
Chapter 3
Cholesterol-Binding Viral Proteins in Virus
Entry and Morphogenesis

Cornelia Schroeder

Abstract Up to now less than a handful of viral cholesterol-binding proteins have
been characterized, in HIV, influenza virus and Semliki Forest virus. These are pro-
teins with roles in virus entry or morphogenesis. In the case of the HIV fusion
protein gp41 cholesterol binding is attributed to a cholesterol recognition consensus
(CRAC) motif in a flexible domain of the ectodomain preceding the trans-membrane
segment. This specific CRAC sequence mediates gp41 binding to a cholesterol affin-
ity column. Mutations in this motif arrest virus fusion at the hemifusion stage and
modify the ability of the isolated CRAC peptide to induce segregation of cholesterol
in artificial membranes.

Influenza A virus M2 protein co-purifies with cholesterol. Its proton transloca-
tion activity, responsible for virus uncoating, is not cholesterol-dependent, and the
transmembrane channel appears too short for integral raft insertion. Cholesterol
binding may be mediated by CRAC motifs in the flexible post-TM domain,
which harbours three determinants of binding to membrane rafts. Mutation of
the CRAC motif of the WSN strain attenuates virulence for mice. Its affinity to
the raft–non-raft interface is predicted to target M2 protein to the periphery of
lipid raft microdomains, the sites of virus assembly. Its influence on the mor-
phology of budding virus implicates M2 as factor in virus fission at the raft
boundary. Moreover, M2 is an essential factor in sorting the segmented genome
into virus particles, indicating that M2 also has a role in priming the outgrowth of
virus buds.

SFV E1 protein is the first viral type-II fusion protein demonstrated to directly
bind cholesterol when the fusion peptide loop locks into the target membrane.
Cholesterol binding is modulated by another, proximal loop, which is also impor-
tant during virus budding and as a host range determinant, as shown by mutational
studies.

C. Schroeder (B)
Max Planck Institute for Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, D-01307,
Dresden, Germany
e-mail: cornelia.schroeder@mpi-cbg.de

77J.R. Harris (ed.), Cholesterol Binding and Cholesterol Transport Proteins,
Subcellular Biochemistry 51, DOI 10.1007/978-90-481-8622-8_3,
C© Springer Science+Business Media B.V. 2010



78 C. Schroeder

Keywords HIV gp41 influenza M2 protein · Alphavirus E1 protein · Peripheral
raft protein · Cholesterol binding site · Virus budding · Virus fusion · Virus
fission · Filamentous virus particles

Abbreviation

aa amino acid
CBPPA cholesterol-protein binding blot assay
CCM cholesterol consensus motif
CHS cholesterol hemisuccinate
CRAC cholesterol recognition amino acid consensus
DHSM dihydrosphingomyelin
DRM detergent-resistant membrane
DSC differential scanning calorimetry
DV dengue virus
FP fusion peptide
FPLC fast performance liquid chromatography
gp41 glycoprotein 41 (refers to molecular weight 41 kD)
GPCR G protein-coupled receptor
HA hemagglutinin
HIV human immunodeficiency virus
K-D Kyte-Doolittle (scale of hydrophobicity)
ld liquid-disordered
LLP lentivirus lytic peptide
lo liquid-ordered
LUV large unilamellar vesicles
Mab monoclonal antibody
MAS magic angle spinning
MBP maltose binding protein
MLV murine leukaemia virus
MPR membrane proximal region
mβCD methyl-β-cyclodextrin
NA neuraminidase
NMR nuclear magnetic resonance
pHtrans pH of conformational transition
PIP3 phosphatidylinositol-3,4,5-triphosphate
PIP4,5P2 phosphatidylinositol-4,5-bisphosphate
PM plasma membrane
POPC palmitoyl oleyl phosphatidylcholine
pre-TM pre-transmembrane
pre-TMp pre-transmembrane peptide
RNP ribonucleoprotein
S protein spike protein
SARS severe acute respiratory syndrome
SFV Semliki Forest virus
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SIN Sindbis virus
SIV Simian immunodeficiency virus
SM sphingomyelin
SOPC stearoyl oleyl phosphatidylcholine
β2AR human β2-adrenergic receptor
TBE tick-borne encephalitis virus
TM transmembrane
TSPO outer mitochondrial membrane translocator protein
TX-100 Triton X-100
Udorn influenza A/Udorn/307/72
VSV Vesicular stomatitis virus
WSN influenza A/WSN/33
W-W White-Wimley (scale of hydrophobicity)
XIP exchanger inhibitory peptide

3.1 Introduction

Viruses cross membrane barriers in the process of infection and again during assem-
bly and release through membranous compartments. The role of membrane lipid
composition and protein-lipid binding for specific biological functions of viruses
and organelles is an area of intense investigation. Proteins with functions in mem-
brane domain organization, trafficking, fusion and fission often possess specific lipid
binding sites. X-ray crystallography revealed the first cholesterol-binding site in the
3D-structure of a signalling protein (Cherezov et al., 2007, Hanson et al., 2008). The
discovery of another cholesterol binding motif 10 years earlier in a mitochondrial
protein (Li and Papadopoulos, 1998) has been influential for a number of studies of
viral proteins carrying this motif.

Cholesterol is a class apart from the other membrane lipids. Unlike these it cannot
form membranes on its own, and being the most compact of the lipids, it penetrates
less deeply into the hydrophobic layer of membrane leaflets, while its miniature
hydroxyl head-group barely projects into the interfacial zone. Cholesterol is also
the most diffusible lipid, and the one most akin to small-molecule drugs in structure
and function. Modulation of membrane cholesterol levels – physiological or induced
by drug therapies or viral infection itself – can have significant consequences for
virus replication. Cholesterol anchors on antiviral drugs and other inhibitors make
these raftophilic and target and concentrate them into membrane rafts and to mem-
brane trafficking pathways where they interfere most effectively with pathogenic
processes (reviewed by Rajendran et al., 2010).

Membrane rafts are implicated in the entry and egress of many virus species
(Nayak and Hui, 2004; Ono and Freed, 2005). Rafts are nanoscale dynamic, lat-
eral membrane domains with a specific lipid and protein composition, enriched in
cholesterol and sphingolipids, that form a liquid ordered-like phase separated from
bulk membrane (Simons and Ikonen, 1997; Hancock, 2006). Signalling cycles at the
plasma membrane involve reversible coalescence and disassembly of rafts driven by
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activation states of the raft proteins (Rajendran and Simons, 2005), whereas during
virus morphogenesis rafts merge irreversibly into microscale platforms of assembly
and budding (for reviews see Schmitt and Lamb, 2005; Waheed and Freed, 2009).
The affinity of virus envelope proteins to rafts is not attributed to specific lipid bind-
ing sites but to a combination of acylation and long transmembrane (TM) segments
(Scheiffele et al., 1997; Melkonian et al., 1999; Rousso et al., 2000). In addition,
certain viral envelope proteins exhibit distinct affinity to cholesterol. It has proved
challenging to correlate this property to specific cholesterol binding sites on the
one hand and to biological function on the other. These issues are at the center of
this review. Since viral cholesterol-binding proteins usually are components of the
virion, the review begins with virus lipidomics.

3.1.1 Virus Lipidomics

The composition of influenza virus (IFV) and human immunodeficiency virus (HIV)
envelopes was determined by liquid chromatography (Aloia et al., 1993; Zhang
et al., 2000), while recent data for HIV and other viruses has been generated by
mass spectroscopy (Brügger et al., 2006, 2007; Chan et al., 2008; Kalvodova et al.,
2009; Lorizate et al., 2009).

