
10

Basic relations for four-node shell
elements

In this chapter we describe the basic relations for four-node shell elements
related to the FE approximations, numerical integration, and derivation of
the tangent matrix and residual vector. The literature on four-node shell
elements is vast, see, e.g., [123, 101, 162, 117, 118, 192, 235, 209, 85, 213,
165, 73, 217, 106, 242, 41, 108, 32, 68, 201, 243, 53], and many others.

The finite element method has achieved remarkable sophistication, but
also great complexity, see the classical textbooks on FEs, such as [36, 98,
125, 61, 62, 16, 268, 58] and the new ones [160] and [161]. The requirements
which new shell elements have to satisfy, are better defined and more
demanding than they were some years ago.

10.1 Bilinear isoparametric approximations

Bilinear shape functions. Consider a bilinear function,

f(ξ, η) .= a0 + a1ξ + a2η + a3ξη, (10.1)

where ξ, η ∈ [−1, +1] are the natural coordinates. Note that the domain
is a bi-unit square, spanned by the corner nodes of coordinates {ξI , ηI} =
{±1,±1}, see Fig. 10.1.

The coefficients ai can be expressed in terms of values of f at corner
nodes, using the conditions (i) f = 1 at one of the corner nodes, say I,
and (ii) f = 0 at all other nodes. This yields a set of four equations,
from which we can determine ai for a selected I. The f , with so-
determined ai, is denoted as NI , and designated as the shape function.
Repeating this procedure for all corner nodes, we obtain

Bilinear isoparametric approximations 231

N1(ξ, η) .=
1
4
(1− ξ)(1− η), N2(ξ, η) .=

1
4
(1 + ξ)(1− η),

N3(ξ, η) .=
1
4
(1 + ξ)(1 + η), N4(ξ, η) .=

1
4
(1− ξ)(1 + η) (10.2)

or, in concise form,

NI(ξ, η) .=
1
4
(1 + ξI ξ) (1 + ηI η), I = 1, 2, 3, 4, (10.3)

where (ξI , ηI) = (±1,±1) are coordinates of node I in the bi-unit
domain. Note that NI is a hyperbolic paraboloid (saddle) surface of ξ, η.

Vector of shape functions. Let us define the following vector of shape func-
tions

N(ξ, η) .= [N1(ξ, η), N2(ξ, η), N3(ξ, η), N4(ξ, η)] , (10.4)

where NI are defined in eq. (10.2). This vector can be re-arranged as
follows:

N(ξ, η) =
1
4

(s + ξ ξ + η η + h ξη) , (10.5)

where the auxiliary vectors are defined as

s .= [1, 1, 1, 1], ξ
.= [−1, 1, 1,−1],

η
.= [−1,−1, 1, 1], h .= [1,−1, 1,−1], (10.6)

and the subsequent entries correspond to the consecutive nodes. It is easy
to check that the vectors s, ξ, η, h are mutually orthogonal. The vector
s is the translation vector, while the vectors ξ and η define ξ and
η positions of consecutive nodes. The hourglass vector h multiplies the
bilinear term ξη.

Isoparametric approximations for shell elements. In an isoparametric shell
FE, the initial position vector y0, the displacement vector u and
the rotation vector ψ, all for the reference surface, are approximated by
the same shape functions NI(ξα) as follows:

y0(ξ
α) =

nel∑

I=1

NI(ξα)y0I , u(ξα) =
nel∑

I=1

NI(ξα)uI ,

ψ(ξα) =
nel∑

I=1

NI(ξα) ψI , α = 1, 2, (10.7)

232 Basic relations for four-node shell elements

where (·)I denotes a value at node I, and nel is the number of
nodes on an element; for four-node elements nel = 4. In the sequel, the
natural coordinates are designated in two ways,

ξk .= {ξα, ξ3} = {ξ, η, ξ3}, ξα, ξ3, ξ, η ∈ [−1, +1], (10.8)

where α = 1, 2 and k = 1, 2, 3.

10.2 Geometry and bases of shell element

The initial geometry of a four-node shell element is defined by (i) positions
of four corner nodes and (ii) bilinear shape functions. Using them, we can
define the initial position of the reference surface and construct the local
vector normal to this surface. The shell as a 3D body is generated by
assuming some thickness in this normal direction.

Parametrization of reference surface. The position vector y0, which de-
fines the reference surface in the initial configuration, see Fig. 10.1, is
parameterized in terms of the natural coordinates ξ, η ∈ [−1, +1] in the
following way:

y0(ξ, η) =
4∑

I=1

NI(ξ, η) y0I , (10.9)

where y0I is a position vector of node I, and NI(ξ, η) are shape
functions of eq. (10.3). Alternatively, we can write this expression for
each component k separately,

y0k(ξ, η) =
4∑

I=1

NI(ξ, η) y0kI , k = 1, 2, 3, (10.10)

where y0k
.= y0 · ik and y0kI

.= y0I · ik. We can use the vector of shape
functions of eq. (10.4), to avoid the summation sign,

y0k(ξ, η) = N(ξ, η) y0kI , (10.11)

where y0kI
.= [y0k1, y0k2, y0k3, y0k4] is the vector of kth components of

the position vectors of all nodes.

The parametrization of the reference surface defined by eq. (10.10)
spans either a planar element or a warped element when one of the nodes
is shifted out of the plane spanned by the other three nodes. The latter case
is illustrated by an example below. More information on warped elements
is provided in Sect. 14.

Geometry and bases of shell element 233

2
i1

i2

i3

1 3

4

21

34

(0,0)

(+1,+1)

(+1,-1)(-1,-1)

(-1,+1)

x

h

y0(,hx)

Fig. 10.1 Physical and reference (parent) bi-unit domain of a four-node element.

Example. Consider a square 2 × 2 element, with nodes 1, 2, 4 located
in the X0Y plane, and node 3 elevated in the z-direction by w, see
Fig. 10.2a.

a)

0

0.5

1

1.5

2

0

0.5

1

1.5

2

1

2
x

3

w

y

z

4

b)

x

y

s
r

a=-45
o

1

Fig. 10.2 a) The hyperbolic paraboloidal surface spanned by four nodes.
b) Two coordinate systems.

Denote the components of the position vector as follows: y01
.= x,

y02
.= y, y03

.= z. The Cartesian coordinates (x, y, z) of corner nodes
are assumed to be p1 = (0, 0, 0), p2 = (2, 0, 0), p3 = (2, 2, w), and
p4 = (0, 2, 0). Grouping the x, y, and z components of all nodes as
follows::

xI = [0, 2, 2, 0], yI = [0, 0, 2, 2], zI = [0, 0, w, 0],

and using eq. (10.10) for each component, we obtain

x = 1 + ξ, y = 1 + η, z =
w

4
(1 + ξ)(1 + η).

From the first two equations, we have ξ = x− 1 and η = y − 1, and
the third equation can be expressed solely in Cartesian coordinates,

234 Basic relations for four-node shell elements

z =
w

4
xy. (10.12)

This is an equation of a hyperbolic paraboloidal (h-p) surface, shown in
Fig. 10.2a, having a saddle point at node 1. To obtain this equation in a
classical form, we introduce the coordinates r, s, rotated by 45o w.r.t.
[x, y] coordinates, see Fig. 10.2b. Then

[
x
y

]
=

[
c s
−s c

] [
r
s

]
, (10.13)

where s
.= sinα, c

.= cos α and α = −45o. Using this relation in
eq. (10.12), we obtain

z =
w

8
(r2 − s2), (10.14)

which has the standard form of the h-p surface equation, see [150] p. 545.
If we cut this surface using the vertical planes r=const. or s=const.,
then we obtain parabolas with either minimum or maximum at node 1.
If we cut this surface using horizontal planes z = const., we then obtain
hyperbolas, with the asymptotes intersecting at node 1.

Remark 1. For planar (2D) four-node elements, if all angles are smaller
than π, then there exists a one-to-one mapping between the element
and a bi-unit square spanned on the nodes {ξ, η}I = {±1,±1}, see [98]
p. 116. This is also true for planar shell elements, but for warped ones, the
question of the inverse mapping becomes complicated. In fact, using the
FE method and a numerical integration, we do not need this information,
and the Jacobian matrix and its inverse at integration points suffice.

Remark 2. The four-node quadrilateral shell element can also be de-
fined in another way by additionally using the normal vectors at nodes.
These vectors must be either computed, e.g. using normals of all elements
connected to the node, or be provided as input data, which can be cumber-
some. Another possibility is to use a CAD program, in which we can define
typical shapes of regular surfaces and directly obtain a normal vector at
a selected point.

