
Chapter 7
Gyrotriangle Gyrocenters

Abstract Interest in triangle centers has long history, the classical ones being the
triangle centroid, orthocenter, incenter and circumcenter. A list of more than 3000
triangle centers is found in Kimberling (Clark Kimberling’s Encyclopedia of Tri-
angle Centers—ETC, 2010). Hyperbolic triangles and their centers are of interest
as well (Bottema in Can. J. Math. 10:502–506, 1958; Vermeer in Topol. Appl.
152(3):226–242, 2005; Demirel and Soyturk in Novi Sad J. Math. 38(2):33–39,
2008; Sonmez in Algebras Groups Geom. 26(1):75–79, 2009). The special rela-
tivistic approach of this book enables hyperbolic triangle centers to be determined
along with relationships between them.

The hyperbolic triangle circumcenter, incenter and orthocenter are called, in gy-
rolanguage, the gyrotriangle circumgyrocenter, ingyrocenter and orthogyrocenter,
respectively. These gyrocenters are determined in this chapter in terms of their gyro-
barycentric coordinate representations with respect to the vertices of their reference
gyrotriangles.

7.1 Gyrotriangle Circumgyrocenter

Definition 7.1 The circumgyrocenter, O , of a gyrotriangle is the point in the gyro-
triangle gyroplane equigyrodistant from the three gyrotriangle vertices.

Let O be the circumgyrocenter of gyrotriangle A1A2A3 in an Einstein gyrovector
space (Rn

s ,⊕,⊗), Fig. 7.1, and let (m1 : m2 : m3) be its gyrobarycentric coordinates
with respect to the set S = {A1,A2,A3}, (4.25), p. 90, so that

O =
m1γA1

A1 + m2γA2
A2 + m3γA3

A3

m1γA1
+ m2γA2

+ m3γA3

. (7.1)

The gyrobarycentric coordinates m1,m2 and m3 are to be determined in (7.8) below,
in terms of gamma factors of the gyrotriangle sides and, alternatively in (7.16), in
terms of the gyrotriangle gyroangles.
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Fig. 7.1 The circumgyrocenter O of gyrotriangle A1A2A3 in an Einstein gyrovector space
(Rn

s ,⊕,⊗), n = 2, is shown along with its standard notation. Here ‖�A1⊕O‖ = ‖�A2⊕O‖ =
‖�A3⊕O‖, where O is the gyrotriangle circumgyrocenter, given by its gyrobarycentric coordinate
representation (7.18), with respect to the set S = {A1,A2,A3}

Following the gyrocovariance of gyrobarycentric coordinate representations,
Theorem 4.6, we have from Identity (4.29b), p. 91, with X = �A1, using the stan-
dard gyrotriangle index notation, shown in Fig. 7.1, in Fig. 6.1, p. 128, and in (6.1),
p. 127,

γ�A1⊕O
=

m1γ�A1⊕A1
+ m2γ�A1⊕A2

+ m3γ�A1⊕A3

m0

= m1 + m2γ12 + m3γ13

m0
, (7.2)

where by (4.15), p. 88, the circumgyrocenter constant m0 > 0 with respect to the set
of the gyrotriangle vertices is given by the equation

m2
0 = m2

1 + m2
2 + m2

3 + 2(m1m2γ12 + m1m3γ13 + m2m3γ23). (7.3)
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Hence, similarly, by the gyrocovariance of gyrobarycentric coordinate represen-
tations, Identity (4.29b), p. 91, of Theorem 4.6 with X = �A1, with X = �A2, and
with X = �A3, we have, respectively,

γ�A1⊕O
= m1 + m2γ12 + m3γ13

m0
,

γ�A2⊕O
= m1γ12 + m2 + m3γ23

m0
,

γ�A3⊕O
= m1γ13 + m2γ23 + m3

m0
.

(7.4)

The condition that the circumgyrocenter O is equigyrodistant from its gyrotrian-
gle vertices A1,A2, and A3 implies

γ�A1⊕O
= γ�A2⊕O

= γ�A3⊕O
. (7.5)

Equations (7.4) and (7.5), along with the normalization condition m1 + m2 +
m3 = 1, yield the following system of three equations for the three unknowns
m1,m2, and m3,

m1 + m2 + m3 = 1,

m1 + m2γ12 + m3γ13 = m1γ13 + m2γ23 + m3,

m1γ12 + m2 + m3γ23 = m1γ13 + m2γ23 + m3

(7.6)

which can be written as the matrix equation,

⎛
⎜⎝

1 1 1

1 − γ13 γ12 − γ23 γ13 − 1

γ12 − γ13 1 − γ23 γ23 − 1

⎞
⎟⎠

⎛
⎜⎝

m1

m2

m3

⎞
⎟⎠ =

⎛
⎜⎝

1

0

0

⎞
⎟⎠ . (7.7)

Solving (7.7) for the unknowns m1,m2, and m3, we have

m1 = 1

D
(γ12 + γ13 − γ23 − 1)(γ23 − 1),

m2 = 1

D
(γ12 − γ13 + γ23 − 1)(γ13 − 1),

m3 = 1

D
(−γ12 + γ13 + γ23 − 1)(γ12 − 1),

(7.8)

where D is the determinant of the 3 × 3 matrix in (7.7),

D = 2(γ12γ13 + γ12γ23 + γ13γ23) − (
γ 2

12 − 1
) − (

γ 2
13 − 1

) − (
γ 2

23 − 1
)

− 2(γ12 + γ13 + γ23). (7.9)
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Hence, the circumgyrocenter O of gyrotriangle A1A2A3 is given by (7.1) where
gyrobarycentric coordinates m1,m2, and m3 are given by (7.8). Since in gyro-
barycentric coordinates only ratios of coordinates are relevant, the gyrobarycentric
coordinates, m1,m2, and m3 in (7.8) can be simplified by removing their common
factor 1/D.

Gyrobarycentric coordinates, m1,m2, and m3, of the circumgyrocenter O of gy-
rotriangle A1A2A3 are thus given by the equations

m′
1 = (γ12 + γ13 − γ23 − 1)(γ23 − 1),

m′
2 = (γ12 − γ13 + γ23 − 1)(γ13 − 1),

m′
3 = (−γ12 + γ13 + γ23 − 1)(γ12 − 1).

(7.10)

Hence, by (7.3) along with the gyrobarycentric coordinates in (7.10), we have

m2
0 = v

{
(γ12 + γ13 + γ23 − 1)2 − 2

(
γ 2

12 + γ 2
13 + γ 2

23 − 1
)}

× (
1 + 2γ12γ13γ23 − γ 2

12 − γ 2
13 − γ 2

23

)
. (7.11)

According to Corollary 4.9, p. 93, the gyrotriangle A1A2A3 in Fig. 7.1 possesses
a circumgyrocenter if and only if m2

0 > 0.
The second factor of m2

0 in (7.11) is positive for any gyrotriangle A1A2A3 in
an Einstein gyrovector space, by Inequality (6.23), p. 135. Hence, as we see from
(7.11), m2

0 > 0 if and only if the points A1, A2, and A3 obey the circumgyrocircle
condition

(γ12 + γ13 + γ23 − 1)2 > 2
(
γ 2

12 + γ 2
13 + γ 2

23 − 1
)
. (7.12)

Gamma factors of gyrotriangle side gyrolengths are related to its gyroangles by
the equations, (6.33), p. 137,

γ23 = cosα1 + cosα2 cosα3

sinα2 sinα3
,

γ13 = cosα2 + cosα1 cosα3

sinα1 sinα3
,

γ12 = cosα3 + cosα1 cosα2

sinα1 sinα2
.

(7.13)

Substituting these from (7.13) into (7.10), we obtain

m′
1 = F sin

(−α1 + α2 + α3

2

)
sinα1,

m′
2 = F sin

(
α1 − α2 + α3

2

)
sinα2,

m′
3 = F sin

(
α1 + α2 − α3

2

)
sinα3,

(7.14)
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where the common factor F in (7.14) is given by the equation

F = 23 cos2(
α1+α2+α3

2 ) cos(−α1+α2+α3
2 ) cos(α1−α2+α3

2 ) cos(α1+α2−α3
2 )

sinα1 sinα2 sinα3
. (7.15)

Since in gyrobarycentric coordinates only ratios of coordinates are relevant, the
gyrobarycentric coordinates, m′

1,m
′
2, and m′

3 in (7.14) can be simplified by remov-
ing their common factor F . Hence, gyrobarycentric coordinates, m′′

1,m
′′
2, and m′′

3,
of the circumgyrocenter O of gyrotriangle A1A2A3, expressed in terms of the gy-
rotriangle gyroangles are given by the equations

m′′
1 = sin

(−α1 + α2 + α3

2

)
sinα1,

m′′
2 = sin

(
α1 − α2 + α3

2

)
sinα2,

m′′
3 = sin

(
α1 + α2 − α3

2

)
sinα3.

(7.16)

By Corollary 4.10, p. 94, the circumgyrocenter O , (7.1), lies on the interior of its
gyrotriangle A1A2A3 if and only if all its gyrobarycentric coordinates are positive.
Hence, we see from the gyrobarycentric coordinates (7.16) of O that the circumgy-
rocenter O lies on the interior of its gyrotriangle A1A2A3 if and only if the largest
gyroangle of the gyrotriangle has measure less than the sum of the measures of the
other two gyroangles. This result is known in hyperbolic geometry; see, for instance,
[28, p. 132], where the result is proved synthetically.

Expressing Inequality (7.12) gyrotrigonometrically, by means of (7.13), it can be
shown that m2

0 > 0 if and only if

cos
3α1 − α2 − α3

2
+ cos

−α1 + 3α2 − α3

2
+ cos

−α1 − α2 + 3α3

2

> cos
α1 + α2 + α3

2
. (7.17)

Formalizing the main result of this section, we have the following theorem:

Theorem 7.2 (The Circumgyrocenter) Let S = {A1,A2,A3} be a pointwise inde-
pendent set of three points in an Einstein gyrovector space (Rn

s ,⊕,⊗). The cir-
cumgyrocenter O ∈ R

n, Fig. 7.1, of gyrotriangle A1A2A3 has the gyrobarycentric
coordinate representation

O =
m1γA1

A1 + m2γA2
A2 + m3γA3

A3

m1γA1
+ m2γA2

+ m3γA3

(7.18)
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with respect to the set S = {A1,A2,A3}, with gyrobarycentric coordinates (m1 :
m2 : m3) given by

m1 = (γ12 + γ13 − γ23 − 1)(γ23 − 1),

m2 = (γ12 − γ13 + γ23 − 1)(γ13 − 1),

m3 = (−γ12 + γ13 + γ23 − 1)(γ12 − 1),

(7.19)

or, equivalently, by the gyrotrigonometric gyrobarycentric coordinates

m1 = sin

(−α1 + α2 + α3

2

)
sinα1,

m2 = sin

(
α1 − α2 + α3

2

)
sinα2,

m3 = sin

(
α1 + α2 − α3

2

)
sinα3.

(7.20)

The circumgyrocenter constant m0 with respect to the set S = {A1,A2,A3} is
given by the equation

m2
0 = {

(γ12 + γ13 + γ23 − 1)2 − 2
(
γ 2

12 + γ 2
13 + γ 2

23 − 1
)}

× (
1 + 2γ12γ13γ23 − γ 2

12 − γ 2
13 − γ 2

23

)
. (7.21)

The circumgyrocenter lies in the ball, O ∈ R
n
s , if and only if m2

0 > 0.

7.2 Triangle Circumcenter

In this section the gyrotriangle circumgyrocenter in Fig. 7.1 will be translated into
its Euclidean counterpart in Fig. 7.2.

Interestingly, the gyrobarycentric coordinate representation (7.18) with gy-
rotrigonometric gyrobarycentric coordinates (m1 : m2 : m3) given by (7.20) remains
invariant in form under the Euclidean limit s → ∞, so that it is valid in Euclidean
geometry as well. However, for application in Euclidean geometry the representa-
tion (7.18) can be simplified owing to the fact that triangle angle sum in π .

Indeed, under the condition

α1 + α2 + α3 = π, (Euclidean Geometry) (7.22a)
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Fig. 7.2 The circumcenter O of triangle A1A2A3 in a Euclidean vector space R
n, n = 2, is shown

along with its standard notation. Here ‖ − A1 + O‖ = ‖ − A2 + O‖ = ‖ − A3 + O‖, where O is
the triangle circumcenter, given by its barycentric coordinate representation (7.23) with respect to
the set S = {A1,A2,A3}

we have the trigonometric identities

sin
α1 − α2 − α3

2
= cosα1,

sin
−α1 + α2 − α3

2
= cosα2, (Euclidean Geometry)

sin
−α1 − α2 + α3

2
= cosα3

(7.22b)

that allow mk , k = 1,2,3, in (7.20) to be simplified.
Thus, ignoring a common factor 2, the trigonometric barycentric coordinates

(7.20) of the triangle circumcenter O give rise to the following simpler trigono-
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metric barycentric coordinates:

m1 = sin 2α1,

m2 = sin 2α2, (Euclidean Geometry)

m3 = sin 2α3.

(7.22c)

Hence, finally, a trigonometric barycentric coordinate representation of the cir-
cumcenter O of triangle A1A2A3 in Fig. 7.2 with respect to the set S = {A1,A2,A3}
is given by (7.23) of the following corollary of Theorem 7.2, which recovers a well-
known result in Euclidean geometry [29]:

Corollary 7.3 Let αk , k = 1,2,3, and O be the angles and circumcenter of a trian-
gle A1A2A3 in a Euclidean space R

n. Then,

O = sin 2α1A1 + sin 2α2A2 + sin 2α3A3

sin 2α1 + sin 2α2 + sin 2α3
(Euclidean Geometry) (7.23)

Theorem 7.2 and its Corollary 7.3 form an elegant example that illustrates the
result that

(i) Gyrotrigonometric gyrobarycentric coordinates of a point in an Einstein gy-
rovector space R

n
s survive unimpaired in Euclidean geometry, where they form.

(ii) Trigonometric barycentric coordinates of a point in a corresponding Euclidean
vector space R

n.
The converse is, however, not valid:

(iii) Trigonometric barycentric coordinates of a point in a Euclidean vector space
R

n may embody the Euclidean condition the triangle angle sum in π , so that
they need not survive in hyperbolic geometry.

7.3 Gyrocircle

The gyrocircle C(r,O) with gyroradius r , 0 < r < s, and gyrocenter O ∈ R
2
s in

an Einstein gyrovector plane (R2
s ,⊕,⊗) is the set of all points P ∈ R

2
s such that

‖�P⊕O‖ = r ; see Fig. 7.3. It is given by the equation

C(r,O, θ) = O ⊕
(

r cos θ

r sin θ

)
(7.24)

for 0 ≤ θ < 2π . Indeed, by the left cancellation law we have

∥∥�O⊕C(r,O, θ)
∥∥ =

∥∥∥∥
(

r cos θ

r sin θ

)∥∥∥∥ = r, (7.25)

where ‖·‖ is the norm that the Einstein gyrovector plane R
2
s inherits from its Eu-

clidean plane R
2.

A sequence of gyrocircles of gyroradius 1
4 in an Einstein gyrovector plane R

2
s=1

with gyrocenters approaching the boundary of the open unit disc R
2
s=1 is shown in
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Fig. 7.3 A sequence of
gyrocircles with gyroradius 1

4
in an Einstein gyrovector
plane R

2
s=1 with gyrocenters

approaching the boundary of
the open unit disc R

2
s=1 is

shown. The center of the disc
is conformal. Hence, the
gyrocircle with gyrocenter at
the center of the disc
coincides with a Euclidean
circle. The Euclidean circle is
increasingly flattened as its
gyrocenter approaches the
boundary of the disc

Fig. 7.3. The center of the disc in Fig. 7.3 is conformal, as explained in Sect. 2.6,
p. 53. Accordingly, a gyrocircle with gyrocenter at the center of the disc is identical
to a Euclidean circle. This Euclidean circle is increasingly flattened in the Euclidean
sense when the gyrocircle gyrocenter approaches the boundary of the disc.

The circumgyrocircle of gyrotriangle A1A2A3 in Fig. 7.1, with circumgyrocenter
at the point O , is shown in Fig. 7.4.

