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Plane four-node elements (without
drilling rotation)

In this chapter, we describe techniques used to derive plane (2D) four-
node elements with translational degrees of freedom, but without drilling
rotations. Such elements are relatively simple so can be used to test the
concepts which are later incorporated into either the 3D or shell elements.

The 2D elements can be directly used as a membrane part of the shell
elements without drilling rotations, i.e. either in the shell elements with
five dofs/node or in the “solid-shell” elements (without rotational dofs).
However, the 2D elements are flat so for the warped shell elements, the
formulation must be generalized as described in Sect. 14.

11.1 Basic equations

Consider the classical configuration space of the non-polar Cauchy con-
tinuum defined as C .= {χ : B → R3}, where χ is the deformation
function defined on the reference configuration of the body B.

Basic functionals. The following functionals are used in this chapter:

1. The three-field Hu–Washizu (HW) functional.
A. For linear elastic materials, we can use the classical form of the
HW functional

FHW(u,σ, ε) .=
∫

B
{W(ε) + σ · [E(∇u)− ε]} dV − Fext, (11.1)

where W(ε) is the strain energy expressed by the independent strain
ε and the stress σ plays the role of the Lagrange multiplier of the
relation involving the independent strain ε and the Green strain
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E(u), which is a function of the displacement u. At the solution,
we have ε = E(∇u) and σ = S, where S is the second Piola–
Kirchhoff stress tensor. Fext is the potential of the body force, the
external loads, and the displacement boundary conditions.

B. For non-linear materials, the constitutive operator C(ε) .=
∂2W(ε)/(∂ε)2 depends on strain ε and we can use it only with
increments. We write the displacements, stress, and strain in the in-
cremental form

ui = ui−1 + ∆u, σi = σi−1 + ∆σ, εi = εi−1 + ∆ε, (11.2)

where i, i − 1 are iteration indices and the increment ∆(·) .=
(·)i − (·)i−1. Inserting these formulas into eq. (11.1), we obtain an
incremental HW functional

F ∗
HW(∆u,∆σ,∆ε) .=

∫

B
{W(ε + ∆ε)

+ (σ + ∆σ) · [E (∇(u + ∆u))− (ε + ∆ε)]} dV − Fext, (11.3)

where the index (i− 1) was omitted for clarity.
2. The two-field Hellinger–Reissner (HR) functional. A. For linear elastic

materials, we can use the classical form of the HR functional

FHR(u, σ) .=
∫

B

[−1
2σ · (C−1σ) + σ ·E(u)

]
dV − Fext. (11.4)

This functional is obtained as follows. For the linear elastic material,
the strain energy is W .= 1

2ε · (Cε) = 1
2ε · σ, where C is the

constitutive operator. Then, using ε = C−1σ, we obtain

W − σ · ε = −1
2σ · ε = −1

2σ · (C−1σ).

By using this expression in the HW functional of eq. (11.1), we obtain
the classical form of the HR functional of eq. (11.4).

B. For non-linear materials, the constitutive operator C(ε) .=
∂2W(ε)/(∂ε)2 depends on strain ε and we can use it only with
increments. We write the displacements, stress, and strain in the in-
cremental form

ui = ui−1 + ∆u, σi = σi−1 + ∆σ, εi = εi−1 + ∆ε, (11.5)
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where i, i− 1 are iteration indices and the increment ∆(·) .= (·)i−
(·)i−1. The strain increment is expressed by an inverse constitutive
equation

∆ε = (Ci−1)−1 ∆σ, Ci−1 .= C(εi−1). (11.6)

Inserting these formulas into the Hu–Washizu functional of eq. (11.1),
we obtain an incremental HR functional

F ∗
HR(∆u,∆σ) .=

∫

B

{W (
ε + C−1∆σ

)

− (σ + ∆σ) · [ε + C−1∆σ −E(u + ∆u)
]}

dV − Fext, (11.7)

where the index (i − 1) was omitted for clarity. This functional
depends on two fields, similarly as in the classical HR functional of
eq. (11.4). The values from the previous (i− 1)th iteration, i.e. u, σ
and ε, must be stored as history variables.

3. The potential energy (PE) functional.

FPE(u) .=
∫

B
W(u) dV − Fext, (11.8)

where W(u) is the strain energy expressed by displacements u. This
functional is obtained from eq. (11.1) assuming that ε = E(u), for
which the term with stress vanishes. Then W(ε) = W(E(u)) = W(u).

These three functionals form the basis of the elements developed in the
next sections.

Strain energy and constitutive equation. Assume that the strain energy den-
sity W, defined per unit non-deformed volume, is a function of the
right Cauchy–Green deformation tensor C .= FTF, where F is the
deformation gradient, so that the objectivity requirement is satisfied. The
constitutive law for the second Piola–Kirchhoff stress S is as follows:

S = 2 ∂CW(C). (11.9)

The work conjugate to S is the Green strain E .= 1
2(C− I). The con-

stitutive tangent operator is defined as C .= ∂S/∂E = ∂2W(E)/(∂E)2.

The two-dimensional (2D) incremental constitutive equations and the
constitutive operator can be obtained by applying the plane stress condi-
tion to the incremental constitutive equation written for 3D strains and
stresses, see Sect. 7.2.1.
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Natural basis at the element’s center. The position vector in the initial con-
figuration is approximated as

y(ξ, η) =
4∑

I=1

NI(ξ, η) yI , (11.10)

where NI(ξ, η) are the bilinear shape functions of eq. (10.3) and ξ, η ∈
[−1, +1] are natural coordinates.
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Fig. 11.1 Natural basis at the element’s center {gc
k} and the reference basis {ik}.

The vectors of the natural basis are defined as in eq. (10.15),

g1(ξ, η) .=
∂y(ξ, η)

∂ξ
, g2(ξ, η) .=

∂y(ξ, η)
∂η

, (11.11)

and the vectors of the natural basis at the element’s center, i.e. {gc
k}

(k = 1, 2), are defined as

gc
1

.= g1|ξ,η=0 , gc
2

.= g2|ξ,η=0 . (11.12)

In general, gc
1 and gc

2 are neither unit nor orthogonal, see Fig. 11.1.
The co-basis vectors gk

c are defined as in eq. (10.47), by the relation
gk

c · gc
l = δk

l (l = 1, 2).

In the reference Cartesian basis {ik}, we have y = xi1 + yi2, and
the global Jacobian matrix is

J .=

[
∂x
∂ξ

∂x
∂η

∂y
∂ξ

∂y
∂η

]
=

[
g1 · i1 g2 · i1
g1 · i2 g2 · i2

]
, (11.13)

where g1, g2 are the vectors of the natural basis of eq. (11.11).
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11.2 Displacement element Q4

The basic four-node element derived from the PE functional for displace-
ments approximated by bilinear shape functions, is designated as Q4. The
displacements preserve inter-element continuity, i.e. are compatible, and
the neighboring elements are congruent (conform). However, accuracy of
Q4 is so poor that is of no practical importance.

Compatible displacements, deformation gradient and Green strain. The posi-
tion vector in the initial configuration and the compatible displacements
for the four-node quadrilateral are approximated as

y(ξ, η) =
4∑

I=1

NI(ξ, η) yI , uc(ξ, η) =
4∑

I=1

NI(ξ, η) uI , (11.14)

where NI(ξ, η) .= 1
4(1 + ξI ξ) (1 + ηI η) are the bilinear shape functions,

ξ, η ∈ [−1, +1] are natural coordinates and I designates the corner nodes.
The deformation gradient is defined as

Fc =
∂(y + uc)

∂ξ

∂ξ

∂y
= Fξ J−1, (11.15)

where Fξ
.= ∂(y + uc)/∂ξ, J .= ∂y/∂ξ is the Jacobian matrix and

ξ
.= [ξ, η]T . Then the compatible Green strain in the global frame is

Ec = 1
2(FcTFc − I) = 1

2

[
J−T (FT

ξ Fξ) J−1 − I
]
. (11.16)

The vectors and matrices of components used above are expressed in the
global reference basis {ik}.

Global and local forms of deformation gradient and Green strain. Below, vectors
and matrices of components are considered and the index “G” indicates
that the components are in the global reference basis, while “L” indicates
that they are in the local Cartesian basis at the element’s center. Define
the local position vectors and the local displacements as follows:

yL
.= RT

0c yG, uc
L

.= RT
0c uc

G, (11.17)

where R0c ∈ SO(3) defines the position of the local frame in the global
reference frame. Then,
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JG
.=

∂yG

∂ξ
=

∂(R0cyL)
∂ξ

= R0c
∂yL

∂ξ
= R0cJL,

∂(yG + uc
G)

∂ξ
= R0c

∂(yL + uc
L)

∂ξ

and the deformation gradient can be expressed as

Fc
G =

∂(yG + uc
G)

∂ξ

∂ξ

∂yG

= R0c Fc
L RT

0c, (11.18)

where

Fc
L

.=
∂(yL + uc

L)
∂ξ

J−1
L (11.19)

is the local form of the deformation gradient. In a similar manner, the
Green strain can be expressed as

Ec
G

.= 1
2 [FcT

G Fc
G − I] = 1

2

[
RT

0c (Fc
L)T Fc

L R0c − I
]

= RT
0c Ec

L R0c, (11.20)

where
Ec

L
.= 1

2

[
(Fc

L)T Fc
L − I

]
(11.21)

is the local form of the Green strain. The local Fc
L and Ec

L can be
used to derive the local tangent matrix and the residual vector, which is
more convenient. Afterwards, the matrix and the vector must be rotated
to the global basis.

Approximation of strains in Q4. The bilinear approximations of displace-
ment components can be written as

u(ξ, η) = u0+ξ u1+η u2+ξη u3, v(ξ, η) = v0+ξ v1+η v2+ξη v3, (11.22)

where ξ, η ∈ [−1,+1] and the coefficients ui and vi (i = 0, 1, 2, 3)
are functions of the nodal displacement components.

