Chapter 7
Gyrotriangle Gyrocenters

Abstract Interest in triangle centers has long history, the classical ones being the
triangle centroid, orthocenter, incenter and circumcenter. A list of more than 3000
triangle centers is found in Kimberling (Clark Kimberling’s Encyclopedia of Tri-
angle Centers—ETC, 2010). Hyperbolic triangles and their centers are of interest
as well (Bottema in Can. J. Math. 10:502-506, 1958; Vermeer in Topol. Appl.
152(3):226-242, 2005; Demirel and Soyturk in Novi Sad J. Math. 38(2):33-39,
2008; Sonmez in Algebras Groups Geom. 26(1):75-79, 2009). The special rela-
tivistic approach of this book enables hyperbolic triangle centers to be determined
along with relationships between them.

The hyperbolic triangle circumcenter, incenter and orthocenter are called, in gy-
rolanguage, the gyrotriangle circumgyrocenter, ingyrocenter and orthogyrocenter,
respectively. These gyrocenters are determined in this chapter in terms of their gyro-
barycentric coordinate representations with respect to the vertices of their reference
gyrotriangles.

7.1 Gyrotriangle Circumgyrocenter

Definition 7.1 The circumgyrocenter, O, of a gyrotriangle is the point in the gyro-
triangle gyroplane equigyrodistant from the three gyrotriangle vertices.

Let O be the circumgyrocenter of gyrotriangle A1 A2 A3 in an Einstein gyrovector
space (R}, ®, ®), Fig. 7.1, and let (m : my : m3) be its gyrobarycentric coordinates
with respect to the set S = {A1, Az, A3}, (4.25), p. 90, so that

_ miy, Al +m2)/A2A2+m3J/A3A3. )
myy, +my, +msy,

The gyrobarycentric coordinates m1, mo and m3 are to be determined in (7.8) below,
in terms of gamma factors of the gyrotriangle sides and, alternatively in (7.16), in
terms of the gyrotriangle gyroangles.
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Fig. 7.1 The circumgyrocenter O of gyrotriangle AjAA3z in an Einstein gyrovector space
(R}, ®, ®), n =2, is shown along with its standard notation. Here ||©A1® 0| = |©A4,®0| =
|l©A3®O0||, where O is the gyrotriangle circumgyrocenter, given by its gyrobarycentric coordinate
representation (7.18), with respect to the set S = {A, A2, A3}

Following the gyrocovariance of gyrobarycentric coordinate representations,
Theorem 4.6, we have from Identity (4.29b), p. 91, with X = © A, using the stan-
dard gyrotriangle index notation, shown in Fig. 7.1, in Fig. 6.1, p. 128, and in (6.1),
p. 127,

mlyeAl@Al +m2y9A1@A2 +m3y9A1@A3

mo

y@A]eaO -

_ m1+m2y12+m37/13 (12)
= o , .

where by (4.15), p. 88, the circumgyrocenter constant mq > 0 with respect to the set
of the gyrotriangle vertices is given by the equation

m% = m% + m% + m% +2(mimay, +mimzy 3 +momsyys). (7.3)



7.1 Gyrotriangle Circumgyrocenter 155

Hence, similarly, by the gyrocovariance of gyrobarycentric coordinate represen-
tations, Identity (4.29b), p. 91, of Theorem 4.6 with X = 6A |, with X = S A,, and
with X = ©A3, we have, respectively,

mip +may;, +m3y;s

yGAl@O = mo
_ M1y, +m2 +m3y,; (7.4)
y@Az@O - mo ’ ’
_ ml)/13 + m2V23 + m3
y@A3€BO - .

mo

The condition that the circumgyrocenter O is equigyrodistant from its gyrotrian-
gle vertices A1, Az, and A3z implies

(7.5)

y@A.@o - yeAzeBO - y@A3®O'

Equations (7.4) and (7.5), along with the normalization condition m| + my +
m3 = 1, yield the following system of three equations for the three unknowns
mi,my, and ms,

mi+my+mz=1,
mi +may, +m3y;3 =miy3 +may,; +ms, (7.6)
miyp +m2 +m3y,s =miy3 +may,; +m3

which can be written as the matrix equation,

1 1 1 m 1
L=vi3 Vip=Vuaviz—1]|m|=]0]|. (7.7
Yio= Vi3 1=va3 3 —1 ms3 0

Solving (7.7) for the unknowns m, my, and m3, we have
1
mp = 5(?12 + Y13 = V3 — Dz — 1),
1
my = 5(?12 —Yi3t+V3— 1)()’13 -1, (7.8)

1
m3 = B(—)ﬁz +Yi3+Y—Dlp—D,
where D is the determinant of the 3 x 3 matrix in (7.7),

2 2 2
D =2(yppr13 +via¥os +visvas) — (ria = 1) = (i3 = 1) = (v33 = 1)
—2(Y12 + Y13+ ¥23)- (7.9)
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Hence, the circumgyrocenter O of gyrotriangle A1 A A3 is given by (7.1) where
gyrobarycentric coordinates mp, my, and m3 are given by (7.8). Since in gyro-
barycentric coordinates only ratios of coordinates are relevant, the gyrobarycentric
coordinates, m1, m>, and m3 in (7.8) can be simplified by removing their common
factor 1/D.

Gyrobarycentric coordinates, m1, my, and m3, of the circumgyrocenter O of gy-
rotriangle A A Aj3 are thus given by the equations

my =W +vi3—vs— D — 1),
my =y, —vi3+ v — Dy;z — 1), (7.10)

my=(=y12 + 13+ v — Dyp — D.

Hence, by (7.3) along with the gyrobarycentric coordinates in (7.10), we have
mi=v{(1y + i3 +va3 = D* =2(vh + v+ v — 1)}

X (1 + 2y V13V — V122 - V123 - V223)- (7.11)

According to Corollary 4.9, p. 93, the gyrotriangle A; A2 A3 in Fig. 7.1 possesses
a circumgyrocenter if and only if m% > 0.

The second factor of m(z) in (7.11) is positive for any gyrotriangle AjA>A3 in
an Einstein gyrovector space, by Inequality (6.23), p. 135. Hence, as we see from
(7.11), m% > 0 if and only if the points A, A, and A3 obey the circumgyrocircle
condition

V12 Vi3 + v — 1> 2(7122 +ra+rs— 1). (7.12)

Gamma factors of gyrotriangle side gyrolengths are related to its gyroangles by
the equations, (6.33), p. 137,

COS (] + COS () COS U3

Vo3 = - ;
2 sin o sin o3
COS (2 4+ COS ] COS (3
Yi3 = : : s (7.13)
sin g sin o3
COS 3 + COS] COStp
Yi2 = .

sin g sinop

Substituting these from (7.13) into (7.10), we obtain

—a1 4o +Ot3> .
————= ) sinaq,

my = Fsin<
2

mly = Fsin(%) sinay, (7.14)

, . fartoar—o3 .
my = Fsin| ———— |sinas,
2
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where the common factor F in (7.14) is given by the equation

oot —a ot —w+ tay—
F_23cosz(”‘l G5 ) cos(—HFER) cos(H=FE) cos(HEFES)

sin | sin oy sinas

(7.15)

Since in gyrobarycentric coordinates only ratios of coordinates are relevant, the
gyrobarycentric coordinates, m/, m}, and m’ in (7.14) can be simplified by remov-
ing their common factor F. Hence, gyrobarycentric coordinates, m, m5, and m7,
of the circumgyrocenter O of gyrotriangle A1 A A3, expressed in terms of the gy-

rotriangle gyroangles are given by the equations

” . —artoayt+oazy .
m| = sin — % sinap,

mé’:sin(%ﬁo@) sinory, (7.16)

"o (al +(¥2—(¥3) .
m3 = sin| ————— |} sino;3.
2
By Corollary 4.10, p. 94, the circumgyrocenter O, (7.1), lies on the interior of its
gyrotriangle A1 AjAj3 if and only if all its gyrobarycentric coordinates are positive.
Hence, we see from the gyrobarycentric coordinates (7.16) of O that the circumgy-
rocenter O lies on the interior of its gyrotriangle A1 A3 Aj3 if and only if the largest
gyroangle of the gyrotriangle has measure less than the sum of the measures of the
other two gyroangles. This result is known in hyperbolic geometry; see, for instance,
[28, p. 132], where the result is proved synthetically.
Expressing Inequality (7.12) gyrotrigonometrically, by means of (7.13), it can be
shown that m% > ( if and only if

3 —ap — o3 —aq + 30y — o3 —a)] — a2 + 303
cos -+ cos -+ cos
2 2 2
> oS W. (7.17)

Formalizing the main result of this section, we have the following theorem:

Theorem 7.2 (The Circumgyrocenter) Let S ={Aj, A2, A3} be a pointwise inde-
pendent set of three points in an Einstein gyrovector space (R}, ®, ®). The cir-
cumgyrocenter O € R", Fig. 7.1, of gyrotriangle A1A> A3 has the gyrobarycentric
coordinate representation

- myy, Av+moy, As+m3y, As

(7.18)
miy, +tmy, +my,
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with respect to the set S = {A1, Az, A3}, with gyrobarycentric coordinates (m :
my : m3) given by

mi=Yp+vi3—vs—Ds—D,
my= (Y1, — Y13+ ¥3— Dz — 1), (7.19)
m3=(=yp+vi3+vs—Dyp—D,

or, equivalently, by the gyrotrigonometric gyrobarycentric coordinates

. o1 Foar a3 .
mp =sinf ———— | sinoq,

2
my = sin<u22+a3> sinay, (7.20)
i <011+012—053) )
my = sin| ————— | sinas.

The circumgyrocenter constant mq with respect to the set S = {A1, Ay, Az} is
given by the equation

2 2 2 2 2
my={(iy +vi3 +vs = D> =2(ria +vi3 +vs — 1)}
x (142 —vh —vi—vh) (7.21)
Y12V13Ya3 — V12 — Y13 — V23)- .

The circumgyrocenter lies in the ball, O € RY, if and only ifm% > 0.

7.2 Triangle Circumcenter

In this section the gyrotriangle circumgyrocenter in Fig. 7.1 will be translated into
its Euclidean counterpart in Fig. 7.2.

Interestingly, the gyrobarycentric coordinate representation (7.18) with gy-
rotrigonometric gyrobarycentric coordinates (m1 : my : m3) given by (7.20) remains
invariant in form under the Euclidean limit s — oo, so that it is valid in Euclidean
geometry as well. However, for application in Euclidean geometry the representa-
tion (7.18) can be simplified owing to the fact that triangle angle sum in 7.

Indeed, under the condition

o] + a2+ a3 =m, (Euclidean Geometry) (7.22a)
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Fig. 7.2 The circumcenter O of triangle A| A A3 in a Euclidean vector space R”, n = 2, is shown
along with its standard notation. Here || — A1 4+ O|| = || — A2 + O|| = || — A3 + O]|, where O is
the triangle circumcenter, given by its barycentric coordinate representation (7.23) with respect to
the set S ={A, Az, Az}

we have the trigonometric identities

o] — 02 —0Q3

sin ———— =cosaq,
2
. —a1 oy — o3 .
sin — =cosap, (Euclidean Geometry) (7.22b)
. Top —oy o3
sin — = cos a3

that allow my, k = 1,2, 3, in (7.20) to be simplified.
Thus, ignoring a common factor 2, the trigonometric barycentric coordinates
(7.20) of the triangle circumcenter O give rise to the following simpler trigono-
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metric barycentric coordinates:

m) =sin2uq,
mo =sin2ay, (Euclidean Geometry) (7.22¢)

ms3 = sin 20!3.

Hence, finally, a trigonometric barycentric coordinate representation of the cir-
cumcenter O of triangle A1 A Az in Fig. 7.2 with respect to the set S = {A1, Aj, A3z}
is given by (7.23) of the following corollary of Theorem 7.2, which recovers a well-
known result in Euclidean geometry [29]:

Corollary 7.3 Let oy, k =1,2,3, and O be the angles and circumcenter of a trian-
gle A1 Ay A3z in a Euclidean space R". Then,
sin2a1 A + sin20p Ao + sin2w3 A3

0= . - - (Euclidean Geometry) (7.23)
sin2c1 + sin 2o + sin 2a3

Theorem 7.2 and its Corollary 7.3 form an elegant example that illustrates the
result that

(i) Gyrotrigonometric gyrobarycentric coordinates of a point in an Einstein gy-
rovector space R} survive unimpaired in Euclidean geometry, where they form.
(i1) Trigonometric barycentric coordinates of a point in a corresponding Euclidean
vector space R”.
The converse is, however, not valid:
(iii) Trigonometric barycentric coordinates of a point in a Euclidean vector space
R" may embody the Euclidean condition the triangle angle sum in 7, so that
they need not survive in hyperbolic geometry.

7.3 Gyrocircle

The gyrocircle C(r, O) with gyroradius r, 0 < r < s, and gyrocenter O € Rf in
an Einstein gyrovector plane (Rf, @, ®) is the set of all points P € ]Rf. such that
l©P®O| =r; see Fig. 7.3. It is given by the equation

rcos6
Cr,0,0)=06® (rsin@) (7.24)

for 0 < 6 < 2m. Indeed, by the left cancellation law we have

(se)] = 729

where ||-|| is the norm that the Einstein gyrovector plane Rf, inherits from its Eu-
clidean plane R?.
A sequence of gyrocircles of gyroradius % in an Einstein gyrovector plane szl

with gyrocenters approaching the boundary of the open unit disc R?zl is shown in

leosc, 0,0)| =
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Fig. 7.3 A sequence of
gyrocircles with gyroradius %
in an Einstein gyrovector
plane szl with gyrocenters
approaching the boundary of
the open unit disc R_%:l is
shown. The center of the disc
is conformal. Hence, the
gyrocircle with gyrocenter at
the center of the disc
coincides with a Euclidean
circle. The Euclidean circle is
increasingly flattened as its
gyrocenter approaches the
boundary of the disc

Fig. 7.3. The center of the disc in Fig. 7.3 is conformal, as explained in Sect. 2.6,
p. 53. Accordingly, a gyrocircle with gyrocenter at the center of the disc is identical
to a Euclidean circle. This Euclidean circle is increasingly flattened in the Euclidean
sense when the gyrocircle gyrocenter approaches the boundary of the disc.

The circumgyrocircle of gyrotriangle A1 A> A3 in Fig. 7.1, with circumgyrocenter
at the point O, is shown in Fig. 7.4.

