
Chapter 34
Deformation Capacity of Lightly Reinforced
Concrete Members – Comparative Evaluation

S.J. Pantazopoulou and D.V. Syntzirma

34.1 Introduction

Research towards development of expressions for estimating the deformation capac-
ity of R.C. members may be traced back to the time when strength expressions were
first established [9]. However, the success in the area of deformation prediction is
far more limited. For example, whereas the lateral load strength of a simple struc-
ture such as a well detailed cantilever R.C. column may be quantified with a margin
of error within 10% of the actual value, the estimated drift capacity with the avail-
able tools today may be as far off as 100% of the actual value, with a generally
inestimable and uncertain margin of safety.

This uncertainty is particularly relevant in displacement based assessment, where
the assessment verdict explicitly rides on the ability of the member to sustain the
imposed drift demand, and is reflected by the large factors of safety used to obtain
design values [3, 5, 4]. A number of issues regarding behaviour of the response
mechanisms in R.C. are considered responsible for the scatter. The paper reviews
the mechanics of deformation of R.C. members and methods of evaluation of defor-
mation resultants at advanced stages of inelastic response. A comparative study of
consistently estimated deformation capacities with estimates obtained from Codes
is conducted on a series of column-specimens tested under reversed cyclic load
simulating earthquake effects; the specimens modelled former detailing practices
representative of the 1950s–1970s [14, 12]. The models’ performance in assessing
the dependable deformation capacity is interpreted with reference to the important
mechanisms controlling the observed specimen behaviour.

S.J. Pantazopoulou (B)
Department of Civil Engineering, Demokritus University of Thrace, Vas. Sofias Str., No. 12,
Xanthi, 67100, Greece
e-mail: pantaz@civil.duth.gr

359M.N. Fardis (ed.), Advances in Performance-Based Earthquake Engineering,
Geotechnical, Geological, and Earthquake Engineering 13, DOI 10.1007/978-90-481-8746-1_34,
C© Springer Science+Business Media B.V. 2010



360 S.J. Pantazopoulou and D.V. Syntzirma

34.2 Deformation Mechanisms in R.C. Members

Behavior of R.C. frame members under combined axial load, and cyclic shear –
flexure, such as occurring during earthquakes, is usually interpreted with the model
of Fig. 34.1a. The static relationship between shear force and flexural moment in the
span of the cantilever (Fig. 34.1a) is identical to that occurring over the length of the
actual frame member extending from the point of contraflexure (zero moment) to the
fixed end support. Deformations are owing to flexure, shear action, and pullout slip
of the reinforcement from the support or lap splice; these mechanisms of behaviour
are considered to act in series, therefore their effects are considered additive, as
implied by the mechanical analogue of Fig. 34.1b, used in computer simulations of
inelastic R.C. members. Elastic curvature over the member’s length contributes to
total drift, whereas all other effects (inelastic rotation over the plastic hinge region,
shear deformation and pullout slip) are modelled through pertinent springs, each
characterized by an individual resistance curve (Fig. 34.1c).

These mechanisms were originally assumed to act independently of each other.
The total deformation obtained for any given load combination was approximated
by the summation of the individual contributions (Fig. 34.2). The same concept was
extended to deformation capacity which is a measure of total deformation that the
member may undergo without significant irreversible loss of strength; for frame
members this is usually quantified by the chord rotation θu, associated with a 20%
loss of strength beyond the peak point.

The idea that deformation capacity may be estimated as the sum of contributions
of the participating mechanisms was tested against hundreds of tests contained in
many databases, including R.C. members with modern detailing as well as members
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with substandard details representative of old design practices [9, 8, 13, 7, 1].
Realistic values are obtained for well detailed members, which generally demon-
strate large deformation capacity particularly when their axial load ratio is less than
0.4. The values become irrelevant when this concept is applied to members experi-
encing brittle failure, as often encountered with old-type frame members. Clearly, if
the strength of one of the springs in the assembly of Fig. 34.1b is overcome at some
value of deformation, then this event terminates the response curve of the member,
well before the development of the estimated nominal deformation capacity of the
other springs. This is why, of late, this approach has been retained only to describe
behaviour up to the onset of yielding, i.e., θy=θy,fl+θy,sl+θy,sh. For response beyond
yielding, opinions diverge as to how to estimate deformation capacity.