7.4 Gyrotriangle Circumgyroradius

In this section, we face the task of calculating the gyrotriangle circumgyroradius.
The circumgyroradius R of gyrotriangle A1A2A3 in Figs. 7.1 and 7.4 is given by

R = ‖�A1⊕O‖ = ‖�A2⊕O‖ = ‖�A3⊕O‖ (7.26)

satisfying, by (7.2),

γ
R

= γ�A1⊕O
= m1 + m2γ12 + m3γ13

m0
, (7.27)

where m1,m2 and m3 are given by (7.19), and where m0 is given by (7.21).
Hence, following (7.27), (7.19) and (7.21), we have

γ 2
R = 2γ12γ13γ23 − (γ 2

12 + γ 2
13 + γ 2

23 − 1)

(γ12 + γ13 + γ23 − 1)2 − 2(γ 2
12 + γ 2

13 + γ 2
23 − 1)

(7.28)
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Fig. 7.4 The circumgyrocircle of gyrotriangle A1A2A3 in an Einstein gyrovector space
(Rn

s ,⊕,⊗) is shown for n = 2. Its gyrocenter, O , is the gyrotriangle circumgyrocenter, given by
its gyrobarycentric representation (7.18), p. 157, and its gyroradius r is the gyrotriangle circumgy-
roradius, given by each of the equations r = ‖�Ak⊕O‖, k = 1,2,3. The gyrocircle is a flattened
Euclidean circle, as shown in Fig. 7.3

so that, by (1.9), p. 5,

R2 = s2 γ 2
R − 1

γ 2
R

= 2s2 (γ12 − 1)(γ13 − 1)(γ23 − 1)

1 + 2γ12γ13γ23 − γ 2
12 − γ 2

13 − γ 2
23

. (7.29)

Hence, finally, the circumgyroradius R of gyrotriangle A1A2A3 in Figs. 7.1 and
7.4 is given by

R = √
2s

√
(γ12 − 1)(γ13 − 1)(γ23 − 1)

1 + 2γ12γ13γ23 − γ 2
12 − γ 2

13 − γ 2
23

, (7.30)

implying

√
(γ12 + 1)(γ13 + 1)(γ23 + 1)

2
R = s

√
(γ 2

12 − 1)(γ 2
13 − 1)(γ 2

23 − 1)

1 + 2γ12γ13γ23 − γ 2
12 − γ 2

13 − γ 2
23

. (7.31)

Identity (7.31) captures a remarkable analogy between the law of gyrosines and
the law of sines. Indeed, following (7.31), the law of gyrosines (6.44), p. 140, for
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gyrotriangle A1A2A3 in Fig. 7.4 is linked to the circumgyroradius R of the gyrotri-
angle by the equation

γ23a23

sinα1
= γ13a13

sinα2
= γ12a12

sinα3
=

√
(γ12 + 1)(γ13 + 1)(γ23 + 1)

2
R (7.32)

called the extended law of gyrosines.
In the Euclidean limit of large s, s → ∞, gamma factors tend to 1 and, accord-

ingly, the extended law of gyrosines (7.32) tends to the following identity,

a23

sinα1
= a13

sinα2
= a12

sinα3
= 2R (Euclidean Geometry) (7.33)

which is the well-known extended law of sines; see, for instance, [35, p. 87].
Identity (7.32) forms the extended law of gyrosines of a gyrotriangle A1A2A3

with side-gyrolengths a23, a13, a12, with gyroangles α1, α2, α3, and with circum-
gyroradius R. In full analogy, with (7.32), Identity (7.33) forms the Euclidean ex-
tended law of sines of a triangle A1A2A3 with side-lengths a23, a13, a12, with angles
α1, α2, α3, and with circumradius R.

Interestingly, the gyrotriangle circumgyroradius R has an elegant representation
in terms of its gyrotriangle gyroangles. Indeed, expressing the gamma factors in
(7.29) in terms of the gyrotriangle gyroangles αk , k = 1,2,3, by means of (6.33),
p. 137, (7.29) takes the gyrotrigonometric form

R2

s2
= cos α1+α2+α3

2

cos α1−α2−α3
2 cos −α1+α2−α3

2 cos −α1−α2+α3
2

(7.34)

in any Einstein gyrovector space (Rn
s ,⊕,⊗). In the Euclidean limit, s → ∞, each

side of (7.34) tends to 0. Indeed, in that limit, the gyroangle gyrotriangle sum α1 +
α2 + α3 tends to π so that cos α1+α2+α3

2 tends to 0.
An important relation that results from (7.34) is formalized in the following the-

orem:

Theorem 7.4 Let αk , k = 1,2,3, and R be the gyroangles and circumgyroradius of
a gyrotriangle A1A2A3 in an Einstein gyrovector space (Rn

s ⊕,⊗). Then

s2 cos
α1 + α2 + α3

2
= R2 cos

α1 − α2 − α3

2
cos

−α1 + α2 − α3

2

× cos
−α1 − α2 + α3

2
. (7.35)

Interestingly, the Euclidean limit, s → ∞, of the left-hand side of Identity (7.35)
of Theorem 7.4 is an indeterminate limit of type ∞·0, noting that in that limit α1 +
α2 + α3 tends to π so that cos α1+α2+α3

2 tends to 0. In contrast, the right-hand side
of the identity remains invariant in form in that limit. An elegant application of
Theorem 7.4 is encountered in (8.24), p. 230, where a hyperbolic geometric identity
is obtained, which remains invariant in form in its transition to Euclidean geometry.
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Fig. 7.5 Here A1, A2 and A3
are arbitrarily selected three
points of an Einstein
gyrovector space (Rn

s ,⊕,⊗)

that satisfy the
circumgyrocircle condition
(7.36). Accordingly, there
exists a unique gyrocircle that
passes through these points

Fig. 7.6 Here A1, A2 and A3
are arbitrarily selected three
points of an Einstein
gyrovector space (Rn

s ,⊕,⊗)

that do not satisfy the
circumgyrocircle condition
(7.36). Accordingly, there
exists no gyrocircle that
passes through these points

7.5 The Gyrocircle Through Three Points

In the following theorem, we use the standard gyrotriangle index notation, shown in
Fig. 6.1, p. 128, and in (6.1), p. 127.

Theorem 7.5 (The Gyrocircle Through Three Points) Let A1, A2 and A3 be any
three distinct points in an Einstein gyrovector space (Rn

s ,⊕,⊗), see Figs. 7.5–7.6.
There exists a unique gyrocircle that passes through these points if and only if these
points obey the circumgyrocircle condition, (7.12),

(γ12 + γ13 + γ23 − 1)2 > 2
(
γ 2

12 + γ 2
13 + γ 2

23 − 1
)
. (7.36)



7.5 The Gyrocircle Through Three Points 165

When a gyrocircle exists, it is the unique gyrocircle with gyrocenter O given by,
(7.18),

O =
m1γA1

A1 + m2γA2
A2 + m3γA3

A3

m1γA1
+ m2γA2

+ m3γA3

, (7.37)

where

m1 = (γ12 + γ13 − γ23 − 1)(γ23 − 1),

m2 = (γ12 − γ13 + γ23 − 1)(γ13 − 1),

m3 = (−γ12 + γ13 + γ23 − 1)(γ12 − 1),

(7.38)

and with gyroradius R given as in (7.30), i.e.,

R = √
2s

√
(γ12 − 1)(γ13 − 1)(γ23 − 1)

1 + 2γ12γ13γ23 − γ 2
12 − γ 2

13 − γ 2
23

. (7.39)

Proof The gyrocircle in the theorem, if exists, is the circumgyrocircle of gyrotri-
angle A1A2A3. The gyrocenter O of the gyrocircle is, therefore, given by (7.37)–
(7.38), as we see from Theorem 7.2, p. 157; and the gyroradius, R, of the gyrocircle
is given by (7.30), p. 162.

Finally, the circumgyrocircle of gyrotriangle A1A2A3 exists if and only if the
points A1, A2 and A3 satisfy the circumgyrocircle condition (7.36), as explained in
the paragraph of Inequality (7.12), p. 156. �

Example 7.6 If the three points A1, A2 and A3 in Theorem 7.5 are not distinct, a
gyrocircle through these points is not unique. Indeed, in this case we have

(γ12 + γ13 + γ23 − 1)2 = 2
(
γ 2

12 + γ 2
13 + γ 2

23 − 1
)
, (7.40)

as one can readily check, thus violating the circumgyrocircle condition (7.36).

Example 7.7 If the three points A1, A2 and A3 in Theorem 7.5 are distinct and
gyrocollinear, there is no gyrocircle through these points. Hence, in this case the
circumgyrocircle condition (7.36) must be violated. Hence, these points must satisfy
the inequality

(γ12 + γ13 + γ23 − 1)2 ≤ 2
(
γ 2

12 + γ 2
13 + γ 2

23 − 1
)
. (7.41)

Example 7.8 Let the three points A1, A2 and A3 in Theorem 7.5 be the vertices of
an equilateral gyrotriangle with side gyrolengths a. Then, γ12 = γ13 = γ23 = γa , so
that the circumgyrocircle condition (7.36) reduces to

γa > 1 (7.42)

which is satisfied by any side gyrolength a, 0 < a < s.
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Fig. 7.7 The Inscribed Gyroangle Theorem. Illustrating the theorem, θ = ∠A1A3A2 is a gyroan-
gle inscribed in a gyrocircle of gyroradius R (the circumgyroradius of gyrotriangle A1A2A3) cen-
tered at O in an Einstein gyrovector plane (R2

s ,⊕,⊗), and φ = ∠A1OM12 = ∠A2OM12, where
M12 is the gyromidpoint of the gyrosegment A1A2. Accordingly, 2φ = ∠A1OA2 is a gyrocentral
gyroangle, and both θ and 2φ subtend on the same gyroarc on the gyrocircle. The elegant rela-
tionship between θ and φ, (7.43), is shown. In the Euclidean limit of large s, s → ∞, gamma
factors tend to 1 and, hence, the relationship between θ and φ in Euclidean geometry becomes
sin θ = sinφ or, equivalently, θ = φ

Hence, by Theorem 7.5, any equilateral gyrotriangle in an Einstein gyrovector
space possesses a circumgyrocircle.

7.6 The Inscribed Gyroangle Theorem

In Fig. 7.7, we use a notation that includes the standard gyrotriangle index nota-
tion, shown in Fig. 6.1, p. 128, and in (6.1), p. 127. Fig. 7.7 presents a gyrotriangle
A1A2A3 and its circumgyrocircle with gyrocenter O at the gyrotriangle ingyro-
center, given by (7.18), p. 157, and with gyroradius R, given by the gyrotriangle
circumgyroradius (7.30), p. 162. The gamma factor γR of R is given by (7.28),
p. 161.

Theorem 7.9 (The Inscribed Gyroangle Theorem) Let θ be a gyroangle inscribed
in a gyrocircle of gyroradius R, and let 2φ be a gyrocentral gyroangle such that
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both θ and 2φ subtend on the same gyroarc on the gyrocircle, as shown in Fig. 7.7.
Then, in the notation of Fig. 7.7 and (6.1), p. 127,

sin θ = 2γR√
(γ13 + 1)(γ23 + 1)

sinφ. (7.43)

Proof Under the conditions of the theorem, as described in Fig. 7.7, let M12 be the
gyromidpoint of gyrosegment A1A2, implying

φ := ∠A1OM12 = ∠A2OM12 = 1

2
∠A1OA2 (7.44)

so that 2φ is the gyrocentral gyroangle ∠A1OA2 shown in Fig. 7.7.
Furthermore, let

a12 = �A1⊕A2 (7.45)

so that, by (4.67), p. 100,

�A1⊕M12 = 1

2
⊗a12, (7.46)

and hence, by (4.69), p. 100,

γ 1
2 ⊗a12

(
1

2
⊗a12

)
= γ12a12√

2
√

1 + γ12

. (7.47)

Taking magnitudes of both sides of (7.47), we have

γ 1
2 ⊗a12

(
1

2
⊗a12

)
= γ12a12√

2
√

1 + γ12

. (7.48)

Applying the extended law of gyrosines (7.32), p. 163, to gyrotriangle A1A2A3

and its circumgyrocircle in Fig. 7.7, we have

γ12a12

sin θ
=

√
(γ12 + 1)(γ13 + 1)(γ23 + 1)

2
R, (7.49)

implying

sin θ =
√

2γ12a12√
(1 + γ12)(1 + γ13)(1 + γ23)R

. (7.50)

Applying the elementary gyrosine definition in gyrotrigonometry, (6.65), p. 146,
illustrated in Fig. 6.5, p. 147, to the right gyroangled gyrotriangle A1M12O in
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Fig. 7.7, we obtain the first equation in (7.51),

sinφ =
γ 1

2 ⊗a12
( 1

2⊗a12)

γRR
= γ12a12√

2
√

1 + γ12 γRR

. (7.51)

The second equation in (7.51) follows from (7.48).
Finally, the desired identity (7.43) follows immediately from (7.50) and (7.51). �

7.7 Gyrotriangle Gyroangle Bisector Foot

A gyrotriangle A1A2A3 and its gyroangle bisectors in an Einstein gyrovector space
(Rn

s ,⊕,⊗) are presented in Fig. 7.8, along with the gyrotriangle standard notation
in Fig. 6.1, p. 128, and in (6.1), p. 127.

Let P3 be a point on side A!A2 of gyrotriangle A1A2A3 in an Einstein gyrovector
space (Rn

s ⊕,⊗) such that A3P3 is the gyroangle bisector of gyroangle ∠A1A3A2,
as shown in Fig. 7.8 for n = 2. Then, the point P3 is the foot of the gyroangle
bisector A3P3 in gyrotriangle A1A2A3.

Let P3 be given in terms of its gyrobarycentric coordinates (m1 : m2) with respect
to the set S = {A1,A2} by the equation

P3 = m1γA1
A1 + m2γA2

A2

m1γA1
+ m2γA2

. (7.52)

The gyrobarycentric coordinates m1 and m2 of P3, Fig. 7.8, in (7.52) are to be
determined in (7.68) below in terms of gyroangles α1 and α2 of the gyrotriangle
A1A2A3 and in (7.69) in terms of the side gyrolengths of the gyrotriangle.

Following the gyrocovariance of gyrobarycentric coordinate representations,
Theorem 4.6, p. 90, the gyrobarycentric coordinate representation of the point P3 in
(7.52) gives rise to the identities in (7.53)–(7.55) below:

�X⊕P3 =
m1γ�X⊕A1

(�X⊕A1) + m2γ�X⊕A2
(�X⊕A2)

m1γ�X⊕A1
+ m2γ�X⊕A2

(7.53)

and

γ�X⊕P3
=

m1γ�X⊕A1
+ m2γ�X⊕A2

m0
,

γ�X⊕P3
(�X⊕P3) =

m1γ�X⊕A1
(�X⊕A1) + m2γ�X⊕A2

(�X⊕A2)

m0

(7.54)

for any X ∈ R
n
s , where, in the notation of Fig. 7.8 for the gamma factor γ12 , the

constant m0 > 0 in (4.28d), p. 91, specializes to

m2
0 = (m1 + m2)

2 + 2m1m2(γ12 − 1) (7.55)
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Fig. 7.8 The gyrotriangle gyroangle bisectors are concurrent. The point of concurrency, I , is
called the ingyrocenter of the gyrotriangle. Let A1A2A3 be a gyrotriangle in an Einstein gyrovector
space (Rn

s ,⊕,⊗). The gyroline AkPk is the gyroangle bisector from vertex Ak to the intersection
point Pk with the opposite side, k = 1,2,3. The point Pk is the foot of the gyroangle bisector AkPk

in (7.54).
Using the notation in Fig. 7.8, it follows from (7.53) with X = A1 that

p1 := �A1⊕P3 =
m2γ�A1⊕A2

(�A1⊕A2)

m1 + m2γ�A1⊕A2

= m2γ12a12

m1 + m2γ12

(7.56)

and, similarly, with X = A2,

p2 := �A2⊕P3 =
m1γ�A2⊕A1

(�A2⊕A1)

m1γ�A2⊕A1
+ m2

= m1γ21a21

m1γ21 + m2
. (7.57)

Hence, by (7.56)–(7.57), in the notation of Fig. 7.8,

p1 := ‖p1‖ = m2γ12a12

m1 + m2γ12

,

p2 := ‖p2‖ = m1γ12a12

m1γ12 + m2
.

(7.58)

As emphasized in (1.11)–(1.12), p. 6, one should note here that while, in general,
a21 = �A2⊕A1 �= �A1⊕A2 = a12, we have a21 = ‖�A2⊕A1‖ = ‖�A1⊕A2‖ =
a12 and, hence, γ21 = γ12 .
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Similarly, it follows from the first equation in (7.54) with X = A1, and with
X = A2, respectively,

γp1
= γ�A1⊕P3

=
m1 + m2γ�A1⊕A2

m0
= m1 + m2γ12

m0
,

γp2
= γ�A2⊕P3

=
m1γ�A2⊕A1

+ m2

m0
= m1γ12 + m2

m0
.

