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Introduction

The idea of teachers Learning through Teaching (LTT) – when presented to a naïve
bystander – appears as an oxymoron. Are we not supposed to learn before we teach?
After all, under the usual circumstances, learning is the task for those who are being
taught, not of those who teach. However, this book is about the learning of teachers,
not the learning of students.

It is an ancient wisdom that the best way to “truly learn” something is to teach it
to others. Nevertheless, once a teacher has taught a particular topic or concept and,
consequently, “truly learned” it, what is left for this teacher to learn? As evident
in this book, the experience of teaching presents teachers with an exciting oppor-
tunity for learning throughout their entire career. This means acquiring a “better”
understanding of what is being taught, and, moreover, learning a variety of new
things. What these new things may be and how they are learned is addressed in the
collection of chapters in this volume.

LTT is acknowledged by multiple researchers and mathematics educators. In the
first chapter, Leikin and Zazkis review literature that recognizes this phenomenon
and stress that only a small number of studies attend systematically to LTT pro-
cesses. The authors in this volume purposefully analyze the teaching of mathematics
as a source for teachers’ own learning.

Research literature sometimes interprets LTT as learning by observing the teach-
ing of others, for example, examining videotaped lessons of expert teachers (e.g.,
Brophy, 2003; Lampert & Ball, 1998) or having teachers complete retrospective
analyses of their own teaching (e.g., Lampert, 2001). However, this book specifically
addresses what teachers learn while they are teaching.

The chapters in this volume are written by authors from different countries:
Brazil, Canada, Israel, Mexico, UK, and USA. They address teaching diverse con-
tents: numerical literacy (Doerr & Lerman, Liljedahl), geometry (Borba & Zulatto,
Leikin, and Jackiw & Sinclair), algebra (Yerushalmy & Elican, Marcus & Chazan,
and Kieran & Guzmán), and Real Analysis (Alcock). The focus of analyses involves
teaching which occurs at a variety of levels: elementary school (Liljedahl, Doerr, &
Lerman), secondary school (Yerushalmy & Elican and Marcus & Chazan), univer-
sity undergraduate mathematics courses (Alcock), and teacher education courses
(Zazkis, Borba & Zulatto, and Hewitt). These authors employ different method-
ological tools and different theoretical perspectives as they consider teaching in
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x Introduction

different learning environments: lecturing (Alcock), small group work on problems
and tasks (Hewitt, Liljeahl), mathematical explorations with the support of techno-
logical software (Jackiw & Sinclair, Kieran & Guzmán), or e-learning (Borba &
Zulatto). However, despite these differences, each author discusses issues that sup-
port or impede teachers’ learning and exemplify teachers’ learning that occurred
during their professional practice.

Research on teacher education, teacher knowledge, and teacher practice is an
explicit focus of contemporary research in mathematics education. Numerous stud-
ies (too numerous to give justice by citing a few) describe the complexity of
teachers’ work, the fragility of teachers’ knowledge, and the deficiencies and
strengths within teacher education practices. The important and original contribu-
tion of this book is that it ties these notions together—presenting them through the
lens of a relatively unexplored phenomenon: Learning through Teaching.

When conceiving this book, our initial idea was to focus on teachers’ learning
of mathematics. That is, we were interested in whether and how teachers’ mathe-
matical knowledge is enhanced as a result of their teaching practice. In Leikin and
Zazkis’ chapter we characterize the mathematics that teachers learn when teaching.
However, whenever a case of LTT was considered, we asked ourselves: “Is it
mathematics or is it pedagogy?” We quickly realized that answering this question
was very complex. Teachers’ learning of mathematics through teaching is usually
either embedded in their pedagogical choices or results in pedagogical consider-
ations. We found that even when the authors do not discuss pedagogical issues
explicitly, the mathematics that is learned by the teachers is often mathematics for
teaching. That is, chapters that focus on teachers’ learning of mathematics are not
devoid of pedagogical considerations.

In addressing this complexity we found the distinction between mathematical
pedagogy and pedagogical mathematics as introduced by Mason (2007) to be very
helpful. In his view, mathematical pedagogy involves strategies and useful con-
structs for teaching mathematics. In contrast, pedagogical mathematics involves
mathematical explorations useful for, and arising from, pedagogical considerations.
We use this distinction as a lens for organizing the chapters in this volume: Part II
includes chapters that address mainly pedagogical mathematics, while the focus of
chapters in Part III is mainly on mathematical pedagogy. The chapters in Part II and
Part III are introduced by the editors in the beginning of each section (see Interlude 1
and Interlude 2). Here we focus on Part I.

Part I of this volume addresses issues related to the theory and the methodol-
ogy of research on LTT. In particular, the first chapter, co-authored by Leikin and
Zazkis, exemplifies and examines factors that contribute to or impede LTT – issues
that are then echoed in subsequent chapters. However, in order to explore these fac-
tors, it is essential to understand what is meant by teachers’ learning or by learning,
in general. Mason, in his chapter, offers a concise definition: Learning is a transfor-
mation of attention. He elaborates further, stating that this transformation involves
both “shifts in the form as well as in the focus of attention.” Mason substantiates and
instantiates this view using a series of phenomena in which learning occurred while
teaching or doing mathematics. A common theme in examining these presented
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episodes is that of reflection, which is considered an essential condition for learning
from experience.

Mason’s theoretical discussion and the analysis of the phenomena are followed
by some practical considerations which address the question of “What can teach-
ers do?” Some suggestions are provided regarding what teachers can do for their
students, for themselves, and for each other in order to enhance their learning.
The theme of reflection is also at the heart of Tzur’s chapter, who presents an
explicit theoretical model entitled, “reflection on activity-effect relationship.” This
model is used to elaborate upon what and how teachers can learn from their
teaching.

Mason suggests that “Learning about teaching from teaching is a lifetime pro-
cess of refining sensitivities to students and to the conditions in which learning is
fostered and sustained.” Tzur elaborates further on this idea, claiming that the expe-
rience of student-teaching, or “practicum,” is usually stressful and insufficient to
develop efficient ways of engaging with students and to notice an impact on stu-
dents’ learning. As such, on-going LTT is the only possible solution for developing
effective teaching practices. However, while Tzur believes that every teaching activ-
ity is a potential source for learning, he refers to LTT as “unrealized potential” and
elaborates in great detail on the reasons for that. Based on the work of Simon (2006,
2007), both Tzur and Leikin and Zazkis identify “perception based perspective” –
in contrast with “conception based perspective” – as one of the major factors that
impede learning in general, and LTT, in particular. Tzur concludes with a detailed
list of ideas and questions for further research on LTT. These ideas include expli-
cating what “counts” as evidence of LTT and examining how it can be measured or
occasioned.

The study by Leikin – that concludes Part I – provides a partial answer to the
question of occasioning LTT. She describes a methodology of systematic explo-
ration of LTT through employing multiple solution tasks in teaching experiments
and longitudinal teacher-development experiments. Multiple solution tasks are used
both as a didactical tool to engage teachers’ learning, as well as a research tool
used to intensify unforeseen (for teachers) situations and to analyze teachers’ LTT.
Leikin’s conclusions point to an interrelationship between teachers’ mathematical
and pedagogical knowledge – the issue that is explored in further detail in all the
chapters of this volume.
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Part I
Theoretical and Methodological

Perspectives on Teachers’ Learning
Through Teaching



Teachers’ Opportunities to Learn Mathematics
Through Teaching

Roza Leikin and Rina Zazkis

Every teacher’s greatest opportunity for further learning in
mathematics education is her classroom teaching. (Simon, 2006,
p. 137).

Introduction

Numerous studies on mathematics teacher development have demonstrated that
mathematics teachers learn through their teaching experiences (e.g., Cobb &
McClain, 2001; Kennedy, 2002; Lampert & Ball, 1999; Lesh & Kelly, 1994;
Mason, 1998, 2002; Ma, 1999; Shulman, 1986; Wilson, Shulman, & Richert, 1987).
Several articles explored teachers’ learning in the course of their teaching careers,
among other elements of their professional growth (e.g., Franke, Carpenter, Levi, &
Fennema, 2001; Chazan, 2000; Kennedy, 2002; Lampert, 2001; Ma, 1999; Mason,
1998; Schifter, 1998). Other studies investigated different approaches to profes-
sional development and stumbled upon learning through teaching (LTT) while
focusing on other issues (e.g., Cobb & McClain, 2001; Lesh & Kelly, 1994). Only a
few studies have been devoted to the systematic investigation of teachers’ learning
in their own classrooms (Leikin, 2006; Leikin, 2005; Leikin & Rota, 2006; Nathan
& Knuth, 2003).

The main body of research that addresses LTT focuses mainly on teachers’ con-
tinual inquiry into the students’ thinking and learning, but little is known about the
teachers’ learning of mathematics in their own classrooms. Perrin-Glorian, DeBlois,
and Robert (2008) stressed that research concerning LTT (they used the term “indi-
rect learning”) is scant and that the educational community has a relatively limited
understanding of what it is that changes in teachers’ knowledge, or how these
changes come about in an authentic classroom situation, especially in the domain of
mathematical knowledge.

R. Leikin (B)
University of Haifa, Haifa, Israel

3R. Leikin, R. Zazkis (eds.), Learning Through Teaching Mathematics, Mathematics
Teacher Education 5, DOI 10.1007/978-90-481-3990-3_1,
C© Springer Science+Business Media B.V. 2010



4 R. Leikin and R. Zazkis

Evidence for Learning Through Teaching

Theories of Teacher Knowledge and Teaching

In their seminal work that analyzes the epistemological structure of teachers’ knowl-
edge, Wilson et al. (1987) described the complexity of teachers’ knowledge and of
its sources. The researchers argued that teachers’ reasoning begins with compre-
hension of the set of core ideas related to the topic to be taught, and that teachers’
knowledge related to the topic is transformed while teaching. This process of trans-
formation is associated with the planning and design of instructional activities,
evaluation, and reflection. As a result, after teaching, teachers attain new compre-
hension, enriched by fresh understanding and increased awareness of the purposes
of instruction, its subject matter, and the participants.

The teaching/learning process can be modeled as a sequence of situations that
result in new knowledge construction by students (Brousseau, 1997). So-called
a-didactic situations, in which the teacher passes some of the responsibilities for the
learning process onto the students, are considered to be most effective for students’
learning. We consider such situations to be most effective for teachers’ learning as
well. The teacher is responsible for the devolution of a meaningful task that sup-
ports the design of an a-didactic situation. When an a-didactic situation is created,
students are responsible for realizing the learning purposes by approaching the task,
and the teacher’s role is to facilitate this realization. In a situation of this type, the
teachers adjust their plans to the students’ ideas and learn together with the students.

Based on the theory of didactic situations, Simon (1997) suggested a
Mathematics Teaching Cycle model for the teaching process. According to the
model, teachers design a hypothetical learning trajectory based on the various types
of knowledge they possess. The trajectory includes three interrelated elements:
learning goals, the teacher’s plan for learning activities (tasks), and the teacher’s
hypothesis of the learning process. When implementing this hypothetical trajectory
in the classroom, teachers need to adjust it based on their interactions with stu-
dents. These adjustments lead teachers to new understandings that precede the next
hypothetical learning trajectory they design.

Following the analysis of elements of epistemological knowledge of mathemat-
ics teachers, Steinbring (1998) devised a two-ring model of teaching and learning
mathematics as autonomous systems. According to this model, teachers use their
knowledge of content and of students to design and devolve learning tasks for the
students, and the students cope with these tasks by activating their own knowledge
and devising their own interpretations of the tasks. Students approach the tasks,
reflect on the process, and, as a result, construct their knowledge. Simultaneously,
the teacher observes and supports the learning process, reflects on the learning situ-
ation, adjusts the task to the situation, and transforms the teacher’s own knowledge.
New learning opportunities are based on knowledge enriched by the teaching experi-
ences. The cyclic view of teaching (e.g., Artzt & Armour-Thomas, 2002; Steinbring,
1998; Simon, 1997; Wilson et al., 1987) does not claim that teachers learn through
teaching, but demonstrates that teaching has a great potential for teachers’ learning.
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The research literature suggests that the key feature of teachers’ learning
from teaching practice is their reflective ability (e.g., Dewey, 1933; Schön, 1983;
Jaworski, 1998; Berliner, 1987, 1994). Jaworski (1998) and Mason (2002) distin-
guished between reflection-on-action as thinking back after the fact and reflection-
in-action as being aware of inner thoughts while engaging in an activity. Mason
added another type of reflection – reflection-through-action – that concerns the
teachers’ awareness of their own practice through the act of engaging in that
practice. But Mason argues that these distinctions are rather vague, like the reflec-
tion itself. Reflection may be of varied scope and may have different purposes.
Correspondingly, effectiveness of reflection in the LTT process may differ, depend-
ing on its goal, on the scope and focus of the reflection, and on the attention and
awareness of the teacher.

In addition to reflection, cyclic models of teaching include the components of
lesson planning, the choosing of instructional tasks, and the teachers’ interactions
with the students. In this view of teaching (e.g., Artzt & Armour-Thomas, 2002;
Steinbring, 1998; Simon, 1997), it is reasonable to expect development in teach-
ers’ knowledge when planning the lesson and working on the tasks chosen for
students, and during interactions with the students. Further support for the impor-
tance of classroom interactions for LTT can be found in the argument that norms and
practices are being formulated and are often implicit in everyday classroom mathe-
matical activity (McNeal & Simon, 2000). Meaning is constructed by teachers and
students alike as a result of the participants’ interpretation of classroom interac-
tions. Although students are supposed to learn deliberately, and the teachers’ main
purpose is to support student learning, the teachers themselves learn unintentionally
through teaching (or indirectly, to use the terms of Stigler & Hiebert, 1999).

Teachers’ Experience and Expertise

Additional evidence for LTT can be found in the research literature on teachers’
expertise and the role of experience in the development of expertise. Berliner (1987,
1994) connected experiences and expertise, noting that not only is the relation
complex and diverse, but also that experienced teachers differ significantly from
novices in the effectiveness of their teaching. In his works, Berliner stressed that
expertise grows through personal experience, even if different experiences lead
to different levels of expertise. He distinguished five stages of expertise: novice,
advanced beginner, competent performer, proficient teacher, and expert. The stages
differ in the teachers’ “interpretive abilities, their use of routines and their emotional
investments that they make in their work” (p. 113).

Further connections between expertise and experience are identified in cogni-
tive psychology studies. Pressley and McCormick (1995) defined expert teachers
by self-regulated learning ability that includes strategies for knowledge acquisi-
tion, procedures for problem solving, and transfer of prior experience to new tasks.
Additional characteristics of expert teachers suggested by Pressley and McCormick
(1995) include being well-organized, alert to classroom events, showing concern for
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individuals and groups, and having command of subject matter delivery. Sternberg
and Horvath (1995) identified three ways in which experts differ from novices:
knowledge, efficiency, and insight. They claimed that experts construct connections
between different elements of knowledge more effectively, solve problems more
efficiently, accomplish more in less time, and are more likely than novices to arrive
at novel and appropriate solutions to problems.

Berliner (1987) emphasized that teachers with similar experiences could have
different levels of expertise and claimed that progress along the stages of expertise
depends on the teachers’ reflective abilities. Sternberg and Horvath (1995) argued
that distinctions between expert and experienced teachers should inform teacher
education practices. Teachers have different opportunities for LTT, and different
abilities to use these opportunities. Berliner (1994) noted the shortage of scientific
knowledge of how novices become experts. In an attempt to address this deficiency,
in this chapter we discuss teaching experiences in which teachers used opportunities
to learn mathematics, and we analyze the factors and mechanisms that supported
their learning.

Teaching Experiments and Changing Approaches to Teaching

We find multiple examples of teachers’ LTT in research literature dealing with
teaching experiments (Cobb, 2000, Steffe & Thompson, 2000). A teaching exper-
iment (TE) is a “transformational research that has as its goal the development
and investigation of theoretically grounded innovations in instructional settings”
(Cobb, 2000, p. 308). Teachers and researchers involved in the experiments share
the responsibility for the quality of the students’ mathematics education. Teaching
within an experimental setting usually provides many discoveries, innovations,
unpredicted situations, and the need to adjust initially planned procedures.

The teacher-researcher also might interpret the anticipated language and actions of the stu-
dents in ways that were unexpected prior to teaching. Impromptu interpretations occur to the
teacher-researcher as an insight that would be unlikely to happen in the absence of expe-
riencing the students in the context of teaching interactions (Steffe & Thompson, 2000,
p. 276).

TEs provide rich opportunities for teachers to learn by building models and com-
municating with researchers involved in the experiment. In his extensive analysis
of TEs as a research methodology, Thompson (1979) identified their following dis-
tinctive components: In a TE, specific attention is paid to orientations that uncover
processes by which students learn school subject matter; investigation is longitu-
dinal; researchers intervene in the students’ learning processes; investigation and
planning of future activities are based on gathered observations. Furthermore, TEs
intensify learning opportunities for teachers by focusing their attention on the stu-
dents’ thinking. For example, Cobb and McClain (2001) acknowledged that while
analyzing a TE designed to improve student learning, they realized how much the
teachers themselves had been learning in the course of the experiment.
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A TE methodology is at work when researchers invent, support, or explore
new curricular approaches in school mathematics (Chazan, Yerushalmy, & Leikin,
2008). For example, when implementing a new technology-based environment
in the classroom, teachers intentionally learn technological details and ways of
managing student learning, and unintentionally develop sensitivity to their stu-
dents and knowledge about them (e.g., Lloyd & Wilson, 1998). Chazan et al.
(2008) demonstrated that changing the curricular approach to teaching algebra –
from equation-based to function-based – required a transformation of the teach-
ers’ knowledge of mathematics related to definitions and instructional examples.
Leikin and Rota (2006) performed a joint retrospective analysis of a teacher and a
researcher considering changes in the teachers’ knowledge and skills. They studied
the development of one beginning elementary school teacher’s proficiency in imple-
menting inquiry-based teaching for the first time and in managing a whole-class
mathematical discussion in an inquiry-based learning environment. They observed
that the teacher became much more flexible and attentive to the students, without
any formal professional development intervention.

Additional evidence for LTT can be found in the self-reports of researchers who
are expert teachers analyzing their own pedagogical growth (Tzur, 2001; Chazan,
2000; Lampert, 2001). For example, Tzur (2001) conducted a TE in a third-grade
classroom as a researcher-teacher and observed his own improvement in instruc-
tional practice. But the main body of research on LTT focuses on the teachers’
continual inquiry into the students’ thinking and learning (e.g. Franke et al., 2001;
Schifter, 1998, 1996; Kennedy, 2002).

Teachers’ Knowledge

Epistemological analysis of teachers’ knowledge reveals significant complexities
in its structure (e.g., Scheffler, 1965; Shulman, 1986; Wilson et al., 1987; Ball,
Hill, & Bass, 2005; Kennedy, 2002). Addressing these complexities and combin-
ing different approaches to the classification of knowledge, Leikin (2006) identified
the following three dimensions of teachers’ knowledge:

Dimension 1, kinds of teachers’ knowledge, is based on Shulman’s (1986)
classification. Subject matter knowledge comprises teachers’ knowledge of
mathematics, including knowledge of mathematical concepts, their defini-
tions and properties, as well as different types of mathematical connections
and their implementation for solving mathematical problems. Pedagogical
content knowledge includes knowledge of how students approach mathe-
matical tasks, the aptitude to fit learning tasks to the students’ learning
abilities and styles, as well as knowledge of learning setting. Curricular
content knowledge includes knowledge of types of curricula and of var-
ious approaches to teaching mathematics and the ability to connect a
mathematical task to different mathematical topics and concepts within a
curriculum. These categories are not disparate but affect each other and are
complementary.
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Dimension 2, sources of teachers’ knowledge, is based on Kennedy’s (2002)
distinctions. Systematic knowledge is acquired through studies of mathemat-
ics and pedagogy in colleges and universities, in-service and pre-service
programs for teachers, as well as reading research articles and profes-
sional books. Craft knowledge is developed through classroom experience
and is based mainly on the teachers’ interactions with their students and
their reflections on these interactions. Prescriptive knowledge, acquired
through institutional policies is manifest in tests, accountability systems, and
texts of a diverse nature; it is motivated mainly by the teachers’ sense of
responsibility toward students and the community.

Dimension 3, forms of knowledge, follows Atkinson and Claxton (2000) and
Fischbein (1984). This dimension distinguishes between intuitive knowledge
that determines the teacher’s actions that cannot be planned in advance, and
formal knowledge, which is connected mostly to planned teacher’s actions.
Scheffler (1965) distinguishes between knowledge and beliefs. Knowing has
“propositional and procedural nature” whereas believing is “construable as
solely propositional” (ibid., p. 15). According to Scheffler, believing is one
of the conditions of knowing.

Kennedy (2002) suggests a correspondence between various sources of knowl-
edge and different forms of knowledge (e.g., craft knowledge is mainly intuitive,
systematic knowledge is mainly formal). Moreover, we consider LTT to be learning
in a craft mode (within Dimension 2) and argue that the transformation of forms
of knowledge (Dimension 3) is one of the indicators of LTT. These transformations
can occur in teachers’ knowledge of various types (Dimension 1). Our main focus,
however, is on changes in the teachers’ subject matter knowledge.

A View of Teaching and Learning

To address teachers’ LTT, it is essential to clarify our view of both teaching and
learning. We consider both notions rather broadly. In our view, teaching includes,
in addition to in-class delivery of material and interaction with students, also les-
son planning, the preparation of instructional materials, out-of-class interaction
with students and colleagues, preparation of assessment items, checking/correcting
students’ work, and reflection on instructional practice.

We consider teachers’ learning to include not only gaining new components of
knowledge but also refining familiar ideas (Leikin, 2005, 2006), making connections
between different components of previous knowledge, achieving deeper awareness
of what concepts entail, and enriching their personal repertoire of problems and
solutions. Furthermore, we also consider as teachers’ learning the expansion of
knowledge into its additional forms, such as when intuitive knowledge is developed
into formal knowledge or when subject matter knowledge emerges as pedagogical
content knowledge. This list is illustrative rather than exhaustive, and we aim at
extending and refining it as a result of more extensive research in LTT. Although
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our focus is on learning mathematics, at times there is no clear distinction between
mathematics and pedagogy, where pedagogy includes awareness of the students’
mathematical conceptions.

In what follows, we consider four examples of LTT. The first example is pre-
sented in detail and analyzed using the model of interaction presented below. The
three other examples provide brief descriptions of teaching episodes and discuss
what the teachers have learned. In all cases, we attempt to identify the sources and
supporting factors of LTT.

Mechanisms of LTT

Although it is clear that people learn from their practice in general, and that teachers
learn from teaching, what exactly is being learned is often not clear. Leikin (2006,
2005) explored the changes that occur in teachers’ knowledge through teaching, the
mutual relations between the development of teachers’ knowledge of mathematics
and of pedagogy in the field of mathematics, and the mechanisms supporting these
changes.

Prior research has shown that the main component of the LTT process con-
sists of instructional interactions. Leikin (2005) suggested a model for a detailed
analysis of teachers’ interactions in a system of six themes: (1) the purpose for
which a teacher may interact with students; (2) initiation by the teacher or by the
students; (3) motives, which may be external if they are prescribed by the given edu-
cational system, or internal, including cognitive conflict, uncertainty, disagreement,
or curiosity; (4) reflection on the teachers’ or students’ previous experiences; (5)
actions that support the interactive process, e.g., advice, presentation, questioning,
and discussion; (6) focus of the interaction, which may be mathematics or peda-
gogy. The case of Einat presented below (borrowed from Leikin, 2005) is analyzed
according to this model.

Example 1: Learning Mathematics with Students: The Case
of Einat

Einat taught mathematics for 14 years in a secondary school, where she was
regarded as an expert teacher. She was asked to teach the following problem:

Problem 1 Find the shortest way from the bottom left corner to the top right corner
of the large rectangle without passing through the small (gray) rectangle (Fig. 1a).

Fig. 1a Problem 1
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Planning Stage

When solving the problem herself, Einat first considered it as a maxima–minima
problem. But using calculus tools was complicated because the corresponding func-
tion had at least two variables. Therefore, she drew several possible paths and saw
(by symmetry) that two of them were of minimal length (Fig. 1b). She proved this
using the triangle inequality.

Einat planned teaching the problem in her basic level 11th grade class. She
decided to begin by presenting the problem to the students in a story-like fashion,
and, subsequently, applying the Pythagorean theorem.

Problem 1a There is a rectangular pool with crocodiles in the middle of a surround-
ing rectangular park. Help Tom get from his house at the bottom left corner of the
park to the bus station at the top right corner of the park as quickly as possible.
(Fig. 1c).

To train the students in the use of the theorem, she moved the small rectangle to
the left several times and added numbers and letters to the drawing (Fig. 1d). It was
clear to her that moving the rectangle broke the equality between the paths.

Problem 2 Find the shortest way from corner A to corner B of the large rectangle
without passing through the small (gray) rectangle EHFG (Fig. 1d).

Fig. 1b Solution 1

Fig. 1c Problem 1a
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Fig. 1d Problem 2
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Interactive Stage

The first phase of the lesson (solving the pool-in-the-park problem) was developed
according to Einat’s initial plan. When working with Problem 2, the students were
surprised that the two paths (A–E–B and A–F–B) were of different lengths. One
of the students (Ron) asked: “Is it possible to compare the lengths of the two paths
without calculation?” This question was unforeseen, and both Einat and the students
were intrigued by it. She changed her plan: the classroom discussion now focused
on Ron’s question. One of the students (Opher) raised an unexpected conjecture:
“Obviously, if the vertex [point F] is closer to the diagonal AB, the path is shorter.”
The lesson ended at this point.

Reflection: Unexpected Questions and Answers

Einat was satisfied after the lesson because all the students had worked actively on
the problem. No less important, she felt that she had learned mathematics with her
students: both Ron’s question and Opher’s conjecture were new to her. But she was
unhappy that they did not prove the conjecture during the lesson. She decided to
continue the discussion and prove the conjecture in the next lesson.

As soon as she started planning the new lesson, she realized that Opher’s conjec-
ture was wrong: she knew that “of all triangles with a given side s and given area A,
the isosceles triangle has the minimal perimeter.” Thus, “vertices” of the two paths
of different lengths may be at the same distance from AB (refutation 1). Furthermore,
she solved the problem using a property of the ellipse: two paths, A–F–B and A–E–B
(Fig. 1e), are of the same length if and only if points E and F are on an ellipse with
foci at A and B, so that the vertices of two paths of equal length may be at different
distances from AB (refutation 2).

From the didactic point of view, however, Ron’s question remained open because
the students were not familiar with the tools Einat used in refutations 1 and 2. She
therefore designed an activity using guided inquiry with the aid of the Geometry
Investigator (Dynamic Geometry Software, Schwartz, Yerushalmy, & Shternberg,
2000), which involved the construction of lines parallel to AB and dragging a point,
C or D (Fig. 1f), along these lines, while keeping the rectangles invariant.

A

B

E

F

Fig. 1e General solution
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Fig. 1f Exploring with the
geometry investigator

Interactions as a Source of Einat’s Learning

We can show how the model of instructional interactions explains the mechanisms
of teachers’ LTT in Einat’s case.

Purpose: The potential for teachers’ learning from planning the instruction is
based on the teacher having to solve unfamiliar problems before the lessons and
to reason about the students’ potential questions. A teacher’s attempt to recognize
the unforeseen elements of a problem can lead to learning. Einat missed some deep
questions related to the problem when she planned her first lesson, and therefore
experienced no learning during the initial planning stage. But she identified the
problem’s potential for student learning and transformed it in a way that allowed
her to learn mathematics during the interactive stage.

When teachers analyze a past lesson for the purpose of planning the next one,
their learning is based on a combination of reflective ability, critical thinking, and the
need to continue teaching the topic. Einat’s case clearly demonstrates this practice:
When planning a follow-up lesson, Einat understood the mistake in her student’s
conjecture, and refuted it in several ways.

Initiation: We argue that interactions based on student initiatives are the main
source of the teachers’ learning. The learning of teachers (and students) depends
on the teachers’ noticing (Mason, 2002) the students’ unexpected answers and
evaluating these answers as being “worth addressing.”

Einat connected the class discussion with the students’ initiative, that is, think-
ing about an unexpected question related to the problem. Her ability to change the
planned learning trajectory was an indication of her competence. As a result, she
and her students “entered new [for her] mathematical territory,” in Lampert’s (2001)
words.

Motives: Leikin (2005) differentiated between external and internal motives
that govern teachers’ interactions with students and claimed that internal motives
encourage teachers’ learning. At the same time, the teachers’ ability to promote
internal student motives intensifies learning by both teachers and students. Students’
internal motivation, expressed in curiosity and persistence, leads them to ask unex-
pected questions, which, in turn, leads to the development of unpredicted situations
during the lesson (producing an a-didactic situation, to use Brousseau’s, 1997, term).
For example, Einat created a situation in which the students were highly motivated
to understand the reasons for the difference in the lengths of the paths. Her own
curiosity about Ron’s question and her dissatisfaction with the fact that Opher’s
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conjecture had not been proven, served as internal motives for the development of
her own mathematical knowledge.

Reflection: Every interaction is somehow related to one’s previous experiences
(e.g., Voigt, 1995; Schön, 1983). Teachers in the classroom may react to the stu-
dents’ experiences (reflection in action), or may reflect on their own experiences and
plans. Teachers’ ability to reflect on their learners’ experiences characterizes them
as showing great potential for their own learning. Note that reflection on action
is much more effective for LTT when it is performed with a view toward further
actions. Analyzing what has happened for the sake of continuing this happening
is usually accompanied by insight derived from a motivation for reaching a better
understanding of the events being considered. Einat’s case demonstrates this claim.

Actions: Actions that assign an active role to students and a reflective role to the
teacher in the interactive process have a greater potential for teacher’s own learn-
ing. Einat designed learning actions that encouraged students to participate actively
in the lesson. She listened carefully to her students’ voices, and, in doing so, she
enhanced her own opportunities for learning.

Focus: Einat’s interaction with the students focused on mathematics, and there-
fore provided an opportunity for her to learn mathematics through teaching.

In this section, we attempted to exemplify the power of instructional interactions
as a main source of teachers’ LTT. In the next section, we address the question
of what teachers learn through teaching. We start with a short summary of Einat’s
example and then provide several additional examples of LTT.

What Changes in Teachers’ Knowledge Occur
Through Teaching?

What Changed in Einat’s Knowledge?

The unpredicted turn that the lesson took in relation to the solution of Problem 2
nurtured Einat’s learning of mathematics. According to her plan, Problem 2 was
aimed at performing calculations using the Pythagorean theorem. But when a stu-
dent raised an unforeseen (general) question related to the length of the two paths
(Fig. 1d), new mathematical connections were constructed: the paths within the rect-
angle could be compared using the properties of triangles with equal areas and a
constant basis or using the properties of the ellipse.

When Einat moved the internal rectangle from the center of the external one, it
became clear to her that the length of the two paths will be different “because the
position of the internal rectangle is asymmetric.” This intuitive assumption appeared
to be correct for the concrete situation presented in Problem 2, but it was incor-
rect as a general statement. Einat discovered that not all asymmetrical positions of
the internal rectangle resulted in paths of different lengths. When points E and F
are on the ellipse (Fig. 1e), the paths are equal in length. Thus, an incorrect intu-
itive assumption was refuted, and incorrect intuitions were replaced with correct
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mathematical knowledge. The second critical point for Einat’s learning was her
intuitive agreement with Opher’s conjecture, which was also refuted.

Our additional observation is related to the interrelationship between Einat’s
mathematical and pedagogical knowledge. It was her pedagogical sensitivity that
encouraged her to formulate new problems that led to mathematical discoveries. At
the same time her mathematical knowledge allowed her to evaluate the difficulty
of the refutations she had produced, and (again) being attentive to her students she
designed a new instructional activity using the Dynamic Geometry software.

In sum, in this example, we recognize the development of knowledge in the trans-
formation of intuition into formal knowledge and in the mutual support between
pedagogical and subject matter knowledge.

Example 2: Learning from a Student’s Mistake: The Case of Lora

Lora, an experienced instructor in a course for pre-service elementary school teach-
ers, taught a lesson on elementary number theory. The following interaction took
place:

Lora: Is number 7 a divisor of K, where K = 34×56?

Student: It will be, once you divide by it.

Lora: What do you mean, once you divide? Do you have to divide?

Student: When you go this [points to K] divided by 7 you have 7 as a divisor, this
one the dividend, and what you get also has a name, like a product but
not a product. . .

Lora’s intention in choosing this example was to alert students to the unique
factorization of a composite number to its prime factors, as promised by the
Fundamental Theorem of Arithmetic, and to the resulting fact, that no calculation is
needed to determine the answer to her question. This later intention is evident in her
probing question.

What Did Lora Learn from the Above Interaction?

First, she learned that the term “divisor” is ambiguous, and that a distinction is
essential between divisor of a number, as a relationship in a number-theoretic sense,
and divisor in a number sentence, as a role played in a division situation. She learned
further that the student assigned meaning based on his prior schooling and not on his
recent classroom experience, in which the definition for “divisor” used in Number
Theory was given and its usage illustrated. Before this incident, Lora used the term
properly in both cases, but was not alert to a possible misinterpretation by learners.
The student’s confusion helped her make the distinction, increased her awareness
of the polysemy (different but related meanings) of the term divisor and of the def-
initions that can be conflicting. This resulted in developing a set of instructional
activities in which the terminology is practiced (Zazkis, 1998).



Teachers’ Opportunities to Learn Mathematics Through Teaching 15

Example 3: Learning from a Student’s Solution: The Case
of Shelly

Shelly, a teacher with 20 years of experience in secondary school, solved the
following problem with her 12th grade students:

Prove that

1 + 2t + 3t2 + 4t3 + ... + ntn−1 = 1 − tn

(1 − t)2
− ntn

1 − t
.

She expected her students to prove the equality using mathematical induction,
but unexpectedly one of the students suggested the following solution:

S(t) = 1 + 2t + 3t2 + 4t3 + ... + ntn−1 = F′(t), when

F(t) = t + t2 + t3 + ... + tn−1 + tn = tn+1 − t

t − 1
, thus

S(t) = F′(t) = ... = 1 − tn

(1 − t)2
− ntn

1 − t
.

Shelly’s first reaction was “How could I miss this? Oh well, the problem comes
from the mathematical induction topic, and I did not think about derivatives at all.”

What Did Shelly Learn in This Episode?