The lipid compositions of the envelopes of ‘non-raft’ enveloped viruses (Semliki
Forest virus, SFV, family Togaviridae, genus Alphavirus) and vesicular stomatitis
virus – VSV, family Rhabdoviridae, genus Vesiculovirus) are remarkably similar
and closely resemble that of the host cell plasma membrane (PM) from which they
bud (Kalvodova et al., 2009). No significant differences between SFV and VSV
were seen at the lipid class level, but saturated and mono-unsaturated glycerophos-
pholipids were enriched in SFV as compared to VSV and differences in fatty acid
chain length were seen. Compared to PM the viruses showed some selectivity for
sphingomyelin (SM), especially, long chain and dihydrosphingomyelin – DHSM,
and depletion of GM3 (Kalvodova et al., 2009).

IFV buds from apical PM with an envelope of cholesterol and sphingolipid-
rich raft membrane (Scheiffele et al. 1999, Zhang et al., 2000). Raft association
is intrinsically encoded in HA (Scheiffele et al., 1997), the most abundant envelope
glycoprotein. The ability of viral envelope proteins to select a cognate lipid environ-
ment is uncovered in IFV mutants defective in raft association and budding. Thus,
the envelope of a double mutant lacking the cytoplasmic tails of hemagglutinin
(HA) and neuraminidase (NA) (HAt-/NAt-) incorporated three times more triglyc-
erides and proportionally less raft lipids, cholesterol and SM (Zhang et al., 2000).
Membrane rafts and specifically cholesterol are also involved in IFV entry. Sun and
Whittaker (2003) demonstrated that depleting IFV envelope cholesterol by methyl-
β-cyclodextrin (mβCD) extraction specifically blocked the fusion of infectious virus
with the PM of pH 5-treated host cells, a process mimicking virus infection by
fusion with the endosomal membrane. Similarly, the requirement of cholesterol
in the HIV envelope for infection (Campbell et al., 2002; Guyader et al., 2002)
correlates with the integrity of viral envelope rafts (Campbell et al., 2004).
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Brügger et al. (2006) presented the first comprehensive HIV-1 lipidomics,
extended by Chan et al. (2008) who added analysis of phosphoinositides and com-
pared retroviruses, HIV-1 and 2 and murine leukaemia virus (MLV), as well as the
PMs of three host cell lines. The lipid compositions of HIV-1 and 2 vary with that of
the plasma membrane raft domain of their host cells (Chan et al., 2008). For exam-
ple, the content of DHSM in HIV-1 from a macrophage cell line (MDM) is twice
that of the T cell line H9. Similar differences in lipid composition were observed
between HIV budding from MT4 versus 293T cells and correlated to membrane
order of the virus envelope reported by the dye laurdan (Lorizate et al., 2009).

The HIV envelope protein gp160 seems to exert little influence on the envelope’s
lipid composition (Chan et al. 2008). Nevertheless, there are ways in which HIV
proteins modify the lipid composition of the viral envelope. HIV accessory protein
Nef enforces the raft character of the plasma membrane by significantly reducing
polyunsaturated PC species and enriching SM (Brügger et al., 2007). Although Nef
also boosts cholesterol synthesis (Zheng et al., 2003), cholesterol levels of the PM
and the virus envelope are not altered in HIV infection (Brügger et al., 2007). Nef is
a raft protein (Wang et al., 2000) but cholesterol binding by Nef itself (Zheng et al.,
2003) has been contested (Brügger et al., 2007).

Gag is the main determinant of HIV raft association (Bhattacharya et al.,
2006) and the driving force of particle formation and budding (Morita and
Sundquist, 2004).

Phosphatidylinositol phosphates are the one raft lipid class preferentially incor-
porated into retroviral envelope over PM. Phosphatidylinositol-4,5-bisphosphate
(PIP4,5P2) enrichment disappears upon deletion of the polybasic stretch at the head
of the Gag protein MA domain (Chan et al. 2008), confirming its essential binding
to PIP4,5P2 and via PIP4,5P2 to membrane (Ono et al., 2004; Murray et al., 2005;
Chukkapalli et al., 2008). Enzymatic degradation of PIP4,5P2 also interferes with
HIV budding (Chan et al., 2008). Similarly, PIP4,5P2 and PIP3 levels are increased
during Respiratory syncytial virus (RSV) infection, and inhibiting their synthesis
impaired formation of virus progeny (Yeo et al., 2009).

3.1.2 Cholesterol Binding Sites

In 1998 Papadopoulos and colleagues described a cholesterol recognition site
VLNYYVWR in the outer mitochondrial membrane translocator protein TSPO,
formerly known as peripheral-type benzodiazepine binding protein. Based on
homology searches of other cholesterol binding proteins they proposed a choles-
terol recognition amino acid consensus L/V-(X)1-5-Y-(X)1-5-R/K (CRAC; Li and
Papadopoulos, 1998). TSPO is involved in cholesterol transport to cytochrome P450
which catalyzes the first steroidogenic reaction (Papadopoulos et al., 2007) (see
also Chapter 15). The cholesterol-binding groove in a hydrophobic α-helix near the
cytosolic C-terminus was confirmed by mutational studies and modelled (Li and
Papadopoulos, 1998, Li et al., 2001, Jamin et al., 2005). Contributions from other
TSPO α-helices to the binding site were predicted (Jamin et al., 2005; Murail et al.,
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2008) and presented in a 3D homology model based on apolipophorin III, with
the five TM α-helices surrounding one cholesterol molecule docked to the CRAC
domain (Rone et al., 2009).

The crystal structure of a human β2-adrenergic receptor (β2AR), a G protein-
coupled receptor (GPCR), revealed a cholesterol binding site formed by amino acids
of α-helices IV and II (Cherezov et al., 2007; Hanson et al., 2008). These define
a cholesterol consensus motif, CCM, conserved among human class A GPCRs
(Hanson et al., 2008). For the purpose of comparison to CRAC, CCM is written as
R/K-(X)7-10-W/Y-(X)4-I/V/L on one α-helix, and F/Y on the other. The motifs CCM
and CRAC are obviously related by inversion. In three dimensions both motifs may
determine similar binding grooves, however, β2AR in contrast to TSPO appears
to bind two stacked molecules of cholesterol. Since CRAC and CCM are both
quite degenerate, they occur frequently; not every occurrence will be a cholesterol
recognition site. A common feature of CRAC and CCM is the α-helical secondary
structure. It is reasonable to muster additional criteria for a cholesterol recogni-
tion site of this type, i.e. inclusion in or proximity to an α-helical amphiphilic or
trans-membrane (TM) domain. Table 3.1 cites examples of CRAC motifs in viral
proteins reviewed here, in comparison to CRAC motifs of cellular proteins. Also
shown are CRAC motifs currently not implicated in cholesterol binding. For exam-
ple, the influenza A M1 protein exhibits three such motifs, one of which is shown.
It is part of the helix six domain which has affinity to membrane and to RNP
(Ruigrok et al., 2000). Other short sequence motifs proposed in cholesterol binding
(cf. Politowska et al., 2001; Yao and Papadopoulos, 2002) have not been analysed in
virus proteins.

