
Chapter 3
When Einstein Meets Minkowski

Abstract Einstein’s addition law of three-dimensional relativistically admissible
velocities is the corner stone of Einstein’s three-vector formalism of the special
theory of relativity that he founded in 1905. Soon later, in 1908, special relativity
was reformulated by Minkowski who introduced his elegant four-vector formal-
ism. In this chapter, we present the harmonious interplay between Einstein’s three-
dimensional velocity addition and the Minkowskian four-vector formalism of Ein-
stein’s special theory of relativity, along with its relevant consequences to the study
of hyperbolic geometry in Part II and hyperbolic triangle centers in Part III of the
book.

3.1 Introduction

Einstein’s addition law of three-dimensional relativistically admissible velocities,
studied in Chap. 1, appears in [58, 60, 63, 64] as the corner stone of Einstein’s
three-vector formalism of the special theory of relativity that he founded in 1905
[12]. In 1908, special relativity was reformulated by Minkowski who introduced
his elegant four-vector formalism [25, 59, 73]. The elegance and usefulness of the
Minkowskian formalism posed an annoying problem: the concept of the relativistic
mass, according to which mass is velocity dependent, seemed too wild, defying
attempts to place it under the umbrella of the Minkowskian four-vector formalism
of special relativity [2, 4, 42]. This intriguing puzzle challenges our mind in this
chapter as well, in our mission to capture analogies that Euclidean and hyperbolic
triangle centers share.

The study of Euclidean triangle centers can be approached by considering, in
classical mechanics, the center of momentum of an isolated system of three non-
interacting, uniformly moving massive particles with Newtonian masses, and with
velocities in the Euclidean 3-space R

3 of Newtonian velocities. A related example
is found, for instance, in [24, p. 3], in which a classical mechanical interpretation of
the Euclidean triangle centroid is presented.

In full analogy, the mission of this book is to approach the study of hyperbolic
triangle centers by considering, in relativistic mechanics, the center of momentum
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of an isolated system of three noninteracting, uniformly moving massive particles
with relativistic masses, and with relativistically admissible velocities in the ball
R

3
c ⊂ R

3 of Einsteinian velocities. But, in order to harness the relativistic mass for
our mission, we must tame it by placing it under the umbrella of the Minkowskian
four-vector formalism of special relativity.

Accordingly, the mission of this chapter is to show how the relativistic mass is
tamed when Einstein, with his three-dimensional vector formalism, and Minkowski,
with his four-dimensional vector formalism, meet.

3.2 Lorentz Transformation and Minkowski’s Four-Velocity

Einstein addition underlies the Lorentz transformation group of special relativity.
A Lorentz transformation is a linear transformation of spacetime coordinates that
fixes the spacetime origin. A Lorentz boost, L(v), is a Lorentz transformation with-
out rotation, parametrized by a velocity parameter v = (v1, v2, v3) ∈ R

3
c .

Being linear, the Lorentz boost has a matrix representation Lm(v), which turns
out to be [40]

Lm(v) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

γv c−2γv v1 c−2γv v2 c−2γv v3

γv v1 1 + c−2 γ 2
v

γv +1
v2

1 c−2 γ 2
v

γv +1
v1v2 c−2 γ 2

v
γv +1

v1v3

γv v2 c−2 γ 2
v

γv +1
v1v2 1 + c−2 γ 2

v
γv +1

v2
2 c−2 γ 2

v
γv +1

v2v3

γv v3 c−2 γ 2
v

γv +1
v1v3 c−2 γ 2

v
γv +1

v2v3 1 + c−2 γ 2
v

γv +1
v2

3

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (3.1)

Employing the matrix representation (3.1) of the Lorentz transformation boost,
the Lorentz boost application to spacetime coordinates takes the form

L(v)

(
t

x

)
= Lm(v)

⎛
⎜⎜⎜⎝

t

x1

x2

x3

⎞
⎟⎟⎟⎠ =:

⎛
⎜⎜⎜⎝

t ′

x′
1

x′
2

x′
3

⎞
⎟⎟⎟⎠ =

(
t ′

x′

)
, (3.2)

where v = (v1, v2, v3)
t ∈ R

3
c , x = (x1, x2, x3)

t ∈ R
3, x′ = (x′

1, x
′
2, x

′
3)

t ∈ R
3, and

t, t ′ ∈ R, where exponent t denotes transposition.
In our approach to special relativity, analogies with classical results form the

right tool. Hence, we emphasize that in the Newtonian limit of large vacuum speed
of light c, c → ∞, the Lorentz boost L(v), (3.1)–(3.2), reduces to the Galilei boost
G(v), v = (v1, v2, v3) ∈ R

3,

G(v)

(
t

x

)
= lim

c→∞L(v)

(
t

x

)
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=

⎛
⎜⎜⎜⎝

1 0 0 0

v1 1 0 0

v2 0 1 0

v3 0 0 1

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

t

x1

x2

x3

⎞
⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎝

t

x1 + v1t

x2 + v2t

x3 + v3t

⎞
⎟⎟⎟⎠ =

(
t

x + vt

)
, (3.3)

where x = (x1, x2, x3)
t ∈ R

3 and t ∈ R.
As we see from (3.2)–(3.3), our spacetime coordinates are (t,x)t and, as a result,

the Lorentz boost matrix representation Lm(v) in (3.1) is non-symmetric for c �= 1.
In contrast, some authors present spacetime coordinates as (ct,x)t , resulting in a
symmetric Lorentz boost matrix representation found, for instance, in [27, (11.98),
p. 541].

Since in our approach to special relativity analogies with classical results form
the right tool, the representation of spacetime coordinates as (t,x)t is more advan-
tageous than its representation as (ct,x)t . Indeed, unlike the latter representation,
the former representation of spacetime coordinates allows one to recover the Galilei
boost from the Lorentz boost by taking the Newtonian limit of large speed of light
c, as shown in the transition from (3.2) to (3.3).