The connection between calculus and mathematical induction was new to Shelly.
She was familiar with the use of mathematical induction in geometry, for example,
proving a theorem about the sum of interior angles in a polygon. In her experience,
mathematical induction was connected with principles of divisibility because many
divisibility tests can be proven using induction. Induction was also connected nat-
urally with sequences and series because of the multiple proofs that use induction
in these topics. As the following comment indicates, she also was aware that many
problems conventionally solved by applying mathematical induction can also be
solved in a different way:

Shelly: Even in matriculation exams, they say “prove using induction or in a
different way,” like 3 is a divisor of n 3–n because n 3–n=(n–1)×n×(n+1).

But when she was preparing the lesson, Shelley did not consider this solution.
Moreover, in more than 20 years of teaching, she has never connected induction with
calculus. Her student’s solution added a new mathematical connection to her subject
matter knowledge, and this problem became part of her repertoire of problems with
multiple solutions drawn from different areas of mathematics.
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Example 4: Learning from a Student’s Question: The Case of Eva

In a geometry lesson, Eva, a teacher with 15 years of experience in secondary
school, was proving the following theorem with her 10th grade students:

If AD is a bisector of an external angle CAF in a triangle ABC, then

AB

AC
= BD

CD

(see Fig. 2a).
After the theorem was proven, one of the students asked “What happens if AD

is parallel to BC (Fig. 2b)?” This question led to a classroom discussion in which
students arrived at the conclusion that the theorem was correct for non-isosceles
triangles.

In her reflective analysis of the situation, Eva reported that she “had never thought
about whether the theorem was correct for isosceles triangles.” Furthermore,
when analyzing this situation with the researcher, she unexpectedly connected this
geometry problem with the topic of limits:

When AD is parallel to BC, lim
AC→AB

BD
CD = 1.

Since BD = BC + CD,
this situation can demonstrate the following rule: lim

x→∞
x−c

x = 1.

What Did Eva Learn from This Lesson?

Eva appeared to be surprised by the connection. First, this lesson led her to develop
a “neater formulation of a theorem.” She commented that “the theorem was never
mentioned in any familiar textbook or mathematics course,” and that next time, if
students do not consider an isosceles triangle when proving the theorem, she will
make them consider this special case. It was a student’s question that served as a
trigger, but it was the teacher’s curiosity and her deep mathematical knowledge that
led her to develop new mathematical connections.

a b

A

DCB F

A D

B C

Fig. 2 A bisector of an external angle
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Sources of LTT

We acknowledge the crucial importance of instructional interaction and note that
abundant interactions with students are necessary but not sufficient conditions for
teachers’ LTT. The development of teachers’ mathematical knowledge depends
on their flexibility (Leikin & Dinur, 2007). Einat’s episode (Example 1) clearly
demonstrated that by opening opportunities for students to initiate interactions
and by managing a lesson according to the students’ ideas, teachers extend the
opportunities for their own learning. Considering instructional interactions, we are
particularly interested in the attention teachers pay to student responses, both correct
and incorrect.

When observing student conjectures during the interaction, the teachers search
for new explanations or clarifications and design activities for students that help
verify or refute these conjectures. When attending to the students’ mistakes and
attempting to correct their understanding, teachers construct new mathematical con-
nections, as illustrated in Lora’s case, in Example 2. Another source for teachers’
LTT is unexpected correct student ideas, as in Example 3, or surprising questions
from students, as in Examples 1 and 4. The teachers’ alertness and attention in these
matters (Mason, 1998, 2002) play an important role in turning the interaction with
students into a learning experience for all concerned.

Is This Knowledge New? Is It Mathematics or Pedagogy?

Teachers learn both mathematics and pedagogy when teaching. In many situations,
teachers’ pedagogical knowledge develops when they become aware of unfore-
seen student difficulties. By analyzing the sources of the students’ difficulties and
misconceptions, teachers gain further awareness of the concepts and greater appre-
ciation of the structure of mathematical thought. Example 2 illustrates a case of
developing such awareness: to help students grasp the meaning of the term implied
in a given situation, the teacher needed to clarify first the distinction between the
different uses of the term “divisor” for herself.

In other, less frequent situations, teachers clearly learn mathematics that is new to
them. This mathematics then serves them in the instructional design of subsequent
lessons. In many situations, it is difficult to differentiate between mathematical and
pedagogical learning, and the distinction is blurred because the teachers’ knowl-
edge is situated largely in their teaching practice (Leikin & Levav-Waynberg, 2007).
Development of the teachers’ craft knowledge depends strongly on their systematic
knowledge. The teachers’ mathematical understanding helps them stay alert to stu-
dent ideas and develop these ideas further (as shown in Examples 1, 3, and 4). The
teachers’ pedagogical knowledge and skill are responsible for their awareness of
the importance of granting students autonomy in the mathematics classroom and
of being open to student ideas. Finally, we found that teachers with more profound
mathematical understanding (in the sense used by Ma, 1999) feel safer allowing
students to present their mathematical ideas and ask questions.
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The Complexity of LTT: Supporting and Impeding Factors

We have already mentioned that everyone learns, or at least has an opportunity to
learn, from experience. As such, teachers learn from their teaching experience, but
as Watson and Mason (2005) noted, “one thing we do not seem to learn from expe-
rience is that we seldom learn from experience alone. Something more is required”
(p. 199). We attempted to understand what this “more” entails.

To identify the factors that support teachers’ LTT, we must first consider what
it is that hinders teachers’ LTT. Simon (2007) pointed to the “contrast between
the opportunity for learning inherent in teaching and the often-limited knowledge
gleaned by teachers” (p. 137). He described the limiting factors as perception-based
perspective and empirical learning processes. From a perception-based (rather than
conception-based) perspective, mathematical relationships are external and are per-
ceived similarly by all learners as a result of engagement with particular tasks
or representations. A related issue is empirical learning, in contrast to reflective
abstraction, where according to Piaget (2001), reflective abstraction is a funda-
mental necessity in constructing mathematical concepts. To create active learning
opportunities for students, a mathematics classroom can operate by collecting data
and deriving patterns from sets of data, an activity Hewitt (1992) referred to as “train
spotting.” This approach results in learning facts rather than the logical necessity
of relationships and encourages teachers to focus on whether or not a particular
empirically verified relationship is perceived by students. This limits the teachers’
opportunity to learn about their students’ conceptions, thinking processes, and the
obstacles before them.

Although Simon focuses on the teachers’ learning about their students’ learn-
ing rather than on their learning of mathematics, identifying the lack of reflective
abstraction as an obstacle for learning applies also to the present discussion. This
is consistent with Berliner’s (1987) view that bringing experience to the level of
expertise depends on the teachers’ reflective abilities, and with abundant research in
mathematics education identifying reflective ability as the key feature in learning.

In a way, the focus on reflection indicates what “more” is required in order to
learn from experience. We can now reformulate our question from “What sup-
ports teachers’ LTT?” to “What factors are necessary for reflective abstraction to
occur in teaching?” Without attempting to provide an exhaustive list, we iden-
tified several illustrative components based on the examples above. Considering
instructional interaction to be a precondition for LTT, the necessary but not suffi-
cient factors include an open mind, curiosity, and attentiveness to students. But to
identify opportunities for learning and take advantage of them, these factors must
be supported by the teacher’s personal mathematical understanding and profound
systematic knowledge of the subject matter.

Finally, we note that teachers are not always aware that they have learned through
their teaching, and sometimes they are hesitant to admit it. And even when they
are aware of learning, they are not sure that they learned mathematics. They often
make statements like “I knew this but have never thought about it.” However, we
consider anew “thinking about it” – when an instructional situation presents such
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an opportunity – as an indication of learning. In this case, LTT can be thought of as
transferring existing knowledge from the teachers’ passive repertoire to their active
one. As such, clear criteria that point to teachers’ learning of mathematics in LTT
need to be further refined.
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Attention and Intention in Learning
About Teaching Through Teaching

John Mason

Introduction

Teaching is a marvelous action in which to engage, because it is possible to be
learning on many levels simultaneously: About the content being taught, about the
students who are learning, about teaching itself, about learning itself, and perhaps
most importantly, about yourself. But learning from experience is highly problem-
atic. The case is put forward that most human interaction is based on reacting to
others in specific situations with habitual behaviors, and that if significant learning
is to take place from and through experience, it is necessary to shift from reacting
to responding thoughtfully, even mindfully (Claxton, 1984; Langer, 1997). This is
the role of attention directed by intention. Furthermore, when faced with a novel sit-
uation, response rather than reaction is vital. The distinction between reacting and
responding applies equally to students and to teachers, but is mainly developed here
in relation to teachers learning about their practices while teaching.

In this chapter, I endeavor to show how it is possible to work on sensitizing one-
self to notice what previously passed by unnoticed, and how that can be used to
inform actions in the future, that is, to learn about teaching through teaching. The
process calls upon the Discipline of Noticing (Mason, 2002) which can be used
to learn intentionally from experience, by becoming aware of how attention shifts.
For example, each technical term in mathematics signals the fact that those who
developed the term needed a label to refer to particular features on which to focus
attention or to a particular way of attending. Thus angle signals attention to turning
between two limiting arms, and away from the space between them. It is a reason-
able conjecture that learners need to experience a similar shift in their attention if
they are to appreciate and understand the term and use it productively and effectively
for themselves. Exactly the same applies to pedagogical strategies and didactic tac-
tics. Labels signal shifts in attention, and similar shifts in the form and focus of
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attention are necessary in order to learn about teaching and to work at developing
practices so as to make teaching more effective and pleasurable.

Teachers are subject to numerous forces: Legislation, inspection, practices in
their school, expectations of parents and children, and, often submerged beneath
these, their own ideals and intentions. Despite conclusions to the contrary, none of
these forces preclude working on and developing one’s teaching through enquiring
into that teaching. What is required is a vision of what might be possible, a source of
energy and support, and personal discipline. Discipline is amplified whenever, and
to the extent that, appropriate support is present. The vision itself is most effective
when dynamic, being renewed and modified periodically, rather than fixed. John
Donne’s famous meditation (1624 XVII) that “no man is an island, entire of itself”
is an excellent reminder that even to work on one’s own teaching by oneself, outside
connections are necessary in order to avoid descent into solipsism.

Theoretical Underpinnings

I take learning to be the transformation of attention. That is, learning has taken
place when people discern details, recognize relationships, and perceive proper-
ties not previously discerned, through attending in fresh or distinct ways, and when
they have fresh possibilities for action from which to choose. Learning necessarily
involves shifts in the form as well as the focus of attention.

I take as given that there is a complex interaction between student(s), con-
tent, and teacher within an environment of social, institutional, and political forces
and practices. This triad of impulses within its environment is a dynamic system.
Each component is constantly adjusting to maintain its Piagetian equilibrium. Each
impulse acts at different times and in different ways upon one or other of the other
two and is mediated in that action by the third (Bhagavad Gita 18:18 see Mascaró,
1962; see also Bennett, 1956–1966; Mason, 1979, 2008). In relation to this chapter,
the environment within which I am working includes a conjecturing atmosphere, in
which everything said (by me, and by readers in response) is said in order to consider
it more carefully with the intention of altering or modifying it as necessary (Mason,
Burton, & Stacey, 1982; Mason & Johnston-Wilder, 2006). Because of the one-way
nature of printed text, this means that everything must be tested in your experience.
To this end, my brief summary of theoretical underpinnings is followed by succinct
descriptions of some phenomena in order to try to ground the subsequent analysis
and proposals in experience.

Biologically, a dynamic equilibrium is sustained until there is a significant but
not overwhelming disturbance. In an educational context, this means that no learn-
ing, no development takes place until there is some disruption of the working out of
internalized actions (habits, automaticities), until some dissonance is experienced,
whether cognitive (Festinger, 1957), affective (e.g. surprise: See Movshovitz-Hadar,
1988), enactive (Skinner, 1954), or some combination of all three. Following Piaget
(1971, 1985), change (assimilation and accommodation) is a reaction or a response
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to experienced variation, including spontaneous “mutation” in the organism or the
environment. For the discipline of teaching (Mason, 2009) this means that it is
only when some significant but not overwhelming challenge occurs (change of cur-
riculum or other institutional demands, change in student behavior and attention,
change in teacher behavior and attention) that significant development can occur.
This applies just as much to student learning as to teacher learning. A student who is
“going through the motions” of completing tasks as set by the teacher is not actually
learning in any deep sense (such as described by the onion model of understanding
see Pirie & Kieren, 1994). A teacher who is going through the motions of curricular
or pedagogic reform is not actually disturbing current practices significantly and so
is not learning about teaching.

There are dangers, however. When change is sought explicitly and overtly, reac-
tion sets in (think of the last time someone else wanted you to change your behavior).
What results is often the opposite of what was intended due to the multitude of pos-
sible unintended consequences. Rather, change is a partial description of a lived
experience of dynamic and constant disequilibrium and equilibration. It comes
about through the desire to make sense (note the body-based metaphor of sensation).

The key question in teaching is whether an action is generative or merely repet-
itive, that is, whether something fresh arises from the action, or whether it is a
reworking of habit and internalized automaticities. To make sense of this, it is
necessary to consider the commonplace (St. Maurice, 1991) of “learning from expe-
rience” and the role of disturbance, which will lead into the structure of the human
psyche for inter-relating mindfulness and habit. This then leads me to how it is
possible to learn from experience of disturbance. Throughout the chapter, I try to
maintain a parallel between student learning and teacher development, because both
are instances of learning. Sometimes it is easier to make observations of others
learning, and sometimes easier to observe in oneself.

I take an unabashedly phenomenological or experiential stance. I am interested in
lived experience and how that can be enriched. My theoretical frame draws eclecti-
cally on a range of pedagogical, psychological, and social constructs. The pedagogic
constructs of didactic contract, didactic tension, didactic transposition, the psycho-
social construct zone of proximal development, and the psychological constructs
of attention and intention, combined with the Discipline of Noticing and variation
theory, form the background theory for how teachers can endeavor to learn from
their experience of teaching and learning, and can endeavor to promote a parallel
action in their students so that they too have the best opportunities to learn. Each
construct draws and labels one or more distinctions which remind me to discern
details that might otherwise go unnoticed, thus enabling me to recognize relation-
ships in situations, and even to perceive these as instantiations of properties. These,
in turn, permit reasoning on the basis of agreed properties which characterizes a
fully fledged discipline. Mathematics education still has some way to go to reach
this agreement.

The notion of didactic transposition introduced by Yves Chevallard (1985) alerts
me to the almost inevitable transformation that occurs when someone tries to
give or reproduce their experience for someone else. In mathematics education, it
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usually happens that an expert experiences an insight or surprise, or recognizes the
potential pedagogic value of some mathematical exploration or insight, and then
tries to reproduce that experience for students by constructing a worksheet or other
form of task. Points at which the expert made use of their own powers to inves-
tigate and explore are naturally replaced by instructions telling students what to
do. Similarly, when teachers try to re-enact a pedagogic strategy or a pre-planned
teaching sequence, they tend to miss out on the opportunities to choose to respond
sensitively and mathematically to particular students. I summarize the transposition
as expert awareness is transposed into instruction in behavior and it applies just as
much to policy makers specifying curricula and to teachers trying out a pedagogic
strategy, didactic tactic, or rearranged curriculum, as it does to teachers setting tasks
for students.

The construct of didactic situation introduced by Guy Brousseau (1997) acts
as a reminder that the ancient triad of student–teacher–content takes place within a
complex environment or milieu of social and institutional influences. The associated
construct of didactic tension is a powerful reminder that the more precisely the
teacher indicates the behavior being sought, the easier it is for students to display
that behavior without generating it from themselves; when applied to educational
reform it translates into the more precisely the policy indicates the specific behaviors
(practices) desired, the easier it is for teachers to display that behavior, to go through
the motions, without generating it from themselves and without making real contact
with students.

It is possible to carry out actions mechanically, either because they have been
internalized this way (the result of training of behavior) or because they are being
reproduced through mimicry, through adopting the outer, visible form (which is the
content of the didactic tension). Again this applies to teachers enacting prepared
teaching as much as to students making their way through work sheets and exercise
sets.

There are evident resonances with Vygotsky’s Zone of Proximal Development
as elaborated by (van der Veer & Valsiner, 1991, see also Mason, Drury & Bills,
2007). The intention of teaching is that students initiate actions or respond to sit-
uations from themselves for themselves rather than having to be triggered or cued
by inputs from a worksheet or a more experienced ‘other’. The “zone” refers to a
state of potential for that transition from a dependent state based on assenting to an
independent assertive stance (Mason, 2009). The whole point about learning is that
what once had to be pointed out by a teacher becomes available to the learner as a
choice, as an option that comes to mind. Attention is then restructured, giving rise to
the possibility of a concomitant restructuring of intention. The difference between
teachers teaching and students being taught is that whereas the students have a more
experienced other (the teacher) on hand, teachers rarely have in-the-moment access
to a mentor or a more experienced colleague. So in order to learn from teaching,
it is necessary to develop an inner witness who observes without passing judg-
ment or justifications. Put another way, progress in learning is an internalization of
practices encountered in others (Vygotsky, 1978), but this internalization requires a
transformatory action.
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Following Bennett (1956–1966), I take actions to require three impulses: One
that initiates or “acts upon,” one that responds or is acted upon, and one that medi-
ates between the two, bringing and perhaps holding them together, and so making
the action possible. In educational settings these are usually instantiated by the
elements of the traditional trio: Student, teacher, and content. By analyzing the com-
binatorial possibilities, six fundamental modes of interaction can be distinguished:
Expounding, expressing, explaining, examining, exploring, and exercising. Here I
shall make use of only the first three.

Metaphors

Finding a satisfactory way to articulate the role of the environment on actions is a
real challenge. There are several metaphors which direct attention unhelpfully.

Cause and Effect

Cause and effect is a popular and deeply embedded metaphor in the discourse of
education, but one which I find particularly misleading. It draws upon the natu-
ral sciences, particularly physics, and lies at the heart of why, despite experience,
we try to cause learning by initiating teacherly actions, when it is patently obvious
that the most we can do is provide opportunities, however sophisticated, for stu-
dents to use their intention to engage their attention productively. No matter how
precisely people try to specify the tasks, the conditions, and the ways of working
in a classroom, it is impossible to predict the outcome, precisely because unlike
physics which deals with inanimate objects, education involves human beings who
can direct their attention by exercising intention, and who are profoundly influ-
enced by the individual and collective energies of peers, and their own imagined
assumptions about themselves and their situation.

Social Influence as Forces

I also find myself unconvinced by the physics-based metaphor of forces acting on
people which is deeply embedded in sociological discourse. Physical forces are
additive whereas the social milieu is a complex mix of influences whose com-
bined effect is not merely the sum of all the parts. Various components interact with,
interfere with, and serve to amplify or diminish each other. A slightly more appropri-
ate metaphor would draw upon chemistry, because of the transformations that take
place among the various components analogous to chemical reactions. However, in
an ideal educational setting, even chemical metaphors are inadequate because, as
Maturana and Varela (1972, 1988) suggested, student, teacher, and content form an
auto-poetic system (self-constructing in both senses) within an environment which
is much more analogous to a biological organism than even a chemical mixture,
much less a collection of physical forces.
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Sometimes people react automatically without affective or cognitive con-
trol; sometimes affect dominates reaction; sometimes cognition exercises control,
enabling a response. Under certain conditions the student–teacher–content collec-
tive also takes on many of the qualities of a living organism (Davis & Sumara,
2007). The teacher can sometimes be seen as acting as the “consciousness of the
collective” just as Bruner (1986, pp. 75–76) saw a tutor being able to act as “con-
sciousness for two.” This, of course, brings me back to Piaget (op cit.) and his
biological metaphors of equilibration through assimilation and accommodation and
to the necessity for some extra impulse in order to “learn from experience.”

Learning as Change of State

A metaphor from physics that is useful in education is the way change of state
comes about: Energy is added to a system and change is observed (for example,
temperature rises), then further addition of energy produces no further change (the
temperature stops rising while the material changes state), and then, subsequently,
the change continues (temperature continues to rise). Often it seems as though learn-
ers act in a similar manner: Further instruction or advice produces no visible effect,
and then suddenly students appear to have internalized something. They become
more informed, more knowledgeable, more flexible, and more dextrous. Classic
examples include accommodation of the conjugation of irregular verbs (Brown,
1973), and the gaining of independence with respect to the use of some mathe-
matical technique. The role a teacher can play in this internalization process was
elaborated as scaffolding (introduced by Wood, Bruner & Ross, 1976 inspired by
Vygotsky 1978) then extended to include fading (Brown, Collins & Duguid, 1989)
and independently expressed in Open University materials as a spectrum of teacher
intervention moving through directed–prompted–spontaneous use of some action
or probe (James in Floyd, Burton, James, & Mason, 1981; Love & Mason, 1992;
Mason & Johnston-Wilder, 2004).

Human Psyche as Chariot

One way to see why training behavior alone is ineffective when trying to promote
the development of students’ powers of thinking mathematically is to make use of
a framework developed in the Upanishads (Rhadakrishnan, 1953, p. 263), made
use of in various places in Eastern and Western psychology, and underpinning the
traditional terms enaction, affect, and cognition which pervade Western psychology.

The human psyche can be seen through the metaphor of a chariot. The chariot is
connected by shafts to the harnesses of the horses, and the driver of the chariot uses
reins connected to the harnesses in order to direct the horses. The driver attempts
to carry out the instructions of the owner. The chariot can be seen as representing
the body, or in more modern terms, enaction. It needs to be maintained in order to
function properly. The horses are traditionally seen as the senses, or more loosely
perhaps, as affect. They are the motive (cf. emotive) power that pulls the chariot, and
if uncontrolled will pull the chariot in unintended directions. Thus emotions have to



Attention and Intention in Learning About Teaching Through Teaching 29

be harnessed, as well as fed and cared for. The shafts can be taken to represent habits
and internalized automaticities, the direct connection between chariot and action.
The reins are imagination, the means by which we direct our energies through our
intentions. The driver is consciousness, cognition, or as I prefer, awareness. The
owner is will.

Caleb Gattegno’s adage that

Only awareness is educable

is entirely consonant with and resonant with this chariot metaphor, which also
invites extensions:

Only behaviour is trainable
Only emotion is harnessable.

To discuss the significance and force of the “only” would take me too far astray,
but it has to do with the disturbance these assertions might initiate if they act as pro-
tases (initial statements of syllogisms) when juxtaposed with specific incidents from
your own experience, leading to some sort of conclusion or insight (the syllogistic
action) (see Mason, 1998; Mason & Johnston-Wilder, 2006). This is an example of
how an action can be initiated in a teacher or among a group of teachers, and which
may lead to a transformation of perspective and/or a change of practice or way of
articulating both ideals and practices (Mason, 1998).

The three “onlys” can be used on several levels: As constructs which promote dis-
cernment of details contributing to the psychologizing of subject matter (as Dewey
so cogently described it in 1933) prior to teaching (Mason & Johnston-Wilder,
2006); as reminder when interacting and responding to learners to inform pedagogic
and content-based choices; as stimuli to initiate disturbance as part of professional
development; and as a way of thinking about the role of attention and intention in
learning about teaching through teaching.

Phenomena

Because of my phenomenological stance, the data I have to offer consists of your
response to stimuli. These are phenomena abstracted from specific situations that
I have experienced directly myself, or that I have recognized in other people’s
descriptions. Specific situations are turned into phenomena by recognizing some-
thing similar in some respects to other situations. Phenomena are then interrogated
through a combination of relationship to theoretical constructs and probing of my
own experience in similar situations. Often these similar situations are contrived so
as to be similar. At the same time I develop and refine tasks, which are challenges
to participants in workshops with the aim of seeing whether or to what extent they
recognize the phenomena and the associated proposals or actions which might be
useful in the future. Participants are then responsible for actualizing the imagined
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actions and for developing and modifying them to suit their own conditions, ways
of working, perspective, etc.

Phenomena A (Own World)

In the last ten minutes of a problem solving class I suddenly become sharply aware of a
‘fog of non-understanding’ rolling forward towards me from the audience. In the moment,
I choose to keep going rather than stop and regroup.

For me, this is an instance of being so caught up in expressing current insights
or mathematical material clearly as to be unaware of what it is like to be in the
audience. Similarly, a teacher can be so caught up in orchestrating lesson activities
as to be unaware of what students might be experiencing, or so caught up in some
agenda such as “making the work interesting” (i.e. relevant, engaging, sufficiently
easy) that the mathematical content is submerged. Keeping students on task and
occupied may keep them busy and give the impression of engagement, but it may not
significantly contribute to any learning. I chose to keep going because of the timing
of the session, but then began the next session in a retrospectively reflective mode.

Phenomenon B (Expressing to Others)

I had a sense of how a proof could be constructed, but each time I tried to write it down, I
encountered a difficulty. I found it difficult to make it fully convincing and at the same time
clear enough to follow.

For me this is an instance of a general phenomenon where I think I understand some-
thing, but it is only when I try to explain it to someone else that I really get to grips
with it; it is only when I plan to expound or to guide exploration that I need to be sure
about details, variations, ramifications. When struggling with expressing justifica-
tion for a conjecture, or even with clarifying a conjecture, it can be so helpful to find
a colleague who listens politely but need say nothing. This familiar phenomenon
may be the source of resonance which makes group discussion and collaboration so
popular in socio-cultural and social-constructivist stances, even though it depends
for effectiveness on students experiencing a desire to express. It is closely related
to the notion of self-talk identified by Goffman (1959). Put another way, in a sense,
I really learn mathematics through “teaching,” that is, expounding or explaining
to others. This makes me wonder if one of the ways I learn about teaching is by
expressing my thoughts about teaching to others.

Phenomenon C (Training Behavior)

Training learners in the behaviors required to pass specific examinations appears
to be helping them achieve their goals, but may be setting up deep trouble for the
future. As Herbert Spencer put it,

. . . what with the mental confusion produced by teaching subjects before they can be
understood, and in each of them giving generalizations before the facts of which they are
generalizations – what with making the pupil a mere passive recipient of others’ ideas, and
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not in the least leading him to be an active inquirer or self-instructor . . . . Examinations
being once passed, books are laid aside; the greater part of what has been acquired, being
unorganized, soon drops out of recollection; what remains is mostly inert – the art of
applying knowledge not having been cultivated; and there is little power either of accurate
observation or independent thinking (Spencer, 1878).

The phenomenon of students having learned less than expected has probably been
with us since people congregated in groups. I have drawn on Spencer because he
was a major influence on Edward Thorndike and John Dewey in the USA and on
Alfred Whitehead in the UK, particularly in paying attention to the experience of the
learner. Whitehead (1932) used the notion of inert knowledge in his own critique of
education, in order to account for observed “deficiencies” in student performance.
It may be that attempts to teach have been ineffective by failing to appeal to stu-
dents’ logical reasoning, or more generally, by failing to engage students’ interests
through using and developing their natural powers of specializing and generalizing,
conjecturing and convincing, stressing and ignoring, characterizing and classifying,
etc. (Mason, 2008a). It may also be that, as John Dewey put it, the effective teacher
psychologizes the subject matter (Dewey, 1933) by taking into account the ebb and
flow of student energies (Dewey, 1913).

Phenomenon D (Hidden Assumptions)

I offered some people the following task:

I am thinking of two numbers, whose sum is one. I square the larger and add the smaller,
then I square the smaller and add the larger. Which of my two answers is likely to be the
largest?

After some discussion I took a vote, and almost everyone conjectured that the results
would be the same. I assumed that they had done the algebra or perhaps quickly tried
a few special cases. A short while later a perplexed voice said “It works for 0 and
1 and those are the only numbers that sum to one!” They had interpreted number to
mean non-negative integer!

Note: I am deliberately not using a diagram, even though it is part of my way
of working on this task in workshops, because my concern here is with the hidden
assumptions, not the resolution!

Interpretation or meaning-making is an automatic action. In particular, students
interpret tasks so as to make sense of them and so as to be able to do something, and
this may mean making implicit assumptions based on a perceived range of permissi-
ble change (Watson & Mason, 2005), as here. Teachers also interpret subconsciously
when they consider a task for possible use in a lesson, or when they read curricular
requirements and reform statements. They too “construe so as to make it possible to
act.”

The impact of the incident had emotional, cognitive, and behavioral ramifica-
tions for me. I noticed, marked, and here am remarking upon that incident (Mason,
2002). I quickly formed a mental image of myself working on this task in the future
and guarding against this whole-number assumption. The next time I used the task I
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found myself sufficiently informed by the past to work with participants on interpre-
tation of number before presenting the task itself. I have intentionally learned from
experience.

General Comment

Phenomena A (Own World ) refers to examples of momentary awarenesses that I
have had, and I expect others have had, usually with a fleeting sense of “I won’t
do that again” which then fades, leaving the way open to doing it again and again,
itself a phenomenon that could be labeled Never Again. Phenomenon B (Expressing
to Others) is a common experience amongst mathematicians and can be observed
in lessons in which working practices are based on a conjecturing atmosphere.
Phenomenon C (Training Behavior) accounts for what is commonly observed in
classrooms, justified by the pressures teachers experience in the struggle to hold
onto ideals while retaining student trust and respect. Many theories and frameworks
in mathematics education attempt to explain and provide ways to counteract the
tendency to emphasize short-term goals over long-term aims; the procedural over
the conceptual (Hiebert, 1986); rote learning over understanding. Most curricular
reform movements begin with long-term goals based on understanding, but over
time become rigid through the development of habits and routines. Phenomenon D
(Hidden Assumptions) is a simple example of actually learning from experience.

Never Again is the heart of the matter of learning to teach through the act of
teaching. It is not easy to “learn from experience.” For example, despite massive
evidence from experience, it is hard to learn that acts of teaching neither cause nor
guarantee learning. Yet somehow we keep on trying.

Experience

It is commonly said that we learn by (or from) experience. My own experience
suggests that one thing we rarely learn from experience is that we do not usually
learn from experience alone. Put another way,

a succession of experiences does not add up to an experience of that succession

which resonates well with the proposal that

a succession of feelings is not, in itself, a feeling of succession (James, 1890, p. 628
paraphrasing Immanuel Kant).

Just because I engage in mathematical activity, it does not follow that I am aware of
the activity itself as a whole. As many teacher educators have found, some people
are disposed to reflect on their experience, to pick out moments and ponder them,
and others seem not to be so disposed. That does not mean that they do not process
their experience, but if they do, they do it in some subtle manner which is hard to
detect.

The sentiment is backed up by a plethora of wise utterances through the ages.
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What experience and history teach is this – that nations and governments have never learned
anything from history, or acted upon any lessons they might have drawn from it. (Hegel,
1830/1975)

If men could learn from history, what lessons it might teach us! But passion and party
blind our eyes, and the light which experience gives is a lantern on the stern, which shines
only on the waves behind us. (Coleridge, 1835, 20 Jan 1834)

An almost lone voice can be found in Roger Ascham, a medieval schoolmaster:

Learning teacheth more in one year than experience in twenty: Ascham (1570).

We might rephrase this as real learning integrates experience and includes making
sense of it, which is more informative than a lifetime of experience alone. Most
generally, Oscar Wilde beautifully captures the whole point:

Experience is the name [everyone] gives to their mistakes: Wilde (1893 act 3).

Phenomena A (Own World) summarizes examples of situations in which it is
erroneously assumed that engagement or immersion in activity will produce a trans-
formatory action which, in turn, will result in what is commonly referred to as
learning, evidenced through changed behavior in the future. Something more is
needed. In order for experience in the past to inform actions in the future, some
transformation of attention, intention, and disposition is required.

Reflection

In mathematics education, one transformatory action has been variously referred
to as reflective abstraction (Piaget, 1970, 2001), reification (Sfard, 1991, 1994),
compression (Thurston, 1994), retrospective learning (Freudenthal, 1991, p. 118),
looking back (Pólya, 1945), reflection-on-action (Schön, 1983), and so on and traced
back to Locke (1710, Chapter VI) by von Glasersfeld (1991). But before all this
retrospective work can be done, there has to be some data. Something has to be dis-
cerned and noticed in order to be recalled “in tranquillity.” Tranquillity, or at least
a change of state from local goal-oriented activity to a more global perspective is
at least advantageous and often necessary for there to be any lasting impression.
In order to provide energy for this transformation, a disposition to reflect or other-
wise process past experience also seems necessary. Attention has to draw back from
immersion in immediate action.

Distanciation

Distanciation appears to be a term coined by Bertolt Brecht (1948), which has crept
into biblical exegesis (Carson, 1996) and which is currently infiltrating educational
discourse. The essence, as the word suggests, is a pulling back from immersion in
action in the moment, what Schön (1983) referred to as reflection-in-action as dis-
tinct from retrospective reflection-on-action. In mathematics education it seems to
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capture the state of awareness-in-the-moment when something triggers the awaken-
ing of attention and you participate in a mathematical or pedagogical choice. The
best way to prepare for distanciation in the midst of a teaching situation is through
retrospective distanciation. An articulation of a systematic approach to this can be
found in Mason (2002).

Construal Through Story Telling

One form of transformatory action which supports learning from experience is re-
expressing things for yourself, as in phenomenon B (Expressing to Others). There is
a commonplace adage that you only really learn when you try to teach, which I take
as an articulation of the insight that it is when trying to express things for and from
yourself that you really make contact with the content and clarify your own think-
ing. This fits with two of the six modes of interaction: Expressing and expounding.
In expressing, there is something about the content (and your affective state) which
simply has to be told to someone. Here the content can be seen as taking the ini-
tiative, the teacher as respected and experienced other mediates through being the
reason as respected audience, and the student comes to appreciate more clearly. In
expounding, you try to draw your audience into your own world of perceptions and
conceptions. The fact of the audience (students or colleagues) amplifies the need to
get things sorted out for yourself as teacher, so their presence (virtual, imminent, or
actual) helps to bring you in contact with the subject matter, hopefully in a fresh way.
When students take on an expository role, they are taking the role of teacher. Note
that the usual meaning of explaining (to make plain) overlooks an important feature
of this form of interaction, because it involves the teacher endeavoring to enter the
world of the student by means of common concern about the content (Leinhardt,
2001). In effective explanation, the content mediates an interaction between student
and teacher in which the teacher is drawn into the world of the student.