(7.59)

It follows from (7.58) and (7.59) or, equivalently, from (7.52) and the second
equation in (7.54) that

γp1
p1 = m1 + m2γ12

m0

m2γ12a12

m1 + m2γ12

= m2

m0
γ12a12,

γp2
p2 = m1γ12 + m2

m0

m1γ12a12

m1γ12 + m2
= m1

m0
γ12a12,

(7.60)

implying

γp1
p1

γp2
p2

= m2

m1
. (7.61)

Applying the law of gyrosines (6.44), p. 140, to each of the two gyrotriangles
A1A3P3 and A2A3P3 in Fig. 7.8, we have

γP1P1

sin∠A1A3P3
= γ13a13

sin∠A1P3A3
(7.62)

and

γP2P2

sin∠A2A3P3
= γ23a23

sin∠A2P3A3
. (7.63)

By the gyroangle bisector definition, ∠A1A3P3 = ∠A2A3P3, so that

sin∠A1A3P3 = sin∠A2A3P3. (7.64)

Gyroangles ∠A1P3A3 and ∠A2P3A3 are supplementary (their sum is π ). Hence,
they have equal gyrosines,

sin∠A1P3A3 = sin∠A2P3A3. (7.65)

If follows from (7.62)–(7.65) immediately that

γp1
p1

γp2
p2

= γ13a13

γ23a23
. (7.66)
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Hence, by (7.61)–(7.66), and by the law of gyrosines (6.44), p. 140,

m2

m1
= γ13a13

γ23a23
= sinα2

sinα1
(7.67)

so that gyrotrigonometric gyrobarycentric coordinates of point P3 in Fig. 7.8 are
given by the equation

(m1 : m2) = (sinα1 : sinα2). (7.68)

It, finally, follows from (7.67) and (1.9), p. 5, that gyrobarycentric coordinates of
point P3 in Fig. 7.8 are given by the equation

(m1 : m2) = (γ23a23 : γ13a13) =
(√

γ 2
23 − 1 :

√
γ 2

13 − 1
)

(7.69)

so that, by (7.69) and (7.52), we have

P3 = γ23a23γA1
A1 + γ13a13γA2

A2

γ23a23γA1
+ γ13a13γA2

=
√

γ 2
23 − 1γ

A1
A1 +

√
γ 2

13 − 1γ
A2

A2√
γ 2

23 − 1γ
A1

+
√

γ 2
13 − 1γ

A2

. (7.70)

Formalizing the main result of this section, we have the following theorem:

Theorem 7.10 (Foot of a Gyrotriangle Gyroangle Bisector) Let S = {A1,A2,A3}
be a pointwise independent set of three points in an Einstein gyrovector space
(Rn

s ,⊕,⊗) and let P3 be the foot of gyroangle bisector A3P3, Fig. 7.8, p. 169.
Then the foot has the gyrobarycentric coordinate representation

P3 =
m1γA1

A1 + m2γA2
A2

m1γA1
+ m2γA2

(7.71)

with respect to the set S = {A1,A2}, with gyrobarycentric coordinates

(m1 : m2) = (γ23a23 : γ13a13) (7.72)

or, equivalently, with gyrotrigonometric gyrobarycentric coordinates

(m1 : m2) = (sinα1 : sinα2). (7.73)

7.8 Gyrotriangle Ingyrocenter

Definition 7.11 The ingyrocircle of a gyrotriangle is the gyrocircle lying inside the
gyrotriangle, tangent to each of its sides, Fig. 7.12, p. 186. The gyrocenter and the
gyroradius of the ingyrocircle are called, respectively, the gyrotriangle ingyrocenter
and ingyroradius.
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The ingyrocenter of a gyrotriangle is the point of concurrency of the gyrotriangle
gyroangle bisectors.

The three feet, P1, P2 and P3 of the three gyroangle bisectors of gyrotriangle
A1A2A3 in an Einstein gyrovector space (Rn

s ,⊕,⊗), shown in Fig. 7.8 for n = 2,
are given by the equations

P1 = γ13a13γA2
A2 + γ12a12γA3

A3

γ13a13γA2
+ γ12a12γA3

,

P2 = γ12a12γA3
A3 + γ23a23γA1

A1

γ12a12γA3
+ γ23a23γA1

,

P3 = γ23a23γA1
A1 + γ13a13γA2

A2

γ23a23γA1
+ γ13a13γA2

.

(7.74)

The third equation in (7.74) is a copy from (7.70). The first and second equations
in (7.70) are obtained from the third one by cyclic permutations of the vertices of
gyrotriangle A1A2A3, that is, by index permutations.

The gyroangle bisectors of gyrotriangle A1A2A3 in an Einstein gyrovector space
(Rn

s ,⊕,⊗), shown in Fig. 7.8 for n = 2, are the gyrosegments A1P1, A2P2, and
A1P3. Since gyrosegments in Einstein gyrovector spaces coincide with Euclidean
segments, one can employ methods of linear algebra to determine the ingyrocenter,
that is, the point of concurrency of the three gyroangle bisectors of gyrotriangle
A1A2A3 in Fig. 7.8.

In order to determine gyrobarycentric coordinates for the gyrotriangle ingyro-
center in Einstein gyrovector spaces, we begin with some gyroalgebraic manipula-
tions that reduce the task we face to the task of solving a problem in linear alge-
bra.

Let the ingyrocenter I of gyrotriangle A1A2A3 in an Einstein gyrovector space
(Rn

s ,⊕,⊗), Fig. 7.8, be given in terms of its gyrobarycentric coordinate represen-
tation, (4.25), p. 90, with respect to the set S = {A1,A2,A3} of the gyrotriangle
vertices by the equation

I =
m1γA1

A1 + m2γA2
A2 + m3γA3

A3

m1γA1
+ m2γA2

+ m3γA3

. (7.75)

The gyrobarycentric coordinates (m1,m2,m3) of I in (7.75) are to be determined
in (7.103) below.

Left gyrotranslating gyrotriangle A1A2A3 by �A1, the gyrotriangle becomes gy-
rotriangle O(�A1⊕A2)(�A1⊕A3), where O = �A1⊕A1 is the arbitrarily selected
origin of the Einstein gyrovector space R

n
s . The gyrotriangle gyroangle bisector feet

P1, P2 and P3 become, respectively, �A1⊕P1, �A1⊕P2 and �A1⊕P3.
The left gyrotranslated feet are calculated in (7.76a), (7.76b), (7.76c) below by

employing the Gyrobarycentric Coordinate Representation Gyrocovariance Theo-
rem 4.6, p. 90, and the standard gyrotriangle index notation, shown in Fig. 6.1,
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p. 128 and in (6.1), p. 127:

�A1⊕P1 = �A1⊕
γ13a13γA2

A2 + γ12a12γA3
A3

γ13a13γA2
+ γ12a12γA3

=
γ13a13γ�A1⊕A2

(�A1⊕A2) + γ12a12γ�A1⊕A3
(�A1⊕A3)

γ13a13γ�A1⊕A2
+ γ12a12γ�A1⊕A3

= γ13a13γ12a12 + γ12a12γ13a13

γ13a13γ12 + γ12a12γ13

, (7.76a)

�A1⊕P2 = �A1⊕
γ23a23γA1

A1 + γ12a12γA3
A3

γ23a23γA1
+ γ12a12γA3

=
γ12a12γ�A1⊕A3

(�A1⊕A3)

γ23a23 + γ12a12γ�A1⊕A3

= γ12a12γ13a13

γ23a23 + γ12a12γ13

, (7.76b)

�A1⊕P3 = �A1⊕
γ23a23γA1

A1 + γ13a13γA2
A2

γ23a23γA1
+ γ13a13γA2

=
γ13a13γ�A1⊕A2

(�A1⊕A2)

γ23a23 + γ13a13γ�A1⊕A2

= γ13a13γ12a12

γ23a23 + γ13a13γ12

. (7.76c)

By Definition 4.5, p. 89, the set of points S = {A1,A2,A3} is pointwise inde-
pendent in an Einstein gyrovector space (Rn

s ,⊕,⊗). Hence, the two gyrovectors
a12 = �A1⊕A2 and a13 = �A1⊕A3 in R

n
s ⊂ R

n in (7.76a), (7.76b), (7.76c), con-
sidered as vectors in R

n, are linearly independent in R
n.

Similarly to the gyroalgebra in (7.76a), (7.76b), (7.76c), under a left gyrotransla-
tion by �A1 the ingyrocenter I in (7.75) becomes

�A1⊕I = �A1⊕
m1γA1

A1 + m2γA2
A2 + m3γA3

A3

m1γA1
+ m2γA2

+ m3γA3

=
m2γ�A1⊕A2

(�A1⊕A2) + m3γ�A1⊕A3
(�A1⊕A3)

m1 + m2γ�A1⊕A2
+ m3γ�A1⊕A3
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= m2γ12a12 + m3γ13a13

m1 + m2γ12 + m3γ13

. (7.77)

The gyroangle bisector of the left gyrotranslated gyrotriangle O(�A1⊕A2) ×
(�A1⊕A3) that joins the vertex

�A1⊕A1 = O = 0 (7.78)

with the gyroangle bisector foot on its opposing side, ⊕A1⊕P1, as calculated in
(7.76a),

�A1⊕P1 = γ13a13γ12a12 + γ12a12γ13a13

γ13a13γ12 + γ12a12γ13

(7.79)

is contained in the Euclidean straight line

L1 = O + (−O + {�A1⊕P1}
)
t1

= γ13a13γ12a12 + γ12a12γ13a13

γ13a13γ12 + γ12a12γ13

t1, (7.80)

where t1 ∈ R is the line parameter. This line passes through the point O = 0 ∈ R
n
s ⊂

R
n when t1 = 0, and it passes through the point �A1⊕P1 when t1 = 1.
Similarly to (7.78)–(7.80), the gyroangle bisector of the left gyrotranslated gyro-

triangle O(�A1⊕A2)(�A1⊕A3) that joins the vertex

�A1⊕A2 = a12 (7.81)

with the gyroangle bisector foot on its opposing side, ⊕A1⊕P2, as calculated in
(7.76b),

�A1⊕P2 = γ12a12γ13a13

γ23a23 + γ12a12γ13

(7.82)

is contained in the Euclidean line

L2 = a12 + (−a12 + {�A1⊕P2}
)
t2

= a12 +
(

−a12 + γ12a12γ13a13

γ23a23 + γ12a12γ13

)
t2, (7.83)

where t2 ∈ R is the line parameter. This line passes through the point a12 ∈ R
n
s ⊂ R

n

when t2 = 0, and it passes through the point �A1⊕P2 when t2 = 1.
Similarly to (7.78)–(7.80), and (7.81)–(7.83), the gyroangle bisector of the left

gyrotranslated gyrotriangle O(�A1⊕A2)(�A1⊕A3) that joins the vertex

�A1⊕A3 = a13 (7.84)
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with the gyroangle bisector foot on its opposing side, ⊕A1⊕P3, as calculated in
(7.76c),

�A1⊕P3 = γ13a13γ12a12

γ23a23 + γ13a13γ12

(7.85)

is contained in the Euclidean line

L3 = a13 + (−a13 + {�A1⊕P3}
)
t3

= a13 +
(

−a13 + γ13a13γ12a12

γ23a23 + γ13a13γ12

)
t3, (7.86)

where t3 ∈ R is the line parameter. This line passes through the point a13 ∈ R
n
s ⊂ R

n

when t3 = 0, and it passes through the point �A1⊕P3 ∈ R
n
s ⊂ R

n when t3 = 1.
Hence, if the ingyrocenter I exists, its left gyrotranslated ingyrocenter, −�A1⊕I ,

given by (7.77), is contained in each of the three Euclidean lines Lk , k = 1,2,3, in
(7.80), (7.83) and (7.86).

Formalizing, if I exists then the point P , (7.77),

P = �A1⊕I = m2γ12a12 + m3γ13a13

m1 + m2γ12 + m3γ13

(7.87)

lies on each of the lines Lk , k = 1,2,3. Imposing the normalization condition m1 +
m2 + m3 = 1 of special gyrobarycentric coordinates, (7.87) can be simplified by
means of the resulting equation m1 = 1 − m2 − m3, obtaining

P = �A1⊕I = m2γ12a12 + m3γ13a13

1 + m2(γ12 − 1) + m3(γ13 − 1)
. (7.88)

Since the point P lies on each of the three lines Lk , k = 1,2,3, there exist values
tk,0 of the line parameters tk , k = 1,2,3, respectively, such that

P − γ13a13γ12a12 + γ12a12γ13a13

γ13a13γ12 + γ12a12γ13

t1,0 = 0,

P − a12 −
(

−a12 + γ12a12γ13a13

γ23a23 + γ12a12γ13

)
t2,0 = 0,

P − a13 −
(

−a13 + γ13a13γ12a12

γ23a23 + γ13a13γ12

)
t3,0 = 0.

(7.89)

The kth equation in (7.89), k = 1,2,3, is equivalent to the condition that point P

lies on line Lk .
The system of equations (7.89) was obtained by methods of gyroalgebra, and

will be solved below by a common method of linear algebra.
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Substituting P from (7.88) into (7.89), and rewriting each equation in (7.89) as
a linear combination of a12 and a13 equals zero, one obtains the following homoge-
neous linear system of three gyrovector equations

c11a12 + c12a13 = 0,

c21a12 + c22a13 = 0,

c31a12 + c32a13 = 0,

(7.90)

where each coefficient cij , i = 1,2,3, j = 1,2, is a function of γ12 , γ13 , γ23 , and
the five unknowns m2, m3, and tk,0, k = 1,2,3.

Since the set S = {A1,A2,A3} is pointwise independent, the two gyrovectors
a12 = �A1⊕A2 and a13 = �A1⊕A3 in R

n
s , considered as vectors in R

n, are linearly
independent in R

n. Hence, each coefficient cij in (7.90) equals zero. Accordingly,
the three gyrovector equations in (7.90) are equivalent to the following six scalar
equations,

c11 = c12 = c21 = c22 = c31 = c32 = 0 (7.91)

for the five unknowns m2,m3 and tk,0, k = 1,2,3.
Explicitly, the six scalar equations in (7.91) are equivalent to the following six

equations:

γ12(a12 + a13)m2 − (1 − m2 − m3 + γ12m2 + γ13m3)a13t1,0 = 0,

γ13(a12 + a13)m3 − (1 − m2 − m3 + γ12m2 + γ13m3)a12t1,0 = 0,

1 − m2 − m3 + γ13m3 − (1 − m2 − m3 + γ12m2 + γ13m3)t2,0 = 0,

(γ12γ13a12 + γ23a23)m3 − (1 − m2 − m3 + γ12m2 + γ13m3)γ12a12t2,0 = 0,

(γ12γ13a13 + γ23a23)m2 − (1 − m2 − m3 + γ12m2 + γ13m3)γ13a13t3,0 = 0,

1 − m2 − m3 + γ12m2 − (1 − m2 − m3 + γ12m2 + γ13m3)t3,0 = 0.

(7.92)

The unique solution of (7.92) is given by (7.93) and (7.95) below:
The values of the line parameters are

t1,0 = 1

D′ γ12γ13(a12 + a13),

t2,0 = 1

D′ (γ12γ13a12 + γ23a23),

t3,0 = 1

D′ (γ12γ13a13 + γ23a23),

(7.93)

where

D′ = γ12γ13a12 + γ12γ13a13 + γ23a23 > 0. (7.94)
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The special gyrobarycentric coordinates (m1,m2,m3) are given by

m1 = 1

D
γ23a23,

m2 = 1

D
γ13a13,

m3 = 1

D
γ12a12,

(7.95)

satisfying the normalization condition m1 + m2 + m3 = 1, where D is given by

γ12a12 + γ13a13 + γ23a23 > 0. (7.96)

Following (7.95), convenient gyrobarycentric coordinates of the gyrotriangle
ingyrocenter I are given by the equation

(m1 : m2 : m3) = (γ23a23 : γ13a13 : γ12a12) (7.97)

or, equivalently, by the equation

(m1 : m2 : m3) =
(

γ23a23

γ12a12
: γ13a13

γ12a12
: 1

)
=

(
sinα1

sinα3
: sinα2

sinα3
: 1

)
(7.98)

as we see from the law of gyrosines (6.44), p. 140. Hence a convenient set of gy-
rotrigonometric gyrobarycentric coordinates of the gyrotriangle ingyrocenter I is
given by the equation

(m1 : m2 : m3) = (sinα1 : sinα2 : sinα3). (7.99)

The gyrobarycentric coordinates in (7.99) are positive for any gyrotriangle gy-
roangles αk , k = 1,2,3. Hence, by Corollary (4.10), p. 94, the gyrotriangle ingyro-
center always lies on the interior of its gyrotriangle, as shown in Fig. 7.8, p. 169.

We have thus found that the ingyrocenter of gyrotriangle A1A2A3 lies on the
interior of gyrotriangle A1A2A3, and it has the gyrobarycentric coordinate repre-
sentation with respect to the set S = {A1,A2,A3} given by each equation in the
following chain of equations,

I = γ23a23γA1
A1 + γ13a13γA2

A2 + γ12a12γA3
A3

γ23a23γA1
+ γ13a13γA2

+ γ12a12γA3

=
√

γ 2
23 − 1γ

A1
A1 +

√
γ 2

13 − 1γ
A2

A2 +
√

γ 2
12 − 1γ

A3
A3√

γ 2
23 − 1γ

A1
+

√
γ 2

13 − 1γ
A2

+
√

γ 2
12 − 1γ

A3

= sinα1γA1
A1 + sinα2γA2

A2 + sinα3γA3
A3

sinα1γA1
+ sinα2γA2

+ sinα3γA3

∈ R
n
s . (7.100)
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The first equation in (7.100) follows from (7.95). The second equation in (7.100)
follows from the first by (1.9), p. 5, and the third equation in (7.100) follows from
the first by the law of gyrosines (6.44), p. 140, according to which, by (1.9),

√
γ 2

23 − 1
√

γ 2
12 − 1

= γ23a23

γ12a12
= sinα1

sinα3
,

√
γ 2

13 − 1
√

γ 2
12 − 1

= γ13a13

γ12a12
= sinα2

sinα3
.