Natural tangent vectors. The natural vectors tangent to the reference sur-
face are defined as

g1(ξ, η) .=
∂y0(ξ, η)

∂ξ
, g2(ξ, η) .=

∂y0(ξ, η)
∂η

. (10.15)

Geometry and bases of shell element 235

In general, these vectors are neither unit nor mutually orthogonal. For the
bilinear approximation and y0 in the form of eq. (10.9), we obtain

gα(ξ, η) =
4∑

I=1

NI,α y0I , α = 1, 2, (10.16)

where the derivatives of the shape functions are NI,1 = 1
4ξI (1 + ηI η)

and NI,2 = 1
4(1 + ξI ξ) ηI . Using the vector of shape functions N(ξ, η)

of eq. (10.11), we have

(gα)k(ξ, η) = N,α y0kI , (10.17)

where N,1 = 1
4 (ξ + h η) and N,2 = 1

4 (η + h ξ). We see that the
tangent vectors vary over the element; g1 is constant in ξ and linear
in η, while g2 is the opposite way round. At the element’s center,
ξ = η = 0, the vectors gα are equal to 1/2 of vectors connecting the
opposite middle-edge points.

Normal vector. The vector normal to the reference surface is defined as a
cross-product of the natural tangent vectors

ḡ3(ξ, η) .= g1(ξ, η)× g2(ξ, η). (10.18)

Note that ḡ3 is perpendicular to the tangent vectors gα, but is not
of unit length. This vector is not associated with the coordinate ξ3 ∈
[−1, +1]; see eq. (10.30).

Local Cartesian basis. For an irregular geometry of an element, the basis
{gα,g3} is normal but skew, which is not convenient, e.g., to define the
constitutive relations for non-isotropic materials. Hence, a local Cartesian
basis is introduced as described below.

Designate the local Cartesian basis by {tk} (k = 1, 2, 3). Define the
normal vector as

t3
.=

ḡ3

‖ḡ3‖
, (10.19)

where ḡ3 is defined by eq. (10.18). The tangent vectors of the local
Cartesian basis can be constructed in several ways; we define them in
terms of the auxiliary normalized natural vectors

g̃α
.=

gα

‖gα‖
, (10.20)

designated by a tilde. Below three types of bases used in shell elements
are presented.

236 Basic relations for four-node shell elements

Basis 1. One vector is parallel to the vector of the natural basis

t1
.= g̃1, t2

.= t3 × t1, (10.21)

where t1 is identical as g̃1, see Fig. 10.3a. This basis was used, e.g.,
in DYNA3D, see [89], eq. (35).

g
1

g
2

t2

t
1

g
1

g
2

t
2

t
1

a

a

Fig. 10.3 Ortho-normal frames at a Gauss point. a) Basis 1 and b) Basis 2.

Basis 2. Vectors are equally distant from vectors of the natural basis

t1
.=

1√
2
(t̃1 − t̃2), t2

.=
1√
2
(t̃1 + t̃2), (10.22)

where the auxiliary vectors are

t̃1
.=

g̃1 + g̃2

‖g̃1 + g̃2‖
, t̃2

.= t3 × t̃1. (10.23)

This is the most popular basis, see in [98] p. 386 or [50] p. 111 and is
shown in Fig. 10.3b.

For this basis, we can show that the average of t1 and t2 and the
average of g̃1 and g̃2 are parallel, but have different lengths, i.e.

1
2(t1 + t2) =

1
2
√

2
t̃1 = a 1

2(g̃1 + g̃2),

where a = 1/(
√

2 ‖g̃1 + g̃2‖).
Besides, the term “equally distant” means that the angle between g̃1

and t1 is equal to the angle between g̃2 and t2. This can be checked
in the following way:

Geometry and bases of shell element 237

t1 · g̃1 = a {(g̃1 + g̃2) · g̃1 − [t3 × (g̃1 + g̃2)] · g̃1}
= a {g̃1 · g̃1 − [t3 × g̃2] · g̃1} ,

t2 · g̃2 = a {(g̃1 + g̃2) · g̃2 + [t3 × (g̃1 + g̃2)] · g̃2}
= a {g̃2 · g̃2 + [t3 × g̃1] · g̃2} .

These two scalar products are equal, as g̃1·g̃1 = g̃2·g̃2 = 1 by eq. (10.20).

Finally, we note that for 2D problems formulated in the {g1,g2}-plane,
we can obtain the components of t̃2 as follows::

t̃2 = t3 × t̃1 = [0, 0, 1]T × [t1, t2, 0]T = −[t2, t1, 0]T ,

where the components of t̃1 = [t1, t2, 0]T are known.

Basis 2. Version 2. Vectors equally distant from vectors of natural basis

t1
.= cos(−β/2) t̃1 + sin(−β/2) t̃2, t2

.= − sin(−β/2) t̃1 + cos(−β/2) t̃2,
(10.24)

where

β = arctan
(t1 · g2)
(t2 · g2)

, t̃1 = g̃1, t̃2 = t3 × t̃1. (10.25)

Derivation. To obtain the same angle between g1 and t1 and be-
tween g2 and t2, we generate an orthonormal basis and then rotate it
around the normal vector t3. We shall use Basis 1 of eq. (10.21) as the
orthonormal basis to start from and denote its vectors as follows:

t̃1 = g̃1, t̃2 = t3 × t̃1.

The angle between t2 and g2, is denoted by β and we assume that
|β| < π/2. To determine β, we can use the following formulas:

sinβ =
(t̃1 · g2)
‖g2‖

, cosβ =
(t̃2 · g2)
‖g2‖

, tanβ =
sinβ

cosβ
=

(t̃1 · g2)
(t̃2 · g2)

,

from which we obtain

β = arctan
(t̃1 · g2)
(t̃2 · g2)

.

Then we rotate the frame {t̃1, t̃2} by the angle −β/2 around the
normal vector t3. For the rotation tensor defined as

238 Basic relations for four-node shell elements

R = cos(−β/2)(t̃1⊗ t̃1 + t̃2⊗ t̃2) + sin(−β/2)(t̃2⊗ t̃1− t̃1⊗ t̃2) + t3⊗ t3,

from t1 = Rt̃1 and t2 = Rt̃2, we obtain eq. (10.24).

Note that we can obtain sin(−β/2) and cos(−β/2) in another way,
without the use of the arctan function. Then, first we calculate

sinβ = t̃1 · g̃2, cosβ = t̃2 · g̃2

and then, using the half-angle formulas, we obtain

sin(−β/2) = s
√

1
2(1− cosβ), cos(−β/2) = +

√
1
2(1 + cosβ),

where s = sign(− sinβ).

Basis 3. Vectors related to the reference basis.

If (t3 · i1) < (1− τ) then t2 =
t3 × i1
‖t3 × i1‖ =

1√
t22 + t23

0
t3
−t2

 , (10.26)

otherwise t2 =
t3 × i2
‖t3 × i2‖ =

1√
t21 + t22

t2
−t1
0

 , (10.27)

and
t1 = t2 × t3, (10.28)

where t3 = [t1, t2, t3]T denotes the components of the normal vector
in the reference (global) basis {ik} and τ is a small parameter. The
advantage of this basis is that it provides easy identification of directions
for complicated curved structures.

The second formula, eq. (10.27), is used when t3 and i1 are almost
or exactly parallel and the cross-product t3× i1 is not well conditioned.
Consider the result of the above definitions for two limit cases.

1. If t3‖i1, then t2 = t3 × i2‖i3 and t1 = t2 × t3‖i2.
2. If t3‖i2, then t2 = t3 × i1‖ − i3 and t1 = t2 × t3‖i1.
Both these cases are shown in Fig. 10.4. Another basis related to the
reference basis {ik} is defined in [71] p. 242.

Geometry and bases of shell element 239

t i1 2||
t i1 1||

t i3 1||

t i2 3||

t i2 3|| -

t i3 2||
i3

i2i1

Case 1 Case 2

Fig. 10.4 Basis 3. Two limit cases of its position.

Normal vector associated with ξ3. Note that the vector ḡ3 of eq. (10.18)
is not associated with the coordinate ξ3 ∈ [−1, +1] and below we derive
the proper vector.

The position vector of a shell lamina ζ = const. relative to the middle
surface is (y−y0) = ζt3, where ζ ∈ [−h/2, +h/2]. We can parameterize
ζ in terms of ξ3 ∈ [−1, +1], as ζ = (h/2) ξ3, and define the normal
vector as a derivative w.r.t. ξ3, i.e.

g3
.=

d(y− y0)
dξ3

=
h

2
t3. (10.29)

This vector stretches from the middle surface to the top surface of a shell,
see Fig. 10.5.

t

h

g
3

3

0

0

x
a

z
x

3

Fig. 10.5 Associated pairs: (ξ3,g3) and (ζ, t3).

Note that the vector g3 is different from ḡ3 of eq. (10.18) and is
associated with ξ3 because

ξ3g3 = ζ t3. (10.30)

Hence, we can use either (ξ3,g3) or (ζ, t3), but certainly not (ξ3, ḡ3).