Two sets of distinctions (frameworks) which can inform pedagogical choices
concerning learning from experience through story telling are Do–Talk–Record
and Manipulating–Getting-a-sense-of–Articulating (Floyd et al., 1981; Mason &
Johnston-Wilder, 2004). The first can act as a reminder that doing is amplified by
talking about what you are doing (whether to yourself or to others) and talking
clarifies so that recording becomes easier. Rushing to written records can actually
obstruct meaning-making. The second can act as a reminder that the purpose of
manipulating material objects, diagrams symbols, or virtual objects is to get a sense
of relationships which may be instantiations of general properties. The goal is not
to achieve the manipulation but to make contact with underlying generalities in the
form of mathematical structure. Another way of approaching this is through the
slogans going with the grain and going across the grain (Watson, 2000), which sim-
ilarly act as a reminder that recognizing a pattern (going with the grain) is only a
precursor to sense-making by examining what structure is revealed (going across
the grain).
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It is one thing to see students’ manipulation of various objects as part of activity
which may act as fodder for sense-making through constructing personal stories to
account for what happens. It is perhaps another to see acts of teaching as fodder
for teacher sense-making through trying to bring to expression, to articulate what
is observed about student behavior, mathematical topics, mathematics more gener-
ally, and the management of effective interactions with students. Careful observation
reveals that there can be moments of collective consciousness (Davis op cit.) as well
as individual insights. The latter are of course notoriously unstable over time.

Construal through story telling is an age-old phenomenon. Egan (1986) used it
explicitly to propose an alternative stance to teaching in primary schools; Bruner
(1990, 1991) put forward the case that human beings are narrative animals and
Norretranders (op cit.) exploits it in his critique of our illusions about the role of
consciousness. We tell stories to ourselves and to other people. Most human nar-
ratives involve accounting-for actions (Mason, 2002) and are intended to reinforce
the coherence of personal identity through the justification of acts. As Norretranders
suggests, consciousness as the director of actions and the maker of choices is (often)
an illusion. Consciousness lags behind enaction and affect in reacting to events. It
takes explicit and significant work to bring consciousness or awareness into play
in the moment when a choice is possible. The term accounts-of is intended to
act as a reminder that what is most valuable is description which is sufficiently
brief-but-vivid that others can recognize similar situations in their own experi-
ence. Explanations and theory-based accounting-for can be indulged in later once
colleagues recognize the data they are being offered (accounts-of ). As Husserl inti-
mated “describe don’t explain” is a basis for phenomenological enquiry. Perhaps the
struggle to develop a scientific method within mathematics education could be seen
as an attempt to disentangle accounts-of observations and accounting-for them.

Attention

At the heart of the matter of learning from experience is the person’s attention. What
is attended to, in what ways, and with what intention and disposition? (Mason 1982)
If I am attending to the specifics of some sequence of actions, I may not be in a posi-
tion to be aware of the fact of those actions or of that sequence, especially when I am
being directed by a worksheet or following a prepared lesson plan. Here the didac-
tic transposition beautifully captures part of the gap between teaching and learning,
and the didactic tension describes how attention is directed towards accomplishing
tasks as set, rather than using tasks to engage in activity which may promote experi-
ence from which it is possible to learn, whether as student or as teacher. Phenomena
A (Own World) and D (Hidden Assumptions) provide access to specific examples.
Teachers whose attention is fully occupied by organizing resources and manag-
ing classroom behavior are in a similar position. In order to learn about teaching
through their teaching, they need to extract some of their attention to form an inner
witness.
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Most teachers will have experienced frustration that students don’t seem to learn
from experience, or that any such learning is short lived, as Spencer (op cit) observed
in phenomenon C (Training Behavior). One way to account for this failure to learn
from experience is to blame institutional factors (assessment, organization, curricu-
lum pressures, etc.) or even to blame others (students, parents, policy makers). A
more productive approach is to attempt to change what can be changed. What can
be changed is yourself, because all other components in the auto-poetic system are
even more problematic.

One issue is what to do about frustration. In parallel with students, it is most
natural for teachers to be caught up in the details of getting through the day, set-
ting tasks, sustaining activity, evaluating and assessing and keeping discipline, as
in phenomena A (Own World). The result is that they too end the day with only a
succession of experiences rather than an experience of that succession. Alerted to
issues in student learning, and informed by distinctions such as those mentioned
here, augmented by many others available in the literature it is always possible to
work on changing the conditions in which students are learning. But it takes more
than further instances of Never Again!

An intelligently designed educational system would recognize that the com-
munity as a whole, and the people involved in various roles, all need both time
and stimulus to reflect, to reconstruct, and re-enter a succession of experiences
in order to locate where their attention could most effectively be concentrated so
as to break out of the many stable cycles which constitute what we currently call
teaching.

This is where the human being as narrative animal is so important. The negative
aspect is that because our psyche is fragmented, and because awareness is the slow
mover compared to enaction and affect, we spin stories to account for the func-
tioning of our multiple selves so as to make “our-selves” feel better, feel coherent,
and unified. One explanation for the Never Again phenomenon is that the self who
formulates the intention is not the self in charge later when the change is needed.
A positive aspect is that it is possible to learn from experience by engaging all
aspects of the psyche: Enaction, affect, awareness, attention, and intention. This
requires work on self-integration, including the development of an inner witness or
monitor who observes without acting, yet is able to divert attention out of immer-
sion in activity. Again the roots go back to ancient times, such as this stanza from
the Rg Veda:

Two birds, close-yoked companions, both clasp the self-same tree.
One eats of the sweet fruit; the other looks on without eating (Bennett, 1964, p. 108).

While some interpretations see the tree as the tree of immortality with people ignor-
ing the potential by failing to eat of the sweet fruit, the tree can also be seen as the
human psyche with immersion in action (eating of the sweet fruit) accompanied by
an inner witness or monitor who merely comments on the action (the bird looking
on). As with most Eastern teaching stories, multiple and conflicting interpretations
are the source of significance and richness of meaning.
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Story telling is one of the best ways to coordinate experiences, to draw back
from immersion in activity, to reflect upon rather than simply engage in. By try-
ing to articulate what has been noticed, by trying to re-enter salient moments,
by trying to express connections, similarities, and differences between otherwise
apparently disparate objects (mathematical concepts, objects, etc.; classroom inci-
dents, mathematical obstacles, pedagogical and didactic choices, etc.), in short by
assembling narratives, we can indeed withdraw from the action sufficiently in order
to learn from experience. However, it is vital to avoid the negative side of nar-
ratives: Self justification, self-calming, and self-promotion. Explaining why some
action was impossible or inappropriate so easily degenerates into draining away the
energy that comes from noticing, from having attention suddenly sharpened through
making distinctions, recognizing relationships and perceiving properties which are
instantiated as relationships among particulars.

Reacting and Responding; Habit and Choice

Since learning through teaching involves experiencing some sort of disturbance to
the flow of internalized and habitual actions, it is useful, as indicated in the intro-
duction, to distinguish between reacting and responding. To respond is to make an
intentional, conscious, considered choice of action. It is very rare. Usually we react.
Something in a situation may trigger a metonymic association, and there may be
resonance with some past experiences. Together these produce action. The body
acts before consciousness is even aware. Evidence for this can be found in the most
ancient of psychological studies such as the Upanishads, through personal investi-
gation (see, for example, Mason, 2002, Chapter 12), or through neurological studies
(Norretranders, 1998). Response requires awareness in addition to action.

Habits are the repetition of choices made previously, often a long time previ-
ously. The more deeply ingrained or internalized, the harder they are to counteract.
But they only need to be counteracted if they are working against desire and inten-
tion. Indeed, sometimes they take place because desire and intention are in conflict.
For example, the automaticities of arithmetic facts (e.g. single digit additions, mul-
tiplication tables, use of associativity, commutativity and distributivity, factoring)
and algebraic manipulation are essential for making progress in mathematics. So
too is the flexibility to move with facility between process and object (as in 3/4 as a
division and as the answer to a division). The same applies to acts of teaching such
as using placement in the classroom to calm or quieten potentially noisy students,
or waiting after asking a question. Habits and automaticities are essential, which
is why Skinnerian stimulus-response (I prefer stimulus-reaction) works so well for
training behavior.

Teaching which focuses on internalizing actions, so as to create automaticities
is essentially training behavior. The trouble with training behavior alone is that it
tends not to be flexible when conditions change. For example, training children to
react to specific language patterns in word problems is more likely to blinker them
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than to enrich their problem solving flexibility and creativity. Training behavior
in concert with educating awareness, including “integration through subordina-
tion” (in Gattegno’s memorable phrase, 1970), is much more powerful than either
dimension alone. The procedural-conceptual dichotomy (Hiebert op cit.) arises from
imbalanced evocation of the human psyche.

Various constructs have arisen as a result of failure to train behavior successfully.
For example, the rise of constructs such as transfer (Detterman & Sternberg, 1993),
situated cognition (Lave & Wenger, 1991; Watson & Winbourne, 2008), and situ-
ated abstraction (Noss & Hoyles, 1996) are attempts to account for why what seems
to be learned in one context is not called upon or made use of in another (Marton,
2006).

Complication

Any impression that habits are necessarily bad and that flexibility is necessarily
good need to be challenged. We cannot function without habits because the effort
required to process every stimulus consciously and freshly would overwhelm even
our complex brains. It is absolutely vital to internalize responses in order to be
able to react quickly and effectively to common situations. If you have to pause
and divert attention in order to carry out a simple computation or to simplify an
algebraic expression, you are unlikely to plumb the depths of subtle structural rela-
tionships. However it is equally important to be able to question and modify some of
these internalized automaticities, especially when they begin to obstruct rather than
facilitate. One of the weaknesses of our current educational system is that we do
not support adolescents in developing techniques for and dispositions to interrogate
habits and reactions.

In mathematics, for example, it is vital when manipulating arithmetic or algebra
to have a monitor awake to slips and ready to ask “Why are we doing this?” when the
going gets tough and perhaps something has gone wrong. The same applies to trying
out some new pedagogic strategy: Just because everything does not go swimmingly
(notice the metaphor of immersion), there is no reason to abandon ship and conclude
that the strategy cannot work, only that it did not work fully in that instance. This,
in turn, parallels the way students label themselves and their efforts: “Did not” is
much more helpful that “could not,” which all too readily turns into “will not,”
creating mathematics-refusal behavior and affect (Dweck, 2000). Teachers working
on their own teaching can also fall into this cycle of decline, by allowing “could
not” to displace “did not,” leading to “will not” and disaffection with trying to push
boundaries and to respond sensitively to students.

Intention and Will

Attention is often described as the manifestation of will. Whatever we are attending
to is “where we are” in that moment (James, 1890). It is what “we will it to be,”
though the experience is very often of being at the mercy of some outside influences
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which attract our attention and tempt our horses. Intention is a major component
of the psyche and a major factor in the effectiveness of teaching and learning, yet
curiously difficult to get a handle on (Anscome, 1957). Seen as the means through
which the will directs attention, intention is the guide behind the making of choices
and the changing of habits, propensities, and dispositions to act, which are compo-
nents of affect. In the metaphor of the human psyche as a chariot, will is the owner
who sets goals for the driver (cognition) who manifests intention through the use of
the reins to direct the horses, the sources of motive power.

Intention can usefully be seen as related to affect in the same way that aware-
ness is related to enaction: Awareness guides enaction and enables actions to come
to mind in response to problems when they arise; intention guides or flavors affect
as energy arising from emotions so as to be directed productively. On the other
hand, intention provides a cognitive component to accompany or to challenge desire,
which is how energy is accessed and harnessed to make things happen. In that sense,
intention is a cognitive dimension of will. Intention is often weaker than the flow of
energies of desire, however. The best of intentions may be submerged or diverted
by perceived exigencies; ideals may be compromised by pragmatic response to
perceived conditions.

For example, everyone recognizes how resolutions (such as those made at New
Year) are so quickly forgotten or over-ridden. This can be accounted for by see-
ing the self that made the resolution as being superseded by other selves with no
such commitment. This is probably the most controversial dimension because it
challenges the very notion of identity. Deeply embedded in ancient and modern
psychology is the notion that the psyche of human beings is not single but com-
posite. Versions can be found in Minsky (1975) and Hudson (1968), as well as in
more esoteric sources such as Bennett (1964), Shah (1978), and many others. The
idea is that in response to different local environments, we each develop distinct
persona or selves. These selves then compete for control of the whole organism. For
example, the self who is in charge when chairing a meeting at work is not the self
who cooks dinner for the family: There are different dispositions and propensities,
different sensitivities as to what is noticed and attended to, different actions skil-
fully executed, even different epistemological stances. Each self can be thought of
as a network of energy flows, directing energy through different channels, thereby
activating different collections of habits and actions (see also De Geest, 2006). In
Plato’s version of the chariot, the servants of a mansion compete to play the role
of butler, or even try to usurp the role of the owner (will) who is away; the owner
cannot return until the organization of the house is in order and functioning properly.

In order to strengthen the guidance of intention, people have long realized that
it is necessary to provide some discipline, whether externally (and not usually
effective in the long run) or internally.

The Rg Veda metaphor of the two birds suggests that one of the ways that the
will–intention link can be strengthened is through the growth of an inner witness
or monitor who, as it were, sits on your shoulder and asks “Why are we doing
this?” or “What are we doing?” This, in turn, is fostered by intentional prepara-
tion by prospective planning based on retrospective reflection. The Discipline of
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Noticing (Mason, 2002) is an articulation of techniques for enhancing the possi-
bility of noticing opportunities in the moment and participating in a choice to act
freshly.

Disciplined Development

The core issue in learning from any experience, and particularly in learning about
teaching through teaching, is how to participate in actual choices rather than being
dragged by the horses in whatever direction attracts them. Put more sharply, how
can one be present in the moment when a choice is being made, an action initiated?
Applied to teachers, an answer would shed light on why it is that despite espousing
some stance towards teaching and learning, what is observed being enacted is often
in considerable contrast. Applied to learners, it would shed light on why it is that
despite having been shown or taught some technique or concept, students often do
not make use of it when appropriate. This is the age-old problem of transfer: Just
because I see the possibility of using technique T or concept C in some situation,
what is it that could enable students to be similarly aware (Detterman & Sternberg,
1993, Marton, 2006)?

The chariot metaphor suggests that mental imagery (the reins) is important,
together with maintenance of the chariot and the harness and contact between will
and awareness. Put another way, attention and intention are crucial elements, the
whole of which is encompassed in the Discipline of Noticing. As George Bernard
Shaw put it:

We are made wise not by the recollection of our past, but by the responsibility for our future.
(Shaw, 1921, p. 250).

It is the desire to act differently “next time” that drives personal and professional
development, but that desire (part of affect) has to be amplified in order to influence
intention beyond the particular “self ” experiencing the desire in the moment.

In brief, what is required is sufficient discipline to engage in three actions in order
to facilitate the important action:

Collecting pedagogic strategies, didactic tactics and other awarenesses that could inform
practice if only they came to mind when needed.
Engaging in retro-spective distanciation/reflection in order to amplify the energy released by
noticing a missed opportunity, including intentionally re-entering moments as fully as pos-
sible without judgement or explaining away what happened, in order to locate actions that
you wish in retrospect you had tried, or to locate specific relationships that seem problematic
(Tripp, 1993);
Engaging in pro-spective preparation by intensely imaging yourself in some future situation
acting in some desired or intended manner.

The latter two actions call upon that fundamental human power of mental imagery:
The ability to place ourselves in a remembered past and in an imagined future.
The third is how will power is developed, slowly building on fragments of energy
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released through noticing. Together all three actions contribute to enriching the pos-
sibility of having something “come to mind” through a combination of metonymic
triggering and metaphoric resonance.

Externalizing and labeling salient moments in retrospect is part of bringing to
expression, of story telling. Labels act as axes or foci around which experiences can
gather (Mason, 1999). They can come to be associated with distinctions that might
be informative, actions that might be relevant, and stances that might be fruitful. The
value-laden terms being used here are of course relative to the value system of the
individual within the encompassing institutional and hence socio-political milieu.

The combination of these three actions to produce the fourth is the essence of the
Discipline of Noticing (Mason, 2002) which provides a detailed structure, method,
and philosophical justification.

Maintenance

Following the chariot metaphor, the chariot or carriage, harness, shafts, and reins
all require maintenance in order to function efficiently, and, of course, the horses
themselves need looking after. Much could be made of this aspect of the metaphor,
but suffice it to say here that work on dispositions and propensities (the horses)
arises from work on developing the inner witness associated with awareness in
conjunction with the strengthening of mental imagery (the reins). The components
of the psyche are complexly inter-related beyond what is revealed by the carriage
metaphor.

Skills need to be rehearsed because they may atrophy through lack of use. Habits
need to be inspected and renewed or replaced as conditions change. This applies
to dominantly cognitive skills such as specialized techniques in mathematics and
topic specific didactic tactics, to dominantly affective skills such as holding still or
poker-facing when a student makes a good conjecture and asks for validation, and
to dominantly enactive skills such as classroom behavior management.

When pedagogic strategies and didactic tactics are tried, modified, and found to
have potential, they need to be integrated into functioning. In the words of Gattegno
(1970) “to integrate through subordination” is achieved through drawing attention
out of and away from the carrying out of the skill. In this way, it truly becomes
habit. If awareness is not extended and enriched (educated) then training provides
a habit on which to call, but may not be sufficiently flexible to cope with changed
conditions such as non-routine problems.

One message from this is that a regular practice of working on mathematics at
your own level for yourself and with colleagues is an excellent way to rehearse
skills, refresh awarenesses, and maintain the chariot! In a sense this is the companion
to learning about teaching from and through teaching, because it provides a library
of recent personal experience on which to draw and through which to be reminded
about what students may be experiencing at their own level.
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What Can Teachers Do?

Teachers are expected to do many things, but what is the core of what they can
hope to do? I consider this question in relation to students and then in relation to
themselves and their teaching apropos of learning about teaching from and through
teaching.

What Can Teachers Do for Students?

Teachers can edit and amplify what students do and say (Hewitt, 1996). They do
this by how they respond to students through reformulating and rephrasing, through
reflecting specific elements, phrases, and objects back to a group of learners. They
can pick out some expressions while ignoring others, and by using the same expres-
sions over a period of time in order to enculturate students into using the discourse
to express their own awareness. A conjecturing atmosphere, an ethos of enquiry and
collegiality is one way to support and amplify this editorial role of a teacher.

By stressing and consequently ignoring teachers can direct student attention in
ways which are indicative or representative of the way that mathematicians use their
attention. It is a reasonable conjecture that each technical term, each definition, each
technique, or method arose originally through a shift in what people attended to and
how they attended to it (otherwise, there would neither have been nor be any strug-
gle, any problematicity). Students usually have to experience some similar shift in
attention in order to internalize and exploit the new concept or approach. So what
a teacher offers is a more sophisticated awareness, more discerning distinctions,
wider recognition of relationships, and more insightful perception of properties
which are instantiated as relationships. They also display the kind of attention and
the kind of reasoning that marks out mathematical thinking from other types of
thinking.

Put another way, teachers display higher psychological processes (sometimes
called “modeling behavior” but this is problematic because of what people attend
to) which over time may be internalized by students, and there are various ped-
agogic devices for fostering and promoting internalization, including scaffolding
and fading and the use of a range of pedagogic constructs (see Mason & Johnston-
Wilder, 2006). One popular device for drawing student attention out of immersion
in activity, and useful as a contribution to the fading aspect of scaffolding, is meta-
questioning such as asking “What question am I going to ask you?” or “What am
I going to suggest you do?” If, after a period of using the same or similar prompt,
one of these meta-questions is used, student attention can be diverted to experience
of the prompt rather than immediately reacting to it.

To learn about teaching through teaching is in large part to work on becom-
ing ever more aware of what as a teacher it is possible to do for students, and to
withdraw from trying to do things for students that actually block their learning.
Examples include trying to do for students what they can already do for themselves,
and usurping their powers in the name of efficiency by specializing and generalizing,
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conjecturing and reasoning for them. This is not to say that the teacher never does
these things, but rather, that when the teacher does these things, not to assume
that the students can consequently now repeat them for themselves. Learning about
teaching from teaching is a lifetime process of refining sensitivities to students and
to the conditions in which learning is fostered and sustained.

What Can Teachers Do for Themselves?

There are parallel actions that teachers can do for themselves. First and fore-
most, they can maintain their interest and pleasure in mathematics by engaging in
mathematics for themselves at their own level. The purpose is not to “learn more
mathematics” but to sensitize themselves to the struggles that students experience.
Working on mathematics for themselves is an instance of a more general program
of engaging in retro-spection and pro-spection in order to support spection. This is
both a process of alerting oneself to issues that may need probing and actions to
take in order to promote responding freshly and more sensitively to situations that
emerge when teaching, whether when planning or when engaging with students.

What Can Teachers Do for Each Other?

By collaborating in their enquiries, teachers can display higher psychological pro-
cesses to and with each other so that as a collective they grow in and into community.
They can, for example, edit and amplify descriptions of incidents so as to enrich
labels that can serve as triggers to awaken their inner monitor and enable participa-
tion in choices in the moment. They can reflect specific elements back to each other
or to themselves, drawing them out of the specific action and into states in which
mental imagery can be used to prepare for future action. They can direct each other’s
attention to salient features so that finer distinctions can be made. The power and
value of distinctions needs to be tested again and again, especially those that have
become so ingrained that they activate even when not appropriate. It is easy to make
distinctions, but distinctions which inform future effective action are not so readily
located.

Conclusion

For me, Alfred Tennyson (1842) beautifully sums up the role and importance of
experience:

I am a part of all that I have met;
Yet all experience is an arch wherethro’
Gleams that untravell’d world whose margin fades
Forever and forever when I move. [Ulysses lines 18–21]
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To learn from or attend to experience in this way is to strive to move beyond that
arch, an intention which re-inspires:

And this gray spirit yearning in desire
To follow knowledge like a sinking star,
Beyond the utmost bound of human thought. [Lines 30–33]

By working together on mathematics and on pedagogical and didactic choices in
a conjecturing and collegial atmosphere, teachers can indeed learn about teaching
from and through teaching. But no one says that it is easy!
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How and What Might Teachers Learn Through
Teaching Mathematics: Contributions to Closing
an Unspoken Gap

Ron Tzur

Introduction

My three-fold thesis in this chapter is rather simple:

1. Mathematics teachers’ practice is a strategic site for learning to teach in ways
that will substantially improve students’ mathematical understandings (Leikin
& Zazkis, 2007; Perrin-Glorian, Deblos, & Robert, 2008; Zaslavsky & Leikin,
2004);

2. By and large, such LTT is an unrealized potential (Simon, 2007);
3. Articulating how and what LTT is prerequisite to realizing the potential; such

articulation can greatly benefit from the reflection on activity–effect relationship
(Ref ∗AER) framework (Simon, Tzur, Heinz, & Kinzel, 2004; Tzur & Simon,
2004).

Accordingly, I first provide rationale for the importance of LTT. Then, focusing
on psychological and epistemological shifts in teachers’ perspectives, I present an
approach to how and what teachers may learn via their practice. Finally, I discuss
questions for further research on LTT.

Rationale

Asian countries’ practices of teacher professional development indicate that they
have long noticed, and acted upon, the underlying premise of the above threefold
thesis: No matter how much preparation teachers gain prior to becoming practition-
ers, their profession requires much more on-the-job learning. The Japanese Lesson
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Plan Study (Lewis & Tsuchida, 1998; Yoshida, 2008) and the Chinese teacher col-
laboration (Ma, Zhao, & Tuo, 2006; Paine & Ma, 1993) approaches are but two clear
examples of this insight. Throughout mathematics teachers’ professional careers in
Asian countries, they continually learn through figuring out the particular mathemat-
ics they intend their students to grasp, planning sequences of tasks that seem useful
to promote students’ robust understandings, and reflecting on their own and others’
teaching activities in terms of impact on students’ progress. I see these approaches
to LTT as insightful for three major reasons.

First, LTT is a must because the time it takes to develop as an effective mathemat-
ics teacher goes well beyond the typical, 3–5 years of pre-service teacher education
programs. In these programs, prospective mathematics teachers need to not only
understand a vast body of highly abstract concepts, approaches, and theories from
several domains, but also begin interconnecting those into a coherent “mathemat-
ics teaching” praxis. These domains include profoundly understanding mathematics
(Ma, 1999) not merely as a user but also for teaching it to others (Adler & Huillet,
2008; Ball & Bass, 2000; Hill, Rowan, & Ball, 2005; Mason, 2001; Schifter, 1998).
They include theories of learning and development along with their epistemologi-
cal underpinnings (Steinbring, 1998) and psychological attributes of different ages
(cf. Piaget, 1964). They include issues of organizing and managing classrooms,
schooling and assessment, and dealing with diverse populations of constituencies—
students, parents, and administrators. Moreover, all these novel understandings are
to be developed by graduates of an educational system that does not equip them
with good enough baseline knowledge, yet they would eventually have to both
join and reform this system (Cohen & Ball, 1990). And they are supposed to
learn while experiencing rather diverse methods of teaching—from prevalent tradi-
tional lectures to most advanced but pretty rare, reflection-oriented, laboratory-like
approaches. The novice-expert literature (Leinhardt, 1989; Livingston & Borko,
1990) indicates that understanding and interconnecting these domains demand a
very difficult and long process.

Second, except for the single, semester-long and stressful experience of student
teaching, the above overwhelming amount of knowledge that teachers need to syn-
thesize lacks an imperative, qualitatively different ingredient of effective practice,
namely, noticing the impact (or lack thereof) of one’s teaching on students’ learn-
ing. At best, prospective teachers can learn, in the absence of real action, to plan
lessons/units and use available curricula to this end. More often than not, these
plans are traditional in nature and/or assimilated into prospective teachers’ deeply
engrained conceptions of traditional teaching. To novices, what experienced teach-
ers have been doing and are observed doing in schools, day-in-and-day-out, seems
much more intuitive than what their reform-oriented mathematics educators profess
(Tzur, 2008b). To shift teachers’ attention to and develop pedagogies that revolve
around student learning, teachers must experience and reflectively link between
their plans (anticipation of activities that engender learning) and the effects of those
planned activities (Mason, 1998, 2008; Yoshida, 2008). That is, due to immersion in
action, LTT is suitable for what and how is needed to reform the current, insufficient
teaching practices.
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The third reason is implied by the second—LTT is embodied in experiences
that are more conducive to a meaningful and long-lasting shift in one’s practice. In
their practice, teachers continually carry out the planning–implementing–reflecting
cycle, with reflective processes occurring both in and on action (Schön, 1987). Such
cycles endow teachers with a wealth of opportunities to be perturbed, that is, to
identify gaps between what they meant their teaching activities to engender and
what students actually learned. Being perturbed by the lack of efficiency of their
own goal-directed (planned) activities (Krainer, 2008a) can contribute to teach-
ers’ attentively listening to students (Davis, 1996; Empson & Jacobs, 2008) and
problematizing learning (and teaching), that is, to making the reforming of practice
their own problem. Consequently, teachers are more likely to maintain and adhere
to practice adjustments that will grow out of such problematizing, because these
adjustments represent new, empowering links they make between their activities
and the effects of their activities in terms of student learning.

One then must ask why, at least in the Western world, in spite of teachers’
ongoing experience of the plan–implement–reflect cycle, by and large their cur-
rent practices do not change and often show strong resistance to change (Leikin,
2008)? Along with the various reasons usually provided, such as time stress, low
salaries, and lack of instructional support (Ingersoll, 2001), I see three deep-seated
reasons. First, when teacher learning is encouraged, it is usually via means outside
the organic plan–implement–reflect cycle of their practice. Teachers receive from
mathematics teacher educators messages that may range from “you are doing great
and just need some extra tips” through “you fail to accomplish the desired student
outcomes.” This entire continuum, however, seems rooted in the teacher educators’
problematizing and reforming of learning. As long as (problematizing) their own
teaching cycle is not the source of teacher learning, suggested improvements will,
at best, be adopted superficially and bound for quick decay.

The second reason for minimal LTT seems to be the disproportion in emphasis
on two key principles. Most reform efforts seem to focus on the psychological prin-
ciple of active learning, which is common to social–cultural perspectives (Lerman,
2006; Lompscher, 2002; Vygotsky, 1978; Wertsch & Toma, 1995) and construc-
tivism (Dewey, 1933; Piaget, 1970, 1971, 1985). They seem to pay little or no
attention to the epistemological constructivist principle of assimilation, a dispro-
portion to which von Glasersfeld (1995) referred as trivial constructivism. Active
learning is evident in the discourse in which reform-oriented mathematics edu-
cators engage teachers—solving challenging, realistic tasks in small groups, with
concrete and/or digital manipulatives, and discussing their solutions with the whole
group (Markovits & Smith, 2008; Watson & Sullivan, 2008). Teachers are then also
engaged in discussing the advantages of doing the same with their students, in hope
that the teachers would follow suit to emulate their own positive learning experi-
ences. That is, teachers are engaged in active, hands-on experiences so they come to
“see” the intended mathematics and appreciate reform-oriented ways of teaching it.

The assimilation principle requires teachers to understand students’ mathe-
matics as qualitatively different from the teachers’ understanding and, thus, as
the conceptual force that constrains and affords the mathematics students can
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“see” in the world. Steffe (1995) referred to this as the distinction between first
order models (one’s own math, be it a student or a teacher) and second order mod-
els (teachers’ models of students’ math). For example, assimilation implies that
one would see a base-ten, place-value number system in the so-called base ten
blocks only if she has already constructed necessary mental structures and oper-
ations with which to “see” (assimilate) the relationship among numbers that the
system was made to symbolize (Gravemeijer, 1994). That is, assimilation entails a
learning paradox (Bereiter, 1985; Pascual-Leone, 1976), which is a key constituent
of the problematizing that mathematics teachers (and their educators) must make
their own in order to deeply appreciate the difficulties their students face when
asked to “see” what the teachers came to “see” via reform-oriented professional
development (Tzur, 2008b). The disproportion between active learning and assimi-
lation was captured in the categorization of three qualitatively distinct perspectives
(further discussed below) that my colleagues and I have postulated to underlie teach-
ing: Traditional, perception-based, and conception-based perspectives (Simon, Tzur,
Heinz, Kinzel, & Smith, 2000; Tzur, Simon, Heinz, & Kinzel, 2001).

The third reason for the ever-present gap between potential and actual LTT seems
to be the lack of articulation, from a conception-based perspective, as to how and
what can teachers learn (Sánchez & García, 2008). At issue, I contend, is the bal-
anced application of both principles (assimilation, active learning) to the teachers’
learning as a means for them to understand and practice the same approach. In
Tzur (2008b), I noted that accomplishing this balance requires development and
facile implementation of conception-based pedagogies by mathematics teacher edu-
cators. What follows is such an articulation (theoretical account), which focuses
on how teachers’ own plan–implement–reflect cycle can be used to promote their
understanding and adoption of both principles. I argue for using the recently elab-
orated framework of learning a new mathematical conception through reflection on
activity–effect relationship (Ref ∗AER) (Simon et al., 2004). I believe that this frame-
work provides a good basis for the needed theoretical account, though adaptations
to the complexities of teacher learning will most likely be needed.

Accounting for How and What Can Teachers Learn
Through Teaching

In this section, I first briefly present key constructs of the Ref ∗AER account. Then,
I address the two leading questions: How might LTT and what might teachers learn
that is worthwhile learning (i.e., likely to benefit student learning)?

Activity–Effect Relationship: Assimilation, Anticipation,
and Reflection

The theoretical account of forming and having a mathematical conception, which
I (Tzur, 1996, 2004, 2007) and colleagues (Simon & Tzur, 2004; Simon et al.,
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2004; Tzur & Simon, 2004) have postulated, draws on three core constructivist
notions—assimilation, anticipation, and reflection (Dewey, 1933; Piaget, 1985) and
on the three-part model of a scheme introduced by von Glasersfeld (1995):—(a)
situation-goal, (b) activity, and (c) result. We postulated that, upon assimilation, a
person anticipates and reflects on a single mental relationship—a “compound” the
brain forms between a mental activity and the effect(s) of that activity (AER). We
termed the mechanism for abstracting a new conception reflection on activity–effect
relationship (Ref ∗AER).

The Ref ∗AER mechanism commences with a person’s assimilation of “informa-
tion” (e.g., a mathematical task) into the situation part of an available scheme, which
also sets the person’s goal in that situation. To accomplish this goal, the scheme’s
second part is called up and executed while being regulated by the person’s goal
from within the mental system (Piaget, 1985). As the activity progresses the person
may notice effects that the activity produces, including discrepancies between those
effects and the goal. Through reflection on solutions to similar problems and reason-
ing about them, the learner may abstract a new invariant—a relationship between an
activity and its anticipated effect(s). This view is consistent with cognitive neuro-
science researchers’ assertion that learning is essentially a goal-directed process
(Baars, 2007) and is echoed in Krainer’s (2008b) view on teacher education as
goal-directed intervention.

The notion of reflection refers to two types of comparison continually performed
in the human brain—consciously or subconsciously (Simon et al., 2004; Tzur, in
press). Type-I reflection (comparison) focuses on differences between the effects of
the activity and the person’s goal, which engenders sorting of AER records. Type-II
reflection focuses on comparisons among stored records of experiences (situations)
in which such AER were used and engenders abstraction of a new AER as an antic-
ipated, reasoned invariant. This invariant involves a reorganization of the situation
that called upon the AER compound in the first place, that is, of the person’s previous
assimilatory scheme(s).

The construction of a new scheme via the Ref ∗AER process is postulated to occur
in two stages; they are distinguished by the extent to which a learner has access to
a newly formed conception (Tzur & Simon, 2004). The participatory (first) stage
is marked by the person’s dependence on being prompted for the activity at issue
in order to bring forth and use the invariant AER compound. At this stage only a
provisional anticipation of an AER identical in its content to the new conception has
been formed. Once prompted and reinstated, this anticipation includes reasoning of
why the effects follow the activity. The participatory stage is marked by the well
known “oops” experience. For example, upon hearing a student’s correct solution to
a problem, a teacher who is learning to ask students how they solved a mathematical
problem may first continue on to posing the next problem. As she does so, however,
she may independently notice and regard this move as a mistake she could and
should have avoided, with an accompanying “oops” thought and/or utterance.

The anticipatory (second) stage is marked by a person’s independent calling up
and using an anticipated AER proper for working on a given problem situation.
That is, the person has explicitly linked between a newly formed AER and a set
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of situations—a link that was not yet abstracted in the participatory stage. Thus,
the person can intentionally and spontaneously act toward the set goal. The cru-
cial understanding about the stage distinction is that in both stages the essence
of the anticipated relationship is the same (and thus observed behaviors are the
same); what differs is its availability to the person in a given situation as she or
he recognizes it.

How Might Teachers Learn Through Teaching?