Thus, the revised ASCE-41 document [4], which reflects the recommended N.A.
assessment practice, evaluates directly the total inelastic drift capacity, θu, through
empirical rules, the result being a single compound value that accounts for the var-
ious effects and design parameters through pertinent binary rules: here, the total
rotation capacity is, θu=θy+θpl. Similar is the approach drafted for the revised
EC8-III, which provides direct estimates for the total inelastic rotation capacity,
θu, through calibrated expressions in terms of the relevant design variables (revised
draft of [3]).

Recognizing the fundamental relevance of the model depicted in Fig. 34.1b the
authors attempted to improve on its correlation with the test data, by modifying the
additive expression, so that contributions of the individual contributing mechanisms
were associated with the onset of occurrence of any type of premature failure [15].
This framework was referred to as Capacity – Based Prioritizing of failure modes
(CBP):

�y = wy · [�y,fl +�y,sh +�y,sl] �u = �y,fl + wu · [�p,fl +�p,sh +�p,sl] (34.1)

Factors wy, wu, represent strength or deformation ratios for strength-controlled
or strain-controlled mechanisms of behaviour, respectively [15]. Here reference is
made to the value of nominal strength terms, Vu,sh, Vu,fl, and Vu,sl, which are con-
sidered to degrade with increasing imposed ductility, μ� (i.e., even when flexural
yielding is possible for μ�=1, the relative hierarchy of the strength terms may be
reversed for higher μ� values, since the strength terms decay at different rates.)
To evaluate these terms, what is needed is an immediate tool by which to trans-
form forces and strains from the local level, where some type of material failure
has been detected, to the global level, where prioritizing of strength components
and addition of scaled deformation capacity contributions is needed. The necessary
transformations are described in the following sections.

34.3 Local to Global Transformation of Stress Resultants

Capacity prioritizing in order to identify the weakest link of member behaviour is
done on the basis of member shear forces. Thus, although any possible form of
failure refers to exhaustion of some material strength or deformation capacity, it
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Fig. 34.3 (a) Definition of terms, (b) critical compr. strain ductility at bar buckling

is necessary that occurrence of this event be reflected in the global scale by the
acting member shear force, V. With reference to Fig. 34.3a, possible material failure
problems that would limit the strength of a column are:

(a) Cover delamination (i.e., max compr. strain εc,2 in the cover ≥ 0.0035–0.005).
(b) Confined concrete compressive strain at the extreme fiber of the confined zone,

εc,c2, exceeds the strain capacity of the confined core, εc,cu.
(c) Loss of concrete contribution to lap splice strength owing to longitudinal cover

cracking due to load reversals (i.e., when εc,c2> 0.002).
(d) Bar strain εs,1 exceeds the strain development capacity of the reinforcement:

εs,1 ≥ min{εanc - spl
s,1,max ; εs,u} (εanc - spl

s,1,max is the tensile strain that may be sustained by
the lap splice or anchorage at the critical section; εs,u is the bar fracture strain.)

(e) Exhaustion of the compression strain capacity of longitudinal compression
reinforcement (onset of bar buckling): εs,2 > εs,crit.

(f) Occurrence of web diagonal tension cracking: V ≥ VRd1 in [3] or Vc in [5,4].
(g) Onset of stirrup yielding, εst = εst,y (with regards to the nominal shear strength,

VRd3 in [3] or Vn in [5,4]).
(h) Occurrence of large postyielding strains in the stirrups (along the descending

branch of the member response curve – associated with the degraded shear
strength of the member, Vfl=Vu,sh, Eq. (34.3)): εst > εst,y.