240 Basic relations for four-node shell elements

Remark. In some works, the normal vector is approximated as

t3(ξ, η) .=
4∑

I=1

NI(ξ, η) nI , (10.31)

where nI is the normal unit vector at node I defined as

nI =
aI × bI

‖aI × bI‖
and aI and bI are the vectors connecting node I with the adjacent
corners, see Fig. 10.6. When the element is planar, then this definition is
equivalent to eq. (10.19). However, when the element is warped, vectors
nI are not parallel and t3 is neither unit nor perpendicular to the local
tangent vectors gα.

n1

a1

b1

n2

n3

n4 n1

n2

n3
n4

Fig. 10.6 Normal corner vectors for a planar element and a warped element.

10.3 Jacobian matrices

Bases for initial configuration. Consider three bases:

1. {ik} - the reference (global) Cartesian basis, k = 1, 2, 3,
2. {gk} - the local natural basis at the reference surface for the initial

configuration with the tangent vectors defined by eq. (10.15) and the
normal vector by eq. (10.29).

3. {tk} - the local Cartesian basis at the reference surface for the initial
configuration with the normal vector defined by eq. (10.19) and the
tangent vectors generated in one of the three ways described earlier.
For simplicity, we denote S3 = ζ.

The coordinates associated with these bases are designated as yk, ξk, Sk,
respectively. Note that the zero of the natural coordinates ξα is at the

Jacobian matrices 241

element’s center, while the zero of the Cartesian coordinates Sα is at
any considered Gauss point g at which we define the local bases.

The initial position vector y relative to the position vector of the
Gauss point, yg, can be expressed in the following three ways:

y− yg = (yk − yk
g) ik = (ξk − ξk

g)gk = Sk tk. (10.32)

This equation links the above-defined bases and coordinates on the tangent
plane spanned at a Gauss point.

{tk}

JGJG

y
k

x
k

S
k

{ik} {gk}

JG

JLR

Bases:

Coordinates:

Fig. 10.7 Mappings and Jacobian matrices for the initial configuration.

Jacobian matrices for initial configuration. Let us define the following three
types of mappings of coordinates and the Jacobian matrices, see Fig. 10.7:

ξk 7→ yl : JG
.=

[
∂yl

∂ξk

]
,

Sl 7→ yk : R .=
[
∂yk

∂Sl

]
, (10.33)

ξk 7→ Sl : JL
.=

[
∂Sl

∂ξk

]
,

where the components of gradients are the matrices arranged as in
eq. (2.41).

To obtain the equation linking the above gradients, we use the chain
rule of differentiation

∂yk

∂ξl
=

∂yk

∂Sm

∂Sm

∂ξl
, which yields JG = RJL, (10.34)

where k, l, m = 1, 2, 3.

242 Basic relations for four-node shell elements

Rotation matrix R. The angular position of the local basis {tk} rela-
tive to the reference {ik} is described by the rotation tensor R .= tl⊗ il ∈
SO(3). This definition implies that Rik = tk, i.e. tk is a forward-
rotated ik. The components of R are

Rjk = ij · (Rik) = ij · tk (10.35)

and, in matrix form,

[Rjk] =

i1 · t1 i1 · t2 i1 · t3

i2 · t1 i2 · t2 i2 · t3

i3 · t1 i3 · t2 i3 · t3

 = [t1 | t2 | t3] , (10.36)

where the columns contain components of tk in {ik}. The vectors of
these components we denote as tk.

We can show that the Jacobian matrix of the mapping of coordinates
Sl 7→ yk is equal to the angular position matrix [Rjk], i.e.

[
∂yk

∂Sj

]
= [Rjk]. (10.37)

By eq. (10.32), (yj − yj
g)ij = Sktk, from which we obtain (yj − yj

g) =
Sk (tk · ij), and the differentiation of both sides w.r.t. Sk yields
∂yj/∂Sk = ij · tk, where the r.h.s. is identical as the r.h.s. of eq. (10.35),
which ends the proof. ¤

Global Jacobian matrix JG. For the mapping of coordinates ξk 7→ yi

of eq. (10.33), the Jacobian matrix is defined as

JG
.=

[
∂yi

∂ξk

]
=

∂y1

∂ξ1
∂y1

∂ξ2
∂y1

∂ξ3

∂y2

∂ξ1
∂y2

∂ξ2
∂y2

∂ξ3

∂y3

∂ξ1
∂y3

∂ξ2
∂y3

∂ξ3

 = [g1 |g2 |g3] , (10.38)

where the columns contain components of gk in {ik}. We designate this
Jacobian as “global” because the global (reference) Cartesian coordinates
yi are differentiated.

Jacobian matrices 243

Local Jacobian matrices JL. For the mapping of coordinates ξk 7→ Sl

of eq. (10.33), we define the Jacobian matrix

JL
.=

[
∂Si

∂ξk

]
=

∂S1

∂ξ1
∂S1

∂ξ2 0
∂S2

∂ξ1
∂S2

∂ξ2 0

0 0 h
2

 , (10.39)

where the last form is obtained for

∂S3

∂ξ
= 0,

∂S3

∂η
= 0,

∂Sα

∂ξ3
= 0,

∂S3

∂ξ3
=

∂(ξ3h/2)
∂ξ3

=
h

2
. (10.40)

We designate this Jacobian as “local”, because the local Cartesian coor-
dinates Si are differentiated.

h

h

x

x

t t2 2

S S
2 2

g g2 2

S S
1 1

g g
1 1

t t1 1

Fig. 10.8 Local bases and coordinates. a) for four-node element, b) for 9-node
element with curved boundaries.

Consider only this part of the local mapping ξβ 7→ Sα (α, β = 1, 2)
which is related to the tangent plane, see Fig. 10.8. To obtain a Jacobian
matrix for this part, we extract the upper 2× 2 part of JL, and denote
it as J,

J .=
[
∂Sα

∂ξβ

]
=

∂S1

∂ξ1
∂S1

∂ξ2

∂S2

∂ξ1
∂S2

∂ξ2

 =

[
g1 · t1 g2 · t1

g1 · t2 g2 · t2

]
, (10.41)

where columns contain components of gβ in {tα}.
The last form of J is obtained as follows. By eq. (10.32), Sk =

(y − yg) · tk, in which y and tk are functions of ξα, and the
differentiation yields

244 Basic relations for four-node shell elements

∂Sα

∂ξβ
= gβ · tα +

(
y− yg

) · ∂tα

∂ξβ

atGP= gβ · tα, (10.42)

where gβ
.= ∂y/∂ξβ by eq. (10.15). The last form is valid only for the

Gauss point, when
(
y− yg

)
= 0, and the second term drops out so

we obtain eq. (10.41). The Jacobian at the element center is denoted as
Jc

.= J|ξ=η=0.

Relation between gα and tα. The coordinate gradients imply relations
linking the bases with which these coordinates are associated. The natural
basis vectors gα can be decomposed in the ortho-normal {tα} as follows:

gα = (gα · t1) t1 + (gα · t2) t2, (10.43)

in which (gα · tβ) are components of J of eq. (10.41). Hence, we can
rewrite

[
g1

g2

]
= JT

[
t1

t2

]
and

[
t1

t2

]
= J−T

[
g1

g2

]
. (10.44)

Inverse Jacobian. An inverse of a 2 × 2 matrix A is given by a simple
formula,

A =
[
a b
c d

]
, A−1 =

1
det A

[
d −b
−c a

]
, (10.45)

providing detA = ad− bc 6= 0. Applying this formula to the Jacobian
matrix J of eq. (10.41), we obtain

J−1 =
1

detJ

[
g2 · t2 −g2 · t1

−g1 · t2 g1 · t1

]
, (10.46)

where detJ .= (g1 · t1)(g2 · t2)− (g1 · t2)(g1 · t1).

Another form of the inverse of Jacobian can be obtained with the help
of the co-basis {gα, t3}. The co-basis vectors gα are defined as follows:

gα : gα · gβ = δα
β and gα · t3 = 0 (10.47)

and by analogy with eq. (5.8), they can be calculated as

g1 =
(g2 × t3)

(g2 × t3) · g1

, g2 =
(t3 × g1)

(t3 × g1) · g2

. (10.48)

In terms of the co-basis vectors gα, the inverse of Jacobian is

Jacobian matrices 245

J−1 =

[
t1 · g1 t2 · g1

t1 · g2 t2 · g2

]
, (10.49)

where columns of J−1 contain components of tβ in {gα}.

Check. We can check that the inverse matrices of eqs. (10.46) and
(10.49) are identical. Let us transform the 12-component of the matrix
of eq. (10.49) as follows:

t2 · g1 =
t2 · (g2 × t3)
(g2 × t3) · g1

=
g2 · (t3 × t2)
(g1 × g2) · t3

=
−g2 · t1

detJ
, (10.50)

where we used g1 × g2 = t3 detJ, see eq. (10.106) for details. Hence,
the obtained expression is identical to the 12-component of eq. (10.46).
For the other components of J−1, we can proceed similarly.