7.4 Gyrotriangle Circumgyroradius

In this section, we face the task of calculating the gyrotriangle circumgyroradius.
The circumgyroradius R of gyrotriangle A1 A3 A3 in Figs. 7.1 and 7.4 is given by

R=|0A100| =(604A280| =[0A300| (7.26)
satisfying, by (7.2),

_my +m2y12 +m3V13

Ve = yeAleao - mo ’ (7.27)
where m1, my and m3 are given by (7.19), and where m is given by (7.21).
Hence, following (7.27), (7.19) and (7.21), we have
2¥0V13Yas — W+ v Tvia— D
VI% _ 12713723 12 13 23 (7.28)

Vp + 73ty — D= 2()’122 + )’123 + 7’223 -D
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Fig. 7.4 The circumgyrocircle of gyrotriangle AjA;Asz in an Einstein gyrovector space
(R}, ®, ®) is shown for n = 2. Its gyrocenter, O, is the gyrotriangle circumgyrocenter, given by
its gyrobarycentric representation (7.18), p. 157, and its gyroradius r is the gyrotriangle circumgy-
roradius, given by each of the equations r = |[©ADO||, k =1, 2, 3. The gyrocircle is a flattened
Euclidean circle, as shown in Fig. 7.3

so that, by (1.9), p. 5,

2
—1 —1 —1 —1

R2— 2 VR . — 242 1p = Dy 2)(3/232 ) - (7.29)

YR L+2y1,¥13Y03 = Via = Viz = V33

Hence, finally, the circumgyroradius R of gyrotriangle A;A> A3 in Figs. 7.1 and
7.4 is given by

-1 -1 -1
R= \/ES\/ (V]z )(V13 2)(3/23 . ) - (7.30)
L+ 2y1,¥13Y3 = Via = Viz = V33
implying
\/(yu DO+ DOu+D s\/ vh— D — Dz —1) (7:31)
= 2 2 2\
2 L+ 2y,¥13Y3 = Via = Viz — V33

Identity (7.31) captures a remarkable analogy between the law of gyrosines and
the law of sines. Indeed, following (7.31), the law of gyrosines (6.44), p. 140, for
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gyrotriangle Aj A Az in Fig. 7.4 is linked to the circumgyroradius R of the gyrotri-
angle by the equation

V23023 V3413 Vpd12 \/(Vlz + 1)()’13 + 1)()’23 + I)R

3 (7.32)

sino sinop sin a3

called the extended law of gyrosines.
In the Euclidean limit of large s, s — 0o, gamma factors tend to 1 and, accord-
ingly, the extended law of gyrosines (7.32) tends to the following identity,
a3 a3 a2

. = — = — =2R (Euclidean Geometry) (7.33)
sino;  sinop  sinag

which is the well-known extended law of sines; see, for instance, [35, p. 87].

Identity (7.32) forms the extended law of gyrosines of a gyrotriangle AjA>A3
with side-gyrolengths a3, a3, ajz, with gyroangles o, a2, @3, and with circum-
gyroradius R. In full analogy, with (7.32), Identity (7.33) forms the Euclidean ex-
tended law of sines of a triangle A Ay A3 with side-lengths a3, a3, aj2, with angles
o1, op, o3, and with circumradius R.

Interestingly, the gyrotriangle circumgyroradius R has an elegant representation
in terms of its gyrotriangle gyroangles. Indeed, expressing the gamma factors in
(7.29) in terms of the gyrotriangle gyroangles oy, k = 1,2, 3, by means of (6.33),
p- 137, (7.29) takes the gyrotrigonometric form

Fop+
R? _ cos 2T
- (7.34)

cos =3 cos _"‘1+§‘2_°‘3 cos _“l_gﬁ“"

52

in any Einstein gyrovector space (R}, ®, ®). In the Euclidean limit, s — oo, each
side of (7.34) tends to 0. Indeed, in that limit, the gyroangle gyrotriangle sum o +
as + a3 tends to 7 so that cos w tends to 0.

An important relation that results from (7.34) is formalized in the following the-
orem:

Theorem 7.4 Let oy, k =1, 2,3, and R be the gyroangles and circumgyroradius of
a gyrotriangle A1 Az Az in an Einstein gyrovector space (R} ®, ®). Then

2 o] +ay + o3 2 o] — o) — o3 -]+ 0oy — o3
s°cos ————— = R“cos cos
2 2 2
-] — o)+ o
X COS # (7.35)

Interestingly, the Euclidean limit, s — oo, of the left-hand side of Identity (7.35)
of Theorem 7.4 is an indeterminate limit of type co-0, noting that in that limit oy +
oy + a3 tends to 7 so that cos O”Wzﬂ tends to 0. In contrast, the right-hand side
of the identity remains invariant in form in that limit. An elegant application of
Theorem 7.4 is encountered in (8.24), p. 230, where a hyperbolic geometric identity
is obtained, which remains invariant in form in its transition to Euclidean geometry.
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Fig. 7.5 Here Ay, A and A3
are arbitrarily selected three
points of an Einstein
gyrovector space (R}, ®, ®)
that satisfy the
circumgyrocircle condition
(7.36). Accordingly, there
exists a unique gyrocircle that
passes through these points

Fig. 7.6 Here Ay, Ay and A3
are arbitrarily selected three
points of an Einstein
gyrovector space (R}, ®, ®)
that do not satisfy the
circumgyrocircle condition
(7.36). Accordingly, there
exists no gyrocircle that
passes through these points

7 Gyrotriangle Gyrocenters

7.5 The Gyrocircle Through Three Points

In the following theorem, we use the standard gyrotriangle index notation, shown in

Fig. 6.1, p. 128, and in (6.1), p. 127.

Theorem 7.5 (The Gyrocircle Through Three Points) Let Ay, Ay and A3z be any
three distinct points in an Einstein gyrovector space (RY, ®, ®), see Figs. 7.5-7.6.
There exists a unique gyrocircle that passes through these points if and only if these
points obey the circumgyrocircle condition, (7.12),

V12 + Vi3 +v3 — 1> 2(7/122 +ra+ys— 1). (7.36)
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When a gyrocircle exists, it is the unique gyrocircle with gyrocenter O given by,

(7.18),

myy, Av+moy, As+m3y, As

(1.37)
miy, +my, +msy,
where
my=p+vi3—vs3— Dl -1,
my= = vi3+vs— Dz — D, (7.38)

m3 = (—V12 + Vi3 + Va3 — 1)()’[2 -1,
and with gyroradius R given as in (7.30), i.e.,

—1 —1 —1
R:\/ES\/ (712 )(V13 2)(V232 ) - (7.39)
L+ 2y1,¥13Y03 = Via = Vi3 = Va3

Proof The gyrocircle in the theorem, if exists, is the circumgyrocircle of gyrotri-
angle AjAAs. The gyrocenter O of the gyrocircle is, therefore, given by (7.37)—
(7.38), as we see from Theorem 7.2, p. 157; and the gyroradius, R, of the gyrocircle
is given by (7.30), p. 162.

Finally, the circumgyrocircle of gyrotriangle AjAA3 exists if and only if the
points A1, Ay and A3 satisfy the circumgyrocircle condition (7.36), as explained in
the paragraph of Inequality (7.12), p. 156. O

Example 7.6 If the three points A, A> and A3 in Theorem 7.5 are not distinct, a
gyrocircle through these points is not unique. Indeed, in this case we have

i+ Vs +v3— D= 2(7/122 +yi+ys— 1), (7.40)

as one can readily check, thus violating the circumgyrocircle condition (7.36).

Example 7.7 1f the three points A, A> and A3 in Theorem 7.5 are distinct and
gyrocollinear, there is no gyrocircle through these points. Hence, in this case the
circumgyrocircle condition (7.36) must be violated. Hence, these points must satisfy
the inequality

i+ V13 + a3 — D < 2(3/122 +y5+ v — 1). (7.41)

Example 7.8 Let the three points Ay, A and A3z in Theorem 7.5 be the vertices of
an equilateral gyrotriangle with side gyrolengths a. Then, y,, = y,3 = ¥,3 = ¥,,, 80
that the circumgyrocircle condition (7.36) reduces to

Yo >1 (7.42)

which is satisfied by any side gyrolength a, 0 <a <s.
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N3 = Ya;

Y23 = Yays

ajp ;= OA DA,

3@ag; = 6A16M);

(Vi3 + D3 +1)

Fig. 7.7 The Inscribed Gyroangle Theorem. Illustrating the theorem, 6 = ZA1A3A; is a gyroan-
gle inscribed in a gyrocircle of gyroradius R (the circumgyroradius of gyrotriangle A;A2A3) cen-
tered at O in an Einstein gyrovector plane (Rf, D, Q),and p = LA OM, = LA>0M,,, where
M is the gyromidpoint of the gyrosegment AjA;. Accordingly, 2¢ = ZA; O A5 is a gyrocentral
gyroangle, and both 6 and 2¢ subtend on the same gyroarc on the gyrocircle. The elegant rela-
tionship between 6 and ¢, (7.43), is shown. In the Euclidean limit of large s, s — oo, gamma
factors tend to 1 and, hence, the relationship between 6 and ¢ in Euclidean geometry becomes
sind = sin¢ or, equivalently, 6 = ¢

Hence, by Theorem 7.5, any equilateral gyrotriangle in an Einstein gyrovector
space possesses a circumgyrocircle.

7.6 The Inscribed Gyroangle Theorem

In Fig. 7.7, we use a notation that includes the standard gyrotriangle index nota-
tion, shown in Fig. 6.1, p. 128, and in (6.1), p. 127. Fig. 7.7 presents a gyrotriangle
A1A2A3 and its circumgyrocircle with gyrocenter O at the gyrotriangle ingyro-
center, given by (7.18), p. 157, and with gyroradius R, given by the gyrotriangle
circumgyroradius (7.30), p. 162. The gamma factor yg of R is given by (7.28),
p. 161.

Theorem 7.9 (The Inscribed Gyroangle Theorem) Let 6 be a gyroangle inscribed
in a gyrocircle of gyroradius R, and let 2¢ be a gyrocentral gyroangle such that
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both 0 and 2¢ subtend on the same gyroarc on the gyrocircle, as shown in Fig.7.7.
Then, in the notation of Fig. 7.7 and (6.1), p. 127,

2yr
Jos + D + 1)

sinf = sin ¢. (7.43)

Proof Under the conditions of the theorem, as described in Fig. 7.7, let M, be the
gyromidpoint of gyrosegment A Az, implying

1
¢ = ZA10M12=LA20M12=§ZA10A2 (7.44)

so that 2¢ is the gyrocentral gyroangle ZA; O A, shown in Fig. 7.7.
Furthermore, let

a;p =0A10A, (7.45)
so that, by (4.67), p. 100,
1
SAI®M; = §®a12, (7.46)
and hence, by (4.69), p. 100,
1 Y1212
Y1 gans (§®312> =1 (7:47)
: V2,14 v,

Taking magnitudes of both sides of (7.47), we have

1 Y2912
)’1®a12(§®012> =— (7.48)
: V2, 1+,

Applying the extended law of gyrosines (7.32), p. 163, to gyrotriangle AjA>A3
and its circumgyrocircle in Fig. 7.7, we have

Yip@i2 _ \/ i+ DO+ D+ o (7.49)

sinf 2
implying
\/zylzaIZ
JA 70+ 70 + 1R

Applying the elementary gyrosine definition in gyrotrigonometry, (6.65), p. 146,
illustrated in Fig. 6.5, p. 147, to the right gyroangled gyrotriangle A1 M0 in

sinf = (7.50)
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Fig. 7.7, we obtain the first equation in (7.51),

singp = 22012 = V12412 (7.51)

The second equation in (7.51) follows from (7.48).
Finally, the desired identity (7.43) follows immediately from (7.50) and (7.51). [

Y1 (%®a12)

7.7 Gyrotriangle Gyroangle Bisector Foot

A gyrotriangle A1 Az A3 and its gyroangle bisectors in an Einstein gyrovector space
(R, ®, ®) are presented in Fig. 7.8, along with the gyrotriangle standard notation
in Fig. 6.1, p. 128, and in (6.1), p. 127.

Let P3 be a point on side A A, of gyrotriangle A A2 A3 in an Einstein gyrovector
space (R} @, ®) such that A3 P; is the gyroangle bisector of gyroangle ZA1A3A>,
as shown in Fig. 7.8 for n = 2. Then, the point P3 is the foot of the gyroangle
bisector A3 P3 in gyrotriangle AjA>A3z.

Let P5 be given in terms of its gyrobarycentric coordinates (11 : my) with respect
to the set S = {A1, A2} by the equation

_ leAl Aq +m2)/A2 A

MYy, +m2VA2

P (7.52)

The gyrobarycentric coordinates m; and m, of P3, Fig. 7.8, in (7.52) are to be
determined in (7.68) below in terms of gyroangles oy and « of the gyrotriangle
A1A2A3 and in (7.69) in terms of the side gyrolengths of the gyrotriangle.

Following the gyrocovariance of gyrobarycentric coordinate representations,
Theorem 4.6, p. 90, the gyrobarycentric coordinate representation of the point P3 in
(7.52) gives rise to the identities in (7.53)—(7.55) below:

myy. (6XPA) +may (6X®A))
OX®Py = — N (7.53)
i yexeeAl + mzyexeeAz
and
. MY oxea, + M2Yoxea,
yexeap3 - mo ’
(7.54)
myy, (8X®A) +myy (6X®DA)
oron (OX®P;) = oX®A, - oxoA,

for any X € RY, where, in the notation of Fig. 7.8 for the gamma factor y,,, the
constant mq > 0 in (4.28d), p. 91, specializes to

m3 = (my +mp)* + 2mima(y;, — 1) (7.55)
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T

ajy = OA|BA,, aip = [z, Yio = Yap, = Yap,
aj3 = OA1BA;s, a3 = ||lass]|, Y13 = Yai3 = Yais
a3 = OA,BA3, azs = [|azs|, Y3 = Yays = Yans

p1 = SA18F3, p1=p1ll

P2 = CABP;, p2=p:|l
Fig. 7.8 The gyrotriangle gyroangle bisectors are concurrent. The point of concurrency, I, is
called the ingyrocenter of the gyrotriangle. Let A| A; A3 be a gyrotriangle in an Einstein gyrovector

space (R}, ®, ®). The gyroline Ay Py is the gyroangle bisector from vertex A to the intersection
point P, with the opposite side, k = 1, 2, 3. The point Py is the foot of the gyroangle bisector Ay Py

in (7.54).
Using the notation in Fig. 7.8, it follows from (7.53) with X = A that

M2Yon104, (©A41042) _ m2ypan

p1:=0A|®P; = (7.56)
miL+maYg, o4, my +may,
and, similarly, with X = A»,
myy (©A20A)) M1y, a
P2 = OADP; = SAYBA] _ 1Vp1421 . (7.57)
m”/eAzeBAl +m2 miy,; +ma
Hence, by (7.56)—(7.57), in the notation of Fig. 7.8,
may,ai2
pri=|pill = —2—,
mip + may,
(7.58)
miy,ai2
p2:=pall = —2—.
m1y, +ma

As emphasized in (1.11)—(1.12), p. 6, one should note here that while, in general,
ay] = OA2DA| # ©OA1®A; = app, we have ay) = [|[©A20A1] = |©A1B A2l =
a2 and, hence, y,; = y,,.
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Similarly, it follows from the first equation in (7.54) with X = A, and with
X = Ay, respectively,

. mi +m2yeA1$A2 _m +may,

ypl _VeAl@P3 - mo - mo ’

(7.59)

o m”/eAzeaAl +m2 M1y, +m2
yPZ - VGAz@P3 - - :

mo mo

It follows from (7.58) and (7.59) or, equivalently, from (7.52) and the second
equation in (7.54) that

mp+may;, mMay;,ain my
Vp, P1 = = —V12412,
mo mi +may, mo
(7.60)
M1y, +ma miy,an mj
Vp, P2 = = V12012,
mo M1y, +my Mo
implying
TPl _m2 (7.61)
Vp, P2 M1