(7.101)

Formalizing the main result of this section, we obtain the following theorem:

Theorem 7.12 (The Ingyrocenter) Let S = {A1,A2,A3} be a pointwise indepen-
dent set of three points in an Einstein gyrovector space (Rn

s ,⊕,⊗). The ingyrocenter
I ∈ R

n
s , Fig. 7.8, p. 169, of gyrotriangle A1A2A3 has the gyrobarycentric coordinate

representation

I =
m1γA1

A1 + m2γA2
A2 + m3γA3

A3

m1γA1
+ m2γA2

+ m3γA3

(7.102)

with respect to the set S = {A1,A2,A3}, with gyrobarycentric coordinates (m1 :
m2 : m3) given by each of the following three equations:

(m1 : m2 : m3) =
(√

γ 2
23 − 1 :

√
γ 2

13 − 1 :
√

γ 2
12 − 1

)
,

(m1 : m2 : m3) = (γ23a23 : γ13a13 : γ12a12),

(m1 : m2 : m3) = (sinα1 : sinα2 : sinα3).

(7.103)

Interestingly, in the Euclidean limit of large s, s → ∞, the three systems of
gyrobarycentric coordinates (m1 : m2 : m3) in Theorem 7.12 exhibit the following
different features:

The first system of gyrobarycentric coordinates of the gyrotriangle ingyrocenter
in (7.103) reduces to (m1 : m2 : m3) = (0 : 0 : 0), which makes no sense in Euclidean
geometry;

The second system of gyrobarycentric coordinates of the gyrotriangle ingyrocen-
ter in (7.103) reduces to its Euclidean counterpart,

(m1 : m2 : m3) = (a23 : a13 : a12), (Euclidean Geometry) (7.104)

noting that in the limit of large s, s → ∞, gamma factors tend to 1, and gyrolengths
tend to lengths. Equation (7.104) gives a well-known barycentric coordinates of the
Euclidean triangle incenter, where a23, a13, and a12, are the side lengths of a Eu-
clidean triangle A1A2A3 in R

n [29]. We should note that a23, a13, a12 in (7.103) are
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gyrotriangle side gyrolengths while, in contrast, a23, a13, a12 in (7.104) are triangle
side lengths.

The third system of gyrobarycentric coordinates of the gyrotriangle ingyrocenter
in (7.103) appears in a gyrotrigonometric form. As such, it is identical, in form,
with its Euclidean trigonometric counterpart. Indeed, in the limit s → ∞ the third
equation in (7.103), which is in a gyrotrigonometric form, remains intact in form in
the transition from hyperbolic geometry to Euclidean geometry. It leads to a well-
known barycentric coordinates of the Euclidean triangle incenter in a trigonometric
form [29],

(m1 : m2 : m3) = (sinα1 : sinα2 : sinα3). (Euclidean Geometry) (7.105)

We should note that while the third equation in (7.103) and (7.105) are equal in
form, they are different in context. The former involves gyrosines of gyrotriangle
gyroangles while, in contrast, the latter involves sines of triangle angles.

By Theorem 7.12 and the ingyrocenter gyrobarycentric coordinate representation
(7.75), p. 172, we obtain the following theorem:

Theorem 7.13 (The Gyrotriangle Ingyrocenter) Let S = {A1,A2,A3} be a point-
wise independent set of three points in an Einstein gyrovector space (Rn

s ,⊕,⊗).
The ingyrocenter I , Fig. 7.8, p. 169, of gyrotriangle A1A2A3 has the gyrobarycen-
tric coordinate representation

I =
m1γA1

A1 + m2γA2
A2 + m3γA3

A3

m1γA1
+ m2γA2

+ m3γA3

(7.106)

with respect to the set S = {A1,A2,A3}, with gyrobarycentric coordinates given by

(m1 : m2 : m3) =
(√

γ 2
23 − 1 :

√
γ 2

13 − 1 :
√

γ 2
12 − 1

)
(7.107)

or, equivalently, by

(m1 : m2 : m3) = (γ23a23 : γ13a13 : γ12a12) (7.108)

or, equivalently, by the gyrotrigonometric gyrobarycentric coordinates

(m1 : m2 : m3) = (sinα1 : sinα2 : sinα3). (7.109)

Two immediate, but interesting, corollaries of Theorem 7.13 are presented below:

Corollary 7.14 Let A1A2A3 be a gyrotriangle with gyroangles αk , k = 1,2,3, in
an Einstein gyrovector space (Rn

s ,⊕,⊗). Then, the gyrotriangle ingyrocenter I pos-
sesses the gyrotrigonometric gyrobarycentric coordinate representation

I =
sinα1γA1

A1 + sinα2γA2
A2 + sinα3γA3

A3

sinα1γA1
+ sinα2γA2

+ sinα3γA3

. (7.110)
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Corollary 7.15 Let A1A2A3 be a triangle with angles αk , k = 1,2,3, in a
Euclidean space R

n. Then, the triangle incenter I possesses the trigonometric
barycentric coordinate representation

I = sinα1A1 + sinα2A2 + sinα3A3

sinα1 + sinα2 + sinα3
. (7.111)

7.9 Gyrotriangle Gyroaltitude Foot

Let A3P3 be the gyroaltitude of gyrotriangle A1A2A3 drawn from vertex A3 to its
foot P3 on its opposite side A1A2 in an Einstein gyrovector space (Rn

s ,⊕,⊗), as
shown in Figs. 7.9–7.10 for n = 2. Furthermore, let

P3 =
m1γA1

A1 + m2γA2
A2

m1γA1
+ m2γA2

(7.112)

be the gyrobarycentric coordinate representation of P3 with respect to the set
{A1,A2}, (4.25), p. 90, where the gyrobarycentric coordinates (m1 : m2) are to be
determined in (7.123)–(7.125) below.

Employing the Gyrobarycentric Coordinate Representation Gyrocovariance The-
orem 4.6, we have from Identity (4.29b), p. 91, with X = �A1, using the standard

Fig. 7.9 The foot P3 of gyroaltitude A3P3 of a gyrotriangle A1A2A3 in an Einstein gyrovector
space (Rn

s ,⊕,⊗). Here the foot lies on side A1A2 of the gyrotriangle, so that both gyroangles α1
and α2 are acute
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Fig. 7.10 The foot P3 of gyroaltitude A3P3 of a gyrotriangle A1A2A3 in an Einstein gyrovector
space (Rn

s ,⊕,⊗). Here the foot lies on the extension of side A1A2 of the gyrotriangle, so that
gyroangle α2 is obtuse

gyrotriangle index notation, shown in Fig. 7.9, in Fig. 6.1, p. 128, and in (6.1),
p. 127,

γ�X⊕P3
=

m1γ�X⊕A1
+ m2γ�X⊕A2

m0
, (7.113)

where

m2
0 = m2

1 + m2
2 + 2m1m2γ12 . (7.114)

Hence, for X = A1, X = A2 and X = A3 in (7.113) we have, respectively,

γp13 = γ�A1⊕P3
=

m1 + m2γ�A1⊕A2

m0
= m1 + m2γ12

m0
,

γp23 = γ�A2⊕P3
=

m1γ�A2⊕A1
+ m2

m0
= m1γ12 + m2

m0
,

γh3 = γ�A3⊕P3
=

m1γ�A3⊕A1
+ m2γ�A3⊕A2

m0
= m1γ13 + m2γ23

m0
.

(7.115)
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Applying the Einstein–Pythagoras identity (6.57), p. 144, to each of the two right
gyroangled gyrotriangles A1P3A3 and A2P3A3 in Fig. 7.9, we have

γp13γh3 = γ13 ,

γp23γh3 = γ23 .

(7.116)

Substituting (7.114)–(7.115) into (7.116), we obtain a system of two equations
for the two unknowns m1 and m2. This system does not possess a unique solution.
Adding the normalization condition m1 + m2 = 1 results in the unique solution,

m1 = γ12γ23 − γ13

(γ13 + γ23)(γ12 − 1)
,

m2 = γ12γ13 − γ23

(γ13 + γ23)(γ12 − 1)
,

(7.117)

as one can readily check. The unique special gyrobarycentric coordinates (m1,m2)

of the point P3 with respect to the set S = {A1,A2} in Fig. 7.9 are thus determined
by (7.117).

The unique special gyrobarycentric coordinates (m1,m2) in (7.117) suggests the
following convenient gyrobarycentric coordinates (m′

1 : m′
2) of the point P3 with

respect to the set S = {A1,A2},
m′

1 = γ12γ23 − γ13 ,

m′
2 = γ12γ13 − γ23 ,

(7.118)

so that a gyrobarycentric coordinate representation (7.112) of P3 with respect to the
set S = {A1,A2} is given by

P3 =
(γ12γ23 − γ13)γ

A1
A1 + (γ12γ13 − γ23)γ

A2
A2

(γ12γ23 − γ13)γ
A1

+ (γ12γ13 − γ23)γ
A2

. (7.119)

A different convenient gyrobarycentric coordinates (m′′
1 : m′′

1) of P3 with respect
to {A1,A2} can be obtained from (7.118) by means of (6.20), p. 134,

(
m′′

1 : m′′
1

) = (γ12γ23 − γ13 : γ12γ13 − γ23)
1√

γ 2
12 − 1

√
γ 2

13 − 1
√

γ 2
23 − 1

=
(

cosα2√
γ 2

13 − 1
: cosα1√

γ 2
23 − 1

)
. (7.120)

The advantage of the gyrobarycentric coordinates (m′′
1 : m′′

1) of P3 with respect
to {A1,A2} in (7.120) rests on the observation that the sign of m′′

1 (m′′
2) equals the

sign of cosα2 (cosα1).
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Another set of convenient gyrobarycentric coordinates (m′′′
1 : m′′′

1 ) of P3 with
respect to {A1,A2} results from (7.120) and (6.39), p. 139, obtaining the following
gyrotrigonometric gyrobarycentric coordinates:

(
m′′′

1 : m′′′
1

) = (sinα1 cosα2 : cosα1 sinα2), (7.121)

where αk , k = 1,2,3, are the gyroangles of gyrotriangle A1A2A3 in Fig. 7.9, in the
standard gyrotriangle index notation.

Formalizing the main result of this section, we have the following theorem:

Theorem 7.16 (The Foot of a Gyrotriangle Gyroaltitude) Let S = {A1,A2,A3}
be a pointwise independent set of three points in an Einstein gyrovector space
(Rn

s ,⊕,⊗), and let P3 be the foot of gyroaltitude A3P3, Fig. 7.9, p. 180. Then the
gyroaltitude foot has the gyrobarycentric coordinate representation

P3 =
m1γA1

A1 + m2γA2
A2

m1γA1
+ m2γA2

(7.122)

with respect to the set S = {A1,A2}, with gyrobarycentric coordinates

(m1 : m2) = (γ12γ23 − γ13 : γ12γ13 − γ23) (7.123)

or, equivalently,

(m1 : m2) =
(

cosα2√
γ 2

13 − 1
: cosα1√

γ 2
23 − 1

)
(7.124)

or, equivalently, with gyrotrigonometric gyrobarycentric coordinates

(m1 : m2) = (sinα1 cosα2 : cosα1 sinα2). (7.125)

It is clear from (7.123)–(7.125) that the two gyrobarycentric coordinates m1 and
m2 of the gyroaltitude foot P3 are positive in Fig. 7.9, where P3 lies on side A1A2 of
gyrotriangle A1A2A3, so that both gyroangles α1 and α2 acute. The fact that in this
case the gyroaltitude foot P3 lies on side A1A2 is in accordance with Corollary 4.9,
p. 93.

In contrast, it is clear from (7.123)–(7.125) that the two gyrobarycentric coordi-
nates m1 and m2 of the gyroaltitude foot P3 are, respectively, negative and positive
in Fig. 7.10, where P3 lies on the extension of side A1A2 of gyrotriangle A1A2A3,
so that gyroangles α1 and α2 are, respectively, acute and obtuse. The fact that in
this case the gyroaltitude foot P3 does not lie on side A1A2 is in accordance with
Corollary 4.9, p. 93.

7.10 Gyrotriangle Gyroaltitude

In this section, we calculate the gyrolength h3 = ‖�A3⊕P3‖ of the gyroaltitude
gyrovector h3 = �A3⊕P3 of gyrotriangle A1A2A3 in Figs. 7.9–7.10.
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By the third equation in (7.115), we have

γh3 = γ�A3⊕P3
= m1γ13 + m2γ23

m0
, (7.126)

where, by (7.117),

m1 = γ12γ23 − γ13 ,

m2 = γ12γ13 − γ23 .

(7.127)

Hence, following (7.127) and (7.114),

m2
0 = m2

1 + m2
2 + 2m1m2γ12

= (
γ 2

12 − 1
)(

2γ12γ13γ23 − γ 2
13 − γ 2

23

)
(7.128)

so that, by (7.126)–(7.128),

γ 2
h3

= 2γ12γ13γ23 − γ 2
13 − γ 2

23

γ 2
12 − 1

= 1 + 1 + 2γ12γ13γ23 − γ 2
12 − γ 2

13 − γ 2
23

γ 2
12 − 1

. (7.129)

Hence, by (7.129) and (1.9), p. 5,

h2
3 = s2

γ 2
h3

− 1

γ 2
h3

= s2 1 + 2γ12γ13γ23 − γ 2
12 − γ 2

13 − γ 2
23

2γ12γ13γ23 − γ 2
13 − γ 2

23

= s2
(

1 − γ 2
12 − 1

2γa1γa2γ12 − γ 2
a1

− γ 2
a2

)
. (7.130)

Formalizing the results of this section, we obtain the following theorem:

Theorem 7.17 (The Gyrotriangle Gyroaltitude) Let A1A2A3 be a gyrotriangle in
an Einstein gyrovector space (Rn

s ,⊕,⊗) with a gyroaltitude A3P3, as shown in
Figs. 7.9–7.10, 7.17, and let h3 = ‖�A3⊕P3‖ be the gyrolength of the gyroaltitude.
Then,

h3 = s

√
1 + 2γ12γ13γ23 − γ 2

12 − γ 2
13 − γ 2

23

2γ12γ13γ23 − γ 2
13 − γ 2

23

(7.131)

and

γh3 =
√

2γ12γ13γ23 − γ 2
13 − γ 2

23

γ 2
12 − 1

. (7.132)
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Fig. 7.11 The ingyrocenter I of a gyrotriangle A1A2A3 in an Einstein gyrovector space
(Rn

s ,⊕,⊗). The gyrotriangle ingyrocenter is the point of the interior of the gyrotriangle that is
equigyrodistant from the three gyrotriangle sides. Accordingly, r := h1 = h2 = h3 is the gyrotri-
angle ingyroradius r

7.11 Gyrotriangle Ingyroradius

The gyrobarycentric coordinate representation, (4.25), p. 90, of the ingyrocenter I

of gyrotriangle A1A2A3 in an Einstein gyrovector space (Rn
s ,⊕,⊗), Fig. 7.11, with

respect to the set S = {A1,A2,A3} of the gyrotriangle vertices is given by

I =
m1γA1

A1 + m2γA2
A2 + m3γA3

A3

m1γA1
+ m2γA2

+ m3γA3

, (7.133)

where, by Theorem 7.12, p. 178, the gyrobarycentric coordinates of I in (7.133) are
given by

(m1 : m2 : m3) = (γ23a23 : γ13a13 : γ12a12). (7.134)

Following (7.133) and the Gyrobarycentric Coordinate Representation Gyroco-
variance Theorem 4.6, p. 90, we have

γX⊕I = m1γX⊕A1
+ m2γX⊕A2

+ m3γX⊕A3

m0
(7.135)

for all X ∈ R
n
s , where, according to (4.28d), p. 91, m0 is given by the equation

m2
0 = m2

1 + m2
2 + m2

3 + 2(m1m2γ12 + m1m3γ13 + m2m3γ23). (7.136)
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Fig. 7.12 The ingyrocircle of gyrotriangle A1A2A3 in Fig. 7.11 is shown. Its gyrocenter, I , is the
gyrotriangle ingyrocenter, and its gyroradius r , r := h1 = h2 = h3, is the gyrotriangle ingyroradius

Substituting X = �A1 and X = �A2 into (7.135), we have, respectively,

γ�A1⊕I = m1 + m2γ�A1⊕A2
+ m3γ�A1⊕A3

m0
,

γ�A2⊕I = m1γ�A2⊕A1
+ m2 + m3γ�A2⊕A3

m0

(7.137)

or, equivalently, in the notation of Fig. 7.11,

γa1
= m1 + m2γ12 + m3γ13

m0
,

γa2
= m1γ12 + m2 + m3γ23

m0
.

