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1.  Introduction

The atmospheric CO2 concentration has been rising since the industrial revo-
lution, and will continue to rise from the present 375 to about 1,000 ppmv 
by 2100 (Pearson and Palmer, 2000), increasing dissolution of  CO2 from the 
air and altering the carbonate system of  Surface Ocean (Stumm and Morgan, 
1996; Takahashi et al., 1997; Riebesell et al., 2007). For example, an increase 
in atmospheric CO2 from 330 to 1,000 ppmv will lead to an increase in CO2 
concentration from 12.69 to 38.46 mM in seawater (at 15°C and total alkalin-
ity of  2.47 eq m−3) and an increase in the concentration of  dissolved inorganic 
carbon (DIC, i.e., CO2(aq), HCO3

−, and CO3
2−) from 2.237 to 2.412 mM, with 

a concurrent decrease in the pH of  the surface seawater from 8.168 to 7.735 
(Raven, 1991; Stumm and Morgan, 1996). Increasing atmospheric CO2 and its 
associated changes in the carbonate system can influence the physiology and 
ecology of  seaweeds.

Seaweeds (Chlorophyta, Rhodophyta, and Phaeophyta) are usually dis-
tributed in intertidal and subtidal zones of  coastal waters. They play an impor-
tant role in the coastal carbon cycle (Reiskind et  al., 1989) and contribute 
remarkably to sea-farming activities. The rate of  primary production of  some 
species is comparable with those of  the most productive land plants; therefore, 
seaweeds have a great potential for CO2 bioremediation (Gao and Mckinley, 
1994). On the other hand, increasing pCO2 in seawater would affect physiology 
of  seaweeds. Therefore, a number of  studies have been performed to envisage 
the impacts of  CO2 enrichment on photosynthesis, growth, nutrients metabo-
lism, and cell components of  seaweeds. Results showed that increased CO2 
concentration may enhance, inhibit, or not affect the growth of  the species 
investigated. This work is intended to examine how the macroalgal species 
respond and acclimate to elevated CO2 levels.
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2.  Inorganic Carbon Limitation

The effects of elevated CO2 concentrations on seaweeds largely depend on the degree 
of carbon limitation present in natural systems. Photosynthesis of seaweeds would be 
severely limited under current atmospheric conditions if it were dependent only on 
diffusional entry of CO2 from the medium to the site of fixation via the carbon-assimi-
lating enzyme Rubisco. There are several aspects of CO2 limitation of carbon assimila-
tion in seaweeds (Beardall et al., 1998): (1) rather low dissolved CO2 concentration; (2) 
low diffusion rate of CO2 in seawater, being four orders of magnitude slower than in 
air; (3) the slow spontaneous formation of CO2 from HCO3

− dehydration; and (4) the 
high Km values (40–70 mM) of Rubisco of algae. Nevertheless, photosynthesis in the 
investigated species can be fully or nearly saturated with the current ambient dissolved 
inorganic carbon (Ci) composition because of the presence of CO2-concentrating 
mechanisms (CCMs) that enable the algae to efficiently utilize the bulk HCO3

− pool in 
seawater (Beer, 1994; Beer and Koch, 1996; Raven, 1997; Larsson and Axelsson, 1999; 
Zou et al., 2004; Giordano et al., 2005), which is about 150 times more abundant than 
free CO2. Some species, however, exhibit Ci-limited photosynthesis in natural seawater 
(e.g., Johnston et al., 1992; Andría et al., 1999a; Zou et al., 2003).

HCO3
− is usually dehydrated extracellularly as mediated by periplasmic car-

bonic anhydrase (CA) to release CO2, which is then taken up into the cell. 
Another important approach for Ci acquisition of algae is the active uptake of 
HCO3

− through the plasma membrane facilitated by an anion exchange protein 
(Drechsler et  al., 1993, 1994; Axelsson et  al., 1995). Additionally, H+-ATPase-
driven HCO3

− uptake has also been recognized in several marine seaweeds (Choo 
et al., 2002; Snoeijs et al., 2002). Seaweeds show different capacities to take advan-
tage of the HCO3

− pool in seawater (Axelsson and Uusitalo, 1988; Maberly, 1990; 
Mercado et al., 1998). Therefore, they can exhibit heterogeneous, often species-
specific responses to elevated CO2. Their physiological responses to elevated CO2 
levels can also depend on their acclimation strategies and the environmental con-
straints under which CO2 enrichment is imposed.