As a result of adopting (t,x)t rather than (ct,x)t as our four-vector that repre-
sents four-position, our four-velocity is given by (γv , γv v) rather than (γv c, γv v),
v ∈ R

3
c . Similarly, our four-momentum is given by

(
p0

p

)
=

(
E

c2

p

)
= m

(
γv

γv v

)
(3.4)

rather than the standard four-momentum, which is given by (p0,p)t = (E/c,p)t =
(mγv c,mγv v)t , as found in most relativity physics books. According to (3.4), the
relativistically invariant mass (that is, rest mass) m of a particle is the ratio of the
particle’s four-momentum (p0,p)t to its four-velocity (γv , γv v)t .

For the sake of simplicity, and without loss of generality, some authors normalize
the vacuum speed of light to c = 1 as, for instance, in [17]. We, however, prefer to
leave c as a free positive parameter, enabling related modern results to be reduced
to classical ones under the limit of large c, c → ∞, as, for instance, in the transition
from a Lorentz boost into a corresponding Galilei boost in (3.1)–(3.3).

The Lorentz boost (3.1)–(3.2) can be written vectorially in the form

L(u)

(
t

x

)
=

⎛
⎝

γu (t + 1
c2 u·x)

γu ut + x + 1
c2

γ 2
u

1+γu
(u·x)u

⎞
⎠ . (3.5)
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Being written in a vector form, the Lorentz boost in (3.5) survives unimpaired
in higher dimensions. Rewriting (3.5) in higher dimensional spaces, with x = vt ,
u,v ∈ R

n
c ⊂ R

n, we have

L(u)

(
t

vt

)
=

⎛
⎝

γu (t + 1
c2 u·vt)

γu ut + vt + 1
c2

γ 2
u

1+γu
(u·vt)u

⎞
⎠

=
⎛
⎜⎝

γu⊕v
γv

t

γu⊕v
γv

(u⊕v)t

⎞
⎟⎠ . (3.6)

Equation (3.6) reveals explicitly the way Einstein velocity addition underlies the
Lorentz boost. The second equation in (3.6) follows from the first by (1.7), p. 5, and
(1.2), p. 4.

The special case of t = γv in (3.6) proves useful, giving rise to the elegant iden-
tity

L(u)

(
γv
γv v

)
=

(
γu⊕v

γu⊕v(u⊕v)

)
(3.7)

of the Lorentz boost of four-velocities, u,v ∈ R
n
c . Since in physical applications

n = 3, in the context of n-dimensional special relativity we call v a three-vector and
(γv , γv v)t a four-vector, etc.

The four-vector m(γv , γv v)t is the four-momentum of a particle with invariant
mass (or, rest mass) m and velocity v relative to a given inertial rest frame Σ0. Let
Σ	u be an inertial frame that moves with velocity 	u = −u relative to the rest
frame Σ0, u,v ∈ R

n
c . Then, the particle with velocity v relative to Σ0 has velocity

u⊕v relative to the frame Σ	u. In full agreement and, owing to the linearity of the
Lorentz boost, it follows from (3.7) that the four-momentum of the particle relative
to the frame Σ	u is

L(u)m

(
γv
γv v

)
= mL(u)

(
γv
γv v

)

= m

(
γu⊕v

γu⊕v(u⊕v)

)
. (3.8)

It follows from the linearity of the Lorentz boost and from (3.7) that

L(w)

N∑
k=1

mk

(
γvk

γvk
vk

)
=

N∑
k=1

mkL(w)

(
γvk

γvk
vk

)

=
N∑

k=1

mk

(
γw⊕vk

γw⊕vk
(w⊕vk)

)
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=
( ∑N

k=1 mkγw⊕vk∑N
k=1 mkγw⊕vk

(w⊕vk)

)
. (3.9)

The chain of equations (3.9) reveals the interplay of Einstein addition, ⊕, in
R

n
c and vector addition, +, in R

n that appears implicitly in the sigma-notation for
scalar and vector addition. This harmonious interplay between ⊕ and +, which is
crucially important in our mission to determine hyperbolic triangle centers, reveals
itself in (3.9) where Einstein’s three-vector formalism of special relativity meets
Minkowski’s four-vector formalism of special relativity.

The (Minkowski) norm of a four-vector is Lorentz transformation invariant. The
norm of the four-position (t,x)t is

∥∥∥∥
(

t

x

)∥∥∥∥ =
√

t2 − ‖x‖2

c2
(3.10)

and, accordingly, the norm of the four-velocity (γv , γv v)t is

∥∥∥∥
(

γv
γv v

)∥∥∥∥ = γv

∥∥∥∥
(

1
v

)∥∥∥∥ = γv

√
1 − ‖v‖2

c2
= 1. (3.11)

3.3 Invariant Mass of a System of Particles

In obtaining the result in (3.8), we exploit the linearity of the Lorentz boost. We will
now further exploit that linearity, demonstrated in (3.9), to obtain the relativistically
invariant mass of a system of particles. Being observer’s invariant, we refer the
Newtonian, rest mass, m, to as the (relativistically) invariant mass, as opposed to
the common relativistic mass, mγv , which is observer’s dependent.

Let

S = S(mk,vk,Σ0, k = 1, . . . ,N) (3.12)

be an isolated system of N noninteracting material particles the kth particle of which
has invariant mass mk > 0 and velocity vk ∈ R

n
c relative to an inertial frame Σ0,

k = 1, . . . ,N .
Classically, the Newtonian mass mnewton of the system S equals the sum of the

Newtonian masses of its constituent particles, that is,

mnewton =
N∑

k=1

mk, (3.13)

and it forms the total mass of the system. Relativistically, however, this need not be
the case since dark matter may emerge, as we will see in Theorem 3.2 of Sect. 3.4.
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Accordingly, we wish to determine the relativistically invariant mass m0 of the
system S, and the velocity v0 relative to Σ0 of a fictitious inertial frame, called the
center of momentum frame, relative to which the three-momentum of S vanishes.