(7.138)

We are now in a position to apply the gyroaltitude equation (7.131) of gyrotrian-
gle A1A2A3 in Theorem 7.17, to gyrotriangle A1A2I in Fig. 7.12, obtaining in the
notation of Fig. 7.12,

r2 := h2
3 = s2 1 + 2γ12γa1γa2 − γ 2

12 − γ 2
a1

− γ 2
a2

2γ12γa1γa2 − γ 2
a1

− γ 2
a2

, (7.139)

where r is the ingyroradius of gyrotriangle A1A2A3, shown in Fig. 7.12.
Substituting (7.138) and, subsequently, (7.136) and (7.134) into (7.139), we have

r2 = s2

2

1 + 2γ12γ13γ23 − γ 2
12 − γ 2

13 − γ 2
23

D
, (7.140)
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where

D = γ12γ13γ23 − 1 + γ12

√
γ 2

13 − 1
√

γ 2
23 − 1 +

√
γ 2

12 − 1γ13

√
γ 2

23 − 1

+
√

γ 2
12 − 1

√
γ 2

13 − 1γ23 . (7.141)

7.12 Useful Gyrotriangle Gyrotrigonometric Identities

The identities in (6.33), p. 137, and (6.43), p. 140, prove useful when expressed in
the standard gyrotriangle index notation, shown in Fig. 6.1, p. 128, and in (6.1),
p. 127. In this notation, these identities take the form

γ12 = cosα3 + cosα1 cosα2

sinα1 sinα2
,

γ13 = cosα2 + cosα1 cosα3

sinα1 sinα3
,

γ23 = cosα1 + cosα2 cosα3

sinα2 sinα3
,

(7.142)

and

√
γ 2

12 − 1 = γ12
a12

s
= 2

√
F(α1, α2, α3)

sinα1 sinα2
,

√
γ 2

13 − 1 = γ13
a13

s
= 2

√
F(α1, α2, α3)

sinα1 sinα3
,

√
γ 2

23 − 1 = γ23
a23

s
= 2

√
F(α1, α2, α3)

sinα2 sinα3
,

(7.143)

where

F(α1, α2, α3) = 1

4

(
2 cosα1 cosα2 cosα3 + cos2 α1 + cos2 α2 + cos2 α3 − 1

)

= cos
α1 + α2 + α3

2
cos

α1 − α2 − α3

2
cos

−α1 + α2 − α3

2

× cos
−α1 − α2 + α3

2

= 1

4

(1 + 2γ12γ13γ23 − γ 2
12 − γ 2

13 − γ 2
23)

2

(γ 2
12 − 1)(γ 2

13 − 1)(γ 2
23 − 1)

. (7.144)
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The identities in (7.142) along with the common gyrotrigonometric/trigonometric
addition law of the gyrocosine/cosine function,

cos(α ± β) = cosα cosβ ∓ sinα sinβ (7.145)

for α,β ∈ R, imply

γ12 ± 1 = cosα3 + cos(α1 ∓ α2)

sinα1 sinα2
,

γ13 ± 1 = cosα2 + cos(α1 ∓ α3)

sinα1 sinα3
,

γ23 ± 1 = cosα1 + cos(α2 ∓ α3)

sinα2 sinα3
.

(7.146)

The law of gyrocosines (6.20), p. 134, and (7.143) imply

γ12γ13 − γ23 = 4F(α1, α2, α3) cosα1

sin2 α1 sinα2 sinα3
,

γ12γ23 − γ13 = 4F(α1, α2, α3) cosα2

sinα1 sin2 α2 sinα3
,

γ13γ23 − γ12 = 4F(α1, α2, α3) cosα3

sinα1 sinα2 sin2 α3
.

(7.147)

By (6.39), p. 139, we have

γ12γ13γ23 − 1 = 4F(α1, α2, α3)(1 + cosα1 cosα2 cosα3)

sin2 α1 sin2 α2 sin2 α3
. (7.148)

Other elegant and useful gyrotrigonometric identities are

γ12 − 1 = 2
cos α1+α2+α3

2 cos −α1−α2+α3
2

sinα1 sinα2
, (7.149)

γ12 + 1 = 2
cos α1−α2−α3

2 cos −α1+α2−α3
2

sinα1 sinα2
, (7.150)

and

γ12

√
γ 2

13 − 1
√

γ 2
23 − 1 = 4F(α1, α2, α3)

sin2 α1 sin2 α2 sin2 α3
(cosα1 cosα2 + cosα3), (7.151)

along with their index permutations, and

√
1 + 2γ12γ13γ23 − γ 2

12 − γ 2
13 − γ 2

23 = 4F(α1, α2, α3)

sinα1 sinα2 sinα3
. (7.152)
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The following resulting gyrotriangle gyrotrigonometric identities prove useful:

(γ12 − 1)(γ13 − 1)(γ23 − 1) = 8F(α1, α2, α3) cos2 α1+α2+α3
2

sin2 α1 sin2 α2 sin2 α3
, (7.153)

(γ12 + 1)(γ13 + 1)(γ23 + 1) = 8 cos2 α1−α2−α3
2 cos2 −α1+α2−α3

2 cos2 −α1−α2+α3
2

sin2 α1 sin2 α2 sin2 α3
(7.154)

so that

(
γ 2

12 − 1
)(

γ 2
13 − 1

)(
γ 2

23 − 1
) = 64F(α1, α2, α3)

3

sin4 α1 sin4 α4 sin2 α3
. (7.155)

7.13 Gyrotriangle Circumgyrocenter Gyrodistance from Sides

As an application of Theorem 7.17, p. 184, we determine the gyrodistances h1, h2
and h3 between a gyrotriangle circumgyrocenter, O , and its sides A2A3, A1A3 and
A1A2, respectively, shown in Fig. 7.13.

The gyrodistance of E (note that E represents each of Ek , k = 0,1,2,3, in
Fig. 8.1) from the gyroline that passes through points A1 and A2, Fig. 8.1, is the
gyroaltitude r12 of gyrotriangle A1A2E drawn from base A1A2. Hence, by Theo-
rem 7.17, p. 184, r12 is given by the equation

h2
3

s2
= 1 + 2γ12γ�A1⊕Oγ�A2⊕O − γ 2

12 − γ 2�A1⊕O − γ 2�A2⊕O

2γ12γ�A1⊕Oγ�A2⊕O − γ 2�A1⊕O − γ 2�A2⊕O

. (7.156)

Fig. 7.13 The gyrodistances h1, h2 and h3 between the circumgyrocenter of gyrotriangle A1A2A3
and its sides in an Einstein gyrovector space (Rn

s ,⊕,⊗)
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Since O is the gyrotriangle circumgyrocenter,

‖�A1⊕O‖ = ‖�A1⊕O‖ = R, (7.157)

where R is the circumgyroradius of gyrotriangle A1A2A3. Hence, (7.156) can be
written as

h2
3

s2
= 1 + 2γ12γ 2

R − γ 2
12 − 2γ 2

R

2γ12γ 2
R − 2γ 2

R

. (7.158)

Noting that γ 2
R = (1 − R2/s2)−1, (7.158) implies

h2
3

s2
= 1

2

{
R2

s2
(γ12 + 1) − (γ12 − 1)

}
, (7.159)

where the circumgyroradius R of gyrotriangle A1A2A3 is given by (7.29), p. 162.
Substituting R from (7.29) into (7.159), we have

h2
3

s2
= (γ 2

12 − 1)(γ13 − 1)(γ23 − 1)

1 + 2γ12γ13γ23 − γ 2
12 − γ 2

13 − γ 2
23

− 1

2
(γ12 − 1). (7.160)

Finally, substitutions of gyrotriangle gyrotrigonometric identities from Sect. 7.12
into (7.160) give the elegant relation

h2
3 = s2 cos α1+α2+α3

2 sin α1+α2−α3
2 tan α1+α2−α3

2

sinα1 sinα2
. (7.161)

Eliminating the factor s2 cos α1+α2+α3
2 between (7.161) and (7.35), p. 163, we

obtain the relation

h2
3 = R2 cos α1−α2−α3

2 cos −α1+α2−α3
2 sin2 α1+α2−α3

2

sinα1 sinα2
. (7.162)

The ball parameter s, which appears explicitly in (7.161), disappears in (7.162).
Clearly, however, its presence in (7.162) remains implicit since it involves in the
measure of gyroangles. Interestingly, the elegant relation (7.162) remains invariant
in form under the Euclidean limit s → ∞, so that it is valid in Euclidean geometry
as well.

The side A1A2 of gyrotriangle A1A2A3 in Fig. 7.13 is the gyrodiameter of the
gyrotriangle circumgyrocircle if and only if h3 = 0. The latter, in turn, is valid if
and only if α3 = α1 + α2, as we see from (7.162). Hence, the biggest gyroangle of a
gyrotriangle has measure equal to the sum of the measures of the other two gyroan-
gles if and only if the side opposite to the biggest gyroangle is a gyrodiameter of the
circumgyrocircle. This result is known in hyperbolic geometry; see, for instance,
[28, p. 133], where the result is proved synthetically.

Formalizing the results of this section, we obtain the following theorem:
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Theorem 7.18 Let A1A2A3 be a gyrotriangle in an Einstein gyrovector space
(Rn

s ,⊕,⊗) and let O be its circumgyrocenter, Fig. 7.13. The gyrodistances hk ,
k = 1,2,3, from O to the gyrotriangle side opposite to vertex Ak are related to
the gyrotriangle circumgyrocenter R and gyroangles α1, α2, α3 by the equations

h2
1 = R2 cos −α1+α2−α3

2 cos −α1−α2+α3
2 sin2 −α1+α2+α3

2

sinα2 sinα3
,

h2
2 = R2 cos α1−α2−α3

2 cos −α1−α2+α3
2 sin2 α1−α2+α3

2

sinα1 sinα3
,

h2
3 = R2 cos α1−α2−α3

2 cos −α1+α2−α3
2 sin2 α1+α2−α3

2

sinα1 sinα2
.

(7.163)

Proof The third equation in (7.163) is established in (7.162). The first and second
equations in (7.163) are derived from the third by vertex permutations. �

Corollary 7.19 The biggest gyroangle of a gyrotriangle in an Einstein gyrovector
space has measure equal to the sum of the measures of the other two gyroangles
if and only if the side opposite to the biggest gyroangle is a gyrodiameter of the
gyrotriangle circumgyrocircle.

7.14 Ingyrocircle Points of Tangency

Ingyrocircle points of tangency are associated with the gyrotriangle gyrocenter
called Gergonne gyropoint Ge, shown in Fig. 7.14, and studied in Sect. 7.16

Let us consider the point of tangency F3 in which the incircle of a gyrotrian-
gle A1A2A3 meets the gyrotriangle side opposite to A3, shown in Fig. 7.14. It is the
perpendicular foot of the gyrotriangle ingyrocenter I on the gyroline A1A2. Accord-
ingly, F3 is the gyroaltitude foot of gyrotriangle A1A2I , drawn from I , as shown in
Fig. 7.14.

Hence, by Theorem 7.16, p. 183, the gyroaltitude foot F3 possesses the gyro-
barycentric coordinate representation

F3 =
m1γA1

A1 + m2γA2
A2

m1γA1
+ m2γA2

(7.164)

with respect to the set S = {A1,A2}, with gyrobarycentric coordinates

m1 = γ�A1⊕A2
γ�A2⊕I − γ�A1⊕I = γ12γ�A2⊕I − γ�A1⊕I ,

m2 = γ�A1⊕A2
γ�A1⊕I − γ�A2⊕I = γ12γ�A1⊕I − γ�A2⊕I .

(7.165)

The gyrobarycentric coordinates m1 and m2 in (7.165) involve the gamma factors
γ�A1⊕I and γ�A2⊕I , which we calculate below.
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Fig. 7.14 The ingyrocircle of gyrotriangle A1A2A3 in Fig. 7.11 is shown along with its gyrocenter
I and its tangency points Fk , k = 1,2,3. The point Fk is the point in which the ingyrocircle of the
gyrotriangle meets the gyrotriangle side opposite to Ak . The Gergonne gyropoint Ge of gyrotrian-
gle A1A2A3 is the point of concurrency of the three gyrolines AkFk , given by its gyrotrigonometric
gyrobarycentric coordinate representation (7.202), p. 202

Being the incenter of gyrotriangle A1A2A3, I is given by, (7.106)–(7.109),
p. 179,

I =
γ23a23γA1

A1 + γ13a13γA2
A2 + γ12a12γA3

A3

γ23a23γA1
+ γ13a13γA2

+ γ12a12γA3

. (7.166)

Hence, by Theorem 4.6, p. 90,

γX⊕I = γ23a23γX⊕A1
+ γ13a13γX⊕A2

+ γ12a12γX⊕A3

m0
(7.167)

for all X ∈ R
n
s , where m0 > 0 is the constant of the gyrobarycentric coordinate

representation of I in (7.166). This constant need not be specified as we will see
below in the transition from (7.169) to (7.170).

Following (7.167) with X = �Ak , k = 1,2,3, we have, respectively,

γ�A1⊕I = γ23a23 + γ13a13γ12 + γ12a12γ13

m0
,

γ�A2⊕I = γ23a23γ12 + γ13a13 + γ12a12γ23

m0
,

γ�A3⊕I = γ23a23γ13 + γ13a13γ23 + γ12a12

m0
.

(7.168)
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Substituting from (7.168) into (7.165), we have

m1 = (γ 2
12 − 1)γ23a23 + (γ12γ23 − γ13)γ12a12

m0
,

m2 = (γ 2
12 − 1)γ13a13 + (γ12γ13 − γ23)γ12a12

m0
.

(7.169)

Being homogeneous, a common nonzero factor of gyrobarycentric coordinates is
irrelevant, so that convenient gyrobarycentric coordinates m1 and m2 of the point I

in (7.164) are obtained from (7.169) by removing the common denominator m0,

m1 = (
γ 2

12 − 1
)
γ23a23 + (γ12γ23 − γ13)γ12a12,

m2 = (
γ 2

12 − 1
)
γ13a13 + (γ12γ13 − γ23)γ12a12.

(7.170)

Substituting from (7.143)–(7.147) into (7.170), along with the abbreviation F =
F(α1, α2, α3), we have

m1 = 8F 3/2

sin2 α1 sin2 α2 sinα3

1 + cosα2

sinα2
= 8F 3/2

sin2 α1 sin2 α2 sinα3
cot

α2

2
,

m2 = 8F 3/2

sin2 α1 sin2 α2 sinα3

1 + cosα1

sinα1
= 8F 3/2

sin2 α1 sin2 α2 sinα3
cot

α1

2
.

(7.171)

Since gyrobarycentric coordinates are homogeneous, a nonzero common fac-
tor of a system of gyrobarycentric coordinates is irrelevant. Hence, it follows from
(7.171) that convenient gyrobarycentric coordinates for the point F3 in (7.164) are

m1 = cot
α2

2
,

m2 = cot
α1

2

(7.172)

so that, by (7.164), we have

F3 =
cot α2

2 γ
A1

A1 + cot α1
2 γ

A2
A2

cot α2
2 γ

A1
+ cot α1

2 γ
A2

. (7.173)

We have thus obtained the following theorem:

Theorem 7.20 Let A1A2A3 be a gyrotriangle in an Einstein gyrovector space R
n
s

and let Fk , k = 1,2,3, be the point in which the ingyrocircle of the gyrotriangle
meets the opposite side of Ak , Fig. 7.14. A gyrotrigonometric gyrobarycentric coor-
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dinate representation of each point Fk is given by

F1 =
cot α3

2 γ
A2

A2 + cot α2
2 γ

A3
A3

cot α3
2 γ

A2
+ cot α2

2 γ
A3

,

F2 =
cot α3

2 γ
A1

A1 + cot α1
2 γ

A3
A3

cot α3
2 γ

A1
+ cot α1

2 γ
A3

,

F3 =
cot α2

2 γ
A1

A1 + cot α1
2 γ

A2
A2

cot α2
2 γ

A1
+ cot α1

2 γ
A2

.

(7.174)

Proof The proof of the third equation in (7.174) is given by (7.164)–(7.173). The
proof of the first and the second equation in (7.174) is obtained from the first by
vertex permutations. �

The three points Fk , k = 1,2,3, of Theorem 7.20 are shown in Fig. 7.14. As
Fig. 7.14 indicates, the three gyrolines A1F1, A2F2 and A3F3 are concurrent. We
show in Sect. 7.16 that this is indeed the case, giving rise to the Gergonne gyropoint.

For later convenience, we determine below the left gyrotranslation of Fk , k =
1,2,3, by �A1.