Consider a bi-unit (2×2) square element, for which the position vector
components are x = ξ and y = η, and the Jacobian matrix is the
identity matrix. Then we have the following approximations:

• the displacement gradient,

∇u .=
[
u,ξ u,η

v,ξ v,η

]
=

[
u1 + η u3 u2 + ξ u3

v1 + η v3 v2 + ξ v3

]
, (11.23)
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• the linear strain,

ε
.= sym∇u =

[
u1 + η u3

1
2 [(u2 + v1) + ξ u3 + η v3]

sym. v2 + ξ v3

]
. (11.24)

We see that ε11 and ε22 are incomplete linear polynomials of ξ and
η, while the shear strain ε12 is a complete linear polynomial.

Despite the completeness of ε12, the Q4 element performs poorly in
tests involving shear strains. When ε12 is calculated (sampled) only at
the element center and this value is used to approximate the whole field
within the element, i.e.

ε12(ξ, η) ≈ (ε12)c, (11.25)

then the element still has a correct rank and the results are improved,
see numerical results for the AS12 element in [256]. This feature leads to
the concept of the “one-integration point” elements. The accuracy of the
AS12 element is worse than of the elements discussed in the next sections.

Fig. 11.2 Pure bending: a) exact deformation, b) deformation of Q4 element.

Another observation made in [248] is that the quadratic terms are
missing in eq. (11.22), so pure bending of the element cannot be properly
represented, see Fig. 11.2.

11.3 Solution of FE equations for problems with additional
variables

Improved formulations of four-node element. A lot of research has been de-
voted to improving the formulation of a four-node element and two direc-
tions were taken:

1. approximations of strains were enhanced, leading to the enhanced
strain methods, see Sect. 11.4. The stress was eliminated from these
formulations.
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2. Mixed HR and HW functionals were applied instead of the PE func-
tional, leading to the mixed methods, see Sect. 11.5. The stress was
retained in these formulations.

Both these directions are combined by the mixed/enhanced methods.

Set of equations for problems with additional variables. For the considered
classes of methods, the governing functional F depends on two sets
of variables: the nodal displacements uI and the elemental multipliers q.

For kinematically non-linear problems, the stationarity condition of
F (uI ,q) yields a system of equilibrium equations for an element,

ru
.=

∂F (uI ,q)
∂uI

= 0, rq
.=

∂F (uI ,q)
∂q

= 0. (11.26)

The linearized (Newton) form of these equations is as follows:
[

K L
LT Kqq

] [
∆uI

∆q

]
= −

[
ru

rq

]
, (11.27)

where

K .=
∂ru

∂uI
, L .=

∂ru

∂q
, Kqq

.=
∂rq

∂q
. (11.28)

To eliminate ∆q at the element level, we calculate it from the second
of eq. (11.27) as follows:

∆q = −K−1
qq (rq + LT ∆uI) (11.29)

and, next, we use it in the first equation, which yields

K∗ ∆uI = −r∗, (11.30)

where
K∗ .= K− LK−1

qq LT , r∗ .= ru − LK−1
qq rq. (11.31)

Subsequently, K∗ and r∗ are aggregated for all elements and the
global set of equations is solved for ∆uI . Then we update the nodal
displacements uI = uI +∆uI . The elemental multipliers q are treated
as described below.
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Remark. Note that the system of equations (11.27) written for all ele-
ments is solvable if the matrix Kqq for each element and the matrix
K∗ for all elements additionally modified by boundary conditions, are
invertible. Note that eigenvalues of the non-reduced tangent matrix of
eq. (11.27) are different from those of matrix K∗ of eq. (11.30).

Schemes of update of multipliers. Several update schemes of the vector of
multipliers can be developed and each requires specific storage and im-
plementation. We have implemented and tested two update schemes; in
both, the update q = q+∆q is local, i.e. it is performed in each element
separately.

Scheme U1. In this scheme, the storage space is minimal, as we store only
one vector q. For the iteration i, we use eq. (11.29) in the following
form:

(∆q)i = −K−1
qq

(
rq + LT ∆ui−1

I

)
, qi = qi−1 + (∆q)i, (11.32)

where Kqq, rq and L are calculated for (ui−1
I ,qi−1). This update

is performed just after the local matrices have been generated and the
updated qi is stored. Note that so-updated multipliers are not used
until the next iteration, i + 1, and qi is obtained for ∆ui−1

I , so the
difference is of two iterations!

We tested that this scheme performs better (less often causes diver-
gence) if the update is performed only in the first iteration of each step.
(For the convergent solution of the previous step, ∆ui−1

I ≈ 0, and then
we can omit the last term in the above equation.)

Scheme U2. This scheme is more exact than the previous one because it
uses the last increment ∆ui

I , but requires more storage. It is equivalent
to the one globally treating q, in the same way as uI , instead of
eliminating it at the element’s level. The advantage of the scheme U2 over
such a global treatment is that to invert Kqq, we can use a specialized
solver and retain an effective band-profile solver for the global equations.
Let us rewrite eq. (11.29) as follows:

∆q = −K−1
qq rq︸ ︷︷ ︸
.
=v

+ K−1
qq LT

︸ ︷︷ ︸
.
=A

∆uI , (11.33)
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where v and A are updated and stored. Hence, we have to store
vectors q and v of dimension nM, and a matrix A of dimension nM
× nst, where nM is a number of additional modes and nst is a number
of dofs/element (nst = 8 for four-node element with two dofs/node). The
update is performed before the local matrices are generated, as follows:

1. retrieve v and A,
2. calculate

(∆q)i = −v + A ∆ui−1
I , qi = qi−1 + (∆q)i, (11.34)

for the last available ∆ui−1
I ,

3. generate the local elemental matrices and vectors.

As a by-product of step 3, we obtain the updated v and A, which we
store for the next step.

The convergence rate for both these schemes is compared in [256, 257],
for the slender cantilever example of Sect.15.3.1. The scheme U1 per-
forms reasonably well only for the enhanced strain elements; the use of
scheme U2 appears to be crucial for mixed elements.

Remark. Finally, we mention that the matrix Kqq is symmetric and
sparse and we can use these properties to effectively compute its inverse.
Besides, we note that to find qi, we can use another approach and
directly solve the set of equations rq = 0 for fixed uI . This can be a
useful approach, e.g., in dynamics and an explicit time-integration scheme.

11.4 Enhanced strain elements based on potential energy

The class of the enhanced strain methods is based on the technique of
adding additional terms either to displacements, or strains, or the dis-
placement gradient, with the purpose of improving the element’s perfor-
mance.

In all the methods described below, the multipliers q are associated
with the element (not with the nodes) and are eliminated (condensed out)
on the element level. They are discontinuous across the element bound-
aries.
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11.4.1 ID4 element

The incompatible displacements (ID) method was proposed in [248] to
improve the behavior of the Q4 element in pure bending, see Fig. 11.2.
Later, it was discovered that the ID element does not pass the patch test
for distorted meshes and a correction was proposed in [234]. From today’s
perspective, the idea of the ID method was ingenious and the whole class
of the enhanced strain methods stems from it.

In the ID method, the assumed incompatible displacements are added
to the compatible ones as follows:

u(ξ, η)︸ ︷︷ ︸
enhanced

.= uc(ξ, η)︸ ︷︷ ︸
compatible

+ uinc(ξ, η)︸ ︷︷ ︸
incompatible

. (11.35)

Original formulation. In the original paper, the incompatible displacements
are assumed in the following form:

uinc(ξ, η) .= i1 uinc(ξ, η) + i2 vinc(ξ, η), (11.36)

where [
uinc(ξ, η)

vinc(ξ, η)

]
.=

[
q1 P1(ξ) + q3 P2(η)

q2 P1(ξ) + q4 P2(η)

]
. (11.37)

and the quadratic (bubble) modes P1(ξ)
.= 1− ξ2 and P2(η) .= 1− η2.

Four multipliers qi are used, see Fig. 11.3. The incompatible displace-
ments are assumed in the Cartesian basis {ik}, similarly to the compat-
ible displacements.

P
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Fig. 11.3 Incompatible modes P1 and P2.

The effect of introducing the incompatible displacements can be shown
as follows. Consider a bi-unit (2×2) square element, for which the position
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vector components are x = ξ and y = η and the Jacobian matrix is
the identity matrix. Then, for the incompatible displacements, we obtain

• the “incompatible” displacement gradient,

∇uinc .=

[
uinc

,ξ uinc
,η

vinc
,ξ vinc

,η

]
= −2

[
q1ξ q3η
q2ξ q4η

]
, (11.38)

• the “incompatible” linear strain,

εinc .= sym∇uinc = −2
[

q1ξ
1
2(q2ξ + q3η)

sym. q4η

]
. (11.39)

Note that εinc
11 and εinc

22 of (11.39) enhance the compatible ε11 and ε22

of eq. (11.24), so these components become complete linear polynomials.
The role of the shear component εinc

12 is different; it rather de-enhances
the compatible ε12, in which the ξ and η terms were already present.
Nonetheless, this de-enhancement is beneficial and significantly improves
accuracy in tests involving the in-plane shear. It is more effective than the
sampling of ε12 at the element’s center of eq. (11.25).

Modified formulation. Element ID4. We can define the incompatible displace-
ments in the natural basis at the element’s center {gc

k} of Fig. 11.1,

uinc(ξ, η) .= gc
1 uinc(ξ, η) + gc

2 vinc(ξ, η), (11.40)

which can be rewritten as
[
uinc

C

vinc
C

]
= Jc

[
uinc

vinc

]
, (11.41)

where Jc is the Jacobian matrix of eq. (11.13) at the element’s center,
and uinc

C , vinc
C are the components in the Cartesian basis {ik}. The

last form is obtained by using gc
1 = (gc

1 · i1)i1 + (gc
1 · i2)i2 and gc

2 =
(gc

2 · i1)i1 + (gc
2 · i2)i2, by separation of terms multiplied by i1 and i2.