Assuming that the four-momentum is additive, the sum of the four-momenta of
the N particles of the system S gives the four-momentum (m0γv0

,m0γv0
v0)

t of S.
Accordingly,

N∑
k=1

mk

(
γvk

γvk
vk

)
= m0

(
γv0

γv0
v0

)
, (3.14)

where

(i) The invariant masses mk > 0 and the velocities vk ∈ R
n
c , k = 1, . . . ,N , relative

to Σ0 of the constituent particles of S are given, while
(ii) The invariant mass m0 of S and the velocity v0 of the center of momentum

frame of S relative to Σ0 are to be determined uniquely by the Resultant Rela-
tivistically Invariant Mass Theorem, which is Theorem 3.2 in Sect. 3.4

If m0 > 0 and v0 ∈ R
n
c that satisfy (3.14) exist then, as anticipated, the three-

momentum of the system S relative to its center of momentum frame vanishes since,
by (3.8) and (3.14), the four-momentum of S relative to its center of momentum
frame is given by

L(	v0)

N∑
k=1

mk

(
γvk

γvk
vk

)
= L(	v0)m0

(
γv0

γv0
v0

)

= m0

(
γ	v0⊕v0

γ	v0⊕v0
(	v0⊕v0)

)
= m0

(
1

0

)
, (3.15)

noting that γ	v0⊕v0
= γ0 = 1.

3.4 The Resultant Relativistically Invariant Mass Theorem

Lemma 3.1 below presents an identity that we need for the proof of the Resultant
Relativistically Invariant Mass Theorem 3.2.

Lemma 3.1 Let N be any positive integer, and let mk ∈ R and vk ∈ R
n
c , k =

1, . . . ,N , be N real numbers and N points of an Einstein gyrogroup R
n
c = (Rn

c ,⊕).
Then

(
N∑

k=1

mkγvk

vk

c

)2

=
(

N∑
k=1

mkγvk

)2

−
{(

N∑
k=1

mk

)2

+ 2
h∑

j,k=1
j<k

mjmk(γ	vj ⊕vk
− 1)

}
.

(3.16)
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Proof The proof is given by the following chain of equations, which are numbered
for subsequent explanation:

(
N∑

k=1

mkγvk

vk

c

)2

(1)︷︸︸︷===
N∑

k=1

m2
kγ

2
vk

v2
k

c2
+ 2

h∑
j,k=1
j<k

mjmkγvj
γvk

vj ·vk

c2

(2)︷︸︸︷===
N∑

k=1

m2
k

(
γ 2

vk
− 1

) + 2
h∑

j,k=1
j<k

mjmk(γvj
γvk

− γ	vj ⊕vk
)

(3)︷︸︸︷===
N∑

k=1

m2
kγ

2
vk

−
N∑

k=1

m2
k + 2

h∑
j,k=1
j<k

mjmkγvj
γvk

− 2
h∑

j,k=1
j<k

mjmkγ	vj ⊕vk

(4)︷︸︸︷===
(

N∑
k=1

mkγvk

)2

−
{

N∑
k=1

m2
k + 2

h∑
j,k=1
j<k

mjmkγ	vj ⊕vk

}

(5)︷︸︸︷===
(

N∑
k=1

mkγvk

)2

−
{(

N∑
k=1

mk

)2

+ 2
h∑

j,k=1
j<k

mjmk(γ	vj ⊕vk
− 1)

}
. (3.17)

The assumption vk ∈ R
n
c implies, by (1.3), p. 4, that all gamma factors in (3.16)–

(3.17) are real and greater than 1. Derivation of the numbered equalities in (3.17)
follows:

1. This equation is obtained by an expansion of the square of a sum of vectors in R
n.

2. Follows from Item 1 by (1.9)–(1.10), p. 5.
3. Follows from Item 2 by an obvious expansion.
4. Follows from Item 3 by an expansion of the square of a sum of real numbers.
5. Follows from Item 4 by an expansion of another square of a sum of real num-

bers. �

Einstein velocity addition law (1.2), p. 4, admits the following theorem:

Theorem 3.2 (Resultant Relativistically Invariant Mass Theorem) Let (Rn
c ,⊕) be

an Einstein gyrogroup, and let mk ∈ R and vk ∈ R
n
c , k = 1,2, . . . ,N , be N real
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numbers and N elements of R
n
c satisfying

N∑
k=1

mkγvk
�= 0. (3.18)

Furthermore, let

N∑
k=1

mk

(
γvk

γvk
vk

)
= m0

(
γv0

γv0
v0

)
(3.19)

be an (n + 1)-vector equation for the two unknowns m0 ∈ R and v0 ∈ R
n.

Then (3.19) possesses a unique solution (m0,v0), m0 �= 0, v0 ∈ R
n
c , satisfying

the following three identities for all w ∈ R
n
c (including, in particular, the interesting

special case of w = 0):

w⊕v0 =
∑N

k=1 mkγw⊕vk
(w⊕vk)∑N

k=1 mkγw⊕vk

, (3.20)

γw⊕v0
=

∑N
k=1 mkγw⊕vk

m0
, (3.21)

γw⊕v0
(w⊕v0) =

∑N
k=1 mkγw⊕vk

(w⊕v0)

m0
, (3.22)

where

m0 =
√√√√√√

(
N∑

k=1

mk

)2

+ 2
N∑

j,k=1
j<k

mjmk(γ	(w⊕vj )⊕(w⊕vk)
− 1). (3.23)

Proof Following (3.18), we assume, without loss of generality, that

N∑
k=1

mkγvk
> 0 (3.24)

(otherwise, we replace each mk by −mk , resulting in the replacement of m0 by
−m0). Let us consider the following four equations, (3.25)–(3.28), which are spe-
cialized from (3.20)–(3.23) by taking w = 0:

v0 =
∑N

k=1 mkγvk
vk∑N

k=1 mkγvk

, (3.25)

γv0
=

∑N
k=1 mkγvk

m0
, (3.26)
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γv0
v0 =

∑N
k=1 mkγvk

v0

m0
, (3.27)

where

m0 =
√√√√√√

(
N∑

k=1

mk

)2

+ 2
N∑

j,k=1
j<k

mjmk(γ	vj ⊕vk
− 1). (3.28)

The proof of this theorem consists of two parts. In the first part of the proof, we
show that if (3.19) for the unknowns v0 ∈ R

n and m0 ∈ R possesses a solution, then
the solution must be given uniquely by v0 of (3.25) and m0 of (3.28), with v0 ∈ R

n
c

and m0 > 0, satisfying (3.26)–(3.27).
In the second part of the proof, we show that v0 of (3.25) and m0 of (3.28),

indeed, form a solution of (3.19) for the unknowns v0 ∈ R
n
c and m0 > 0, and that

the solution satisfies (3.20)–(3.23).