Relation between gα and tα. As previously in the derivation of eq. (10.44),
we can use the fact that the coordinate gradients imply relations linking
the bases with which these coordinates are associated. The co-basis vectors
gα can be decomposed in the ortho-normal {tα} as follows:

gα = (gα · t1) t1 + (gα · t2) t2, (10.51)

in which (gα · tβ) are components of the inverse Jacobian matrix J−1

of eq. (10.49). Hence, we can rewrite
[
g1

g2

]
= J−1

[
t1

t2

]
and

[
t1

t2

]
= J

[
g1

g2

]
. (10.52)

Co-basis definition expressed by Jacobian matrices. The condition defining
the co-basis gα · gβ = δα

β can be rewritten as

(ti · gα)(gβ · ti) = δα
β , i = 1, 2, (10.53)

where gα = (gα · ti) ti and gβ = (gβ · tk) tk (i, k = 1, 2), and we can
calculate

gα · gβ = (gα · ti)(gβ · tk) ti · tk = (ti · gα)(gβ · ti). (10.54)

We note that gβ · ti = ∂Si/∂ξβ by eq. (10.42) and, hence, on the basis
of eq. (10.53), we can define the gradient

246 Basic relations for four-node shell elements

∂ξα

∂Si

.= ti · gα. (10.55)

On the other hand, by eq. (10.49), gα · ti =
[
J−1

]
αi

and, hence,

J−1 =

[
t1 · g1 t2 · g1

t1 · g2 t2 · g2

]
=

[
∂ξ1

∂S1
∂ξ1

∂S2

∂ξ2

∂S1
∂ξ2

∂S2

]
.=

[
∂ξα

∂Si

]
. (10.56)

Therefore, eq. (10.53) can be rewritten simply as J−1J = I, where I
is the identity matrix.

Example. Note that the procedure of calculation of J−1 allows us to
avoid expressing explicitly the natural coordinates ξα in terms of the
ortho-normal coordinates Sα. This is an advantage because such rela-
tions can be quite complicated. For instance, for Basis 1 attached at
the element center, these relations are as follows:

g1 ξ1 = t1 (S1 − S2 tanβ), g2 ξ2 = t1S
2 tanβ + t2S

2,
(10.57)

where β < π/2 is the angle between t2 and g2 and tanβ =
(t1 · g2)/(t2 · g2). Then

J−1 =

[
∂ξ1

∂S1
∂ξ2

∂S1

∂ξ1

∂S2
∂ξ2

∂S2

]
=

[
1/
√

g11 0

− tanβ/
√

g11 1/(cosβ
√

g22)

]
, (10.58)

where gαα
.= gα · gα and cosβ = (t2 · g2)/

√
g22.

Local Jacobian and its inverse for the vector of shape functions. We can ap-
proximate the relative vector (y−yg), see eq. (10.32), using a vector of
shape functions N(ξ1, ξ2) of eq. (10.5), and write

Sα =
1
4

[(sSα) + (ξSα) ξ + (ηSα) η + (hSα) ξη] , (10.59)

where Sα .= (yI−yg)·tα = [Sα
1 , Sα

2 , Sα
3 , Sα

4]T is the vector of projections
of nodal relative position vectors on tα. Differentiating eq. (10.59) w.r.t.
the natural coordinates, we obtain

∂Sα

∂ξ
=

1
4

[(ξSα) + (hSα) η] ,
∂Sα

∂η
=

1
4

[(ηSα) + (hSα) ξ] (10.60)

and, hence, the Jacobian matrix of eq. (10.41) is

Jacobian matrices 247

J =

[
1
4

[
(ξS1) + (hS1) η

]
1
4

[
(ηS1) + (hS1) ξ

]
1
4

[
(ξS2) + (hS2) η

]
1
4

[
(ηS2) + (hS2) ξ

]
]

. (10.61)

Note that column 1 varies linearly with η, while column 2 varies linearly
with ξ.

An inverse of the Jacobian can be obtained by eq. (10.45) and it is as
follows:

J−1 =
1

detJ

[
1
4

[
(ηS2) + (hS2) ξ

] −1
4

[
(ηS1) + (hS1) ξ

]

−1
4

[
(ξS2) + (hS2) η

]
1
4

[
(ξS1) + (hS1) η

]
]

, (10.62)

where
detJ = J(ξ, η) = J0 + J1ξ + J2η, (10.63)

and its components are

J0
.=

1
16

[
(ξS1) (ηS2)− (ηS1) (ξS2)

]
,

J1
.=

1
16

[
(ξS1) (hS2)− (hS1) (ξS2)

]
,

J2
.=

1
16

[
(hS1) (ηS2)− (ηS1) (hS2)

]
.

The bilinear term J12 ξη is not present in the expansion eq. (10.63)
because

J12
.=

1
16

[
(hS1) (hS2)− (hS1) (hS2)

]
= 0.

It can be checked for parallelograms that only J0 6= 0, while J1 = J2 = 0.

Example. Jacobian matrices for basic shapes of element. The Jacobian ma-
trix contains information about the initial shape of the element. In
Fig. 10.9, we show several basic shapes of a planar four-node element.
The Jacobian matrix and its determinant for these shapes are as follows:

a) square 2× 2: J =
[
1 0
0 1

]
, detJ = 1,

b) rectangle: J =
[
5/2 0
0 1

]
, detJ = 5/2,

c) parallelogram: J =
[
5/2 0
1 1

]
, detJ = 5/2,

248 Basic relations for four-node shell elements

d) trapezoid: J =
[
5/2 + η 0

ξ 1

]
, detJ = 5/2 + η,

e) trapezoid: J =
[
(5 + η)/2 0
(1 + ξ)/2 1

]
, detJ = (5 + η)/2,

f) irregular: J =
[
(5 + η)/2 (1 + η)/4
(1 + ξ)/2 (5 + ξ)/4

]
, detJ = (6 + ξ + η)/2.

45
o

45
o

45
o

a) b) c)

d)

45
o

e)

f)
1

1

Fig. 10.9 Typical shapes of four-node elements.
Elements c), d), e), f) are obtained from the rectangle of size 5 × 2.

We see that J is a diagonal matrix only for the square and the rectangle.
For the square, the rectangle, and the parallelogram, J is constant over
the element.

For trapezoids and irregular elements, J is non-diagonal and non-
constant and linearly depends on ξ, η. Note that for non-rectangular
shapes, especially when the element aspect ratio is far from 1, the accuracy
of four-node elements substantially decreases, see tests of Sects. 15.2.4 and
15.2.6.

Deformation gradient, FT F and QT F products 249

10.4 Deformation gradient, FTF and QTF products

Using various bases in FE computations. To enable linking of finite elements
of various spatial orientation, the displacement vector u and the rotation
vector ψ are represented in the reference Cartesian basis {ik}. However,
in computations on the level of an element, we have a choice and one of
the following two bases can be used:

1. the reference Cartesian basis {ik}. In order to perform the local
operations, we have to transform strain components and components
of the QTF product to the local basis {tk} at a Gauss point.

2. the elemental Cartesian basis {tc
k} at the element center. Then, first,

the displacement and rotation components must be transformed from
the reference basis {ik} to this basis. In order to perform the local
operations, we transform the strain components and components of the
QTF product to the local basis {tk} at a Gauss point. Afterwards,
the tangent stiffness matrix at the residual vector must be transformed
to the reference basis {ik}.
The use of this basis requires additional transformations but, contrary
to expectations, can significantly improve the efficiency of a four-node
element if zero values are accounted for in the implementation.
Note that the use of the elemental basis {tc

k} is indispensable in the
case of warped four-node elements if the substitute flat element and
the warpage correction are used, see Sect. 14.3 for details.

Local operations for shell element. The shell assumptions and several tech-
niques related to the formulation of a finite element require a local defini-
tion of directions, e.g.

• the Reissner hypothesis,
• imposition of the zero normal stress (ZNS) condition,
• modifications of transverse shear strains (using the ANS method),
• formulation of the drilling RC equation,
• integration of the strain energy, when it is separated into the integra-

tion in the normal (fiber) direction and the integration in the tangent
(lamina) direction.

Hence, no matter whether the basis {ik} or {tc
k} is used on the ele-

ment’s level, we have to transform the strain components and components
of the QTF product to the local basis {tk} at a Gauss point. Note that
instead of transforming components from one basis to another, we can
operate on the backward-rotated objects, as described in Sect. 2.