The discrete FPE functional depends on two sets of variables: the
nodal displacements uI and the elemental multipliers q of the incom-
patible displacement modes. The obtained set of FE equations is given
by eq. (11.27) and to update the stress multipliers, the scheme U2 of
eq. (11.34) should be used.



280 Plane four-node elements (without drilling rotation)

Variational basis of the ID method. We can write the PE functional of
eq. (11.8) for the enhanced displacements,

FPE(uenh) .=
∫

B
W(uenh) dV − Fext, (11.42)

on use of eqs. (11.35) and (11.40), which furnishes a general formula. The
original ID method was developed for small strains and the SVK material,
for which the strain energy can be written as

W(uenh) .= 1
2

∫

B
(εc

v + εinc
v )T C (εc

v + εinc
v ) dV , (11.43)

where εc
v

.= εv(uc), εinc
v

.= εv(uinc). Here, (·)v denotes a vector of
tensorial components. The obtained set of FE equations has the structure
given by eq. (11.27), where

K .=
∫

B
BTCBdV , L .=

∫

B
BTCGdV , Kqq

.=
∫

B
GTCGdV ,

(11.44)
ru = −p, rq = 0.

The tangent operators are defined as

B .= ∂εc
v/∂uI , G .= ∂εinc

v /∂q, (11.45)

where B is for compatible strains, while G for incompatible strains.
Besides, p is the vector of external loads.

The stress for the linear material is obtained in the ID method as
follows:

σenh
v

.= ∂W(uenh)/∂εenh
v = C (εc

v + εinc
v ). (11.46)

Sufficient condition to pass the patch test. The incompatible modes are
quadratic functions and yield the incompatible strains which are linear,
see eq. (11.39). Hence, these modes should not be activated in the patch
test, in which the strains are constant. This leads to the requirement that
the formulation of the ID element should yield q = 0 in this test and,
generally, for any nodal displacements uI generating constant strains.

It can be shown that to obtain q = 0 in the constant strain patch
test, it suffices to satisfy the condition

∫

B
GdV = 0, (11.47)
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by the reasoning of [234], which we outline below. From the second of
eq. (11.27), we can calculate

q = −K−1
qq LT uI . (11.48)

To obtain q = 0, we may require the condition LTuI = 0 to be
satisfied. By the definition of L of eq. (11.44),

LTuI =
∫

B
GT (CBuI) dV =

∫

B
GT σ dV , (11.49)

where σ
.= C (BuI) is the stress, as BuI is the strain in a kine-

matically linear problem. In the patch test, the nodal displacements yield
a constant strain and, hence, for a constant C, also the stress σ is
constant and can be taken away from under the integral, which yields the
condition of eq. (11.47). This condition is enough to yield LTuI = 0,
q = −K−1

qq LTuI = 0, and to pass the constant strain patch test.

The original version of the ID method of [248], based on eq. (11.36),
did not pass the patch test for elements of distorted initial geometry (non-
parallelograms) and was subsequently corrected in [234] by using the Jaco-
bian matrix at the element’s center and the modified Jacobian inverse, see
eq. (11.50). In the modified version of the ID method of eq. (11.41), only
the second of these corrections is necessary because the Jc is present as
a natural consequence of the use of {gc

k}.

Modification of the Jacobian inverse. The Jacobian inverse J−1 varies over
the element area. To eliminate the dependence of it on ξ, η, we may define

(J−1)∗ .= J−1
c

(
jc

j

)
, (11.50)

where j
.= detJ, and the subscript c indicates the value at the element’s

center. The 2× 2-point Gauss integration of (J−1)∗ yields

∫

A
(J−1)∗ dA =

4∑

g=1

(J−1)∗g jg = 4J−1
c jc, (11.51)

which is exactly the result of the 1-point integration of J−1. Here, g is
the index of integration points.



282 Plane four-node elements (without drilling rotation)

Displacement gradient for incompatible displacements. The displacement gra-
dient can be split into a compatible and incompatible part,

∇u =
[
∂(uc + uinc)

∂ξ

]
J−1 =

[
∂uc

∂ξ

]
J−1 +

[
∂uinc

∂ξ

]
J−1. (11.52)

The incompatible (underlined) part is evaluated at the Gauss point g
by using the incompatible displacements of eq. (11.41) and the modified
inverse Jacobian of eq. (11.50),

∇uinc
g = Jc




∂uinc

∂ξ
∂uinc

∂η

∂vinc

∂ξ
∂vinc

∂η




g

J−1
c

(
jc

jg

)
, (11.53)

where 


∂uinc

∂ξ
∂uinc

∂η

∂vinc

∂ξ
∂vinc

∂η


 = −2

[
q1ξ q3η

q2ξ q4η

]
.

The deformation gradient, F = I + ∇u, is the sum of the compatible
deformation gradient Fc

g and the incompatible displacement gradient

Fg = Fc
g + ∇uinc

g . (11.54)

Recall that in the back-rotated C∗ of eq. (10.72) and (QT
0 F)∗ of

eq. (10.73), we use the product F̄ .= FR0 of eq. (10.74), which is now
calculated as follows:

F̄g
.= Fg R0g = Fc

g R0g + ∇uinc
g R0g. (11.55)

In the above equation, we still use R0g at the Gauss point because,
as we have verified, if it is replaced by R0c for the element’s center,
then the patch test is not satisfied. The compatible term Fc

g R0k can be
transformed as shown in eq. (10.74).

The functional FPE depends on two sets of variables: the nodal
displacements uI and the elemental multipliers of incompatible modes
q. The obtained set of FE equations is given by eq. (11.27) and to update
the stress and strain multipliers, the scheme U2 of eq. (11.34) should be
used.

The finite element for the incompatible displacement gradient of eq.
(11.53) is designated as ID4. It is invariant, has a correct rank, and passes
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the patch test. Its accuracy and robustness is much better than that of
the Q4 element; in linear tests it performs identically as the EAS4 and
EADG4 elements.

Note that we can also use only two modes, q2 and q3, and enhance
only the shear strain, see eq. (11.39). Such an element (designated as ID2)
is particularly useful for shells, for which it performs in a very stable way
in nonlinear tests.

11.4.2 EAS4 element

Introduction. The Enhanced Assumed Strain (EAS) method was intro-
duced in [216] and it embodies the following modifications of the ID
method:

1. Not displacements but strains are enhanced. The enhancing modes
are directly introduced on the level of strains without resorting to
displacements.

2. The HW functional is used instead of the PE functional. This change
strengthens the variational background and shows the importance of
orthogonality of the assumed strain to stress. The crucial result per-
taining to the ID method, see eq. (11.47), is fully adopted.

Within the EAS method, the strain for the compatible displacements
Ec .= E(uc) is enhanced additively by the strain εenh as follows

ε(ξ, η)︸ ︷︷ ︸
enhanced

.= Ec(ξ, η)︸ ︷︷ ︸
compatible

+ εenh(ξ, η)︸ ︷︷ ︸
enhancing

. (11.56)

Variational basis of the EAS method. We take the three-field HW functional
of eq. (11.1), and use eq. (11.56), which yields

F (u, σ, εenh) =
∫

B

[
W(Ec + εenh)− σ · εenh

]
dV − Fext. (11.57)

We wish to eliminate the stress σ from this functional, thus we require
the enhancing strain to be orthogonal to the stress, i.e.

∫

B
σ · εenh dV = 0, (11.58)

for which the term with σ in eq. (11.57) vanishes and F becomes the
two-field potential energy functional of eq. (11.8) in the following form:
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FPE(u, εenh) =
∫

B
W(Ec + εenh) dV − Fext. (11.59)

We note that the orthogonality condition plays an important role in the
above derivation, because (1) it allows us to reduce the number of inde-
pendent fields, (2) it establishes the relation with the elements explicitly
using the assumed stress, and (3) it defines the admissible strain enhance-
ments, as such for which the integral (11.58) vanishes for the assumed
stress.

Kinematically linear problems. For small strains, i.e. when εc
v is a linear

function of uc, we proceed as follows. A quadratic Taylor’s expansion
of the strain energy at some εv = ε+

v is as follows

W(εv) ≈ W+ + σ+
v ·∆εv +

1
2
∆εT

v C+ ∆εv, (11.60)

where the symbols with “+” are evaluated at ε+
v , and (·)v denotes

a vector of tensorial components. Besides, σv
.= ∂W/∂εv is the stress

and Cvv
.= ∂2W/∂ε2

v is the constitutive matrix. For kinematically linear
problems, we have ε+

v = 0, W+ = 0, σ+
v = 0, ∆εv = εv, for which we

obtain W(εv) = 1
2 εv · (Cvv εv). Hence, the strain energy of eq. (11.59)

becomes

W(εc
v + εenh

v ) = 1
2 (εc

v + εenh
v )T Cvv (εc

v + εenh
v ), (11.61)

which can be compared with eq. (11.43) for the ID method. We see that
εenh

v plays an analogous role as εinc
v in the ID method.

Enhancing strain. The enhancing strain is constructed as follows:

εenh = J−T
c εξ J−1

c , (11.62)

which is the transformation rule for covariant components εξ of a second-
rank tensor, from the natural basis at the element’s center {gc

k} to the
reference Cartesian basis. We note that the modification of [234], where
the Jacobian matrix at the element’s center is used to enable passing
the patch test by the ID element, is naturally present in eq. (11.62), as
a consequence of the use of the basis at element’s center. At the Gauss
integration point g, we write

εenh
g = J−T

c εξg J−1
c

(
jc

jg

)
, εξ

.=
[

q1 ξ q3 ξ + q4 η
q3 ξ + q4 η q2 η

]
, (11.63)
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where εξ is a matrix of the assumed strain, and j
.= detJ. Note

that (jc/jg) is added, and that the 2 × 2-point Gauss integration of it
yields 4jc, which is the result of the 1-point integration of j. This
modification can be compared with that of eq. (11.50) for J−1

c . The
matrix εξ involves four parameters qi, and two modes {ξ, η}.