Part I In this part of the proof, we assume that there exist m0 ∈ R and v0 ∈ R
n that

satisfy (3.19). Then, the norms of the two sides of (3.19) are equal while, by (3.11),
the norm of the right-hand side of (3.19) is m0. Hence, the norm of the left-hand
side of (3.19) equals m0 as well, obtaining the following chain of equations, which
are numbered for subsequent explanation:

m2
0

(1)︷︸︸︷===
∥∥∥∥∥

N∑
k=1

mk

(
γvk

γvk
vk

)∥∥∥∥∥
2

(2)︷︸︸︷===
∥∥∥∥∥

( ∑N
k=1 mkγvk∑N

k=1 mkγvk
vk

)∥∥∥∥∥
2

(3)︷︸︸︷===
(

N∑
k=1

mkγvk

)2

−
(

N∑
k=1

mkγvk

vk

c

)2

(4)︷︸︸︷===
(

N∑
k=1

mk

)2

+ 2
h∑

j,k=1
j<k

mjmkγ	vj ⊕vk
− 1. (3.29)

Derivation of the numbered equalities in (3.29) follows:

1. This equation follows from the result that the norm of the left-hand side of (3.19)
equals the norm of the right-hand side of (3.19), the latter being m0 by (3.11).

2. Follows from Item 1 by the common “four-vector” addition of (n + 1)-vectors
(where n = 3 in physical applications).

3. Follows from Item 2 by (3.10).
4. Follows from Item 3 by Identity (3.16) of Lemma 3.1.
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It follows from the upper entry of (3.19), along with Assumption (3.24) that

m0 > 0. (3.30)

We thus obtained in (3.29) the desired equation, (3.28), for m0.
Hence, if m0 ∈ R and v0 ∈ R

n that satisfy (3.19) exist, m0 is positive and must
be given by (3.28). Clearly, v0 ∈ R

n
c since γv0

is real, as we see from (3.19).
By assumption, v0 satisfies (3.19). Equation (3.19) is equivalent to two equations,

formed by the upper entry and by the lower entry of (3.19). Dividing the lower entry
of (3.19) by its upper entry, noting that m0 �= 0 by (3.30), we obtain (3.25).

Similarly, dividing the upper entry of (3.19) by m0 > 0 we obtain (3.26), and
dividing the lower entry of (3.19) by m0 > 0 we obtain (3.27).

Hence, if m0 ∈ R and v0 ∈ R
n that satisfy (3.19) exist, then m0 > 0, v0 ∈ R

n
c , and

they must be given by (3.28) and (3.25), and satisfy (3.26)–(3.27).

Part II In Part I, we have shown that if (3.19) possesses a solution for the unknowns
v0 ∈ R

n and m0 ∈ R, then v0 ∈ R
n
c is given uniquely by (3.25) and m0 > 0 is given

uniquely by (3.28), satisfying (3.26)–(3.27). We will now show that, indeed, v0 ∈
R

n
c , given by (3.25), and m0 > 0, given by (3.28), form a solution of (3.19), and that

the solution satisfies (3.20)–(3.23). Accordingly, in this second part of the proof we
assume that v0 ∈ R

n
c and m0 > 0 are given by (3.25) and (3.28), and we will prove

that the pair (m0,v0) forms a solution of (3.19).
It follows from Identity (3.16) of Lemma 3.1, along with m0 of (3.28) that

(
N∑

k=1

mkγvk

vk

c

)2

=
(

N∑
k=1

mkγvk

)2

− m2
0. (3.31)

Hence, by (3.25) and (3.31), we have the following chain of equations, which are
numbered for subsequent explanation:

v2
0

c2

(1)︷︸︸︷=== (
∑N

k=1 mkγvk

vk

c
)2

(
∑N

k=1 mkγvk
)2

(2)︷︸︸︷=== (
∑N

k=1 mkγvk
)2 − m2

0

(
∑N

k=1 mkγvk
)2

===1 − m2
0

(
∑N

k=1 mkγvk
)2

. (3.32)

Derivation of the numbered equalities in (3.32) follows:

1. This equation is given by Assumption (3.25).
2. Follows from Item 1 by (3.31).
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It follows from (3.32) that

γv0
= 1√

1 − v2
0

c2

=
∑N

k=1 mkγvk

m0
, (3.33)

thus verifying (3.26).
Following (3.26) and (3.25), we have

γv0
v0 =

∑N
k=1 mkγvk

vk

m0
, (3.34)

thus verifying (3.27).
Finally, (3.33) implies that m0 and v0 satisfy the upper entry of (3.19) and, sim-

ilarly, (3.34) implies that m0 and v0 satisfy the lower entry of (3.19). Hence, the
pair consisting of m0 and v0 forms a solution of (3.19). We have thus shown that
v0 ∈ R

n
c and m0 > 0 given by (3.25) and (3.28) form a solution of (3.19), and that

this solution satisfies (3.26)–(3.28).
To complete the proof it remains to show that the pair (m0,v0) satisfies (3.20)–

(3.23) as well.
Let us first show that m0 given by (3.28) is given by (3.23) as well. Indeed,

following (1.3), p. 4, (1.33), p. 10, and (1.65), p. 18, we have

γ	(w⊕vj )⊕(w⊕vk)
= γ	vj ⊕vk

, (3.35)

implying that the right-hand sides of (3.23) and (3.28) are equal, so that m0 is inde-
pendent of w ∈ R

n
c , as desired. As such, m0 is given by each of (3.23) and (3.28).

We have thus shown that the unique solution of (3.19) is formed by v0 ∈ R
n
c and

m0 > 0 that are given by (3.25) and (3.28), and that the solution satisfies (3.26)–
(3.27). It, therefore, remains to show that the solution satisfies (3.20)–(3.22) as well.

