange multiplier of eq. (12.57), i.e. Ta(ξ, η) .= q0, so eq. (12.56)
becomes

Ta = JLc

[
0 q0

−q0 0

]
JT

Lc. (12.149)

b) it uses three additional parameters: two multipliers of the enhanc-
ing modes, and one parameter of the Lagrange multiplier.

These elements have a correct rank and pass the patch test for all types of
boundary conditions. As indicated by the numerical results of Table 12.6,
these elements have the following features: (i) their rotations converge
from above, while displacements converge from below, (ii) they perform
quite well for coarse distorted meshes but they are not top performers.

Finally, we note that the Allman-type 2D+drill elements can be used
as the membrane part of the four-node shell element with six dofs/node.
Typically, they are used in “flat” shell elements, e.g. in [3, 57], due to
the lack of Allman shape functions for initially warped elements. For the
latter elements, the curvature (warping) correction must be applied, as in
[117, 235]; this topic is addressed in Sect. 14.

12.8 Numerical tests

Below are presented the most indicative numerical tests related to the
implementation of the drilling rotation; other tests can be found in [43,
57, 56, 266, 102].

12.8.1 Comparison of various elements

All the tested 2D+drill elements have a correct rank and pass the patch
test for all types of boundary conditions for the drilling rotation of Ta-
ble 15.4.

Cook’s membrane. The performance of 2D and 2D+drill elements is com-
pared in Cook’s membrane test, which is very demanding, see Sect. 15.2.7.

Two meshes are used in computations; a coarse 2×2-element mesh and
a fine 32×32-element mesh. The regularizing parameter γ = G. The ver-
tical displacements and the drilling rotation at point A, see Fig. 15.9, are
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given in Table 12.6. The results for the penalty (P) method and the Per-
turbed Lagrange (PL) method are identical, which is indicated as P=PL.

We see that the best coarse mesh performance in the class of the
2D+drill elements is provided by the elements HR7-S+EADG2 and HW18-
SS+EADG2. Among the elements using a small number of additional
parameters, the EADG4 element is better than the HR5-S element; the
converse is true for their 2D counterparts.

Table 12.6 Cook’s membrane. Linear test. γ = G.

Formulation Element Mesh 2× 2 Mesh 32× 32
uy ω uy ω

2D Q4 11.845 - 23.818 -
2D+drill Q4 (P=PL) 11.173 0.316 23.790 0.876
2D EADG4 21.050 - 23.940 -
2D+drill EADG4 (P=PL) 20.940 0.879 23.936 0.891
2D HR5-S 21.353 - 23.940 -
2D+drill HR5-S (P=PL) 18.495 0.634 23.911 0.881
2D HR7-S+EADG2 21.353 - 23.940 -
2D+drill HR7-S+EADG2 (P=PL) 21.263 0.899 23.936 0.890
2D HW14-SS 21.353 - 23.940 -
2D+drill HW14-SS (P=PL) 18.490 0.634 23.911 0.881
2D HW18-SS 21.353 - 23.940 -
2D+drill HW18-SS+EADG2 (P=PL) 21.237 0.895 23.936 0.891
2D+drill Allman+EADG2x (P=PL) 20.253 1.109 23.930 0.899
Ref. 23.81 23.81

12.8.2 Selection of the value of regularization parameter

Below, we establish the effect of the value of the regularization parameter
in order to select the most suitable value for it.

In the tests we use the four-node EADG4 element with the drill RC
part, in which we use the Perturbed Lagrange method with the local
multipliers, implemented as described in Table 12.5, and eliminated on
the element’s level.

Straight cantilever beam. This test is described in Sect. 15.2.6. Here the
in-plane shear load is considered and four meshes are tested, of either 6×1
or 12× 2 elements, and of either rectangular or trapezoidal elements.

The vertical displacements and the drilling rotation at the end of can-
tilever are shown for γ ∈ [100, 1015] in Fig. 12.10 and we note a deterio-
ration of accuracy for trapezoidal elements. For the 12× 2 element mesh,
the dependence on the regularization parameter γ varies. Three selected
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values of this parameter, G, G/10, G/100, are marked in this figure by
vertical lines. We see that γ = G/100 yields a slightly better accuracy
than γ = G/10, and clearly better than γ = G.
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Fig. 12.10 Straight cantilever beam. Effect of γ for various shapes of elements.
a) vertical displacement at point A, b) drilling rotation at point A.

Cook’s membrane. In this test, elements are skew and tapered and the
shear deformation dominates, see Sect. 15.2.7. Three meshes are used in
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computations: 2 × 2, 4 × 4, and the fine 32 × 32-element mesh which is
used for reference.

The vertical displacement and drill rotations are shown for γ ∈
[10−10, 1010] in Fig. 12.11. Three selected values of γ are marked
in this figure by vertical lines G, G/10 and G/100. For the displacement,
the conclusion is similar to that of the previous example, i.e. γ = G/100
yields the best accuracy. For the drilling rotation, the plots are too com-
plicated to be the basis for any conclusion.
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Fig. 12.11 Cook’s membrane. Effect of γ for various meshes.
a) Vertical displacement at point A, b) drilling rotation at point A.
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Bending of slender cantilever by end drilling rotations. This test checks whether
the drilling rotation is correctly linked with displacements and transferred
between elements. The drilling rotation ω∗ = 1.2×10−3 is prescribed at
two tip nodes of a slender cantilever, see Fig. 12.12. The mesh consists of
1× 100 elements, and the elements are 1× 1 squares. The geometry and
data are defined in Sect. 15.3.1.

The vertical displacements are monitored at the tip nodes where the
drilling rotations are applied and they are identical for both nodes. The
reference value is the Timoshenko beam solution uy = 0.06. The depen-
dence on γ ∈ [100, 1015] is shown in Fig. 12.13.

Three selected values of γ are shown in this figure by vertical lines
G, G/10 and G/100. The best accuracy yields γ = G. An identical
conclusion is obtained for the horizontal displacement.
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Fig. 12.12 Slender cantilever loaded by end rotations. 100 of 1× 1 elements.
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Fig. 12.13 Bending of cantilever by end drilling rotation. Effect of γ.

Conclusion. These three tests indicate that if elements are rectangular,
then the value γ = G should be used, while for the elements of distorted
irregular shape the reduced value γ = G/100 seems to be optimal.
Finally, we note that the reduced value of γ is also beneficial for the
warped elements described in Sect. 14.
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