The discrete FPE functional depends on two sets of variables: the
nodal displacements uI and the elemental multipliers q of the assumed
strain modes. The obtained set of FE equations is given by eq. (11.27) and
to update the stress multipliers, the scheme U2 of eq. (11.34) should be
used.

The finite element for the assumed strains of eq. (11.62) is designated
as EAS4 and, currently, it is a standard in the class of four-node EAS
elements. It is invariant, has the correct rank, and passes the patch test.
Its accuracy and robustness is much better than that of the Q4 element.

Remark 1. Other representations. Several other forms of εξ were tested
in the literature. The representation with seven parameters (EAS7), ob-
tained from EAS4 by adding the bilinear term ξη to each component,
also gained some popularity, but it turned out that it does not satisfy
the compatibility condition. The same is true about the five-parameter
representation (EAS5), obtained from EAS4 by adding the bilinear term
ξη to the shear component only. The EAS2 representation, which uses
two parameters for the shear strain enhancement, is particularly stable
in non-linear shell applications, but the response is slightly stiffer, which
renders that more elements must be used.

Remark 2. Enhancement of Cauchy–Green tensor. In eq. (11.15), the
deformation gradient for compatible displacements is written down as
Fc = Fξ J−1, for which the Cauchy–Green tensor becomes Cc .=
(Fc)TFc = J−T (FT

ξ Fξ)J−1 and involves the transformation J−T ( · )J−1.
The same transformation, but with J replaced by Jc, is used in
eq. (11.62). Hence, when we use the Green strain, we can interpret the
EAS method as the enhancement of the Cauchy–Green tensor.

Analytical verification of orthogonality condition for constant stress. Assume
that the stress σ is constant over the element domain. Then, in
eq. (11.64),

∫
B σ · εenh dV = σ · ∫

B εenh dV , and the orthogonality
condition is reduced to
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∫

B
εenh dV = 0, (11.64)

which is analogous to eq. (11.47) for the ID method and suffices to pass
the patch test. On use of the 2 × 2-point Gauss integration, the integral
of the enhancing strain becomes

∫

B
εenh dV =

4∑

g=1

J−T
c εξg J−1

c

(
jc

jg

)
jg = J−T

c




4∑

g=1

εξg


 J−1

c jc,

(11.65)
where eq. (11.62) was used and g is a Gauss point. To satisfy eq. (11.64),
it suffices that

4∑

g=1

εξg = 0. (11.66)

We can check that this condition is satisfied for the EAS4 element, because

4∑

g=1

[
q1 ξg q3 ξg + q4 ηg

q3 ξg + q4 ηg q2 ηg

]
= 0, (11.67)

for ξg, ηg = ±1/
√

3. This element passes the patch test of Sect. 15.2.3.

Verification of orthogonality condition for non-constant stress. The orthogo-
nality condition is checked for the non-constant five- and seven-parameter
stress representations in [256], Appendix B. The stress is assumed as
σ = Jc σξ JT

c , which is the transformation rule of the contra-variant
tensor components from the {gc

k} basis at the element center to the ref-
erence Cartesian basis. The enhancing strain εenh is taken in the form
given by eq. (11.62). Then, the orthogonality condition becomes

∫

B
σ · εenh dV = h

∫ +1

−1

∫ +1

−1
tr[(Jc σξ JT

c )T(J−T
c εξ J−1

c )] j dξ dη.

(11.68)
Evaluating this integral for various forms of σξ and εξ, we can test the
orthogonality of the involved fields. As σξ, we take the five-parameter
stress of eq. (11.125), or the seven-parameter stress of eq. (12.96), and we
use εξ of eq. (11.62), both assumed either in the natural coordinates
{ξ, η} or in the skew coordinates of eq. (11.81).

We have verified, using a symbolic manipulator, that the orthogonality
condition is not satisfied for these representations for irregular elements
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but is satisfied for parallelograms. Hence, for irregular elements, the PE
functional (11.59) is not fully equivalent to the HW functional (11.57),
but only approximates it.

Verification of compatibility of enhancing strains. The compatibility condition
for 2D strains is as follows,

∂2εxx

∂y2
+

∂2εyy

∂x2
= 2

∂2εxy

∂x ∂y
. (11.69)

It was evaluated for the following specifications of the assumed strain and
its derivatives:

1. The enhancing strain in the reference basis is obtained from the as-
sumed representation εξ using eq. (11.62).

2. The first and the second derivatives w.r.t. x, y are expressed by the
derivatives w.r.t. ξ, η as specified in eqs. (11.132) and (11.133).

This condition is satisfied in the case of the EAS4 and EAS2 enhancement,
only for parallelograms. Because the strain enhancement is added to the
compatible strain, eq. (11.56), the total strain has the same property.

The compatibility condition is not satisfied by the EAS5 and EAS7
representations, even for parallelograms, which is caused by the term ξη
in ε12. The use of them is therefore not advisable.

Couplings of uI and q in matrix K. For kinematically nonlinear prob-
lems, the tangent matrix K of eq. (11.28) can be a function of multipliers
q. This is a consequence of couplings of the compatible strain εc and
the enhancing strain εinc in the strain energy.

Consider the SVK strain energy, W(ε) .= 1
2λ (trε)2 + µ trε2, where

λ and µ are Lamé constants. For ε = εc + εenh, we obtain

trε = trεc + trεenh,

(trε)2 = (trεc)2 + 2(trεc)(trεenh) + (trεenh)2,

ε2 = (εc)2 + (εcεenh + εenhεc) + (εenh)2,

tr(ε)2 = tr(εc)2 + 2tr(εcεenh) + tr(εenh)2.

Hence, W(ε) 6= W(εc)+W(εenh), i.e. the contribution of εc and εenh

to the strain energy is not additive, due to the coupling (underlined) terms.
Due to these terms, the tangent matrix K .= ∂2W/∂uI∂uJ can be a
function of multipliers q and this depends on the type of strain used.
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a) The compatible strain εc is a linear function of uI for (i) a kinemat-
ically linear problem when ε

.= 1
2(∇u+∇Tu) and (ii) for a nonlinear

problem when we use the right stretch strain H .= sym[QT (I+∇u)].
Then the coupling terms do not affect K.

b) The compatible strain εc is a quadratic function of uI for the Green
strain E .= 1

2(∇u+∇Tu+∇Tu∇u). Then K for the coupling terms
is non-zero and depends on q.

Summarizing, we obtain additional couplings of uI and q in matrix
K for the Green strain but neither for the infinitesimal strain nor for the
right stretch strain.

11.4.3 EADG4 element

The method of Enhanced Assumed Displacement Gradient (EADG) was
proposed in [208] and, in fact, its basic concept is deeper rooted in the ID
method than the concept of the EAS method which was published two
years earlier.

Within the EADG method, the gradient of compatible displacements
uc is additively enhanced by the enhancing matrix H̃ as follows:

F(ξ, η)︸ ︷︷ ︸
enhanced

.= I +∇uc(ξ, η)︸ ︷︷ ︸
compatible

+ H̃(ξ, η)︸ ︷︷ ︸
enhancing

. (11.70)

Construction of H̃. In eq. (11.53) for the ID method, the incompatible
displacements were differentiated to calculate the matrix




∂uinc

∂ξ
∂uinc

∂η

∂vinc

∂ξ
∂vinc

∂η


 = −2

[
q1ξ q3η
q2ξ q4η

]
.

In the EADG method, we directly assume the form of this matrix, desig-
nated as Gξ, without resorting to the concept of incompatible displace-
ments and without differentiation. Equation (11.53) of the ID method is
rewritten for the EADG method as follows:

H̃g
.= Jc Gξ

g J−1
c

(
jc

jg

)
, Gξ .=

[
q1ξ q3η
q2ξ q4η

]
, (11.71)

where the factor (−2) was omitted in Gξ and g is a Gauss point.
Other representations can also be used in Gξ so the EADG and EAS
methods are equally versatile.
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Variational basis of the EADG method. The EADG method is based on the
three-field HW functional, although involving not strains but the defor-
mation gradient

F (u,F,P) .=
∫

B

{ W(FTF) + P · [(I +∇u)− F]
}

dV − Fext, (11.72)

where P is the nominal stress, F is an independent field, and Fext

is a potential of the body force, the external loads, and the displacement
boundary conditions. Note that P serves as a Lagrange multiplier for
the relation (I +∇u)− F.

Using eq. (11.70), we obtain

F (u, H̃,P) =
∫

B

{
W[(I +∇u + H̃)T (I +∇u + H̃)]−P · H̃

}
dV −Fext,

(11.73)
in which we do not have F but the enhancing H̃. If the assumed H̃
is orthogonal to the stress, i.e.

∫
B P · H̃ dV = 0, then the last term

of the above functional vanishes and we obtain a two-field enhanced PE
functional

FPE(u, H̃) =
∫

B
W[(I +∇u + H̃)T (I +∇u + H̃)] dV − Fext, (11.74)

which does not depend on the stress P.

The discrete FPE functional depends on two types of variables: the
nodal displacements uI and the elemental multipliers q of assumed
displacement gradient modes. The obtained set of FE equations is given
by eq. (11.27), and the scheme U2 of eq. (11.34) should be used to update
the stress multipliers.

The finite element for the representation of eq. (11.71) is designated as
EADG4 and, currently, it is a standard in the class of four-node EADG
elements. It is invariant, has a correct rank, and passes the patch test. Its
accuracy and robustness are much better than those of the Q4 element.
In linear tests, it performs identically as ID4 and EAS4 elements, but
is superior to them in the case of elements with a drilling rotation, see
Sect. 12.

Remark 1. Relation to EAS method. The EADG and ID method use the
Jc( · )J−1

c transformation, see eqs. (11.53) and (11.71), while the EAS
method is based on the J−T

c ( · )J−1
c transformation, see eq. (11.62).
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These transformations are identical only when Jc = J−T
c , e.g. when

Jc ∈ SO(3). Hence, in general, these methods are different although based
on the same concept and perform similarly in some tests. The variational
foundations of the assumed strain methods are revised in [215].