Viewed through the Ref ∗AER lens, every activity of teaching is a potential source
for teacher learning. The reason is straightforward—a teaching activity, whether
planned, adjusted, or in response to unforeseen classroom events—is an expression
of the teacher’s anticipation of desired student learning effects. More often than not,
the teacher can notice students for whom the actual effects do not fit with her antic-
ipation. At issue is (a) the extent to which the teacher takes the time and effort to
consciously reflect (Type-I) on this perturbation, (b) how does she resolve the per-
turbation (e.g., dismissing the event as “another example that some students can
never get this”), and (c) whether or not further comparison (Type-II) across rele-
vant records of such experiences is carried out to examine plausible adjustments to
the teaching activities. Most importantly, the teacher’s perspective on what consti-
tutes “learning” and how teaching may promote such an effect in students affords
and constrains what she may notice (Mason, 1998, 2008) and, crucially, what rela-
tionships she may or may not (trans)form between her teaching activities and their
effects. Put differently, the scope and nature of the teacher’s perturbation, as well
as how she resolves it, are excellent indicators for her assimilatory conceptions of
mathematics learning and teaching. According to this view, one would consider the
teacher to have learned if changes in the teacher’s anticipation can be identified in
the form of an invariant link, which is novel for the teacher, between what she plans
to do, what she does, and why she plans/does it.

The above view of LTT, particularly the key role that anticipation and reflec-
tion play in this process, is compatible with Clarke’s (2008) approach to using
teacher-generated curricula as a source for professional development. Likewise, this
view was illustrated in all four articles of the PME Research Forum (Borba, 2007;
Leikin & Zazkis, 2007; Liljedahl, 2007; Simon, 2007). I contend that each of the
authors’ examples is a manifestation of teachers’ learning as change(s) in antici-
pation, when students’ and/or peers’ unanticipated reactions become prompts for
the teacher’s reflection on pedagogical/math AER. To substantiate this contention, I
briefly discuss three examples from those papers.

Leikin and Zazkis’ (2007) second example reports on a teacher who anticipated
that students would solve a problem via induction. The teacher’s own mathemat-
ical conceptions afforded her assimilation of an unanticipated student’s solution
obtained via calculus. Her pedagogical conceptions afforded acceptance of differ-
ent solutions to the same problem, which triggered her goal of making sense of the



How and What Might Teachers Learn Through Teaching Mathematics 55

student’s unanticipated solution. That is, the student’s solution served as a prompt
that engendered the teacher’s extension of both her mathematical anticipation of
proper solutions to such problems and her pedagogy—proactively planning for fos-
tering students’ understandings of both solutions. The report indicated that this
change in the teacher’s anticipation was quickly solidified into an anticipatory stage,
as she not only accepted it but also planned on presenting it in future lessons on the
same topic.

In Liljedahl’s (2007) study, teachers worked on creating tasks for assessing stu-
dents’ numeracy. Initially, he considered the teachers to be using a narrow and rather
procedural understanding of numeracy, which triggered his intervention. He inter-
jected a follow-up prompt (What would you, teachers, consider the qualities of a
successful (numerate) student?). This prompt fostered further interaction among the
teachers that, in turn, oriented their reflection on and transformation in their con-
ception of what “numerate students” should be anticipated to do/reason. Liljedahl’s
work, which draws on Wenger’s (1998) meaning for reification, resonates with Pirie
& Kieren’s (1994) emphasis on the need to continually promote expressing of one’s
action-generated ideas as a means for clarifying these ideas to both oneself and
others.

Borba (2007) reported on teachers’ learning via online exchanges in which
they each expressed their actions on the “same” virtual geometrical object. They
uploaded their solutions to a common website and reacted to one another’s solu-
tions. Through those virtual, distance exchanges, teachers were exposed to their
peers’ actions, which often did not match one’s anticipation of actions she would
have carried out in that situation. As indicated by one of Borba’s participants (“to
cope with math activities for our students we had to revisit our own math”), peers’
unanticipated actions prompted further reflection, hence LTT.

The above examples of reflection-based changes in teachers’ anticipations did not
always specify the goals that regulated the teachers’ activities and reflections. The
Ref ∗AER framework requires such specification in order to provide deeper analyses
of LTT. However, those articles provided ample instances of where, as mathemat-
ics teacher educators and researchers, we can identify teachers’ goals. For example,
goals were indicated through experiences a teacher provided with her students that
she considered as different from her own school experiences, correction of student
mistakes, prediction of student responses, resolutions of her disagreements with
peers and/or her own cognitive conflicts, attempts to satisfy school’s requirement to
use software, desires to improve one’s own math, etc. Articulating these goals allows
to form a better model of the teachers’ rationale (anticipation) for why their teaching
activities would engender the anticipated student learning. In turn, this articulation
of goals and activities can assist in making sense of what teachers notice anew and
link as novel teaching-learning anticipations. In other words, empirically grounded
analyses can capitalize on the Ref ∗AER framework, alongside constructs such as
awareness and noticing (Mason, 1998) and the dualistic, action-expression nature
of understanding (Pirie and Kieren, 1994), for developing powerful explanations of
the complex mechanisms, contexts, and stages in teacher change toward productive,
reasoned practices.
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What Might Teachers Learn Through Teaching?

To address the issue of what might LTT so they teach well and their students
learn well (Sullivan, 2008b), I first present the three perspectives (traditional,
perception-based, and conception-based) postulated to underlie practices of math-
ematics teaching (Heinz, Kinzel, Simon, & Tzur, 2000; Simon et al., 2000; Tzur
et al., 2001). I consider the latter as an essential goal for mathematics teacher devel-
opment. I then introduce a three-prong pedagogical approach (a “Teaching Triad”)
that underlies three central contributions of LTT to the improvement of mathemat-
ics education for both teachers and students. These three contributions are presented
following a developmental (not logical) sequence implied by my own experience,
by research literature, and by the Ref ∗AER framework: (a) Mathematics knowing
for teaching (MKT), (b) task design and adjustment, and (c) epistemological shift
toward profound awareness of the learning paradox (PALP) (Tzur, 2008b).

Teaching Perspectives

The distinction among traditional, perception-, and conception-based perspectives
grew out of our work in the context of the NSF-funded Mathematics Teacher
Development (MTD) project.1 A more detailed exposition of this distinction,
and empirical studies of teachers whose teaching we identified to manifest the
perception-based perspective, can be found in the three papers referenced above.
Here, I focus on further organizing those distinctions on the basis of the two prin-
ciples discussed in the Rationale, namely, the psychological principle of active
learning and the epistemological principle of assimilation (see Fig. 1).

A traditional perspective is characterized by a passive stance toward learning
coupled with a “harvesting” stance toward mathematics—it exists outside and inde-
pendent of the learner (or knower) who needs to obtain it. Thus, traditional teachers
are likely to adhere to and utilize a transmission approach to teaching. They feel
responsible for logically organizing and clearly presenting the mathematical con-
tent; students’ role is to listen attentively to the teacher’s directions, complete
assigned work, and memorize millennia-old crystallized mathematical procedures

Psychology Epistemology

Traditional Passive learning Math exists independent of 
learner

Perception-Based Active learning Math exists independent of 
learner

Conception-Based Active learning Math depends on learner’s 
assimilatory conceptions

Fig. 1 Three pedagogical perspectives

1 The research was conducted as part of the NSF Project No. REC-9600023, Mathematics Teacher
Development. All opinions expressed are solely those of the author.
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and facts. A perception-based perspective (PBP) markedly differs from the tradi-
tional in its psychological emphasis on learning as necessarily an active process;
however, it is rooted in the same learner-independent epistemological stance toward
knowing mathematics. Thus, perception-based teachers are likely to adhere to and
utilize a discovery (Platonic) approach. They feel responsible for engaging stu-
dents in first-hand experiences of solving meaningful problem situations (tasks),
via manipulating concrete objects and discussing with others patterns they identify
until coming to “see” (discover) for themselves the intended (existing) mathe-
matics (Simon, 2006b). Quite often, this is typical of teachers informed by and
oriented toward reforms advocated by documents such as the NCTM Principles
and Standards for School Mathematics (2000).

Like the PBP, a conception-based perspective (CBP) draws on the psycholog-
ical principle of active learning. However, it differs markedly from PBP in its
adherence to the radical constructivist principle of assimilation (von Glasersfeld,
1995). Assimilation implies that knowing and coming to know mathematics depends
on the learner’s available schemes by which she interprets and solves “external”
problem situations. Simply put, one can only “see” mathematical ideas through
conceptual lenses that are already established in her mental system; the “existence”
of those ideas is determined (afforded and constrained) by her assimilatory con-
ceptions. Such a perspective problematizes learning: How can one come to “see”
new mathematical ideas while not having available conceptions through which to
assimilate those ideas? Pascual-Leone (1976) and Bereiter (1985) referred to this
as the learning paradox. Thus, conception-based pedagogy adheres to and utilizes
not a discovery but rather a reorganization (conceptual transformation) approach.
Teachers feel responsible for (a) engaging learners in realistic tasks that bring forth
the learners’ available conceptions (goals, activities, effects) to commence learning
and (b) orienting learners’ reflection on their goal-directed activities so they notice
new aspects of those activities and reorganize the previously established schemes.
Building on the notion of hypothetical learning trajectory (Simon, 1995; Simon &
Tzur, 2004), I introduced the Ref ∗AER framework as a plausible conception-based
pedagogy that addresses the learning paradox, along with a seven-step cycle that
further specifies the teacher’s responsibilities (Tzur, 2008b).

A three-Prong Pedagogical Approach

The two essential questions every teacher of mathematics continually contemplates
upon are what and how to teach her students next. As one would expect, traditional
pedagogies typically address both of these questions by letting the crystallized body
of knowledge, as a knowing adult conceives of it, predetermine the logical sequence
of concepts, algorithms, techniques, and facts to be taught. This is a single-prong
approach driven by mathematics; it is independent of the learners who are to pas-
sively attain it. This single-prong approach is evident in what I call one-column
curriculum (intended and implemented) that inversely breaks down the expert’s
(models of) mathematics, from advanced to basic pieces of knowledge, and then
re-orders those pieces in terms of logical (to an expert) prerequisites.
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Energized by the outcry to reform the largely failing traditional approaches,
perception-based pedagogies typically address the what and how to teach next ques-
tions by coordinating the vast body of expert mathematical models with tasks and
materials that promote learner activities. This is a two-prong approach that tailors
to the pieces in the expert-driven prerequisite lists success-proven teaching-learning
(inter)activities. This two-prong approach is evident in reform-oriented curricula
produced around the world in the last two decades. I refer to it as a two-column cur-
riculum, because it consists of (a) the intended mathematics and (b) corresponding
activities for endowing students with “seeing” it. Evidently, two-prong approaches
take into account students’ interest and capacities. However, by and large, teach-
ers’ decision to move on and their selection of activities to promote what’s to be
learned next is still determined by the expert-driven mathematical prerequisite lists
rather than by learners’ assimilatory conceptions and how they might be reorga-
nized. Lambert’s (2008) recent study of traditional and reform-oriented tasks for
teaching counting-on to first graders clearly demonstrated that both approaches do
not account for the conceptual reorganization needed.

A conception-based pedagogy addresses the what and how to teach next ques-
tions very differently. It always begins with articulated accounts (second-order
models) of students’ assimilatory schemes. It then specifies research-based accounts
of expert-intended (first-order) mathematical understandings into which student
assimilatory schemes may be reorganized, focusing on what Simon (2006a) called
key developmental understandings (KDUs). It finally proposes a set of tasks selected
for their explicitly reasoned, hypothetical power to engender the transformation
from students’ available schemes to the intended mathematics. This three-prong
approach, illustrated in the Teaching Triad diagram below (Fig. 2), tailors what’s to
be learned next and how to what students know precisely because the mathematics of
students afford and constrain goal-directed activities they can bring forth and reflect
upon as a means to construct novel (to them) ideas. To the best of my knowledge,
a corresponding three-column curriculum has not yet been produced commer-
cially, although examples of limited-in-scope units/lessons can be extracted from
numerous constructivist studies that focused on students’ assimilatory conceptions.

LTT and Mathematics Knowledge for Teaching

From the Ref ∗AER framework and the three-prong approach it implies for math-
ematics teacher education, LTT seems a strategic site for transforming teachers’
subject matter knowledge into the desired mathematical knowledge for teach-
ing (MKT) (Hill et al., 2005). I take this as a core of the Asian insightful

Student 
Conception

Intended
MathTasks

Fig. 2 A three-prong,
conception-based pedagogy
(Teaching Triad)
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LTT endeavors. These endeavors organize teachers’ reflection via exchanges among
teachers about what a teacher planned (anticipation) and implemented (activity) in
her classroom, and what she and her peers considered to have been brought forth
(or not) in terms of student learning (effects). The examples from the studies
by Leikin and Zazkis (2007), Liljedahl (2007), and Borba (2007) manifested
this: Teachers can learn (and re-learn) MKT via reflecting on students’ work in
response to the teachers’ planned/implemented activities. The resulting mathemati-
cal schemes of the teachers endow them with understandings of what and how can
be learned by their students, that is, empowers the teachers’ MKT.

Two aspects of such learning are worthy of noting. First, realizing the potential
for LTT seems to depend heavily on a teacher’s gradual development of a predisposi-
tion toward unexpected situations as an opportunity, not as a threat to be eliminated
(Empson & Jacobs, 2008). Welcoming unexpected situations as an opportunity is
likely to trigger a productive cycle, because it encourages students to make more
contributions, hence more learning opportunities for a teacher. Second, the math-
ematics a teacher can learn with and without guidance seems rather different. In
particular, teacher educators can prompt teachers’ noticing in situations that would
otherwise go unnoticed (Mason, 2008) and orient teachers’ reflection onto relation-
ships the teachers either overlook (Yoshida, 2008) or avoid (Sullivan, 2008b) due
to lack of knowledge for coping with what the teachers do not know. On the other
hand, mathematical interactions with teacher educators may add to the teachers’
sense of threat. Thus, further studies of how to strike a balance between teachers’
learning with and without guidance seem of importance.

LTT and Task/Lesson Design/Adjustment

Like Watson and Sullivan (2008), I consider tasks that teachers use for actively
engaging their students in mathematics as a natural source for their professional
growth. From the Ref ∗AER framework, this is almost self-explanatory. A task
is probably the most representative artifact of a teacher’s pedagogical scheme—
anticipation of relationship between the mathematics her students will learn (effect)
and the teaching (activity) that will engender such learning in a designated
time/space (situation). For LTT to take place, however, at issue is the extent to
which teachers systematically reflect on this anticipated relationship as a means
to learn and improve task use—both how to think about the role tasks can play in
students’ learning of the intended mathematics (task features) and how to imple-
ment them properly (task pedagogy). An entire Research Forum carried out during
PME-32 (Herbst, 2008; Sullivan, 2008a; Tzur, 2008a; Tzur, Zaslavsky, & Sullivan,
2008; Watson, 2008) focused on how, too often, very effective tasks may be “lost in
teachers’ translation” (lost in the sense of lowering task demands/impact). This is
one area where purposeful intervention on the part of mathematics teacher educators
is likely to be needed—to orient teachers’ reflection onto different ways of thinking
about and using tasks.

In this regard, I think that the most important goal for LTT is the articulation
of why or why not a task engenders the intended learning. Such an articulation
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should be made explicit prior to using the task, as much as possible during task
use, and afterward (in reflection). For the reflection part, it should consist of both
Type-I comparisons between the planned and actual effects (student learning) a task
engendered, and Type-II comparisons across situations in which a particular task did
(or did not) engender that learning. My interpretation of Asian discourses suggests
that they are powerful precisely because both types of reflection are systematically
carried out before, during, and after a lesson.

Besides the foundational learning to design, reflect on, and adjust tasks, LTT can
and should focus on translating curriculum-given or teacher-generated tasks into
lessons . For example, once a core, “platform” task has been selected, variations
are needed to enable less advanced and high-flyer students to productively engage
in and learn via the task. Sullivan, Mousley, and Zevenbergen (2003) introduced
an approach for designing/using enabling and challenging prompts that provide
such variation. Integrated with the Ref ∗AER framework, this approach can yield
significant LTT by using the design of prompts as a pedagogical task to orient
teachers’ reflection on the relationship between students’ available conceptions and
how they interpret and work on a given task. Our experience in the Mathematics
Teacher Development project indicated that comparing across different learners’
responses could turn into teachers’ initial differentiation between the mathemat-
ics they could see (first order models) and the mathematics their students could or
could not see due to the students’ available understandings (second order models).
This highly desired shift in teachers’ epistemological stance is further discussed
below.

LTT and Epistemological Paradigm Shift

Leikin (2006) proposed a three-dimensional model of teachers’ knowledge. I con-
sider the third dimension—forms of knowledge—as guidance for identifying a
critical goal for LTT. Liljedahl (2007) and Simon (2007) emphasized the need for
mathematics teachers to progress from intuitive to formal ways of thinking about
teaching. This progression is consistent with Mason’s (1998, 2008) emphasis on
changes in teachers’ awareness. Liljedahl (2007) illustrated this goal in terms of
changes in teacher reactions to students; Simon (2007) illustrated it in terms of the
need for teachers to question and reflect on their hidden epistemological assump-
tions. Drawing on the distinction among three pedagogical perspectives and their
implied one-prong, two-prong, and three-prong approaches, I propose the shift
toward epistemological stance that embraces the assimilation principle as a cru-
cial goal for LTT. That is, I contend that teachers’ progress to formal ways of
thinking about teaching should involve construction of conception-based perspec-
tives, including familiarity with research-based developmental (conceptual) “maps”
and with methods (e.g., interviewing) for figuring out their students’ available
conceptions (see, for example, Tzur, 2007). As I noted above, promoting this diffi-
cult transformation implies that teachers need to construct a mindset (pedagogical
scheme) of openness to and acceptance of unexpected situations as a key, self-
generated source for their own professional development. That is, teachers need
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to form an invariant anticipation of actively listening for the unexpected (Empson &
Jacobs, 2008).

For most teachers, developing a conception-based perspective as the core of
intuitive-to-formal (or systematic) transition is not likely to happen without substan-
tial, guided, long-term interventions. The reason is that teachers’ existing schemes
and perspectives (traditional or perception-based) serve as an assimilatory trap
(Stolzenberg, 1984): What they notice and act upon is afforded and constrained by
the paradigm they have yet to alter. For example, it seems that a teacher who con-
cluded that “there are different ways to solve a problem” (Leikin & Zazkis, 2007), or
teachers who rethought “what serves as evidence for numeracy” (Liljedahl, 2007),
were yet to transform their epistemological stance toward the role of students’
assimilatory conceptions in what they do or do not notice. I believe that making a
conception-based perspective—adopting the principle of assimilation—the explicit
goal for teachers’ learning could greatly support the mathematics teacher educators’
work.

Viewed from the Ref ∗AER framework, perception-based practices have the
potential of serving as “material” for teacher reflection on their own epistemologi-
cal anticipations. One obvious type of such reflection consists of Type-I comparisons
between anticipated and actual student responses. For example, Leikin and Zazkis
(2007) reported on a teacher who learned, through noticing a student’s unexpected
solution, that students may interpret a mathematical term (e.g., “divisor”), which she
precisely defined in the class lecture, differently than the teacher’s meaning for the
conventional term. This then being the teacher’s goal could be capitalized upon by
mathematics teacher educators for promoting her abstraction of the epistemological
role of assimilating a mathematical expression by the students. In turn, this can lead
the teacher to examine how the term “factor” as used in the task could have brought
forth in her students the activity–effect relationship relevant for figuring out if any
natural number, presented as multiplication of primes to some power, is divisible
by any other natural number. Similarly, teachers’ learning of how to use computer
software (Borba, 2007) can become the source for reflection on the role of mathe-
matical activity in a medium, as well as on how the goal of a software user regulates
what she or he notices (i.e., considers as “machine feedback”).

A second, powerful type of such reflection consists of Type-II comparisons
between tasks the teacher would use for teaching a particular conception to a specific
group of students and tasks designed and used by mathematics teacher educators
to accomplish the same student learning. In Tzur (2008b), I have discussed the
powerful impact of such comparisons. Initially, teachers simply could not fathom
how tasks and lesson plans I created would actually lead to the desired student
learning (e.g., counting-on, fractions). What, from a conception-based perspective
(specifically, Ref ∗AER), seemed perfectly intuitive to me, seemed counter-intuitive
to the teachers; my plans contradicted their pedagogical anticipations. In that paper
I discussed how teachers’ witnessing the accomplishment of their goals for student
learning via the counter-intuitive plan could be turned into constructive reflections
that began “shaking” their deeply entrenched (traditional or perception-based) antic-
ipations. That is, intentionally contrasting teachers’ anticipations for failure of a
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teacher educator’s task/plan and the surprising (to the teacher) success of such a plan
proved powerful in the teachers’ questioning of their own anticipations. I believe
that both types of comparisons are needed to intentionally promote teacher transition
from a perception- to a conception-based perspective.

Concluding Remarks

In this chapter, I argued for the need to close the gap between the potential and actual
LTT of mathematics. I explained why augmenting LTT is important and suggested
three deep-seated reasons why, at least in the Western world, the gap seems rather
wide: The learning process not being problematized by teachers, the dispropor-
tion between the active learning and the assimilation principles, and the insufficient
articulation of how and what teachers LTT. I introduced the Ref ∗AER framework,
developed for mathematics learning and teaching, and proposed it can assist in better
articulating both questions. Then, I provided an adapted model of Ref ∗AER for how
might LTT take place. Finally, I introduced a novel coordination between pedagog-
ical perspectives identified in research (traditional, perception, and conception) and
corresponding approaches to curriculum design/use (one-, two-, and three-prong,
respectively). I demonstrated why the latter, captured by the Teaching Triad notion
that uses tasks as the interface between student assimilatory conceptions and the
intended mathematics, provides three core goals for LTT (i.e., what they might learn
to teach well).

I believe that the different sections of this chapter contribute to closing the largely
unspoken gap between what teachers of mathematics actually and could potentially
learn through teaching. To boost these contributions, I culminate with a few issues
that deserve further theoretical and empirical scholarly attention:

1. How are guided and non-guided teacher learning different? Similar?
2. How does teachers’ continual engagement in expressing their ideas to others

contribute to LTT?
3. How does openness to students’ unexpected reactions, which is a necessary

condition for noticing such reactions and treating them as contribution to the
teacher’s own learning, evolve over time in relation to teachers’ confidence
(in math, in pedagogy)?

4. How might researchers use/measure changes in teachers’ anticipatory schemes
of teaching actions—schemes of which teachers are quite often unaware?

5. Like in quantum mechanics, it seems that the medium through which researchers
interact with and observe teachers’ behaviors may change what is observed.
What are the methodological and educative implications of such changes?

6. How do teachers’ goals and implicit assumptions impact LTT? This question
bears both a theoretical elaboration and an articulation of teachers’ practical
focus (e.g., improve lesson plans, build assessment tasks, etc.)?

7. Derived from #6, what tasks and prompts can teacher educators employ (and
why!) to foster LTT, including scaffoldings that can serve the teachers in the
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absence of direct guidance, and why would such tasks work, or adjusted when
not?

8. As a constructivist, I take for granted that what a mathematics teacher educa-
tor or a researcher can consider as lack of coherence in teachers’ knowledge/
beliefs/practice may be un-problematically coherent for the teacher (Liljedahl,
2007). Thus, in addressing both #6 and #7 above the onus is on the schol-
arly community to make explicit teachers’ conceptions that afford/constrain
hypothetical LTT.

9. And, last but certainly not least: What do we mean by “the teacher has learned”
and what do we take as evidence for it (i.e., what is the meaning/measure of
success in math teacher education)?
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Learning Through Teaching Through the Lens
of Multiple Solution Tasks

Roza Leikin

Introduction

During the past decade my research focused on teachers’ learning through teach-
ing, with special attention to the mathematics learned by facilitators of the learning
process: teachers, and teacher educators. Although my focus was on the teach-
ers’ mathematical knowledge, I realized (very naturally) that the mathematics they
learned in the classroom is not separate from the pedagogy they learned. There
was a two-way connection between mathematics and pedagogy (Fig. 1): Teachers’
advanced pedagogy was manifested in their flexibility (Simon, 1997; Leikin &
Dinur, 2007) and improvisation (Sawyer, 2004) in the classroom; their success in
creating a-didactic situations (in the sense defined by Brousseau, 1997) resulted in
their learning mathematics. At the same time, teachers’ connected and advanced
mathematical knowledge (Leikin, 2007; Zazkis & Leikin, 2009) displayed in their
problem-solving expertise promoted teacher flexibility and the ability to design
challenging settings in which students learned autonomously (Steinbring, 1998).
These findings were reported, for example, in Leikin (2006) and in Leikin and
Dinur (2007).

Teachers' and teacher educators' 
advanced pedagogy

• Teacher flexibility
• Teacher improvisation 
• Student autonomy 
• Student invention

Teachers' and teacher educators'
advanced mathematical knowledge 

• Connected
• Challenging
• Beyond the curriculum
• Problem-solving expertise 

LTT

Fig. 1 The dual nature of LTT
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In this chapter I illustrate and explain the phenomenon of learning through teach-
ing (LTT) using multiple solution tasks (MSTs). A “multiple solution task” is one in
which learners are explicitly required to solve a mathematical problem in multiple
ways. The distinctions between the solutions can be based, for example, on (a) use
of different representations of a mathematical concept; (b) use of different proper-
ties (definitions or theorems) of a mathematical concept; and (c) use of mathematics
tools from different branches of mathematics (Leikin, 2003; Leikin, 2007; Leikin
& Levav-Waynberg, 2007, 2008). Systematic use of MSTs both in teacher educa-
tional programs and in school mathematics classrooms is an example of advanced
interweaving of mathematics and pedagogy. This approach requires facilitators of
the learning process to demonstrate advanced mathematical knowledge as well as
pedagogical flexibility and improvisation because the use of MSTs intensifies the
creation of unpredicted learners’ responses.

Below I outline the research methodology I used to study LTT and the way in
which MSTs were incorporated in the study. Next, I describe the case of Rachel, a
mathematics teacher educator, who used MSTs to learn mathematics in her teacher
education courses. I use the story-telling method to present the case. After the story
I introduce the notion of solution spaces, a useful construct for analyzing the pro-
cesses and outcomes associated with teaching MSTs. Then I present a longitudinal
exploration of LTT by means of MSTs. Finally, I return to the connection between
teachers’ mathematics and pedagogy in teaching and learning.

Methodology of LTT Research

I used two main methodologies in studies exploring LTT: multiple cases of (rel-
atively short) teaching experiments and longitudinal investigation of a teacher’s
development experiment.

Multiple cases of teaching experiments: In the first chapter of this volume, Leikin
and Zazkis argued that the Teaching Experiment (TE) is a powerful framework for
teacher learning. Based on this argument, I conducted multiple teaching experiments
on teaching unfamiliar mathematical tasks matching the topics being taught by the
individual teacher. To follow the changes in teacher knowledge and the manner in
which the change occurred, data were collected in triads of planning the teaching,
performing the teaching (interactive stage), and critical analysis of the two previous
stages. More than 40 teachers participated in experiments of this type. The teaching
experience of participants varied from 1 to 20 years; most participants taught in
secondary school and some in elementary school. The duration of teaching varied
from one to three lessons. The data were recorded in written protocols or videotaped
and transcribed. At least two people analyzed the data (for a detailed description of
some of the cases see Leikin, 2005a; 2005b; 2006; Leikin & Rota, 2006; Leikin &
Dinur, 2007).

Using similar methodology (but less formally), I also explored several cases of
development of teacher educators’ mathematical knowledge and recorded my own
learning as well. One of these cases – the case of Rachel – is presented and analyzed
in detail in this chapter.
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The longitudinal study used the teacher development experiment (TDE) method-
ology (Simon, 2000; Leikin, 2003). Twelve secondary school mathematics teachers
(MTs) participated in the study over a period of three years (2003–2006). In the
first year, the teachers volunteered to take part in a 56-hour professional develop-
ment course focusing on MSTs. During that year the teachers were asked to avoid
implementing MSTs in their classrooms, but in the second year they were required
to implement them. To follow teachers’ LTT, we interviewed them at the end of the
first-year course and at the end of the second year of the research intervention. At
the end of the second year, the teachers also participated in four meetings focusing
on the implementation of MSTs. During these meetings, we also conducted group
interviews. Figure 2 shows the main elements of the research methodology used in
the two studies. During the third year we followed the effect of the intervention on
teachers’ work through individual communications with the teachers.

Common to the two studies were triads of data, which included interviews
and observations, and the presence of unfamiliar elements in teaching. The use
of unfamiliar approaches or contents was aimed at intensifying the data collec-
tion. During the interviews the teachers were consistently asked to solve problems
related to the lessons they taught and provide instructional examples. During the
pre-interviews teachers were asked to predict student responses, whereas during the
post-interviews they were asked to analyze student responses. Comparing the pre-
and post-interviews, we analyzed the development of the teachers’ mathematical
knowledge based on how they solved and exemplified tasks, and the develop-
ment of their pedagogical knowledge based on their prediction and analysis of
student responses. Exemplification tasks often provided additional evidence for the
teachers’ pedagogical knowledge because teachers tended to reason about their stu-
dents when providing examples (Leikin & Levav-Waynberg, 2007). Following the
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Fig. 2 Research methodology for the investigation of LTT
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teaching, teachers were asked to analyze their own learning, and the resulting infor-
mation was combined and compared with the researchers’ perception of teachers’
learning. We used MSTs as a research tool to examine the teachers’ LTT and found
them to be an effective tool for LTT.

The Case of Rachel

Rachel (all the names mentioned in the chapter have been changed) is an experi-
enced teacher educator. I present her case as a story, a methodology that has been
acknowledged as a valid means of describing processes of teaching and learning to
teach (Krainer, 2001; Chazan, 2000; Lampert, 2001; Schifter, 1996; Zaslavsky &
Leikin, 2004). Krainer (2001) suggested three learning levels associated with sto-
ries: (1) Stories help provide authentic evidence of typical development in teacher
education; (2) stories can extend our theoretical knowledge about the complex pro-
cesses of teacher education; and (3) stories serve as starting points for reflection and
promote insight into our mental processes and challenges (ibid., p. 271). Rachel’s
story provides authentic evidence of a typical case of LTT and combines all the
elements of data collected about her teaching and learning.

Rachel was an instructor at a professional development course on MSTs for sec-
ondary school MTs. During the course participating MTs were asked to solve every
mathematical problem in at least two ways. At the beginning of the course, MTs
had difficulty finding multiple solutions for the problems presented to them. In the
middle of the course, Rachel and the MTs were surprised by the change in their
problem-solving proficiency. For one of the home tasks Rachel asked MTs to solve
Problem 1 (Fig. 3) in at least 3 different ways. Her objective was to make MTs con-
sider typical auxiliary constructions for problems in which a median is one of the
main elements in the problem: doubling the median (Proof 1.1) and doubling the
triangle (Proof 1.2).

Problem 1 On two sides of triangle ABC two squares, ABED and AFGC, are
constructed. Prove that the median AM of triangle ABC equals half the segment FD
that connects two vertices of the squares (Fig. 3).
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G

D

M

E

Fig. 3 Problem 1
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Five Proofs Presented at the Lesson

Median-Based Proofs

As Rachel expected, at the beginning of the lesson MTs presented two median-based
proofs (Fig. 4a,b provide outlines of the proofs). The whole-group discussion about
Proofs 1.1 and 1.2 focused on the use of the two constructions, which the teachers
considered to be “typical auxiliary constructions for problems where the median of
a triangle is given.” The teachers proceeded to discuss the connections between the
objects obtained by the two auxiliary constructions, e.g., the connections between
the equality of the areas of the two small triangles created by the median and the
equality of the areas of the four small triangles in the parallelogram created by
the two diagonals. When doubling the triangle, the median is also a midline in
the bigger triangle. Participants also discussed why the two different constructions
produce congruent triangles (�FAD ∼= �NBA (Proof 1.1) and �FAD ∼= �PAB
(Proof 1.2), so that �PAB ∼= �NBA). After the discussion of Proofs 1.1 and 1.2,
Rachel asked MPTs to present additional solutions to the task. MTs presented three
proofs.

Proof 1.1: Doubling the median

Auxiliary construction AN = 2AM
⇒ABNC – parallelogram
⇒ ΔFAD ≅ ΔNBA 
⇒ FD = AN ⇒ FD = 2AM

B
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E

G

D

N

F

Proof 1.2: Doubling the triangle

Auxiliary construction PB = 2AM, 

a b

⇒AM – midline in ΔCPB  
⇒ ΔFAD ≅ ΔPAB 
⇒ FD = PB ⇒ FD = 2AM.
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Fig. 4 Median-based proofs

Rotation-Based Proofs

MTs presented three new proofs, two of which were based on rotation. Mali sug-
gested rotating triangle ABC by 90◦ about vertex A (Fig. 5a), and Soha rotated the
“small” square by 90◦ about Q, which is the center of one of the squares (Fig. 5b).

These two proofs were unusual from the point of view of the school curriculum,
but the MTs were experienced in solving problems using symmetry. Rachel was
glad that the teachers found these solutions and disappointed that she did not see
them herself before the lesson. At this point, the whole-group discussion focused on
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Proof 1.3: Rotating the triangle

Rotation of triangle ABC by 90o about 
vertex A 

a b

AC moves to AF; AB moves to AL
⇒ AM – median in ΔABC, moves to AK 
– median in ΔALF 
⇒ KA is the midline in triangle LFD
⇒ FD = 2KA ⇒ FD = 2AM.
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Proof 1.4: Rotating 

Rotation of square ACGF by 90o about Q, 
which is the center of the second square 
⇒ AFTD – parallelogram.
ΔABC moves to ΔDAT ⇒ TA = CB
FD and TA (diagonals in the 
parallelogram) intersect at R ⇒  FD = 2RD, 
AM moves to RD ⇒ FD = 2AM. 
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Fig. 5 Rotation-based proofs

the elegance of the proofs, their clarity, and effectiveness. The teachers held diverse
opinions and most of them considered that these two proofs were not applicable in
their classes. “Students will be confused by these proofs,” they said, “They won’t
be able to explain these solutions mathematically enough.”

Proof 1.5: We Obtain One More Square Inside

An additional proof, provided by Ronit, was based on the observation that “we
obtain one more square inside.” She constructed centers O and Q of the two squares
and connected them with points M and R, where R is the midpoint of FD (Fig. 6).
She then proved that ORQM is a square, and based on this fact she proved that
triangles RDQ and MAQ are congruent. Therefore FD=2AM (because RD=AM).