3.  Growth

When juveniles of Porphyra yezoensis germinated from the chonchospores were 
grown at enriched CO2 levels of 1,000 or 1,600 ppmv for 20 days, their growth was 
significantly enhanced (Gao et al., 1991; Fig. 1). Similar findings were reported in 
Gracilaria sp., Gracilaria chilensis, and Hizikia fusiforme (Gao et al., 1993a; Zou, 
2005). Although these species are capable of using bicarbonate, they still showed 
carbon-limited photosynthetic rates in natural seawater. Growth of a nonbicarbon-
ate-user, the red alga Lomentaria articulata, was stimulated by enriched CO2 (Kübler 
et al., 1999). The enhancement could be attributed to the accelerated photosynthetic 
carbon fixation by increasing Ci availability or the depression of photorespiration by 
elevating the ratio of CO2 to O2 in the culture medium. It was interesting that growth 
of a green alga, Ulva rigida, which showed efficient ability of HCO3

− utilization and 
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saturated photosynthesis at the current Ci concentration of seawater (Björk et al., 
1993; Mercado et al., 1998), was also enhanced at high CO2 concentrations (Björk 
et al., 1993; Gordillo et al., 2001). Such an enhancement of growth was suggested to 
be caused by the enhanced N-assimilation (Gordillo et al., 2001), but could also be 
attributed to downregulation of HCO3

− uptake and consequent energy saving for its 
operation. On the other hand, a decrease in growth rate caused by elevated CO2 has 
been reported in G. tenuistipitata (Garcìa-Sánchez et al., 1994), P. leucostica (Mer-
cado et al., 1999), and P. linearis (Israel et al., 1999). Such an inhibition of growth 
was associated with lowered photosynthetic activity even measured at high CO2 
concentrations (Garcìa-Sánchez et al., 1994). However, such a negative effect could 
also be caused by acidification of the medium (Israel et al., 1999). A more recent 
study by Israel and Hophy (2002) reported that the growth rates of 13 species (repre-
senting Chlorophyta, Rhodophyta, and Phaeophyta) cultivated in normal seawater 
were comparable with their growth in CO2-enriched seawater. The authors ascribed 
such nonresponsive behavior to the presence of CCMs that rely on the utilization of 
HCO3

−. Obviously, researches show that enrichment of CO2 in seawater may affect, 
positively, neutrally, or negatively, the growth of seaweeds in direct or indirect ways.

4.  Photosynthesis

4.1.  PHOTOSYNTHETIC Ci UTILIZATION

The response of  macroalgal photosynthesis to elevated pCO2 in seawater 
is species-specific. When cultured in high CO2, the light-saturated photosynthetic 
rate was reduced in Fucus serratus (Johnston and Raven, 1990), G. tenuistipitata 

Figure 1.  Enhanced growth of Porphyra yezoensis when 50 juveniles each (germinated from the same 
bunch of chonchospores released from the same chonchocelis, about 5 mm long at the beginning of 
the culture) were grown at different CO2 concentrations in aeration. The photo images were taken after 
20 days culture (Gao et al., 1991).
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(Garcìa-Sánchez et al., 1994), and P. yezoensis (Gao, unpublished data) when mea-
sured at normal Ci of seawater. When the photosynthetic rate was measured at elevated 
DIC levels, it was significantly higher in the thalli grown at enriched CO2 levels in P. yezoen-
sis (Gao et al., 1991) and Gracilaria sp. (Andría et al., 1999b). In P. leucostica, Mercado 
et al. (1999) found no significant difference between the maximal gross photosynthetic 
rates of the thalli grown at enriched and current inorganic carbon concentrations.

The photosynthetic affinity for Ci and the capacity of HCO3
− utilization are 

usually lowered in seaweeds following exposures to high CO2 (Johnston and 
Raven, 1990; Björk et al., 1993; Mercado et al., 1997; Andría et al., 1999a, b; Zou 
et al., 2003). Growing the cells at high CO2 levels decreased activity of the external 
(periplasmic) or total CA activity in Ulva sp. (Björk et al., 1993), G. tenuistipitata 
(Garcìa-Sánchez et al., 1994), P. leucosticta (Mercado et al., 1997), and H. fusi-
morme (Zou et  al., 2003). Such a decrease reflects a decline in the capacity of 
HCO3

− utilization. Israel and Hophy (2002) showed that the enzymatic features 
of Rubisco did not differ in the seaweeds when compared between the CO2-
enriched and control cultures, though enrichment of CO2 was reported to 
decrease the content of Rubisco in G. tenuistipitata (Garcìa-Sánchez et al., 1994), 
Gracilaria sp. (Andría et al., 1999a), and P. leucosticta (Mercado et al., 1997).

4.2.  PHOTOCHEMICAL EFFICIENCY

Photosynthetic acclimation in seaweeds to high levels of Ci generally resembles 
their responses to high irradiances, resulting in a decrease in pigment contents. For 
example, the phycobiliprotein (phycoerythrin and phycocyanin) and Chl a contents 
were reduced in Gracilaria sp. (Andría et al., 1999b, 2001), G. tenuistipitata (Garcìa-
Sánchez et al., 1994), and P. leucosticta (Mercado et al., 1999) grown at high levels 
of Ci than those at normal Ci level. On the other hand, both maximum quantum 
yield and effective quantum yield were downregulated in P. leucostica when grown 
under high Ci conditions (Mercado et al., 1999), suggesting that enriched CO2 low-
ered the demand of energy for the HCO3

− utilization mechanism.