250 Basic relations for four-node shell elements

Remarks on use of a skew basis at element’s center. The skew basis at the ele-
ment center, {gc

α, tc
3}, is used in mixed elements based on the Hellinger–

Reissner functional and the Hu–Washizu functional, see Sect. 11.5. Rep-
resentations of stress are assumed in this basis, while representations of
strain for the Hu–Washizu functional are assumed either in this basis or
in its co-basis. These representations are next transformed to the local
orthonormal basis at the element center {tc

k}.
The formulas for a transformation between a non-orthogonal basis and

a Cartesian basis are derived in Sect. 2. In the case of the in-plane (αβ)
components, for non-symmetric tensors we use eqs. (2.21) and (2.25), while
for symmetric tensors we use eq. (2.29) with T∗ replaced by T∗∗

of eq. (2.30) or eq. (2.31). For the transverse (α3) components, we use
eqs. (2.26) and (2.27).

Deformation gradient, FTF and QTF products. Below, we derive matrices
of components for the deformation gradient F, the Cauchy–Green de-
formation tensor C .= FTF, and the QTF product. They are derived
for the reference basis {ik} and, subsequently, the latter two matrices
are transformed to the local bases {tk}. As mentioned earlier, instead of
the reference basis {ik}, the elemental basis {tc

k} can be used as well.
Two ways of derivation are presented below in which the position vectors
are treated as functions of either (A) the natural coordinates, or (B) the
local Cartesian coordinates.

(A) Natural coordinates. For the coordinates {ξα, ζ}, we take ζ = h
2 ξ3,

express ζ ∈ [−h/2, +h/2] in terms of ξ3 ∈ [−1, +1], and use the
natural coordinates {ξk} (k = 1, 2, 3).

Then the position vector in the initial configuration of eq. (5.1) is as
follows:

y(ξk) = y0(ξ
α) +

h

2
ξ3 t3(ξα), α = 1, 2, (10.64)

and the current position vector is x = x(ξk(y)). The deformation gra-
dient of eq. (5.15) can be written simply as

F .=
∂x
∂y

=
∂x
∂ξk

⊗ ∂ξk

∂y
, (10.65)

with ξk serving as intermediate variables. Let us use the components of
y and x in the reference basis {ik}. Then y = ym im and x = xl il,
(m, l = 1, 2, 3) and we differentiate only the components,

Deformation gradient, FT F and QT F products 251

∂x
∂ξk

=
∂xl

∂ξk
il,

∂y
∂ξk

=
∂ym

∂ξk
im. (10.66)

Hence, the inverse derivative is

∂ξk

∂y
=

∂ξk

∂ym
im (10.67)

and the deformation gradient becomes

F =
∂x
∂ξk

⊗ ∂ξk

∂y
=

∂xl

∂ξk

∂ξk

∂ym
il ⊗ im = Flm il ⊗ im, (10.68)

where

Flm
.=

∂xl

∂ξk

∂ξk

∂ym
. (10.69)

Let us introduce the matrices of components

F .= [Flm], Jcurr
G

.=
[

∂xl

∂ξk

]
, JG

.=
[
∂ym

∂ξk

]
, (10.70)

where JG is the global Jacobian of eq. (10.33). Then the deformation
gradient matrix can be computed as

F = Jcurr
G J−1

G . (10.71)

Now we can compute the components of the Cauchy–Green tensor
C .= FTF and of the QT

0 F product, and transform them to the local
orthonormal basis {tk}. This can be done, as derived in Sect. 2, by the
transformation of components (·)local = RT (·)global R, see eq. (2.13).
Note that R is the rotation matrix of eq. (10.33).

1. Components of the Cauchy–Green deformation tensor C .= FT F,

C∗ = RT CR = F̄T F̄, (10.72)

2. Components of the QTF product, i.e. QTF,

(QTF)∗ = RT (QTF)R = (QR)T F̄, (10.73)

where
F̄ .= FR = Jcurr

G J−1
G R = Jcurr

G J−1
L , (10.74)

with the last form obtained on use of eq. (10.34).

252 Basic relations for four-node shell elements

(B) Orthonormal local coordinates. We can express ζ ∈ [−h/2,+h/2] in
terms of ξ3 ∈ [−1,+1] as ζ = (h/2) ξ3, and define S3 .= ξ3. Then we
can use the Cartesian coordinates {Sk} (k = 1, 2, 3) instead of {Sα, ζ}.

The position vector in the initial configuration of eq. (5.1) is now as
follows:

y(Sk) = y0(S
α) +

h

2
S3 t3(Sα), α = 1, 2, (10.75)

and the current position vector is x = x(Sk(y)). The deformation
gradient of eq. (5.15) can be written simply as

F .=
∂x
∂y

=
∂x
∂Sk

⊗ ∂Sk

∂y
, (10.76)

with Sk being intermediate variables. Let us use the components of y
and x in the reference basis {ik}. Then y = ym im and x = xl il
and we can differentiate the components

∂x
∂Sk

=
∂xl

∂Sk
il,

∂y
∂Sk

=
∂ym

∂Sk
im. (10.77)

Hence, the inverse derivative is

∂Sk

∂y
=

∂Sk

∂ym
im (10.78)

and the deformation gradient becomes

F =
∂x
∂Sk

⊗ ∂Sk

∂y
=

∂xl

∂Sk

∂Sk

∂ym
il ⊗ im = Flm il ⊗ im, (10.79)

where

Flm
.=

∂xl

∂Sk

∂Sk

∂ym
. (10.80)

Let us define the following matrices of components

F .= [Flm], ∇x .=
[

∂xl

∂Sk

]
, R .=

[
∂ym

∂Sk

]
, (10.81)

where R is the rotation matrix of eq. (10.33). Then the deformation
gradient matrix can be computed as

F = ∇x RT . (10.82)

Deformation gradient, FT F and QT F products 253

Now we can compute the components of the Cauchy–Green tensor
C .= FTF and of the QT

0 F product and transform them to the local
orthonormal basis {tk}. This can be done, as derived in Sect. 2, by the
transformation of components (·)L = RT (·)G R, see eq. (2.13).

1. Components of the Cauchy–Green deformation tensor C .= FT F,

C∗ = RT CR = (∇x)T∇x, (10.83)

2. Components of the QTF product, i.e. QTF,

(QTF)∗ = RT (QTF)R = (QR)T ∇x. (10.84)

Note that, formally, ∇x plays the same role as F̄ in case (A).

The formulation based on the coordinates Sk makes sense when the
derivatives of shape functions are expressed in terms of ortho-normal Sα,
as, e.g., for the one-integration point element. Besides, it is an analogue
of the formulation used in the analytical studies in Sect. 6.

Increment of Green strain. Version 1. For x = xn + ∆u, where n refers
to the last known configuration and ∆ to the increment from the last
known configuration to the current one, the deformation gradient can be
multiplicatively decomposed as follows:

F .=
∂x
∂y

=
∂x
∂xn

∂xn

∂y
= ∆FFn. (10.85)

Then, the Green strain can be rewritten as

E .= 1
2(FTF− I) = 1

2

[
FT

n (∆FT ∆F)Fn − I
]
, (10.86)

where
∆F .=

∂x
∂xn

= ∇nx = I +∇n(∆u) (10.87)

and ∇n(·) .= ∂(·)/∂xn denotes the gradient w.r.t. the known position
vector. We can linearize the ∆FT ∆F product w.r.t. ∆u, which yields

(∆FT ∆F) = I +∇n(∆u) +∇T
n (∆u) +∇T

n (∆u)∇n(∆u)︸ ︷︷ ︸
neglected

≈ I + 2∆ε, (10.88)

where ∆ε
.= sym∇n(∆u) is the infinitesimal strain increment. Hence,

the Green strain can be expressed as

254 Basic relations for four-node shell elements

E = 1
2

[
FT

n (I + 2∆ε)Fn − I
]

= En + FT
n ∆εFn, (10.89)

where En
.= 1

2(FT
nFn − I), and the increment of the Green strain can

be obtained as the pull-back of the infinitesimal strain increment, ∆E .=
E−En = FT

n ∆εFn.

Increment of Green strain. Version 2. The increment of the Green strain can
be defined as ∆E .= En+1 −En and expressed as

∆E = 1
2(FT

n+1Fn+1 − FT
nFn). (10.90)

The deformation gradients at tn and tn+1 can be expressed by the
mid-point deformation gradient Fn+1/2

.= ∂xn+1/2/∂y as follows:

Fn+1
.=

∂xn+1

∂X
=

∂xn+1

∂xn+1/2

∂xn+1/2

∂y
=

[
∂xn+1

∂xn+1/2

]
Fn+1/2, (10.91)

Fn
.=

∂xn

∂X
=

∂xn

∂xn+1/2

∂xn+1/2

∂y
=

[
∂xn+1/2

∂xn

]−1

Fn+1/2. (10.92)

Then, the increment of the Green strain can be written as

∆E = FT
n+1/2 ∆ε Fn+1/2, (10.93)

where the part which is pushed-forward to the mid-point position is

2∆ε =
[

∂xn+1

∂xn+1/2

]T [
∂xn+1

∂xn+1/2

]
−

[
∂xn

∂xn+1/2

]T [
∂xn

∂xn+1/2

]
. (10.94)

We note that

∂xn+1

∂xn+1/2
=

∂(xn+1/2 + 1
2∆u)

∂xn+1/2
= I + 1

2

∂∆u
∂xn+1/2

(10.95)

and
∂xn

∂xn+1/2
=

∂(xn+1/2 − 1
2∆u)

∂xn+1/2
= I− 1

2

∂∆u
∂xn+1/2

. (10.96)

Using the above relations in eq. (10.94), we obtain

∆ε = 1
2

[
∂∆u

∂xn+1/2
+

(
∂∆u

∂xn+1/2

)T
]

. (10.97)

Formula (10.93) is used in finite strain plasticity, e.g., in [97, 250].