Remark 2. Spatial formulation. Using the deformation function, χ : x =
χ(y), the approximation of eq. (11.70) can be rewritten as F = ∇χ+H̃.
Defining the spatial enhanced displacement gradient h̃ .= H̃∇χ−1, we
obtain F = (I+h̃)∇χ, in which the enhanced deformation gradient (I+
h̃) is superposed multiplicatively on the standard deformation gradient
∇χ. This form of F and the variational problem in the spatial setting,
i.e. P · δF = τ · [∇(δu)F−1], where τ is the Kirchhoff stress, are used
in [208].

Finally, we note that some enhanced strain elements can experience
problems in the range of large compressive strains. This problem was de-
tected in [63] and studied in [264], where a single square element was
compressed by two equal forces and the solution was obtained for the
compressible neo-Hookean material. At the first zero eigenvalue, the non-
symmetric bifurcation point was obtained. This test can also be performed
for a block of elements, as in [263] where the eigenvector at the bifurca-
tion point is checked for the presence of hourglassing. This topic is also
addressed in [154].

11.5 Mixed Hellinger–Reissner and Hu–Washizu elements

Definition of mixed formulations. To improve the performance of early ele-
ments, several non-standard formulations were tested, including the mixed
formulation in [168], and the hybrid mixed formulation in [121]. A lot
of work has been done since these pioneering papers to improve mixed
methods; the elements and their theoretical foundations.

Various definitions exist of the mixed formulation in the literature; we
adopt the one referring to the features of the governing functional:

1. the governing functional must depend on several types of variables,
2. some of the variables must be Lagrange multipliers. Hence, the gov-

erning functional attains a saddle point, not a minimum, at a solution.

This definition implies that the Hellinger–Reissner (HR) functional and
the Hu–Washizu (HW) functional are mixed, but the potential energy
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(PE) functional is not. For shells, the formulations with rotations of Sect. 4
are mixed but the use of the Reissner hypothesis does not yield a mixed
formulation, although it introduces the rotational dofs. Note that the for-
mulation remains mixed, even if the multipliers are eliminated by a local
regularization of the functional.

Compared with the standard elements, the mixed elements have the
following features:

1. the inter-element continuity of certain fields is relaxed,
2. the level of non-linearity for finite strains is reduced,
3. the non-zero eigenvalues of the non-reduced tangent matrix of eq.

(11.27) for mixed elements are either positive or negative because the
discrete HR and HW functionals have a saddle point at (u = 0,q = 0).
The number of negative eigenvalues is identical to the number of stress
parameters, i.e. five in Fig. 11.4.

HR5-S

1 2 3 4 5 6 7 8 9 10 11 12 13

-1

-0.5

0.5

1

HW14-SS

1 2 3 4 5 6 7 8 9 10111213141516171819202122

10

20

30

40

Fig. 11.4 Eigenvalues of non-reduced matrix of mixed elements.

The mixed finite elements show (i) a slightly higher accuracy of displace-
ments and stresses for coarse distorted meshes, (ii) a better convergence
rate in non-linear problems than elements based on other formulations.
They can be cast in a similar form to the standard elements by eliminat-
ing the additional variables on the element level.

In this section, we describe 2D mixed elements based on the HR and
the HW functionals. We also provide comments on the mixed/enhanced
elements.

Skew coordinates. To define the representation of stress (and strain) in
mixed elements, we use the skew coordinates instead of the natural coor-
dinates as proposed in [256, 257]. This modification improves the accuracy
of mixed elements.
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Fig. 11.5 Bases at element’s center. a) Natural coordinates {ξ, η}. b) Natural
basis {gc

k} and skew coordinates {xS , yS}. c) Oblique basis {sc
k}, which is

not used here!

The skew coordinates relative to the natural basis at the element’s
center {gc

k} are designated by {xS , yS}. They can be defined in relation
to the Cartesian coordinates {x, y} associated with the reference basis
{ik} as follows:

The position vector of a particle in the initial configuration can be
expressed in the reference Cartesian basis, see Fig. 11.5A, as y = xi1 +
yi2, where x, y are approximated by the bilinear shape functions of
ξ, η of eq. (11.10). Consider the position vector relative to the element’s
center, i.e. ȳ = y− yc, and write it relative to these two bases as follows

ȳ = x̄ i1 + ȳ i2 = xS gc
1 + yS gc

2. (11.75)

Taking the scalar product of this equation with the vectors i1 and i2,
we obtain two equations which can be written in the following form:

[
x̄
ȳ

]
= Jc

[
xS

yS

]
, Jc =

[
gc

1 · i1 gc
2 · i1

gc
1 · i2 gc

2 · i2

]
, (11.76)

where Jc is the Jacobian of eq. (11.13) at the element’s center. Then
the skew coordinates are calculated as

[
xS

yS

]
= J−1

c

[
x̄
ȳ

]
. (11.77)

This relation implies

J−1
c =

[ ∂xS
∂x̄

∂xS
∂ȳ

∂yS
∂x̄

∂yS
∂ȳ

]
. (11.78)

For the position vector of eq. (11.10) rewritten as
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[
x
y

]
=

[
a0 + a1ξ + a2η + a3ξη
b0 + b1ξ + b2η + b3ξη

]
, (11.79)

where the coefficients ai, bi are functions of the positions of nodes, we
have [

x̄
ȳ

]
.=

[
x− a0

y − b0

]
=

[
a1ξ + a2η + a3ξη
b1ξ + b2η + b3ξη

]
, (11.80)

where a0, b0 are coordinates of the element’s center. Using this relation
in eq. (11.77), the skew coordinates become the following functions of the
natural coordinates: [

xS

yS

]
=

[
ξ + Aξη
η + B ξη

]
, (11.81)

where
A

.=
a3b2 − a2b3

a1b2 − a2b1
, B

.=
a1b3 − a3b1

a1b2 − a2b1
.

The coefficients A and B can be expressed using the determinant of
the Jacobian J of eq. (11.13). This Jacobian, using eq. (11.79), becomes

J .=

[
g1 · i1 g2 · i1
g1 · i2 g2 · i2

]
=

[
a1 + a3η a2 + a3ξ

b1 + b3η b2 + b2ξ

]
, (11.82)

where g1, g2 are defined in eq. (11.11). Note that this Jacobian is
not associated with the element’s center, differently from the Jacobian
of eq. (11.76). We can expand the determinant of this Jacobian as follows:

detJ = jc + (j,ξ)c ξ + (j,η)c η, (11.83)

where jc = a1b2 − a2b1, (j,ξ)c = a1b3 − a3b1, and (j,η)c = a3b2 − a2b3.
Hence, an alternative form of the coefficients is

A =
(j,η)c

jc
, B =

(j,ξ)c

jc
. (11.84)

For the elements of a parallelogram shape, (j,ξ)c = (j,η)c = 0, so A =
B = 0 and, by eq. (11.81), the skew coordinates {xS , yS} are equal to
the natural coordinates {ξ, η}.

Remark 1. It is a common error that the natural coordinates are treated
as being associated with the natural basis at the element’s center. To prove
that it is incorrect, it suffices to define the position vector not as ȳ =
xS gc

1+yS gc
2, which is the correct form, but using the natural coordinates,
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Fig. 11.6 “Fictitious” parallelogram yielded by the use of natural coordinates.

i.e. as ȳ = ξ gc
1 + η gc

2. For the latter form and ξ, η ∈ [−1, +1], we
obtain a “fictitious” parallelogram element as shown in Fig. 11.6 by the
dotted line. The difference between the two forms of ȳ vanishes for
parallelograms, as then the skew and natural coordinates are identical.

Remark 2. In literature, the idea to replace a trapezoidal element by an
“equivalent” parallelogram element, identical with the “fictitious” paral-
lelogram of Fig. 11.6, is put forward. Note, however, that the “equivalent”
element does not pass the patch test!

Remark 3. Note that we can also define another basis at the element’s
center, the so-called oblique basis, as follows:

sc
1

.=
gc

1

‖gc
1‖

, sc
2

.=
gc

2

‖gc
2‖

, (11.85)

where sc
k are unit vectors, co-linear with the natural basis, see Fig. 11.5C.

The oblique basis and the corresponding oblique coordinates are described
in [151] where they are used to skew membranes and plates. They were
also applied in several elements, e.g., in [184]. The advantage of using the
oblique stresses is that the bi-harmonic equation retains a simple form.
Therefore, the Airy stress function can be easily found and the homoge-
nous equilibrium equation and the strain compatibility equation are sat-
isfied. The disadvantage is that the oblique stresses are different from the
real stresses, for which the constitutive equation is written, see [151], p. 25.
The oblique basis and the associated coordinates are not used in our work.
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Inf-sup (LBB) condition. In mixed formulations, the full (non-reduced) tan-
gent matrix of eq. (11.27) is not positive definite, which can cause problems
with the well-posedness of the equations, i.e. with solvability and stability.
The requirement to safely solve the system of equations is called the inf-
sup condition and there is a vast mathematical literature related to it, see
e.g. [11, 12, 38, 37, 193]. This condition depends on the FE discretization
and, hence, analytical expressions are difficult and beyond the scope of
this work.

On the other hand, we can much easier check a numerical counterpart of
this condition, called the LBB condition, where the LBB is the acronym
for the names Ladyzhenskaya–Babuška–Brezzi. Below, we consider the
problem which is kinematically and materially linear, using a procedure
similar to that presented in [38].

For the purely displacement formulation, the FE equilibrium equations
have the form

K0 u = p, (11.86)

where K0 is the tangent matrix, u is the vector of nodal values of dis-
placements, and p is the vector of external nodal loads. Equation (11.86)
is well-posed if the following condition of positive definiteness (ellipticity)
is satisfied

∃β > 0 uT K0 u ≥ β ‖u‖2 (11.87)

for an arbitrary non-zero vector u and some norm ‖ · ‖ for the space
of u. Usually, the energy norm is used, i.e. ‖u‖2 = uTK0u, and then
β = 1. Below, we consider the mixed formulations and procedures for
obtaining their reduced displacement form.