Applying to (7.174) the gyrocovariance of gyrobarycentric coordinate represen-
tations, Theorem 4.6, p. 90, we have from Identity (4.29a), p. 91, with X = �A1,
using the standard gyrotriangle index notation, shown in Fig. 8.4, in Fig. 6.1, p. 128,
and in (6.1), p. 127:

�A1⊕F1 = �A1⊕
cot α3

2 γ
A2

A2 + cot α2
2 γ

A3
A3

cot α3
2 γ

A2
+ cot α2

2 γ
A3

= cot α3
2 γ12a12 + cot α2

2 γ13a13

cot α3
2 γ12 + cot α2

2 γ13

,

(7.175a)

�A1⊕F2 = �A1⊕
cot α3

2 γ
A1

A1 + cot α1
2 γ

A3
A3

cot α3
2 γ

A1
+ cot α1

2 γ
A3

= cot α1
2 γ13a13

cot α3
2 + cot α1

2 γ13

, (7.175b)

and

�A1⊕F3 = �A1⊕
cot α2

2 γ
A1

A1 + cot α1
2 γ

A2
A2

cot α2
2 γ

A1
+ cot α1

2 γ
A2

= cot α1
2 γ12a12

cot α2
2 + cot α1

2 γ12

. (7.175c)

7.15 An Unlikely Concurrence

Let A1A2A3 be a gyrotriangle in an Einstein gyrovector space (Rn
s ,⊕,⊗), and let

Fk , k = 1,2,3, be the tangency points of its ingyrocircle gyrocentered at I . Further-
more, let P be the point of intersection of the gyrolines A3I and F1F3, as shown in
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Fig. 7.15 An Unlikely Concurrence. The two gyrolines F1F3 and A3I concur at P , generating
the right gyrotriangle A1PA3. The point P3 is the A3-foot of the ingyrocenter of gyrotriangle
A1A2A3, so that the gyrolines A3I and A3P3 coincide. Fk , k = 1,2,3 are the points of tangency
where the ingyrocircle meets the sides of the gyrotriangle

Figs. 7.15–7.16. We will show that the resulting gyrotriangle A1PA3 is right, with
the right gyroangle ∠A1PA3.

The gyroline A3I is the bisector of gyroangle ∠A1A3A2 and, following (7.71)
and (7.73), p. 171, its foot P3 is given by the gyrobarycentric coordinate represen-
tation

P3 =
sinα1γA1

A1 + sinα2γA2
A2

sinα1γA1
+ sinα2γA2

(7.176)

with respect to the set S = {A1,A2,A3}. Clearly, the gyrolines A3I and A3P3 coin-
cide.

The tangency points Fk , K = 1,3, of the gyrotriangle ingyrocircle, Fig. 7.15,
where the ingyrocircle meets the gyrotriangle sides A2A3 and A1A3 are given by,
(7.174),

F1 =
cot α3

2 γ
A2

A2 + cot α2
2 γ

A3
A3

cot α3
2 γ

A2
+ cot α2

2 γ
A3

,

F3 =
cot α2

2 γ
A1

A1 + cot α1
2 γ

A2
A2

cot α2
2 γ

A1
+ cot α1

2 γ
A2

.

(7.177)
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Let the point of intersection, P , of gyrolines A3I and F1F3 be given by its gyro-
barycentric coordinate representation

P =
m1γA1

A1 + m2γA2
A2 + m3γA3

A3

m1γA1
+ m2γA2

+ m3γA3

, (7.178)

where the gyrobarycentric coordinates (m1 : m2 : m3) are to be determined in
(7.185). Clearly, P is the point of intersection of gyrolines A3P3 and F1F3 as well.

Owing to the Gyrobarycentric Coordinate Representation Gyrocovariance The-
orem 4.6, p. 90, the left gyrotranslated point, �A2⊕P , of P by �A2 is the inter-
section point of the two left gyrotranslated gyrolines (�A2⊕A3)(�A2⊕P3) and
(�A2⊕F1)(�A2⊕F3).

Following Theorem 4.6, the left gyrotranslations of points A3, P3, F1, F3, and P

by �A2 are:

�A2⊕A3 = a23,

�A2⊕P3 = γ12 sinα1

γ12 sinα1 + sinα2
a21 =: c1a21,

�A2⊕F1 = γ23 cot α2
2

cot α3
2 + γ23 cot α2

2

a23 =: c2a23,

�A2⊕F3 = γ12 cot α2
2

γ12 cot α2
2 + cot α1

2

a21 =: c3a21,

�A2⊕P = m1γ12a21 + m3γ23a23

m1γ12 + m2 + m3γ23

=: c4a21 + c5a23,

(7.179)

where we use the standard gyrotriangle index notation, shown in Fig. 6.1, p. 128,
and in (6.1), p. 127.

The Euclidean straight line L1 that passes through the points

�A2⊕A3, �A2⊕P3 ∈ R
n
s ⊂ R

n (7.180a)

is

L1 = (�A2⊕A3) + {−(�A2⊕A3) + (�A2⊕P3)
}
t1

= a23 + (−a23 + c1a21)t1 (7.180b)

where t1 ∈ R is the line parameter.
Similarly, the Euclidean straight line L2 that passes through the points

�A2⊕F1, �A2⊕F3 ∈ R
n
s ⊂ R

n (7.181a)
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Fig. 7.16 An Unlikely Concurrence. The two points A1 and A2 of Fig. 7.15 are interchanged in
this figure. As opposed to Fig. 7.15, here the point of concurrence, P , lies on the interior of its
reference gyrotriangle A1A2A3

is

L2 = (�A2⊕F1) + {−(�A2⊕F1) + (�A2⊕F3)
}
t2

= c2a23 + (−c2a23 + c3a21)t2 (7.181b)

where t2 ∈ R is the line parameter.
The point �A2⊕P = c4a21 + c5a23 lies on each of the two lines L1 and L2,

which are coplanar and nonparallel. Hence, there exist t1,0 and t2,0 of the line pa-
rameters t1 and t2, respectively, such that

c4a21 + c5a23 − {
a23 + (−a23 + c1a21)t1

} = 0,

c4a21 + c5a23 − {
c2a23 + (−c2a23 + c3a21)t2

} = 0.
(7.182)

Substituting ck , k = 1, . . . ,5, from (7.179) into (7.182), we obtain two vector
equations of the form

c11a21 + c12a23 = 0,

c21a21 + c22a23 = 0.
(7.183)

The two gyrovectors a21 and a23 in R
n
s , considered as vectors in R

n, are linearly
independent in R

n since the set S = {A1,A2,A3} is pointwise independent. Hence,
the two vector equations in (7.183) are equivalent to the following four scalar equa-
tions,

c11 = c12 = c21 = c22 = 0 (7.184)

for the five unknowns tk,0, k = 1,2, and mk , k = 1,2,3.
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Two of the resulting four equations admit a solution for t1,0 and t2,0. These are
substituted into the remaining two equations, simplifying them into two equations
for the three unknowns mk , k = 1,2,3. The latter, in turn, determine the unknowns
m1/m3 and m2/m3 uniquely. Keeping in mind that gyrobarycentric coordinates
are homogeneous, by definition, resulting convenient gyrobarycentric coordinates
(m1 : m2 : m3) for the point P in (7.178) turn out to be

m1 = cot
α3

2
sinα1,

m2 = cot
α3

2
sinα2,

m3 = cot
α2

2
sinα2 − cot

α1

2
sinα1 = 2

(
cos2 α2

2
− cos2 α1

2

)
.

(7.185)

By (4.15), p. 88, the constant m0 of the gyrobarycentric coordinate representation
(7.178) of P is, in general, given by

m2
0 = m2

1 + m2
2 + m2

3 + 2(m1m2γ12 + m1m3γ13 + m2m3γ23). (7.186)

In order to express (7.186) gyrotrigonometrically, we substitute into (7.186) (i) the
gyrobarycentric coordinates from (7.185), and (ii) the gamma factors from (7.142),
p. 187, obtaining the elegant equation

m2
0 = (cosα2 + cosα1 cosα3)

2 + sin2 α1(1 + cosα3)
2

sin2 α3
2

(7.187)

which demonstrates that m2
0 > 0 for the gyrobarycentric coordinate representation

(7.178) of P ∈ R
n with respect to any gyrotriangle A1A2A3 in R

n
s .

According to Corollary 4.9, p. 93, the point P ∈ R
n with the gyrobarycentric co-

ordinate representation (7.178) lies in the ball R
n
s if and only if the squared constant,

m2
0, of the representation is positive. It is, therefore, interesting to realize that m2

0 in
(7.187) is always positive, so that the point P in (7.178) and in Fig. 7.15 lies in the
ball (or, in the disc, if n = 2, as in Fig. 7.15) for any reference gyrotriangle A1A2A3

in R
n
s .

The gyrobarycentric coordinates m1 and m2 of P in (7.185) are always positive.
The third gyrobarycentric coordinate, m3, of P in (7.185) equals 0 if and only if
α1 = α2. Otherwise, if m3 > 0 for gyrotriangle A1A2A3, as shown in Fig. 7.15,
then, necessarily, m3 < 0 for gyrotriangle A2A1A3, as shown in Fig. 7.16. It is clear
from (7.185) that interchanging the vertices A1 and A2 of gyrotriangle A2A1A3

results in the change of the sign of m3. Accordingly, as stated in Corollary 4.10,
p. 94, The point P lies on the interior of gyrotriangle A1A2A3 in Fig. 7.15, and on
its exterior in Fig. 7.16.
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Applying Theorem 4.6, p. 90, to P in (7.178) with X = �A1 and X = �A2,
respectively, we obtain the following two equations:

γ�A1⊕P = m1γ�A1⊕A1
+ m2γ�A1⊕A2

+ m3γ�A1⊕A3

m0
= m1 + m2γ12 + m3γ13

m0
,

γ�A3⊕P = m1γ�A3⊕A1
+ m2γ�A3⊕A2

+ m3γ�A3⊕A3

m0
= m1γ13 + m2γ23 + m3

m0
,

(7.188)

where m0 is given gyrotrigonometrically by (7.187)
In order to express (7.188) gyrotrigonometrically as well, we substitute into the

numerators of the extreme right-hand sides of (7.188) (i) the gyrobarycentric coor-
dinates from (7.185), and (ii) the gamma factors from (7.142), p. 187, obtaining the
following two results, to which we add a third result taken from (7.142), p. 187:

γ�A1⊕P = tan α3
2

2 sinα1
m0,

γ�A3⊕P = cosα2 + cosα1 cosα3

sin2 α3
2

1

m0
,

γ�A1⊕A3
= γ13 = cosα2 + cosα1 cosα3

sinα1 sinα3
.

(7.189)

It is clear from (7.189) that the three gamma factors in (7.189) are related by the
equation

γ�A1⊕P γ�A3⊕P = γ�A1⊕A3
. (7.190)

Equation (7.190), in turn, is equivalent to the condition that gyrotriangle A1PA3 in
Figs. 7.15–7.16 is right, with the right gyroangle at P , as indicated in Figs. 7.15–
7.16 and stated in Theorem 6.13, p. 143.

The surprising coincidence described in this section, illustrated by Figs. 7.15–
7.16, remains invariant in form under the Euclidean limit s → ∞, so that it is valid in
Euclidean geometry as well. This coincidence in Euclidean geometry is considered
as an “unlikely concurrence” [26, p. 31]. Here, in the context of hyperbolic geome-
try, we have an additional surprise: The point of concurrence, P , in Figs. 7.15–7.16,
always lies in the ball R

n
s unlike, for instance, the gyrotriangle circumgyrocenter and

orthogyrocenter, which sometimes do not exist in the ball as shown, for instance, in
Fig. 7.21, p. 212.

7.16 Gergonne Gyropoint

Definition 7.21 (Gergonne Gyropoint) Let A1A2A3 be a gyrotriangle in an Ein-
stein gyrovector space (Rn

s ,⊕,⊗) and let Fk , k = 1,2,3, be the tangent point in
which the ingyrocircle of the gyrotriangle meets the gyrotriangle side opposite to
Ak , Fig. 7.14. The gyrotriangle vertices Ak and the gyrotriangle points of tangency
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Fk form the three gyrolines AkFk that are concurrent. Owing to analogies with Eu-
clidean geometry, this point of concurrency, Ge, is called the Gergonne gyropoint
of the gyrotriangle.

Let the Gergonne gyropoint Ge of gyrotriangle A1A2A3 in an Einstein gyrovec-
tor space (Rn

s ,⊕,⊗), Fig. 7.14, be given by its gyrobarycentric coordinate repre-
sentation with respect to the set S = {A1,A2,A3} of the gyrotriangle,

Ge =
m1γA1

A1 + m2γA2
A2 + m3γA3

A3

m1γA1
+ m2γA2

+ m3γA3

, (7.191)

where the gyrobarycentric coordinates (m1 : m2 : m3) of Ge in (7.191) are to be
determined.

Left gyrotranslating gyrotriangle A1A2A3 by �A1, the gyrotriangle becomes
gyrotriangle O(�A1⊕A2)(�A1⊕A3), where O = �A1⊕A1 is the arbitrarily se-
lected origin of the Einstein gyrovector space (Rn

s ,⊕,⊗), O = (0,0, . . . ,0). The
gyrotriangle tangent points Fk , k = 1,2,3, are left gyrotranslated as well, becom-
ing, respectively, �A1⊕Fk , which are given by (7.175a), (7.175b), (7.175c).

Similarly, the gyrotriangle Nagel gyropoint of the left gyrotranslated gyrotriangle
becomes P = �A1⊕Ge , given by

P = �A1⊕Ge

=
m2γ�A1⊕A2

(�A1⊕A2) + m3γ�A1⊕A3
(�A1⊕A3)

m1 + m2γ�A1⊕A2
+ m3γ�A1⊕A3

= m2γ12a12 + m3γ13a13

m1 + m2γ12 + m3γ13

. (7.192)

1. The tangent point �A1⊕F1 and the vertex O = �A1⊕A1 = (0,0, . . . ,0) of
the left gyrotranslated gyrotriangle O(�A1⊕A2)(�A1⊕A3) form the Euclidean
line

L1 = (�A1⊕F1)t1 =
(

cot α3
2 γ12a12 + cot α2

2 γ13a13

cot α3
2 γ12 + cot α2

2 γ13

)
t1 (7.193)

as we see from (7.175a), where t1 ∈ R is the line parameter.
2. The tangent point �A1⊕F2 and the vertex a12 = �A1⊕A2 of the left gyrotrans-

lated gyrotriangle O(�A1⊕A2)(�A1⊕A3) form the Euclidean line

L2 = (�A1⊕A2) + (−(�A1⊕A2) + (�A1⊕F2)
)
t2

= a12 +
(

−a12 + cot α1
2 γ13a13

cot α3
2 + cot α1

2 γ13

)
t2 (7.194)

as we see from (7.175b), where t2 ∈ R is the line parameter.
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3. The tangent point �A1⊕F3 and the vertex a13 = �A1⊕A3 of the left gyrotrans-
lated gyrotriangle O(�A1⊕A2)(�A1⊕A3) form the Euclidean line

L3 = (�A1⊕A3) + (−(�A1⊕A3) + (�A1⊕F3)
)
t3

= a13 +
(

−a13 + cot α1
2 γ12a12

cot α2
2 + cot α1

2 γ12

)
t3 (7.195)

as we see from (7.175c), where t3 ∈ R is the line parameter.

Since the point P lies on each of the three lines Lk , k = 1,2,3, there exist values
tk,0 of the line parameters tk , k = 1,2,3, respectively, such that

P −
(

cot α3
2 γ12a12 + cot α2

2 γ13a13

cot α3
2 γ12 + cot α2

2 γ13

)
t1,0 = 0,

P − a12 −
(

−a12 + cot α1
2 γ13a13

cot α3
2 + cot α1

2 γ13

)
t2,0 = 0,

P − a13 −
(

−a13 + cot α1
2 γ12a12

cot α2
2 + cot α1

2 γ12

)
t3,0 = 0,

(7.196)

where P is given by (7.192).
The system of equations (7.196) was obtained by methods of gyroalgebra, and

will be solved below by a common method of linear algebra.
Substituting P from (7.192) into (7.196), and rewriting each of the resulting

equations as a linear combination of a12 and a13 equals zero, one obtains the fol-
lowing homogeneous linear system of three gyrovector equations

c11a12 + c12a13 = 0,

c21a12 + c22a13 = 0,

c31a12 + c32a13 = 0,

(7.197)

where each coefficient cij , i = 1,2,3, j = 1,2, is a function of the gyrotriangle
parameters γ12 , γ13 , γ23 and αk , and the six unknowns tk,0 and mk , k = 1,2,3.