3.1.3 Methods Demonstrating Protein–Cholesterol Binding

Since cholesterol adheres to hydrophobic surfaces, evidence of binding specificity
collected with independent methods is desirable. Table 3.2 lists approaches for prob-
ing the physical association of proteins with cholesterol, as reported for selected
viral and cellular proteins. A comprehensive discussion of such methods is the sub-
ject of Chapter 1 of this book (Gimpl, 2010). The upper half of Table 3.2 lists ways
of analysing cholesterol bound to proteins or peptides, purified or in membrane
fractions, the lower part addresses binding-site mapping. The β2-adrenergic recep-
tor, where X-ray crystallography revealed the cholesterol binding site belongs to
the GPCR superfamily; previous studies on various GPCR have indicated a func-
tion of cholesterol in receptor activity (reviewed by Hanson et al., 2008; Paila et al.,
2009). The natural variation of the cholesterol-binding site CCM in GPCRs will
enable structure-function analysis. In Drosophila metabotropic glutamate receptor,
ligand affinity increases with raft association; labelling with 3H-photocholesterol
(Thiele et al., 2000) demonstrated the sterol affinity of this particular GPCR (Eroglu
et al., 2003). Semliki Forest Virus (SFV) E1 fusion protein was also labelled with
photocholesterol (Umashankar et al., 2008).
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Table 3.2 Methods and parameters in the analysis of cholesterol binding

Method/parameter Protein

HIV
gp41

Influenza
M25

SFV
E1 TSPO GPCR Aβa

Binding
properties

Cholesterol incorporation − + − +7 − +14

– stoichiometry
cholesterol per subunit

− 0.5−1 − − 2 11,12 −

– binding constant − − − 6.1 nM 8 − −
– Filipin staining − + − − − −
Affinity chromatography +1 + − − − −
Chemical shift of

cholesterol carbon
atoms (13C MAS
NMR)

+2 − − − − −

Complexation with
cholesterol crystallites

(+)3 − − − − +15

Binding site CBPPAb mapping − − − − − +14

Binding site
transplantation

+1 − − +9 − −

Photo-affinity labelling
with 3H steroid

− − +6 +9 +13 −

X-ray crystallography − − − − + −
Mutant studies (+)4 − − +7,9,10 − −

aAβ is the cleavage product of amyloid precursor protein
bCPBBA – Cholesterol–protein binding blot assay
1)Affinity chromatography on cholesterol-hemisuccinate (CHS) agarose (Vincent et al., 2002)
2)Epand et al. (2003)
3)Experiments on short peptides, not full-length gp41
4)Mutant studies on full-length protein biological function, not cholesterol binding (cf. Table 3.3)
5)Schroeder and Lin (2005)
6)Umashankar et al. (2008)
7)Jamin et al. (2005)
8)Lacapère et al. (2001)
9)Li et al. (2001)
10)Li and Papadopoulos (1998)
11)Cherezov et al. (2007)
12)Hanson et al. (2008)
13)Eroglu et al. (2003)
14)Yao and Papadopoulos (2002)
15)Harris and Milton (2009)

The TSPO CRAC motif is currently the best-studied cholesterol-binding site,
which perhaps explains why such motifs are being investigated in other proteins.
Single mutants, where the signature residues Y and R of the CRAC motif were
replaced by S and L abolished cholesterol uptake by bacteria expressing TSPO (Li
and Papadopoulos, 1998). Transplantation of the CRAC motif into another protein,
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as done for TPSO and for HIV gp41, substantiated its assignment as a cholesterol-
binding site. Photoaffinity labelling with 3H-promegestone of the TPSO CRAC
motif transplanted onto Tat, a cell-permeating HIV protein, was competed 1000-
times more efficiently by cold cholesterol than by promegestone. The triple mutant
V149G, Y152S, R156L of this construct could not be photoaffinity labelled (Li
et al., 2001), and the TSPO single mutant Y152S no longer bound 3H-cholesterol
(Jamin et al., 2005). A cholesterol-protein binding blot assay enabled the delineation
of a cholesterol-binding site in Aβ (Yao and Papadopoulos, 2002). Independent
studies by electron microscopy also point to specific cholesterol binding of β-
amyloid (Harris and Milton, 2009; see also Chapter 2). The analysis of the chemical
shift of cholesterol carbon atoms in complexes with short peptides containing
cholesterol-binding motifs was pioneered by Epand et al. (2003) and applied to
gp41 CRAC. These authors also studied a number of sequence variations in short
CRAC-containing peptides, discussed in Section 3.2.3.

3.2 Human Immunodeficiency Virus Fusion Protein gp41

In 2009 the notion that HIV is the paradigm of a virus that enters cells by fusion with
the plasma membrane (reviewed by Gallo et al., 2003) was overturned. HIV enters
the cell by receptor-mediated endocytosis, albeit at neutral pH (Miyauchi et al.,
2009). HIV is transmitted either by free virus particles or via fusion of infected with
non-infected cells, forming multi-nucleate syncytia. Both the Env protein clusters
on the donor side, and primary and secondary receptors on the acceptor side, reside
in raft membrane domains (reviewed by Waheed and Freed, 2009).

Interactions of HIV gp41 with cholesterol have been investigated more exten-
sively than those of any other viral protein. HIV gp41 is derived by proteolytic
cleavage from its precursor, the envelope glycoprotein 160. In complex with the
other cleavage product gp120, gp41 forms the trimeric spikes of the virus parti-
cle. The gp120 subunit presents the receptor binding sites for the primary receptor
CD4 and for secondary receptors and, with the gp41 subunit, functions as a class I
fusion protein. Fusion is prepared by a sequence of events triggered by adsorption to
the primary receptor (Fig. 3.1). Receptor binding sets off extensive restructuring of
gp41 to expose and propel the N-terminal fusion peptide into the target membrane
(reviewed by Gallo et al., 2003).

The ectodomain comprises defined sub-domains, which refold into different sec-
ondary structures during fusion. From the point of view of cholesterol binding, the
pre-transmembrane (pre-TM) or membrane proximal region (MPR) (Fig. 3.1) of 20
amino acids (664–683) immediately preceding the TM segment has attracted special
interest: DKWASLWNWFNITNWLWYIK. It forms an α-helix in lipid micelles,
wherein four of the five tryptophan and the tyrosine residues align as a ‘collar of
aromatic residues’ (Schibli et al., 2001). Analogous to tryptophan-rich antimicro-
bial peptides, the aromatic collar was predicted to engage with the aqueous interface
of the membrane bilayer. The pre-TM terminates on LWIYK (679–683), the CRAC
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Fig. 3.1 Conformational transitions of HIV protein gp41 during the fusion cascade. A Release of
the metastable state of the gp120-gp41 complex by binding to the primary and secondary recep-
tors, CD4 and CKR. The membrane-proximal region MPR (pre-TM) is exposed adjacent to the
virus envelope. The MPR-distal sequence occludes the fusion peptide. B gp120 trimers refold into
extended α-helical structure and harpoon the fusion peptide into the target membrane. Coil-to-
amphipathic helix transition of the MPR-distal sequence enables immersion of the pre-TM in the
membrane interfacial zone. C Extended α-helices zip into a six-helix bundle (6HB) and clamp
virus and cell membrane, causing (D) hemifusion and, by pulling the pre-TM into the trimer of
hairpins, (E) fusion pore opening. Model of Bellamy-McIntyre et al. (2007), Figure 8 (modified),
with permission from the American Society for Biochemistry and Molecular Biology

motif immediately proximal to the transmembrane domain. The role of the pre-TM
has been studied at all levels of complexity, from mutational study of virus repro-
duction in the cell and effects on the various functions of gp41, to isolated proteins
and peptides in artificial membrane systems.