Unfortunately Ronit’s proof that ORQM is a square was very long, based on
multiple congruencies of triangles, some of which were superfluous. Rachel asked
the MTs: “Can we prove that ORQM is a square in a shorter way?” After a few
minutes, Anat reasoned aloud: “If ORQM is a square, its diagonals FB and CD
must be perpendicular and equal.” Based on this observation, the MTs searched
for a proof that triangles CAD and FAB are congruent (Fig. 6). One of the MTs
proved this by a comparison of angles and segments. Congruence of the triangles
proved the equality of segments FB and CD. She then showed that the segments are
perpendicular by calculating the angles.
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ORQM is a square  
⇒ ΔRDQ ≅ ΔMAQ 
⇒ FD=2AM
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Proof that ORQM is a square 
Rotation of triangle CAD by 90o

transforms it into triangle FAB. 
⇒  CD and FB are equal and
perpendicular 

⇒ ORQM is a square 
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Fig. 6 A square inside

At this point Rachel demonstrated to MTs that rotation of triangle CAD by 90◦
transforms it into triangle FAB. Thus, CD moves to FB, and they are equal and
perpendicular. Rachel was familiar with this proof.

The group discussion again turned to such aspects of the five proofs as elegance,
clarity, applicability in the classroom, and the practicality of “spending time on dif-
ferent solutions” in the classroom. As usual, MTs had different preferences about
the implementation of MSTs in school, and different opinions about “which proof
is the most beautiful.”

Not Only the Proofs, Not Only at the Lesson

Note that Rachel learned geometry together with her students. First, three of the five
proofs presented at the lesson were unfamiliar to her, so these new proofs enriched
her knowledge, and Problem 1 expanded the collection of the multiple-solution tasks
with at least three solutions that she was compiling.

Reaching beyond the new proofs that she learned during the lesson, Rachel dis-
covered similarities between the two rotation-based proofs and the median-based
proofs. The parallelogram obtained in Proof 1.4 can be constructed using a strategy
of doubling the median (this time in triangle ADF), which was used in Proof 1.1.
Triangle LFD obtained in Proof 1.3 can be constructed using a strategy of doubling
the triangle (in this case DAF), which was used in Proof 1.2. Thus, the median in
triangle FAL is the midline in the doubled triangle LFD. Conversely, triangle APB,
created in Proof 2 (Fig. 4b) can be obtained by rotating triangle FAD by 90◦ about A.
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The lesson helped Rachel discover connections between different proving strategies,
between Euclidean and transformational geometry.

Furthermore, Rachel understood that “the squares do not depend on the given
triangles” and realized that a collection of new statements was proven in the course
of the lesson. These statements can be presented as an independent problem, and
their collection may be presented as a problem chain (Fig. 7).

Continuing to ponder the issue of the transformation of the given problem into a
new one, in which two squares with a common vertex are given (Fig. 7), led Rachel
to a new question: Does the mutual position of the two squares affect the regularities
observed? She used a dynamic geometry environment (Schwartz, Yerushalmy, &

If
ACGF and ABED are two squares with a common vertex A  

Then

1.  FB = CD and FB ⊥ CD  
2.  FD = 2AM and FD = 2AR  

where M and R are midpoints of the segments  
CB and FD correspondingly

3.  ROMQ is a square  
where O and Q are centers of squares ACGF and ABED correspondingly

4. Points ROMQ are on a circle with the center at J 
where J is the intersection point of OQ and RM 

4a.  OQ = RM, OQ ⊥ RM  
4b. OJ = JQ = RJ = JM 
5.  Triangles FAD and ABC can be obtained as: 

a.  two parts of a bigger triangle divided by  
     its median 
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 b.  pairs of not necessarily congruent small triangles obtained through the 
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Fig. 7 New facts (theorems)
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Does the mutual position of squares ACGF and ABED (see Figure 7)
affect the discovered regularities?

Fig. 8 A new question

Shternberg, 2000) to examine this question (Fig. 8). I leave this question open for
the readers to investigate and prove.

LTT as a Transformation of Solution Spaces for MSTs

To outline the LTT mechanisms associated with teaching MSTs, I use the construct
of solution1 spaces for MSTs (Leikin, 2007; Leikin & Levav-Waynberg, 2008;
Leikin, 2009). In Leikin (2007) I suggested considering solution spaces for MSTs
analogously with the metaphor of example spaces introduced by Watson and Mason
(2005) to describe example-generation processes. The following types of solution
spaces for MSTs are defined with respect to individuals or groups of individuals
solving a task:

An individual solution space is a set of solutions to a problem that an individual
provides. Depending on a person’s ability to produce solutions to an MST with or
without prompts, individual solution spaces are of two kinds: An available personal
solution space consists of solutions that a solver produces without help from others;
a potential personal solution space consists of solutions produced with the help of
others (cf. the concept of ZPD defined by Vygotsky, 1978). When the MTs solved
Problem 1 at home, Proofs 1.1 and 1.2 belonged to available individual solution
spaces for most of the teachers, whereas Proofs 1.3, 1.4, and 1.5 belonged to the
individual solution space of one teacher only.

An expert solution space of a problem is the most complete set of solutions
to a problem known at a given time. Collective solution spaces characterize solu-
tions produced by groups of participants, and they are manifest in the whole-group
discussions and written tests.

1Here a proof is a concrete type of a problem solution when the problem requires proving (like
Problem 1 in this paper).
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Solution spaces can also be characterized by their conventionality: Conventional
solutions appear in curriculum-based instructional materials (Proofs 1.1. and 1.2
are conventional proofs for Problem 1); unconventional solutions either are not
included in curriculum-based instructional materials (e.g., Proofs 1.3, 1.4, and 1.5
for Problem 1) or curriculum-based solutions applied in an unusual situation (not
typical for geometry problems). The conventionality of solution spaces is a useful
measure in evaluating the development of mathematical creativity.

When solving MSTs students rely on their individual solution spaces (indSS
in Fig. 9), which contribute to the creation of a collective solution space for the
MST. The dynamic nature of solution spaces (i.e., the possibility of transforming the
spaces) is a basic element of learning with MSTs (Fig. 9). The interaction between
individual and collective solution spaces enriches and expands individual solution
spaces to include more solutions, to involve more concepts and properties, and to
construct more mathematical connections.

Usually, at the moment when a teacher or teacher educator presents a MST to her
students the teacher solution space becomes one of the individual solution spaces
of the classroom community. Through interactions with students, during problem
solving, individual solution spaces (including the teacher’s solution space) can be
expanded.

I suggest that for a student whose individual solution space of a MST is com-
pleted by the collective solution space generated by the whole group of students,
some of the new solutions added to the student’s solution spaces belong to his/her

Fig. 9 The dynamic nature of solution spaces
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new potential solution space of this MST. In other words, additional solutions
presented in the classroom belong to the student’s ZPD.

At the same time, for the teacher, this shared solution space becomes the avail-
able individual solution space, serving in future as an expert solution space. Rachel’s
expert solution space for the task, described in the chapter, at the end of the les-
son was richer and more complete than at the beginning of the lesson. Her expert
solution space, constructed in the classroom as a shared individual solution space,
was enriched both by the learners’ solutions and by her own unplanned solutions
generated during the lesson.

Using Connecting Tasks to Promote Teachers’ Learning

In this section I present a study of a different kind. In this study we compared teacher
development through learning (in systematic mode) and through teaching (in craft
mode) (Leikin, 2003; Leikin & Levav-Waynberg, 2007, 2008). In the first year of the
study, the teachers learned to solve problems in different ways to become familiar
with MSTs and learn how to use them. In the second year teachers implemented
MSTs in their classrooms. The tailed methodology of this longitudinal investigation
carried out with a group of 12 secondary school MTs is described earlier in the
Methodology of LTT research section.

The teachers participated in three interviews: before the learning state (int-A),
after the learning and before the teaching stage (int-B), and after the teaching stage
(int-C). All interviews were identical in structure. The teachers were asked to solve
all the problems in as many different ways as possible. All the problems in the inter-
views were borrowed from algebra, geometry, and calculus textbooks. In the various
interviews, similar tasks were of the same level of difficulty and had an approx-
imately equal number of solutions in the expert solution spaces. The interviews
included problems of two types:

Conventional MSTs (CMSTs), problems with multiple solutions commonly
taught in school: a system of linear equations (int-A), a quadratic inequality (int-B),
and an absolute value inequality (int-C) (Fig. 10). All tasks required a compara-
ble number of solution stages of similar complexity. The school curriculum usually
requires multiple solutions to these problems (several algebraic and graphic solu-
tions). At the same time, all the tasks can be solved using symmetry considerations,
which are unconventional for both teachers and students.

Unconventional MSTs (UMSTs), problems that are usually solved according to
the school curriculum in a particular way. In each of the three interviews we included
a maxima-minima problem (Fig. 11), a word problem, and a geometry problem.
Maxima-minima problems were used as UMSTs since in school they were usually
assigned to calculus and solved using derivatives, and therefore all other solutions
for maxima-minima problems were unconventional. The word problems did not fit
any of the conventional categories usually introduced in schools, and were therefore
considered UMSTs. Geometry problems in regular classes are usually associated
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Fig. 11 Unconventional MST: maxima-minima problem

with a particular theorem used to solve the problem. Because teachers are usually
aware of this assignment, any additional solution to the problem can be considered
unconventional.

At the beginning of the intervention, when the teachers were asked to solve prob-
lems, they reproduced solutions prescribed by the curriculum, and the teachers’
solution spaces were mostly conventional. Naturally, they produced more solutions
for CMSTs than for UMSTs. In the course of teaching both individual and collective
solution spaces expanded, and half the individual spaces included unconventional



Learning Through Teaching Through the Lens of Multiple Solution Tasks 81

solutions. The growing numbers of solutions in both individual and collective solu-
tion spaces were due not only to the reproduction of solutions offered during the
course but also to the production of new ones. These findings demonstrate the impor-
tance of the teachers’ systematic learning for the development of their mathematical
knowledge.

LTT Depended on the Conventionality of the Tasks

Teaching experience was clearly reflected in the teachers’ individual and collective
solution spaces (see Fig. 12, and for a detailed description of the study see Leikin &
Levav-Waynberg, 2008). When MSTs belonged to topics that the teachers did not
teach during the year, their individual solution spaces were smaller than at the end of
the course in which teachers participated beforehand. When teachers taught topics
related to the MSTs, changes in teachers’ solution spaces during the third interview
depended on the conventionality of the tasks.

The number of solutions in the individual solution spaces for CMSTs either
remained unchanged or were reduced, whereas unconventional solutions disap-
peared from the teachers’ individual solution spaces. Analysis of the teachers’
lessons in which they implemented MSTs shows that topics related to the conven-
tional tasks were taught only by implementing conventional solution. Thus, teachers
preserved in their individual solution spaces only conventional solutions.

LTT related to UMSTs showed several tendencies depending on whether MSTs
were incorporated deliberately, belonged to topics being taught without deliberate
use of MSTs, or belonged to topics that were not being taught. For topics in which
MSTs were incorporated deliberately, solution spaces expanded. LTT began with
teachers searching for multiple solutions to the problems when planning the lessons.
For topics taught without incorporating connection tasks we did not observe changes
in the number of individual solution spaces, but as in the case of the conventional

Individual solution spaces Collective solution spacesNo. of solutions

Type of Task Total Unconventional Total Unconventional

Conventional task
taught according to the
curriculum  

Unchanged 
or decreased Disappeared Decreased Disappeared

Not taught Decreased Decreased Decreased Decreased
Taught 
according to 
curriculum

Unchanged Decreased Unchanged Decreased 

M
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-M
ax
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m

Taught as 
MST Increased Increased Increased Increased 

Geometry problem Increased Increased 

Fig. 12 LTT – Changes in solution spaces in the year of teaching MSTs
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MSTs, all the solution spaces become conventional. In these cases, the teachers did
not plan MSTs for the lessons and did not include multiple solutions as an integral
part of their teaching; unconventional solutions were never presented according to
students’ initiative. At the same time, as a result of awareness developed during
the systematic stage of intervention, teachers were attentive to student responses
and willing to discuss all the solutions that students provided during the lesson.
Consequently, the number of solutions in the teachers’ individual solution spaces
remained unchanged, but the spaces became conventional. At the same time, the
number of solutions in the collective spaces grew for all the unconventional MSTs,
as the individual solution spaces of these tasks were grounded in the teachers’
individual practice and differed from each other.

The number of solutions suggested by all teachers for geometry problems
increased when the teachers implemented MSTs. We relate this phenomena to our
finding that teachers became more attentive to student solutions, started collecting
them, and allowed students to “always present all the solutions they found” without
saying “this is good but we don’t have enough time for it.” We hypothesize that
this combination of awareness (Mason, 2002) and pedagogical flexibility (Leikin &
Dinur, 2007) enabled teachers to learn multiple solutions in geometry from their stu-
dents. The teachers’ practice in solving geometry problems in different ways made
their mathematical reasoning more flexible, freed them from “being locked” on the
first solution they found, and enabled them to search for different solutions to the
problems.

Finally, based on the comparison of changes in the solution spaces for the differ-
ent types of teaching experience (Fig. 9), I speculate that purposeful incorporation
of MSTs in teaching practice developed the teachers’ creativity because it was only
for tasks of this type that teachers provided unconventional solutions during int-C.

Conclusions

MSTs, LTT, and Didactic Situations

The teachers’ main task in the teaching process is the devolution of good tasks
to their students (Brousseau, 1997; Steinbring, 1998). To achieve this objective,
teachers create didactic situations in which students construct knowledge accord-
ing to the teachers’ aims. Among all didactic situations designed by teachers to
encourage the learners’ knowledge construction according to the teacher’s plan,
Brousseau (1997) distinguishes one that meets the conditions needed to promote
student learning regardless of the teacher, with the actions performed by students
depending entirely on the problem they must solve. In an a-didactic situation, stu-
dents are responsible for their learning progress. Based on this definition, MSTs
may be considered an effective tool for creating didactic and a-didactic situations.
When solving problems in different ways is an explicit objective of the mathematical
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activity, the situation is didactic with respect to the MST and a-didactic with respect
to the construction of mathematical connections by comparing different solutions to
the problems. The teachers’ choice of MSTs is usually directed at the construction
of the students’ mathematical knowledge in particular fields and of mathematical
connections between the fields. At the same time, an explicit requirement to pro-
duce multiple solutions encourages the students’ learning autonomy. Any a-didactic
situation has great potential for teacher LTT because it includes a variety of unpre-
dicted situations. Systematic implementation of MSTs by teachers usually allows
the creation of a-didactic (and sometimes non-didactic) situations, which form an
effective environment for teacher learning.

Leikin and Levav-Waynberg (2007) showed the complexity of implementing
MSTs in school and the gap that exists between theory-based recommendations
and school practice in the use of MSTs. Despite this gap, however, even when
not planning MSTs, teachers encounter various student solutions in their class-
rooms and learn from them. This tendency was apparent when teachers were asked
to present examples of problems that admit multiple solutions: We realized that
about half the examples of MSTs provided by teachers were student-generated.
The teachers’ ability to connect with student responses during the individual inter-
views served as an additional indication of the LTT process that takes place in
mathematics classrooms. I suggest that systematic implementation of MSTs inten-
sifies both student and teacher learning. Rachel’s case demonstrates that when
MSTs are part of the didactic contract, teachers learn in the classroom with their
students.

Leikin and Levav-Waynberg (2007) showed that teachers’ understanding of
mathematics and pedagogy within the community of practice is bounded by socially
constructed webs of beliefs that determine the teachers’ perception of what needs
to be done (Roth, 1998; Brown, Collins, & Duguid, 1989). Using MSTs in the
classroom is not a simple matter, and sometimes it is difficult because school math-
ematics is generally result-oriented and topic-centered (Schoenfeld, 1991). The
portion of the study presented in this chapter supports the claim that systematic
sources are a necessary but not sufficient component of teacher knowledge develop-
ment when incorporating changes in the school mathematics curriculum. To be able
to use didactic tools effectively (e.g., MSTs), teachers must communicate with the
communities of practitioners who use and value these tools and implement them in
their own practice (Brown et al., 1989).

Relationships Between Pedagogy and Mathematics in LTT

MSTs play a dual role in the studies described in this chapter. They are shown
to be an effective didactic tool that develop the connectedness of learners’ math-
ematical knowledge, their flexibility (and hence creativity), and problem-solving
expertise. At the same time MSTs are an effective research tool that enables the trac-
ing of the development of teachers’ knowledge through implementation of MSTs.
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As a research tool, MSTs demonstrated the mutual relationship between teachers’
mathematical and pedagogical knowledge (Fig. 1).

Implementation of MSTs requires teacher flexibility, i.e., lesson management that
respects student responses. The case of Rachel demonstrated her willingness to pro-
vide learners with autonomy in creating proofs for given MSTs, her ability to listen
to learners, discuss their proofs, and connect between them. These pedagogical skills
created opportunities for Rachel to learn new proofs and new connections, in other
words, to learn mathematics. The relationship between the teachers’ pedagogical
expertise and the development of their mathematical knowledge was also clear in
the second study. Teachers who purposefully implemented MSTs by requiring stu-
dents to provide their own solutions developed problem-solving expertise more than
teachers who did not implement MSTs purposefully.

At the same time, Rachel’s mathematical knowledge served as the basis for the
mathematical activity that she initiated. Her mathematical knowledge provided her
with the confidence to direct her lessons toward a variety of unpredicted mathemat-
ical directions based on ideas raised by the students. Her mathematical knowledge
also allowed her to identify MSTs with broad and rich (i.e., those that include uncon-
ventional solutions) solution spaces, reflect on learner solutions, and evaluate their
correctness and elegance. When proof 1.5 was presented during the lesson, Rachel
intuitively realized that a more elegant proof existed, asked the learners to provide a
shorter proof, and added her own to the classroom discussion. This proof was based
on her previous problem-solving experience and on the connection between the cur-
rent task and another mathematical problem solved earlier. As often, her learning
continued after the lesson. This learning was based on her mathematical knowledge,
her personal mathematical curiosity, and her attentiveness to students’ solutions and
ideas.
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Part II
Examples of Learning Through Teaching:

Pedagogical Mathematics

Interlude 1

Part I of this book provided a theoretical background on teachers’ learning through
teaching (LTT). However, it was not devoid of examples. In fact, the chapters by
Leikin, Mason, and Leikin and Zazkis, despite their focus on theoretical or method-
ological issues, provided numerous examples of teachers’ learning. Similarly, the
authors of chapters in Parts II and III, despite their focus on particular instances of
LTT, provide further theoretical and methodological considerations. They employ a
variety of theoretical perspectives as a lens for describing and analyzing examples
of learning through teaching.

As mentioned in the introduction to this volume, we found that distinguishing
between the mathematics and pedagogy that have been learned by a teacher through
teaching was extremely complex. We decided to address this complexity by using
the notions of mathematical pedagogy and pedagogical mathematics as introduced
by Mason (2007). In the chapter that opens Part II of this volume, Zazkis explic-
itly analyses the interrelationship between mathematics and pedagogy as used by
the teacher educator with the purpose of developing the mathematics and pedagogy
of prospective mathematics teachers. Zazkis demonstrates how the examination of
this interrelationship led to mathematical discoveries and didactical insights. The
theoretical framework employed in this chapter exemplifies the complexity of dis-
tinctions between mathematics and pedagogy that teachers learn and endorses the
use of Mason’s constructs – mathematical pedagogy and pedagogical mathematics –
in structuring our book.

The chapters in Part II focus on pedagogical mathematics; they describe particu-
lar cases of LTT and analyze the ways in which learning occurs.

Pedagogical Mathematics

Let us consider the particular examples presented by the authors.
For several teachers featured in these chapters, learning included solving a new

(for them) mathematical problem, or learning a new solution to a known problem,
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while connecting several mathematical ideas. Several examples of this kind are pre-
sented in Part I of this volume. Rachel, the teacher in Leikin’s chapter (in Part I),
learned a number of new solutions for a given problem in geometry. Consequently,
she extended her solution space – a notion introduced by Leikin to explain some
mechanisms of LTT and is exemplified by Rachel’s case. Moreover, Rachel contin-
ued her mathematical explorations, based on her lesson with prospective teachers,
and discovered new for herself mathematical facts. Shelly and Einat, the teachers in
Leikin and Zazkis’ chapter, connected calculus with mathematical induction, and a
conic section with maximum-minimum problems, respectively. In this same chap-
ter, based on a student’s inquiry, Eva extended a given “familiar” theorem to include
a special case of an isosceles triangle.

Rina (in Zazkis’ chapter) learned a new theorem related to invariances in affine
transformations. Michael, the teacher in Kieran and Guzman’s study, acquired a new
student-generated solution to the task of proving that (x+1) is always a factor of
xn-1. Students’ proofs also expanded Michael’s solution space. Marcelo and Rubia
(in Borba and Zulatto’s chapter) developed a new explanation that distinguishes
the “look-alike” conic sections of parabola and half-hyperbola. They also designed
a technology-based illustration of their explanation. Ms. Alley and Ms. Lewis (in
Markus and Chazan’s study) enhanced their own knowledge of equations in two
variables as they explored this mathematical content for teaching.

Jackiw and Sinclair provide a very unique perspective on learning mathemat-
ics. In their study, learning mathematics involves learning mathematical discourse,
where the computer plays the role of the traditional student and the teacher’s role is
given to the hypothetical user-learner of the computer software, which can be either
a teacher or a student.

In all these examples of enhanced mathematical knowledge, learning mathe-
matics followed critical pedagogical events: a repeated mistake of students (Zazkis),
an unexpected feedback from software (Jackiw & Sinclair), learners’ questions or
suggestions (Leikin & Zazkis, Leikin, and Borba & Zulatto), and acknowledgement
of students’ difficulty and a search for ways to help students build their mathematical
understanding of the algebra (Markus & Chazan). Implementation of technologi-
cal tools that allowed learners to engage in mathematical explorations (Kieran &
Guzman and Borba & Zulatto) seems to intensify teachers’ learning of mathemat-
ics. Moreover, we see in researchers’ reports (e.g., Kieran & Guzman and Marcus
& Chazan) and self-reports (e.g., Zazkis and Borba & Zulatto) that teachers’ learn-
ing not only followed but also resulted in new pedagogical approaches, activities, or
explanations. That is to say, the newly-learned mathematical content became a part
of these teachers’ pedagogical repertoire.

By considering the examples mentioned above as examples of pedagogical math-
ematics, we are extending Mason’s definition. (Recall: “Pedagogical mathematics
involves mathematical explorations useful for, and arising from, pedagogical con-
siderations”). These examples indeed arise from pedagogical considerations, even
when these considerations are not mentioned explicitly. They are triggered by inter-
actions with students, the desire to accommodate students’ ideas and queries, as
well as the flexibility in doing so. However, we see “explorations” as only one
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of several indicators of pedagogical mathematics. Other indicators include math-
ematical problem posing, enriching solution spaces of a mathematical problem,
extending the repertoire of explanations, reinforcing mathematical discourse, and
fostering mathematical connections. These examples also demonstrate strength in
teachers’ prior mathematical knowledge. This strength is essential in developing
and accommodating new ideas and, as such, is essential in developing pedagogical
mathematics.

To summarize, in our view, pedagogical mathematics involves a broad range of
mathematical objects, actions, activities, and tools constructed in a pedagogical con-
text and useful in teaching. The chapters in Part II instantiate teachers’ learning of
mathematics through their own teaching, where all notions – teachers, mathematics,
and teaching – are interpreted broadly.
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What Have I Learned: Mathematical
Insights and Pedagogical Implications

Rina Zazkis

I cherish the rare opportunity, presented to me in writing this chapter, to reflect
on some of my personal learning. As teachers, we often learn by trial and error or
by mimicking good examples, and seldom are we explicitly aware of a personal
learning that took place. Successful experiences become parts of our instructional
repertoire and after years it is impossible to determine how a specific mathematical
issue or a specific pedagogical strategy was acquired. We learn to anticipate stu-
dents’ questions, their difficulties and their errors, and then teaching, or navigating
learning, resembles a walk on a familiar trail, where sharp turns or other obstacles
are either anticipated or avoided.

However, there are some memorable experiences in teaching that shake the rou-
tine. Those are the encounters that were not anticipated. Those are experiences that
compel us to reconsider or extend our practice, develop a new method or a new
assignment, redesign instructional sequence or approach, or, in short, help us learn.

For example, several years ago, following a student’s question on why the divis-
ibility test for 7 ‘works’, I have not only proved it, but also developed similar tests
for (almost) any number (Zazkis, 1999). Of course, these tests are part of the shared
knowledge of the community, and I could have learned them in other ways, but it
was the student’s curiosity that triggered my learning. In what follows, I share with
the reader several such “critical incidents” in teaching that equipped me with new
knowledge. As will be clear from the descriptions below, I treat “teaching” rather
broadly, where it includes “formal” presentation of the material, as well as issues
surrounding in-class interaction with students, attending to students’ written work,
preparing a lesson or an activity, responding to students’ questions, choosing and
assigning tasks, among others.

R. Zazkis (B)
Simon Fraser University, Burnaby, BC, Canada
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Disaggregated Perspective on Learning

A large part of my teaching is within a teacher education program, where we pursue
a dual task: To enhance students’ mathematical powers and to highlight and exem-
plify issues pertaining to the pedagogy of mathematics. In Liljedahl, Chernoff, and
Zazkis (2007) we illustrated the way of examining the use of tasks in teacher educa-
tion with a 2×2 array, presented in Fig. 1. We suggested reading the content of the
four cells as the “The use of x to promote understanding of Y.”

We acknowledged that “we use our knowledge of mathematics and pedagogy
to produce understanding of mathematics and pedagogy within our prospective
teachers” (p. 240). The suggested array served to disaggregate “our knowledge
of mathematics and use of pedagogy from the mathematical and pedagogical
understandings we wish to instill within our students” (ibid.).

I find this array helpful in organizing my personal reflection on learning through
teaching and sharing my stories. Because the issue here is that of a personal learn-
ing, rather than task development, the interpretation of the cells should be slightly
changed to read “I learned x and I use it to promote students’ understanding of Y”
or “I learned how to use x to promote students’ understanding of Y.”

pM: As a result of instructional interaction I developed a pedagogical approach
and I use it to enhance students’ mathematics. In particular, I report on classroom
conversations pertaining to a horizontal translation of parabola that inspired for-
mal research and development of an untraditional instructional approach, unraveling
some of the mystifying nature of transformations.

mM: As a result of teaching, I learned some new (to me) mathematics and I use it
to develop students’ mathematics. In particular, I share my puzzlement with some of
the solutions that students provided when asked to use Affine coordinates to prove
geometric statements, my making sense of their incorrect approaches that resulted
in correct conclusions, and my attempt to turn this experience into an instructional
task.

mP: As a result of teaching and facing unexpected students’ difficulties, I devel-
oped a mathematical approach that can be seen as exemplification of a general
pedagogy. In particular, I remind the reader of a classical puzzle of “the missing
dollar” and suggest a mathematical variation that not only demystifies the situation,
but also serves to equip students with a powerful strategy for some of their future
endeavors.
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Fig. 1 Goals and usage grid
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pP – This cell overshadows almost all the activities in teacher education.
However, since it leaves mathematics in the background, I leave it out of scope
of this chapter.

Story 1: Counterintuitive Translation of Parabola (pM)

In teaching a “methods” course I frequently attend to questions that ask “How would
you explain this or that to a student?” For example, how would you explain division
by zero? How would you explain to students that a0 = 1? How do you explain to
students the multiplication of negative numbers?

Rather often, these and similar questions are presented by teachers, both prac-
ticing and prospective, and I use them as an opportunity to provoke conversation.
I often turn these questions back to the class in order to gather different ideas and
a variety of possible explanations, either before or instead of presenting my own.
Teachers know the facts, or the so-called rules, but they do not necessarily under-
stand the logic behind the facts. As such, prospective teachers’ questions of “how
to explain to students” are, in fact, a disguised question of “how do you make sense
of ” and a masqueraded plea, “help me make sense.”

In one of those “how to explain to students” conversations the following question
was posed: “How do you explain that parabola y=(x–3)2 moves right rather than
left?” What was meant by “parabola’s move” was the location of y=(x–3)2 with
respect to the canonical graph of the parabola y=x2. As a habit, before offering
any explanation of my own, I referred the question to the class, gathering possible
explanations that teachers can offer.

Different explanations were offered and various sources of discomfort were
voiced by teachers. What appeared confusing was that the vertical translation of
quadratics behaved “as expected,” that is, the function y=x2–3 “moved down,”
relative to y=x2. This further was in accord with the expected behavior of linear
function, where y=x–3 also moved 3 units down. On the other hand, the behavior of
horizontal translation was described as “strange,” “unexpected,” and “counterintu-
itive.” It was further noted that “unexpected” was only the initial reaction for many
teachers, but there was a sufficient amount of combined experience in the room to
“know what to expect.”

Among various explanations to the phenomenon that were offered none was
really convincing. The “problem” of horizontal translation is known in mathemat-
ics education research (Baker, Hemenway, & Trigueros, 2000; Borba & Confrey,
1996; Eisenberg & Dreyfus, 1994), however, it did not attract my interest until I
experienced personal dissatisfaction with the explanations provided by teachers. As
such, I initiated a more formal data collection, exploring a range of explanations
provided by high school students and teachers, both practicing and prospective. A
detailed account of these data is found in Zazkis, Liljedahl, and Gadowsky (2003).
To provoke a conversation about horizontal translation of a parabola, participants
were asked first to sketch the graphs of y=x2 and y=(x–3)2 on the same coordinate
system, and then to explain the transformation.
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All the teachers participating in this study have sketched the graph of y=(x–3)2

correctly. For the practicing teachers it was an immediate and effortless recall from
memory, the way one would recall, rather than derive, a basic multiplication fact.
However, the prospective teachers needed a few minutes of thinking and check-
ing. It was evident that for some prospective teachers the horizontal translation of a
parabola was not in their immediate repertoire of knowledge, but the location of the
graph was derived correctly and without major effort.

Teachers’ Explanations

While students responding to the same task had a similar tendency to rely on
memorized rules, there was a considerable variety in teachers’ responses to the
interviewer’s follow-up request to explain the movement of the parabola. The expla-
nations of prospective teachers did not differ in content or in assortment from those
provided by practicing teachers. However, when prompted by the interviewer, the
majority of practicing teachers were able to provide more than one explanation. A
brief summary of their responses, organized by the themes emerging in teachers’
explanations, is presented below.

Citing Rules

A majority of the interviewed teachers referred to the “rule of horizontal transla-
tion.” According to this “rule,” y=(x–3)2 has the same shape as y=x2 but is located
3 units to the right.

To reinforce memorization and to explain function translation to their students
several practicing teachers have formulated “the law of opposites.” They indicated
that having “the law” helped their students in “getting it right.” This of course raises
issues on the purposes and values of mathematics education. If the purpose is to
“get it right” on an exam, then introducing such a law has its merit. However, if
the purpose is to teach mathematical thinking, then the creation of such a law jeop-
ardizes the consistency of mathematical structure and directs students’ attention to
memorization rather than to explanation.

Pointwise Approach

Plugging numbers into the equation, creating a table of values, and then plotting the
points seemed more convincing for some teachers than simply accepting what the
computer or graphing calculator was showing. These teachers explained that they
saw advantage in using the point-by-point creation of y=(x–3)2 as an explanatory
tool for their students. Interestingly though, a pointwise approach was not men-
tioned by any of the students. It appears that the utility and availability of graphing
calculators and the lack of extensive experience with creating graphs manually, point
by point, influences students’ perception of graphs and suggests that the perceived
convincing power of teachers’ explanations needs to be reexamined.
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Attending to Zero and “Making Up”

Another common explanation, suggested by the participating teachers was to find
the zero (x=3), or the vertex, of the parabola and imply that the rest of the points are
“symmetrically determined” around it. Those teachers were prompted to explain
in what way the location of zero would determine the location of the rest of the
points. In most cases, preservation of shape and symmetry were put forward as
justifications.

Transforming Axes

Additional explanation provided by a few teachers considered transformation of
axes rather than transformation of a graph. These participants convinced themselves
that (x–3) actually meant moving the Y-axis to the left, and, therefore, the parabola
“looked as if ” it moved to the right.

Search for Consistency

The standard form in which the parabola is discussed in the local curriculum guide
and conventional textbooks is (y–k) = a(x–h)2. It is stated that the value of k deter-
mines the size of the vertical translation, while the value of h determines the size of
the horizontal translation. However, the direction of the translation is omitted.

A repeated tendency of practicing teachers, likely influenced by this general
form, was to have their students consider the parabola y=x2−3 as y+3=x2. In
this representation “adding 3 to y” results in a vertical translation in the negative
(downward) direction. This view helps in achieving consistency with the horizontal
translation, but does not provide an adequate explanation for the move of the graph
in the “opposite” (that is, inconsistent with the initial expectation) direction.

In summary, teachers provided a variety of explanations, the most common of
which were citing the rules, considering the function pointwise, and attending to the
zero of the function. Most teachers were not completely satisfied with their expla-
nations, but claimed to “have never seen a better one.” As previously mentioned,
there was no significant difference between practicing and preservice teachers in
their explanations of the translation. However, preservice teachers’ responses dif-
fered from the responses of practicing teachers on two accounts. The first is the
ease of recall, acknowledged early in this section. Automatic and fluent retrieval is
considered to be one of the indicators of expert knowledge (Bransford, Brown, &
Cocking, 2000), and therefore, it is not surprising that practicing teachers exhibited
better expertise in the subject matter they taught than preservice teachers. Second, as
expected by assuming expertise not only in content but also in pedagogical content
knowledge, practicing teachers had a better understanding of the perceived incon-
sistency and of the problematics that a horizontal translation presents to a learner.
As a result, they had developed a larger repertoire of explanations as to why the
horizontal translation of a function “behaves” as it does.
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Pedagogical Approach: Rerouting

While analyzing teachers’ explanations, I came up with the scary realization that
I did not have myself an explanation with which I was totally satisfied. In an
attempt to develop such an explanation, I concluded that the difficulty learners have
in understanding horizontal transformations of a function is a consequence of the
instructional sequence in which the treatment of transformations of functions is
presented. That is, transformations of functions, in general, and of quadratics, in par-
ticular, are usually presented in the curricula in the context of exploring functions,
rather than in the context of exploring transformations. I suggest that presenting the
discussion of translations of functions in the context of transformations may prevent
the problem of perceived inconsistency and counterintuitive behavior of functions.
In fact, the context for transformations is present in many curricular sequences. For
example, to “apply transformations and use symmetry to analyze mathematical situ-
ations” is one of the Geometry standards identified by the NCTM for K-12 (NCTM,
2000). Following a progressive sequence for students in different grades, NCTM
outlines the following expectation for upper grades:

understand and represent translations, reflections, rotations and dilations of objects in the
plane by using sketches, coordinates, vectors, function notation and matrices (Grades 9–12),
(p. 308).