Inf-sup (LBB) for two-field mixed formulation. For a mixed two-field formu-
lation, the equilibrium equations have the form

[
0 L
LT K

] [
u
q

]
=

[
p
0

]
, (11.88)

where q is the vector of additional variables, e.g. the stress parameters
for the HR functional. The matrix of eq. (11.88) is symmetric, but indef-
inite i.e. has positive and negative eigenvalues. The sub-matrix K is
symmetric and positive definite, L can be rectangular.

To obtain the reduced displacement form of the mixed equations, we
calculate q = K−1LTu from the second equation of the system (11.88)
and use it in the first equation,
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K∗ u = p, where K∗ .= LK−1LT . (11.89)

This equation is well-posed if

∃β > 0 uT K∗ u ≥ β ‖u‖2, (11.90)

for an arbitrary non-zero vector u. We can use the energy norm, ‖u‖2 .=
uTK0u, where K0 is the matrix of the purely displacement eq. (11.86),
so the above condition becomes

∃β > 0 uT K∗ u ≥ β uTK0u. (11.91)

Thus, we have to find

β
.= inf

u

uT K∗ u
uT K0 u

(11.92)

and check whether β > 0. The fraction on the r.h.s. is the Rayleigh
quotient, hence β is the smallest eigenvalue of the generalized eigenvalue
problem

K∗ u = γ K0 u. (11.93)

A more general form of eq. (11.92) is obtained if we note that uT K∗ u =
uT LK−1LT u and use the following equivalence:

uT LK−1LT u = sup
q

(qT LT u)2

qT Kq
, (11.94)

the proof of which is given below. Then we obtain the inf-sup condition
for the system (11.88),

β
.= inf

u
sup
q

(qT LT u)2

(qT Kq) (uT K0 u)
> 0. (11.95)

The advantage of this condition is that it does not contain inverse matrices,
i.e. we don’t have to solve the problem to see if it is solvable.

Proof of equivalence, eq. (11.94). ([12], Sect. 7) The crucial fact is that
K is symmetric and positive definite, so there exists a symmetric and
positive definite K1/2 such that K1/2K1/2 = K. Let us denote w .=
K1/2q, so q .= K−1/2w. By substituting qT , we have

sup
q

(qT LT u)2

qT Kq
= sup

w

(wT K−1/2 LT u)2

wTw
(11.96)
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and we shall prove that

uT LK−1 LT u = sup
w

(wT K−1/2 LT u)2

wT w
, (11.97)

instead of eq. (11.94). The proof is divided into two parts.

(i) The Schwartz inequality, (aTb)2 ≤ (aTa) (bTb), with vectors a .= w
and b .= K−1/2 LT u, yields

(wTK−1/2 LT u)2 ≤ (wTw) (uT LK−1/2 K−1/2 LT u), (11.98)

and dividing both sides by wTw = qT Kq 6= 0, we obtain

sup
w

(wT K−1/2 LT u)2

wTw
≤ uT LK−1 LT u. (11.99)

(ii) Selecting w = K−1/2 LT u and using it in the r.h.s. of eq. (11.97),
we obtain

sup
w

(wT K−1/2 LT u)2

wT w

≥ (uT LK−1/2 K−1/2 LT u)2

uT LK−1/2 K−1/2 LT u
= uT LK−1 LT u. (11.100)

The inequalities (11.100) and (11.99) imply eq. (11.97) and, in turn, the
equivalence of eq. (11.94). ¤

Inf-sup (LBB) for three-field mixed formulation. For a mixed three-field for-
mulation, the equilibrium equations have the form




0 L1 0
LT

1 0 K12

0 KT
12 K22







u
q1

q2


 =




p
0
0


 , (11.101)

where q1 and q2 are vectors of additional variables. For instance, for
the HW functional, q1 is the vector of stress parameters and q2 is the
vector of strain parameters. The matrix in eq. (11.101) is symmetric but
indefinite i.e. has positive and negative eigenvalues. The sub-matrix K22

is symmetric and positive definite, K12 and L1 can be rectangular. The
above set is solved as a sequence of two problems, each for two fields only.



298 Plane four-node elements (without drilling rotation)

Problem 1. The first problem is intermediate, i.e. needed to solve Problem
2, and is defined by the set of equations

[
0 K12

KT
12 K22

] [
q1

q2

]
=

[−LT
1 u

0

]
, (11.102)

which is analogous to eq. (11.88) for two-field mixed formulation. (Note
that for u, we use the energy norm ‖u‖2 .= uTK0u, while for q1, we
shall use the Euclidean norm ‖q1‖2 = qT

1 q1.) To solve this set, first, from
the second equation, we calculate q2 = −K−1

22 KT
12q1, which is possible

because K22 is invertible. Next we use q2 in the first equation to
obtain

K̄ q1 = L1 u, where K̄ .= K12 K−1
22 KT

12. (11.103)

This equation is solvable if K̄ is positive definite, i.e.

∃β1 > 0 qT
1 K̄ q1 ≥ β1 ‖q1‖2, (11.104)

or, for the Euclidean norm ‖q1‖2 = qT
1 q1,

∃β1 > 0 qT
1 K̄ q1 ≥ β1 qT

1 q1, (11.105)

for any non-zero vector q1. Thus, we have to find

β1
.= inf

q1

qT
1 K̄ q1

qT
1 q1

(11.106)

and check that β1 > 0. The fraction on the r.h.s. is the Rayleigh quotient,
so β1 is the smallest eigenvalue of the standard eigenvalue problem

K̄ q1 = γ1 q1, (11.107)

which can be used to verify numerically the well-posedness of Problem 1.
On use of the equivalence of eq. (11.94)

qT
1 K̄ q1 = qT

1 K12K−1
22 KT

12 q1 = sup
q2

(qT
2 KT

12 q1)2

qT
2 K22 q2

, (11.108)

so the inf-sup condition for Problem 1 is analogous to eq. (11.95),

β1
.= inf

q1

sup
q2

(qT
2 KT

12 q1)2

(qT
2 K22 q2) (qT

1 q1)
> 0. (11.109)
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This condition does not require calculation of the inverse K−1
22 and can

be written in an alternative form,

∀q1 ∃q2 (qT
2 KT

12 q1)
2 > β1 (qT

2 K22 q2)(q
T
1 q1) for some β1 > 0,

(11.110)
allowing us to deduce that q1 cannot belong to the null space of KT

12,
i.e. KT

12 must have the rank equal to the number of columns and that
K12 q2 cannot be orthogonal to the space of q1’s.

Problem 2. Using q2 = −K−1
22 KT

12q1 in the second of the full set of
equation (11.101), the first two equations form the set

[
0 L1

LT
1 −K̄

] [
u
q1

]
=

[
p
0

]
, (11.111)

which is analogous to eq. (11.88) for two-field mixed formulation. The
matrix K̄ is symmetric and, if eq. (11.109) is satisfied for Problem 1,
then it is also positive definite. From the second equation of (11.111), we
can calculate: q1 = K̄−1LT

1 u, and use it in the first equation to obtain
the reduced displacement form of the mixed equations

K∗ u = p, where K∗ .= L1 K̄−1LT
1 . (11.112)

This equation is solvable if K∗ is positive definite, i.e.

∃β2 > 0 uT K∗ u ≥ β2 ‖u‖2, (11.113)

for an arbitrary non-zero vector u. We can use the energy norm ‖u‖2 .=
uTK0u, where K0 is the matrix of the purely displacement eq. (11.86),
so the above condition becomes

∃β2 > 0 uT K∗ u ≥ β2 uTK0u. (11.114)

Thus, we have to find

β2
.= inf

u

uT K∗ u
uTK0u

(11.115)

and check whether β2 > 0. The fraction on the r.h.s. is the Rayleigh
quotient, so β2 is the smallest eigenvalue of the generalized eigenvalue
problem

K∗ u = γ2 K0 u. (11.116)

If we write uT K∗ u = uT L1K̄−1LT
1 u and use the equivalence eq. (11.94),

we obtain the inf-sup form of eq. (11.115),
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β2
.= inf

u
sup
q1

(qT
1 LT

1 u)2

(qT
1 K̄ q1) (uTK0u)

> 0. (11.117)

Note that K̄ depends on the inverse K−1
22 , which we eliminate as

follows. The property [supx F (x)]−1 = infx F−1(x) holds for a scalar
continuous function F (x) > 0. We take

x .= q2, F (q2)
.=

(qT
2 KT

12 q1)2

qT
2 K22 q2

, (11.118)

where F (q2) > 0 by eq. (11.109). Then the inverse of eq. (11.108) is

1
qT

1 K̄ q1

= inf
q2

qT
2 K22 q2

(qT
2 KT

12 q1)2
(11.119)

and we use it in eq. (11.117), obtaining the inf-sup condition for the
three-field mixed problem,

β2
.= inf

u
sup
q1

inf
q2

(qT
2 K22 q2) (qT

1 LT
1 u)2

(qT
2 KT

12 q1)2 (uT K0 u)
> 0. (11.120)

This condition can be written in an alternative form as

∀u ∃q1 ∀q2 (qT
2 K22 q2)(q

T
1 LT

1 u)2 > β2 (qT
2 KT

12 q1)
2 (uT K0 u)

(11.121)
for some β2 > 0 and we see that it does not imply that q1 6= 0 cannot
belong to the null space of KT

12 and, thus, does not guarantee that
eq. (11.109) is fulfilled. Hence, both the conditions of eqs. (11.109) and
(11.120) are required.

Summary. To ensure the solvability of the mixed problem the following
conditions should be verified:

• For the two-field problem of eq. (11.88), we have to verify either (i) the
inf-sup condition of eq. (11.95) or (ii) that the smallest eigenvalue for
the eigenvalue problem of eq. (11.93) is greater than zero, and for the
mesh size going to zero, it is still greater than zero.