Since the set S = {A1,A2,A3} is pointwise independent, the two gyrovectors
a12 = �A1⊕A2 and a13 = �A1⊕A3 in R

n
s , considered as vectors in R

n, are linearly
independent in R

n. Hence, each coefficient cij in (7.197) equals zero. Accordingly,
the three gyrovector equations in (7.197) are equivalent to the following six scalar
equations,

c11 = c12 = c21 = c22 = c31 = c32 = 0 (7.198)

for the six unknowns tk,0 and mk , k = 1,2,3.
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An explicit presentation of the resulting system (7.198) reveals that it is slightly
nonlinear. However, it is linear in the unknowns t1,0, t2,0, t3,0. Solving three equa-
tions of the system for t1,0, t2,0, t3,0, and substituting these into the remaining equa-
tions of the system we obtain a system that determines the ratios m1/m3 and
m2/m3 uniquely, from which convenient (homogeneous) gyrobarycentric coordi-
nates (m1 : m2 : m3) are obtained. The unique determination of m1/m3 and m2/m3

turns out to be

m1

m3
= cot α3

2

cot α1
2

,

m2

m3
= cot α3

2

cot α2
2

(7.199)

from which two convenient gyrobarycentric coordinates result. These are:

(m1 : m2 : m3) =
(

cot
α2

2
cot

α3

2
: cot

α1

2
cot

α3

2
: cot

α1

2
cot

α2

2

)
(7.200)

and, equivalently,

(m1 : m2 : m3) =
(

tan
α1

2
: tan

α2

2
: tan

α3

2

)
. (7.201)

Formalizing the main result of this section, we have the following theorem:

Theorem 7.22 Let A1A2A3 be a gyrotriangle in an Einstein gyrovector space
(Rn

s ,⊕,⊗). A gyrotrigonometric gyrobarycentric coordinate representation of the
gyrotriangle Gergonne gyropoint Ge , Fig. 7.14, p. 192, is given by

Ge =
tan α1

2 γ
A1

A1 + tan α2
2 γ

A2
A2 + tan α3

2 γ
A3

A3

tan α1
2 γ

A1
+ tan α2

2 γ
A2

+ tan α3
2 γ

A3

. (7.202)

Proof The proof follows immediately from (7.191) and (7.201). �

7.17 Gyrotriangle Orthogyrocenter

The hyperbolic triangle orthocenter, H , shown in Fig. 7.17, is called in gyrolan-
guage a gyrotriangle orthogyrocenter.

Definition 7.23 The orthogyrocenter, H , of a gyrotriangle is the point of concur-
rency of the gyrotriangle gyroaltitudes.
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The three feet, P1, P2 and P3 of the three gyroaltitudes of gyrotriangle A1A2A3

in an Einstein gyrovector space (Rn
s ,⊕,⊗), shown in Fig. 7.17 for n = 2, are given

by

P1 =
(γ13γ23 − γ12)γ

A2
A2 + (γ12γ23 − γ13)γ

A3
A3

(γ13γ23 − γ12)γ
A2

+ (γ12γ23 − γ13)γ
A3

,

P2 =
(γ13γ23 − γ12)γ

A1
A1 + (γ12γ13 − γ23)γ

A3
A3

(γ13γ23 − γ12)γ
A1

+ (γ12γ13 − γ23)γ
A3

,

P3 =
(γ12γ23 − γ13)γ

A1
A1 + (γ12γ13 − γ23)γ

A2
A2

(γ12γ23 − γ13)γ
A1

+ (γ12γ13 − γ23)γ
A2

.

(7.203)

The third equation in (7.203) is a copy of (7.119). The first and second equations
in (7.203) are obtained from the third one by cyclic permutations of the vertices of
gyrotriangle A1A2A3.

Gyrotriangle gyroaltitudes are concurrent. The gyroaltitudes of gyrotriangle
A1A2A3 in an Einstein gyrovector space (Rn

s ,⊕,⊗), shown in Fig. 7.17 for n = 2,
are the gyrosegments A1P1, A2P2, and A1P3. Since gyrosegments in Einstein gy-
rovector spaces coincide with Euclidean segments, one can employ methods of lin-
ear algebra to determine the point of concurrency, that is, the orthogyrocenter, of the
three gyroaltitudes of gyrotriangle A1A2A3 in Fig. 7.17.

In order to determine the gyrobarycentric coordinates of the gyrotriangle orth-
ogyrocenter in Einstein gyrovector spaces we begin with some gyroalgebraic ma-
nipulations that reduce the task we face to a problem in linear algebra.

Let the orthogyrocenter H of gyrotriangle A1A2A3 in an Einstein gyrovector
space (Rn

s ,⊕,⊗), Fig. 7.17, be given in terms of its gyrobarycentric coordinate
representation with respect to the set S = {A1,A2,A3} of the gyrotriangle vertices
by the equation

H =
m1γA1

A1 + m2γA2
A2 + m3γA3

A3

m1γA1
+ m2γA2

+ m3γA3

(7.204)

where the gyrobarycentric coordinates (m1 : m2 : m3) of H in (7.204) are to be
determined.

Left gyrotranslating gyrotriangle A1A2A3 by �A1, the gyrotriangle becomes
gyrotriangle O(�A1⊕A2)(�A1⊕A3), where O = �A1⊕A1 is the arbitrarily se-
lected origin of the Einstein gyrovector space R

n
s . The gyrotriangle gyroaltitude feet

P1, P2 and P3 become, respectively, �A1⊕P1, �A1⊕P2 and �A1⊕P3. These are
calculated in (7.205a), (7.205b), (7.205c) below. Employing the Gyrobarycentric
Coordinate Representation Gyrocovariance Theorem 4.6, p. 90, we have from Iden-
tity (4.29a), p. 91, with X = �A1, using the standard gyrotriangle index notation,
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Fig. 7.17 The orthogyrocenter H of a gyrotriangle A1A2A3 in an Einstein gyrovector space
(Rn

s ,⊕,⊗). Here the orthogyrocenter lies inside its gyrotriangle. There are gyrotriangles with
their orthogyrocenter lying out of their gyrotriangles, and there are gyrotriangles that possess no
orthogyrocenter, as shown in Figs. 7.18–7.21

shown in Fig. 7.17, in Fig. 6.1, p. 128, and in (6.1), p. 127:

�A1⊕P1

= �A1⊕
(γ13γ23 − γ12)γ

A2
A2 + (γ12γ23 − γ13)γ

A3
A3

(γ13γ23 − γ12)γ
A2

+ (γ12γ23 − γ13)γ
A3

=
(γ13γ23 − γ12)γ�A1⊕A2

(�A1⊕A2) + (γ12γ23 − γ13)γ�A1⊕A3
(�A1⊕A3)

(γ13γ23 − γ12)γ�A1⊕A2
+ (γ12γ23 − γ13)γ�A1⊕A3

= (γ13γ23 − γ12)γ12a12 + (γ12γ23 − γ13)γ13a13

(γ13γ23 − γ12)γ12 + (γ12γ23 − γ13)γ13

, (7.205a)

�A1⊕P2

= �A1⊕
(γ13γ23 − γ12)γ

A1
A1 + (γ12γ13 − γ23)γ

A3
A3

(γ13γ23 − γ12)γ
A1

+ (γ12γ13 − γ23)γ
A3

=
(γ12γ13 − γ23)γ�A1⊕A3

(�A1⊕A3)

(γ13γ23 − γ12) + (γ12γ13 − γ23)γ�A1⊕A3
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= (γ12γ13 − γ23)γ13a13

(γ13γ23 − γ12) + (γ12γ13 − γ23)γ13

, (7.205b)

�A1⊕P3

= �A1⊕
(γ12γ23 − γ13)γ

A1
A1 + (γ12γ13 − γ23)γ

A2
A2

(γ12γ23 − γ13)γ
A1

+ (γ12γ13 − γ23)γ
A2

=
(γ12γ13 − γ23)γ�A1⊕A2

(�A1⊕A2)

(γ12γ23 − γ13) + (γ12γ13 − γ23)γ�A1⊕A2

= (γ12γ13 − γ23)γ12a12

(γ12γ23 − γ13) + (γ12γ13 − γ23)γ12

. (7.205c)

Note that, by Definition 4.5, p. 89, the set of points S = {A1,A2,A3} is pointwise
independent in an Einstein gyrovector space (Rn

s ,⊕,⊗). Hence, the two gyrovectors
a12 = �A1⊕A2 and a13 = �A1⊕A3 in R

n
s ⊂ R

n in (7.205a), (7.205b), (7.205c) are
linearly independent in R

n.
Similarly to the gyroalgebra in (7.205a), (7.205b), (7.205c), under a left gyro-

translation by �A1 the orthogyrocenter H in (7.204) becomes

�A1⊕H =
m2γ�A1⊕A2

(�A1⊕A2) + m3γ�A1⊕A3
(�A1⊕A3)

m1 + m2γ�A1⊕A2
+ m3γ�A1⊕A3

= m2γ12a12 + m3γ13a13

m1 + m2γ12 + m3γ13

. (7.206)

The gyroaltitude of the left gyrotranslated gyrotriangle O(�A1⊕A2)(�A1⊕A3)

that joins the vertex

�A1⊕A1 = O = 0 (7.207)

with the gyroaltitude foot on its opposing side, P1, as calculated in (7.205a),

�A1⊕P1 = (γ13γ23 − γ12)γ12a12 + (γ12γ23 − γ13)γ13a13

(γ13γ23 − γ12)γ12 + (γ12γ23 − γ13)γ13

(7.208)

is contained in the Euclidean line

L1 = O + (−O + {�A1⊕P1}
)
t1

= (γ13γ23 − γ12)γ12a12 + (γ12γ23 − γ13)γ13a13

(γ13γ23 − γ12)γ12 + (γ12γ23 − γ13)γ13

t1, (7.209)

where t1 ∈ R is the line parameter. This line passes through the point O = 0 ∈ R
n
s ⊂

R
n when t1 = 0, and it passes through the point �A1⊕P1 when t1 = 1.
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Similarly to (7.207)–(7.209), the gyroaltitude of the left gyrotranslated gyrotri-
angle O(�A1⊕A2)(�A1⊕A3) that joins the vertex

�A1⊕A2 = a12 (7.210)

with the gyroaltitude foot on its opposing side, P2, as calculated in (7.205b),

�A1⊕P2 = (γ12γ13 − γ23)γ13a13

(γ13γ23 − γ12) + (γ12γ13 − γ23)γ13

(7.211)

is contained in the Euclidean line

L2 = a12 + (−a12 + {�A1⊕P2}
)
t2

= a12 +
(

−a12 + (γ12γ13 − γ23)γ13a13

(γ13γ23 − γ12) + (γ12γ13 − γ23)γ13

)
t2, (7.212)

where t2 ∈ R is the line parameter. This line passes through the point a12 ∈ R
n
s ⊂ R

n

when t2 = 0, and it passes through the point �A1⊕P2 when t2 = 1.
Similarly to (7.207)–(7.209), and similarly to (7.210)–(7.212), the gyroaltitude

of the left gyrotranslated gyrotriangle O(�A1⊕A2)(�A1⊕A3) that joins the vertex

�A1⊕A3 = a13 (7.213)

with the gyroaltitude foot on its opposing side, P3, as calculated in (7.205c),

�A1⊕P3 = (γ12γ13 − γ23)γ12a12

(γ12γ23 − γ13) + (γ12γ13 − γ23)γ12

(7.214)

is contained in the Euclidean line

L3 = a13 + (−a13 + {�A1⊕P3}
)
t3

= a13 +
(

−a13 + (γ12γ13 − γ23)γ12a12

(γ12γ23 − γ13) + (γ12γ13 − γ23)γ12

)
t3, (7.215)

where t3 ∈ R is the line parameter. This line passes through the point a13 ∈ R
n
s ⊂ R

n

when t3 = 0, and it passes through the point �A1⊕P3 ∈ R
n
s ⊂ R

n when t3 = 1.
Hence, if the orthogyrocenter H exists, its left gyrotranslated orthogyrocenter,

−�A1⊕H , given by (7.206), is contained in each of the three Euclidean lines Lk ,
k = 1,2,3, in (7.209), (7.212) and (7.215). Formalizing, if H exists then the point
P , (7.206),

P = �A1⊕H = m2γ12a12 + m3γ13a13

m1 + m2γ12 + m3γ13

(7.216)
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lies on each of the lines Lk , k = 1,2,3. Imposing the normalization condition m1 +
m2 + m3 = 1 of gyrobarycentric coordinates, (7.216) can be simplified by means of
the resulting equation m1 = 1 − m2 − m3, obtaining

P = �A1⊕H = m2γ12a12 + m3γ13a13

1 + m2(γ12 − 1) + m3(γ13 − 1)
. (7.217)

Since the point P lies on each of the three lines Lk , k = 1,2,3, there exist values
tk,0 of the line parameters tk , k = 1,2,3, respectively, such that

P − (γ13γ23 − γ12)γ12a12 + (γ12γ23 − γ13)γ13a13

(γ13γ23 − γ12)γ12 + (γ12γ23 − γ13)γ13

t1,0 = 0,

P − a12 −
(

−a12 + (γ12γ13 − γ23)γ13a13

(γ13γ23 − γ12) + (γ12γ13 − γ23)γ13

)
t2,0 = 0,

P − a13 −
(

−a13 + (γ12γ13 − γ23)γ12a12

(γ12γ23 − γ13) + (γ12γ13 − γ23)γ12

)
t3,0 = 0.

(7.218)

The kth equation in (7.218), k = 1,2,3, is equivalent to the condition that point P

lies on line Lk .
The system of equations (7.218) was obtained by methods of gyroalgebra, and

will be solved below by a common method of linear algebra.
Substituting P from (7.217) into (7.218), and rewriting each equation in (7.218)

as a linear combination of a12 and a13 equals zero, one obtains the following linear
homogeneous system of three gyrovector equations

c11a12 + c12a13 = 0,

c21a12 + c22a13 = 0,

c31a12 + c32a13 = 0,

(7.219)

where each coefficient cij , i = 1,2,3, j = 1,2, is a function of γ12 , γ13 , γ23 , and
the five unknowns m2, m3, and tk,0, k = 1,2,3.

Since the set S = {A1,A2,A3} is pointwise independent, the two gyrovectors
a12 = �A1⊕A2 and a13 = �A1⊕A3 in R

n
s , considered as vectors in R

n, are linearly
independent in R

n. Hence, each coefficient cij in (7.219) equals zero. Accordingly,
the three gyrovector equations in (7.219) are equivalent to the following six scalar
equations,

c11 = c12 = c21 = c22 = c31 = c32 = 0 (7.220)

for the five unknowns m2,m3 and tk,0, k = 1,2,3.
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Explicitly, the six scalar equations in (7.220) are equivalent to the following six
equations:

(
2γ12γ13γ23 − γ 2

12 − γ 2
13

)
m2

− (γ13γ23 − γ12)(1 − m2 − m3 + γ12m2 + γ13m3)t1,0 = 0,

(
2γ12γ13γ23 − γ 2

12 − γ 2
13

)
m3

− (γ12γ23 − γ13)(1 − m2 − m3 + γ12m2 + γ13m3)t1,0 = 0,

1 − m2 − m3 + γ13m3 − (1 − m2 − m3 + γ12m2 + γ13m3)t2,0 = 0,

γ12

(
γ 2

13 − 1
)
m3 − (γ12γ13 − γ23)(1 − m2 − m3 + γ12m2 + γ13m3)t2,0 = 0,

γ13

(
γ 2

12 − 1
)
m2 − (γ12γ13 − γ23)(1 − m2 − m3 + γ12m2 + γ13m3)t3,0 = 0,

1 − m2 − m3 + γ12m2 − (1 − m2 − m3 + γ12m2 + γ13m3)t3,0 = 0.

(7.221)

The system (7.221) is slightly nonlinear. It is, however, linear in the unknowns
t1,0, t2,0, t3,0. Solving three equations of the system for t1,0, t2,0, t3,0, and substitut-
ing these into the remaining equations of the system determine the ratios m2/m1
and m3/m1 uniquely, from which convenient (homogeneous) gyrobarycentric coor-
dinates (m1 : m2 : m3) are obtained. A solution of (7.221) is given by (7.222) and
(7.224) below:

The values of the line parameters are

t1,0 = (γ12γ13 − γ23)(2γ12γ13γ23 − γ 2
12 − γ 2

13)

γ12γ13(1 + 2γ12γ13γ23 − γ 2
12 − γ 2

13)
,

t2,0 = (γ 2
13 − 1)(γ12γ23 − γ13)

γ13(1 + 2γ12γ13γ23 − γ 2
12 − γ 2

13)
,

t3,0 = (γ 2
12 − 1)(γ13γ23 − γ12)

γ12(1 + 2γ12γ13γ23 − γ 2
12 − γ 2

13)
,

(7.222)

where

1 + 2γ12γ13γ23 − γ 2
12 − γ 2

13 > 0 (7.223)

by (6.28), p. 136.
The gyrobarycentric coordinates (m1,m2,m3) are given by

m1 = 1

D
(γ12γ23 − γ13)(γ13γ23 − γ12),

m2 = 1

D
(γ12γ13 − γ23)(γ13γ23 − γ12),

m3 = 1

D
(γ12γ23 − γ13)(γ12γ23 − γ13),

(7.224)
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satisfying the normalization condition m1 + m2 + m3 = 1, where D is the determi-
nant

D =
∣∣∣∣∣
γ12γ23 − γ13 −(γ13γ23 − γ12)

γ12γ13 − γ23 (γ12γ13 − γ23) + (γ13γ23 − γ12)

∣∣∣∣∣ (7.225)

or, equivalently,

D = (γ13γ23 − γ12)(γ12γ23 − γ13) + (γ13γ23 − γ12)(γ12γ13 − γ23)

+ (γ12γ23 − γ13)(γ12γ13 − γ23). (7.226)

Following (7.224), convenient gyrobarycentric coordinates of the gyrotriangle
orthogyrocenter H are given by the equation

(m1 : m2 : m3) = (C12C13 : C12C23 : C13C23) (7.227)

or, equivalently, by the equation

(m1 : m2 : m3) =
(

C12

C23
: C12

C13
: 1

)
(7.228)

where

C12 = γ13γ23 − γ12 ,

C13 = γ12γ23 − γ13 ,

C23 = γ12γ13 − γ23 .