Equilibrium is used to convert from the material scale to the stress resultant
of the cantilever of Fig. 34.1a (Eq. (34.2)). Normal strains over the cross section
are assumed to follow a plane sections profile (Fig. 34.3a); for states of stress
past flexural yielding, the normalized neutral axis depth, ξ=c/d, is assumed to
remain approximately constant (its value may be obtained by interpolation using
the gravity axial load, Ng, as a reference, average value [8]). Thus, for crite-
ria (a) – (e) above, which refer to the occurrence of a milestone event in some
component of normal strain, the corresponding shear force of the cantilever is
obtained from:

V = M
/

Ls = [fs,1As1d (1 − 0.4ξ)+ Ng (0.5 h − 0.4ξd)
]
/Ls (34.2)
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In the above, fs,1 is the axial stress in the steel tension reinforcement,
for the corresponding axial strain, εs,1 (Fig. 34.3a) obtained from the steel
stress-strain diagram. (εs,1 is the tension bar strain associated with each of the
milestone events listed in (a)–(e) above: for case (a), εs,1=εc,2(1–ξ )/ξ ; for (b),
εs,1=εc,c2(1−ξ )/(ξ−δ2), where δ2=d2/d ; for (c) and (d), the critical average bond
stress fb,u, acting over the active development length Lu

b,eff, can develop a tension

bar stress f anc−spl
s,1,max = 4fb(Lu

b,eff/Db)≤fs,u ; for case (e) the critical buckling strain is
obtained from pertinent interaction diagrams that relate the dependable strain duc-
tility of compression reinforcement, μεc,crit with the normalized spacing of stirrups,
S/Db [15, 16], as shown in Fig. 34.3b – thus, the associated bar strain in the tension
reinforcement, εs,1, is obtained from, εs,1=μεs,crit εs,y(1−ξ )/(ξ−δ2).)

For criteria (f)–(h) the stress resultant is given by the shear strength of the
cantilever model. After diagonal tension cracking of the web, the shear strength,
denoted by Vn in [5, 4] or as VRd3 in [3] is obtained from a Mörsch type truss for (g)
and (h). Shear strength degrades with increasing magnitude of imposed displace-
ment ductility, μ�, due to compression softening of the concrete struts (reduction
in f ′

c) and thereby of the shear strength of the equivalent truss. Expressions to
model this effect have been derived from first principles with reference to deteri-
oration of dowel action, aggregate interlock, bond and diagonal tension cracking in
cracked reinforced concrete [6]. Codes model this process using a simple reduction
coefficient k(μ�),according with [3, 5, 4]:

Vu,sh = k(μ�) · (Vc + Vw) (34.3)

where k(μ�)<1 for μ�>1 in [3], or for μ�>2 in [5, 4] (i.e., after flexural yielding),
whereby the process of degradation leads to a residual strength equal to 60% of Vn

at μ�=6 in [4], or to 75% of Vn at μ�=5 in [3].
Values obtained for the milestone events listed above limit the strength of the

mechanisms of resistance in series (Fig. 34.1b), namely Flexural (Vu,fl), Shear
(Vu,sh), Anchorage/Lap Splice (Vu,sl), or Compression Bar Stability (Vu,buckl).
Therefore, for any drift level, the above terms are organized in a hierarchy. The
term with the lower strength, Vfail, controls the mode of damage and failure of the
member:

Vfail = min{Vu,fl, Vu,sh, Vu,sl, Vu,buckl} (34.4)

This value is then used to estimate the coefficient wu in Eq. (34.1).

34.4 Strain – Displacement Transformations

Geometric relations are required to identify the magnitude of column drift or tip
displacement of the model cantilever (strain resultants), for each of the milestone
events listed in the preceding section. Deformation mechanisms participating to
total drift are illustrated in Fig. 34.2: they represent flexural drift due to curvature
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along the member (Fig. 34.2b), rigid body rotation due to reinforcement pullout
from the support anchorage or lap splice (Fig. 34.2c), and shear distortion which
results in lateral offset of the member (Fig. 34.2d). Special considerations are as
follows:

34.4.1 Strain Resultants Due to Flexural Curvature

34.4.1.1 Before Yielding of the Longitudinal Reinforcement

Chord rotation is θ=Δ/Ls=φLs /3. At yielding, θy =φyLs /3.