Applying the Lorentz boost L(w), w ∈ R
n
c , to each side of (3.19), we have

L(w)

N∑
k=1

mk

(
γvk

γvk
vk

)
= L(w)m0

(
γv0

γv0
v0

)
. (3.36)

Following the linearity of the Lorentz boost, illustrated in (3.8) and (3.9), (3.36)
can be written as

N∑
k=1

mk

(
γw⊕vk

γw⊕vk
(w⊕vk)

)
= m0

(
γw⊕v0

γw⊕v0
(w⊕v0 )

)
. (3.37)

Equation (3.37) is identical with (3.19) in which vk ∈ R
n
c is replaced by w⊕vk ∈

R
n
c , k = 0,1, . . . ,N .
But, the unique solution of (3.19) is the pair (m0 > 0,v0 ∈ R

n
c ) that satisfies

(3.25)–(3.28). Hence, the unique solution of (3.37) is the pair (m0 > 0,w⊕v0 ∈ R
n
c )
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that satisfies (3.20)–(3.23). Hence, the unique solution (m0 > 0,v0 ∈ R
n
c ) of (3.19)

satisfies not only (3.25)–(3.28) but, more generally, (3.20)–(3.23), and the proof is
complete. �

In physical applications to particle systems, the real numbers mk in Theorem 3.2
represent particle masses. As such, they are positive so that Assumption (3.24) is
satisfied. However, anticipating applications of Theorem 3.2 to barycentric coordi-
nates in hyperbolic geometry, in Chap. 4, we need the validity of Theorem 3.2 for
real numbers mk that need not be positive as well.

We have thus established in Theorem 3.2 the following four results concerning
an isolated system S, (3.12),

S = S(mk,vk,Σ0, k = 1, . . . ,N) (3.38)

of N noninteracting material particles the kth particle of which has invariant mass
mk > 0 and velocity vk ∈ R

n
c relative to an inertial frame Σ0, k = 1, . . . ,N :

1. The relativistically invariant (or, rest) mass m0 of the system S is given by

m0 =
√√√√√√

(
N∑

k=1

mk

)2

+ 2
N∑

j,k=1
j<k

mjmk(γ	vj ⊕vk
− 1) (3.39)

according to (3.23) with w = 0.
2. The relativistic mass of the system S is

m0γv0
(3.40)

relative to the rest frame Σ0, where v0 is the velocity of the center of momentum
frame of S relative to Σ0, given by

v0 =
∑N

k=1 mkγvk
vk∑N

k=1 mkγvk

(3.41)

according to (3.20) with w = 0.
3. Like energy and momentum, the relativistic mass is additive, that is, in particular

for the system S relative to the rest frame Σ0, by (3.21) with w = 0,

m0γv0
=

N∑
k=1

mkγvk
. (3.42)

4. The relativistic mass m0γv0
of a system meshes extraordinarily well with the

Minkowskian four-vector formalism of special relativity. In particular, for the
system S relative to the rest frame Σ0, we have, by (3.19),

N∑
k=1

(
mkγvk

mkγvk
vk

)
=

(
m0γv0

m0γv0
v0

)
, (3.43)
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where m0 and v0 are given uniquely by (3.39) and (3.41).

Thus, the relativistically invariant mass m0 of a particle system S in (3.39) gives
rise to its associated relativistic mass m0γv0

relative to the rest frame Σ0. The latter,
in turn, brings in (3.43) the concept of the relativistic mass into conformity with
the Minkowskian four-vector formalism of special relativity. Moreover, we will see
in Sects. 3.7 and 3.8 that the relativistically invariant mass m0 of a particle system
S provides a natural interpretation of observations in astrophysics and in particle
physics.

To appreciate the power and elegance of Theorem 3.2 in relativistic mechanics in
terms of novel analogies that it shares with familiar results in classical mechanics,
we present below the classical counterpart, Theorem 3.3, of Theorem 3.2. The latter
is obtained from the former by approaching the Newtonian limit when c tends to
infinity. The resulting Theorem 3.3 is immediate, and its importance in classical
mechanics is well-known.

Theorem 3.3 (Resultant Newtonian Invariant Mass Theorem) Let (Rn,+) be a Eu-
clidean n-space, and let mk ∈ R and vk ∈ R

n, k = 1,2, . . . ,N , be N real numbers
and N elements of R

n satisfying

N∑
k=1

mk �= 0. (3.44)

Furthermore, let

N∑
k=1

mk

(
1

vk

)
= m0

(
1

v0

)
(3.45)

be an (n + 1)-vector equation for the two unknowns m0 ∈ R and v0 ∈ R
n.

Then (3.45) possesses a unique solution (m0,v0), m0 �= 0, satisfying the follow-
ing equations for all w ∈ R

n (including, in particular, the interesting special case of
w = 0):

w + v0 =
∑N

k=1 mk(w + vk)∑N
k=1 mk

(3.46)

and

m0 =
N∑

k=1

mk. (3.47)

Proof While the proof of Theorem 3.3 is trivial, our point is to present a proof that
emphasizes how Theorem 3.3 is derived from Theorem 3.2. Indeed, in the limit as
c → ∞, the results of Theorem 3.2 tend to corresponding results of Theorem 3.3,
noting that in this limit gamma factors tend to 1. Accordingly, Theorem 3.3 is a
special case of Theorem 3.2 corresponding to c = ∞. �
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In physical applications to particle systems, the real numbers mk in Theorem 3.3
represent particle masses and, hence, they are positive. However, anticipating ap-
plications of Theorem 3.3 to barycentric coordinates in Euclidean geometry, in
Chap. 4, we need the validity of Theorem 3.3 for real numbers mk that need not
be positive as well.

Identity (3.46) of Theorem 3.3 is immediate. Yet, it is geometrically important.
The geometric importance of the validity of (3.46) for all w ∈ R

n lies on its impli-
cation that the velocity v0 of the center of momentum frame of a particle system
relative to a given inertial rest frame in classical mechanics is independent of the
choice of the origin of the classical velocity space R

n with its underlying standard
model of Euclidean geometry.

Unlike Identity (3.46) of Theorem 3.3, which is immediate, its counterpart in
Theorem 3.2, Identity (3.20), is not immediate. Yet, in full analogy with Theo-
rem 3.3, the validity of Identity (3.20) in Theorem 3.2 for all w ∈ R

n
c is geometrically

important. This geometric importance of Identity (3.20) lies on its implication that
the velocity v0 of the center of momentum frame of a particle system relative to a
given inertial rest frame in relativistic mechanics is independent of the choice of the
origin of the relativistic velocity space R

n
c with its underlying Cartesian–Beltrami–

Klein ball model of hyperbolic geometry.