Applying the law of gyrosines (6.44), p. 140, to each of the two gyrotriangles
A1A3P3 and A A3 P3 in Fig. 7.8, we have

P a
: Yp 1 - V13413 (7.62)
sin/A1A3P3y  sinZA|P3Asz
and
P, a
L L o e B (7.63)
sin/AyA3P;  sin/ZAyP3A3
By the gyroangle bisector definition, ZA| A3z P3 = £A>A3 Ps, so that
sin ZA1A3P3 =sin LAy A3 P3. (7.64)

Gyroangles ZA1 P3A3 and £A; P3 Az are supplementary (their sum is 7). Hence,
they have equal gyrosines,

sin LA P3A3z =sin LA, P3Aj. (7.65)
If follows from (7.62)—(7.65) immediately that

Yp Pl Y1313
Vpo P2 V3023

(7.66)
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Hence, by (7.61)—(7.66), and by the law of gyrosines (6.44), p. 140,

my _ Y;3d13 _ sinap (7.67)
mi y23a23 sinoel

so that gyrotrigonometric gyrobarycentric coordinates of point P3 in Fig. 7.8 are
given by the equation

(my :mo) = (sina; : sinay). (7.68)

It, finally, follows from (7.67) and (1.9), p. 5, that gyrobarycentric coordinates of
point Pz in Fig. 7.8 are given by the equation

(myim) = (s vpa) = (VA =11y 1) (1.69)

so that, by (7.69) and (7.52), we have

/.2 _ /2 _
» :y23a23yA1A1+713a137/A2A2 Y23 IVA1A1+ Y13 lyAzAz_ (7.70)

3

v, trast, 2y, -,

Formalizing the main result of this section, we have the following theorem:

Theorem 7.10 (Foot of a Gyrotriangle Gyroangle Bisector) Let S ={A1, A3, A3z}

be a pointwise independent set of three points in an Einstein gyrovector space

(RY, ®, ®) and let P3 be the foot of gyroangle bisector A3 P3, Fig. 7.8, p. 169.
Then the foot has the gyrobarycentric coordinate representation

miy, Ai+may, Az
Py = ! 2 (71.71)
miy, +my,

with respect to the set S = {A1, Az}, with gyrobarycentric coordinates
(m1:m2) = (Y3023 : y13a13) (7.72)
or, equivalently, with gyrotrigonometric gyrobarycentric coordinates

(my :my) = (sina; :sinay). (7.73)

7.8 Gyrotriangle Ingyrocenter

Definition 7.11 The ingyrocircle of a gyrotriangle is the gyrocircle lying inside the
gyrotriangle, tangent to each of its sides, Fig. 7.12, p. 186. The gyrocenter and the
gyroradius of the ingyrocircle are called, respectively, the gyrotriangle ingyrocenter
and ingyroradius.
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The ingyrocenter of a gyrotriangle is the point of concurrency of the gyrotriangle
gyroangle bisectors.

The three feet, P;, P> and Pz of the three gyroangle bisectors of gyrotriangle
A1A>Aj5 in an Einstein gyrovector space (R}, @, ®), shown in Fig. 7.8 for n =2,
are given by the equations

P V1341374, A2 + ¥ 1pa127,, A3
| = ,

V13413V, + V12412V 4,

Y12012Ya, A3 + Vo3a23Y, Al
py= 127 BoMT (7.74)
V12012V, T V23023V,

Pre V23023V, Al + V1301374, A2

3
V23023V 4, + V13913V,

The third equation in (7.74) is a copy from (7.70). The first and second equations
in (7.70) are obtained from the third one by cyclic permutations of the vertices of
gyrotriangle Aj A, Az, that is, by index permutations.

The gyroangle bisectors of gyrotriangle Aj A2 A3 in an Einstein gyrovector space
(R?, ®, ®), shown in Fig. 7.8 for n = 2, are the gyrosegments Aj Py, A2 P>, and
A1 P5. Since gyrosegments in Einstein gyrovector spaces coincide with Euclidean
segments, one can employ methods of linear algebra to determine the ingyrocenter,
that is, the point of concurrency of the three gyroangle bisectors of gyrotriangle
A1A2A3 in Fig. 7.8.

In order to determine gyrobarycentric coordinates for the gyrotriangle ingyro-
center in Einstein gyrovector spaces, we begin with some gyroalgebraic manipula-
tions that reduce the task we face to the task of solving a problem in linear alge-
bra.

Let the ingyrocenter I of gyrotriangle A1 A3A3 in an Einstein gyrovector space
(R?, @, ®), Fig. 7.8, be given in terms of its gyrobarycentric coordinate represen-
tation, (4.25), p. 90, with respect to the set S = {A, A2, A3} of the gyrotriangle
vertices by the equation

I myy, Av+moy, Ax+m3y, A3

(7.75)
miy, tmy, +msy,

The gyrobarycentric coordinates (m1,mo, m3) of I in (7.75) are to be determined
in (7.103) below.

Left gyrotranslating gyrotriangle A; Ay A3 by ©A1, the gyrotriangle becomes gy-
rotriangle O (6A1DA2)(©A1DA3), where O = ©A 1P A is the arbitrarily selected
origin of the Einstein gyrovector space R} . The gyrotriangle gyroangle bisector feet
Py, P, and P5 become, respectively, OA1B P, OA1B P, and A D P3.

The left gyrotranslated feet are calculated in (7.76a), (7.76b), (7.76¢c) below by
employing the Gyrobarycentric Coordinate Representation Gyrocovariance Theo-
rem 4.6, p. 90, and the standard gyrotriangle index notation, shown in Fig. 6.1,
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p- 128 and in (6.1), p. 127:

Y1313y, Az +yany, As
9A1®P1=9A169 1 Ay 1 A3

V13a13)/A2 + V12a12yA3

V1303V 64, (OA1DAY) + ¥ pa12Y,, o, (OA1043)

V13913V g4 04, T V12012V 04,

_ Y13413Y15812 t ¥V 412Y13813
V13013Y10 T V12412Y13

, (7.76a)

V23a23Y, Al +Yppany, Az
OAIBP; =0A® A -

Y3423, V127,

Y02V g, (OA1®BA3)

V3423 + 712a12V9A1@A3

V12412713413
V23023 + Y 1412V13

(7.76b)

V23a23Y, A1t y;3a13y, A2
CAIOP; =0A1® A L2

V23a23)/A1 + V13a13VA2

B V13413V 5 0,00, (©A1BA2)

V3023 + Y1313V 4,04,

_ V13413V 2212
V23023 + Y3413V,

(7.76¢)

By Definition 4.5, p. 89, the set of points S = {A1, A2, A3} is pointwise inde-
pendent in an Einstein gyrovector space (R, @, ®). Hence, the two gyrovectors
a)p =8A @A, and a;3 = ©A1PA3 in R} C R” in (7.76a), (7.76b), (7.76¢), con-
sidered as vectors in R”, are linearly independent in R”.

Similarly to the gyroalgebra in (7.76a), (7.76b), (7.76¢), under a left gyrotransla-
tion by ©A; the ingyrocenter I in (7.75) becomes

myy, A1 +may, Ay +m3y, Az
0A 18] =04 o—2 - 4

miy, tmy, +my,

MY 6, (OAIDAY) +m3Y,

ML+mM2Y 0 oa, T3V o0 0a,

\ (SA1BA3)

A1®A
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_ mayppa10 +m3y ;53
mi +may, +m3y;;

(7.77)

The gyroangle bisector of the left gyrotranslated gyrotriangle O(©A1®A3) X
(6A1®A3) that joins the vertex

OA1pAI=0=0 (7.78)

with the gyroangle bisector foot on its opposing side, @A 1P P, as calculated in
(7.76a),

Y13913Y12812 + Vo d12Y13213

SA10P = (7.79)
V13413Y12 T V12412713
is contained in the Euclidean straight line
Li=0+(-0+{0A1®P})n
a app + a a
_ V1341312312 T Y5 412Y13213 ’, (7.80)

V13813Y12 T V12812Y13

where #; € R is the line parameter. This line passes through the point O =0 € R} C
R" when #; =0, and it passes through the point 5A|H Py when t; = 1.

Similarly to (7.78)—(7.80), the gyroangle bisector of the left gyrotranslated gyro-
triangle O (6A1®A2)(©A1DA3) that joins the vertex

©A1BA =ap; (7.81)

with the gyroangle bisector foot on its opposing side, ©A 16 P>, as calculated in
(7.76b),

Y12412Y13413
V23023 + Vp412V13

A 18P, =

(7.82)

is contained in the Euclidean line

Ly=ap+ (—an+{0A10P})n

Y12@12V13413
=ap+ (—312 + 12 13 )tz, (7.83)
V23023 + VY 1,412V13

where 1, € R is the line parameter. This line passes through the point aj» € R} C R”
when #; = 0, and it passes through the point SA1® P, when t, = 1.

Similarly to (7.78)—(7.80), and (7.81)—(7.83), the gyroangle bisector of the left
gyrotranslated gyrotriangle O (©A 1B A2)(6A1@A3) that joins the vertex

SA1BA3 =aj3 (7.84)



7.8 Gyrotriangle Ingyrocenter 175

with the gyroangle bisector foot on its opposing side, ©A @ P3, as calculated in
(7.76c),

V1341312212
V23023 + V13413V,

CAI1OP; = (7.85)

is contained in the Euclidean line

Ly=ai3+ (a3 +{0A186P3})13

a3y,an
=a;3+ (—313 4 VBV >t3, (7.86)
V23023 + Y3413V,

where #3 € R is the line parameter. This line passes through the point aj3 € R} C R”
when 3 =0, and it passes through the point A H Pz € Rf C R" when 13 = 1.
Hence, if the ingyrocenter [ exists, its left gyrotranslated ingyrocenter, —©A 11,
given by (7.77), is contained in each of the three Euclidean lines Ly, k = 1,2, 3, in
(7.80), (7.83) and (7.86).
Formalizing, if I exists then the point P, (7.77),

may,a2 +m3y;3ai3
miy +may;, +m3y;

P=6cA &l =

(7.87)

lies on each of the lines L, k = 1, 2, 3. Imposing the normalization condition m| +
mo + m3 = 1 of special gyrobarycentric coordinates, (7.87) can be simplified by
means of the resulting equation m| = 1 — my — m3, obtaining

may,a12 +m3y 313

P=0cA1®l = .
I+ma(y;,, — 1 +M3()/13 -1

(7.88)

Since the point P lies on each of the three lines Ly, k = 1, 2, 3, there exist values
tx o of the line parameters f, k = 1, 2, 3, respectively, such that

_ Ypipd13yppan + V12412713213
Y13913V1p T V12012Y13

Y12412Y13213
P—ap-— <—312 412 )lz,o =0, (7.89)
V23823 + V1241213

P

t1,0=0,

Y3413V 2A12
P —aj;3— (—313 + 13 12 >l3,0 =0.

V23023 + Y3413V,

The kth equation in (7.89), k =1, 2, 3, is equivalent to the condition that point P
lies on line Ly.

The system of equations (7.89) was obtained by methods of gyroalgebra, and
will be solved below by a common method of linear algebra.
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Substituting P from (7.88) into (7.89), and rewriting each equation in (7.89) as
a linear combination of aj» and aj3 equals zero, one obtains the following homoge-
neous linear system of three gyrovector equations

criap +cpap =0,
c21a12 + a3 =0, (7.90)
czian + cpap =0,
where each coefficient ¢;j, i = 1,2, 3, j =1, 2, is a function of y,,, ¥3, ¥»3, and
the five unknowns mo, m3, and ;. o, k = 1,2, 3.
Since the set S = {A1, A2, A3} is pointwise independent, the two gyrovectors
a1 =0A1®Aranda;3 = ©APA;3in R, considered as vectors in R”, are linearly
independent in R". Hence, each coefficient ¢;; in (7.90) equals zero. Accordingly,

the three gyrovector equations in (7.90) are equivalent to the following six scalar
equations,

Cl]1 = C12 = (21 =C22=C31=C32=0 (791)

for the five unknowns my, m3 and tx 0, k =1, 2, 3.
Explicitly, the six scalar equations in (7.91) are equivalent to the following six
equations:

Yip(a2 +az)my — (1 —my —m3 + y,m2 + y;3ms)aiszty o =0,

vi3(a2 +az)mz — (1 —mo —m3 + y,mz + y;zms)aint o =0,

L —my —m3+y3ms— (1 —my—m3+y,my+ y;zms)o=0,
(V12V13a12 + Vazaz3)ms — (1 —ma —m3 + y,ma + y;3m3)yp,a1t,0 =0,
(V12V13013 + Vaza23)mo — (1 —ma —m3 + y,ma + y;3m3)y3a13t3,0 =0,

1 —my—m3+ymy— (1 —my—m3+ y,ma+ y3m3)t30=0.

(7.92)
The unique solution of (7.92) is given by (7.93) and (7.95) below:
The values of the line parameters are
1
t,0= V12713 (a2 +arz),
1
ho= E(V]z V13412 + ¥»3a23), (7.93)

1
13,0 = H(V127’13al3 + ¥p3a23),

where

D' = Y12V13412 + V12713013 + Vp3023 > 0. (7.94)
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The special gyrobarycentric coordinates (m1, my, m3) are given by

1
m| = —y»,a23,
1 DJ/23 23
1
My = — Y2013, (7.95)
2 DV13 13
1
ms = —y;,a12,
3= pYndn

satisfying the normalization condition m| + my + m3 = 1, where D is given by

]/12012 + )/13a13 + )/236123 > 0. (796)

Following (7.95), convenient gyrobarycentric coordinates of the gyrotriangle
ingyrocenter I are given by the equation

(my:my:m3) = (yy3023 1 V13013 : V12412) (7.97)

or, equivalently, by the equation

a a sina| Ssino
(m1:m2:m3)=<M:M:1>=<, LS 2:1) (7.98)
Y2412 Vpa12 SIno3  SInoj3

as we see from the law of gyrosines (6.44), p. 140. Hence a convenient set of gy-
rotrigonometric gyrobarycentric coordinates of the gyrotriangle ingyrocenter [ is
given by the equation

(my:mp:m3) = (sinwy :sinoy : sinas). (7.99)

The gyrobarycentric coordinates in (7.99) are positive for any gyrotriangle gy-
roangles o, k = 1,2, 3. Hence, by Corollary (4.10), p. 94, the gyrotriangle ingyro-
center always lies on the interior of its gyrotriangle, as shown in Fig. 7.8, p. 169.