34.4.1.2 After Yielding of the Longitudinal Reinforcement

Inelastic flexural curvature is assumed to occur over a length of “plastic hinge”, "p,
measured from the face of the critical section. Inelastic tip displacement Δu and
chord rotation θu or the associated plastic components�pl and θpl are approximated
by:

�u = θu·Ls; θu = θy+θpl; θpl = (φu−φy)·"p·
(
1 − 0.5("p/Ls)

) ≈ φu"p (34.5)

Definition of a Plastic Hinge Length, "p

The plastic hinge length "p was meant to account for spread of yielding along the
length of the member. A consistent simple representation is obtained from the linear
moment diagram along the shear span, which, for approximately constant internal
lever arm after yielding, may be expressed in terms of the strain hardening ratio of
main steel as per [8]:

"p = [(fs,max − fs,y)/fs,max] · Ls + av = β · Ls + av (34.6)

where fs,max is the peak stress attained by the bar at the critical section whereas av is
the moment-shift due to shear (≈0.9d). As fs,max increases approaching the fracture
strength of tension reinforcement, so does the "p value; thus, there is no unique
value for "p, but it increases with demand. Various interpretations are associated
with practical expressions for "p. For example, to account for yield penetration, and
for extensive yielding, various alternative expressions have been proposed:

"p = ω1 · Ls + ω2 · Db · fy + ω3 · h (34.7)

whereω1=0.08,ω2=0.022 andω3=0 in [10, 11], whereas ω1=0.1,ω2 = 0.24/
√

f ’
c

and ω3=0.17 in [3]. At least two issues contribute to the uncertainty about "p: The
first is that the formal definition for "p given by Eq. (34.6) breaks down if the steel
reinforcement is elasto-plastic (no hardening), leading to "p → 0, which contradicts
the expectation that yield penetration will spread over the anchorage in the absence
of hardening. Another is the physical significance of the Db-dependent term: it is
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often associated with yield-penetration inside the support (anchorage), whereas an
equal effect on θpl is also owing to yield penetration over the member length beyond
the section of yielding moment (a term equivalent to av in Eq. (34.6)). Note that the
most recent versions of the relevant assessment standards (e.g. in [4] and the revised
draft of [3]) completely bypass the notion of a plastic hinge length by providing
direct expressions for estimation of θpl without need for integration of inelastic
curvatures. To eliminate the spurious outcome of Eq. (34.6) in practical applications,
when the reinforcement exhibits little or no strain hardening, "p should be taken at
least equal to 0.5d.

34.4.2 Strain Resultants Owing to Bar Pullout/Slip

34.4.2.1 Before Yielding of Longitudinal Reinforcement

With reference to Fig. 34.2c, partial bar pullout from the support before yielding
of longitudinal reinforcement causes a lumped rotation θ sl at the support. This, in
turn, produces a tip translation. The lumped rotation θy,sl at the onset of yielding
is associated with a linear attenuation of bar strains from the yield strain value εs,y

at the column support, to zero over the effective anchorage length, Ly
b,eff, which is

the length required to develop the bar yield force assuming a constant bond stress
distribution equal to fb,y (fb,y is the nominal code value for bond strength [3, 2]).

θy,sl = φyLy
b,eff/2; Ly

b,eff = Dbfy/4fb,y; fb,y = η1 · f ′
t ; η1 =

{
2.25
1.0

ribbed bars
smooth bars

(34.8)

34.4.2.2 After Yielding of Longitudinal Reinforcement

Integration of bar strains over the part of the anchorage length where bar strains
exceed yielding (εs,1>εs,y, "r = length of yield penetration over the anchorage) give
a first order approximation of the plastic component of drift, associated with bar
inelasticity over the anchorage:

θp,sl = 0.5(εs,u + εy) · "r/[(1 − ξ ) · d] (34.9)

34.4.2.3 Length of Yield Penetration in the Anchorage

To estimate the value of "r in Eq. (34.9), bond stress is assumed negligible over
"r, corresponding to almost constant (post-yielding) bar stresses. (Note that if the
definition of Section 34.4.2.2 is used instead, along with a nonzero strain hardening
slope for the bar, the length of yield penetration may be estimated, by assuming
a bi-linear distribution of bar stresses over the anchorage length. The slope of this
diagram is: 4fb/Db, where fb the piecewise value of bond strength – a degraded
value for the part of the anchorage that is beyond yielding, and the initial value,
fb,y, for the elastic part of the anchorage. This assumption leads to an expression for
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"r Eq. (34.10) which is analogous to that obtained for the plastic hinge length, i.e.,
Eq. (34.6):