3.2.1 Mutational Studies on the Pre-TM CRAC Motif
in Virus-Cell Systems

Helseth et al. (1990) found that substituting the lysine of the LWYIK motif by
isoleucine reduced syncytium formation by 95%. The mutation did not interfere
with translation, processing and cell surface expression of Env, or with its binding
to CD4, but this mutant Env expressed from a plasmid was completely unable to
trans-complement the single-cycle replication of an Env-deleted virus. Salzwedel
et al. (1999) explored the function of the pre-TM through substitution, deletion and
insertion, and constructed a number of CRAC mutants – prior to the recognition
of its cholesterol-binding significance. They found that the pre-TM is dispensable
for maturation, trafficking, cell surface expression and CD4 binding, but is required
for cell–cell fusion. The substitution WA within LWYIK was tolerated. In contrast,
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replacing K abrogated fusion. Deletion of LWYI inhibited incorporation of gp120
into virus particles, viral entry and syncytium formation (Salzwedel et al., 1999)
while lipid mixing and small molecule transfer were only reduced by 50% (Muñoz-
Barroso et al., 1999). Analogously, inserting nine amino acids between Y and K
inhibited entry (Salzwedel et al., 1999) and fusion, but reduced lipid and small con-
tent mixing only by about 50%. Thus, a dysfunctional LWYIK motif appeared to
allow fusion pore formation, but arrest fusion pore expansion.

Ten years later, a new mutational study has now focused on the CRAC motif
(Chen et al., 2009). Three deletion mutants and three point mutations were studied:
�LWYIK, �YI, �IK, KE, WA, YA. All mutant proteins underwent normal syn-
thesis, oligomerization, cell surface expression, and incorporation with normally
assembled Gag into mutant virus, i.e. budding was not impaired. However, multi-
cycle replication of deletion mutants was significantly slowed, and virus infectivity
and cell-cell fusion were strongly impaired (Table 3.3). The deletion mutants also
interfered in trans with virus infectivity and to a lesser degree with fusion elicited
by wild-type Env. The mutation KE suppressed infectivity in trans and eliminated
fusion, and WA substitution was less disruptive than the other point mutations.

Overall, the recent study by Chen et al. (2009) shows that function of the
LWYIK motif in virus infection is most sensitive to alteration of the CRAC con-
sensus residues L, Y and K, confirming the earlier results of Salzwedel et al.
(1999). �LWYIK gp41 remains susceptible to peptides blocking the formation of
the six-helix bundle fusion intermediate (Fig. 3.1), which proves a degree of func-
tional independence of these subdomains. Thus, the effects of the mutations may
be attributed to local interactions of the LWYIK motif with lipid membranes. Of
interest, none of the mutations of the CRAC motif influenced raft association of
gp41. In a dye transfer assay between Env-expressing effector and CD4-expressing
target cells pre-TM �LWYIK supported lipid mixing, tantamount to hemifusion,
but inhibited small molecule content mixing (Chen et al. 2009). The Chen study

Table 3.3 Phenotypes of CRAC motif∗ mutations of HIV gp41

Infectivity
Transdominant
interference with

Mutant Direct Transcomplementation
Cell–cell
fusion

Cell–cell
fusion Virus

Lipid vs. content
mixing

�LWYIK1 4 4 1 70 25 140 vs. 32
�YI1 8 8 2 66 30 −
�IK1 8 8 <1 60 35 −
LI2 − − 44−70 − − −
WA1 37 43 90 100 90 −
YA1 46 48 35 − − −
KE1 40 17 < 10 − − −
% control; ∗consensus residues are underlined; – not done
after 1Chen et al. (2009); 2Epand et al. (2006)
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confirms the conclusions of earlier studies (Muñoz-Barroso et al., 1999; Salzwedel
et al., 1999), showing that LWYIK is required for the formation and dilation of
fusion pores.

3.2.2 Studies on Full-Length gp160, gp41 and Polypeptide
Constructs

One method for assaying the cholesterol affinity of a protein is by binding to
cholesterol hemisuccinate (CHS) linked to agarose. Vincent et al. (2002) found
that a soluble Env construct binds to CHS, but hardly at all to cholic acid
agarose. As further controls, calmodulin agarose bound the construct via the Env
calmodulin binding site and ConA-sepharose B via gp120-linked mannose. Maltose
binding protein (MBP) fusions of gp41 sequences overlapping the pentapeptide
LWYIK, even the minimal construct MBP-LWYIK, also attached to cholesterol
hemisuccinate agarose, whereas others like the gp41 N-terminal fusion peptide, an
immunodominant epitope or an endodomain fragment (aa752–856) did not. This
sequence spans two CRAC motifs (Table 3.2), which are thus discounted. MBP
fusions with complete or incomplete gp41, with or without TM, bound equally, as
did a construct containing LWYIR. The study of Vincent et al. (2002) presented
compelling evidence of cholesterol binding by the gp41 pre-TM CRAC motif,
however, Chen et al. (2009) made the point that none of this work was replicated.

3.2.3 Peptide Studies and Modelling

The pre-TM has been analysed in detail by modelling and by experiments on iso-
lated peptides and their membrane interaction. According to epitope mapping and
hydropathy analyses pre-TM was subdivided into short defined sequence elements.
N-terminally, pre-TM overlaps the epitope of the monoclonal antibody (Mab) 2F5.
Residues 666–673 constitute interfacial subdomain I, 670–676 the epitope of Mab
4E10, and 677–683 interfacial subdomain II (reviewed by Lorizate et al., 2008).
Different from the TM segment, which is hydrophobic according to the classi-
cal Kyte-Doolittle (K-D) scale, the pre-TM exhibits interfacial hydrophobicity as
defined by White and Wimley (1999) (W-W). The K-D scale is based on phase par-
titioning of hydrophobic side chains, while the W-W scale reflects whole residue
partitioning of oligopeptides into the bilayer interface of POPC. For the N-terminal
fusion peptide W-W and K-D hydropathy overlap. In contrast, for pre-TM of HIV-1,
2 and SIV the distance between the W-W peak and the transmembrane K-D peak
is 15–20 residues. Pre-TM interfacial hydrophobicity analysed in a narrow window
of 5 aa exhibits two peaks, and mutations eliminating this bifurcation also interfere
most with fusion (Sáez-Cirión et al., 2003), e.g. �LWYI, the CRAC deletion of
Salzwedel et al. (1999).
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Suárez et al. (2000a) tested the ability of the gp41 fusion (FP) and pre-TM
peptides (pre-TMp) to permeabilize and fuse artificial membranes. Surprisingly,
induction of membrane leakage by, and fusogenic activity of pre-TMp on large
unilamellar vesicles (LUVs), is greater than the activity of the fusion peptide (FP).
The validity of these peptide assays with respect to the earlier virus-cell studies
(Salzwedel et al., 1999) was underscored by the inactivity of pre-TMp mutant W(1–
3)A and its inability to cooperate with FP (Suárez et al., 2000a, b). Equimolar
mixtures of wild-type pre-TMp and FP exhibited cooperativity and an increase
in tryptophan fluorescence, indicative of physical interaction. Binary peptide mix-
tures exhibited higher reactivity to the Mab2F5 epitope of pre-TM (Fig. 3.1), and
peptide hybrids exhibited even greater antibody affinity but less membrane desta-
bilizing power. Their binary interaction was interpreted as a ‘kinetic trap’ stalling
fusion, and it was inferred that in the metastable structure of gp120/gp41 the two
membrane-active segments mutually mask their hydrophobic surfaces (Fig. 3.1A;
Lorizate et al., 2006a, b).

In planar supported membrane bilayers with SM and cholesterol where liquid-
ordered (lo) and –disordered (ld) lipid domains co-exist, pre-TMp clusters formed
exclusively at the domain boundary (Sáez-Cirión et al., 2002). In a strictly
cholesterol-dependent manner Mab4E10 bound and blocked liposome permeabi-
lization by these pre-TMp clusters (Lorizate et al., 2006c). These findings are con-
sistent with the pre-TM structure being embedded in the HIV envelope (Fig. 3.1B),
as seen in the low resolution pre-fusion SIV spike 3D-structure (Zhu et al., 2006).