Numerical integration of shell elements 255

Rate of Green strain. Differentiation of the Green strain E .= 1
2(FTF− I)

w.r.t. time t, yields

2Ė = ḞTF + FT Ḟ = FT (F−T ḞT + ḞF−1)F
= FT (∇vT +∇v)F = 2FTdF, (10.98)

where the spatial velocity gradient ∇v .= ḞF−1, and the rate of de-
formation d .= 1

2(∇vT + ∇v). Using this formula, we can obtain an
interpretation of the above two forms of increment of the Green strain.

Writing eq. (10.98) at time instant tn and multiplying by ∆t, we
obtain

∆E = FT
n ∆εFn, (10.99)

where ∆E .= Ėn∆t and ∆ε
.= dn∆t by the forward Euler finite-

difference scheme, which is first-order accurate. This equation corresponds
to eq. (10.89).

Writing eq. (10.98) at time instant tn+1/2 and multiplying by ∆t,
we obtain

∆E = FT
n+1/2 ∆εFn+1/2, (10.100)

where ∆E .= Ėn+1/2∆t and ∆ε
.= dn+1/2∆t by the central finite-

difference scheme, which is second-order accurate. This equation corre-
sponds to eq. (10.93).

10.5 Numerical integration of shell elements

Infinitesimal volume and area of shell element. Below we consider the formu-
las suitable for (i) the ortho-normal coordinates Sk and (ii) the natural
coordinates ξk. The latter are actually used in our computations.

(i) Ortho-normal coordinates Sk. The differential of the position vector y
can be written as

dy .= t1 dS1 + t2 dS2 + t3 dS3, (10.101)

where dS3 .= ζ ∈ [−h/2, +h/2]. An infinitesimal volume of the rectan-
gular parallelepiped spanned by vectors (dy)i = ti dSi (no summation)
is as follows:

dV
.= (t1 dS1 × t2 dS2)·(t3 dS3) = (t1 × t2)·t3 dS1dS2dS3 = dS1dS2dS3,

(10.102)

256 Basic relations for four-node shell elements

as t1 × t2 = t3. The infinitesimal area of a rectangle spanned by the
tangent vectors (dy)α (α = 1, 2) is

dA
.= (t1 dS1 × t2 dS2) · t3 = dS1dS2. (10.103)

(ii) Natural coordinates ξk. The differential of the position vector y can
be written as

dy .=
∂y0

∂ξ1
dξ1 +

∂y0

∂ξ2
dξ2 + t3

h

2
dξ3 = g1 dξ1 +g2 dξ2 + t3

h

2
dξ3, (10.104)

where gα
.= ∂y0/∂ξα, ξ3 .= 2ζ/h, and ξk ∈ [−1, +1]. An infinitesimal

volume of the parallelepiped spanned by the component vectors is

dV
.=

(
g1 dξ1 × g2 dξ2

) ·
(
t3

h

2
dξ3

)
=

h

2
(g1 × g2) · t3 dξ1dξ2dξ3.

(10.105)
Note that

g1 × g2 = J t3, J = (g1 · t1)(g2 · t2)− (g2 · t1)(g1 · t2), (10.106)

for gα decomposed in {ti} as gα = (gα · t1) t1 + (gα · t2) t2 and
t1 × t2 = t3. Besides, J

.= detJ, where J is the Jacobian matrix of
eq. (10.41). Using the above relation (g1 × g2) · t3 = J t3 · t3 = J and

dV =
h

2
J dξ1dξ2dξ3. (10.107)

We note that (h/2) J = (h/2) detJ = detJL, for JL of eq. (10.39).
Besides, JL = RTJG, by eq. (10.34), and hence detJL = detJG, as
detR = 1. The infinitesimal area of the parallelogram spanned by vectors
(dy)α (α = 1, 2) is

dA
.= (g1 dξ1 × g2 dξ2) · t3 = (g1 × g2) · t3 dξ1dξ2 = J dξ1dξ2. (10.108)

Remark. In the above derivations, we assumed that the element’s ge-
ometry is approximately flat, see the restriction of eq. (5.19). To account
for curvature, the infinitesimal parallelepiped should be spanned by the
vectors ĝα(ζ) of eq. (5.5) and integrated over the thickness.

Numerical integration of shell elements 257

a

a

bt2

g2

g2

g1
g1

t1

~

~

Fig. 10.10 Sign of the Jacobian determinant depends on α or β.

Example. We show that the sign of the Jacobian determinant J is a
function of the angle between t1 and g1, denoted as α in Fig. 10.10.
We assume that the basis {ti} is constructed as Basis 2, see eq. (10.22).

The natural basis vectors gα can be expressed as gα = g̃α ‖gα‖,
where g̃α are unit vectors given in {tα} as follows:

g̃1 = cosα t1 − sinα t2, g̃2 = − sinα t1 + cosα t2.

Then the Jacobian determinant becomes

J = (g1 · t1)(g2 · t2)− (g2 · t1)(g1 · t2)
= ‖g1‖‖g2‖(cos2 α− sin2 α) = ‖g1‖‖g2‖(1− 2 sin2 α). (10.109)

Because ‖g1‖‖g2‖ > 0, the sign of J depends on the angle α, i.e.

J > 0, for | sinα| < 1/
√

2, or |α| < 45o,
J = 0, for | sinα| = ±1/

√
2, or |α| = 45o,

J < 0, for | sinα| > 1/
√

2, or |α| > 45o.
(10.110)

We can rewrite these conditions in terms of the angle between g1 and
g2, defined as β

.= 90o − 2α, see Fig. 10.10, as follows:

J > 0, for 0o < β < 180o,
J = 0, for β = 0o or β = 180o,
J < 0, for β > 180o .

(10.111)

We see that J is singular when g1 and g2 are co-linear and is
negative if they are inclined at the angle greater than 180o.

Finally, we note that the Jacobian determinant J is computed at the
Gauss points and it should be positive to avoid negative volumes which
are non-physical.

258 Basic relations for four-node shell elements

Remark. Note that the condition requiring that the internal angles
between adjacent edges of a four-node element be within the range
[45o, 135o] is motivated by accuracy concerns, as it is more restrictive
than necessary to avoid J < 0. For instance, if node 3 is placed on the
line linking node 2 and 4, then the angle at node 3 is 180o, far beyond the
above range. Still, J > 0 everywhere except at node 3, where J = 0.

Volume and area of shell element. Below we consider the formulas for inte-
gration suitable for the natural coordinates ξk.

The volume of a shell element is defined as an integral,

V
.=

∫

V
dV =

∫ +1

−1

∫ +1

−1

∫ +1

−1

h

2
J dξ1dξ2dξ3, (10.112)

where we used dV of eq. (10.107). If the thickness h is constant in
the element, then we obtain V = hA, where the shell element area is
defined as

A
.=

∫

A
dA =

∫ +1

−1

∫ +1

−1
J dξ1dξ2, (10.113)

where dA is defined in eq. (10.108). For a four-node element and the
bilinear approximation, detJ = J0 + J1 ξ1 + J2 ξ2, see eq. (10.63), and
the area A = 4J0.

Equation (10.112) is general, can be applied to elements of arbitrary
shape, also to the warped ones, while a simpler expression can be found
for a flat four-node element. We can divide the four-node elements into
two triangles, e.g., by the diagonal 1-3, and calculate its area as follows:

A
.= 1

2 (y32 × y12 − y34 × y14) · t3, (10.114)

where t3 is a unit normal vector and yKL
.= yK − yL, i.e. the vector

connecting nodes K and L (K, L ∈ {1, 2, 3, 4}). Then yKL = Sα
KL tα,

where Sα
KL

.= Sα
K − Sα

L and Sα
I

.= (yI − yc) · tα, where yc is the
position of the element center. Finally, the area can be expressed as

A = 1
2

(
S1

31 S2
42 − S2

31 S1
24

)
(10.115)

or
A =

1
4

[
(ξS1)(ηS2)− (ξS2)(ηS1)

]
. (10.116)

To prove the correctness of the last form, we have to perform multi-
plications and introduce the differences of coordinates Sα

KL, which
yields eq. (10.115). Comparing eq. (10.116) with the definition of J0

of eq. (10.63), we obtain A = 4J0.