We have thus found that the ingyrocenter of gyrotriangle A1A2A3 lies on the
interior of gyrotriangle AjA>Aj3, and it has the gyrobarycentric coordinate repre-
sentation with respect to the set S = {A1, A>, A3} given by each equation in the
following chain of equations,

I V23023V, Al + V13013V, A2 + V15012V, A3

V23023V 4, + V13913V, + V12012V a4

_ Vi 7/223 - 1VA1A1 + vV V123 - 1VA2A2 + Vi 7/122 - 1)/,43 A3
vV v — Ly, + \/V123 —ly,, + \/7/122 = ly,,

sinayy, A +sinary, Az +sinazy, A3
= 4 2 5 eR (7.100)
sinayy,, +smoayy,, +sinasy,,
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The first equation in (7.100) follows from (7.95). The second equation in (7.100)
follows from the first by (1.9), p. 5, and the third equation in (7.100) follows from
the first by the law of gyrosines (6.44), p. 140, according to which, by (1.9),

VY2 Y3023 sinag

1

/7/]22 _ 1 - ylzalz Sina} ’
1
1

(7.101)

2 _
3
2 .
Y13 V13413 sinop

2 aln Sin(x:’, ’
VYiz Vi2

Formalizing the main result of this section, we obtain the following theorem:

Theorem 7.12 (The Ingyrocenter) Let S = {A1, Az, A3} be a pointwise indepen-
dent set of three points in an Einstein gyrovector space (RY, ®, ®). The ingyrocenter
I e R}, Fig. 7.8, p. 169, of gyrotriangle A1 Ay A3 has the gyrobarycentric coordinate
representation

myy, Av+moy, As+m3y, As

1 (7.102)

miy, +my, +msy,

with respect to the set S = {A1, A2, A3}, with gyrobarycentric coordinates (m :
my : m3) given by each of the following three equations:

(m1 :m2:m3)=(\/y223—1:\/y123—1:\/y122—1),

(my :my :m3) = (V3023 : Y3013 : Y[2012),

(7.103)

(my:myp:m3) = (sinwy :sinoy @ sinas).

Interestingly, in the Euclidean limit of large s, s — oo, the three systems of
gyrobarycentric coordinates (m1 : mo : m3) in Theorem 7.12 exhibit the following
different features:

The first system of gyrobarycentric coordinates of the gyrotriangle ingyrocenter
in (7.103) reduces to (my : my : m3) = (0 : 0 : 0), which makes no sense in Euclidean
geometry;

The second system of gyrobarycentric coordinates of the gyrotriangle ingyrocen-
ter in (7.103) reduces to its Euclidean counterpart,

(m1:mo:m3) = (ax3:ai3z:arz), (Euclidean Geometry) (7.104)

noting that in the limit of large s, s — 0o, gamma factors tend to 1, and gyrolengths
tend to lengths. Equation (7.104) gives a well-known barycentric coordinates of the
Euclidean triangle incenter, where a»3, a3, and aj2, are the side lengths of a Eu-
clidean triangle Aj Ay A3 in R” [29]. We should note that a3, a13, a2 in (7.103) are
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gyrotriangle side gyrolengths while, in contrast, a3, a3, a2 in (7.104) are triangle
side lengths.

The third system of gyrobarycentric coordinates of the gyrotriangle ingyrocenter
in (7.103) appears in a gyrotrigonometric form. As such, it is identical, in form,
with its Euclidean trigonometric counterpart. Indeed, in the limit s — oo the third
equation in (7.103), which is in a gyrotrigonometric form, remains intact in form in
the transition from hyperbolic geometry to Euclidean geometry. It leads to a well-
known barycentric coordinates of the Euclidean triangle incenter in a trigonometric
form [29],

(my1:mo:m3) = (sinag :sinay : sinwz). (Euclidean Geometry) (7.105)

We should note that while the third equation in (7.103) and (7.105) are equal in
form, they are different in context. The former involves gyrosines of gyrotriangle
gyroangles while, in contrast, the latter involves sines of triangle angles.

By Theorem 7.12 and the ingyrocenter gyrobarycentric coordinate representation
(7.75), p- 172, we obtain the following theorem:

Theorem 7.13 (The Gyrotriangle Ingyrocenter) Let S = {A1, A2, A3} be a point-
wise independent set of three points in an Einstein gyrovector space (R}, ®, ®).
The ingyrocenter 1, Fig. 7.8, p. 169, of gyrotriangle A1A2A3 has the gyrobarycen-
tric coordinate representation

I myy, Av+moy, A>+m3y, A3 7.106)
miy, +my, +msy,

with respect to the set S = {A1, Ay, Az}, with gyrobarycentric coordinates given by

(m1:mz:m3)=(\/y223—1:\/y123—1:\/y122—1) (7.107)

or, equivalently, by

(m1:my :m3) = (V3023 : ¥3413 : Y]2G12) (7.108)

or, equivalently, by the gyrotrigonometric gyrobarycentric coordinates
(my :my:m3) = (singg :sinay : sinas). (7.109)
Two immediate, but interesting, corollaries of Theorem 7.13 are presented below:

Corollary 7.14 Let A1AyA3 be a gyrotriangle with gyroangles oy, k =1,2,3, in
an Einstein gyrovector space (R}, @, ®). Then, the gyrotriangle ingyrocenter I pos-
sesses the gyrotrigonometric gyrobarycentric coordinate representation

; sinom/Al A+ sinoczyAzAz + sinocgyA3 A3

; ; ; (7.110)
sino )/Al + s1noz2yA2 + s1n043)/A3
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Corollary 7.15 Let A1AyA3z be a triangle with angles oy, k = 1,2,3, in a
Euclidean space R". Then, the triangle incenter 1 possesses the trigonometric
barycentric coordinate representation

sinay A1 + sinap Ay + sinw3z A3
= ‘ . . . (7.111)
SIn| + Sinoy + sin a3

7.9 Gyrotriangle Gyroaltitude Foot

Let A3 P5 be the gyroaltitude of gyrotriangle Aj Ay A3 drawn from vertex A3 to its
foot P3 on its opposite side AjA; in an Einstein gyrovector space (Rf, @, ®), as
shown in Figs. 7.9-7.10 for n = 2. Furthermore, let

myy, Ai+may, Az
Py — i 2 (7.112)
m1yA1 +m2yA2

be the gyrobarycentric coordinate representation of Pz with respect to the set
{A1, A2}, (4.25), p. 90, where the gyrobarycentric coordinates (m : my) are to be
determined in (7.123)—(7.125) below.

Employing the Gyrobarycentric Coordinate Representation Gyrocovariance The-
orem 4.6, we have from Identity (4.29b), p. 91, with X = ©A1, using the standard

h3

(25)
P23 »A,

P;

h; = OA;DP;, hy = ||hs]|

P13 = OA1BF;, p13 = |pisll

P23 = ©A,P3, P23 = ||p2sll

Fig. 7.9 The foot P; of gyroaltitude A3 P; of a gyrotriangle AjA2A3 in an Einstein gyrovector
space (R}, @, ®). Here the foot lies on side Aj A of the gyrotriangle, so that both gyroangles o
and ay are acute
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(2%

A

h; = ©A;5P;,

p13 = OA1©F,

P23 = CA P,

181

[l
P;

h3 = |||

p13 = |lpisll

P2 = ||p2sll

Fig. 7.10 The foot P; of gyroaltitude Az P3 of a gyrotriangle Aj A2 A3 in an Einstein gyrovector
space (R}, ®, ®). Here the foot lies on the extension of side AjA; of the gyrotriangle, so that
gyroangle «; is obtuse

gyrotriangle index notation, shown in Fig. 7.9, in Fig. 6.1, p. 128, and in (6.1),
p. 127,

i yeX@Al + mzyexeaAz

Yoxar, — o , (7.113)
where
my =m?3 +m3 +2mimay,,. (7.114)
Hence, for X = A1, X = Ay and X = A3 in (7.113) we have, respectively,
_ _ mi +m2y6AléBA2 . mj +m2)/12
Yo =VYonor = mo  omo
B _mlyeAgeBA1+m2_m1712+m2 (7.115)
Yrs = Yonyory = mo T
MY, ®A; m2y6A3€BA2 _miyp; +mayys

Yhs = Yonyor, mo mo
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Applying the Einstein—Pythagoras identity (6.57), p. 144, to each of the two right
gyroangled gyrotriangles A1 P3 Az and A» P3A3 in Fig. 7.9, we have

VYpisVhs = V13>
(7.116)

Yp33Vhs = V23

Substituting (7.114)—(7.115) into (7.116), we obtain a system of two equations
for the two unknowns m and m;. This system does not possess a unique solution.
Adding the normalization condition m| 4 my = 1 results in the unique solution,

my = Y12Y23 V13
(V13 + V23)(V12 -D

(7.117)
my = —12¥3 "V
(V13 + V23)(V12 -1

as one can readily check. The unique special gyrobarycentric coordinates (m1, m>)
of the point Pz with respect to the set S = {A1, A2} in Fig. 7.9 are thus determined
by (7.117).

The unique special gyrobarycentric coordinates (m1, m2) in (7.117) suggests the
following convenient gyrobarycentric coordinates (m : m}) of the point P; with
respect to the set S = {A1, Az},

my = Y12V23 — V13 (7.118)

/ J—
My =VY1Vi3 = Va3

so that a gyrobarycentric coordinate representation (7.112) of P3 with respect to the
set § ={Aj, Ay} is given by

_ (V12V23 - V13)VAI A+ (V12V13 - V23)VA2A2

: (7.119)

Vi2¥es = Vi3V, + Vi2Vis = ¥3)7,,

A different convenient gyrobarycentric coordinates (m/ : m') of P; with respect
to {A1, Ay} can be obtained from (7.118) by means of (6.20), p. 134,

1
\/V122 - 1\/3’123 - 1\/7/223 -1

_ ( cos o : cos o] > (7.120)
2 2
\/ viz—1 \/ ¥a3 =1
The advantage of the gyrobarycentric coordinates (m : m/) of P3 with respect

to {A1, Az} in (7.120) rests on the observation that the sign of m{ (m)) equals the
sign of cos oy (cosay).

(m/l/ : mll/) = V12V23 — Y13 1 ¥V12V13 — Va3)
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Another set of convenient gyrobarycentric coordinates (m}” : m}") of P3 with
respect to {A1, Az} results from (7.120) and (6.39), p. 139, obtaining the following
gyrotrigonometric gyrobarycentric coordinates:

(m{":m!") = (sine; cosaz : cosa; sina), (7.121)
where o, k =1, 2, 3, are the gyroangles of gyrotriangle A;A> A3 in Fig. 7.9, in the
standard gyrotriangle index notation.

Formalizing the main result of this section, we have the following theorem:

Theorem 7.16 (The Foot of a Gyrotriangle Gyroaltitude) Let S = {Ay, A2, A3}
be a pointwise independent set of three points in an Einstein gyrovector space
(R}, ®, ®), and let P3 be the foot of gyroaltitude Az P3, Fig. 7.9, p. 180. Then the
gyroaltitude foot has the gyrobarycentric coordinate representation

py = I DY, B (7.122)
3= .
miyy, +my,

with respect to the set S = {A1, A2}, with gyrobarycentric coordinates

(my:m2) = (Y12¥23 — Y13 - V12713 — V23) (7.123)

or, equivalently,

cosayp cosa
) = < = ) (7.124)
\/V13 \/V23 — 1

or, equivalently, with gyrotrigonometric gyrobarycentric coordinates

(mq :mp) = (sinw cosay : COs g Sinay). (7.125)

It is clear from (7.123)—(7.125) that the two gyrobarycentric coordinates m and
my of the gyroaltitude foot P are positive in Fig. 7.9, where P3 lies on side A1 A; of
gyrotriangle AjAj A3z, so that both gyroangles o1 and «» acute. The fact that in this
case the gyroaltitude foot P3 lies on side A1 A» is in accordance with Corollary 4.9,
p. 93.

In contrast, it is clear from (7.123)—(7.125) that the two gyrobarycentric coordi-
nates m1 and my of the gyroaltitude foot P3 are, respectively, negative and positive
in Fig. 7.10, where P;3 lies on the extension of side A A> of gyrotriangle A1 A>A3,
so that gyroangles o1 and o are, respectively, acute and obtuse. The fact that in
this case the gyroaltitude foot P3 does not lie on side Aj A is in accordance with
Corollary 4.9, p. 93.

7.10 Gyrotriangle Gyroaltitude

In this section, we calculate the gyrolength h3 = ||[©A3@ P3| of the gyroaltitude
gyrovector hy = © A3 P3 of gyrotriangle A1 A Az in Figs. 7.9-7.10.
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By the third equation in (7.115), we have

. _miyp +Wl2)/23
Yhy = VGA3€BP3 = s

(7.126)
mo

where, by (7.117),

mi=YpVsa — Vi3, 7.127)
m2 =Y12Y13 — Y23-

Hence, following (7.127) and (7.114),
m(z) =m? +mi+ 2mimay,,
2 2 2
= (Vi = 1) 2ravi3vas — iz — 733) (7.128)
so that, by (7.126)—(7.128),

2 _ 2
> _ 2VipVi3Yas ~ Vi3 ~ Va3

h
’ V122 -1
1 +2 2 2 2
— 1t Y1213 7/232 Yia TVi3 T Va3 (7.129)
Yin — 1
Hence, by (7.129) and (1.9), p. 5,
2 _ 2 2 2
B =52 Vis —1 §2 1+2y1,713703 = Yia — Vi3 — V33
= 2 2 2
Vs 2¥12Y13Y23 — Viz — V33
2
—1
:s2<l — Yiz s > (7.130)
2V, Yar V1o — Vi, — Ve

Formalizing the results of this section, we obtain the following theorem:

Theorem 7.17 (The Gyrotriangle Gyroaltitude) Let A1AA3 be a gyrotriangle in
an Einstein gyrovector space (R}, ®, ®) with a gyroaltitude A3 P3, as shown in
Figs.7.9-7.10,7.17, and let h3 = ||©A3@ P3|| be the gyrolength of the gyroaltitude.
Then,

142 —ys —yh -y
h3=s\/ Y12Y13723 V122 V132 Y23 (7.131)
2yiaVi3¥as ~ iz~ Vi

and

2121323 — Vi — Vi
7/}13:\/ 12713 223 113 23' (7.132)
Yio—
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oA @Ay, an = anll N2 = Yar etc.

o=
Aj a) =

Fig. 7.11 The ingyrocenter / of a gyrotriangle AjA>A3 in an Einstein gyrovector space
(R}, ®, ®). The gyrotriangle ingyrocenter is the point of the interior of the gyrotriangle that is
equigyrodistant from the three gyrotriangle sides. Accordingly, r := h; = hy = h3 is the gyrotri-
angle ingyroradius r

7.11 Gyrotriangle Ingyroradius

The gyrobarycentric coordinate representation, (4.25), p. 90, of the ingyrocenter /
of gyrotriangle A; A A3 in an Einstein gyrovector space (R}, @, ®), Fig. 7.11, with
respect to the set § = {A1, Az, A3} of the gyrotriangle vertices is given by

I miy, Av+moy, As+m3y, A3

) (7.133)
myy, +my, +msy,

where, by Theorem 7.12, p. 178, the gyrobarycentric coordinates of [ in (7.133) are
given by

(my:mp:m3) = (3023 : Y3413 : Y[2412). (7.134)

Following (7.133) and the Gyrobarycentric Coordinate Representation Gyroco-
variance Theorem 4.6, p. 90, we have

MiYxgAa, +m2yX€BA2 +m3VX@A3

= 7.135
YxoI o ( )

for all X € R}, where, according to (4.28d), p. 91, my is given by the equation

m% = m% —l—m% +m% +2(mimay,, +mim3zy 3 +moamsyys). (7.136)
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ap — OA @Ay, an = [anll Yo = Tae erc.