It is the function notation briefly mentioned by the NCTM in the Geometry
standard for Grades 9–12 that I wish to focus on here. In what follows my main
focus is on translations, however, a similar approach can be extended to other
transformations as well.

Translation on a Coordinate Plane

Translation on a plane is defined by a vector (or directed segment) that specifies the
direction of the motion and the distance. Breaking this motion into its horizontal
and vertical components leads to the natural introduction of the formal notation for
translation

(x, y) ⇒ (x + a, y + b) or T((x, y)) = (x + a, y + b),

where a and b are horizontal and vertical components of the motion, respectively.
This function notation for a transformation is often referred to as a mapping rule.
Figure 2 illustrates the effect of T((x,y)) = (x+5, y–3) on a set of points in a triangle;
A’B’C’ (on the right) is the image of ABC.

Once function notation is introduced, students should be given ample opportu-
nity to connect the visual image of translation to the mapping rule. This is achieved
by carrying out transformations according to given mappings as well as by identify-
ing mappings according to given visual images. Specifically, students will identify
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Fig. 2 T((x,y)) = (x+5, y–3)
applied on a triangle ABC

positive and negative values of “a” with motion to the right or to the left, respec-
tively; positive and negative values of “b” with motion up and down, respectively.
Furthermore, they will associate the strict horizontal motion with b=0 and strict
vertical motion with a=0.

Since any set of points can be translated according to the mapping rule, this set
of points can be a parabola. This is the focus of the next section.

Translating a Parabola

As mentioned above, I wish to situate the discussion of transformations of func-
tions in the context of transformations. Let us start by exploring a translation of a
parabola y=x2. Given the experiences described in the previous section, students
understand that T((x,y)) = (x+3, y) represents a horizontal translation by 3 units to
the right. Now restrict the set of points (x, y) to a canonical parabola and apply T
to it. Figure 3 illustrates the effect of T((x,y)) = (x+3, y) on a set of points of the
canonical parabola; the image appears to the right of the pre-image.

The task now becomes connecting the translation image to its algebraic repre-
sentation. Recall that the set of points of the source is described by y=x2. Without
loss of generality, focus on a point (a, b) of the source set that was translated to
the point (c, d) of the image set. According to the specific translation performed,
d=b and c=a+3. We wish to connect c and d in an equation. Relating c to d
we obtain the following: d=b; c=a+3 which implies a=c–3. However, b= a2,
as (a, b) is a point on the source parabola. Substitution leads to d=(c–3)2. Since
the above is true for every point of the image set, the image of the translation is
described by the equation y=(x–3)2. (Of course, one can work directly with x’s
and y’s, but switching to a’s, b’s, c’s and d’s , can be easier for students). This
explains the “unexpected” appearance of “–3” in the horizontal translation to the
right.

This method can be also used for transformations that are not “counterintu-
itive” or “problematic.” Consider the same approach applied to a vertical translation
T((x,y)) = (x, y+3). Focus on a point (a, b) of the source that is translated to point
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Fig. 3 T((x,y)) = (x+3, y)
applied on the canonical
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(c, d ) of the image (Fig. 4). In this case a=c and d=b+3. Points of the source satisfy
b=a2. Therefore, d = b+3 = a2 + 3 = c2 + 3. Since this is true for any point on the
image, the set of image points is described by y = x 2 + 3, as expected. Figure 4 illus-
trates the effect of T((x,y)) = (x, y+3) on a set of points of the canonical parabola;
the image appears above the pre-image.
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Fig. 4 T((x,y)) = (x, y+3) applied on the canonical parabola
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“Waw” – is the usual reaction of teachers once this approach is presented. This
exclamation is accompanied with reactions like, “finally this makes sense” or “Why
didn’t they explain this before?” Who the mysterious “they” are is not elaborated
upon.

Returning to the discussion on learning through teaching, and the 4-cell matrix,
the above example illustrates the didactical approach I developed in order to
reinforce teachers’ mathematical connections (pM). Of course, consideration of a
geometric transformation as a starting point is not limited to translations. It is desir-
able for students and teachers alike to explore a variety of transformations, making
a connection between the conventional definition of a transformation and its effect
on specific sets of points on the plane. Such sets could be simple geometric shapes
in the initial stages of exploration and graphs of specific functions or relationships
in later stages.

Searching for Consistency Again: Illusion in a Linear Transformation

It was mentioned above that by attending to the general form of parabola and
seeing y=x2–3 as y+3=x2 some learners achieved consistency within initially
counterintuitive transformations. That is, “adding 3” to y results in a down-
ward transformation, while “adding 3” to x results on a horizontal transformation
“left,” while the direction associated with addition is a positive one, upward, and
right.

The question remains, what about linear functions? Everyone was indoctrinated
to the idea that y=x–3 “moves down” in relation to y=x. But does it? A serious
scrutiny of this idea will detect an inconsistency on two counts. First, a change
in “x” is expected to result in a horizontal translation, not a vertical one. Second,
following the detailed discussion connecting translations to the function notation,
there is a new expectation that “subtracting” should result in a move in the positive
direction.

The consistency can be achieved in two ways. First, y=x–3 can be seen as
y+3 = x. With this view the consistency is achieved: The translation is vertical, as
expected with manipulating “y” and the direction is negative, as expected with “+3.”
The second view requires imagination. In fact, what we are used to seeing as a move
down can also be seen as a move to the right, as shown in Fig. 5. The consideration
of the graph of a line as a whole, rather than pointwise, disguises the possibility of
such an interpretation. However, this ensures a complete consistency with the per-
ceived counterintuitive translation of a parabola: Substituting “x–3” in place of “x”
results in a horizontal move in the positive direction.

What have I learned in this experience? I have developed an answer to “How
do you explain that (x–3)2 moves right rather than left?” To address this question
I learned to explicate a mathematical connection by the means of a new instruc-
tional sequence. This mathematical connection resulted in a pedagogical strategy
and a didactical sequence designed to support students’ and teachers’ mathematics
(pM).
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Fig. 5 Considering g(x) = x–3 with respect to f(x) = x

Story 2: Geometry with Affine Coordinates (mM)

In a problem solving class I often introduce students to Affine coordinates, as a
means to extend their notion of coordinate system and also as a tool for some proofs
in geometry.

Affine Coordinates: An Introduction

The familiar Cartesian coordinate system is an orthogonal homogeneous system,
that is, on a plane it is defined by a choice of two perpendicular lines, of a posi-
tive direction on each line and of a unit that is equal on both lines. This coordinate
system induces one-to-one correspondence between ordered pairs of real numbers
and points on the plane. However, the Cartesian system of coordinates is only
one particular example of Affine coordinates, which can be neither orthogonal nor
homogeneous. Affine coordinate system is defined on a plane by any three non-
collinear points (O, I, J). Lines OI and OJ establish two axes intersecting at the
point of origin O, the directed segments OI and OJ determine the positive direction
and a unit on each one of the axes (Fehr, Fey, & Hill, 1973). Coordinates of a point
on a plane are found by parallel projection, that is, by drawing parallel lines to the
axes through this point, and noting points of intersection of these lines with the axes
(Fig. 6).

Among the first tasks presented to teachers when introducing an Affine coor-
dinate system is to assign a correspondence between points on a plane and their
coordinates. But even this simple task is challenging at first to individuals “stuck”
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Fig. 6 Determining coordinates of a point in an Affine plane

in the Cartesian plane. For example, in describing how to find the coordinates of a
point on a plane, many teachers attempt to “draw a perpendicular from the point to
the axes.” Of course, this description is valid only when the axes are orthogonal.
Facing the limitations of this description, and striving for an appropriate one, can
be a starting point for a proof that within an Affine system of coordinates, every
point on a plane has a unique representation as an ordered pair of numbers and vice
versa.

After becoming familiar with plotting points and assigning coordinates, teach-
ers attend to graphs of polynomial functions of the first degree, or so-called linear
equations. This may be a good opportunity to reconsider their knowledge of linear
equations plotted with the Cartesian coordinates and to explore what holds for any
Affine coordinate system. Possible questions to be considered are the following:
What is defined by parameters m and b in y=mx+b? Do two lines have a unique
point of intersection? Does the graph of y=x form a 45 degrees angle with the posi-
tive direction of the X-axis? If not, how can this angle be determined? What predicts
how steep the slope is?

Exploring Medians

One basic notion that invites re-examination with the help of Affine coordinates is
that of length. In my teaching I asked teachers to prove the well-known theorem
about the medians of a triangle by using the sides of a triangle to assign the system
of Affine coordinates (see Fig. 7). The theorem states that (a) the three medians
intersect at one point and (b) the ratio of the two segments on the median determined
by this point is 2:1.

Embedding the triangle in an Affine coordinate system, as shown in Fig. 7, the
equations of the three lines are given by the following:
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Fig. 7 Medians in a
triangle ABC

AL: y = x,
BM: y = −1/2 x + 3,
CK: y = −2x + 6.

And the intersection point of each pair of these lines is calculated to be (2, 2).
This completes the proof of (a).

Considering (b), after calculating the coordinates of the intersection Q, teachers
had to prove that AQ:QL = BQ:QM = CQ:QK = 2:1. Surprisingly or not, most

teachers used the “distance formula”
(

d = √
(x1 − x2)2 + (y1 − y2)2

)
to determine

the lengths of the segments.
For example,

CQ = √
(0 − 2)2 + (6 − 2)2 = √

4 + 16 = √
20 = 2

√
5,

QK = √
(2 − 3)2 + (2 − 0)2 = √

1 + 4 = √
5,

CQ : QK = 2:1
or

BQ = √
(6 − 2)2 + (0 − 2)2 = √

16 + 4 = √
20 = 2

√
5,

QM = √
(2 − 0)2 + (2 − 3)2 = √

4 + 1 = √
5,

BQ : QM = 2:1.

These calculations led to an exciting conversation of the origins of the formula, its
scope of applicability, and of the notion of “length,” in general. In this particular
case the unit of length is determined only with reference to the particular axis, and,
therefore, there cannot be a numerical assignment to the length of a given segment.
Nevertheless, comparison of lengths in terms of ratios is possible by attending to
the difference in X- and Y- coordinates, respectively. In students’ solutions a correct
statement was proven using an incorrect method. However, why did this “work”? –
this question puzzled me.

I was aware that the proof presented above related only to a particular case of
an isosceles right angle triangle in which the equal sides are located on the X and Y
axes. Why was this relationship of lengths preserved? I was further perplexed facing
an unexpected solution to a more difficult problem, presented in the next section.
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Exploring Tridians

Problem Similarly to a median, we define a tridian as a segment that connects a vertex of
a triangle to a point on the opposite side that marks 1/3 of the side’s length. As shown in
Fig. 8, BX, BY, AW, AZ, CS and CT are tridians in a triangle ABC. Tridians generate all
kinds of interesting relationships at various points of intersection. They also generate inter-
esting relationships of various areas they cut. With the help of the Geometer’s Sketchpad,
make several conjectures about tridians in a triangle. Formulate and prove several of your
conjectures. In particular, prove that Area (KLM) : Area (ABC) = 1:7

Again, I asked students to develop their proofs relying on Affine coordinates.
However, a frequent inappropriate solution was to calculate the lengths of the sides
of the two triangles using the above mentioned “distance formula”, and then use
Heron’s formula1 to calculate the areas of triangles. Because of repeated approxi-
mations in the use of square roots, this solution did not result in a “clean” ratio, but
offered a reasonable approximation.

Unhappy with these approximations, Isaac, one of the best students in class,
suggested the following:

To avoid calculations with fractions, and without loss of generality, the following
coordinates were assigned: A(0,0) B (0, 21) and C (21,0). The equations of the lines,
based on the pairs of points, were calculated and points of intersection were found:
K(3,12) L(6,3) M(12,6).

Until this point the solution proceeded as expected, correctly involving the use of
Affine coordinates. But then Isaac used the following formula, that he recalled from
his Linear Algebra class, to determine the areas of the triangles:

If vertex A is located at the origin (0, 0), and the coordinates of the other two
vertices are given by B = (xb , yb) and C = (xc, yc), then the area S can be computed
as 1/2 times the absolute value of the determinant

M
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Y

X

T

S

ZW
C

A

 
Fig. 8 Trideans in a
triangle ABC

1For a triangle with sides a, b, c, the area A is determined by A = √
s(s − a)(s − b)(s − c), where

s is a semiperimeter of the triangle, s = a+b+c
2 .
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Area (ABC) = 1

2

∣∣∣∣det

(
xb x
yb yc

)∣∣∣∣ = 1

2
|xbyc − xcyb| .

Further, for three general vertices, the equation is as given below:

Area (ABC) = 1

2

∣∣∣∣∣∣∣
det

⎛
⎜⎝

xa xb xc

ya yb yc

1 1 1

⎞
⎟⎠

∣∣∣∣∣∣∣
= 1

2
|(xc − xa)(yb − ya) − (xb − xa)(yc − ya)| .

Applying these formulas to the triangles ABC and KLM (as labeled in Fig. 8),
Isaac drew the following conclusion:

Area (ABC) = 1
2 |21

2| = 220.5,

Area (KLM) = 1
2 |(12 − 3)(3 − 12) − (6 − 3)(6 − 12)| = 1

2 | − 81 + 18|
= 1

2 × 63 = 31.5,
31.5 × 7 = 220.5, therefore, KLM:ABC = 1:7
QED.

Though the use of tools from Linear Algebra was commendable, the method,
though leading towards a correct ratio, was obviously wrong. The formulas that
Isaac applied are based on the Cartesian coordinates and are not applicable in
case of general Affine coordinates. In fact, similarly to the case of medians, Isaac
proved one specific case of isosceles right angle triangles (derived by interpreting
the coordinates of ABC in the Cartesian plane), but not the general case.

As mentioned above, I wondered why solutions for the specific cases, inappropri-
ately provided by students, determined correct relationships for the general case. I
turned to books and found help from no one other than Archimedes himself! Indeed,
he did a lot of mathematics besides cry Eureka! (Stein, 1999) I learned that the
general affine mapping is described as

x’ = ax + by + e
y’ = ax + dy + f .

In this sense, the transformation of Cartesian coordinates to Affine coordinates
can be considered as an Affine mapping. Though lengths are not preserved in an
Affine mapping, the mapping magnifies parallel line segments by the same factor
and as such preserves the ratios of parallel line segments. Further, an Affine map-
ping does not preserve areas, but it preserves ratios of areas. This property is best
illustrated by transforming the grid of squares to the grid of parallelograms (See
Fig. 9). The idea that each one of the squares, that can be made as small as neces-
sary, corresponds to similar parallelograms is the intuitive basis for the preservation
of the ratio of areas.

More formally, adopting the proof from Stein (1999) the mapping given by

T(x,y) = (ax + by + e, cx + dy + f ) magnifies areas by |ad−bc|
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Fig. 9 Intuitive view of an
Affine transformation

This is shown by considering a triangle PQR, with Cartesian vertices P(0,0)
Q(1,0) R (0,1) that is transformed by T to triangle P’Q’R’ with vertices P’(e,f )
Q’(a+e, c+f ) R’(b+e, d+f ).

The area of the triangle P’Q’R’ is given by considering the difference between
the area of rectangle with sides a and d and the 3 triangles that complete P’Q’R’ to
this rectangle, as shown in Fig. 10.

As such, Area (P’Q’R’) = ad − [1/2 ac + 1/2bd + 1/2(a−b)(b−c)] =
=ad − [1/2 ad + 1/2bc] = (ad−bc)/2.

The area of PQR is 1/2, therefore, comparing the areas of PQR and P’Q’R’, the
magnifying factor of T for areas is (ad-bc). This explains why the ratios proved by
students hold in a general case, despite inappropriately invoking tools that assume
Cartesian coordinates.
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X

Y
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R' 

P'(e,f)

R' (b+e, d+f)

Q'(a+e, c+f)

Fig. 10 Image of an Affine transformation of a triangle
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What have I learned in this experience? To make sense of students’ unanticipated
errors I learned a new (to me) chapter in mathematics. The question that puzzled me
I turn now to my students, and use my newly acquired mathematical knowledge to
support theirs (mM).

Story 3 – Bellboy and the Missing Dollar (mP)

The “missing dollar riddle” or “missing dollar paradox” is a famous brain teaser
that appears in a variety of published collection of mathematical puzzles. The riddle
begins with the story of three men who check into a hotel. The cost of their room,
they are told, is $30. So, they each contribute $10 and go upstairs. Later the manager
realizes that he has overcharged the men and that the actual cost should have been
only $25. The manager promptly sends the bellboy upstairs to return the extra $5 to
the men. The bellboy, however, decides to cheat the men and pockets $2 for himself
and returns $1 to each of the men. As a result, each man has now paid $9 to stay in
the room (3 × $9 = $27) and the bellboy has pocketed $2 ($27 + $2 = $29). The
men initially paid $30, so the question is where is the missing dollar?

Another version of this riddle changes the scene and the players – three ladies go
to a restaurant for a meal. They receive a bill for $30. They each put $10 on the table,
which the waiter collects and takes to the till. The cashier informs the waiter that
the bill should only have been for $25 and returns $5 to the waiter in $1 coins. On
the way back to the table the waiter realizes that he cannot divide the coins equally
between the ladies. As they did not know the total of the revised bill, he decides to
put $2 in his own pocket and to give each of the ladies $1. Now that each lady has
been given a dollar back, each of the ladies has paid $9. Three times 9 is 27. The
waiter has $2 in his pocket. Two plus 27 is 29. The ladies originally handed over
$30. Where is the missing dollar?

The setting, the characters, and the currency involved is being altered depending
on the setting in which the story is presented. What remains invariant are the num-
bers – and the numbers are problematic in their compatibility. That is to say, the
incorrect calculation brings us very close ($29) to the given initial value ($30), and
that is where the problem, and the perceived paradox, lies. A variety of experts on a
variety of websites and forum discussions have tried to explain the miscalculation.
The paradox in the aforementioned situations is created by adding the $2 pocketed
by the waiter or the bellboy to the $27 paid by the ladies or the men. Adding these
two amounts does not answer any question. However, subtracting 2 from the 27
answers the question of how much was actually received as payment by the cashier
or the receptionist at the hotel desk.

In my experience the above explanation, or others similar to it, do not “work.”
They are met by students with a degree of resistance. Even when accepting the
“proper” way of thinking about the problem, people are still puzzled with why
“the other” way creates a paradox. The essence of the puzzle lies with the differ-
ence between the $29 that the story mentions and the desired initial $30, and so the
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search for the missing dollar continues. This is why the puzzle has survived for so
many generations and, most likely, will continue to intrigue curious minds for many
generations to come.

Pedagogical Approach Via Mathematical Variation

My students, prospective teachers, wondered how the puzzle can be best explained
to students, identifying in their questions personal unease with the situation. I sought
a way to offer an explanation that would be more accessible for students and teachers
alike. Unlike other explanations, which stay with the story, I decided to alter the
story not by introducing an alternative setting, but by implementing a numerical
change. That is, I offered a different story – that keeps the same story plot, but uses
different numbers.

Let us say the room cost only $20 and the bellboy was sent to return $10 to the
men. For simplicity of division, he pocketed $1 and returned $3 to each of the men.
In this situation the men paid $7 each, for the total of $21. The bellboy has $1.
Adding the actual payment to the one pocketed dollar gives us $22. Would it make
sense to suggest, starting with the initial collection of $30, that $8 is missing?

And if this is not convincing enough, it is possible to change the numbers in
the story once again, giving the men a “Stay with us for 1/3 the price” coupon and
sending the bellboy to return to them $20. By now, knowing the bellboy’s desire for
a simple and fair division, we have him pocket $2 and return $18 to the men, $6
each. In this situation the men paid $4 each, for a total of $12. The bellboy has $2.
Adding the actual payment to the 2 pocketed dollars gives us $14. Would it make
sense to suggest, starting with the initial collection of $30, that $16 are missing?

Varying numbers, whether large or small, helps in making sense of the situa-
tion. Numerical variation of the story could be more convincing than any attempt to
explain the original one. The absurdity of the missing dollar in the original situa-
tion is brought to surface when we establish the general structure of adding the paid
amount to the pocketed amount. If the general structure of “missing money” makes
no sense, then neither does its specific example of the “missing dollar.”

I suggest that dealing with the arithmetic of the specific puzzle introduces teach-
ers to a valuable instructional strategy – that of numerical variation. As such, I
present this as an example of mP – of using mathematics to enhance pedagogy.
Once the strategy is recognized and adopted, it can be implemented by teachers in
a variety of situations.

Example 1 – Division with Decimals

A pound of black sand cost $1.72. How much sand can you buy for $0.40?
When this or a similar problem is presented to either middle school students or

preservice elementary school teachers, there is a significant number of individuals
who make errors in setting up the division statement, that is, dividing 1.72 by 0.40
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rather than 0.40 by 1.72. What is the best way to help them? Of course, pointing to
their error is not helpful beyond the given problem.

The general multiplicative structure that a learner needs to recognize in order
to solve this problem is the following: A pound of black sand costs A, how much
sand can you buy for B? This is an example of a more general form of quotative
(measurement) division, that is, division structure that determines how many times
can A fit into B or how B can be measured with A.

Once the structure is recognized, the solution is given by B÷A. The question,
however, is what is it, that can guide learners towards seeing the generality in this
particular case (Mason & Pimm, 1984)? What I learned from teaching is that the
best explanation is in changing the numbers. This can be seen in Polya’s tradition
as thinking of a simpler but similar problem. Here the similarity is obvious, and the
simplicity is achieved by introducing compatible numbers.

A pound of black sand cost $2, how much sand can you buy for $6?
A pound of black sand cost $2, how much sand can you buy for $20?

The numbers in these examples are compatible, that is, easily manipulated and
work well together. Learners seldom have problems with these kinds of questions, so
using them as a starting point is beneficial. Once the general structure is established,
it is possible to move to “more problematic” numbers involving fractions.

A pound of black sand cost $2, how much sand can you buy for $0.50?

And then gradually return to the original problem.
This strategy can be seen as a modification of the “structured variation grids”

(Mason, 2001; Mason, 2007) in that it is a gradual numerical variation for the pur-
pose of prompting recognition of structure. So, why is the structure more readily
recognized when numbers are compatible than when they are not? In Mason’s terms,
the source of the obstacle appears to be in the perceived range of permissible change.
That is, the numbers in the initial problem are “too far” from the students’ exam-
ple space of problems that are associated, implicitly, with measurement division.
Numerical variation assists in recognizing similarities and extending the general
structure, a necessary step for the solution.

Example 2: “Big” Percentage

When someone wants to declare absolute confidence, he may claim being “120%
sure.” When someone wants to acknowledge an effort needed for a certain task, she
may claim devoting to it 200% of her energy or 150% of her time. We accept these
claims with a smile, as a tendency to emphasize a certainty or an effort rather than
an accurate measure.

When a whole is 100%, what is indicated by a percentage higher than 100?
Experience shows that when a high percentage appears in a mathematical problem
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situation, it often leads the learners away from recognizing the general structure.
Consider for example the following problem:

The price of a bottle of wine was $10. However, as the wine got older, its price
increased by 400%. What is the new price?

In a class of preservice elementary school teachers, about half of the students
claimed that the new price was $40, explaining that 400% meant “quadrupling.”
Once again, what we found helpful towards recognizing the general strategy is
numerical variation:

The price of a bottle of wine was $10. It increased by 20%, what is the new
price?

The price of a bottle of wine was $10. It increased by 35%, what is the new
price?

The price of a bottle of wine was $10. It increased by 100%, what is the price
now?

From considering students’ approaches to the problem, it appears that their main
difficulty is with the perceived range of permissible change (Mason, 2001, 2007).
While 20%, 35%, or even 100% fits within what is expected – both in a famil-
iar “real world” context and in a mathematics classroom context – the increase of
400% appears beyond a “reasonable” permissible change. Yet again, the purpose of
the numerical variation is not only to help with a specific task at hand, but also to
develop appreciation of this general pedagogical strategy.

What have I learned from this experience? In an effort to explain a puzzling sit-
uation, I learned to appreciate the explanatory power of compatible numbers. I was
further able to extend this power to more common and curriculum based situation,
and in such to equip teachers with a tool of numerical variation that can serve as a
helpful pedagogy (mP).

Conclusion

As seen from the stories I shared, my learning through teaching was triggered by
interaction with students’ questions and students’ work on problems. As such, it also
became learning for teaching. That is to say, what I learned has become an integral
part of my “teaching repertoire.” I thank my students for the opportunity to learn. It
would not have happened without them.
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Dialogical Education and Learning Mathematics
Online from Teachers

Marcelo C. Borba and Rúbia B.A. Zulatto

Introduction

More than 50 years ago, Paulo Freire (2005) proposed the notion that education is a
dialogical process. The notion of dialogue for him is paramount and implies being
open to listening deeply and responding with intentionality. Traditionally, teaching
has emphasized ways in which students learn from teachers, which for Freire, is
only one side of the coin.

This book is dedicated to analysis of how teachers learn from teaching. In
this chapter, we will examine this phenomenon in the context of online education
courses, discussing how we learn from teachers when they are in the role of students
enrolled in continuing education courses. In this chapter, we will show how listening
deeply to teachers has made us think about mathematical problems we have never
thought about before and, consequently, learn mathematics in the process. Although
we also learned much regarding pedagogical content during the course, it will not
be the focus of this chapter.

We will also show how university professors who, like ourselves, are engaged in
teaching teachers online how to use geometry software in face-to-face classrooms,
need to be open to taking risks and being pushed beyond their comfort zone. In
particular, we will emphasize that the risk is greater once the decision has been
made to adopt an interactive-dialogical approach for an online course. However we
will also argue that, once the virtual community has become dialogical, the risks
diminish. We even suggest that one can grow accustomed to the risk and feel more
comfortable with it.

Before we present the example about conics, we will present our theoretical per-
spective regarding the use of information and communication technology and of
dialogical teaching education, as well as the context of the online course. We will
then show how the problem-solving dynamic we set up for the course led one of the
teachers to pose a problem that initially none of the participants knew how to solve.
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The research project that yielded the results presented here was born when a
nation-wide network of schools owned by a private foundation approached us to
help their teachers learn how to use geometry software. The schools had good
computer laboratories, but they were surprised to find that the teachers were not
using them. Studies have shown that the mere availability of laboratories is not
sufficient to guarantee the implementation of the use of computers in regular ele-
mentary education. Since we had experience in implementing the use of software
at the middle and high school levels as well as university levels, we accepted their
invitation. We also proposed that, following an initial face-to-face course, we seek
to use online courses as an arena for developing dialogical relationships with teach-
ers. Our research group, GPIMEM,1 based at UNESP (São Paulo State University),
Rio Claro, Brazil, has developed a culture of software use in mathematics educa-
tion for more than 15 years and, since 1999, has been engaged in investigating the
possibilities of the online world in mathematics education.

We accepted the invitation to teach the online course and, at the same time, ini-
tiated a research project to study the possibilities of the online world as a means
for continuing education. Since the first experience of the online course received
a positive evaluation by the network of schools, we ended up teaching a total of
eight online courses. This project also composes part of a broader research agenda
aimed at documenting the role of different technologies in transforming mathemat-
ical practices developed by collectives of teachers, students, and technology, or as
we have labeled it, collectives of humans-with-media (Borba & Villarreal, 2005).
Although the goal of this project did not initially include the focus of this chap-
ter, the reader will see how the example and the discussion presented follow from
previous research we have developed regarding how risky it can be to implement
technology in the classroom.

From Inter-shaping Relationship to the Notion
of Humans-with-Media

Within the debate about the role of technology in cognition in the mathematics edu-
cation community, Borba (1993, 1995) documented a series of examples in which
students used software in ways that were completely foreign to the concerns of the
Function ProbeTM (Confrey, 1991) design team, which he belonged to led by Jere
Confrey at Cornell University, USA. The participation in the Function Probe design
team and the development of experimental research with the software provided a
singular opportunity for observing how students were shaping the software, and not
only being shaped by it. While it was widely acknowledged at that time that soft-
ware could influence students’ cognition, there was little focus on the way students

1Technology, other Media and Mathematics Education Research Group. www.rc.unesp.br/
igce/pgem.gpimem.html



Dialogical Education and Learning Mathematics Online from Teachers 113

might be transforming the software (such as Function Probe or another function or
geometry software).

Inspired by Freire (2005) and Schutz (see Wagner, 1979), Borba developed the
idea of a dialogical relationship between software designers and users, even though
such a relationship is not synchronous like the human dialogue that Freire and
Schutz believed to be so paramount. Based on these ideas and analysis of the role of
different media (paper and pencil, graphing calculators, software, etc.) in the devel-
opment of different kinds of mathematics (Borba & Villarreal, 2005), Borba and his
colleagues in the GPIMEM research group came to view mathematical knowledge
as being the product of collectives of humans-with-media. In this view, material
culture such as inscriptions, (oral language), paper-and-pencil, books, and computer
technology play an important role. Computer technology reorganizes human think-
ing in a way that is qualitatively different from language (Tikhomirov, 1981), as
it allows for different ways of extending human memory (Levy, 1993). Thus, the
notion of humans-with-media emphasizes an epistemological perspective that views
knowledge as being constructed by a collective composed of humans and material
artifacts. In this view, the artifacts – material culture – play an important role in
knowledge production.

Knowledge is produced by humans, but also by different media such as, writing,
or the new modalities of language that emerge from computer technology.

We believe that humans-with-media, humans-media or humans-with-technologies are
metaphors that can lead to insights regarding how the production of knowledge itself takes
place (. . .). This metaphor synthesizes a view of cognition and of the history of technology
that makes it possible to analyze the participation of new information technology ‘actors’
in these thinking collectives2 (Borba & Villarreal, 2005, p. 23).

In the example that will be discussed in this chapter, we will argue that the geom-
etry software and the platform used were also co-actors in an online collaboration in
which the leaders of the course learned some mathematics with the teachers who
were learning how to put geometry software to use in their regular face-to-face
middle and high school classrooms throughout Brazil.

Making the Risk Zone More Comfortable: Online Courses
to Teach How to Use Software in the Mathematics Classroom

Use of Information and Communication Technologies (ICTs) in the mathematics
classroom has increased in recent years, contributing to growing debate regarding
the possibilities and difficulties of its use by teachers. Authors including Borba and
Penteado (2001), Zulatto (2002), and Kaput (1989) have highlighted the importance
of facing the challenge of thinking about mathematics with ICT resources.

2Thinking Collective is a term used by Levy to emphasize that knowledge is produced by
collectives composed of humans and non-human actors.
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Penteado (2001) emphasizes that in conventional/traditional classrooms teachers
often prefer to remain within a comfort zone in which they are able to predict and
control almost everything; and although they may not be satisfied with the situation,
they prefer to remain within this comfort zone rather than facing the challenge of
entering a risk zone. This occurs because, in the latter, teachers experience situations
that are not common in their practice, which makes them feel threatened because
they are unable to foresee a path to follow.

Borba and Penteado (2001) present two examples of how teachers can enter the
risk zone when they decide to use technology. The teacher’s control in relation to
the knowledge and the way the lesson develops, for example, becomes less con-
stant, usually due to technical problems and the variety of paths the students may
follow. In addition, questions often arise that teachers may not immediately be able
to respond to, obliging them to say “I don’t know,” which was generally uncommon
in their day-to-day practice.

Power relations are also affected by the presence of ICTs in the classroom,
as information that used to be largely provided by the teacher and the textbook
has become more readily accessible to students through software programs or the
Internet. At times, students know more about the computer than teachers do, and
it is necessary to recognize, as Penteado (2000, p. 31) puts it, that with the use of
ICTs in the classroom, “the power legitimated by the domination of information is
not only in the hands of the teacher: students gain increasingly larger spaces in the
process of negotiation in the classroom.” Students often know how to find original
paths in the world of informatics to obtain certain information and generate doubts
that even the teacher is unable to respond to.

Out of fear and insecurity, among other aspects, many teachers opt not to face
the challenges of adopting ICTs in the classroom, or merely modify their lessons
to include closed-ended activities with no room for exploration. The questions that
emerge tend to be much like those that emerge in their conventional classes and
are, therefore, easier for them to respond to. In other words, teachers may attempt
to “domesticate” ICT, adapting their use as closely as possible to the way they are
accustomed to using paper and pencil. As a result, they fail to take advantage of the
great potential of ICTs. While this discussion is somewhat outdated, it still merits
attention, since working in the risk zone continues to be a challenge for some teach-
ers. Here we propose considering it in the context of online distance education. In
the online courses we teach, we seek to avoid domesticating web technology and
to help teachers avoid domesticating software when they use it in their face-to-face
computer laboratories.

In Borba, Malheiros, and Zulatto (2007), we discussed issues related to the
teaching and learning of mathematics based on the experiences of our research
group over the past 10 years. We believe that teaching in online environments
situates the teacher within a new model of risk zone with respect to the use of
ICTs in the teaching of mathematics. New challenges arise: How to follow the
progress of my student who is physically distant? How to discuss mathematics
online? How to express my reasoning? What resource is most appropriate for each
situation?
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We have also investigated how different interfaces used in online courses
transform the way mathematics is produced by participants. More recently, Borba &
Zulatto (2006) elaborated on the conjecture that mathematics is also transformed
as we change from a face-to-face context to online distance courses for teachers,
pointing out the important role of the different tools available to students online.
For instance, there are online environments in which writing in a chat or in a forum
is the only way for participants to communicate among themselves. In our online
course proffered to mathematics teachers, our analysis showed how writing shapes
the mathematics discussed. The analysis was carried out based on the idea that
when technology changes, the possibilities for mathematics are also altered. This
is the main idea behind the notion that a collective of humans-with-media (Borba &
Villarreal, 2005) is the basic unit that constructs knowledge, as discussed earlier in
this chapter. Knowledge is always produced by humans, but in conjunction different
media such as writing, or the new languages that emerge from computer technology.

In this way, we have shown how online courses that rely heavily on chats empha-
size the role of everyday spoken language to express mathematical ideas (Borba &
Santos, 2005; Santos & Borba, 2008). Our research has also shown that videocon-
ferences can be conducted in ways that resemble traditional classroom lectures, or
in ways that facilitate a dialogical relationship in which special tools transform
collaboration among participants and provide collective problem solving activi-
ties (Borba & Zulatto, 2006). Next, we will present a detailed description of the
context of the course in which we learned from the dialogical interactions with
the teacher/students, followed by examples in which we, the professors of the
course, learned mathematics from a problem posed by one of the participating
teacher/students.