4.3.  EMERSED PHOTOSYNTHESIS OF INTERTIDAL SEAWEEDS

Intertidal seaweeds experience continual alternation of living in air and in water 
as the tidal level changes. Their photosynthesis undergoes dramatic environmental 
changes between the aquatic and terrestrial exposures. When the tide is high, they 
are submerged in seawater, where HCO3

− pool is available for their photosynthesis 
(Beer and Koch, 1996; Beardall et al., 1998). When the tide is low, intertidal seaweeds 
are exposed to air, large buffering reservoir of HCO3

− in seawater is no longer pres-
ent, and atmospheric CO2 becomes the only exogenous carbon resource for their 
photosynthesis. The acquisition of CO2 is less constrained in air than in seawater, 
through which CO2 diffuses about 10,000 times slower (Raven, 1999). However, this 
constraint can be offset by the abundance of HCO3

−, as many intertidal algae can 
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use HCO3
− as the exogenous inorganic carbon source for photosynthesis (Maberly, 

1990; Gao and McKinley, 1994). Thus, carbon limitation during photosynthesis in 
intertidal species may be potentially more important in air than in water.

It is known that intertidal seaweeds can tolerate the emersed conditions, and 
the photosynthesis during emersion contributes significantly to their total carbon 
fixation budget (e.g., Gao and Aruga, 1987; Maberly and Madsen, 1990). Our 
previous works (Gao et al., 1999; Zou and Gao, 2002; Zou and Gao, 2004a, b, 2005; 
Zou et al., 2007) showed that elevated atmospheric CO2 might have a fertilizing 
effect increasing photosynthesis while exposed to air at low tide in most of the 
tested species, i.e. the red seaweeds P. haitanensis, Gloiopeltis furcata, and Gigartina 
intermedia, the brown seaweeds Ishige okamura, H. fusiformis, and Sargassum 
hemiphyllum, and the green seaweeds Enteromopha linza and Ulva lactuca. The 
relative photosynthetic enhancement by the elevated CO2 levels increased with 
desiccation, although the absolute photosynthetic rate decreased with desicca-
tion. The enhancement of daily photosynthetic production by elevated CO2 con-
centration during emersion differs among species owing to their zonational 
depths and exposure durations and the daily timing of emersion (Gao et al., 1999; 
Zou and Gao, 2005; Zou et al., 2007). Additionally, the CO2 compensation points 
increased with enhanced desiccation, with higher CO2 concentrations required to 
maintain positive photosynthesis (Gao et al., 1999; Zou and Gao, 2002, 2005).

5.  Calcification

It is estimated from more than two million surveys that the oceans have absorbed 
more than one third of the anthropogenic CO2 released to the atmosphere (Sabine 
et al., 2004). With increasing atmospheric CO2 concentration, CO2 dissolves in sea-
water to reach new equilibrium in the carbonate system. This leads to an increase in 
the concentrations of HCO3

− and H+ and a decrease in the concentration of CO3
2− 

and of saturation state of calcium carbonate (Gattuso et al., 1999; Gattuso and Bud-
demeier, 2000; Caldeira and Wickett, 2003; Orr et al., 2005). The surface water of 
the ocean is known to have been acidified by 0.1 pH unit (corresponding to a 30% 
increase of H+) since 1800 (Orr et al., 2005), and will be further acidified by another 
0.3–0.4 unit (about 100–150% increase of H+) by 2100 (Brewer, 1997; Caldeira and 
Wickett, 2003). Such an ocean-acidifying process has been suggested to harm marine-
calcifying organisms by reducing the rate of calcification of their skeletons or shells 
(e.g., Gao et al., 1993b; Gattuso et al., 1999; Riebesell et al., 2000; Orr et al., 2005).

In the coastal waters where seaweeds are distributed, pH of seawater fluctuates 
within a larger range than pelagic waters because of inputs from terrestrial systems 
and fisheries. Nevertheless, additional CO2 input can still affect the biological 
activities in coastal waters, because ocean acidification will lower the pH regimes, 
shifting the pH range to a lower one. Therefore, increased pCO2 and decreased pH 
and CO3

2− will affect calcifying seaweeds. Gao et al. (1993b) showed that enrich-
ment of CO2 to 1,000 and 1,600 ppmv in aeration inhibited the calcification in the 

121



DINGHUI ZOU and KUNSHAN GAO

articulated coralline alga Corallina pilulifera. It has also been shown that the 
increase in CO2 concentrations significantly slowed down calcification of temperate 
and tropical corals and coralline macroalgae (Gattuso et al., 1998; Langdon et al., 
2000). For the marine-calcifying phytoplankton Emiliania huxleyi, calcification was 
reported to be reduced by the enriched CO2 (Riebesell et al., 2000), while a recent 
study showed that its calcification increased with elevated CO2 (Iglesias-Rodriguez 
et al., 2008). On the other hand, when pH was controlled at a constant level, elevated 
concentrations of DIC enhanced the calcification of Bossiela orbigniana (Smith 
and Roth, 1979) and C. pilulifera (Gao et al., 1993b).