Fig. 7.12 The ingyrocircle of gyrotriangle A A2 A3 in Fig. 7.11 is shown. Its gyrocenter, /, is the
gyrotriangle ingyrocenter, and its gyroradius r, r := h| = hy = h3, is the gyrotriangle ingyroradius

Substituting X = ©A1 and X = © A, into (7.135), we have, respectively,

mi +m2yeAl@A2 +m3y@Al@A3
b

Yorol = mo
(7.137)
_ MiVomea, T2 T M3V 4,04,
Yorer = o
or, equivalently, in the notation of Fig. 7.11,
_m +may, +m3y
Val - m() ’
(7.138)
_ MYy M2+ m3yy;
a — .

mo

We are now in a position to apply the gyroaltitude equation (7.131) of gyrotrian-
gle AjAAj3 in Theorem 7.17, to gyrotriangle A1 A, in Fig. 7.12, obtaining in the
notation of Fig. 7.12,

2
5 L+ 2y Va1 Yay — Vin — Vazl - thzz

rti=h3=s 3 5
2Y12Ya Yay = Vi, ~ iy

(7.139)

where r is the ingyroradius of gyrotriangle A A> A3, shown in Fig. 7.12.
Substituting (7.138) and, subsequently, (7.136) and (7.134) into (7.139), we have

21+2 2 2 2
rzz% 7/12V13V23DV12 Y13 V23’ (7.140)
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where

2 2 2 2
D=ypyi3rs—1 +7/12\/V13 - 1\/V23 -1 +\/7’12_ 11’13\/7’23 -1

+\/V122_1\/ 7/123_11/23- (7.141)

7.12 Useful Gyrotriangle Gyrotrigonometric Identities

The identities in (6.33), p. 137, and (6.43), p. 140, prove useful when expressed in
the standard gyrotriangle index notation, shown in Fig. 6.1, p. 128, and in (6.1),
p. 127. In this notation, these identities take the form

COS (3 + COS (| COStD

Y12 = ; .
sina sinop

COS oy 4+ COS ] COS (3
Vi3 = ) (7.142)

sino sin o3

CcoS| + COS () COS 3

Y23 = sin o sin o3
and
) app N F(ar, a2, 03)
Yo—l=yp—=2—v-—-——"—,
K sin o] sin o
aiz VF(ay, a2, a3)
2
Vrh—l=y,— =220 (7.143)
K sinoq sin o3
) a3 F(ar,o,a3)
Vi3 —l=yp—=2—"-—7"—,
K sin o sin a3
where

1
F(ay,ar,a3) = Z(2cosa1 COS () COS (X3 +cos2a1 + cos? o + cos? o3 — 1)

a1 +ay+ o3 o] — o) — o3 -1+ o) — o3
cos CcoS
2 2 2
—a1 —a2+ a3
2

X COs

_ LA +2y 013703 — vh =i =)

(7.144)
4 L-DE-Di-D




188 7 Gyrotriangle Gyrocenters

The identities in (7.142) along with the common gyrotrigonometric/trigonometric

addition law of the gyrocosine/cosine function,
cos(a = B) =cosa cos B F sina sin 8
for o, B € R, imply

cosas + cos(a] F o)

Yt l= - -
sina sin oy
cosap + cos(a] F a3)
YizEtl= - -
sino| sinos
cosa] + cos(an F a3)
Yz 1= .

sinay sin o3
The law of gyrocosines (6.20), p. 134, and (7.143) imply

4F (otq, o, 3) COS

YioYizs = Y3 =5 . ] )
sin” o sinap sin oz

4F (orq, o, 03) cosap

Y12V23 = Y13 = 5 ,
sin o Sin“ ap Sin o3

4F (a1, a2, 03) cOSa3

YizYos = V2 = — . 5 .
sin o sinorp Sin” &3

By (6.39), p. 139, we have

4F (ay, a2, a3)(1 + cosag cosaz cosozq)

YioVi3Yes — 1= 2 7
sin” o1 sin” ap sin? o3

Other elegant and useful gyrotrigonometric identities are

cos ajtaptos cos —051—552"1‘(13

Yi2 — 1=2 2. - ,
sinaq sino

cos o —1122—013 cos —ojtoy—a3

Y12 +1=2 . . ’
SIn o SIn o)

and

4F(041,062,0€3)
Y12 V13 Vzg 5 (cosajcosay + cosay),

~ sin? o1 sin? ap sin® a3

along with their index permutations, and

4F (ay, 02, a3)

142V V13V — VB — VB —Vh=———————.
\/ 12V13Y23 T Y2 T VI3 T Y3 T g in e,

(7.145)

(7.146)

(7.147)

(7.148)

(7.149)

(7.150)

(7.151)

(7.152)
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The following resulting gyrotriangle gyrotrigonometric identities prove useful:

8F(0l1,0£2,053)0082 w

2 2

V=D =Dz — D = 3 3 ) ) (7.153)
sin” «rq sin” arp sin” a3

052 al—otzz—ots COS2 —a1+§cz—<¥3 c052 —a1—§42+a3

V2 + D3+ Dz + D =

2 2

sin? a; sin? o sin? o3

(7.154)
so that
64F (a1, a2, 3)°

o)A -1)(&-1)= . 7.155
(V12 )()/13 )(y23 ) sin® o sin? oy sin? o3 ( )

7.13 Gyrotriangle Circumgyrocenter Gyrodistance from Sides

As an application of Theorem 7.17, p. 184, we determine the gyrodistances /1, hy
and /3 between a gyrotriangle circumgyrocenter, O, and its sides A» A3, A1A3 and
A1Aj, respectively, shown in Fig. 7.13.

The gyrodistance of E (note that E represents each of Ey, k =0,1,2,3, in
Fig. 8.1) from the gyroline that passes through points A; and A;, Fig. 8.1, is the
gyroaltitude 1 of gyrotriangle A1AE drawn from base A1A;. Hence, by Theo-
rem 7.17, p. 184, r1 is given by the equation

> 22 2
hy _ 142Y1You00Yeme0 ~ Via ~ Yore0 ~ Yoaeo

2 = .
N

(7.156)

2 2
2Y12Yem00Y0m00 ~ Yor 00 ~ Yore0

Fig.7.13 The gyrodistances h1, hy and h3 between the circumgyrocenter of gyrotriangle A1 A2 A3
and its sides in an Einstein gyrovector space (RY, ®, ®)
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Since O is the gyrotriangle circumgyrocenter,
10A1®0| =|I©A1BO0|| =R, (7.157)

where R is the circumgyroradius of gyrotriangle A;A>Az. Hence, (7.156) can be
written as

2 22 2
hy _ 14+2ypve — Vi — ZVR_

B (7.158)
s? vV — 2vk
Noting that 3 = (1 — R?/s%)~!, (7.158) implies
h3  1(R?
5=3 S_z(y12+1)_(y12_1) , (7.159)

where the circumgyroradius R of gyrotriangle A; A> A3 is given by (7.29), p. 162.
Substituting R from (7.29) into (7.159), we have

hy _ p=D =Dy —D 1
2= Y
L2y vi3vas — V2 — Via — Va3 2

; (y;, — D). (7.160)

Finally, substitutions of gyrotriangle gyrotrigonometric identities from Sect. 7.12
into (7.160) give the elegant relation

) s2cos 0"+“22+“3 sin “1+O‘22_“3 tan 0”+°‘22_“3

h} = S . (7.161)
sinoq Sinap

Eliminating the factor s cos % between (7.161) and (7.35), p. 163, we
obtain the relation

R2 cos 4L=%2=93 (o —ojtap—o3 sin2 ajtar—a3
2

h3 = - vl z (7.162)
- sin o Sin o)

The ball parameter s, which appears explicitly in (7.161), disappears in (7.162).
Clearly, however, its presence in (7.162) remains implicit since it involves in the
measure of gyroangles. Interestingly, the elegant relation (7.162) remains invariant
in form under the Euclidean limit s — o0, so that it is valid in Euclidean geometry
as well.

The side AjA of gyrotriangle Aj1A3A3 in Fig. 7.13 is the gyrodiameter of the
gyrotriangle circumgyrocircle if and only if 43 = 0. The latter, in turn, is valid if
and only if a3 = a1 + a2, as we see from (7.162). Hence, the biggest gyroangle of a
gyrotriangle has measure equal to the sum of the measures of the other two gyroan-
gles if and only if the side opposite to the biggest gyroangle is a gyrodiameter of the
circumgyrocircle. This result is known in hyperbolic geometry; see, for instance,
[28, p. 133], where the result is proved synthetically.

Formalizing the results of this section, we obtain the following theorem:
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Theorem 7.18 Let A1A2A3z be a gyrotriangle in an Einstein gyrovector space
(RY, @, ®) and let O be its circumgyrocenter, Fig. 7.13. The gyrodistances hy,
k=1,2,3, from O to the gyrotriangle side opposite to vertex Ay are related to
the gyrotriangle circumgyrocenter R and gyroangles o1, oz, a3 by the equations

) R2 cos 70!1+§lzf(13 cos 70{17324’0(3 sin2 fa1+§tz+a3
hl = . . )
SN o SN

2 a1 —or—a3 —aj—opto3 -2 o —a+o3
h% _ R~ cos > c.os ) sin 5 ’ (7.163)
sin ] Sin o3

) RZcos 22— cos 7“1@‘27“3 sin? °“+°‘227°‘3
M=
sin o sin o

Proof The third equation in (7.163) is established in (7.162). The first and second
equations in (7.163) are derived from the third by vertex permutations. d

Corollary 7.19 The biggest gyroangle of a gyrotriangle in an Einstein gyrovector
space has measure equal to the sum of the measures of the other two gyroangles
if and only if the side opposite to the biggest gyroangle is a gyrodiameter of the
gyrotriangle circumgyrocircle.

7.14 Ingyrocircle Points of Tangency

Ingyrocircle points of tangency are associated with the gyrotriangle gyrocenter
called Gergonne gyropoint G., shown in Fig. 7.14, and studied in Sect. 7.16

Let us consider the point of tangency F3 in which the incircle of a gyrotrian-
gle A1 Az A3z meets the gyrotriangle side opposite to Az, shown in Fig. 7.14. It is the
perpendicular foot of the gyrotriangle ingyrocenter / on the gyroline A A;. Accord-
ingly, F3 is the gyroaltitude foot of gyrotriangle A1 A1, drawn from 7, as shown in
Fig. 7.14.

Hence, by Theorem 7.16, p. 183, the gyroaltitude foot F3 possesses the gyro-
barycentric coordinate representation

miy, Ar+may, Az

Fs = (7.164)
myy, tmy,
with respect to the set S = {A, A>}, with gyrobarycentric coordinates
M1 =YoneaYorel ~ Yorol = Vi2Ver,e1 ~ Yos el
1 2 2 1 2 1 (7165)

m2=VYes@a,Yorel ~ Vore! = V12Ves @1 — Vool

The gyrobarycentric coordinates m1 and m; in (7.165) involve the gamma factors
Yoa,®! and y Al which we calculate below.
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ap — OA @Ay, an = [anll Yo = Tae erc.

Fig.7.14 The ingyrocircle of gyrotriangle Aj A> Az in Fig. 7.11 is shown along with its gyrocenter
I and its tangency points Fy, k = 1,2, 3. The point Fy is the point in which the ingyrocircle of the
gyrotriangle meets the gyrotriangle side opposite to Ax. The Gergonne gyropoint G, of gyrotrian-
gle A1 Az A3 is the point of concurrency of the three gyrolines Ay Fy, given by its gyrotrigonometric
gyrobarycentric coordinate representation (7.202), p. 202

Being the incenter of gyrotriangle AjAyAs3, I is given by, (7.106)—(7.109),
p. 179,

I V230237, A1+ y3a13y, A2+ yppany, A .

(7.166)
Ya3a23y, tyizaiy,, typany,
Hence, by Theorem 4.6, p. 90,
V23023V xga, T V13913V xgA, T V12012V x a4
Vxe! = ! 2 : (7.167)

mo

for all X € Ry, where mo > 0 is the constant of the gyrobarycentric coordinate
representation of / in (7.166). This constant need not be specified as we will see
below in the transition from (7.169) to (7.170).

Following (7.167) with X = 6A, k = 1,2, 3, we have, respectively,

V23G23 + V13413V, T V2012713

YoA el = o ,
_ Y2323V T V3013 T Vp012Y03
Yo, o1 = o , (7.168)
V23823V 13 T V13013V03 T V2412
YoAsol = .

mo
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Substituting from (7.168) into (7.165), we have

my = (V122 — Dyy3a23 + (V12 Va3 — V13) V10012
mo

’

(7.169)
my = (V122 — Dy3a13 + (Va3 = ¥o3) V1412
mo

Being homogeneous, a common nonzero factor of gyrobarycentric coordinates is
irrelevant, so that convenient gyrobarycentric coordinates m1 and my of the point /
in (7.164) are obtained from (7.169) by removing the common denominator m,

mi = (v — 1)ypa23 + (V12723 — 713)v12@12, a170)

my = (V122 — )yiza13 + (V1p¥13 = v23)V1n612-

Substituting from (7.143)—(7.147) into (7.170), along with the abbreviation F =
F (o1, ap, a3), we have

8F3/2 1+ cosan 8F3/2 o

mp=-—-— ") : : =— ) - cot —,

SIn” ¢/1 SIN” o SIngyz SN SIN” o1 SIN“ ap SIN 3 2
(7.171)

8F3/2 1 4 cosay §F3/2 o]

my=—————>—— - =3 cot —.

SIN“ o] SIN” o SIney3 SN SIN“ o/ SIN” &p SIN K3 2

Since gyrobarycentric coordinates are homogeneous, a nonzero common fac-
tor of a system of gyrobarycentric coordinates is irrelevant. Hence, it follows from
(7.171) that convenient gyrobarycentric coordinates for the point F3 in (7.164) are

o2
mip =cot—,
2
(7.172)
-t
my) =cot —
2

so that, by (7.164), we have

@ o

- _cotzyAlAl—i-cotzyAzAz 7.173)

3T T ot 2y, oot ' '
ZVA] 2)/A2

We have thus obtained the following theorem:

Theorem 7.20 Let A1 AA3 be a gyrotriangle in an Einstein gyrovector space R
and let Fy, k = 1,2, 3, be the point in which the ingyrocircle of the gyrotriangle
meets the opposite side of Ag, Fig. 7.14. A gyrotrigonometric gyrobarycentric coor-
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dinate representation of each point Fy is given by

cot 23)/A Ay +cot 3 Vas Aj

)

cot & 5 yA +cot S > )/A

cotZy Aj+cotlly, Az
Fy= 7 - 2V, , (7.174)
cot 5 Va, + cot &L 2 Vas

cot 22)/A Ay +cot ;/A Ay

cot 2 y +Cot

Proof The proof of the third equation in (7.174) is given by (7.164)—(7.173). The
proof of the first and the second equation in (7.174) is obtained from the first by
vertex permutations. g

The three points Fy, k = 1,2, 3, of Theorem 7.20 are shown in Fig. 7.14. As
Fig. 7.14 indicates, the three gyrolines Aj F|, A2 F> and A3z F3 are concurrent. We
show in Sect. 7.16 that this is indeed the case, giving rise to the Gergonne gyropoint.

For later convenience, we determine below the left gyrotranslation of Fy, k =
1,2,3, by ©A;.