• For the three-field problem of eq. (11.101), we have to verify either (i)
the inf-sup conditions of eqs. (11.109) and (11.120), or (ii) that the
smallest eigenvalues for the eigenvalue problems of eqs. (11.107) and
(11.116) are greater than zero.

Moreover, we have to check that the constants in the inf-sup conditions, or
the smallest eigenvalues, do not tend to zero for the diminishing element
size.
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Numerical inf-sup test. Two meshes were used; a regular mesh and a dis-
torted mesh, of 2×2, 4×4, and 8×8 elements, see Fig. 11.7. Besides,
two values of the Poisson ratio were used: ν = 0.3 for a compressible
material and ν = 0.4999 for a nearly incompressible material.

For the HR5-S element, we solve the eigenvalue problem of eq. (11.93).
For the HW14-SS, we solve the eigenvalue problem of eq. (11.116) and,
instead of solving eq. (11.109), the pivots are controlled when calculating
the inverse of [

0 K12

KT
12 K22

]
(11.122)

and they are non-zero, which indicates that Problem 1 is solvable.

The smallest eigenvalues γ for the HW14-SS element are shown
in Fig. 11.8, where N = 2, 4, 8 is the number of subdivisions in one
direction. The curves indicate that the discrete form of the inf-sup test
is passed, thus the condition (11.114) is met. Note that identical curves
were obtained for the HR5-S element.

For the regular meshes, the obtained curves are horizontal, similarly as
for the 9/3 element shown in [17], Fig. 1, and for the MINI element shown
in [46], Fig. 6. Both these elements have the property that there exists
an analytical proof that they pass the inf-sup test and the corresponding
numerical test is also passed. Hence, it is likely that the analytical inf-sup
condition can also be verified for the HW14-SS element.

Fig. 11.7 Inf-sup test. Regular and distorted mesh of 8× 8 elements.

11.5.1 Assumed stress HR elements: PS and HR5-S

In the class of the elements based on the HR functional, the PS element
of [170] is standard. Currently, however, several other elements exist in
the literature which perform slightly better for coarse distorted meshes;
among them, the HR5-S element of [256]. Both these elements use the
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Fig. 11.8 Inf-sup test. Results for HW14-SS element. E = 1, ν = 0.3 or 0.4999

same five-parameter representation of stress but in the PS element it is
written using the natural coordinates, while in the HR5-S element the
skew coordinates are used.

The early works on the HR elements, up to 1981, are reviewed in [223],
while the more recent ones are reviewed in [256].

Assumed representation of stress. We use the contra-variant stress compo-
nents σkl in the natural basis at the element’s center {gc

k}, i.e.

σ = σkl gc
k ⊗ gc

l , k, l = 1, 2. (11.123)

The components σkl are assumed and we denote the respective matrix
as σξ. These components are transformed to the reference basis using

σref = Jc σξ JT
c , (11.124)

where Jc is the Jacobian matrix evaluated at the element’s center of
eq. (11.76).

The five-parameter representation of stress was already used by Pian
in 1964 in [168] in Cartesian coordinates and later in [170] in the natural
coordinates

σξ .=
[
q1 + q2 η q5

sym. q3 + q4 ξ

]
. (11.125)

This representation is symmetric, and includes the modes {1, ξ, η} mul-
tiplied by five parameters qi.
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In [256], the above five-parameter representation of stress was written
in the skew coordinates, i.e.

σξ .=
[
q1 + q2 yS q5

symm. q3 + q4 xS

]
=

[
q1 + q2 η + q2B ξη q5

sym. q3 + q4 ξ + q4 Aξη

]
,

(11.126)
where A and B are defined below eq. (11.81). The bilinear (underlined)
terms are non-zero only for irregular trapezoidal shapes, while they vanish
for parallelograms. Still only five parameters qi are used!

Verification of equilibrium equation for the assumed stress. For a single ele-
ment, we can check whether the assumed representations of stresses sat-
isfy the homogenous equilibrium equations. This property is not used in
the construction of our elements, but it can be logically linked with their
performance for characteristic shapes of the elements.

Note that in several papers, including [169, 170, 265], the satisfaction
of the homogenous equilibrium equations is pivotal as they are appended
to the HR functional via the Lagrange multiplier method. Then, however,
the problem becomes more complicated, as the question of a suitable form
of the Lagrange multiplier field arises (typically the incompatible displace-
ment modes are exploited for this purpose). We stress that we do not use
this approach.

We can check the equilibrium equations for some characteristic shapes
of an element using a symbolic algebra. The homogenous equilibrium equa-
tions in the reference Cartesian coordinates, for a symmetric stress, are as
follows

∂σxx

∂x
+

∂σxy

∂y
= 0,

∂σxy

∂x
+

∂σyy

∂y
= 0. (11.127)

They are checked for the following specification of the stress components
and their derivatives:

1. The stresses in the reference basis are obtained from the assumed rep-
resentation σξ using the transformation formula (11.124),

σa .=
[
σxx σxy

σxy σyy

]
= Jc

[
σξξ σξη

σξη σηη

]
JT

c = Jc σξ JT
c . (11.128)

2. When the matrix σξ is assumed in terms of the skew coordinates
xS , yS , then, to enable numerical integration of the element, xS , yS

are treated as functions of the natural coordinates ξ, η. Hence, we
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can either use the chain rule of differentiation or directly express the
derivatives w.r.t. x, y in terms of derivatives w.r.t. ξ, η as follows:

[
∂σ
∂x

∂σ
∂y

]
= J−T

[
∂σ
∂ξ

∂σ
∂η

]
, (11.129)

where σ ∈ [σxx, σyy, σxy]T is an arbitrary stress component in the
form of eq. (11.126). Note that here J is used, not Jc.

The results of a verification of the equilibrium equation for the assumed
stress are presented in Table 11.1, where “+” indicates that the equations
are satisfied for an irregular shape of an element.

We see that, for the skew coordinates (HR5-S element), the equilibrium
equations are satisfied point-wise, even for an irregular element. For the
natural coordinates (PS element), they are satisfied point-wise only for
parallelograms, while for irregular elements, only at the element’s center.

Table 11.1 Verification of equilibrium equation for the assumed stress.

σξ assumed in At arbitrary point At center Integral of eq. (11.127)

skew coordinates + + +
natural coordinates –(*) + –(*)

(*) satisfied only for parallelograms.

Verification of compatibility of the strains for assumed stresses. The compati-
bility condition for 2D strains is as follows:

∂2εxx

∂y2
+

∂2εyy

∂x2
= 2

∂2εxy

∂x ∂y
, (11.130)

and we evaluate it for the strains calculated using the inverse constitutive
matrix for the assumed stresses. We emphasize that we do not check the
compatibility condition for the compatible strain but for the strains cor-
responding to (induced by) the assumed stress. They are obtained in the
following steps:

1. The stresses in the reference basis are obtained as in eq. (11.128).
2. The strains corresponding to the assumed stresses are obtained from

the inverse constitutive equation

εv = C−1
vv σa

v, (11.131)
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where (·)v denotes a vector of components of a tensor (·), arranged
in the order {xx, yy, xy}.

3. The skew coordinates xS , yS are treated as functions of the natural
coordinates ξ, η. Hence, we can either use the chain rule of differen-
tiation or directly express the first derivatives of strains w.r.t. x, y in
terms of derivatives w.r.t. ξ, η as follows:

[
∂ε
∂x

∂ε
∂y

]
= J−T

[
∂ε
∂ξ

∂ε
∂η

]
, (11.132)

where ε ∈ {εxx, εyy, εxy} is an arbitrary strain component. For the
first derivatives of an arbitrary strain component, γ ∈ {∂ε/∂x, ∂ε/∂y},
we similarly calculate the second derivatives,

[ ∂γ
∂x

∂γ
∂y

]
= J−T

[ ∂γ
∂ξ

∂γ
∂η

]
, (11.133)

where

∂γ

∂x
=

{
∂2ε

∂x2
,

∂2ε

∂y∂x

}
,

∂γ

∂y
=

{
∂2ε

∂x∂y
,

∂2ε

∂y2

}
, (11.134)

and they contain all the second derivatives needed in eq. (11.130).
Note that J is used here not Jc.

The results of the verification of the compatibility condition are presented
in Table 11.2, where “+” indicates that the equations are satisfied for an
irregular shape of an element.

We see that, for the skew coordinates (HR5-S element), the compatibil-
ity condition is satisfied, even for irregular elements, while for the natural
coordinates (PS element), the compatibility condition is satisfied only for
parallelograms.

Table 11.2 Verification of the compatibility condition for the assumed stress.

σξ assumed in At arbitrary point At center Integral of eq. (11.130)

skew coordinates + + +
natural coordinates –(*) –(*) –(*)

(*) satisfied only for parallelograms.
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Remark. We have earlier shown that the natural coordinates cannot be
treated as being associated with the natural basis at the element’s center,
as this leads to the “fictitious” parallelogram element shown in Fig. 11.6.
The above tests of the homogenous equilibrium equation and of the com-
patibility of strains equation provide another argument that it is more
rational to assume the representation of stress in terms of the skew coor-
dinates than in the natural coordinates.

We do not exploit this property in the elements’ formulation in any par-
ticular way. Nonetheless, the numerical results indicate that the accuracy
of elements depends on the coordinates used for the stress representation.

Assumed stress elements: PS and HR5-S. The assumed stress elements are
developed from the two-field HR functionals in the basic non-enhanced
form of eqs. (11.4) and (11.7). In these functionals, u is the compatible
field while σ is the assumed field of the form

σa = Jc σξ JT
c , (11.135)

which is the transformation rule for the contra-variant components of a
tensor of eq. (11.124). Besides, in σξ we use the 5-parameter stress of
eq. (11.125) for the PS elements, or of eq. (11.126) for the HR5-S element.
The increment of the assumed stress has the analogous form, where ∆σξ

has the structure of σξ of eq. (11.125), but the multipliers qi are replaced
by ∆qi.