Numerical integration of shell elements 259

Integration over the element volume. The volume of the shell element is
mapped onto a unit cube and a numerical integration is performed as
follows:

∫

V
F dV =

∫ +1

−1

∫ +1

−1

∫ +1

−1
F̄ (ξk)

h

2
J dξ1dξ2dξ3 =

NIP∑

n=1

wn F̄ (ξk
n),

(10.117)
where dV is defined in eq. (10.107), F̄ (ξk) .= 1

2f(ξk) h(ξα) J(ξα), and
wn denotes the weighing factor for the integration point n.

We can separately specify the integration rule for the reference lamina
(l) and for the fiber (f), see Fig. 5.2, as follows:

∫

V
F dV =

N l
IP∑

l=1

wl

Nf
IP∑

f=1

wf F̄ (ξα
l , ξ3

f). (10.118)

The order in which the above summations are performed can have a sig-
nificant effect on the speed of the FE code and the effect can be contrary
to our expectations; this issue is discussed in [89]. Note that, generally, it
is better to write two integration loops instead of one, as usually it makes
a difference to the compiler’s optimizer.

Integration of strain energy over thickness. For the Reissner kinematics, the
deformation gradient F is a linear function of the normal coordinate
ζ ∈ [−h/2, +h/2]. Hence, the strain E and the strain energy density
function W are polynomials of ζ,

E(ζ) =
N∑

n=0

1
n!

E(n) ζn, W(ζ) =
N∑

n=0

Wn ζn, (10.119)

where E(n) denotes the nth derivative w.r.t ζ at the middle surface,
ζ = 0. The shell-type strain energy is defined as Wsh

.=
∫ +h/2
−h/2 W(ζ) dζ,

and involves the integration through-the-thickness.

In Table 10.1 are (1) the analytically integrated Wsh, and (2) the
minimum number of integration points to obtain exact Wsh for two
types of numerical quadratures, Gauss and Newton–Cotes (NC). Various
forms of strain are assumed. Note that W∗

2 depends on all derivatives
of the strain, while W2 only on E(1).

260 Basic relations for four-node shell elements

Table 10.1 Integration of SVK strain energy over ζ for various forms of strain.
MNIP=minimum no. of integration points

Form of strain Coefficients of strain energy analytically integr. MNIP
E(ζ) W(ζ) Wsh Gauss NC

E(0) W0(E
(0)) hW0 1 1

E(0)+ ζE(1) W0(E
(0)),W1(E

(0),E(1)), hW0 + h3

12
W2 2 3

W2(E
(1))

E(0)+ ζE(1) + ζ2

2
E(2) W0(E

(0)), W1(E
(0),E(1)), hW0 + h3

12
W∗

2 + h5

80
W4 3 5

W∗
2 (E(0),E(1),E(2)),

W3(E
(1),E(2)), W4(E

(2))

Numerical integration of four-node shell elements over thickness. In the four-
node shell element, we use a 2 × 2 Gauss rule for integration over the
reference lamina. (The analytical integration over the lamina is used, e.g.,
in the so-called one-integration point element.) The integration over the
fiber is performed either analytically or one of the following 1D integration
rules is used:

1. the 2-point Gauss rule. The locations of sampling points for the interval
ξ ∈ [−1,+1] and weighing factors for the 2-point Gauss rule are given
in Table 10.2.

Table 10.2 2-point Gauss integration rule.

m 1 2

ξm −1/
√

3 1/
√

3
wm 1 1

2. the 5-point Simpson rule. In the Simpson method, the interval is di-
vided into an even number of intervals and within each pair of intervals
the function is approximated by a parabola. The method is exact for
polynomials of degree at most 3. The locations of sampling points for
the interval ξ ∈ [−1, +1] and weighing factors for the 5-point Simp-
son rule are given in Table 10.3. In the context of shells, the Simpson
rule has the advantage that the sampling points are also located at the
ends of the interval, ξm = ±1, i.e. at the most external laminas.

Newton method and tangent operator 261

Table 10.3 5-point Simpson integration rule.

m 1 2 3 4 5

ξm -1 -1/2 0 1/2 1
wm 1/6 4/6 3/6 4/6 1/6

10.6 Newton method and tangent operator

Newton method. Consider the potential energy functional defined as

F (z) .=
∫

V
W(z) dV − Fext, (10.120)

where W(z) is the strain energy expressed by z .= {u, ψ} and Fext is
a functional of external forces. The below-described procedure is analogous
for other governing functionals.

We write the stationarity condition of F as

δF
.= DF (z̄) · δz =

d
dt

F (z̄ + t δz)
∣∣∣∣
t=0

= 0, (10.121)

where DF (z̄) · δz is the directional derivative of F at z̄ in the
direction δz, t is a scalar parameter, and z̄ denotes the known (last
computed) solution. This is the virtual work (VW) equation.

We designate G
.= δF and rewrite the VW equation as G(z) = 0.

It can be linearized and solved iteratively, e.g., using the Newton scheme
defined as follows:

DG(z̄) ·∆z = −G(z̄)

z = z̄ + ∆z

}
, (10.122)

where

DG(z̄) ·∆z .=
d
dt

G(z̄ + t∆z)
∣∣∣∣
t=0

(10.123)

is the directional derivative of G at z̄ in the direction ∆z. This
derivative provides the tangent operator K.

Tangent operator for the linear material. Consider the strain energy
W(z) .= 1

2ε · (C ε), where C .= ∂σ/∂ε is the tangent constitutive
matrix. For simplicity, we omit the integral and Fext in eq. (10.120).

Then F (z) .= W(z) and its variation is G
.= δF = δW = σ · δε,

where the constitutive equation σ
.= ∂W/∂ε = C ε. The directional

derivative is calculated as

262 Basic relations for four-node shell elements

DG(z̄) ·∆z =
∂G

∂z
∆z = ∆σ · δε + σ ·∆(δε). (10.124)

The first component of eq. (10.124) can be transformed using the consti-
tutive relation in the incremental form ∆σ = C∆ε, where B .= ∂ε/∂z
is the kinematical strain-displacement matrix, to obtain

∆σ · δε = (C∆ε) · δε = (CB∆z) · (B δz) = δz · (BTCB∆z). (10.125)

The second component of eq. (10.124) can be rewritten as

σ ·∆(δε) = ∆(σ∗ · δε) = ∆δ(σ∗ · ε), (10.126)

provided that, in differentiation, σ is treated as independent of z, which
is indicated by the asterisk, i.e. σ∗. Note that the scalar (σ∗ · ε) is
differentiated in the last form of this equation. Then the second component
becomes

∆δ(σ∗ · ε) = δz ·
[
∂2(ε · σ∗)

∂z2
∆z

]
. (10.127)

Finally,

DG(z̄) ·∆z = δz · (K∆z) , K .= BTCB +
∂2(ε · σ∗)

∂z2
, (10.128)

where K is the tangent stiffness operator.

Computation of tangent matrix. The major part of computation of the tan-
gent matrix is the computation of derivatives and for non-linear functions
these derivatives are more complicated than the function itself. There are
three ways to compute the tangent matrix:

1. Analytic, i.e. by hand or using one of the symbolic manipulators such as
Mathematica, Maple, and others, which can be used for manipulating
equations and obtaining expressions for partial derivatives. This way
is exact but laborious.

2. Numerical, i.e. by finite difference (FD) approximations and either two-
sided or one-sided differences can be used. This yields an inefficient
code, which can be also inaccurate.

3. Automatic (or algorithmic) differentiation of the computer program.
The automatic differentiation (AD) programs can deal with constructs
such as branches and loops and derivatives are correct up to the ma-
chine precision. The AD has strong theoretical foundations and is a
mature computational technology, which can be used with confidence,
see, e.g., [185, 82, 84, 83].

Below, we discuss these three ways of generating the tangent matrix.

Newton method and tangent operator 263

1. Stiffness tangent matrix derived analytically. Again, consider the VW equa-
tion in the simplified form, i.e. G(z) .= δW .= σ · δε, where σ

.= ∂W/∂ε.
We can split

δε = [δ1ε, ..., δNε], δiε =
∂ε

∂zi
δqi, i = 1, ..., N, (10.129)

where zi ∈ zI denotes a nodal variable of a discrete FE model and,
for simplicity, we take, only one of its components, i.e. Gi(z)

.= σ · δi ε.
We shall calculate a derivative of this component w.r.t. one component,
zj ∈ zI ,

∂Gi(zI)
∂zj

=
∂

∂zj
(σ · δiε) = σ,j · (Bi δzi) + σ · (Bi,j δzi), (10.130)

where

σ,j =
∂σ

∂ε

∂ε

∂zj
= CBj , Bi =

∂ε

∂zi
, Bi,j =

∂Bi

∂zj
=

∂2ε

∂zi ∂zj
, (10.131)

and C .= ∂σ/∂ε is the constitutive tangent operator. Note that

1. If components of σ and ε are written as matrices, then Bi and
Bi,j are also matrices but C must be a 4D matrix. Using the identity
T1 ·T2 = tr(TT

2 T1), we can rewrite eq. (10.130) as

∂Gi(zI)
∂zj

= tr (BT
i CBj + BT

i,j σ) δzi. (10.132)

This form is not used in computations because of the inconvenient
form of C.