Applying to (7.174) the gyrocovariance of gyrobarycentric coordinate represen-
tations, Theorem 4.6, p. 90, we have from Identity (4.29a), p. 91, with X = 6A,
using the standard gyrotriangle index notation, shown in Fig. 8.4, in Fig. 6.1, p. 128,
and in (6.1), p. 127:

cot 5y, Az +cotFy, A3 cot“—3 @
7 Y1,412 + COot =52y ;213
OAIDF =0A D 2 712 2 Y13

cot yA + cot % )/A cot Zy,, +cot Gy,
(7.175a)
cotBy Aj+cotlly A; ar
2 2 cot 5 y,4a13
OAIOF, =041 ! BT 2R (7.175b)
cot7yA +cot 3 Vas cot 5 +cot Fy;
and
cot 2 5V A1+cot v A2 cot%y a
CAI®F;=0A1® 22 . (9V312 7750
2yA +cot2yA cot F +cotZy,

7.15 An Unlikely Concurrence

Let AjA2A3 be a gyrotriangle in an Einstein gyrovector space (R}, @, ®), and let
Fr, k=1, 2,3, be the tangency points of its ingyrocircle gyrocentered at /. Further-
more, let P be the point of intersection of the gyrolines A3/ and Fi F3, as shown in
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Fig. 7.15 An Unlikely Concurrence. The two gyrolines F; F3 and A3l concur at P, generating
the right gyrotriangle A; P A3z. The point Pz is the A3-foot of the ingyrocenter of gyrotriangle
A1 Az A3, so that the gyrolines A3/ and A3 P3 coincide. Fi, k = 1,2, 3 are the points of tangency
where the ingyrocircle meets the sides of the gyrotriangle

Figs. 7.15-7.16. We will show that the resulting gyrotriangle A P A3 is right, with
the right gyroangle ZA| P A3.

The gyroline A3/ is the bisector of gyroangle ZA|A3A» and, following (7.71)
and (7.73), p. 171, its foot Ps is given by the gyrobarycentric coordinate represen-
tation

sinalyAlAl +sina2yA2A2
Py = . - (7.176)
smotl)/Al —I—SanlzJ/Az

with respect to the set S = {A1, A>, A3}. Clearly, the gyrolines A3/ and A3 P3 coin-
cide.

The tangency points Fy, K = 1, 3, of the gyrotriangle ingyrocircle, Fig. 7.15,
where the ingyrocircle meets the gyrotriangle sides A» A3 and A1 A3 are given by,
(7.174),

cot% yA Ay +cot 2 > )/A
1= ;

cot% 5 yA + cot & 5 yA

(7.177)

C0t22)/A A1+C0t 12 A2

= @
cot = Va, + cot &t 2 Va,
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Let the point of intersection, P, of gyrolines A3/ and F) F3 be given by its gyro-
barycentric coordinate representation

miy, Av+moy, As+m3y, As 7.178)

myy, +my, +msy,

where the gyrobarycentric coordinates (mp : mjy : m3) are to be determined in
(7.185). Clearly, P is the point of intersection of gyrolines A3 Pz and F F3 as well.

Owing to the Gyrobarycentric Coordinate Representation Gyrocovariance The-
orem 4.6, p. 90, the left gyrotranslated point, ©A>@ P, of P by ©A; is the inter-
section point of the two left gyrotranslated gyrolines (AP A3)(©A26 P3) and
(OA20F1)(0A20F3).

Following Theorem 4.6, the left gyrotranslations of points A3z, P3, F1, F3,and P
by ©A, are:

©APA3 = a3,
¥y, Siny
CADP3 = L ——ay| =:clay,
Vip SN 4+ sinwy
a
Va3 COL5
QADF = ay3 =: craz3,
cot 3 + y,, cot F (7.179)
a
Y15 COt ==
SADF3 = 12 2 ay| =: c3ayy,

7] Q
V1, COt 5= +-cot 5

m1Yy,,a21 + mM3y,3a23
M1y +ma+m3y,,

SA®P = =:c4a2] + c5a33,

where we use the standard gyrotriangle index notation, shown in Fig. 6.1, p. 128,
and in (6.1), p. 127.
The Euclidean straight line L that passes through the points

OADA3, ©A®P; R CR" (7.180a)
is
L1 =(0A2843) + {—(0A2043) + (0428 P3) }1y
=ap3 + (—ay3 + c1ax)f (7.180b)

where #; € R is the line parameter.
Similarly, the Euclidean straight line L, that passes through the points

OA2®F;, ©A®F;eR] CR" (7.181a)
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Fig. 7.16 An Unlikely Concurrence. The two points A; and Aj of Fig. 7.15 are interchanged in
this figure. As opposed to Fig. 7.15, here the point of concurrence, P, lies on the interior of its
reference gyrotriangle Aj Ay A3

is
Ly = (0A®F) + {—(0A®F) + (0A28F3) |1

= a3 + (—c2a3 + c3a21)t (7.181b)

where f, € R is the line parameter.

The point ©A>@ P = caa; + csay3 lies on each of the two lines L and Lo,
which are coplanar and nonparallel. Hence, there exist ¢ o and #, o of the line pa-
rameters #; and #;, respectively, such that

cat) +csans — {an3 + (a3 + crap)n } =0, 7.182)
camn) + csap3 — {2423 + (—c2823 + 32112} = 0.

Substituting cg, k =1,...,5, from (7.179) into (7.182), we obtain two vector
equations of the form

criaz; + crpaxs =0,
(7.183)
c21a21 + cnax = 0.

The two gyrovectors ap; and a3 in R}, considered as vectors in R”, are linearly
independent in R” since the set S = {A, A3, A3} is pointwise independent. Hence,
the two vector equations in (7.183) are equivalent to the following four scalar equa-
tions,

cii=cipp=c1=cp=0 (7.184)

for the five unknowns ¢ 0, k = 1,2, and my, k =1, 2, 3.
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Two of the resulting four equations admit a solution for #; ¢ and 2 ¢. These are
substituted into the remaining two equations, simplifying them into two equations
for the three unknowns my, k =1, 2, 3. The latter, in turn, determine the unknowns
m1/m3 and my/m3 uniquely. Keeping in mind that gyrobarycentric coordinates
are homogeneous, by definition, resulting convenient gyrobarycentric coordinates
(m1 : my : m3) for the point P in (7.178) turn out to be

a3 .
mi :cotj sinay,

I
my = cot > sinay, (7.185)

ms3 = cot acd sinay — cot tl sina; =2 cos? ©_ cos? dl .
2 2 2 2
By (4.15), p. 88, the constant m( of the gyrobarycentric coordinate representation
(7.178) of P is, in general, given by

mg = my +m5 +m3 + 2mimayy, +mim3zy 3 +mamsyy). (7.186)

In order to express (7.186) gyrotrigonometrically, we substitute into (7.186) (i) the
gyrobarycentric coordinates from (7.185), and (ii) the gamma factors from (7.142),
p. 187, obtaining the elegant equation

(cosay + cosag cosaz)? + sin?a; (1 + cosa3)?

-2 a3
sin” =

mg = (7.187)

which demonstrates that m% > 0 for the gyrobarycentric coordinate representation
(7.178) of P € R" with respect to any gyrotriangle A1A>A3 in RY.

According to Corollary 4.9, p. 93, the point P € R" with the gyrobarycentric co-
ordinate representation (7.178) lies in the ball RY if and only if the squared constant,
m%, of the representation is positive. It is, therefore, interesting to realize that m% in
(7.187) is always positive, so that the point P in (7.178) and in Fig. 7.15 lies in the
ball (or, in the disc, if n = 2, as in Fig. 7.15) for any reference gyrotriangle A;A>A3
in RY.

The gyrobarycentric coordinates m1 and my of P in (7.185) are always positive.
The third gyrobarycentric coordinate, m3, of P in (7.185) equals O if and only if
a1 = ap. Otherwise, if m3 > 0 for gyrotriangle AjA;As3, as shown in Fig. 7.15,
then, necessarily, m3 < 0 for gyrotriangle A> A1 A3, as shown in Fig. 7.16. It is clear
from (7.185) that interchanging the vertices A; and A, of gyrotriangle Ay A1A3
results in the change of the sign of m3. Accordingly, as stated in Corollary 4.10,
p- 94, The point P lies on the interior of gyrotriangle A;A>A3 in Fig. 7.15, and on
its exterior in Fig. 7.16.
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Applying Theorem 4.6, p. 90, to P in (7.178) with X = ©A; and X = ©A,,
respectively, we obtain the following two equations:

MiYsai@a +m2y6A1®A2 +m3V9A1€9A3 _m +may;, +m3ys

Yomor = po = . :

_ MYouaea, T M2Vorsea, TM3Voneas MYz M2y 3
YoasepP = = ’

mo mo
(7.188)

where my is given gyrotrigonometrically by (7.187)

In order to express (7.188) gyrotrigonometrically as well, we substitute into the
numerators of the extreme right-hand sides of (7.188) (i) the gyrobarycentric coor-
dinates from (7.185), and (ii) the gamma factors from (7.142), p. 187, obtaining the
following two results, to which we add a third result taken from (7.142), p. 187:

tan &
Yoaop = 2sinoq
cosap + cosajcosas 1
Yorsop = — (7.189)

sin? %‘ mo

COS o 4 Cos ] Cos a3

Yoaioa = V13 = sinw Sin oz
It is clear from (7.189) that the three gamma factors in (7.189) are related by the
equation

YosorYossoP = You @A;- (7.190)

Equation (7.190), in turn, is equivalent to the condition that gyrotriangle A; P A3 in
Figs. 7.15-7.16 is right, with the right gyroangle at P, as indicated in Figs. 7.15—
7.16 and stated in Theorem 6.13, p. 143.

The surprising coincidence described in this section, illustrated by Figs. 7.15—
7.16, remains invariant in form under the Euclidean limit s — o0, so that it is valid in
Euclidean geometry as well. This coincidence in Euclidean geometry is considered
as an “unlikely concurrence” [26, p. 31]. Here, in the context of hyperbolic geome-
try, we have an additional surprise: The point of concurrence, P, in Figs. 7.15-7.16,
always lies in the ball R unlike, for instance, the gyrotriangle circumgyrocenter and
orthogyrocenter, which sometimes do not exist in the ball as shown, for instance, in
Fig. 7.21, p. 212.

7.16 Gergonne Gyropoint

Definition 7.21 (Gergonne Gyropoint) Let AjAA3z be a gyrotriangle in an Ein-
stein gyrovector space (R}, ®, ®) and let Fy, k = 1,2, 3, be the tangent point in
which the ingyrocircle of the gyrotriangle meets the gyrotriangle side opposite to
Ay, Fig. 7.14. The gyrotriangle vertices Ay and the gyrotriangle points of tangency
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Fy form the three gyrolines Ay Fy that are concurrent. Owing to analogies with Eu-
clidean geometry, this point of concurrency, G, is called the Gergonne gyropoint
of the gyrotriangle.

Let the Gergonne gyropoint G, of gyrotriangle A; A> A3 in an Einstein gyrovec-
tor space (R}, @, ®), Fig. 7.14, be given by its gyrobarycentric coordinate repre-
sentation with respect to the set S = {A1, Az, A3} of the gyrotriangle,

G myy, Av+moy, As+m3y, A3 .190)
e= miy,, +m2yA2 -l-m3yA3 ’ .

where the gyrobarycentric coordinates (mp : my : m3) of G, in (7.191) are to be
determined.

Left gyrotranslating gyrotriangle A1 A>A3 by ©A1, the gyrotriangle becomes
gyrotriangle O (©A1BA2)(6A1DA3), where O = ©A DA is the arbitrarily se-
lected origin of the Einstein gyrovector space (R}, ®, ®), O = (0,0, ...,0). The
gyrotriangle tangent points Fy, kK = 1,2, 3, are left gyrotranslated as well, becom-
ing, respectively, © A @ Fy, which are given by (7.175a), (7.175b), (7.175¢).

Similarly, the gyrotriangle Nagel gyropoint of the left gyrotranslated gyrotriangle
becomes P = 6A1HG,, given by

P =6A86G,
(©OA1DA3)

mi+ M2V 04, + M3V 05

M2V, 04, OA1DA) + M3y,

DSA3

may,a12 +m3y 313
mp+may;, +m3y;

(7.192)

1. The tangent point ©A|DF; and the vertex O = 8A1PA; = (0,0,...,0) of
the left gyrotranslated gyrotriangle O (©A1©A2)(S©A1®A3) form the Euclidean
line

cot Fy,an + cot%ymag)t
1

Li=(©AI®F)H = (
cot Fy, +cot Fy,

(7.193)

as we see from (7.175a), where t; € R is the line parameter.
2. The tangent point © A @ F; and the vertex ajp = ©A 1P A, of the left gyrotrans-
lated gyrotriangle O (© A1 A2)(6A1®A3) form the Euclidean line

Ly =(0A18A2) + (—(0A10A2) + (BAI1®F))n

t%y .a
O3 Viadl3 >r (7.194)

=ap+ (—312 + p
3 o)
cot 5 4+ cot 5 Y13

as we see from (7.175b), where t; € R is the line parameter.
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3. The tangent point ©A ;@ F3 and the vertex aj3 = ©A D A3 of the left gyrotrans-
lated gyrotriangle O (S A ®A3)(6A 1D A3) form the Euclidean line

L3 = (0A1®A3) + (—(OA1®A3) + (BAI1®F3))13

cotiy  a
2 V12912 >r (7.195)

=a;3+ (—313 +
cot F 4 cot 3y,

as we see from (7.175c), where t3 € R is the line parameter.

Since the point P lies on each of the three lines Lg, k = 1, 2, 3, there exist values
tx o of the line parameters #, k = 1, 2, 3, respectively, such that

» <cot°‘73y12a12 +cot“72y13a13>t 0
- 1,0=0,
cot Fy,, +cot Fy,

cot %y .a3
P—alz—(—au—i— E—— );z,ozo, (7.196)
cot 5 +cot Fy 5

cot a—l)/ apn
P — a3 — <—313 + ) 2712 T [3’0 = 0,
coty + ot ¥

where P is given by (7.192).

The system of equations (7.196) was obtained by methods of gyroalgebra, and
will be solved below by a common method of linear algebra.

Substituting P from (7.192) into (7.196), and rewriting each of the resulting
equations as a linear combination of aj> and a3 equals zero, one obtains the fol-
lowing homogeneous linear system of three gyrovector equations

criap +cppa =0,
c21a12 + a3 =0, (7.197)

c31a2 + a3 =0,

where each coefficient ¢;;, i =1,2,3, j = 1,2, is a function of the gyrotriangle
parameters ¥, Y3 Va3 and o, and the six unknowns #; ¢ and my, k=1, 2, 3.