The Epand group investigated the potential of peptides derived from the pre-
TM sequence to bind cholesterol and induce phase separation in membranes (see
also Chapter 9). Differential scanning calorimetry (DSC) was used to monitor the
enthalpy of acyl chain melting transition, which increases upon demixing of choles-
terol (Epand et al., 2003). As a consequence of demixing, cholesterol crystallites
form. Liposomes were prepared in the presence of peptide at high peptide-to-lipid
ratio, 5 to 15 mol%. Introduction of LWYIK into multilamellar vesicles (MLV)
of cholesterol admixed to SOPC or POPC increased the enthalpy of acyl chain
melting transition and concomitantly induced cholesterol segregation into crystal-
lites. Nuclear Overhauser effect spectroscopy indicated deeper penetration of the
aromatic amino acids into the bilayer in the presence of cholesterol. This was cor-
roborated by the increased quench of tryptophan fluorescence in the presence of
cholesterol, of LWYIK (Epand et al., 2003) and LASWIK (Epand, 2004; Epand
et al., 2005b), the analogous gp41 sequence of most HIV-2 strains. 13C Magic angle
spinning NMR suggested stronger interactions with the cholesterol A ring than with
the interior of the leaflet. The complete pre-TMp was actually less prone to sequester
cholesterol into domains than LWYIK itself, with LASWIK intermediate (Epand
et al., 2005b). Cholesterol sequestration in SOPC/Cholesterol and enhancement of
Trp fluorescence in the presence of cholesterol generally were strongest for wild-
type CRAC and were diminished most by consensus-violating substitutions (Epand
et al., 2006).

Altering the first CRAC residue L to V (within consensus) or A had a less pro-
found effect than to I. IWYIK, unlike all other CRAC peptide variants, lowered
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the melting enthalpy of pure SOPC (Epand et al., 2006). The formation of choles-
terol crystallites in SOPC/cholesterol was interpreted as displacement of cholesterol
from positions adjacent to SOPC molecules rather than domain formation as with
LWYIK (Greenwood et al., 2008). These three variants were also probed in the con-
text of gp41 co-expressed with Tat from a plasmid. The mutation LI had similar
effects as other single mutations of the CRAC motif (Table 3.3). A series of dou-
ble mutants was made to alter the consensus or the intervening residues. Whereas
GWGIK and LWGIG inhibited cell-cell fusion by > 60%, LGYGK inhibited only
25–30% (Vishwanathan et al., 2008a, b). Epand et al. (2006) also modelled a struc-
ture maximizing cholesterol-peptide interactions. All variants partitioned in the acyl
chain-polar interface, but LWYIK was unique in that cholesterol OH was both H-
bond acceptor to tyrosine OH, and H-bond donor to the lysine terminal CO. In the
optimized model LWYIK enwraps the cholesterol A-ring and does not contact the
hydrophobic bulk of the molecule.

3.3 Infuenza Virus M2 Protein

3.3.1 Influenza Virus Entry and Egress

Influenza virus has a segmented RNA genome packed as ribonucleoprotein (RNP)
into a protein matrix, surrounded by an envelope carrying three transmembrane pro-
teins, HA, NA and M2. The eight RNA segments are transcribed and replicated in
the nucleus (reviewed by Whittaker et al., 2000). IFV invades the cell by adsorp-
tive endocytosis (reviewed by Smith and Helenius, 2004), which delivers the virus
to a perinuclear site (Lakadamyali et al., 2003). Here, the endosomal pH decreases
to a threshold (pHtrans) triggering conformational transition of viral hemagglutinin
and activation of the proton channel M2. The fusion peptide of HA is unburied
and propelled into the endosomal membrane, launching fusion of the viral with the
endosomal membrane (reviewed by Cross et al., 2001). Concomitant proton influx
through the M2 ion channel dissociates the dense matrix (‘uncoating’) making RNP
susceptible to primary transcription (cf. Whittaker et al., 2000). It is critical that
all eight genome segments arrive in the nucleus. Likewise, at completion of the
infectious cycle during virus assembly, the eight RNA segments must be sorted into
the virus particle. The M2 protein plays a role both in packing and unpacking the
genome.

3.3.2 M2 Protein Structural and Functional Domains

Influenza A M2 protein is a unique, multifunctional protein critical for initiation
and completion of the infectious cycle. M2 is a tetrameric class III, single-pass TM
protein (Holsinger and Lamb, 1991; Sugrue and Hay, 1991). Figure 3.2 depicts
the structural and functional domains of influenza A M2. The 25 amino-acid
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Fig. 3.2 Structural and functional domains of influenza A M2 protein. Influenza A strains: WS
– WSN/33 (H1N1) – NCBI accession L25818.1; Ud – Udorn/307/72 – NCBI accession J02167.1
(H3N2); We – Weybridge/27 (H7N7) – EMBL accession AX006731.1. Bold print: post-TM. Bold
printed, underlined residues interact with M1 protein

ectodomain is required for the incorporation of M2 into virus particles (Park et al.,
1998) and forms the channel mouth. The α-helical 19 amino-acid TM segment
(Lamb et al., 1985; Schnell and Chou, 2008; Stouffer et al., 2008) defines a min-
imal proton channel (Duff and Ashley, 1992). However, the following sequence up
to at least residue 62 is also necessary for ion channel activity in vivo (Tobler et al.,
1999). This amphipathic post-TM domain (D44–K60) comprises a sharp turn and
a second alpha-helix according to solid-state NMR of the monomer (Tian et al.,
2003). The 3D structure of the tetramer M218-60 elucidated by NMR in solution
(Schnell and Chou, 2008) shows the TM and the post-TM α-helices connected
by a loop of residues 47–50 (Fig. 3.3). The post-TM includes the palmitoylation
site and CRAC motifs overlapping a sequence with predicted affinity to PIP4,5P2
(Table 3.1). Most of the M2 endodomain is involved in virus assembly, required

Fig. 3.3 3D-model of the
tetrameric M2
transmembrane and post-TM
structure (Schnell and Chou,
2008). The four helices
forming the ion channel are in
the upper left, the four
post-TM helices in the lower
right. Key residues are
indicated: S50 marks the
position of the palmitoylated
C50 of the wild-type
sequence. L46 is the first and
Y52 the central residue of a
common M2 CRAC motif.
The position normally
occupied by a basic residue is
mutated in the Udorn strain
(E56) (cp. Table 3.1, Fig. 3.2)
(Redrawn after MMDB ID:
62125; PDB ID: 2RLF.)
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both for the incorporation of M1 and genome packing (McCown and Pekosz, 2005,
2006; Iwatsuki-Horimoto et al., 2006; Chen et al., 2008).

3.3.3 Influenza Virus Membrane Rafts

HA and NA are integral raft proteins (Skibbens et al., 1989, Kurzchalia et al., 1992;
Scheiffele et al., 1997; Zhang et al. 2000; Nayak and Barman, 2002) and the bud-
ding of influenza virus particles is raft-dependent (Scheiffele et al., 1999, Zhang
et al., 2000). Raft trans-membrane proteins typically possess a long TM segment,
since raft membranes are thicker than bulk membrane (Coxey et al., 1993; Ren
et al., 1997). M2 differs from the large spike proteins HA and NA by its short 19
residue TM segment vs. 25–30 for the latter. Compared to HA and NA only a small
amount of M2 is extracted into detergent-resistant membrane (DRM) by cold TX-
100 (Zhang et al., 2000, Schroeder et al., 2005). Clusters of HA can be visualized in
contours of the cell surface by immuno-gold labelling, whereas non-raft mutant HA
is distributed more uniformly; these clusters were identified as raft micro-domains
and platforms of virus budding (Takeda et al., 2003), which also contain NA and
the raft marker GM1 (Leser and Lamb, 2005). Low density of M2 staining did not
allow for assessment of its surface distribution in PM contours. In planar plasma
membrane sheets HA appears in large 2-dimensional clusters (Hess et al., 2005)
and these enable analysis of HA, M1 and M2 co-clustering (Chen et al., 2008). M2
protein co-clustered with M1, however, an alanine-scanning mutant M271 SMR →
AAA (cp. Fig. 3.2) did not. Statistical analysis of co-clustering with HA revealed
that this mutant still displayed significant long-range (> 200 nm) association with
HA, albeit less than wild-type M2. Moreover, M1 in the background of this M2
mutation also remains associated with HA. This analysis suggested that different
sequence elements of M2 are responsible for the association with M1 on the one
side and HA on the other, and that association of M2 with HA is not mediated by
M1 (Chen et al., 2008). Indeed, M1-binding sites in the M2 sequence are spatially
separated from the post-TM (Fig. 3.2). We hypothesized that M2 attaches peripher-
ally to the HA-studded membrane raft (Schroeder et al., 2005). Its short TM domain
should lock M2 into non-raft membrane while post-TM lipid-binding determinants
form a bridge into raft domains (see Section 3.6).