θp,sl = (φu−φy)·"r; "r = fs,max − fs,y

fs,max
·Db

4
· fs,max

fb,u
= β · fs,max

fb,u
·Db

4
= β · fs,max

fb,u
·Db

4
(34.10)

Again, this breaks down for elastoplastic reinforcement without hardening, i.e.,
when β=0). To obtain "r for the general case, note that yield penetration can-
not grow indefinitely: pullout failure of the anchorage occurs once the residual
anchorage length engaged, equal to Lb–"r, exhausts the effective anchorage length,
Lu

b,eff (note that Lu
b,eff=Dbfy/4fb,u, which is the minimum length required to support

the bar yield force, whereas Lb is the available anchorage length).

34.4.2.4 Limiting Strain Development Capacity After Yielding

Yield penetration limits the strain development capacity of the bar to the value:
ε

anc - spl
s,1,max =εyLanc/Leff,u. This result is a consequence of the continuity of strain

requirement at the end of yield penetration. Thus, even if the available anchor-
age length, Lb, suffices to develop the yield force of the bar, the strain that may
be sustained at the face of the anchorage is limited eventually by yield penetration:
Inelastic anchorage failure will occur when the bar strain exceeds the above-set limit
for εanc - spl

s,1,max .

34.4.2.5 Bond Strength in Eq. (34.10)

Ultimate bond strength, fb,u, mobilized along a bar anchorage or lap splice is associ-
ated with the bar-concrete interface friction which depends on the clamping action
provided by the surrounding concrete cover and transverse stirrups against the
possible plane of splitting [15]:

fb,u = 1.4 ·
(

p

Db
f ′
t︸ ︷︷ ︸

cover

+ Ast · fst,y

Db nb S︸ ︷︷ ︸
stirrups

)
; f ′

t = 0.5
√

f ′
c (34.11)

nb is the number of bars restrained by the stirrup legs included in Ast (where
Ast is the cross sectional area of stirrups crossing the splitting plane). The con-
crete term depends on the critical crack path, p, required for splitting failure:
p=2.5Db+2Dst+2co for lap-splices or anchorages outside the end support of the
member, where co is the concrete cover thickness [11]. If the anchorage occurs in
well confined regions (e.g. inside a column) the value of p in (11) is taken =4co

to account for plastification of the surrounding concrete prior to its pullout failure.
Note that in lap-splices or anchorages that occur within the member’s span (i.e.
outside the end support), the cover contribution to fb,u is set to zero when the normal
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compressive strain in the cover has exceeded the value of 0.002 to account for cover
separation from the bar surface due to longitudinal splitting in the compression zone
(Section 34.3c); thus a significant loss of development capacity occurs in situations
past the above limit.

34.4.3 Distortion Resultants

34.4.3.1 Elastic Distortion Term

Shear distortion is elastic prior to web cracking, obtained from the acting shear force
to the member’s shear stiffness ratio [3, 10]:

θ y, sh = V
/

[0.4 · Ec · 0.8Ag] (34.12)

34.4.3.2 Distortion in the Plastic Hinge Region

After web cracking, shear distortion is set equal to stirrup strain, εst. From the
Mörsch truss geometry it may be shown that γ=εst = (V−Vc,cr)/[EsΣAst,i], where
the numerator in this calculation represents the total force carried by the stirrups
crossing a diagonal crack, Vw (Eq. (34.3)) and the denominator represents the exten-
sional stiffness of the stirrups. Here, Vc,cr is the total shear force carried by the
cracked concrete web:

For
N

f ′
c · Ag

≥ (ρs1 − ρs2) · fy
f ′
c

⇒ Vc,cr = 0.5
√

f ′
c ·
[

d

Ls
·
√

1 + N

0.5
√

f ′
c · Ag

]
· Ag

(34.13)
Otherwise, Vc,cr=0. Note that Eq. (34.13) has been derived from equilibrium of
forces on the cross section: a concrete contribution is assumed to exist if there is a
nonzero compressive force in the concrete (i.e. once the cracks have been closed).
With particular reference to columns with distributed reinforcement on all sides
of the cross section, it is necessary to establish the neutral axis location prior to
estimating the effective tension and compression reinforcement ratios, ρs1, ρs2, to
be used with Eq. (34.13).