3.5 Mass and Velocity of Particle Systems

In this section, we emphasize the analogies that the classical mass and velocity of a
particle system share with their relativistic counterparts. Let

Snewton = Snewton
(
mk,vk ∈ R

n,Σ0, k = 1, . . . ,N
)
,

Seinstein = Seinstein
(
mk,vk ∈ R

n
c ,Σ0, k = 1, . . . ,N

) (3.48)

be a Newtonian particle system and its corresponding Einsteinian particle system.
Each of these is an isolated system of N noninteracting material particles the kth
particle of which has invariant mass mk > 0 and velocity vk relative to a rest
frame Σ0. These velocities are Newtonian, vk ∈ R

n, for the Newtonian system
Snewton and Einsteinian, vk ∈ R

n
c , for the Einsteinian system Seinstein.

The mass m0 in Identity (3.45) of Theorem 3.3 is the Newtonian mass of the
Newtonian particle system Snewton. It is given by, (3.47),

m0 =
N∑

k=1

mk. (3.49)

The velocity v0 ∈ R
n in Identity (3.45) is the Newtonian velocity of the center

of momentum frame of the system Snewton relative to Σ0. It is given by (3.46) with
w = 0,

v0 =
∑N

k=1 mkvk∑N
k=1 mk

(3.50)
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satisfying (3.46), i.e.,

w + v0 =
∑N

k=1 mk(w + vk)∑N
k=1 mk

(3.51)

for all w ∈ R
n.

In full analogy, the mass m0 in Identity (3.19), p. 66, of Theorem 3.2 is the
Einsteinian rest mass of the Einsteinian particle system Seinstein. It is given by (3.28)
as

m0 =
√√√√√√

(
N∑

k=1

mk

)2

+ 2
N∑

j,k=1
j<k

mjmk(γ	vj ⊕vk
− 1) (3.52)

satisfying (3.23), i.e.,

m0 =
√√√√√√

(
N∑

k=1

mk

)2

+ 2
N∑

j,k=1
j<k

mjmk(γ	(w⊕vj )⊕(w⊕vk)
− 1) (3.53)

for all w ∈ R
n
c .

The velocity v0 ∈ R
n
c in Identity (3.19) is the Einsteinian velocity of the center

of momentum frame of the system Seinstein relative to Σ0. It is given by (3.25) as

v0 =
∑N

k=1 mkγvk
vk∑N

k=1 mkγvk

(3.54)

satisfying (3.20), i.e.,

w⊕v0 =
∑N

k=1 mkγw⊕vk
(w⊕vk)∑N

k=1 mkγw⊕vk

(3.55)

for all w ∈ R
n
c .

Accordingly, the relativistic mass of the system Seinstein is m0γv0
.

In the Newtonian limit of large c, c → ∞, gamma factors tend to 1. Hence, in
that limit the relativistically invariant rest mass m0 in (3.52)–(3.53) tends to its New-
tonian counterpart m0 in (3.49), and the relativistic center of momentum velocity
v0 ∈ R

n
c in (3.54)–(3.55) tends to its corresponding classical center of momentum

velocity v0 ∈ R
n in (3.50)–(3.51).

3.6 The Relativistic Mass is Additive

Suppose that the system S, (3.38), is made up of M subsystems each itself a system
of particles. Let m0,p be the relativistically invariant mass and v0,p the center of mo-
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mentum frame velocity of the pth subsystem, p = 1, . . . ,M , so that the relativistic
mass of the pth subsystem is m0,pγv0,p

.

Then, the relativistic mass m0γv0
of the system S, given by (3.39)–(3.41), is

additive, that is, it possesses the relativistic mass additivity property

m0γv0
=

M∑
p=1

m0,pγv0,p
. (3.56)

For simplicity, we prove the relativistic mass additivity property (3.56) for the
case of M = 2 subsystems, the proof for any M > 2 being similar.

Let us, therefore, view the system S of N particles, (3.38)–(3.41), with N ≥ 3,
as a system of the two subsystems S1 and S2,

S1 = S1(mk,vk,Σ0, k = 1, . . . ,N1),

S2 = S2(mk,vk,Σ0, k = N1 + 1, . . . ,N)
(3.57)

for any fixed N1, 1 < N1 < N .
Then, the relativistically invariant masses m0,1 and m0,2 of the subsystems S1

and S2 and their center of momentum frame velocities, v0,1 and v0,2 relative to Σ0,
respectively, are

m0,1 =
√√√√√√

(
N1∑
k=1

mk

)2

+ 2
N1∑

j,k=1
j<k

mjmk(γ	vj ⊕vk
− 1),

m0,2 =
√√√√√√

(
N∑

k=N1+1

mk

)2

+ 2
N∑

j,k=N1+1
j<k

mjmk(γ	vj ⊕vk
− 1),

(3.58)

and

v0,1 =
∑N1

k=1 mkγvk
vk∑N1

k=1 mkγvk

,

v0,2 =
∑N

k=N1+1 mkγvk
vk∑N

k=N1+1 mkγvk

,

(3.59)

possessing the relativistic mass additivity property

m0,1γv0,1
+ m0,2γv0,2

= m0γv0
. (3.60)

The proof of the additivity property (3.60) follows from (3.42) immediately. Indeed,
by applying the identity in (3.42) to each of the particle systems S1, S2 and S, we
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have the chain of equations

m0,1γv0,1
+ m0,2γv0,2

=
N1∑
k=1

mkγvk
+

N∑
k=N1+1

mkγvk

=
N∑

k=1

mkγvk

= m0γv0
. (3.61)

The relativistically invariant mass m0 of a system of particles S, (3.38)–(3.41),
leads to its associated relativistic mass m0γv0

, (3.42). We thus see that, in special
relativity, while relativistically invariant mass m0 is not additive [36], relativistic
mass, m0γv0

is additive.

3.7 The Relativistically Invariant Mass of a System in
Astrophysics

The resultant relativistically invariant mass m0, (3.39),

m0 =
√√√√√√

(
N∑

k=1

mk

)2

+ 2
N∑

j,k=1
j<k

mjmk(γ	vj ⊕vk
− 1) (3.62)

of a particle system S = S(mk,vk,Σ0,N) comprises two distinct kinds of relativis-
tically invariant mass that represent the Newtonian contribution and the relativistic
contribution. These two distinct kinds of mass are:

1. The Newtonian mass mnewton,

mnewton :=
N∑

k=1

mk (3.63)

which is the sum of the invariant, rest masses of the particles that constitute the
system S, as in (3.13).