The Context

We developed a course, entitled “Geometry with Geometricks,” that took place in
response to a demand from mathematics teachers employed in a nation-wide net-
work of schools sponsored by the Bradesco Foundation.3 Teachers employed in their
40 schools, located throughout Brazil and including some in the Amazon rainforest,
have access to different kinds of activities, including courses administrated by an
educational center based in the greater São Paulo area. Following the improvement
of Internet connections in Brazil, they realized that online courses could be a promis-
ing option, since transporting teachers from all corners of Brazil (which is larger in
area than the continental U.S.A.) to a single location to participate in courses was

3The Bradesco Foundation is supported by the Bradesco Bank and has social objectives, as their
schools are generally located in poor neighborhoods. Although they are a private foundation, their
schools are free and they develop intense continuing education activities with their teachers. There
is at least one school in each one of the 26 Brazilian states and in the nation’s Capital, Brasília. We
would like to thank them for their support for the research project we conducted together with our
teaching.
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ineffective cost-wise as well as pedagogically. Cost effectiveness is related to the
size of the country, and the pedagogical consideration concerns the fact that teach-
ers would usually participate in the courses with little or no chance of implementing
new ideas while taking the course.

The first type of online mathematics courses offered to teachers by the
Foundation was based on a model involving little interaction between the leader
of the course and participants. This is one reason we had to overcome some initial
resistance when we began, as the teachers were accustomed to having a much more
passive role in online courses like this. Gradually the teachers came to accept and
respect our model, based on online interaction combined with applications in their
face-to-face classes in middle and high school followed by online discussion of their
experiences.

The educational center of this network of schools approached us, requesting a
course about how to teach geometry using Geometricks, a dynamic geometry soft-
ware originally published in Danish and translated into Portuguese (Sadolin, 2000).
Geometricks has most of the basic commands of other software such as Cabri II
and Geometer Sketchpad and was designed for plane geometry. As we know from
extended research on the interaction of information technology and mathematics
education, the mere availability of software and a well-equipped laboratory with 25
microcomputers, as in the case of these schools, is not enough to guarantee their
effective use.

We designed a course using an exploratory problem-solving approach divided
into four themes within geometry (basic activities, similarity, symmetry, and ana-
lytic geometry). There was usually more than one way to solve the problems, and
they could be incorporated at different grade levels of the curriculum according to
the degree of requirements for a solution, and according to the teacher’s prefer-
ence. Both intuitive and formal solutions were recognized as being important, and
the articulation of trial-and-error and geometrical arguments was encouraged. We
“met” online for two hours for eight Saturday mornings over a period of approxi-
mately three months. Prior to this synchronous activity, a fair amount of e-mail was
exchanged during the week to solve technical issues regarding the software as well
as clarify the problems proposed or pedagogical issues regarding the use of com-
puter software in the classroom (e.g. should we introduce a concept in the regular
classroom and then take the students to the laboratory, or the other way around?).
Pedagogical themes were also discussed during the online meetings, in particular in
one session in which the students, rather than working on problems during the week,
were assigned to read a short book about the use of computers in mathematics edu-
cation (Borba & Penteado, 2001). Teachers from the same school as well as from
different schools were encouraged to work together to solve problems face-to-face
or online.

The headquarters of the Bradesco Foundation had already purchased an online
platform that provided participants with access to chat, forum, e-mail, and video-
conference and allowed them to download activities posted by us. In our course,
participants could download problems and they could also post their solution if
they wanted to, or send it privately to one of us (the professors of the course). The
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Fig. 1 Computer screen during the videoconference (displaying Geometricks software to every
participant)

platform allowed the screen of any of the participants to be shared with everyone
else.

For instance, we could start showing a screen of Geometricks on our computer
and everyone else could see the dragging that we were performing on a given geo-
metrical construction (Fig. 1). A special feature made it possible to “pass the pen”
to another participant who could then add to what we had done on a Geometricks
file (Borba & Zulatto, 2006).

Thus, all participants were able to share their geometrical constructions, ideas,
and difficulties with others. During the videoconference meetings, Borba led the
discussions and facilitated the dynamic interaction, while Zulatto managed the tech-
nical aspects and created the geometric constructions with the mouse. In this way,
we acted collectively. Zulatto was the leader during the week, providing support by
e-mail and following and commenting on activities sent by the students.4

The Example

With the proposal of developing a course based on interaction and dialogue (Freire,
2005; Alrø & Skovsmose, 2002), the activities the students engaged in during the
week were discussed in online meetings on Saturdays. Everyone had a voice, with
solutions being presented by the participants, who shared their reasoning. Thus, the
course was not centered on us, the professors, but rather on the contributions of all
the participants, in a process of collaborative education.

In this context, questions were raised not only by the teachers, but by the students
as well, for everyone to reflect on. Thus, we were prepared for the risk that unknown

4To avoid confusion, we will refer to ourselves as the “professors” and to the teachers enrolled in
the course as the “students.”
Some figures are from:
http://www.algosobre.com.br/matematica/geometria-analitica-parabola.html
http://www.algosobre.com.br/matematica/geometria-analitica-hiperbole.html
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situations might emerge, as occurred in one of the meetings when one of the students
posed a question that we were not readily able to answer, despite having explored
the activity beforehand and discussed it in a previous edition of the course.

In this meeting about the theme “analytic geometry,” we constructed and
explored the parabola via locus (see Fig. 2).

Gleice, one of the participants, asked whether the construction of a parabola,
and of another symmetric to it in relation to the directrix, could be considered a
hyperbola. We knew the answer was no. Our basis in algebra made us certain of
this, since the equations are different.

We also knew that, considering the Cartesian plane xOy, a line d (directrix) and
a fixed point F (focus) on the x-axis, the curve formed by the locus of points P(x,y)
of the Cartesian plane is denominated a parabola (Fig. 3), such that

PF = Pd where
PF = distance between points P and F
PP′ = distance between point P and line d (directrix).

Fig. 2 Steps for construction
of a parabola via locus

Fig. 3 Geometric definition
of the parabola
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The reduced equation of a parabola with l x-axis symmetry and vertex (V) at the
origin is given by y2 = 2px where p is the measure of the parameter of the parabola,
such that VF = p/2. The x-axis is the symmetry axis of the parabola and p is the
distance between the focus F and the directrix d.

We also know, algebraically, that the reduced equation of the hyperbola is
x2

a2 − y2

b2 = 1. This is because, given the fixed points F1 and F2, (foci) such that
the distance between these points is equal to 2c > 0, hyperbola is defined as the
curve whose module of the difference between the distances of each of its points P
and these fixed points F1 and F2 is equal to a constant value 2a, where a<c (Fig. 4):

Although we knew the algebraic differences between parabola and hyperbola,
we did not know how to answer this question based on geometric justifications. The
class was drawing to a close and everyone was given the task of researching and
bringing geometric arguments to the next class.

We were definitely experiencing a risk zone. We had to say “we do not know,”
and this question made everyone study. We were fortunate that time was running
out so that we could end the class. We left the question open for everyone to study.
It was necessary to find a geometric justification.

Experiencing this risk can be natural in the teaching and learning process, but
we knew that we would have to present a solution in the next meeting. We looked
for books, specialized sites, etc. Some of the students also sent us solutions. After
studying the concepts from the geometric point of view, we elaborated a justification
that we presented to the students. What follows is a description of how we dealt
openly with the problem in the next class: We started from two free points A and O.
A circumference with center O and radius AO was drawn. A point Q was fixed in
this circumference and a free point P was marked outside of it. Next, a perpendicular
bisector of P and Q was constructed and a line drawn passing through O and Q.
Point L was the intersection of these latter two lines. When point Q was moved, it
was possible to visualize the locus of point L, as shown in Fig. 5.

We then sought to justify this construction. We went back to the definition of
hyperbola, translating it to the computer screen in the virtual environment shared by
all the students, which resulted in a construction like the one shown in Fig. 2. Next,
we presented in the form of a problem the question of why a construction like the

Fig. 4 Geometric definition
of hyperbola
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Fig. 5 Hyperbola
construction via locus

one above, in fact, results in a hyperbola. Observe how we approached the question,
and how we used the addition of the segment LP to aid in our argument:

Marcelo: So when I take the distance [. . .] LO – LP has to be constant, the difference
between them. It could also be LP – OL because I am only interested in the absolute value,
OK!? This distance between them will be called 2a, in the same way that the distance
between the foci is 2c [. . .]. I’ll give you another minute to come up with some type of
argument about why LO – LP is constant when I make this construction, when I drag point
Q and generate this locus. Another hint to help you visualize it: let’s add a line that is not
necessary for the construction but that will make it clearer, so everyone sees that the distance
LP is OL, OK?! (Fig. 6) [. . .] Now I’d like some of you to pronounce, or about an argument,
try, no problem if it is not correct [. . .].

Gleice presented a justification:

I think the distance remains constant because point Q and point O, they are constant, fixed;
the distance between them is always the same. Then you made the construction of the
perpendicular bisector from point Q to point P, obtaining point L, which is always the
same distance from Q and P; that’s why when you move, it’s always the same distance,
the difference is always constant.

Going back to Gleice’s question, we felt it was pertinent to construct a parabola
with concavity facing up and another with focus symmetrical in relation to the
directrix, with concavity facing down, as illustrated on Fig. 7:

Marcelo: Note that, in this construction, what is remaining constant, with the same distance,
is RK, which is congruent with QR; now it’s no longer like the other, that kept the radius
of the circumference constant, see? When I drag, for example, point Q, QR with RK is
constant, but PR – RK will not necessarily be constant. Did you see the difference?

To be a hyperbola, by definition, the difference between PR and RK should be a
constant. Since we planned to show that the construction of these two symmetrical
parabolas did not satisfy this condition, we needed only to find a counter-example.
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Fig. 6 Geometric arguments
about the hyperbola

Fig. 7 Two parabolas under
construction

Using the software, it was possible to verify it by measuring the segments
PR and RK. The first result was PR – RK = 13.69 – 8.49 = 5.2. Dragging
point Q, these measures changed, and the difference should have remained con-
stant. However, the result was 5.17 – 1.74 = 3.43. We suggested that this type of
counter-example could be explored in the first year of high school. We affirmed
that, after showing the above solution, which uses a measure command of the
software, discussion should be encouraged regarding the need for a more geo-
metrical argument about why the above construction reflecting a parabola is a
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Fig. 8 Building a
counter-example

hyperbola. We then presented a counter-example using only geometrical construc-
tion. To find this counter-example, we selected a position for point Q such that KRQ
would be a right angle and we applied the Pythagoras theorem to the right triangle
PRK. To facilitate visualization, we constructed the segments PT, PK, RT, and RK
(Fig. 8).

Marcelo’s argument below shows how he explained the counter-example:

Since we constructed a parabola, [. . .] KR=QR, since this line is the perpendicular bisector
between points P and Q, in both cases, OK!? [. . .] so now we have the rectangle KRTP
and we can say that we have a measure of 2 by 1 (in reference to the segments TR and PK
measuring double that of segments TP and RK, in a 2 to 1 proportion). [. . .] Note that this 2
by 1 is not using the same metric that the software uses in the observation menu, OK?! OK,
so [. . .] we can see that RK=1 and this KP=2, so this diagonal here [PR], according to the
Pythagoras theorem, will measure. Is that clear to everyone? And therefore, PR – KR will
give

√
5 − 1, which is a little more than 1, correct? It will give zero point something, it will

give one plus something.

And proceeding with this reasoning, point Q was dragged to obtain another figure
for PKRT because

since we want to prove that this is not a hyperbola, we will find another point not on the
‘hyperbola’ (pseudo-hyperbola), of this that would be the hyperbola, and show that the
difference between PR and KR is not one-point-something (Marcelo).

The other “special point” for Q is when P, T, R, and K are aligned (Fig. 9).
Under these conditions, when the points are aligned, the segment PR will measure
1.5 (since the measure of KR = RQ). Thus, the difference between PR and KR
is exactly 1.0 (since it is 1.5 – 0.5). Previously we had arrived at a value slightly
greater than 1.0. However, we noticed that the difference did not remain constant,
which contradicted the definition of a hyperbola.

All the participants felt this counter-example was sufficient to prove that a
parabola reflected in relation to an axis is not a hyperbola despite appearing to be so.
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Fig. 9 Second step of the
construction of a
counter-example

Online Collaboration to Foster Our Learning of Mathematics

This problem posed by one of the teacher/students participating in a course designed
to teach how to use geometry software placed us, the professors of the course, in a
risk zone because we were unable to respond to the student’s question, and “didac-
tical contracts” in courses such as these presuppose that university professors know
what they are teaching. We had prepared the content of the course, we had prepared
ourselves to teach other contents, but as we have argued, the likelihood of entering a
risk zone, and having to say “I do not know,” increases when using software to teach.
The original focus of our research was not to see how we learn mathematics from
teachers, but to document the way online platforms transform collaboration among
teachers (Borba & Zulatto, 2006; Borba & Gadanidis, 2008). In this perspective, we
have shown how different interfaces – software, online platforms, etc. – are linked
to changes in the mathematics produced by collectives of humans-with-media and
how users shape technology according to their own uses.

In this chapter, we believe we have made the case that listening to teachers in
online courses based on a dialogical approach is a way for all participants, and in
particular for us, to learn mathematics. The fact that the teacher/student could easily,
using a software command, reflect a parabola about an axis and “visually puzzle”
all the participants and convince them that this problem was worth studying, shows
the role played by Geometricks (or any geometry software chosen by the network
of schools) in creating new problems together with the teacher.

Borba and Villarreal (2005) present many examples of the role of software
or paper-and-pencil in co-constructing conjectures, reasoning, visualization, and
proofs in mathematics education at different educational levels and in different con-
tents. Extending this argument to tools such as online platforms is part of the agenda
of our research group GPIMEM. One good example was presented at PME-30
(Borba & Zulatto, 2006). In the case presented here, the platform can be seen as
merely a setting where professors learned in the process of teaching teachers, and
we do not claim that the production of mathematical knowledge differs significantly
when an online platform is used compared to traditional face-to-face environments.
However, the fact that the Geometricks software could be manipulated and seen by
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all with this particular platform (unlike other platforms we have taught with), and
that the voice of one of the participants could be shared, was important for the emer-
gence of the case reported. Although this does not give the platform a strong role
in our opinion, another important factor worth noting is that the platform enabled
teachers in different locations throughout Brazil to work in groups, conjecturing and
experimenting with Geometricks on their computers as we taught, without the phys-
ical presence of a university professor. Unlike face-to-face classes, social norms in
an online context do not dictate that it is impolite to “talk” while the professor is
“talking” and manipulating the software through the online platform. This role of
the platform and the above conjecture regarding social norms will require further
investigation.

We, as leaders, and the teacher/students were also very important participants and
key actors, as we were able to break traditional didactical contracts and establish
collaboration in a way that enabled us to enjoy being in the risk zone. This breaking
of the didactical contract was what made it possible for teachers/students to pose
new problems to university professors. Thinking about and developing a solution for
this problem generated learning for the professors, as we had to articulate parabola
and hyperbola construction in a new way in order to build an argument for a problem
we were unfamiliar with.

The risk zone has become the comfort zone for all of us. We, as professors, are
exhilarated by teaching in new environments, by fostering collaboration in online
environments with mathematics teachers we have never (or not yet) met, and we
were both already familiar with the exhilaration of working with software, since it
often leads us into unanticipated situations in the classroom. The example presented
illustrates how we can learn mathematics in our own teaching. It seems that teaching
with technology and teaching with software in online environments require teachers
who are more comfortable working in the risk zone while learning together with
their students/peers! Like engaging in “radical sports,” with practice, the risk zone
can become comfortable.
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Role of Task and Technology in Provoking
Teacher Change: A Case of Proofs and Proving
in High School Algebra

Carolyn Kieran and José Guzmán

In their review of the emerging field of research in mathematics teacher education,
Adler, Ball, Krainer, Lin, and Novotna (2005) have argued that we need to better
understand how teachers learn, from what opportunities, and under what conditions.
The research findings that we recount in this article provide a compelling case for
the particular opportunities and conditions under which the knowledge and teaching
practice of a mathematics teacher evolved.

The Context of the Present Study

When our research group1 developed the program of research that included the
present study, it was decided that the use of new technologies (i.e., Computer
Algebra Systems – CAS) for the teaching of algebra would be one of its principal
components. Another was the design of novel tasks that would both take advantage
of the technology to further the growth of algebraic reasoning and focus on the
interplay between algebraic theory and technique. The theoretical framework that
underpins the research, one that we refer to as the Task-Technique-Theory frame (see
Kieran & Drijvers, 2006, for details), draws upon Artigue’s (2002) and Lagrange’s
(2002) adaptation of Chevallard’s (1999) anthropological theory of didactics. From
their research observations, Artigue and her colleagues came to see techniques as
a link between tasks and theoretical reflection, in other words, that the learning
of techniques was vital to related theoretical thinking. Based on this notion, our
research group developed a research program that conceptualized algebra learning
at the high school level in terms of a dynamic among task, technique, and theory
within technological environments.
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At the same time that we began to create a series of tasks that would invite both
technical and theoretical development in 10th grade algebra students, we also made
contact with several practicing mathematics teachers to see if they might be inter-
ested in collaborating with us. The form of collaboration that we arranged was on
several levels. First, the teachers were our practitioner-experts who, within a work-
shop setting, provided us with feedback regarding the nature of the tasks that we
were conceptualizing. Second, after modifying the tasks in the light of the teach-
ers’ feedback, we requested that, at the beginning of the following semester, they
integrate the entire set of tasks into their regular mathematics teaching and that they
be willing to have us act as observers in their classrooms. Third, throughout the
course of our classroom observations, which occurred over a five-month period in
each class, we also offered a form of ongoing support to the participating teachers by
being available to discuss with them whatever concerns they might have. In addition,
we conducted interviews with some of them immediately after certain lessons that
we had perceived to be worthy of further conversation, lessons that we had thought
might even be considered pivotal moments in their practice. The following narrative
concerns one such pivotal two-lesson sequence, taught by the teacher Michael.

Michael’s Story

Some Background

Michael was one of the teachers involved in the project. Up to the time of the present
study, we had already observed 15 of his classes, that is to say, each of the lessons
in which he had thus far integrated a CAS-supported task from the set that had
been created for the research project. Michael, whose undergraduate degree and
teacher training had been done in the U.K., had been teaching mathematics for five
years, but he had not had a great deal of prior experience with technology use in
mathematics teaching, except for the graphing calculator. He was a teacher who,
along with encouraging his pupils to talk about their mathematics in class, thought
that it was important for them to struggle a little with mathematical tasks. He liked
to take the time needed to elicit students’ thinking, rather than quickly give them the
answers.

We began to observe Michael’s class from the very beginning of the Grade 10
school year. The students in this class had learned a few basic techniques of fac-
toring polynomials (for the difference of squares and for factorable trinomials) and
the solving of linear and quadratic equations during their 9th grade mathematics
course. They had used graphing calculators on a regular basis; however, they had
not had any experience with symbol-manipulating calculators prior to the onset of
our project, which made use of the TI-92 Plus hand-held, CAS calculator. These
students were already quite skilled in algebraic manipulation, as was borne out by
the results of a pretest we administered at the beginning of the study; but we were
informed that they had never engaged in any activity related to proving, either in
geometry or in algebra.
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This article concerns the two lessons that had involved the x n – 1 task set (here-
inafter referred to simply as the x n – 1 task), the last component of which was a
proof problem. We observed, and videotaped, both of these class lessons. The day
after the close of the two lessons, the first author interviewed Michael. The next few
paragraphs describe first the task and then our classroom observations of the prov-
ing segment of the task, followed by an analysis of this activity. Then we present
extracts from the interview with Michael and a second analysis that draws on both
his interview reflections and our earlier classroom observations.

The xn – 1 Task

The design for the two-lesson sequence was an elaboration of earlier work carried
out by Mounier and Aldon (1996) with their 16- to 18-year-old students on a task
that involved conjecturing and proving general factorizations of xn − 1. Our task
activity had three parts. The first part, which involved CAS as well as paper and
pencil, aimed at promoting an awareness of the presence of the factor (x − 1) in the
given factored forms of the expressions x2 − 1, x3 − 1, and x4 − 1 (see Fig. 1), as
well as leading to the generalized form xn − 1 = (x − 1)(xn−1 + xn−2 + . . . + x + 1).

The next part of the activity involved students’ confronting the paper-and-pencil
factorizations that they had produced for x n−1, with integer values of n from 2 to 6
(and then from 7 to 13), with the completely factored forms produced by the CAS,
and in reconciling these two factorizations (see Fig. 2).

1. Perform the indicated operations: (x – 1)(x + 1); (x – 1)(x2 + x + 1).

2. Without doing any algebraic manipulation, anticipate the result of the 

following product 

 

x − 1( ) x3 + x2 + x + 1
⎛ 
⎝ 
⎜ ⎞ 

⎠ 
⎟ =

3. Verify the above result using paper-and-pencil, and then using the 
calculator.

4. What do the following three expressions have in common? And, also, 
how do they differ?   
(x – 1)(x + 1), 

 

x − 1( ) x2 + x + 1( ),  and 

 

x − 1( ) x3 + x2 + x + 1( ).
5. How do you explain the fact that when you multiply: i) the two 

binomials above, ii) the binomial with the trinomial above, and iii) the 
binomial with the quadrinomial above, you always obtain a binomial 
as the product?

6. On the basis of the expressions we have found so far, predict a 
factorization of the expression x5 − 1. 

Fig. 1 Some of the initial tasks of the activity



130 C. Kieran and J. Guzmán

In this activity each line of the table below must be filled in completely
(all three cells), one row at a time. Start from the top row (the cells of the
three columns) and work your way down. If, for a given row, the results
in the left and middle columns differ, reconcile the two by using algebraic 
manipulations in the right hand column.

Factorization using
paper-and-pencil

Result produced by the
FACTOR command

Calculation to reconcile
the two, if necessary

x2  − 1 =

x3  − 1 =

x4  − 1 =

x5  − 1 =

x6  − 1 =

Fig. 2 Task in which students confront the completely factored forms produced by the CAS

Conjecture, in general, for what numbers n will the 
factorization of xn − 1:

i) contain exactly two factors?
ii) contain more than two factors?
iii) include x + 1( ) as a factor?

Please explain.

Fig. 3 Task in which students examine more closely the nature of the factors produced by the
CAS

An important aspect of this part of the activity involved reflecting and forming
conjectures (see Fig. 3) on the relations between particular expressions of the x n − 1
family and their completely factored forms.

The final part of the activity (see Fig. 4) focused on students’ proving one of
the conjectures that they had generated during the previous part of the task. This

Prove that ( x + 1) is always a factor of xn − 1 for even 
values of n.

Fig. 4 The proving task
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proving activity is the central component of the analysis of teacher practice and
teacher change that we present in this article.

Our Classroom Observations

After students had completed the first two parts of the x n − 1 activity, they were
faced with the proving segment of the task: Prove that (x + 1) is always a factor of
x n − 1 for even values of n. Mathematically experienced students might possibly
have been able to generate a proof along the following lines:

xn − 1 = x2 k − 1(for n even)
= (x2)k − 1

= (x2 − 1)(x2k−1 + x2k−2
. . . + 1)

= (x + 1)(x − 1)( . . . ).

However, our research team did not consider for an instant that such a symbolic
form of proof might be forthcoming from the 15- and 16-year-olds in our study.
Nevertheless, we did entertain the idea that some generic form of proof might be
produced. For example, students might propose that the expression x18 (where the
18 represents any even integer) could be viewed as (x2)9, and thus that (x18 – 1),
which is equivalent to ((x2)9 – 1), could be factored according to the general rule for
(x9 – 1), but with the x being replaced by x2. As mentioned earlier, the students of
Michael’s class had not had any prior experience with proving in algebra. Such lack
of experience with proving is not unusual for students of this age. This is reflected in
the general absence of algebraic proving activity among high school students in the
research literature. Nevertheless, some attention has been given to number-theoretic
proofs (e.g., Healy & Hoyles, 2000; see also Mariotti, 2006), as well as to proofs
involving geometric figures (Balacheff, 1988). However, we could find nothing that
was closely related to algebraic proofs of the kind being proposed within our x n – 1
task. Mounier and Aldon’s (1996) report, which had stated that students generated
four proofs for various factorizations of x n – 1 where n is a positive integer, did not
describe the actual activity of proving nor provide the steps of the students’ proofs.

To return now to our observations of the unfolding of the proving activity in
Michael’s class, the students worked on this part of the task, mostly within small
groups, for about 15 minutes. Some were using their CAS calculators, but most
were just talking about how they might approach the task and occasionally jotting
things down on paper. During that time, the teacher circulated and was heard to offer
the following remarks to various groups (T = Teacher):

T: See if you can prove this and not just state it, as some people have done so far
(picking up one student’s worksheet and reading it to the class): “When n is
greater than or equal to 2, (x+1) is a factor because.” Let’s see if we can go a
little bit beyond that. Can you write down what you come up with. . . . Yeah,
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but you need more than just examples. . . . You need to get something written
down. . . . Look, you need to think in order to answer this. This is the only hint
I’m giving you, you need to think about where the (x+1) comes from.

Getting students into this proving task was not straightforward, as they had never
before engaged in such mathematical activity. However, with the teacher’s encour-
agement, they did make progress. When he sensed that the majority of them had
arrived at some form of a proof, he opened up a whole-class discussion, oriented
around various students’ sharing their work:

T: Ok, guys. Quite a lot of you got quite close in doing this. What I want you to
do, and I’ve asked a couple of people who’ve done it in completely different
ways, to see if they can put forward their explanation. I want you to be quiet,
listen to their explanation, then we’ll discuss it once they’ve got it done, once
they’ve completed their little spiel, ok.

He invited selected students to come to the board, one at a time. As will be
seen, the principal contributions of the students can be grouped into three distinct
approaches. The first proof, which is presented immediately below, revolves around
the idea of “difference of squares.” Despite a follow-up counterexample involv-
ing the “sum of cubes,” and a return to the validity of the notion of “difference of
squares,” the proof-giver never quite fills in the gaps to arrive at a full proof.

Proof 1: A General Approach Based on the Difference of Squares

Paul was invited to come to the front and to present his “proof”:

Paul: Ok. So, my theory is that whenever x n -1 has an even value for n, if it’s
greater or equal to 2, that, one of the factors of that would be x2 -1, and
since x2 – 1 is always a factor of one of those, a factor of x2 – 1 is (x+1), so
then (x+1) is always a factor.

S2: Could you say it again? [other students react all at once, making many
comments]

S3: Why don’t you write it on the board?
T: Guys! Give him a chance.
Paul: You want me to write? [addressing the teacher]
T: Write down what you want to write down.
S4: Can you talk at the same time?

Paul then proceeded to write down at the board that which he had just stated
orally. The teacher then asked: “Is everyone willing to accept his explanation?”
While many seemed to agree with what Paul had proposed, a few voiced disagree-
ment – to which the teacher responded: “Ok, guys, one at a time. Ok, start with
Dan.”
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A Proposed Counterexample Involving the Sum of Cubes

Dan then came forward with what he considered a counterexample, x12 − 1, to
Paul’s proof. Dan proceeded by factoring x12 − 1 as (x6 + 1)(x6 − 1), the latter of
which he refactored as (x3 + 1)(x3 − 1). His subsequent factoring of (x3 + 1) – a sum
of cubes – yielded the sought-for (x+1) factor (see Fig. 5). Thus, he maintained that
the presence of x2 − 1 was not necessary for a proof because he (Dan) had shown
that, for even values of n, the factoring of x n − 1 does not have to end up with a
difference of squares. A sum of cubes could result, and it too would yield a factor of
(x+1). This led immediately to many students’ voicing disagreement, to which the
teacher remarked:

T: Ok, so, so this is good [he points to the third line on the board,
which contains (x3–1)(x3+1)(x6+1)]. This is good because, Paul,
the problem I had with yours, is how do you get from here to
here [he points to x n – 1 and then to the x2 – 1 of Paul’s board
work; he then draws a red arrow to highlight the gap between
those two lines of the proof], does that follow? He’s just given
you a counterexample where it does not follow.

Some Students: It does though [with many students speaking at once].

Fig. 5 Dan’s counterexample in the central section, with the counterproposal by Paul that x6 – 1
does indeed yield x2 – 1 (at the leftmost arrow)

The Counterproposal Containing Seeds of a Generic Proof

Many of the other students, including Paul, contended that Dan’s was not a coun-
terexample, after all. They argued that the expression x12 − 1 could, in fact, produce
x2 – 1 if it were factored differently:
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Paul: Isn’t x6+1 a sum of cubes? . . . So couldn’t you also do the x6 – 1 as the
difference of cubes [one student says “yeah”] and that’s x2 –1.

T: [he circles (x6–1) in red and draws an arrow on the left to show the alternate
factorization being proposed. See the leftmost arrow and its accompanying
factorization in Fig. 5]

Paul: [continuing what he was saying] So x2 – 1 times whatever [the teacher
writes (x2–1)(x4+x2+1) on the board]. So there’s your x2–1.

S5 (a student other than Paul): Even though it’s not fully factored [referring to
x12–1], x2 – 1 is still a factor of that.

Paul: Sir, it can be factored down
T: Yeah I know it can be factored down, and I am not saying you’re wrong,

what I’m saying is that your reasoning to get from x n – 1 down to this [he
points to the x2 – 1 line of Paul’s proof] is not complete. Do you agree (to
Paul)?

Analysis of Proof 1

While Paul had seen that x6 – 1 could be viewed as a difference of cubes, and thus
that x2 – 1 was a factor, he did not seem able to link this particular example with his
general affirmation that for all even ns in x n – 1, one would always arrive at x2 – 1 as
a factor. Yet, he was unbelievably close. Could he see that x6 – 1 was equivalent to
((x2)3 – 1), even if he had never expressed it in quite this way? Or was his realization
based solely on his experience with factoring the “difference of cubes” and merely
with perceiving 6 as a multiple of 2 and of 3? If the former, why not see also that
x8 – 1 was equivalent to ((x2)4 – 1), . . . , and more generally that x n – 1 for even ns
could be expressed as ((x2) p – 1) where n = 2p? And so if x n − 1 has (x − 1) as
its first factor, why not then see that, similarly, ((x2) p – 1) would have x2 – 1 as its
first factor, and thus (x + 1) as a factor? While Paul had certainly intuited some of
this in offering his initial proof, the connections were likely still quite tentative and
not yet able to be formulated in an explicit way. However, the teacher, Michael, had
insisted that, for Paul’s proof to be complete, there needed to be a theoretical link
connecting the two main lines of the proof (the x n – 1 line and the x2 – 1 line): “Yes,
we know we will get there eventually, but how do we know that we will eventually
get there without doing all the actual factoring?” Paul’s proof had a “gap” in it (see
Weber & Alcock, 2005, for more on “gaps”).

Proof 2: A Proof Involving Factoring by Grouping

The second approach to the proving problem was put forward by Janet. Janet’s
proof, which she and her partner Alexandra had together generated, was based on
their earlier work on reconciling CAS factors with their paper-and-pencil factor-
ing (for the tasks shown in Fig. 2). They had noticed that for even ns, the number
of terms in the second factor was always even. Janet argued, as she presented
the proof at the board using x8 − 1 as an example, that it would work for any
even n:
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Janet: When n is an even number
T: Write it on the board, show it on the board.
Janet: [she writes “x8 – 1” and below it: (x-1)(x7+x6+x5+x4+x3+x2+x+1)]
T: Ok, listen ‘cause this is interesting [addressed to the rest of the class], it’s

a completely different way of looking at it, to what most of you guys did.
Ok, so explain it, Janet.

Janet: When n is an even number [she points to the 8 in the x8 – 1 that she has
written], the number of terms in this bracket is even, which means they can
be grouped and a factor is always (x+1).

T: Can you show that?
Janet: [she groups the second factor as: x6(x+1)+x4(x+1)+x2(x+1)+1(x+1)]
T: Thanks Janet. Do we understand what she put out there?

A Student’s Query Related to the Factor (x + 1)

As soon as Janet had finished the writing of her proof at the board, another student
posed a rather insightful question: “But how do you know that the group is going
to be (x+1)?” As no student could offer any response to this, the teacher Michael
interjected with a general notation for Janet’s proof, in the hope that this might
perhaps help the questioner to see the logical necessity of the (x + 1) factor. (It is
noted that Michael remarked to us during the classroom observations that Janet’s
proof was one that he had not thought of before; yet, he was able to react quickly
with a general formulation in response to the “(x+1)” question.):

T: You know it’s going to be xn–1 plus xn–2 plus dot, dot, dot, plus x plus 1 [he
writes on the board as he speaks] and you know there’s an even number here
yeah? [he points to the series of dots in the polynomial]. Yes? So you know
that, in there, if we take this [he points to the xn–2] as the term outside. You
know that these two [he points to xn–1 and xn–2] can be factored and it’s just
(x+1) as the other factor of these two [he wrote xn−2(x+1)], yeah? And that
would be the case for any and all in between [he points to the series of dots],
and including this [he points to the “+ x + 1” at the end of the sequence and
writes 1(x+1) on the far right of the xn−2(x + 1) that he had already written;
see Fig. 6].

Fig. 6 A general notation illustrating that (x+1) will be a factor upon grouping
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Analysis of Proof 2

Janet’s proof, which was generic in that it embodied the structure of a more general
argument and was a representative of all similar objects (Balacheff, 1988; Bergqvist,
2005), was one that seemed to be understood and appreciated by most of the stu-
dents in the class (see Weber, 2008, for related discussion). It also provided insight
as to why the proposition holds true not only for that single instance but for all
related cases (Rowland, 2002). Janet had been able to explain how the terms of the
second factor (the factor beginning with the x7 term) could be grouped pair-wise,
yielding a common factor of (x + 1), even if she did not complete the factoring
process:

x8 − 1 = (x − 1)(x7 + x6 + x5 + x4 + x3 + x2 + x + 1)
= (x − 1)[x6(x + 1) + x4(x + 1) + x2(x + 1) + 1(x + 1)]
= (x − 1)(x + 1)(x6 + x4 + x2 + 1)
= (x − 1)(x + 1)(x2 + 1)(x4 + 1)

Janet’s proof had appealed to her classmates’ common experience in factoring
by grouping. But, as has been discussed by Balacheff (1987), generic proofs such
as these may often use rather imprecise tools and be defective in certain respects –
as was, for example, pointed out by her classmate’s question as to how Janet knew
that (x + 1) would appear in the grouping, or the unposed question as to how she
knew that there would always be an even number of terms in the second factor of the
first line of her proof. Nevertheless, it was a clever proof with a degree of elegance
that indicated to the teacher, Michael, that his students could go much farther in the
activity of proving than he had initially thought possible (compare with Bergqvist,
2005, where teachers were reported to believe that only a small number of students
can use higher level reasoning).