3.3.4 Cholesterol in the Apical Transport and Maturation of M2
Protein

In contrast to HA and NA, M2 is recycled between the PM and the TGN (Henkel
and Weisz, 1998) where it equilibrates pH and protects acid-labile HA species
from premature low-pH conformational transition (Sugrue et al., 1990; Grambas
and Hay, 1992; Ciampor et al., 1992a, b; Ohuchi et al., 1994; Takeuchi and
Lamb, 1994). HA and M2 are apparently co-transported to the PM, sharing the
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same transport pathways and vesicles. By peripherally inserting at the raft–non-
raft interface, M2 may already associate to HA-bearing rafts during vesicular
transport.

Cholesterol depletion slows down apical transport via sphingolipid-cholesterol
rafts and causes mis-sorting of HA to the basolateral membrane (Keller and Simons,
1998). Cholesterol is also required for the maturation and stability of M2. This was
first observed in a heterologous expression system. Extreme cholesterol depletion of
insect cells altered the ultrastructure of the Golgi and interfered with cytotoxicity of
expressed M2 (Cleverley et al., 1997). We studied cholesterol requirements of the
ion channel function on M2 expressed in insect cells in the presence of cholesterol.
The proton channel activity of liposome-reconstituted M2 was found to be indepen-
dent of cholesterol (Lin and Schroeder, 2001). We also expressed M2 protein in E.
coli which is intrinsically cholesterol-free. Irrespective of cholesterol content, dif-
ferent M2 preparations exhibited nearly the same activity and susceptibility to the
antiviral drug rimantadine (Schroeder et al., 2005). While cholesterol is not directly
required for ion channel activity it promotes tetramerization, a prerequisite of ion
channel activity (Sakaguchi et al., 1997). Synthetic lipid bilayers of Golgi thickness
(C16-C18 phospholipids) support tetramerization of the TM peptide M219-46 bet-
ter than shorter phospholipids. Inclusion of cholesterol into the bilayers enhanced
membrane thickness as well as M2 tetramerization. Judged by Scatchard analy-
sis cholesterol did not directly bind to the transmembrane peptide (Cristian et al.,
2003). Full-length M2 expressed in the absence of cholesterol in E. coli exhibited
a higher dimer content and lower stability than M2 expressed in insect cells in the
presence of serum (Schroeder et al., 2005). The lack of M2 activity in cholesterol-
free insect cells (Cleverley et al., 1997) may therefore be attributed to a thinning of
the Golgi membranes resulting in the failure of M2 to tetramerize. This is all the
more likely as insect cells are cholesterol auxotroph and grow at 27◦C, and their
membranes are composed of shorter phospholipids than membranes of cells grown
at 37◦C (Rietveld et al., 1999). Introduction of cholesterol also causes the incorpo-
ration of longer chain phospholipids into insect cell membranes (Gimpl et al., 1995;
Marheineke et al., 1998).

3.3.5 M2 Protein-Cholesterol Binding Experiments

M2 protein co-purifies with cholesterol which survives extensive detergent washes
(Schroeder et al., 2005). Following expression and immunoaffinity purification from
virus-infected chick embryo cells labelled with tritiated cholesterol the co-purified,
extractable neutral lipid was subjected to thin-layer chromatography. About 69%
of the extracted material coincided with the cholesterol spot. The cholesterol con-
tent of purified Weybridge M2 was 0.9 mol per M2 subunit. Sequence-identical M2
protein expressed and purified from insect cells by immunoaffinity FPLC contained
0.5 mol cholesterol per subunit. By prolonged treatment of solid-phase bound M2
with 40 mM 1-octyl-β-D-glucoside, most but not all cholesterol could be removed
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(C.S., unpublished). This M2 preparation was captured by cholesteryl hemisucci-
nate agarose but not by unmodified agarose (Schroeder et al., 2005). Cholesterol
co-purification with M2 isolated from homologous and heterologous expression sys-
tems and adsorption to cholesterol hemisuccinate indicated cholesterol binding by
M2 (Table 3.2).

3.3.6 Membrane Raft Binding Determinants and CRAC Motifs
in the Post-TM

The post-TM sequence of the M2 protein (D44–K60; see Figs. 3.2 and 3.3) exhibits
interfacial hydrophobicity (White and Wimley, 1999) up to residue 57 (cf. Schroeder
et al., 2005) and covers three overlapping determinants of lipid raft binding, palmi-
toylation at C50, one or two CRAC motifs, and an XIP-like motif (Table 3.1). The
M2 protein of influenza A/Udorn 307/1972 (H3N2) (Udorn) lacks R54, K56 and
L55 and therefore does not possess a bona-fide CRAC motif, but basic residues
are present further downstream of Y52 (Table 3.1). The M2 Weybridge post-TM
sequence is most closely homologous to the XIP region of Na/Ca exchangers
(Table 3.1) that has specific affinity to PIP4,5P2 (He et al., 2000), a lipid species
enriched in the cytoplasmic leaflet of raft membranes (Liu et al., 1998). NAP-
22 is another example of a protein predicted to interact with cholesterol via an
N-terminal motif similar to CRAC with longer spacers between the L, Y, and K
residues (Terashita et al., 2002; Epand et al., 2004, 2005a; Table 3.1). Similar to M2
post-TM, this motif also exhibits a close overlap of elements determining raft bind-
ing, myristoylation, affinity to PIP4,5P2, and predicted cholesterol affinity. Epand
et al. (2005a) determined that replacing the Y residue of this motif in a 19 residue
NAP-22 peptide abolishes its ability to induce a cholesterol-depleted domain in
LUVs.

Influenza B and C viruses also encode M2-like ion channel proteins, albeit
less extensively studied, with analogous roles to influenza A M2, despite lack of
sequence homology, involved in virus entry and capable of equilibrating pH gradi-
ents; BM2 also has a function in viral assembly and egress similar to AM2 (Hongo
et al., 2004; Imai et al., 2004, 2008; Betakova and Hay, 2007; Pinto and Lamb,
2006). Both influenza B and C M2 sequences include a CRAC motif of unknown
significance (not shown).