Since the set S = {A1, A2, A3} is pointwise independent, the two gyrovectors
app =90A1®Arand a3 = ©A1®A3 in R}, considered as vectors in R", are linearly
independent in R". Hence, each coefficient ¢;; in (7.197) equals zero. Accordingly,
the three gyrovector equations in (7.197) are equivalent to the following six scalar
equations,

cli=cp=c1=cpn=c31=c32=0 (7.198)

for the six unknowns f; o and my, k =1, 2, 3.
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An explicit presentation of the resulting system (7.198) reveals that it is slightly
nonlinear. However, it is linear in the unknowns t; g, 2,0, #3,0. Solving three equa-
tions of the system for #1 o, 12,0, 13,0, and substituting these into the remaining equa-
tions of the system we obtain a system that determines the ratios m/m3 and
my/m3 uniquely, from which convenient (homogeneous) gyrobarycentric coordi-
nates (m] : my : m3) are obtained. The unique determination of m/m3 and m,/m3
turns out to be

m;  cotF

ms  cot a’
(7.199)
my _ cot 3
m3  cotF
from which two convenient gyrobarycentric coordinates result. These are:
) a3 [o31 a3 o1 o2
(my :my :m3) = | cot = cot — : cot — cot — : cot — cot — (7.200)
2 2 2 2 2 2
and, equivalently,
a1 (0%) a3
: : =|tan — :tan — :tan — ). 7.201
(my:my :m3) ( > > > ) ( )

Formalizing the main result of this section, we have the following theorem:

Theorem 7.22 Let A1AyA3 be a gyrotriangle in an Einstein gyrovector space
(R?, @, ®). A gyrotrigonometric gyrobarycentric coordinate representation of the
gyrotriangle Gergonne gyropoint G, Fig. 7.14, p. 192, is given by

tan "‘2—')/A1A1 +tan°‘—22yA2A2+tan “73)/A3A3
G, = o @ @ . (7.202)
tanTyAl +tan7yA2 -+ tan TJ/A3

Proof The proof follows immediately from (7.191) and (7.201). O

7.17 Gyrotriangle Orthogyrocenter

The hyperbolic triangle orthocenter, H, shown in Fig. 7.17, is called in gyrolan-
guage a gyrotriangle orthogyrocenter.

Definition 7.23 The orthogyrocenter, H, of a gyrotriangle is the point of concur-
rency of the gyrotriangle gyroaltitudes.
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The three feet, P;, P> and P3 of the three gyroaltitudes of gyrotriangle A|A>A3
in an Einstein gyrovector space (R}, @&, ®), shown in Fig. 7.17 for n = 2, are given
by

(V13 Vo3 — V12)VA2 A + (V127’23 - V13)VA3 Aj
1 = 9

V13723 = ¥12)7,, T N2V = ¥13)7,,

(7/13 Vo3 — V12)V A+ (V12713 - V23)V A3
Py = o — (7.203)
V13¥es = V2V, + V213 = ¥3)v,,

V12¥as = 713)7,, AL+ (Via v = V237, A2
3 = .
Via¥os = V3V, + ViaVis = v3)v,,

The third equation in (7.203) is a copy of (7.119). The first and second equations
in (7.203) are obtained from the third one by cyclic permutations of the vertices of
gyrotriangle A1 A Asz.

Gyrotriangle gyroaltitudes are concurrent. The gyroaltitudes of gyrotriangle
A1A>Aj3 in an Einstein gyrovector space (RY, @, ®), shown in Fig. 7.17 for n =2,
are the gyrosegments A P1, A2 P>, and A P3. Since gyrosegments in Einstein gy-
rovector spaces coincide with Euclidean segments, one can employ methods of lin-
ear algebra to determine the point of concurrency, that is, the orthogyrocenter, of the
three gyroaltitudes of gyrotriangle A1 A>Aj3 in Fig. 7.17.

In order to determine the gyrobarycentric coordinates of the gyrotriangle orth-
ogyrocenter in Einstein gyrovector spaces we begin with some gyroalgebraic ma-
nipulations that reduce the task we face to a problem in linear algebra.

Let the orthogyrocenter H of gyrotriangle AjA>A3 in an Einstein gyrovector
space (R}, @, ®), Fig. 7.17, be given in terms of its gyrobarycentric coordinate
representation with respect to the set S = {A1, Ay, Az} of the gyrotriangle vertices
by the equation

myy, Av+moy, A>+m3y, As

(7.204)
myy, +may, +msy,

where the gyrobarycentric coordinates (m : my : m3) of H in (7.204) are to be
determined.

Left gyrotranslating gyrotriangle AjA»A3 by ©A1, the gyrotriangle becomes
gyrotriangle O (©A 19 A2)(6A1BA3), where O = ©A DA is the arbitrarily se-
lected origin of the Einstein gyrovector space R} . The gyrotriangle gyroaltitude feet
P1, P, and P3 become, respectively, A 1D P, OA1D P> and ©A D P3. These are
calculated in (7.205a), (7.205b), (7.205¢c) below. Employing the Gyrobarycentric
Coordinate Representation Gyrocovariance Theorem 4.6, p. 90, we have from Iden-
tity (4.29a), p. 91, with X = ©A, using the standard gyrotriangle index notation,
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h; = SA;BP;, s = ||

P13 = OABP3, p13 = |lpisll

P23 = OA,DP3, P23 = ||p2sll

Fig. 7.17 The orthogyrocenter H of a gyrotriangle AjA>A3 in an Einstein gyrovector space
(RY, @, ®). Here the orthogyrocenter lies inside its gyrotriangle. There are gyrotriangles with
their orthogyrocenter lying out of their gyrotriangles, and there are gyrotriangles that possess no
orthogyrocenter, as shown in Figs. 7.18-7.21

shown in Fig. 7.17, in Fig. 6.1, p. 128, and in (6.1), p. 127:

CAIDP

_oA® (V13V23 — V12)VA2 A2+ (Va7 — V13)VA3A3

Vi3¥s = V12V, T V2V = V13)7,,

(V13 Vo3 — ylZ)yeA]eBAz (0A10A2) + (7/12)’23 - V13)V9A1®A3 (6A1DA3)
V13V = V12)Veuea, T V12V = V13)Ves 045

_ (V13 Vo3 — Y1) Va2 + (V127/23 - V13)V13313
(V13723 = V120712 + (V12V3 = Vi3)V13
SA1®P,

, (7.2052)

(V1323 — Vlz)VA, A1+ (ypvy3 — V23)VA3A3

=0A;
Vi3¥s = V12V, T Vi2vis — ¥23)v,,

(V12V13 - 7/23))/9A1@A3 (BA1DA3)

3723 = 712) + V12 ¥13 = Y230V 04,
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_ (V12Y13 — V230713213
(V13723 = Vi2) + (V12 ¥13 = ¥Va3)V13
OA1BP3

(7.205b)

Vi2¥as = V13)¥, Ar+ (Viavis — va3)y,, A2

=0A;
(V12V23 - V13)VAI + (V12713 - V23)VA2

(V12V13 - V23)V9A1®A2 (BA1DAL)

V12723 = 713) + V12 V13 = Y2304 04,

_ (V12713 — 723) 712812
()/12]/23 - ylS) + (7/12)/13 - )/23))/12

(7.205¢)

Note that, by Definition 4.5, p. 89, the set of points S = {A;, A2, A3} is pointwise
independent in an Einstein gyrovector space (R}, @, ®). Hence, the two gyrovectors
ap =0A1®Arand a;3 =0A1PA3 in R} CR" in (7.205a), (7.205b), (7.205¢) are
linearly independent in R".

Similarly to the gyroalgebra in (7.205a), (7.205b), (7.205¢), under a left gyro-
translation by ©A the orthogyrocenter H in (7.204) becomes

SALBH = M2Yg s 0a, (OAIOA) +m3y,, o, (OA1DA3)
i +m2yeAle>A2 +m3yeA1€BA3

_ M2y +m3y ;a3
mp+may;, +m3y;

(7.206)

The gyroaltitude of the left gyrotranslated gyrotriangle O (6 AP A2)(©A1BA3)
that joins the vertex

BAIPAI=0=0 (7.207)

with the gyroaltitude foot on its opposing side, Pj, as calculated in (7.205a),

(V13 Vo3 — Vlz)ylzaIZ + (7/127/23 - )’13))’13313

SA10P = (7.208)
(V13Y23 = V1i2)V12 + (V12V23 = V130713
is contained in the Euclidean line
Li=0+(-0+{0A1®P})n
_ (7/13 Vo3 — )’12))/12312 + (V12V23 - V13)V13al3 ’, (7.209)

(V13723 = V120712 + (V123 = Vi3)Vi3

where #; € R is the line parameter. This line passes through the point O =0 € R} C
R”"™ when #; = 0, and it passes through the point 5A|HP; when t; = 1.
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Similarly to (7.207)—(7.209), the gyroaltitude of the left gyrotranslated gyrotri-
angle O(6A19A2)(©A @ A3) that joins the vertex

©A1BA =2, (7.210)
with the gyroaltitude foot on its opposing side, P», as calculated in (7.205b),

(V12Y13 = 230713213

AP, = (7.211)
V13¥23 = Vi2) + (V12Vi3 = Va3)V13
is contained in the Euclidean line
Ly=ap+ (—an+{0A10P})n
( — ¥»3)¥13213
=app+ (—312 + Yia¥13 ~ Va3 )13 t, (7.212)
13Y23 = Vi2) + (V12Vi3 — Va3)Vi3

where 7, € R is the line parameter. This line passes through the point a;; € R} C R”
when #; = 0, and it passes through the point SA1® P, when t, = 1.
Similarly to (7.207)—(7.209), and similarly to (7.210)—(7.212), the gyroaltitude
of the left gyrotranslated gyrotriangle O (©A1DA2)(©A 1D A3) that joins the vertex
©A DAz =aj3 (7.213)
with the gyroaltitude foot on its opposing side, P3, as calculated in (7.205c¢),

(V12713 — V23)V12212

SA10P; = (7.214)
V12¥23 = V13) + (V12Vi3 = ¥23) V12
is contained in the Euclidean line
Ly=ap;3+ (a3 + {0A186P3})13
( — ¥3)¥p212
—aj+ (—alg + Y2¥13 = Y2307 B, (7.215)
(V12723 = Vi3) + (Yi2Vi3 = ¥23) 712

where 73 € R is the line parameter. This line passes through the point a;3 € R} C R”
when £3 = 0, and it passes through the point A1 @ P; € Rf C R"” when 13 = 1.

Hence, if the orthogyrocenter H exists, its left gyrotranslated orthogyrocenter,
—O©A1DH, given by (7.206), is contained in each of the three Euclidean lines Lg,
k=1,2,3,in (7.209), (7.212) and (7.215). Formalizing, if H exists then the point
P, (7.206),

may,a2 +m3y3a3
my +may;, +m3y;

P=0A®H =

(7.216)



7.17 Gyrotriangle Orthogyrocenter 207

lies on each of the lines Ly, k = 1, 2, 3. Imposing the normalization condition m| +
my 4+ m3 = 1 of gyrobarycentric coordinates, (7.216) can be simplified by means of
the resulting equation m| = 1 — my — m3, obtaining

may,a12 +m3y3ai3

P=6A®H = .
L+ma(y;,, — D +m3(y;3— 1

(7.217)

Since the point P lies on each of the three lines Ly, k = 1, 2, 3, there exist values
tx 0 of the line parameters f, k = 1, 2, 3, respectively, such that

_ (V13723 = Vi2)V12812 + (V12 Vo3 — V13)Y13313
(V13Y23 = V1)V + Vi ¥as = V13713

P t1,0=0,

n (V12V13 - 7/23))’13313
(V13723 = Vi2) + (V1213 = Ya3)¥i3

P—ap— <—312 )tz,o =0, (7.218)

(V12Y13 — Va3)Y12812
P—a13—<—a13-|- 1213 23/V12 13.0=0.

(V12723 = V13) + (V12 Vi3 = V23712

The kth equation in (7.218), k =1, 2, 3, is equivalent to the condition that point P
lies on line Ly.

The system of equations (7.218) was obtained by methods of gyroalgebra, and
will be solved below by a common method of linear algebra.

Substituting P from (7.217) into (7.218), and rewriting each equation in (7.218)
as a linear combination of aj; and a3 equals zero, one obtains the following linear
homogeneous system of three gyrovector equations

criay +cppaz =0,
c21a12 + cnaz =0, (7.219)

c31a12 + a3 =0,

where each coefficient ¢;j, i = 1,2, 3, j =1, 2, is a function of y|,, ¥3, ¥»3, and
the five unknowns mo, m3, and ;. o, k = 1,2, 3.

Since the set S = {A1, A2, A3} is pointwise independent, the two gyrovectors
ap =0A1®Arand a3 = ©A1BA;3in R}, considered as vectors in R”, are linearly
independent in R”. Hence, each coefficient ¢;; in (7.219) equals zero. Accordingly,
the three gyrovector equations in (7.219) are equivalent to the following six scalar
equations,

cri=cp=c1=cn=c1=c3=0 (7.220)

for the five unknowns my, m3 and tx 0, k =1, 2, 3.
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Explicitly, the six scalar equations in (7.220) are equivalent to the following six
equations:

(2V12V13 Y3 — V122 - J/123)m2
— (N13Y3 — Vi) —ma —m3 + yjyma + y;3m3)ty o =0,
(27/12 Y13V — V122 - V123)m3
= (V12V3 — v13) (I —my —m3 + y,ma + y;3m3)ty o =0,
1 —my—m3+y;3m3— (1 —ma—m3+y,mr+y;3m3)o=0,
Y12 (V123 —1)m3 — (¥12713 — ¥23) (1 —ma —m3 + y,ma + y13m3)i20 =0,
Vi3 (Vi — D)ma — (Y2713 — ¥o3)(1 —ma —m3 + y,ma + y3m3)ts 0 =0,

1 —my —m3+yymy— (1 —mpy—m3+ymy+ym3tzo=0.
(7.221)

The system (7.221) is slightly nonlinear. It is, however, linear in the unknowns
11,0, 12,0, 13,0. Solving three equations of the system for ¢ g, 2,0, 3,0, and substitut-
ing these into the remaining equations of the system determine the ratios my/m
and m3/m uniquely, from which convenient (homogeneous) gyrobarycentric coor-
dinates (mj : my : m3) are obtained. A solution of (7.221) is given by (7.222) and
(7.224) below:

The values of the line parameters are

2 2
_ (V12713 = V23) 2¥12V13V3 — Via — Vi3)

11,0 2 2
YiaY1i3 (L +2v15 V1303 = Via — ¥i3)
(s — D1y — Vi3)
1o = 13 12723 213 — (7.222)
Yis(L+ 2y, ¥13Y3 = Via = Viz)
0= (7/122_ D373 = V1)
3,0 — 2 2\’
Yio(+2y1,¥13Y03 = Via = Vi3)
where
1+ 2y1,V13¥03 — Y2 — v > 0 (7.223)
by (6.28), p. 136.
The gyrobarycentric coordinates (m1, mo, m3) are given by
1
mj = B(V12V23 —Y13) V13723 — V12)s
1
my = 5(%2)/13 = Y3)V13Y23 — V12) (7.224)

1
m3 = 5(7/123/23 =130 V12Y23 — V13);
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satisfying the normalization condition m| 4+ my + m3 = 1, where D is the determi-
nant

[ Y12¥23 7713 —(V13¥23 = ¥12)

D (7.225)

Yi2V13 = Vs (ViaVi3 = Va3) + (V3723 — ¥12)

or, equivalently,
D = (y13v23 = v12)V12V23 = V13) T V13723 = V1) V12 Vi3 — ¥a3)

+ V12723 = Vi3) V12Vi3 — Va3)- (7.226)

Following (7.224), convenient gyrobarycentric coordinates of the gyrotriangle
orthogyrocenter H are given by the equation

(my:mp:m3) = (C12C13: C12C23 : C13C23) (7.227)
or, equivalently, by the equation

Cn Ci2
(my:my:m3) = (— T 1) (7.228)
! Cx Ci3

where
Cr2=v13v23 — V125
Ciz=v1Y3 — %3 (7.229)
C3=vpv1i3 — Va3-

Accordingly, the gyrobarycentric coordinate representation of the orthogyrocen-
ter H of gyrotriangle A1 A A3z with respect to the set of the gyrotriangle vertices is
given by the equation

e C12C1374, A1 + C12Ca3y,, A2 4+ C13C3y,4, A3

(7.230)
C12C13y,, + C12Cn3y,, + C13C03y,,
Substituting from (7.147), p. 188, into (7.229), we have
Cpo _ tanag
Cos " tan a3’
(7.231)
Ci2 _ tanap
Ci3 - tanozg'
Hence, the gyrobarycentric coordinates of H in (7.228) can be written as
tanoy tanap
(my:my:m3) = < : : 1) (7.232)
tanaz tanoag
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which are, in turn, equivalent to the gyrobarycentric coordinates
(my:mp:m3) = (tana : tanwy : tanws). (7.233)

Interestingly, the gyrotrigonometric gyrobarycentric coordinates (7.233) of the
gyrotriangle orthogyrocenter H are identical in form with trigonometric barycentric
coordinates of the triangle orthocenter in Euclidean geometry, as we see from [29].