6.  Nitrogen Metabolism

Zou (2005) reported that both the nitrate uptake rate and the activity of nitrate 
reductase (NR) in the brown algae H. fusiforme were increased following cultures at 
high CO2 levels. It was also shown that elevated CO2 concentrations in culture stim-
ulated the uptake of NO3

− in Gracilaria sp. and G. chilensis (Gao et al., 1993a), Ulva 
lactuca (Zou et al., 2001), and U. rigida (Gordillo et al., 2001), and enhanced the 
activity of NR in P. leucosticta (Mercado et al., 1999) and U. rigida (Gordillo et al., 
2001, 2003). This indicates that elevated CO2 concentrations can enhance nitrogen 
assimilation, as more nitrogen is required to support higher growth rate. The regula-
tion of NR activity in seaweed by CO2 might be through a direct action on de novo 
synthesis of the enzyme, rather than through physiological consequences in carbon 
metabolism as occurring in terrestrial higher plants (Gordillo et al., 2001, 2003). 
Contrarily, decreased uptake rate of NO3

− by high CO2 in G. tenuistipitata (Garcìa-
Sánchez et al., 1994) and G. gaditana (Andría et al., 1999b) was also reported. Mer-
cado et al. (1999) stated that NO3

− uptake and reduction might be uncoupled when 
algae are grown at high CO2. Responses of macroalgal nitrogen assimilation to ele-
vated CO2 could be species-specific; however, the results from different studies might 
be also generated from different culture systems or methods.

7.  C/N Ratio

Growth under enrichment of CO2 would alter the cellular components of seaweeds. 
Contents of soluble proteins and phycobiliprotein were decreased in Graciaria 
tenuisitipitata (Garcìa-Sánchez et al., 1994), Gracilaria sp. (Andría et al., 1999b), 
and P. leucosticta (Mercado et al., 1999) when they were grown at high DIC levels. 
In contrast, the content of soluble carbohydrate was increased in Gracilaria sp. 
(Andría et al., 1999b). As a result of these changes, C/N ratios were increased in 
the seaweeds grown at elevated CO2 levels (Garcìa-Sánchez et al., 1994; Kübler 
et al., 1999; Mercado et al., 1999). Although phycobiliprotein, soluble proteins, and 
Rubisco contents were found to decrease under DIC-enriched conditions, internal 
N content was not significantly affected by the DIC levels. Andría et al. (1999b) 
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thereby suggested that the exposure and acclimation to high CO2 would involve 
the reallocation of resources, such as N, away from Rubisco and other limiting 
components (electron transport) towards carbohydrate synthesis and nonphoto-
synthetic processes.

8.  Summary

Atmospheric CO2 rise leads to a proportional increase in pCO2 of seawater 
and alters the carbonate chemistry, reducing the carbonate ions and pH while 
increasing that of bicarbonate. Physiological responses of seaweeds to elevated 
CO2 concentrations are highly variable, depending on the species, growing condi-
tions, and duration of CO2 enrichment. In the species investigated, growth was 
enhanced, inhibited, or not affected by enrichment of CO2, while photosynthetic 
performance varied according to Ci acquisition mechanisms or the acclimation 
strategies. Usually, net photosynthesis was enhanced in elevated DIC levels for 
the species with less efficiency in bicarbonate utilization or CCMs. Growing the 
seaweeds in high CO2 downregulated their CCMs and possibly the electron trans-
port demanded for its operation. On the other hand, calcification of calcifying 
seaweeds is negatively affected; nitrogen metabolism and the cellular C/N ratio 
would be increased in high-CO2-grown cells. For the intertidal species, large buff-
ering reservoir of HCO3

− in seawater is no longer present and atmospheric CO2 
becomes the only exogenous carbon resource for their photosynthesis at low tide, 
elevation of atmospheric CO2 might have a fertilizing effect, increasing their pho-
tosynthesis during emersion. More research efforts on biochemical and molecular 
aspects for a wider range of species grown at high CO2/low pH conditions are 
needed to further evaluate the impacts of increasing atmospheric CO2 concentra-
tions on seaweeds. At the same time, physiological approaches are required to 
distinguish the effects of high CO2 from that of lowered pH.
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