2. If components of σ and ε are written as vectors, then Bi and
Bi,j are also vectors, while C can be written as a 2D matrix; this
is the so-called Voigt’s notation. Then we can rewrite eq. (10.130) as
follows:

∂Gi(zI)
∂zj

= (Bi δzi) · (CBj) + (Bi,j δzi) · σ. (10.133)

For all components taken into account, we have i, j = 1, ..., N and
the vectors Bi can be arranged as a matrix B = [B1, ...,BN]. Then

∂G(zI)
∂z

.=
[
∂Gi(z)

∂zj

]

i,j=1,...,N

= δBTCB +
(

dδB
dz

)T

σ, (10.134)

264 Basic relations for four-node shell elements

where δB = [B1 δz1, ...,BN δzN] and

(
dδB
dz

)T

=

B1,1 δz1 ... B1,N δz1

...
BN,1 δzN ... BN,N δzN

 . (10.135)

Equation (10.134) is used to generate the tangent stiffness matrix
which is defined as follows:

K .=
∫

A

[
BTCB +

(
∂B
∂z

)T

σ

]
dV , (10.136)

where the displacement matrix and the initial stress matrix are defined
as

K0 + KL
.=

∫

A
BTCB dV , Kσ

.=
∫

A

(
∂B
∂z

)T

σ dV . (10.137)

Here, K0 is the infinitesimal (linear) stiffness matrix, while Ku

and Kσ are the parts which appear for non-linear strains and/or
non-linear constitutive relations, see the classical textbooks on FEs.

2. Stiffness tangent matrix derived by finite difference method. The stiffness
matrix can be approximated by a secant operator obtained using the Finite
Difference (FD) method. This is a very inefficient method which can be
accelerated by deriving B analytically and using it to compute the initial
stress matrix Kσ by the FD method. This is obtained as follows:

1. First, the analytical formula for B is derived and compared with the
FD approximation

BFD
i =

ε(zi + τ)− ε(zi + τ)
2τ

, zi ∈ zI , (10.138)

where τ = 10−8 for double precision and BFD
i is the ith column

of BFD. This verification should be done for zi 6= 0.
2. The so-verified analytical B is used to compute the initial stress

matrix Kσ by the FD method,

(Kσ)FD
i =

BT(zi + τ) σ −BT(zi − τ) σ

2τ
, (10.139)

where (Kσ)FD
i is the ith column of (Kσ)FD. If components of σ

are written as a vector, then B is a matrix and, in the nominator,
we obtain a difference of two vectors.

Newton method and tangent operator 265

Remark. Note that the use of the analytically derived B is very impor-
tant for efficiency. Otherwise we have to compute the second derivative of
strain because

Kσ =
(

dB
dz

)T

σ =
(

d 2ε

dz2

)T

σ. (10.140)

Computation of the second derivative is time-consuming for multidimen-
sional z because, first, a second-order hyper-surface must be spanned.
For instance, for each strain component εkl, we have to span

εkl = a0 +
N∑

i=1

ai zi +
N−1∑

i=1

N∑

j=1+i

aij zi zj +
N∑

i=1

aii z
2
i , (10.141)

where the base functions are polynomials of up to the second order. The
number of coefficients a0, ai, aij , aii which have to be calculated is

p = 1︸︷︷︸
constant

+ N︸︷︷︸
linear

+ (N2 −N)/2︸ ︷︷ ︸
mixed quadratic

+ N︸︷︷︸
pure quadratic

= (N2 + 3N + 2)/2,

(10.142)
and for N = 8 (four-node element × 2 dofs/node), we obtain p = 45.
The semi-analytical method is more efficient but even this method can be
used only when the efficiency of the FE is not important.

Finally, we note that the formulas given above may also be used to
verify the correctness of B and Kσ derived either analytically or by
an automatic differentiation program.

3. Stiffness tangent matrix by automatic differentiation. Even for a single shell
element, we have to use many independent variables, e.g. in case of shell
elements with six dofs/node, we use 24 variables in the four-node element
and 54 in the 9-node element. This means that the functional F must be
differentiated w.r.t. this number of variables, which produces thousands
of formulas.

In consequence, the process of derivation of this matrix and coding is
time-consuming and error prone. Controlling and modifications of a code
become difficult because of its size. For this reason, the programs in which
we can write operations in a very compact way and perform automatically
differentiation are very useful.

In the automatic differentiation (AD) programs, there are several op-
tions which can be used to calculate the residual vector and the stiffness
tangent matrix. The simplest possibility is

266 Basic relations for four-node shell elements

1. Apply the FE approximations and integrate the functional F , which
yields an algebraic function F̂ (zI) of the set of nodal variables zI ,

F
FE−→ F̂ (zI). (10.143)

2. The residual vector and the stiffness tangent matrix are calculated as
derivatives of F̂ (zI) w.r.t. nodal variables

r .=
dF̂ (zI)

dzI
, K .=

dr
dzI

. (10.144)

These operations of differentiation can be coded in a few lines, and the
form of results depends on the features of a particular AD program.

We develop finite elements using two programs: FEAP [183] and Ace-
Gen [181] and they are combined in the following way. In AceGen, we
derive the algebraic function F̂ (zI) and we code the automatic differ-
entiation operations of eq. (10.144), to obtain the tangent matrix and the
residual for an element. The resulting subroutine is in Fortran and is in-
cluded into FEAP to build an executable program which is the subject of
tests.

• AceGen is a fully reliable system enabling automatic derivation of for-
mulae for numerical procedures developed by J. Korelc1. It is written
as an add-on package for Mathematica and uses the symbolic language
of Mathematica. The approach implemented in AceGen combines sev-
eral techniques such as: (1) symbolic and algebraic capabilities of Math-
ematica, (2) automatic differentiation (forward and backward mode),
(3) automatic code generation, (4) simultaneous optimization of ex-
pressions, and many other techniques. For details, see [130, 131] and
the manuals.

• FEAP is a research finite element environment developed by R.L. Tay-
lor2, and its source is distributed by the University of California at
Berkeley. FEAP has an open architecture which allows us to con-
nect user subroutines through a pre-defined interface, see [268]. This
program is used in many universities as an excellent environment for
developing new finite elements.

1 Prof. Joźe Korelc, University of Ljubljana, Ravnikova 4, SI-1000, Ljubljana, Slovenia.
E-mail: AceProducts@fgg.uni-lj.si (http://www.fgg.uni-lj.si/Symech/).

2 Prof. Robert L. Taylor, Department of Civil Engineering, University of
California at Berkeley, Berkeley, CA 94720. E-mail: rlt@ce.berkeley.edu
(http://www.ce.berkeley.edu/˜rlt/feap/).

Newton method and tangent operator 267

Example: forward and backward automatic differentiation. Automatic differen-
tiation can be performed in two ways, designated as forward and backward.
The basic idea is well illustrated by the simple example used, e.g., in the
manual of AceGen which shows two ways of differentiation of a compos-
ite function, f3(zi, f1(zi), f2(zi, f1(zi))), depending on the variables zi,
i = 1, .., n.

The forward differentiation of the function f3 yields the following
formulas:

v1 = f1(zi), ∂v1
∂zi

= ∂f1

∂zi
, i = 1, ..., n,

v2 = f2(zi, v1), ∂v2
∂zi

= ∂f2

∂zi
+ ∂f2

∂v1

∂v1
∂zi

, i = 1, ..., n,

v3 = f3(zi, v1, v2), ∂v3
∂zi

= ∂f3

∂zi
+ ∂f3

∂v1

∂v1
∂zi

+ ∂f3

∂v2

∂v2
∂zi

, i = 1, ..., n,

(10.145)
where v1, v2, v3 are the intermediate variables generated during differ-
entiation.

The backward differentiation looks like

v3 = f3(zi, v1, v2), v3 = ∂v3
∂v3

= 1,

v2 = f2(zi, v1), v2 = ∂v3
∂v2

= ∂f3

∂v2
v3,

v1 = f1(zi), v1 = ∂v3
∂v1

= ∂f3

∂v1
v3 + ∂f2

∂v1
v2,

zi
∂v3
∂zi

= ∂f3

∂zi
v3 + ∂f2

∂zi
v2 + ∂f1

∂zi
v1, i = 1, ..., n.

(10.146)
The backward differentiation yields more effective algorithms for large n,
although is more time consuming.

	10: Basic relations for four-node shelle lements