2. The dark mass mdark,

mdark :=
√√√√√√2

N∑
j,k=1
j<k

mjmk(γ	vj ⊕vk
− 1). (3.64)

The dark mass of a particle system S, given by (3.64), depends on the velocity
dispersion of S, that is, on the spread of internal velocities vjk = 	vj⊕vk , 1 ≤ j <
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k ≤ N , of the constituent particles of S relative to each other. In other words, the
dark mass in (3.64) measures the extent to which the system S deviates away from
rigidity. Gravitationally, dark mass behaves just like ordinary mass, as postulated in
cosmology [6, p. 37]. However, it is undetectable by all means other than gravity
since it is fictitious, or virtual, in the sense that it is generated solely by relative
motion between constituent objects of the system.

We thus see from (3.64) that the dark mass of a system may be viewed as a
measure of mass that results solely from the velocity dispersion of the system. In
astrophysics, the velocity dispersion of stars or galaxies in a cluster is estimated by
measuring the radial velocities of selected constituents. Once the velocity distribu-
tion is known, the cluster’s mass is calculated by using the virial theorem [5].

If one attributes the dark mass mdark of a galaxy to the mass of a central dark
object, a black hole, a correlation should result between the mass of a black hole
and the velocity dispersion of its host galaxy. Indeed, Ferrarese and Merritt reported
in 2000 that “The masses of supermassive black holes correlate almost perfectly
with the velocity dispersion of their host bulges” [16]; and Gebhardt et al. remarked
that the resulting relation is of interest “because it implies that central black hole
mass is constrained and closely related to properties of the host galaxy’s bulge”
[19]. A recent improved version of the black hole mass (M)–velocity dispersion
(σ ) relation (called the M–σ relation) and black hole mass–luminosity (L) relation
(called the M–L relation) was reported by Gültekin et al. [23].

Dark matter was introduced into cosmology as an ad hoc postulate, hypothesized
to provide observed missing gravitational force [7]. In contrast, dark mass emerges
here as a consequence of the covariance of Einstein’s special theory of relativity, and
it stems from relative motion between constituent objects of a system. All relative
velocities between the constituent particles of a rigid system vanish, so that if the
system S is rigid, then 	vj⊕vk = 0, j, k = 1, . . . ,N . This, in turn, implies by (3.64)
that the dark mass of a rigid system vanishes.

The mass mnewton and the dark mass mdark of a system S are relativistically in-
variant, and are composed according to the Pythagorean formula

m0 =
√

m2
newton + m2

dark, (3.65)

giving rise to the invariant resultant rest mass m0 of the system S in (3.62)–(3.64).

3.8 The Relativistically Invariant Mass of a System in Particle
Physics

Following the four-momentum in (3.4), p. 61, and the four-vector norm (3.10)–
(3.11) we have

∥∥∥∥
(

p0
p

)∥∥∥∥ =
√

E2

c4
− ‖p‖2

c2
= m, (3.66)
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where, by (3.4),

p0 = mγv ,

E = mγv c2,

p = mγv v.

(3.67)

Assuming that both energy, E, and three-momentum, p, are additive is equivalent
to assuming that the four-momentum is additive. The latter assumption, in turn, led
us to identity (3.14), p. 64, that we now write as

(
E

c2

p

)
=

N∑
k=1

(
Ek

c2

pk

)
=

N∑
k=1

mk

(
γvk

γvk
vk

)
= m0

(
γv0

γv0
v0

)
. (3.68)

Here, in (3.68),

Ek = mkγvk
c2,

pk = mkγvk
vk

(3.69)

are the energy and momentum of the kth particle of the system S, k = 1, . . . ,N , and
accordingly,

E =
N∑

k=1

Ek,

p =
N∑

k=1

pk

(3.70)

are the energy and momentum of the system S.
Furthermore, as in (3.14), v0 is the velocity of the center of momentum frame of

S relative to the rest frame Σ0, and m0 is the resultant invariant mass of S.
Noting (3.11), p. 63, the norms of the two extreme sides of (3.68) give the equa-

tion

m0 =
√

E2

c4
− ‖p‖2

c2
(3.71)

where E and p are given by (3.70). Identity (3.71) demonstrates, by the relativistic
four-vector formalism, that the resultant mass m0 of a particle system S in (3.39) is
relativistically invariant, being the norm of a four-vector.

Identity (3.71), written equivalently as

E2 = m2
0c

4 + ‖p‖2c2 (3.72)

is known in particle physics as the energy–momentum relation. For a particle in
its inertial rest frame, where p = 0, Relation (3.72) reduces to Einstein’s famous
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formula

E = m0c
2. (3.73)

The energy–momentum relation (3.71)–(3.72) is used in particle physics to cal-
culate the relativistically invariant mass m0 of a system of particles in terms of the
total energy E and momentum p of the system.

As an illustrative example, let us consider two particles with rest (or, Newtonian)
masses m1 and m2, and velocities v1 and v2 relative to an inertial rest frame Σ0,
respectively. If these particles were to collide and stick, the rest mass m0 and the
velocity v0 relative to Σ0 of the resulting composite particle would satisfy the four-
momentum conservation law (3.14), p. 64, that is,

m0

(
γv0

γv0
v0

)
= m1

(
γv1

γv1
v1

)
+ m2

(
γv2

γv2
v2

)
. (3.74)

Hence, by (3.39) and (3.65),

m0 =
√

(m1 + m2)2 + 2m1m2(γ	v1⊕v2
− 1)

=
√

m2
newton + m2

dark, (3.75)

where

mnewton = m1 + m2,

mdark = 2m1m2(γ	v1⊕v2
− 1) > 0,

(3.76)

and, by (3.41),

v0 = m1γv1
v1 + m2γv2

v2

m1γv1
+ m2γv2

. (3.77)

Hence, the relativistic mass of the composite particle is m0γv0
, where m0 is given

by (3.75), and v0 is given by (3.77).
It is clear from (3.75)–(3.76) that the Newtonian mass, mnewton, is conserved dur-

ing the collision. It is only the total invariant mass, m0, which is increased following
the collision owing to the emergence of the dark mass mdark.