Following (7.227) and the definition, Definition (4.5), p. 89, of the constant m,
(4.27), of a point P with a gyrobarycentric representation, the constant mg of the
gyrotriangle orthogyrocenter H in (7.230) with respect to the set of the gyrotriangle
vertices is given by the equation

m% = m% + m% + m% +2mimay|, +2mim3y 3 + 2momsy,;
1
=3h (fE+ f), (7.234)

where f1 and f; are factors given by
fr=142y11370 — v — v — V35
=2(2ri3v3 — D — (7122 -1)- (7/123 —1)- (V223 —1). (7.235)
=205 = 1P = (= 1)’ = (= 1) = (= 1)’
2 12713723 Y12 Y13 Y23 .

Since f1 > 0, by (6.23), p. 135, the constant m% in (7.234) is positive, zero, or
negative if and only if f12 + f> is positive, zero, or negative, respectively. Hence,
equivalently, the constant m% in (7.234) is positive, zero, or negative if and only if
f14 - f22 is positive, zero, or negative, respectively. Expressing of gamma factors of
sides of gyrotriangle A1A>A3 in terms of the gyrotriangle gyroangles by (7.142),
p- 187, we have

2 a3 + 0052 %) 0052 o3

f14 — f22 = {0052 o cos? o + cos? o] COS
+ 2cos g cosap cosas (0052 o] + 0052 o + 0052 O{3)

+3cos? a cos® a cos* 3} 0, (7.236)

where Q is a positive valued function of cosay, k =1, 2, 3.
Hence, the constant mg in (7.234) is positive, zero, or negative if and only if f3
is positive, zero, or negative, respectively, where
f3= cos? o cos? o) + cos’ o] cos? o3 + cos® o cos? o3

+ 2 cosaj cosan cosas (cos2 o] + cos” a + cos® a3)

+ 3 cos? o] cos? o cos? 3. (7.237)
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P,
Py

An

P
A 3

Fig. 7.18 The gyroaltitudes, and the orthogyrocenter H, of a gyrotriangle Aj; A A3 in an Einstein
gyrovector space. Case I: The orthogyrocenter H lies inside the acute gyrotriangle. Gyrobarycen-
tric coordinates (mj : my : m3) of the orthogyrocenter H relative to the set {A, A2, A3} of the
gyrotriangle vertices, given by (7.233), are all positive so that m% > 0 in (7.234), in agreement
with Corollary 4.10, p. 94

Fig. 7.19 The gyroaltitudes, and the orthogyrocenter H, of a gyrotriangle A A2 A3 in an Ein-
stein gyrovector space. Case 1I: The orthogyrocenter H lies outside the obtuse gyrotriangle. One
of the gyrobarycentric coordinates (m; : my : m3) of the orthogyrocenter H relative to the set
{A1, Az, Az} of the gyrotriangle vertices, given by (7.233), is negative and the other two are posi-
tive, in agreement with Corollary 4.9

According to Corollary 4.9, p. 93, if m% > 0 then gyrotriangle AjA;Aj3 pos-
sesses a orthogyrocenter H. The orthogyrocenter H lies in the interior of gyrotri-
angle A1 A>Aj3 if and only if gyrobarycentric coordinates of H are all positive or
all negative. The gyrotriangle A;A;A3 does not have a orthogyrocenter H when
m3 <0 in (7.234). When m3 = 0, the point H lies on the boundary of the ball R”,
and when m% < 0 the point H lies outside of the ball, as shown in Figs. 7.18-7.21.
Indeed,

1. f3 > 0 for gyrotriangle Aj Ay Az in Figs. 7.17, p. 204, and 7.18-7.19
2. f3 =0 for gyrotriangle Aj A3 A3z in Fig. 7.20, p. 212; and
3. f3 <O for gyrotriangle Aj A>A3 in Fig. 7.21, p. 212

Formalizing the main result of this section, we have the following theorem:
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Fig. 7.20 A gyrotriangle

A1 AjAj that does not
possess an orthogyrocenter H
in an Einstein gyrovector
plane (RZ, @, ®). The point
H € R”" lies on the boundary
of the ball R} C R".
Accordingly m3 =0 in
(7.234), in agreement with
Corollary 4.9, p. 93

Fig.7.21 A gyrotriangle

A1 Az Aj that does not
possess an orthogyrocenter H
in an Einstein gyrovector
plane (R%, @, ®). The point
H € R" lies outside of the
ball R} C R". Accordingly
m3 < 0in (7.234), in
agreement with Corollary 4.9,
p- 93

Theorem 7.24 (The Orthogyrocenter) Let S = {A1, A2, A3} be a pointwise inde-
pendent set of three points in an Einstein gyrovector space (R}, ®, ®). The orthogy-
rocenter H, see Figs. 7.18-7.21, of gyrotriangle A1A3 A3 has the gyrobarycentric
coordinate representation

. myy, Av+moy, A>+m3y, As 7.238)
miy, +tmy, +my,

with respect to the set S = {A1, Az, A3}, with gyrotrigonometric gyrobarycentric
coordinates given by each of the two equations

(my:my:m3) = (tanoq : tanay : tanas) (7.239)
and
mi = (Y12¥3 — Y13) V13723 — V12)>
my = (Y12¥13 = ¥23) (V13¥23 = V12): (7.240)

m3 = (Y12¥3 = Y13) V12723 — V13-

The existence of the gyrotriangle orthogyrocenter H is determined by the squared

orthogyrocenter constant m% with respect to the set of the gyrotriangle vertices,
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m(z) = tan2 o] + tan2 oy + tan2 a3

+ 2(tano tananyy, + tanag tanazy;; + tana; tanas yys)
= {0052 o] 0032 o + 0052 o1 cos2 a3 + cos2 (%) cos2 a3

+ 2cosa cosap cos a3 (cos2 oy + cos2 o) + cos2 oc3)

1
+ 30052051 cos? o) cos? a3} 3 3 - (7.241)
COS“ (/] COS* (¥ COS* (3

The gyrotriangle orthogyrocenter H exists if and only if m% > 0. Furthermore, the
gyrotriangle orthogyrocenter H lies on the interior of its gyrotriangle if and only if
tanay > 0, tanap > 0 and tanaz > 0 or, equivalently, if and only if the gyrotriangle
is acute, see Figs. 7.18-7.21.

The gyrotrigonometric gyrobarycentric coordinates (7.239) remain invariant in
form under the Euclidean limit s — oo, resulting in the following corollary of The-
orem 7.24:

Corollary 7.25 (The Orthocenter) Let S = {A1, A2, A3} be a pointwise indepen-
dent set of three points in a Euclidean vector space R". The orthocenter H of trian-
gle A1 Ay A3 has the barycentric coordinate representation

_ miAp+maAr +m3A3
mi+my+m3

H

(7.242)

with respect to the set S = {A1, Ay, Az}, with trigonometric barycentric coordinates
given by

(my:mp:m3) = (tana : tanwy : tanws). (7.243)

7.18 The Gyrodistance Between O and 1

Let O and I be the circumgyrocenter and ingyrocenter of a gyrotriangle Aj A2 A3 in
an Einstein gyrovector space (R}, ®, ®). Their gyrobarycentric coordinate repre-
sentations with respect to the set S = {Ay, A», A3} are, by (7.18) and (7.20), p. 158,

mhy Ai+mly Ay +miy, Az

1 2 3

0=—"1 2 S (7.244a)
mlyAl +m2yA2 +m3yA3
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where the gyrobarycentric coordinates mj, k = 1,2, 3, are given by

, . —or oy tas .
m7| = sin — % sinaq,

my = sin<%2+a3) sinay, (7.244b)

, (o1 ta—oa3 .
my = sin| ——— | sina3,
2

and, by (7.75), p. 172, and Theorem 7.12, p. 178,

I myy, Av+moy, As+msy, A3

(7.245a)
myy, +my, +msy,
where the gyrobarycentric coordinates my, k = 1, 2, 3, are given by
mi = sin al,
my =sinwy, (7.245b)
m3 = sino;3.

Hence, by (4.121), p. 113,

1
Yooal = m—om() {mimy + mim2)y, + (mim’y + mim3)y,5

+ (mam’ + mhm3)y,y +mim| + mam’ + m3m’3}, (7.246)
where, by (4.118b) and (4.119b), p. 112, mo > 0 and m,, > 0 are given by
2_ .2 2 2
mg=mj +m5 +m3+2(mimay;, +mimsy;z +mamsy,3),

(m()> = (m))? + (mh)* + (m3)? + 2(mimyy, +mmby 5 +mimiy,s),
(7.247)

noting that always mg > 0; and that (mé))2 > 0 if and only if gyrotriangle Aj Ay A3
possesses a circumgyrocenter.

Substituting (7.244b) and (7.245b) into (7.246) and squaring, one obtains yé o®l
expressed in terms of the gyrotriangle gyroangles oy, k = 1, 2, 3. Substituting the
latter, in turn, into the identity, (1.9), p. 5,

2
§2 Ysoer — 1
2 9
Yooer

leoslI|? = (7.248)
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we finally obtain the desired gyrodistance,

2
leo®!|
452 cos % cos 7t cos 3 cos 5

(sina + sinay + sinwz)? cos == cos _0"+§‘2_“3 cos = —;{2+a3

o] — o) — o3 -]+ o) — o3 —a] — o)+ o3
X 1C€O0S -+ cos +cos ———

2 2 2
31 —ap — a3 —o1 + 30 — a3 —o] — a2 + 33
—cos —cos —cos ————— 1.
2 2 2
(7.249)

Eliminating the factor s cos % between (7.249) and (7.35), p. 163, we
obtain the result (7.250) of the following theorem:

Theorem 7.26 Let ay, k = 1,2,3, O and I be the gyroangles, circumgyrocen-
ter and ingyrocenter of a gyrotriangle A1AA3 in an Einstein gyrovector space
(R}, ®). Then,

2 o1 o2 a3
4R~ cos 5 COS = COS

leoslI|* = — . — 2
(sinaj + sinop + sinwg)
X 1COS et cos —tan o cos ot
2 2 2
31 —ap — a3 —a1 + 30 — a3
— Cos — Cos
2 2
-0 — 3
— cos %} (7.250)

Interestingly, Equation (7.250) remains invariant in form under the Euclidean
limit s — o0, so that the equation is valid in Euclidean geometry as well. However,
for application in Euclidean geometry (7.250) can be simplified, owing to the fact
that triangle angle sum in 7.

Indeed, under the condition

ol +oy+az3=m, (7.251a)

we have the trigonometric identities similar to (7.22b), p. 159,

o B .
COS ———— =sInqj,

2

3ay —ap —az
cosf =sin2ay, etc.

(7.251b)
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Hence, we obtain the following corollary of Theorem 7.26:

Corollary 7.27 Letay, k =1,2,3, O and I be the angles, circumcenter and incen-
ter of a triangle A1 A A3 in a Euclidean space R". Then,

2 a1 @ a3
4R<cos 5 COS 5 COS 5

=0 +1>=— . =
(sina] + sinap + sinaz)

X {sina] + sinoy + sina3 — sin 2« — sin2ap — sin2a3}.
(7.252)

7.19 Problems

Problem 7.1 The constant of a Gyrobarycentric Coordinate Representation:
Derive (7.11), p. 156, from (7.10) and (7.3).

Problem 7.2 Gyrotrigonometric Substitutions:
Substitute from (7.13) into (7.10) to obtain (7.14), p. 156.

Problem 7.3 Gyrotrigonometric Substitutions:

Derive the gyrotrigonometric representation (7.34), p. 163, of the gyrotriangle cir-
cumgyroradius R by expressing the gamma factors in (7.29), p. 162, in terms of the
gyrotriangle gyroangles ay, k = 1,2, 3, by means of (6.33), p. 137.

Remarkably, this task in gyrotrigonometry can straightforwardly be performed
by Mathematica, a software for computer algebra, using commands that manipulate
common trigonometric identities like TrigToExp, ExpToTrig, TrigReduce
and TrigFactor.

Problem 7.4 Show that (7.40), p. 165, holds when the three points A, A and A3
in Theorem 7.5 are not distinct.

Problem 7.5 A Gyrotriangle Gyroangle Inequality:
Employ (7.13), p. 156, to derive Inequality (7.17), p. 157, from Inequality (7.12),
p. 156.

Problem 7.6 Linear Algebra:
Provide the missing technical details in the derivation of (7.95), p. 177, from (7.89),
p. 175.

Problem 7.7 Gyrotriangle Gyrotrigonometric Identities:
Verify the gyrotriangle gyrotrigonometric identities in (7.149)—(7.151), p. 188.

Problem 7.8 Gyrotrigonometric Substitutions:
Derive (7.187), p. 198, by substitutions from (7.185), p. 198, and from (7.142),
p. 187.
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Problem 7.9 Gyrotrigonometric Substitutions:
Derive the first two equations in (7.189), p. 199, from (7.188).

Problem 7.10 Derive (7.190), p. 199, from (7.189).

Problem 7.11 Gyrotriangle Orthogyrocenter:
Solve the system (7.221), p. 208, and hence derive the gyrobarycentric coordinates
(7.224).

Problem 7.12 Gyrotrigonometric Substitutions:

By substitutions from (6.33), p. 137, derive the gyrotrigonometric condition f3
in (7.237), p. 210, that determines whether the orthogyrocenter H of gyrotriangle
A1 Ay Ajz exists.

Problem 7.13 Gyrotrigonometric Substitutions:

By substitutions from (7.244b) and (7.245b) into (7.246) and squaring, express
yé o 10 terms of the gyroangles ok, k = 1,2,3, of the reference gyrotriangle
A1 AsAz. Furthermore, substitute the latter into (7.248) to obtain the squared gy-
rodistance |©0@I||? in (7.249), p. 214.
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