(7.229)

Accordingly, the gyrobarycentric coordinate representation of the orthogyrocen-
ter H of gyrotriangle A1A2A3 with respect to the set of the gyrotriangle vertices is
given by the equation

H = C12C13γA1
A1 + C12C23γA2

A2 + C13C23γA3
A3

C12C13γA1
+ C12C23γA2

+ C13C23γA3

. (7.230)

Substituting from (7.147), p. 188, into (7.229), we have

C12

C23
= tanα1

tanα3
,

C12

C13
= tanα2

tanα3
.

(7.231)

Hence, the gyrobarycentric coordinates of H in (7.228) can be written as

(m1 : m2 : m3) =
(

tanα1

tanα3
: tanα2

tanα3
: 1

)
(7.232)
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which are, in turn, equivalent to the gyrobarycentric coordinates

(m1 : m2 : m3) = (tanα1 : tanα2 : tanα3). (7.233)

Interestingly, the gyrotrigonometric gyrobarycentric coordinates (7.233) of the
gyrotriangle orthogyrocenter H are identical in form with trigonometric barycentric
coordinates of the triangle orthocenter in Euclidean geometry, as we see from [29].

Following (7.227) and the definition, Definition (4.5), p. 89, of the constant m0,
(4.27), of a point P with a gyrobarycentric representation, the constant m0 of the
gyrotriangle orthogyrocenter H in (7.230) with respect to the set of the gyrotriangle
vertices is given by the equation

m2
0 = m2

1 + m2
2 + m2

3 + 2m1m2γ12 + 2m1m3γ13 + 2m2m3γ23

= 1

2
f1

(
f 2

1 + f2
)
, (7.234)

where f1 and f2 are factors given by

f1 = 1 + 2γ12γ13γ23 − γ 2
12 − γ 2

13 − γ 2
23

= 2(γ12γ13γ23 − 1) − (
γ 2

12 − 1
) − (

γ 2
13 − 1

) − (
γ 2

23 − 1
)
,

f2 = 2(γ12γ13γ23 − 1)2 − (
γ 2

12 − 1
)2 − (

γ 2
13 − 1

)2 − (
γ 2

23 − 1
)2

.

(7.235)

Since f1 > 0, by (6.23), p. 135, the constant m2
0 in (7.234) is positive, zero, or

negative if and only if f 2
1 + f2 is positive, zero, or negative, respectively. Hence,

equivalently, the constant m2
0 in (7.234) is positive, zero, or negative if and only if

f 4
1 − f 2

2 is positive, zero, or negative, respectively. Expressing of gamma factors of
sides of gyrotriangle A1A2A3 in terms of the gyrotriangle gyroangles by (7.142),
p. 187, we have

f 4
1 − f 2

2 = {
cos2 α1 cos2 α2 + cos2 α1 cos2 α3 + cos2 α2 cos2 α3

+ 2 cosα1 cosα2 cosα3
(
cos2 α1 + cos2 α2 + cos2 α3

)

+ 3 cos2 α1 cos2 α2 cos2 α3
}
Q, (7.236)

where Q is a positive valued function of cosαk , k = 1,2,3.
Hence, the constant m2

0 in (7.234) is positive, zero, or negative if and only if f3

is positive, zero, or negative, respectively, where

f3 = cos2 α1 cos2 α2 + cos2 α1 cos2 α3 + cos2 α2 cos2 α3

+ 2 cosα1 cosα2 cosα3
(
cos2 α1 + cos2 α2 + cos2 α3

)

+ 3 cos2 α1 cos2 α2 cos2 α3. (7.237)
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Fig. 7.18 The gyroaltitudes, and the orthogyrocenter H , of a gyrotriangle A1A2A3 in an Einstein
gyrovector space. Case I: The orthogyrocenter H lies inside the acute gyrotriangle. Gyrobarycen-
tric coordinates (m1 : m2 : m3) of the orthogyrocenter H relative to the set {A1,A2,A3} of the
gyrotriangle vertices, given by (7.233), are all positive so that m2

0 > 0 in (7.234), in agreement
with Corollary 4.10, p. 94

Fig. 7.19 The gyroaltitudes, and the orthogyrocenter H , of a gyrotriangle A1A2A3 in an Ein-
stein gyrovector space. Case II: The orthogyrocenter H lies outside the obtuse gyrotriangle. One
of the gyrobarycentric coordinates (m1 : m2 : m3) of the orthogyrocenter H relative to the set
{A1,A2,A3} of the gyrotriangle vertices, given by (7.233), is negative and the other two are posi-
tive, in agreement with Corollary 4.9

According to Corollary 4.9, p. 93, if m2
0 > 0 then gyrotriangle A1A2A3 pos-

sesses a orthogyrocenter H . The orthogyrocenter H lies in the interior of gyrotri-
angle A1A2A3 if and only if gyrobarycentric coordinates of H are all positive or
all negative. The gyrotriangle A1A2A3 does not have a orthogyrocenter H when
m2

0 ≤ 0 in (7.234). When m2
0 = 0, the point H lies on the boundary of the ball R

n
s ,

and when m2
0 < 0 the point H lies outside of the ball, as shown in Figs. 7.18–7.21.

Indeed,

1. f3 > 0 for gyrotriangle A1A2A3 in Figs. 7.17, p. 204, and 7.18–7.19
2. f3 = 0 for gyrotriangle A1A2A3 in Fig. 7.20, p. 212; and
3. f3 < 0 for gyrotriangle A1A2A3 in Fig. 7.21, p. 212

Formalizing the main result of this section, we have the following theorem:
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Fig. 7.20 A gyrotriangle
A1A2A3 that does not
possess an orthogyrocenter H

in an Einstein gyrovector
plane (R2

s ,⊕,⊗). The point
H ∈ R

n lies on the boundary
of the ball R

n
s ⊂ R

n.
Accordingly m2

0 = 0 in
(7.234), in agreement with
Corollary 4.9, p. 93

Fig. 7.21 A gyrotriangle
A1A2A3 that does not
possess an orthogyrocenter H

in an Einstein gyrovector
plane (R2

s ,⊕,⊗). The point
H ∈ R

n lies outside of the
ball R

n
s ⊂ R

n. Accordingly
m2

0 < 0 in (7.234), in
agreement with Corollary 4.9,
p. 93

Theorem 7.24 (The Orthogyrocenter) Let S = {A1,A2,A3} be a pointwise inde-
pendent set of three points in an Einstein gyrovector space (Rn

s ,⊕,⊗). The orthogy-
rocenter H , see Figs. 7.18–7.21, of gyrotriangle A1A2A3 has the gyrobarycentric
coordinate representation

H =
m1γA1

A1 + m2γA2
A2 + m3γA3

A3

m1γA1
+ m2γA2

+ m3γA3

(7.238)

with respect to the set S = {A1,A2,A3}, with gyrotrigonometric gyrobarycentric
coordinates given by each of the two equations

(m1 : m2 : m3) = (tanα1 : tanα2 : tanα3) (7.239)

and

m1 = (γ12γ23 − γ13)(γ13γ23 − γ12),

m2 = (γ12γ13 − γ23)(γ13γ23 − γ12),

m3 = (γ12γ23 − γ13)(γ12γ23 − γ13).

(7.240)

The existence of the gyrotriangle orthogyrocenter H is determined by the squared
orthogyrocenter constant m2

0 with respect to the set of the gyrotriangle vertices,
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m2
0 = tan2 α1 + tan2 α2 + tan2 α3

+ 2(tanα1 tanα2γ12 + tanα1 tanα3γ13 + tanα2 tanα3γ23)

= {
cos2 α1 cos2 α2 + cos2 α1 cos2 α3 + cos2 α2 cos2 α3

+ 2 cosα1 cosα2 cosα3
(
cos2 α1 + cos2 α2 + cos2 α3

)

+ 3 cos2 α1 cos2 α2 cos2 α3
} 1

cos2 α1 cos2 α2 cos2 α3
. (7.241)

The gyrotriangle orthogyrocenter H exists if and only if m2
0 > 0. Furthermore, the

gyrotriangle orthogyrocenter H lies on the interior of its gyrotriangle if and only if
tanα1 > 0, tanα2 > 0 and tanα3 > 0 or, equivalently, if and only if the gyrotriangle
is acute, see Figs. 7.18–7.21.

The gyrotrigonometric gyrobarycentric coordinates (7.239) remain invariant in
form under the Euclidean limit s → ∞, resulting in the following corollary of The-
orem 7.24:

Corollary 7.25 (The Orthocenter) Let S = {A1,A2,A3} be a pointwise indepen-
dent set of three points in a Euclidean vector space R

n. The orthocenter H of trian-
gle A1A2A3 has the barycentric coordinate representation

H = m1A1 + m2A2 + m3A3

m1 + m2 + m3
(7.242)

with respect to the set S = {A1,A2,A3}, with trigonometric barycentric coordinates
given by

(m1 : m2 : m3) = (tanα1 : tanα2 : tanα3). (7.243)

7.18 The Gyrodistance Between O and I

Let O and I be the circumgyrocenter and ingyrocenter of a gyrotriangle A1A2A3 in
an Einstein gyrovector space (Rn

s ,⊕,⊗). Their gyrobarycentric coordinate repre-
sentations with respect to the set S = {A1,A2,A3} are, by (7.18) and (7.20), p. 158,

O =
m′

1γA1
A1 + m′

2γA2
A2 + m′

3γA3
A3

m′
1γA1

+ m′
2γA2

+ m′
3γA3

, (7.244a)
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where the gyrobarycentric coordinates m′
k , k = 1,2,3, are given by

m′
1 = sin

(−α1 + α2 + α3

2

)
sinα1,

m′
2 = sin

(
α1 − α2 + α3

2

)
sinα2,

m′
3 = sin

(
α1 + α2 − α3

2

)
sinα3,

(7.244b)

and, by (7.75), p. 172, and Theorem 7.12, p. 178,

I =
m1γA1

A1 + m2γA2
A2 + m3γA3

A3

m1γA1
+ m2γA2

+ m3γA3

, (7.245a)

where the gyrobarycentric coordinates mk , k = 1,2,3, are given by

m1 = sinα1,

m2 = sinα2,

m3 = sinα3.

(7.245b)

Hence, by (4.121), p. 113,

γ�O⊕I = 1

m0m
′
0

{
(m1m

′
2 + m′

1m2)γ12 + (m1m
′
3 + m′

1m3)γ13

+ (m2m
′
3 + m′

2m3)γ23 + m1m
′
1 + m2m

′
2 + m3m

′
3

}
, (7.246)

where, by (4.118b) and (4.119b), p. 112, m0 > 0 and m′
0 > 0 are given by

m2
0 = m2

1 + m2
2 + m2

3 + 2(m1m2γ12 + m1m3γ13 + m2m3γ23),

(m′
0)

2 = (m′
1)

2 + (m′
2)

2 + (m′
3)

2 + 2(m′
1m

′
2γ12 + m′

1m
′
3γ13 + m′

2m
′
3γ23),

(7.247)

noting that always m2
0 > 0; and that (m′

0)
2 > 0 if and only if gyrotriangle A1A2A3

possesses a circumgyrocenter.
Substituting (7.244b) and (7.245b) into (7.246) and squaring, one obtains γ 2�O⊕I

expressed in terms of the gyrotriangle gyroangles αk , k = 1,2,3. Substituting the
latter, in turn, into the identity, (1.9), p. 5,

‖�O⊕I‖2 = s2 γ 2�O⊕I − 1

γ 2�O⊕I

, (7.248)
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we finally obtain the desired gyrodistance,

‖�O⊕I‖2

= 4s2 cos α1+α2+α3
2 cos α1

2 cos α2
2 cos α3

2

(sinα1 + sinα2 + sinα3)2 cos α1−α2−α3
2 cos −α1+α2−α3

2 cos −α1−α2+α3
2

×
{

cos
α1 − α2 − α3

2
+ cos

−α1 + α2 − α3

2
+ cos

−α1 − α2 + α3

2

− cos
3α1 − α2 − α3

2
− cos

−α1 + 3α2 − α3

2
− cos

−α1 − α2 + 3α3

2

}
.

(7.249)

Eliminating the factor s2 cos α1+α2+α3
2 between (7.249) and (7.35), p. 163, we

obtain the result (7.250) of the following theorem:

Theorem 7.26 Let αk , k = 1,2,3, O and I be the gyroangles, circumgyrocen-
ter and ingyrocenter of a gyrotriangle A1A2A3 in an Einstein gyrovector space
(Rn

s ⊕,⊗). Then,

‖�O⊕I‖2 = 4R2 cos α1
2 cos α2

2 cos α3
2

(sinα1 + sinα2 + sinα3)2

×
{

cos
α1 − α2 − α3

2
+ cos

−α1 + α2 − α3

2
+ cos

−α1 − α2 + α3

2

− cos
3α1 − α2 − α3

2
− cos

−α1 + 3α2 − α3

2

− cos
−α1 − α2 + 3α3

2

}
. (7.250)

Interestingly, Equation (7.250) remains invariant in form under the Euclidean
limit s → ∞, so that the equation is valid in Euclidean geometry as well. However,
for application in Euclidean geometry (7.250) can be simplified, owing to the fact
that triangle angle sum in π .

Indeed, under the condition

α1 + α2 + α3 = π, (7.251a)

we have the trigonometric identities similar to (7.22b), p. 159,

cos
α1 − α2 − α3

2
= sinα1,

cos
3α1 − α2 − α3

2
= sin 2α1, etc.

(7.251b)
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Hence, we obtain the following corollary of Theorem 7.26:

Corollary 7.27 Let αk , k = 1,2,3, O and I be the angles, circumcenter and incen-
ter of a triangle A1A2A3 in a Euclidean space R

n. Then,

‖ − O + I‖2 = 4R2 cos α1
2 cos α2

2 cos α3
2

(sinα1 + sinα2 + sinα3)2

× {sinα1 + sinα2 + sinα3 − sin 2α1 − sin 2α2 − sin 2α3}.
(7.252)

7.19 Problems

Problem 7.1 The constant of a Gyrobarycentric Coordinate Representation:
Derive (7.11), p. 156, from (7.10) and (7.3).

Problem 7.2 Gyrotrigonometric Substitutions:
Substitute from (7.13) into (7.10) to obtain (7.14), p. 156.

Problem 7.3 Gyrotrigonometric Substitutions:
Derive the gyrotrigonometric representation (7.34), p. 163, of the gyrotriangle cir-
cumgyroradius R by expressing the gamma factors in (7.29), p. 162, in terms of the
gyrotriangle gyroangles αk , k = 1,2,3, by means of (6.33), p. 137.

Remarkably, this task in gyrotrigonometry can straightforwardly be performed
by Mathematica, a software for computer algebra, using commands that manipulate
common trigonometric identities like TrigToExp, ExpToTrig, TrigReduce
and TrigFactor.

Problem 7.4 Show that (7.40), p. 165, holds when the three points A1, A2 and A3
in Theorem 7.5 are not distinct.

Problem 7.5 A Gyrotriangle Gyroangle Inequality:
Employ (7.13), p. 156, to derive Inequality (7.17), p. 157, from Inequality (7.12),
p. 156.

Problem 7.6 Linear Algebra:
Provide the missing technical details in the derivation of (7.95), p. 177, from (7.89),
p. 175.

Problem 7.7 Gyrotriangle Gyrotrigonometric Identities:
Verify the gyrotriangle gyrotrigonometric identities in (7.149)–(7.151), p. 188.

Problem 7.8 Gyrotrigonometric Substitutions:
Derive (7.187), p. 198, by substitutions from (7.185), p. 198, and from (7.142),
p. 187.
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Problem 7.9 Gyrotrigonometric Substitutions:
Derive the first two equations in (7.189), p. 199, from (7.188).

Problem 7.10 Derive (7.190), p. 199, from (7.189).

Problem 7.11 Gyrotriangle Orthogyrocenter:
Solve the system (7.221), p. 208, and hence derive the gyrobarycentric coordinates
(7.224).

Problem 7.12 Gyrotrigonometric Substitutions:
By substitutions from (6.33), p. 137, derive the gyrotrigonometric condition f3
in (7.237), p. 210, that determines whether the orthogyrocenter H of gyrotriangle
A1A2A3 exists.

Problem 7.13 Gyrotrigonometric Substitutions:
By substitutions from (7.244b) and (7.245b) into (7.246) and squaring, express
γ 2�O⊕I in terms of the gyroangles αk , k = 1,2,3, of the reference gyrotriangle
A1A2A3. Furthermore, substitute the latter into (7.248) to obtain the squared gy-
rodistance ‖�O⊕I‖2 in (7.249), p. 214.
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