Examples of particles that collide and stick, as described in (3.74)–(3.77), are ob-
served in experimental searches for new particles in high-energy particle colliders.

We thus see that owing to the introduction of the relativistically invariant mass
m0 in (3.62), along with its Newtonian and dark mass components in (3.63)–(3.65),
the concept of the relativistic mass fits well under the umbrella of the four-vector for-
malism of special relativity. Moreover, we see that the resulting dark mass emerges
naturally not only in the interpretation of observations in astrophysics, demonstrated
qualitatively in Sect. 3.7, but also in the interpretation of observations in parti-
cle physics, demonstrated qualitatively in this section. Naturally, we will find in
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Sect. 4.2 of Chap. 4 that the relativistically invariant mass m0 in (3.62) is what we
need for the introduction of barycentric coordinates into hyperbolic geometry. The
latter, in turn, is what we need for the determination of hyperbolic triangle centers.

3.9 Remarkable Analogies

In this section, we emphasize the analogies in Theorems 3.2, p. 65, and 3.3, p. 71,
that the classical mass and center of momentum velocity of a particle system in
(3.78a)–(3.78d) below share with their relativistic counterparts in (3.79a)–(3.79d)
below.

Seeking a way to place the relativistic mass m0γv0
of a particle system S under

the umbrella of the Minkowskian four-vector formalism of special relativity, we
have uncovered the novel, relativistically invariant, or rest, mass m0 of a particle
system, presented in (3.79d) below. Furthermore, following the discovery of m0 in
(3.62), we have uncovered remarkable analogies that Newtonian and Einsteinian
mechanics share.

To see the analogies clearly, let us consider the following well known classical
results, (3.78a)–(3.78d) below, which are involved in the determination of the New-
tonian resultant mass m0 and the classical center of momentum velocity of a Newto-
nian system of particles, and to which we will subsequently present our Einsteinian
analogs that have been discovered in Theorem 3.2. Let

S = S(mk,vk,Σ0, k = 1, . . . ,N), vk ∈ R
n (3.78a)

be an isolated Newtonian system of N noninteracting material particles the kth par-
ticle of which has mass mk and Newtonian uniform velocity vk relative to an inertial
frame Σ0, k = 1, . . . ,N . Furthermore, let m0 be the resultant mass of S, considered
as the mass of a virtual particle located at the center of momentum of S, and let
v0 be the Newtonian velocity relative to Σ0 of the Newtonian center of momentum
frame of S. Then we have the following well-known identities:

1 = 1

m0

N∑
k=1

mk (3.78b)

and

v0 = 1

m0

N∑
k=1

mkvk,

w + v0 = 1

m0

N∑
k=1

mk(w + vk),

(3.78c)
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where the binary operation + is the common vector addition in R
n, and where

m0 =
N∑

k=1

mk (3.78d)

for v,wk ∈ R
3, mk > 0, k = 0,1, . . . ,N .

In full analogy with (3.78a), let

S = S(mk,vk,Σ0, k = 1, . . . ,N), vk ∈ R
n
c (3.79a)

be an isolated Einsteinian system of N noninteracting material particles the kth
particle of which has invariant mass mk and Einsteinian uniform velocity vk relative
to an inertial frame Σ0, k = 1, . . . ,N . Furthermore, let m0 be the resultant mass
of S, considered as the mass of a virtual particle located at the center of mass of
S (calculated in (3.29)), and let v0 be the Einsteinian velocity relative to Σ0 of
the Einsteinian center of momentum of the Einsteinian system S. Then, as shown
in Theorem 3.2, the relativistic analogs of the Newtonian expressions in (3.78b)–
(3.78d) are, respectively, the following Einsteinian expressions in (3.79b)–(3.79d),

γv0
= 1

m0

N∑
k=1

mkγvk
,

γu⊕v0
= 1

m0

N∑
k=1

mkγu⊕vk
,

(3.79b)

and

γv0
v0 = 1

m0

N∑
k=1

mkγvk
vk,

γw⊕v0
(w⊕v0) = 1

m0

N∑
k=1

mkγw⊕vk
(w⊕vk),

(3.79c)

where the binary operation ⊕ is the Einstein velocity addition in R
n
c , given by (1.2),

p. 4, and where

m0 =
√√√√√√

(
N∑

k=1

mk

)2

+ 2
N∑

j,k=1
j<k

mjmk(γ	vj ⊕vk
− 1) (3.79d)

for w,vk ∈ R
3
c , mk > 0, k = 0,1, . . . ,N . Here m0 is the relativistic invariant mass

of the Einsteinian system S, supposed concentrated at the relativistic center of mass
of S, and v0 is the Einsteinian velocity relative to Σ0 of the Einsteinian center of
momentum frame of the Einsteinian system S.
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To conform with the Minkowskian four-vector formalism of special relativity,
both m0 and v0 are determined in Theorem 3.2 as the unique solution of the
Minkowskian four-vector equation (3.19).

We finally wrote (3.62) as (3.65), i.e.,

m0 =
√

m2
newton + m2

dark, (3.80)

viewing the relativistically invariant, or rest, mass m0 of the system S as a
Pythagorean composition of the Newtonian rest mass, mnewton and the dark mass,
mdark of S. The mass mdark is dark in the sense that it is the mass of virtual matter
that does not collide and does not emit radiation. Following observations in cosmol-
ogy, one may postulate that our dark mass reveals its presence only gravitationally.
We have shown qualitatively that (3.80) explains observations in both astrophysics
and particle physics.

We should remark that the presence of our dark mass is predicted by theoretic
special relativistic techniques. Hence, it need not account for the whole mass of dark
matter observed by astrophysicists in the cosmos because there could be contribu-
tions from general relativistic considerations and, perhaps, other unknown sources.

3.10 Problems

Problem 3.1 Matrix Representation of the Lorentz Boost:
Show that the Lorentz boost L(u), given vectorially by (3.5), p. 61, is a linear map
that possesses the matrix representation (3.1), p. 60.
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