Furthermore, according with the CBP model, the contribution of web reinforce-
ment to shear strength, Vw, should be calculated from the sum of forces developed
in all stirrup legs crossing the critical shear crack, while also considering the lim-
ited development capacity of inadequately anchored stirrups: Vw = Ast ·∑

i
fst,i �=

Ast · fy,st · (d − ds2)
/

S. Thus, for old-type construction it is necessary that stirrups be
accounted for discretely and not smeared through the d/S term, as it is essential that
the least number of stirrups crossing a crack plane need be determined, rather than
an average value. If it is possible to determine a shear crack path along the member
that does not interrupt any stirrup legs at all, then the Vw term according to the CBP
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definition is zero [6], whereas the Codes [3, 5, 4] would yield a nonzero value even
for excessively large stirrup spacing, S.

34.4.3.3 Degradation of Shear Strength

This phenomenon occurs after web cracking, as the value of the stirrup
strain, εst, increases: assuming for simplicity that Vu,sh follows the pattern
adopted by ASCE-41, the stirrup strain, εst, is evaluated from the stirrup force:
Vw=[V−k(μ�)·Vc,cr]/ k(μ�)→εst = Vw/EsAst. The principal tensile concrete strain,
εc1 ≈ √

2εst/2 occurs in directions orthogonal to the concrete struts of the Mörsch
truss causing the so-called compression softening of the struts according with the
Modified Compression Field Theory. The compression softening coefficient is:
λ=1/(0.8+0.27εc1/εco); this is responsible for the degradation of nominal shear
strength, expressed empirically through k(μ�) [6].

The Angle of Sliding

An unresolved issue in calculations is the angle of inclination of the critical shear
crack: a variety of tests (Fig. 34.4) demonstrate that aspect ratio and axial load ratio
both affect the Vc and Vw terms; whereas this effect is considered in all alternatives
for the concrete contribution term Vc (Eq. (34.3)), it is generally neglected by the
Code Models and the Mechanistic expressions for Vw, which is generally obtained
from a 45◦ crack assumption, as illustrated by the most prominent expressions for
shear strength, Eqs. (34.14), (34.15), and (34.16). The model for Vn in [11] is a stark
exception to this rule. Other differences between Eq. (34.14) and the N.A. code

N

Ntanα

αstrut
Fig. 34.4 Angle of sliding
(inclination of critical shear
crack) and contribution of
axial load to shear resistance
(=Ntanα)
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expression [5, 4] given by Eq. (34.15) are, (a) the standalone contribution to shear
strength by the applied axial load, which is also adopted by [3] (Eq. (34.16)) and (b)
that the strength degradation coefficient k(μ�) is not applied on the shear strength
of the equivalent truss, a feature that is at odds with experimental evidence and
basic fundamentals of Compression Field Theories for concrete. The uncertainty
thus introduced in shear strength estimations can more than the account for the
persistent dispersion in the available data on this variable.

Vn = Vc +VN +Vw = k(φ)·√f ′
c ·0.8Ag +N ·tanα+ Astfst,y (d − d2)

S
·cotα in [11]

(34.14)

Vn = Vc+Vw = k(μ�)·
[

0.5
√

f ′
c

Ls/d

√
1 + N

0.5Ag
√

f ′
c

]
·0.8Ag+k(μ�)· Astfst,yd

S
in [5, 4]

(34.15)

VRd3 = Vc + VN + Vw = k(μ�)(0.16 max(0.5; 100ρtot)(1 − 0.16 min(5; L
h ) ·√f ′

c · 0.8Ag

+ min{N; 0.55Aef ′
c} tanα + k(μ�)Astfst,y ·

[
d−d2

S

]
[in 5]

(34.16)

34.4.4 Bar Buckling

It threatens members that do not fail prematurely, but undergo extensive flexural
yielding. Due to load reversal the bar reaches instability conditions under a com-
pression stress but with significant residual tensile strain [16]. The critical total
strain ductility at buckling, μεs,crit, is obtained from pertinent interaction diagrams
that depend on the bar’s unsupported length ratio S/Db and the peak inelastic ten-
sion strain (envelope), attained by the reinforcement during previous displacement
reversals, εsr

env [see Fig. 34.3(b) from [16].