Stewart et al. (submitted) introduced mutations at CRAC motifs of M2 of the
Udorn and WSN strains. The substitution R54F that restores a standard CRAC
motif into Udorn M2 (see Table 3.1) neither influenced virus replication kinetics in
vitro nor affected the formation of filamentous virus or the incorporation of matrix
and envelope proteins into progeny virus. Likewise, alanine substitution of the key
residues L46, Y52 and R54 eliminating the CRAC motif (WSN M2delCRAC) did
not affect WSN replication in vitro, but caused attenuation of virulence. At a dose
of 105 TCID50 infection by WSN was lethal, whereas 80% of mice infected with
WSN delCRAC survived; mutant R54F had an intermediate phenotype.
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M2 palmitoylation at C50 is not conserved in all influenza virus strains, e.g. C50
is present in most H3N2 but only in a third of the H1N1 strains (Grantham et al.,
2009). This is in contrast to HA where palmitoylation is conserved throughout the
subtypes and improves virus budding (Jin et al., 1996), raft targeting (Melkonian
et al., 1999) and assembly with the M1 protein in a strain-dependent manner (Chen
et al., 2005). Judged by the behaviour of M2 C50S mutants, C50 palmitoylation
was not required for the replication or filamentous budding of the Udorn and WSN
strains in vitro, however, the WSN C50S virus mutant was attenuated in mice
(Grantham et al., 2009). The robustness of IFV to mutations abolishing palmitoy-
lation and the CRAC motif of the M2 post-TM implies functional redundancy and
the need to disrupt more than one membrane-targeting determinant in the post-TM
to see effects in vitro.

The properties of the short TM and amphiphilic post-TM sequence may encode
dual affinity to raft and non-raft membrane, targeting M2 to the membrane domain
border as a ‘peripheral raft protein’. We proposed a simple model (Fig. 3.4 ) of the
post-TM anchored in membrane rafts via palmitate. Palmitoylation, CRAC motifs
and the PIP4,5P2-binding motif may support affinity to the periphery of rafts, while
the short TM segment remains surrounded by non-raft membrane.

M2 post-TM features a conserved endocytic internalization motif at residues
52–55, YxxF, that often marks tight turns in the three-dimensional structures of
internalized proteins (Collawn et al., 1990); also a kink at K60 was predicted by
Saldanha et al. (2002). These elements may confer the structural flexibility required
for a role of the post-TM region in membrane fission (see below). Figure 3.3 shows
a cartoon of the 3D-model of M218-60 C50S (Schnell and Chou, 2008) indicating
the position of the CRAC motif. Inclusion of C50 palmitoylation providing a sec-
ond anchor perpendicular to the membrane plane should cause significant alterations
to this model. Schnell and Chou (2008) address this issue: ‘Modelling shows that
extending the transmembrane helix to Phe 48 would place residue 50 facing the
membrane, allowing for insertion of the palmitoyl acyl chain into the lipid bilayer.

Fig. 3.4 Peripheral raft association of the M2 tetramer. (a) Cross-section of the membrane show-
ing the TM and post-TM of two of the four subunits of the tetramer. TM is surrounded by non-raft
membrane while post-TM connects to raft membrane via the palmitate bound to C50 (C50p) and
other raft-targeting sequence elements. (b) Tetramer viewed from the endodomain. Subunits bridge
separate rafts. (c) Merger of rafts, trapping the tetramer in small patch of non-raft membrane within
raft domain. From Schroeder et al. (2005), with permission from Springer Publishers
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This minor rearrangement would also move the amphipathic helices closer to the
transmembrane domain.’ Only structural studies on palmitoylated M2 will reveal
whether and in which membrane environments such elongated TM segments may
exist.

3.3.7 Morphogenesis and Budding

Influenza virus buds at the plasma membrane as spherical (80–120 nm in diame-
ter) or filamentous particles up to > 10 μm long (for a recent review see Schmitt
and Lamb, 2005). The latter may have a role in virus transmission in infected lung
tissue by bridging infected and non-infected cells (Roberts and Compans, 1998),
while spherical particles are expected to be more stable and suitable for aerosol
transmission between hosts (Bourmakina and García-Sastre, 2003). Transmission
electron microscopy of serially sectioned budding virus particles revealed seven
RNP segments of different lengths surrounding the central eighth segment, project-
ing downwards from the top of the bud (Noda et al., 2006). Once the virus particle
is pinched off the RNP segments become indistinguishable. An unknown packaging
mechanism sorts the eight different RNP segments into each assembling virus (Fujii
et al., 2003; Noda et al., 2006). The M2 protein is involved in this process (McCown
and Pekosz, 2005, 2006).

Filamentous particles usually predominate irrespective of virus subtype, passage
history or host species (cf. Elleman and Barclay, 2004). The filamentous phenotype
is associated with gene segment 7 (Smirnov et al., 1991) encoding M2 and M1
protein and also requires a functional cortical actin microfilament array (Roberts
and Compans, 1998; Simpson-Holley et al., 2002). Like spherical morphogenesis,
the formation of virus filaments is raft-associated (Simpson-Holley et al., 2002).
The outgrowth of virus filaments appears to bypass a decision point to complete
spherical morphogenesis, as suggested by the following observations:

M2 is implicated in influenza virus morphogenesis, since a specific monoclonal
antibody to the M2 ectodomain (Mab 14C2) suppressed the production of filamen-
tous virus; strains unable to generate filamentous particles were not susceptible
(Zebedee and Lamb, 1989; Elleman and Barclay, 2004). The antibody clusters the
M2 protein on the PM and reduces its surface expression. Moreover, this anti-
body labelled M2 in spherical but not in filamentous virus particles (Hughey et al.,
1995). Resistance to 14C2 mapped to the M2 endodomain, or to the M1 (matrix)
protein of A/Udorn (Fig. 3.2; Zebedee and Lamb, 1989), resulting in distinct mor-
phological phenotypes. M1 A41V generates exclusively spherical particles (Roberts
et al., 1998; Elleman and Barclay, 2004). This substitution also occurs in high pro-
ducer H1N1 laboratory strains PR8/34 and WSN/33 that have lost the morphotype
switch, which confers no selective advantage for propagation in vitro. Mutations in
Udorn M2 (S71Y or K78Q, Fig. 3.2) render filamentous particles less susceptible
to antibody restriction but these have a much lower yield of infectious virus and
may be defective in pinching-off (Hughey et al., 1995; Roberts et al., 1998). This
data implicated interactions between the M2 endodomain region 71–78 with M1
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31-41 (Zebedee and Lamb, 1989). Physical interaction of M1 with the M2 cytoplas-
mic tail has since been proven by immunoprecipitation and pull-down experiments
(McCown and Pekosz, 2006; Chen et al., 2008). In the ensuing mutational stud-
ies of the M2 and M1 genes of filamentous Udorn and spherical WSN it turned
out that mutations at these and other sites where the M1 s differ, or truncation of
the M2 cytoplasmic tail, switch the morphotype (Bourmakina and García-Sastre,
2003; Elleman and Barclay, 2004; Burleigh et al., 2005; McCown and Pekosz, 2006;
Iwatsuki-Horimoto et al., 2006; Chen et al., 2008).

Truncation of the M2 cytoplasmic tail (McCown and Pekosz, 2006) but
also mutation at the extreme N-terminus of NA (Barman et al., 2004) led to
‘daisy chains’ of spherical, budding virus particles, defective in pinching-off
(fission). A recent observation directly implicates membrane rafts in this pro-
cess: Viperin is an interferon-induced protein that disperses lipid rafts (Wang
et al., 2007) as evidenced by reduced copatching of HA with GM1, enhanced
membrane fluidity, TX-100 extractability and lateral mobility of HA. Viperin
binds and inhibits farnesyl diphosphate synthase upstream the cholesterol biosyn-
thetic pathway. Remarkably, viperin expression also elicits ‘daisy chain’-like IFV
budding.