In the HR functionals, we use the reduced constitutive operator for the
plane stress condition C∗ of eq. (7.64).

The PS element is a standard in the class of mixed HR elements, but
the HR5-S element performs slightly better for coarse distorted meshes.
Its formulation is very simple and it yields results similar to these by the
5β-A,B,C elements of [265] and the QE2 element of [177], which are more
complicated and use more parameters.

Remark. The discrete HR functional depends on two sets of variables:
the nodal displacements uI and the elemental stress multipliers q. The
obtained set of FE equations is given by eq. (11.27) and the scheme U2
of eq. (11.34) should be used to update the stress multipliers. Consider
the non-reduced tangent matrix of eq. (11.27). At (u = 0,q = 0), the
sub-matrix K is equal to zero and we obtain
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[
0 L
LT Kqq

]
, (11.136)

for which the linear element is very efficient.

Remark. Assumed stress/enhanced strain elements. The HR element can
also be developed for the seven-parameter representation of stresses, but
this element is too stiff, no matter in which coordinates the stresses are
written. Hence, the HR functional must be enhanced and two additional
EAS or EADG modes were used in the HR9 element in [256]. The HR9
element performs identically as the HR5-S element, but is less efficient.
However, it still can be used in 2D and shell elements with drilling rota-
tions, for which this type of enhancement is beneficial, see Sect. 12.

11.5.2 Assumed stress and strain HW14-SS element

The main difference between the HR elements and the HW elements is that
strains are retained in the latter and we have to select their representation.

Generally, the strain representation analogous to that used for stress
is too poor. A better one is implied by the inverse constitutive equation




ε11

ε22

ε12


 =




c1 c2 0
c2 c1 0
0 0 c3







q1 + q2η
q3 + q4ξ

q5


 =




(c1q1 + c2q3) + c1q2η + c2q4ξ
(c2q1 + c1q3) + c2q2η + c1q4ξ

c3q5


 ,

(11.137)
where the five-parameter representation of stress of eq. (11.125) and a
typical structure of the inverse constitutive matrix are used. This suggests
that a seven-parameter representation of strain should be used; constant
representation for ε12 and linear representations for ε11 and ε22.
However, if ε12 is additionally enhanced by two modes, then the accuracy
for coarse distorted meshes improves. Further improvement is obtained if
this representation of strain is assumed in terms of the skew coordinates
of eq. (11.81).

Assumed representation of strain. The covariant components of strain are
assumed in the co-basis {gk

c}, i.e.

ε = εkl gk
c ⊗ gl

c. (11.138)

The matrix of components εαβ can be designated as εξ and transformed
to the ortho-normal reference basis by using
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εref = J−T
c εξ J−1

c . (11.139)

The scalar product of the assumed representations of stress and strain,
eqs. (11.124) and (11.139) is invariant, which implies invariance of the
derived elements.

The assumed nine-parameter representation of strain is

εξ
.=

[
q6 + q7 yS + q8 xS q12 + q13 xS + q14 yS

sym. q9 + q10 xS + q11 yS

]
, (11.140)

where each component is a linear polynomial of xS and yS . We see
that this representation consists of two parts,

εξ =
[
q6 + q7 yS q10

sym. q8 + q9 xS

]
+

[
q11 xS q13 xS + q14 yS

sym. q12 yS

]
, (11.141)

where the first part is analogous to the five-parameter representation of
eq. (11.126) used for stress, while the second part is analogous to the four-
parameter representation of the EAS method, see eq. (11.62), but written
in the skew coordinates.

Compatibility of assumed strains. The compatibility condition for 2D strains
is given by eq. (11.130). Note that, for the HR element, we verified the
compatibility of the strains calculated for assumed stresses, while here we
verify the compatibility of the assumed strain. Hence, we can skip point
1 of the previously defined procedure. Results of the test of the compati-
bility condition for the strain of eq. (11.140) are presented in Table 11.3,
where “+” indicates that the condition is satisfied for an element of an
arbitrary irregular shape.

Table 11.3 Verification of the compatibility condition for the assumed strain.

εξ assumed in At arbitrary point At center

skew coordinates + +
natural coordinates –(*) –(*)

(*) satisfied only for parallelograms.

We see that for the representation in the skew coordinates, the compat-
ibility condition is satisfied point-wise, even for irregular elements. When
the strain is written in natural coordinates, then this equation is only
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satisfied for parallelograms. This provides the argument that it is more
rational to assume the representation of strain in the skew coordinates
than in the natural coordinates.

Element HW14-SS. The assumed stress/assumed strain element is devel-
oped from the three-field HW functionals in the basic non-enhanced form
of eqs. (11.1) and (11.3). The compatible displacement uc is defined in
eq. (11.14). The independent stress σ and the independent strain ε
are constructed as the assumed fields. The assumed fields are constructed
as follows:

1. The assumed stress is constructed similarly as for the HR5-S element,

σa = Jc σξ JT
c , (11.142)

using the transformation rule of eq. (11.124) and the five-parameter
representation of σξ of eq. (11.126). Recall that for this represen-
tation, the equilibrium equations are satisfied point-wise, even for an
irregular element, see Table 11.1.

2. The assumed strain is constructed as

εa = J−T
c εξ J−1

c , (11.143)

using the transformation rule of eq. (11.139) for the covariant compo-
nents of a tensor. The nine-parameter strain representation of εξ is
given by eq. (11.140) and it satisfies the compatibility condition.

We designate this element as HW14-SS because it has 14 modes and both
the stress and strain representations are assumed in skew coordinates.

In numerical tests, the HW14-SS element performs identically as the
HR5-S element, i.e. is slightly more accurate and less sensitive to mesh
distortion than the PS element and the enhanced strain elements (ID4,
EAS4, EADG4).

The HW14-SS element uses a smaller number of modes than other
HW elements described in the literature, such as the QE2 element of [177]
with 16 modes, and the elements with 22 modes B̄-QE4 of [178] and
B̄(x, y)-QE4 and B̄(ξ, η)-QE4 of [176], but its accuracy is identical.

Remark 1. If we use less parameters for the assumed strain, e.g., seven
instead of nine, then it is beneficial to use the covariant instead of con-
travariant representation of strain. The results for the element based on
the nine-parameter representation of strain are not altered by this change.
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Remark 2. Assumed stress and strain/enhanced strain elements. The
HW element can also be developed for the seven-parameter representa-
tion of stresses and the nine-parameter representation of strain, but must
be enhanced; two additional EADG modes are used in the HW18 element
in [257]. This element performs identically to the HR14-SS element, but is
less efficient. However, it can still be used in 2D+drill and shell elements,
for which the EAGD enhancement is particularly beneficial, see Sect. 12.

Remark 3. The discrete HW functional depends on two sets of variables:
the nodal displacements uI and the elemental stress and strain multi-
pliers q. The obtained set of FE equations is given by eq. (11.27) and
to update the stress and strain multipliers, the scheme U2 of eq. (11.34)
should be used. Consider the non-reduced tangent matrix of eq. (11.27).
Several sub-matrices of it are equal to zero at (u = 0,q = 0), and we
obtain

[
K L
LT Kqq

]
=




K L1 L2

LT
1 K11 K12

LT
2 KT

12 K22


 →




0 L1 0
LT

1 0 K12

0 KT
12 K22


 , (11.144)

where 1 designates the qi parameters for stress, and 2 designates the qi

parameters for strain. The presence of zero sub-matrices can be used to
obtain a very efficient linear version of this element.

11.6 Modification of FTF product

We can modify the FTF product in the Green strain in the way which
preserves a correct rank of the elements and improves their coarse mesh
accuracy. The deformation gradient F is expanded in the Taylor se-
ries w.r.t. the natural coordinates at the element’s center, and the FTF
product is approximated as follows:

FTF ≈ FT
c Fc + A + AT , (11.145)

where

A .= FT
c

[
ξ(F,ξ)c + η(F,η)c + ξη(F,ξη)c +

1
2
ξ2(F,ξξ)c +

1
2
η2(F,ηη)c

]
.

(11.146)
In other words, the Taylor expansion is combined with a selection of mean-
ingful terms in the product. A correct rank of the reduced tangent matrix
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K∗ in eq. (11.30) is yielded by the first three (underlined) linear and bi-
linear terms of A, while the last two quadratic terms of A are needed
to pass the patch test.

The concept of expansion was proposed in [135] and was later used in
several papers, including [132], but the terms selected in these works are
different from these in eq. (11.145).

1. The under-integrated and gamma-stabilized elements were developed
in [135] and the following expansion was used:

ε(ξ, η) = B(ξ, η)uI , B(ξ, η) ≈ Bc + ξ(B,ξ)c + η(B,η)c, (11.147)

where B is the strain-displacement matrix, see eq. (2.5a) therein.
This formula corresponds to the first two of the three underlined terms
in eq. (11.146).

2. In [132], the following terms of the Taylor series were selected,

T̄ (f) .= ξ(f,ξ)c + η(f,η)c + ξη(f,ξη)c

+
1
6

[
ξ3(f,ξξξ)c + η3(f,ηηη)c + 3ξ2η(f,ξξη)c + 3η2ξ(f,ηηξ)c

]
, (11.148)

and applied to the “stabilizing” strain and the “enhancing” strain
field, see eqs. (23) and (24) therein. We see that the expansions of
eqs. (11.148) and (11.145) are different in the higher-order terms.

Another difference is that small strains are used in both of the cited papers,
so the term F + FT was modified, while we modify the product FTF
as we use the Green strain.

A full set of tests for the EADG4, HR5-S, and HW14-S elements is
given in [257]. For the mixed elements, HW14-S and HR5-S, the
expansion was applied to F, as given by eq. (11.145), while for the
EADG4 element, we expanded the whole enhanced deformation gradient,
F + H̃, where H̃ is defined by eq. (11.71). The modification of the
FTF product was proved to be beneficial in the case of coarse distorted
meshes.
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