34.5 The Correlation with Tests

To illustrate the effects on deformation capacity and on the controlling failure
sequence imparted by important design parameters (such as the shear demand to
supply ratio, sparse spacing and anchorage of stirrups, confinement in lap splice
regions and pattern of imposed displacement history), an experimental study was
conducted by the authors [14, 12]. The test program included 16 scaled column
specimens with details representative of older practices (“non-conforming” as per
[5, 4]), having a shear span Ls = 0.9 m, a 200 mm2 cross section, reinforced
with either eight or four longitudinal bars in order to effect a high and a low
shear demand, respectively. Thus, either three or two main bars (Db=12 mm) were
arranged on each side of the cross section, respectively. Transverse reinforcement
comprised smooth rectangular stirrups (Dst=6 mm), spaced as listed in Table 34.1.
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Table 34.1 Specimen details. In all cases, clear cover = 20 mm, Long. Reinf.: Db=12 mm, Transv.
Reinf.: D st=6 mm (smooth); Lines 6 and 7 list the peak shear force sustained, Pmax (kN) and the
corresp. drift capacity θu (%). Cases marked with ∗ had: fy=524 (MPa), fst,y=271; all others had
fy=623 and fst,y=384. Case 9b had 2 layers of stirrups at S=140 mm

Group I: Long. Reinf. = 8 bars Group : L.R.= 4 bars

1a∗ 1b∗ 2a∗ 2b∗ 3a∗ 3b∗ 4a 4aa∗ 4b∗ 5a∗ 5b∗ 7a 7b 8a 8b 9b

S=50 mm S=70 mm (stirrup spacing in mm) 110 mm 70 mm 110 mm 140

No lap splice Lspl=25Db Lspl=36Db No lap splice

f ′
c = 20.2 (MPa) 40.8 f ′

c = 25.5 (MPa) f ′
c = 40.8 (MPa)

52.8 54.1 50.2 51.1 33.0 32.4 58.1 46.0 40.8 52.6 52.4 37.8 36.7 37.1 37.3 38.9
4.4 4.5 2.1 3.7 2.25 2.0 6.3 1.9 1.6 2.25 6.15 7.25 13.2 6.05 6.9 13.3

Bars in 5 specimens were lap spliced at the base above the footing, over a length of
either 25Db or 36Db (Table 34.1). Specimens were tested under a constant axial load
N≈0.1fc’Ag, and lateral displacement reversals following two different displacement
histories identified by index “a”, “aa” or “b” in Table 34.1 [14, 12].

All specimens failed in a brittle mode. Deformation capacity and lateral strength
(average value in the two directions) are listed in Table 34.1. The tests showed
that flexural shear and anchorage strengths degraded at different rates with increas-
ing displacement, confirming the basic thesis of the mechanical model regarding
capacity prioritization as prerequisite in assessing deformation capacity.

The mechanistic principles outlined in this paper as well as in Code Models
[3, 5, 4] were used to evaluate the strength terms (Vflex, Vu,sh, Vu,sl) and deformation
capacities (θy, θu) of the test specimens using the actual material properties. Results
are compared with the experimental values (both from tests “a” and “b” for other-
wise identical specimens in each subgroup) in Fig. 34.5. Discrepancies are observed
in the estimated strength of laps according with [4]; all models tend to overesti-
mate rotation at yielding, but provide conservative estimates of rotation capacity.
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Fig. 34.5 Comparison between analytical and experimental results: Vu,sl, Vu,sh, θy, θu
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Discrepancies are mostly inherited by the deviation in the values of estimated resid-
ual shear and lap strengths, which remain the least adequately understood variables
from among the strength terms in the hierarchy of Eq. (34.4).
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