3.3.8 Incorporation of M2 into Virus Particles and the Process
of Membrane Fission

Although M2 is expressed as abundantly as HA, the ratio of HA (trimer) to M2
(tetramer) in the virus envelope was estimated to be 500:15 (Zebedee and Lamb,
1988) and this sub-stoichiometric incorporation attributed to the exclusion of M2
from rafts (Zhang et al., 2000). The essential functions of M2 in virus uncoat-
ing (Kato and Eggers, 1969; Takeda et al., 2002) and genome packaging imply
mechanisms specifically incorporating a few molecules of M2 into the envelope.
As detailed in the previous sections: (1) The M2 endodomain at and beyond residue
71 physically interacts with matrix protein M1. (2) Although not an integral raft
protein, M2 is associated specifically with raft-embedded HA, independent of M1
binding, apparently mediated by determinants for peripheral raft association in the
pre-TM (Fig. 3.4). (3) M2 transits with HA through the trans-Golgi to the PM
within the same transport vesicles. (4) M2 truncated at residue 70 still packages
into virus particles (McCown and Pekosz, 2006), thus, the sequences responsible
for M2 packaging include the post-TM. (5) The M2 post-TM is implicated as a fac-
tor in membrane fission (pinching-off) as are membrane rafts. We suggested that
pinching-off occurs at the fault-line between raft and non-raft membrane at the bud-
ding pore (Schroeder et al., 2005; Schroeder and Lin, 2005), where M2 protein
concentrates due to its affinity to the raft periphery. This gained further support
from an experiment where transient cholesterol depletion, restricted to the process
of pinching-off, actually increased the yield of spherical (WSN strain) particles
(Barman and Nayak, 2007).
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The proposed role of M2 in pinching-off is in agreement with electron micro-
graphs showing immunogold-labelled M2 clustered at the neck of virus buds
(Hughey et al., 1995; Lamb and Krug, 1996). The antibody 14C2 that stalls filamen-
tous growth is not effective as Fab chains (Hughey et al., 1995), it must cross-link
M2 to cluster it. We suggested that M2 cross-linking would accelerate pinching-off
like a draw-string (Schroeder et al., 2005). The role of M2 in genome packaging
(McCown and Pekosz, 2005, 2006) and the fact that the genome segments are coor-
dinated to the top of the bud (Noda et al., 2006) suggests that M2 may also prime
budding as an initial focus for RNP and M1 assembly. This would produce virus
particles with distinct poles of M2.

In summary, the data indicates that the cholesterol affinity of the M2 protein is
one of the functionally redundant elements targeting it to the periphery of membrane
rafts. Association to the raft periphery appears to underlie its role during the budding
and fission of virus particles.

3.4 Fusion Proteins of Alphavirus Species

The class II fusion proteins, E1 and E, of alpha- and flaviviruses power low pH-
dependent fusion of the viral and the endosomal membrane during virus infection
(reviewed by Heinz and Allison, 2000; Kielian, 1995, 2006). Alphavirus is a genus
of togaviridae, flavivirus a genus of flaviviridae. In cholesterol-depleted insect cells
alphavirus Semliki Forest virus (SFV) growth is 1000-fold restricted (Phalen and
Kielian, 1991), whereas a less cholesterol-dependent point mutant, P226S, is only
restricted 40-fold (Vashishtha et al., 1998). This mutation has arisen independently
and repeatedly during appropriate selection conditions (Chatterjee et al., 2002).
Likewise, the Sindbis alphavirus (SIN) is cholesterol-dependent for entry and egress
(Lu et al., 1999). Fusion and infection of insect cells by SFV and Sindbis virus are
stimulated by cholesterol. Despite similarity in fusion mechanism flaviviruses like
yellow fever and several dengue virus (DV) strains do not require cholesterol.

Umashankar et al. (2008) demonstrated that an SFV E1 ectodomain protein
(E1∗) incubated with liposomes was labelled by photocholesterol (Table 3.2) at
pH 5, the pH of fusion, whereas DV2 E∗ protein was not. A cholesterol-dependent
cytolysin served as the positive control, which was also labelled by photocholes-
terol. In contrast, full length E1 membrane-inserted by its TM domain was not
photoaffinity labelled, even at low pH. Labelling by photocholesterol indicates a
specific interaction of the fusion peptide with cholesterol in the target membrane.

SFV E1∗ inserted into liposomes encompassing a liquid ordered SM and
cholesterol-enriched phase could be extracted with mβCD, along with the choles-
terol, while DV E∗ was not extracted (Umashankar et al., 2008), similar to E∗ of
tick-borne encephalitis virus (TBE), another flavivirus (Stiasny et al., 2003). Both
SFV and SIN, although requiring SM and cholesterol for infection, do not depend
on membrane rafts (Waarts et al., 2002), and it is just the ectodomain during fusion
but not the full length E1 protein that associates with rafts (Ahn et al., 2002).
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The P226S mutation of SFV and SIN (Lu et al., 1999) is located to the ij loop
which is apposed to the fusion peptide loop in the E protein 3D structure (Roussel
et al., 2006) and apparently modulates cholesterol dependence of fusion. Recently
the mutation A226V arose during a Chikungunya (alphavirus) epidemic. This muta-
tion was associated with transmission by a new vector, Aedes albopictus and, at the
same time, increased cholesterol dependence of the virus (Tsetsarkin et al., 2007).

SIN and SFV virus budding also exhibits a cholesterol requirement, attenuated
by the same P226S mutation in E1 protein. In the absence of cholesterol, E1 protein
is preferentially degraded rather than incorporated into progeny virus.

3.5 Other Cholesterol-Binding Virus Proteins

The first instance of a virus protein reported to bind cholesterol was Sendai virus
class I fusion (F) protein (Asano and Asano, 1988). 3H-cholesterol was added to a
purified F protein preparation and a complex isolated by immuno-precipitation. The
3-OH group of cholesterol was not required for binding. Cholesterol labelled about
10% of the monomer. Cholesterol binding was blocked by a fusion inhibitory pep-
tide. This work was apparently not followed up. Sendai virus F protein is extracted
into DRM and the virus is proposed to bud from membrane rafts (Sanderson et al.,
1995; Ali and Nayak, 2000).

The coronavirus spike (S) protein is a class I fusion protein, structurally and func-
tionally similar to HIV Env. Analogous to HIV gp41, peptides representing the S
protein pre-TM amphiphilic sequence are able to permeabilize and fuse membranes
(Sainz et al., 2005). The pre-TM sequences of SARS and other coronaviruses,
e.g. mouse hepatitis virus, harbor a CRAC motif (not shown). Cholesterol-binding
studies have not been reported.

3.6 Conclusions

HIV gp41, influenza A M2 and SFV E1 protein are vastly different in structure and
function. They have in common flexible domains which undergo conformational
transition during the membrane restructuring processes and contain cholesterol
binding sites. The type of studies performed and the amount of data available docu-
menting cholesterol binding and its biological function vary greatly. For HIV gp41
cholesterol dependence of fusion is proven, a specific CRAC motif is shown to
mediate cholesterol binding of gp41-derived peptides, and mutations to this motif
arrest HIV infection at the hemifusion stage. The missing link in the chain of
evidence is the demonstration at the virus-cell level that these gp41 mutations abro-
gate fusion due to impaired cholesterol binding. The influenza A virus M2 protein
binds cholesterol which is, however, not required for its proton channel function.
Mutation of a potential cholesterol binding CRAC motif attenuates virus virulence.
This motif may be one of the lipid-binding determinants linking M2 peripherally to
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raft microdomains and predicted to play a role in virus budding and fission. Since
this hypothesis was first published data has accrued consistent with peripheral raft
targeting and supporting the role of the M2 cytoplasmic tail in morphogenesis. The
specific role of cholesterol-binding in these processes requires further study. SFV
is the first virus for which direct cholesterol binding by the fusion peptide was
proven. A second-site locus modulating cholesterol affinity is related to host range
and virulence in a number of alphavirus species.
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