Proof 3: A New Conjecture Involving x n + 1 Where n Is an Odd Integer

When Paul had presented his proof to the class, the implicit underlying argument
was that when one begins with x n – 1 where n is an even integer, and if one
continually takes the even exponent and treats it as a difference of squares, then
one eventually arrives at x2 – 1. Shortly after Janet had finished explaining her
proof, the issue of Paul’s proof came up once more. To provoke the students, the
teacher offered the following counterexample: “Just out of interest, what would
happen if this was x14 – 1?” [he wrote (x14 – 1) under the (x n – 1)], to which a
student easily responded: “(x7–1) times (x7+1).” The teacher wrote at the board
(x14 − 1) = (x7 − 1)(x7 + 1) and then wondered aloud: “Where does that
leave your proof, Paul?” However, rather than leaving the class stymied, this
question provided an opening for another student who had been conjecturing
something new:
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Andrew: See, when it’s a prime number, then the first part here is x+1 as a factor.
. . . From, like x5+1 you get, x4−x3+x2–x+1, like when you factor it on
the calculator, that’s what you get.

T: Ok.
Andrew: x+1 times x4–x3+x2–x+1.
T: Say it again Andrew [he is ready to write down Andrew’s verbalizings

at the board]
Andrew: When you factor x10–1 on the calculator, you get (x−1) times (x+1)

times (x4+x3+x2+x+1) times (x4–x3+x2–x+1).
T: Yeah [while completing the writing of Andrew’s factorization at the

board]. So, just go back a bit. That was these two together [tracing an
arc joining (x−1) and (x4+x3+x2+x+1)] to give you the x5 –1.

Andrew: Yeah, and the next two would be (x+1) and (x4–x3+x2–x+1) (See Fig. 7).
T: So you’re going into something that we haven’t looked at in this class.

You’re setting up another hypothesis. What is your hypothesis?
Andrew: Well, that’s what I was trying to get at. . . . If the division by 2 gives an

odd number, then it goes (x+1).
T: So you’re saying that, for the second hypothesis, something like this [he

writes down (x5+1)=(x+1)(x4–x3+x2–x+1), just as the bell rang]. And
you’re saying that’s true for all odd numbers?

Andrew: That’s what I think.
T: So if we could prove this, then we’ve got it. But we’ve run out of time.

Fig. 7 Moving toward a conjecture involving x n+1 for odd ns

Analysis of Proof 3

When Andrew had been working earlier on the second part of the xn – 1 task, which
had involved the reconciling of his paper-and-pencil factoring with the CAS fac-
toring, the x10 − 1 example had presented a surprise. He had first factored it with
pencil and paper as (x5 + 1)(x5 − 1), and then refactored the (x5 − 1) according to
the newly-learned general rule, but had left the (x5 + 1) factor as is. But the CAS
produced as its factored form for (x10 − 1): (x − 1)(x + 1)(x4 + x3 + x2 + x + 1)
(x4 − x3 + x2 − x + 1). Andrew noticed this additional factoring by the CAS, that
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is, that (x5 + 1) = (x + 1)(x4 − x3 + x2 − x + 1). So, he began to conjecture and test
the more general rule:

xn + 1 = (x + 1)(xn−1 − xn−2 + ... − x + 1), when n is odd.

It is interesting that, as Andrew was explaining his conjecture to the teacher, it
was clearly a new idea for the teacher too. While Andrew’s conjectured new rule did
not address the gap in Paul’s proof, it did provide a worthy response to the teacher’s
(x14 – 1) counterexample: that is, that it did not matter if the “difference of squares”
approach led to exponents that were odd integers; by taking the “plus” factor (e.g.,
x7+1), one would still end up with a factor of (x + 1)!

A Few Remarks Regarding the Proving Part of the Activity

Keeping in mind that the proving attempts that we have just witnessed were gener-
ated by 15- and 16-year-olds with no prior experience in algebraic-type proofs, their
work is indeed remarkable. Hanna (2005) points out that, “While in mathematical
practice the main function of proof is justification and verification, its main function
in mathematics education is surely that of explanation” (p. 47). She adds that, “A
good proof, however, must not only be correct and explanatory, it must also take into
account, especially in its level of detail, the classroom context and the experience of
the students” (p. 48). While the explanatory power of Janet’s and Andrew’s proofs
was in a sense stronger than that of Paul’s, even his had the seeds of a powerful
explanation.

How might we account for the richness of the students’ work with respect to
proving? Mariotti (2002) has argued that there is no proof without theory. In the
same vein, Mariotti and Balacheff (2008) have emphasized that the proving process
as a complete whole necessarily starts with the production of conjectures before
moving on to proof. In this regard, it is noted that the entire two-lesson sequence that
was devoted to the x n – 1 task involved an interplay between theory and technique.
Such is the backbone of all the task activities developed within the present project.
For the given task, the development of student conjectures was requested right from
the second question in the first part (see Fig. 1). Further conjecturing that was more
explicitly related to the proving task was also called for in the second part of the
activity (see Fig. 3). Thus, the ideas that the students generated during the proving
task were those that they had been conjecturing about and playing with throughout
the entire activity.

The findings of this study contrast with some of the prior work on proof
and justification that has been reported in the literature. For example, Healy and
Hoyles (2000) found from their study of 14- and 15-year-olds’ conceptions of prov-
ing within the number-theoretic domain that students were more likely to prefer
empirical to algebraic arguments: “Regarding explanatory power, arguments that
incorporated algebra were most likely to be viewed neither as showing why the
given statement was true nor as representing an easy way to explain to someone
who was unsure” (p. 414), “. . . students were put off from using algebra because it
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offered them little in the way of explanation; they were uncomfortable with alge-
braic arguments and found them hard to follow” (p. 415). These findings of Healy
and Hoyles are consistent with the results of Lee and Wheeler (1987) who found
that high school students preferred numerical examples to algebraic proofs and did
not view algebra as a tool for justification and proof.

So why were the students of our study so impressed with the explanatory power
of the algebraic proofs generated by themselves and their peers? There are a cou-
ple of major differences between the kind of proving tasks used in the two studies
referred to above and the task used in this study, differences that can explain the
divergence in the findings. First, as already pointed out above, the x n − 1 task had
built into it a great deal of prior conjecturing activity that was related to the ideas that
were integral to the proving part of the task. This is in contrast to the proving tasks
used in the Healy and Hoyles survey that were not preceded by prior student activ-
ity in developing related conceptual ideas. Students of the Healy and Hoyles study
were confronted with the survey instrument “out of the blue,” so to speak. Second,
and this is a critical difference, the Healy and Hoyles problems presented students
with statements, such as, “When you add 2 even numbers, your answer is always
even,” followed by choices of proof responses that included numerical, algebraic,
and pictorial approaches. That students tended to choose numerical justifications as
being more convincing is not surprising, given the numerical aspect of the initial
problem statement. However, the x n − 1 task is not a task that suggests numerical
exemplification as does the above number-theoretic task. Furthermore, most of the
tasks in the Healy and Hoyles study were presented to the students in a verbal rather
than an algebraic form, the latter of which was the case in our study and which may
have induced students to embrace an algebraic form of proof. In fact, the proving
activity of the x n – 1 task did not evoke the usual dialectic between the numerical
and the algebraic – as is often the case in algebraic activity – but rather a higher-
level dialectic between specific algebraic examples (e.g., x2 – 1) and more general
algebraic formulations (e.g., x n − 1). The students in the current study remained at
an algebraic level throughout – one that had been supported by a great deal of prior
work involving related conjecturing.

Hanna and Barbeau (2008) have advanced the notion that “proofs yield new
mathematical insights, new contextual links and new methods for solving problems,
giving them a value far beyond establishing the truth of propositions” (p. 346).
We would add, in closing this section and in introducing the next, that these new
mathematical insights were found in our study to flow both in the direction of the
proof-giver and in the direction of the proof-receiver – the proof-receivers being
both students and teacher.

The Subsequent Interview with Michael

The 35-minute interview with Michael took place at the close of the proving activity.
It inquired into a range of issues related to his views on the research project, as well
as his impressions of the most recent activity involving the x n – 1 task. The main
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thrust of his reflections, which are captured in the following verbatim extracts, focus
first on his initial expectations, then on his changed views after having experienced
a few months of classroom activity with the project tasks and CAS technology, and
finally on related future plans.

His Initial Expectations – Extract 1

Interviewer: Did you have any expectations or apprehensions about the proposed
use of symbolic calculators in your math class before this project
started?

Michael: Hmh, I guess I wasn’t sure how it was going to go; I was appre-
hensive to some degree. I was a little bit concerned about how the
students would take to it and whether they would see it as being
dragged away from what they needed to do. I was a little bit worried
about how the parents would take it, but that’s been no issue at all. In
parent-teacher interviews, a lot of them said they were quite pleased
that we’re doing some of these things and pushing the kids a little bit
further. My feeling about the project itself was that we had enough
time to do it, so it couldn’t be bad. I’d figured you guys had put some
thought into what you were doing and there was a good chance that
it was going to be successful and to help them a little. I don’t know
if my expectations were that huge, but I was hoping there would be
something there.

His Changed Views – Extract 2

Interviewer: Do you now see this technology as playing a different role in your
class from the time before the project started?

Michael: Yes, for sure, because before the project started, like I said, I hoped
it would be good, but my expectations were not that high about it. I
certainly have been very pleasantly surprised with what’s happened
and I don’t think I would have considered when we did this in June
last year – when we went for the training days – I don’t think I would
have considered that I would be at this stage. I didn’t think I would
have been in a situation where I’d be saying to you: “I want to use
this again next year.” I don’t think that those were my expectations,
I thought it would be ok and kind of fun, and a nice diversion, but I
didn’t think we would be quite at the level that we are. I guess my
expectations were a lot lower than what we’ve achieved.

Brief Commentary on Extracts 1 and 2

Michael had not had high expectations at the outset of the project. This makes the
results all that much more interesting and persuasive. Some mathematics educators
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have been heard to express some reservation regarding the role that technology can
play in the learning of mathematics, a few even suggesting that it is the already-
converted with their “rose-tinted glasses” who are technology’s greatest proponents.
Yet, here we have a teacher who was not already “converted” at the start of the
project and who, as the project progressed, became highly impressed with the way
in which the technology was serving to enrich the mathematical learning of his
students.

The Tasks and the Technology – Extract 3

Interviewer: If I were to ask you to describe what you think has been the
impact on the students of this project both mathematically speak-
ing and technologically speaking, how would you describe this
impact?

Michael: I think the biggest impact, and the thing I’ve been most happy with
is the way you guys have designed the activities. It’s the way that
we’ve challenged their [the students’] thinking and actually made
them think about a process that maybe they knew how to do, but
made them think about why they’re doing it that way. And I think
that’s what the calculator has helped them to do and helped them to
really, really look at whether they understand the material – basically
the meta-cognition kind of idea of thinking about the process you’re
going through yourself, the thinking you’re going through. That’s
something we don’t do enough of in mathematics, I think we should
do and I really like to do it. So in a mathematical sense I would say
that’s been the biggest thing. . . . The learning through the technology
was amazing. But it’s the amount of work that you put into these
activities, and that’s why they were so successful. The technology is
nothing by itself. That’s why it’s been such a pleasure to do this and
why I have really enjoyed it – it’s because you people clearly know
what you’re doing and have spent a lot of time organizing these. Like
you said, we [the teachers] were involved, but only to a small extent.
And it’s been really good to see how the kids have developed with
these [the tasks] and worked with them.

Change in His Teaching – Extract 4

Interviewer: Has this project affected your style of teaching in any way?
Michael: [shy-laughing] I don’t know. I think it’s made me think more, or

made me realize that what I like is making them think a little bit
more. And I think I did that anyway, I remember when you came into
class last year that there were some things similar happening, but it
just made me, just consider a little bit more: Can I let them come
through this themselves, let them try this out themselves a little bit
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more, which I think I always did – but just seeing these activities
work, it’s made me realize there’s more scope to it than I have done
in previous years. There is much more scope to let them really go
and really know the material properly. So, [to answer your question]
I think so, a little bit.

Pushing Students to Go Farther Mathematically – Extract 5

Interviewer: Has the project altered your view of the nature of the mathematics
content that can be taught at this level?

Michael: Yes. Because some of the things that you had in those activities
I wouldn’t have touched. Such as, especially the last activity [the
x n − 1 task set], you know there’s no way I would have gone
anywhere with that. It was way beyond anything that they need to
know, but just doing that activity was such a fulfilling experience
for, not just for me, I spoke with some of the kids afterwards, and
they really enjoyed it. They really did! Just going way beyond what
they needed to do [in the math program for that grade level] and
they were all able to do it. The really nice thing about that activ-
ity is that, at the end of it, everyone had something. Even if they
didn’t all have as nice a little proof as Janet and Alexandra, all of
them had worked someway along the lines to get to something. So,
so yeah, it certainly opens up things and they couldn’t have done
that without the technology. So, so for sure is the answer to your
question.

Brief Commentary on Extracts 3, 4, and 5

While the CAS technology was deemed by Michael to be essential to the changed
nature of his students’ mathematical learning, he was quick to point to the role
played by the task activities. He emphasized that the technology by itself would
not have produced that which he and his students experienced in this new learning
environment. It was the tasks and the way in which they pushed students beyond
what is normally asked of them in their mathematics program that seemed crucial.
The task sheets included questions that were not only different, and also rich and
challenging extensions of that with which they were already somewhat familiar,
but which proved to be quite feasible because of the presence of the CAS technol-
ogy. In addition, the content of the tasks provided Michael with the grist needed to
pose additional questions and to encourage his students to think hard about difficult
ideas. The intertwining of novel and substantive mathematical tasks, and technolog-
ical tools appropriate for these tasks, led to mathematical activity that the students
quite enjoyed and from which they learned a great deal. This, in turn, promoted the
development of new awarenesses on the part of the teacher, awarenesses that will be
discussed shortly.
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Using Technology to Increase Student Involvement and Promote Learning –
Extract 6

Michael: With this technology, the learning is not the same [as with my teach-
ing at the board]. Learning goes much further, it is much more
involved. That’s why I have really, really enjoyed it. Normally, I’d
be involving about two or three of them, but not the entire class.
With this tool, it gives them the extra level of ability, and it involves
more students. It gets them into it a lot more.

Interviewer: You mentioned that the technology in combination with the activities
made them think a lot more about their mathematics, and some of the
different steps in the process. What if they hadn’t had the technol-
ogy, could you have seen or imagined that the same sort of progress
would take place with similar activities but not incorporating
technology?

Michael: I guess with some of the activities it would have been possible, but I
think with some of them it would have been either impossible or
very, very fake ‘cause you’d have to give them answers anyway,
you’d have to give them results from the calculator. If you take the
last activity, the activity 6 [the x n − 1 task] that we did. The only
way you could have done that without the technology would have
been to give them what the calculator gave them itself. So then it
becomes less hands-on, they don’t get into it as much. The fact that
they derived these things and went through the process of “there it
is [gesturing to the right to suggest a paper-and-pencil result], that’s
what the calculator gave [gesturing to the left – emulating a com-
parison], how do I reconcile the difference, how do I factor this,
how do I do it?” I think that without the technology it would be
so artificial that it would lose them. And basically, you would have
had to use the technology at some level anyway to give you the
answers, so the fact that they could discover things themselves is a
valuable effect.

Future Plans – Extract 7

Interviewer: Do you see yourself using this technology and these activities
perhaps next year in the same class?

Michael: I was actually saying to David [his colleague and department chair]
that I fully intend using them. You know that our school is in the
process of moving toward laptops and it’s interesting that when you
do that, there is a lot of what I would call – to use a derogatory term –
“fluff” to it: “Ok, that’s a nice powerpoint, that’s a nice little internet
site to look at this, or you can use a smart board and you can highlight
this and that looks really pretty.” So, when I asked you for the DVD
of the class lessons on the x n − 1 task, the reason why I asked for it
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is that I want to show people [my colleagues] what can actually be
done. Even when we were not actually using the technology all the
time [in class], the learning through the technology was huge.

Brief Commentary on Extracts 6 and 7

In orchestrating his classroom teaching, Michael did not always use the technologi-
cal artifact of the classroom view-screen hooked up to a TI-92 CAS calculator. Yet,
he was firmly convinced that the “learning through the technology was huge.” Not
only did it allow the students to go farther mathematically, it encouraged them to
be more active and more involved participants in the process of learning. Michael’s
impressions of the project activity were so favorable, in fact, that he wanted to con-
tinue using the tasks and the technology the following year; he also wanted to share
the video of the lessons of the last two classes on the x n − 1 task with his colleagues,
just so that they could see what is possible with this technology and with the kinds
of tasks that were developed within the project.

The above interview-highlights are now analyzed in the light of what we
observed during the two classes, with a view to focusing more particularly on the
teacher and his learning.

Analysis and Discussion

As stated by Michael, it was his participation in the research project, a project
involving tasks and technologies that were new to him, which led to new aware-
nesses regarding his practice of teaching algebra. From an analysis of the two
observed lessons in conjunction with the follow-up interview, we too became aware
of the changes that had occurred in Michael. This section focuses first on what
changed in Michael and, second, on what enabled those changes.

What Changed in Michael

Zaslavsky and Leikin (2004) have pointed out that, by observing their students’
work and by reflecting on this work, teachers learn through their teaching. We have
found this to be the case for Michael, as well. In particular, Michael’s learning was in
three areas: his knowledge of mathematics, his knowledge of mathematics teaching
and learning, and his practice of teaching.

His Knowledge of Mathematics

Before his participation in the project, Michael had never really had the opportunity
to think about a general rule for factoring the family of polynomials of the form
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x n − 1. The prior workshop sessions between the members of the research team
and the participating teachers had included discussions on this task and on one of the
ways that its proving component might be thought about. However, the mathematics
that Michael learned from engaging in the two class lessons on this task went beyond
that which he had learned during the workshop. It involved specifically certain ways
to approach the proof problem; moreover, this new learning on Michael’s part was
provoked by the students themselves.

The proof produced by Janet and Alexandra, which involved factoring by group-
ing with the generic example for n = 8, was one that had not occurred to Michael
before his students actually generated it. He found it a “nice little proof,” to use
his own words. A second contribution to the mathematical learning of Michael was
occasioned by the proving attempt of Andrew. While Andrew was describing what
he had observed for the CAS factoring of x10 – 1, it became clear that not only
was this an interesting finding for his classmates, but also for the teacher, Michael.
The new pattern that Andrew had noticed regarding the factoring of x5+1 as (x+1)
(x4–x3+x2–x+1) paralleled the pattern that he had noticed earlier regarding x3+1 as
(x+1)(x2–x+1). Although time did not allow for the proving of his conjectured new
rule nor for its integration into the previous proofs that had been put forward dur-
ing that lesson, there was no doubt that this was a new piece of mathematics for
Michael.

His Knowledge of Mathematics Teaching and Learning

As reported by Zaslavsky and Leikin (2004), teachers’ engaging in learning activ-
ities designed for student mathematical learning can be an effective vehicle for
their professional growth. An additional factor that has been emphasized by Mason
(1998) is that it is one’s developing awareness in actual teaching practice that consti-
tutes change in one’s “knowledge” of mathematics teaching and learning. Although
Michael did participate in our professional development workshop prior to his inte-
grating the novel tasks and technology into his teaching, it was his actual practice
with these materials that had the greater impact regarding his “developing aware-
nesses” in the area of mathematics teaching and learning. We note five of these new
awarenesses.

• Michael developed a new awareness of what students at this grade level can
accomplish mathematically – given appropriate tasks – as well as the realization
that they can go further mathematically than expected (Extracts 4 and 5).

• Michael developed a new awareness of the role that technology can play in the
mathematical learning of students (Extracts 5, 6, and 7).

• Michael developed a new awareness that students’ mathematical knowledge
changes with the combined duo of “task-technology” (Extract 3).

• Michael developed a new awareness of how he might further provoke mathemat-
ical reflection in students; that is, that he could go even further than he usually
went in his questioning, given appropriate tasks (Extract 4).
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• Michael developed a new awareness regarding the culture of the class: It changes
when technology is present and is used in the classroom. Students become more
involved; they are more autonomous (Extract 6).

His Practice in Subsequent Mathematics Classes

It was not only Michael’s awarenesses, which developed during this project. These
new awarenesses were translated into practice. As he had said during his inter-
view, he fully intended to take advantage of the wider scope offered by the project
tasks and technology and to use them in subsequent years to push his students into
thinking more deeply about their mathematics (Extracts 2 and 4). We continued
to observe several of Michael’s classes during the two years following this study.
We witnessed, just as he had hinted he would do, a continuing development of
his approach to encouraging students to go a little further in their thinking. This
reflected his realization, which he stated during the interview, that he could push
his students to think a little bit more about their mathematics. In addition, we also
observed that he never stopped using the tasks and CAS technology that he men-
tioned he had so much enjoyed using during the present study. Thus, we were
able to note a further evolution in his teaching practice – a practice characterized
by the newly-acquired awareness of the role that technology, when accompanied
by appropriate tasks, can play in the development of students’ mathematical learn-
ing. Regular conversations with him during the ensuing years, including one quite
recently, have highlighted his and his students’ successes with, in particular, the
x n − 1 task with its proving component.

What Enabled These Changes

We can point to several factors that enabled the changes that we observed, as well
as those that were disclosed to us by Michael himself. These enabling factors were
found to include the following: (a) access to the resources and support offered by
the research group; (b) use of CAS-supported tasks whose mathematical content
differed from that usually touched upon in class; (c) Michael’s disposition toward
student reflection and student learning of mathematics; (d) the quality of the reflec-
tions of his own students on these tasks; (e) Michael’s attitude with respect to his
own learning. The first two factors relate principally to the role played by resources
“from without,” while the remaining three could be said to be “from within” in that
they concern the given teacher and his students. However, as will be argued, it is the
interaction of the two dimensions that promoted teacher change.

Access to the Resources and Support Offered by the Research Group

As was noted above, the change in Michael’s knowledge of mathematics was occa-
sioned by two different, but related, experiences. The first of these involved his prior
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discussions with members of the research group. These discussions had focused on
new tasks and thus new mathematical awarenesses, which thereby constituted a first
round of change with respect to Michael’s existing mathematical knowledge. While
the ideas for, and initial design of, the tasks came from the research group, these
were shared with the participating teachers in a workshop setting that involved their
working on the tasks themselves. They were then invited to offer feedback and to
suggest changes to the tasks. These changes were subsequently integrated into a
modified design for the tasks. Thus, the first exposure to the mathematical ideas
inherent in the tasks occurred during the workshops that preceded the integration of
the tasks into the teachers’ classroom lessons. It was at these workshop sessions that
Michael initially encountered the mathematics of the x n − 1 task. This was also his
first introduction to the use of CAS technology.

As the project unfolded and the researchers became a regular presence in
Michael’s class, there was ample opportunity to provide ongoing support to Michael.
The researchers were able to offer assistance of a pedagogical, mathematical, and
technical nature, whenever Michael so desired. In actual fact, such requests for sup-
port were quite rare, as each of the tasks was accompanied by a teacher version that
included suggestions regarding discussion ideas, as well as additional information
of both a mathematical and didactical sort. The normal interaction between Michael
and the researchers after each lesson tended to be informal and conversational, much
like that between collaborators.

Use of CAS-Supported Tasks Whose Mathematical Content Differed from
That Usually Touched upon in Class

Michael had expressed the fact that the x n − 1 task with its exploration of the
factors of this family of polynomials for integer values of n, along with its proving
component, was a type of task that went far beyond what the students “needed to
know.” (It was also a new type of task for him.) While he might never have presented
such a task to his students in the past, the experience of doing so convinced him that
such tasks are indeed not only feasible, but also enjoyable to the students and lead to
deeper mathematical reflection on their part (Extract 5). Based on our observations,
we contend that novel tasks such as this one can change in a positive manner the
usual teaching-learning dialectic of the mathematics classroom and are at the heart
of both student and teacher learning.

Watson and Mason (2007) have argued that, “factors which influence the effec-
tiveness of a task in promoting the intended kind of activity include . . . established
practices and ways of working; students’ expectations of themselves and of each
other as influenced by the system and their pasts . . .” (p. 207). While “novel tasks”
may in fact be part of some teachers’ “established practices and ways of working,”
we think rather that novel tasks – especially those involving proofs – in which alge-
bra students have never before engaged, are likely the exception and not usually the
norm. The very absence of “established practices” or student “expectations” may,
in fact, lead to the success of novel tasks, and thus to some nuancing of Watson and
Mason’s statement.
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Michael’s Disposition Toward Student Reflection and Student
Learning of Mathematics

Michael worked very hard at encouraging his students to reflect, at giving them
time to reflect, at listening closely to their reflections, and at having them share
their reflections with the rest of the class. Even if he expressed the realization that,
with the help of the activities designed by the research group, he could do even
more in this regard, he was already predisposed to such practice. This predisposi-
tion was of course related to the importance Michael ascribed to students’ learning
to think for themselves. One of the signs of this didactical stance on mathematical
learning was the way in which he often presented counterexamples to challenge stu-
dents’ thinking rather than immediately correcting them or giving the right answer.
He aimed at having students develop their mathematical reasoning and critical
thinking.

In her study of one teacher’s practice of listening and responding to students’
solution strategies, Doerr (2006) found that, “as the teacher asked for students to
describe and explain their thinking, this not only contributed to the teacher’s under-
standing of their thinking, but it created a situation where the students could refine
their thinking and shift to a new way of thinking about the problem” (p. 20). As
the case of Michael suggests, not only does listening to students support the devel-
opment of students’ thinking, it also leads to new awarenesses and professional
growth in the teacher. Had Michael been a teacher who did not encourage the voic-
ing of his students’ mathematical ideas, he would hardly have come to know that
“their learning through the technology was huge” (Extract 7), nor would he have
realized the pedagogical role that technological tools can play in enhancing math-
ematical learning. Thus, as Leikin and Levav-Waynberg (2007) have pointed out,
a teacher’s pedagogical principles can provide support for the growth of his/her
knowledge regarding not only student learning but also teacher learning. In fact,
Michael’s pedagogical disposition with regard to mathematical activity (i.e., his
view on encouraging the voicing of student reflection) served to beget not only new
pedagogical knowledge regarding mathematics teaching and learning but also new
mathematical knowledge for him.

The Quality of the Reflections of His Own Students on These Tasks

During the interview, Michael mentioned on several occasions how struck he was
by the quality of the mathematical contributions of his students, contributions such
as those by Janet and Andrew, which had evoked new mathematical insights within
Michael, as well as within the students of his class. He was clearly a teacher who
could learn from his students, just as did the teachers in the Leikin and Levav-
Waynberg (2007) study; these researchers reported that “teachers who are sensitive
to their students and flexible in their interactions with them, and who grant students
autonomy in learning, end up learning mathematics from their students’ replies”
(p. 366).
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In addition to Michael’s development of mathematical knowledge from his
interactions with his students, so too was the development of his knowledge of math-
ematics teaching and learning enhanced by the quality of his students’ reflections.
New awarenesses, such as, “that which students at this grade level can accomplish
mathematically” and “the role that technology can play in the mathematical learn-
ing of students,” were occasioned by the students themselves. This is in contrast to
Monaghan’s (2004) findings that some teachers in his study noticed that “tasks in
technology-based lessons led their students to focus on the technology and at least
three of the teachers felt an ‘is this maths?’ tension when their students attended to
technological details at, in their opinion, the expense of the mathematics” (p. 336).

Michael’s Attitude with Respect to His Own Learning

Each time that Michael said during the interview, “it’s made me realize . . .,” we
interpreted this to indicate Michael’s openness to learning from his project partici-
pation. He experienced a great deal of joy – mentioned many times throughout the
interview – at seeing how the students were positively responding to the tasks and,
thus, in his learning not only about the mathematical levels they were reaching from
their experience but also about the ways in which the technology and the tasks them-
selves were encouraging this response. He was in fact reflecting on his students’
reflections. It is also noted that Michael was open to participating in the project
right from the start, to learning something from it – even if he was not sure initially
whether it would lead to new learning for his students. Watson and Mason (2007)
have emphasized that “to become an effective and professional mathematics teacher
requires development of sensitivities to learners through becoming aware of one’s
own awarenesses” (p. 208). There is little doubt that the professional awarenesses
Michael developed throughout the project, and which he shared with us, constituted
a heightened sensitivity regarding his learners.

Reflections on What Changed in Michael and on What Enabled
These Changes

We stated above that the changes in Michael’s knowledge of mathematics, of math-
ematics teaching and learning, and in his practice of teaching were enabled by two
kinds of factors, those from without and those from within. However, as our study
progressed, it became clear that it was in the interaction of these two types of factors
that change was promoted. Had it not been for the “from-without” factors, that is,
the access to the resources and support offered by the research group and, conse-
quently, the use of CAS-based tasks whose mathematical content differed from that
usually touched upon in class, then the “from-within” factors, such as, the quality of
the reflections of his own students on these tasks, would not have been put into play.
Similarly, had it not been for “from-within” factors, such as Michael’s disposition



150 C. Kieran and J. Guzmán

toward student reflection and student learning of mathematics, as well as his atti-
tude with respect to his own learning, then the “from-without” factors related to the
research team’s contributions would not have taken root and flowered. Both types
of factors supported each other in a mutually intertwining manner.

This is of interest from a theoretical perspective. It suggests firstly that the
integration of novel materials and resources that have been designed to spur mathe-
matical learning is more likely to be successful when the teachers who are doing the
integrating are able to see that these resources are having a positive effect on their
students’ learning. Secondly, the novel materials and resources have a greater like-
lihood of producing this positive effect on student learning when the teacher doing
the integrating engages in teaching practices that encourage student reflection and
mathematical reasoning. The synergy between the two types of factors was found to
be a positive force in the development of Michael’s professional awareness, and one
that constituted change not only in his knowledge of mathematics and mathematics
teaching/learning, but also in his practice.

One final remark in this section concerns the role of the CAS technology on
Michael’s learning. As mentioned earlier, Michael’s prior experience with class-
room technology had included mainly graphing calculators, but not the CAS. Before
the unfolding of the project in his own classroom, he never imagined the impact of
this technology on his students’ mathematical learning, and thus on his own learn-
ing of what his students could accomplish. At the heart of his coming to see that
the student learning through the technology was huge was his realization that the
presence of the technology changes the nature of the questions that can be asked
of students, and thus the kind of mathematical reflection they engage in. While the
tasks themselves were a crucial component of Michael’s learning within his own
practice, the actual design of the tasks was set up in such a way as to work hand-in-
hand with the affordances of the technology. In fact, the first two parts of the x n − 1
task set, which were foundational to the proving part of the activity, could not have
been managed without the CAS. In this respect, the CAS technology was central to
Michael’s learning.

Concluding Remarks

In conclusion, we wish to emphasize briefly only two issues. One is that, while
this study fits into the broad research domain of teachers learning from their own
practice (e.g., Jaworski, 2006; Zaslavsky & Leikin, 2004), a significant feature has
been that the practice was nourished by input coming to a large extent from outside.
The second issue concerns the mathematical activity that was stake in the study, that
of proving.

With respect to the first issue, much of the research related to teachers’ learn-
ing from their own practice emphasizes teachers’ planning of their interactions
with students, followed by their subsequent reflective analysis of these interactions.
Considerably fewer studies (exceptions include, e.g., Leikin, 2006) follow the path
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that we did where the majority of the planning of the instructional interaction with
respect to the mathematical content and the task questions to be posed to the stu-
dents had already been elaborated in advance by the research team, even if in partial
collaboration with the participating teachers. This, we feel, added a dimension to the
study that does not often come into play in research on teaching practice. As a con-
sequence, the teacher’s reflective analysis of his interactions with the students had to
take into consideration – in a somewhat different manner than would otherwise be
the case – the worthiness, or not, of the particular mathematical content at stake, the
way in which it was elaborated, and the technological tools that were used to sup-
port its approach. The positive nature of the reflections shared by Michael during
the post-lesson interview with one of the researchers suggests that the integration
of resources coming from without can be a powerful stimulus to teachers’ learning
from their own practice.

With respect to the second issue, only rarely does the teaching of algebra in high
school include activity with proving. The teacher featured in this study, Michael,
could be said to have been very courageous in agreeing to integrate into his teach-
ing of algebra the x n − 1 task with its proving component. He had never before
included proofs within his algebra teaching; nor had his students ever engaged in
this form of algebraic activity. Nevertheless, the success that he and his students
experienced with it went way beyond his (and likely their) expectations. Hanna and
Barbeau (2008) have raised the following query: “Approaching proof as more than
a formal way of certifying a result is bound to make increased demands on the
teacher and involve more engagement by the students; the long-term value would
seem to be clear, though not quantified, but can the increased demands be man-
aged?” (p. 352). Michael’s and his class’s experience with the proving segment of
the x n − 1 task provides a strong existence proof of the notion that the increased
demands can indeed be managed.
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Learning Through Teaching, When Teaching
Machines: Discursive Interaction Design
in Sketchpad

Nicholas Jackiw and Nathalie Sinclair

Introduction

Seymour Papert famously asserted that in technology-based classrooms, the distinc-
tion between teachers and learners would be blurred. In Mindstorms, he suggested
several specific ways in which this might happen. For example, he pointed to the way
in which children and their teachers would work on problems together, blurring the
novice/expert distinction that pervades mathematics classrooms. He also discussed
the way in which the curriculum—or at least the development and flow of content—
might be controlled, at least in part, by the learner. Since the computer provides a
generative set of materials to think with, learners can engage generatively with these
ideas, thereby producing new ones. In his work with Idit Harel, he showed how stu-
dents engaged in learning-through-teaching, by using Logo to teach the computer
how to “do” fractions (see Papert & Harel, 1991). Indeed, learning mathematics was
done by programming Turtle Logo—an activity Papert metaphorically described as
teaching the turtle new words.

In this chapter, we extend Papert’s work on blurring this distinction, between
students and teacher, by focusing on the discursive interaction between different
players in the technology-enhanced mathematics classroom. Instead of the physical
and motivational roles of teachers and learners, we pursue the discursive and narra-
tive roles that they adopt, first in a generic computer-enhanced classroom, then more
specifically in interactions with The Geometer’s Sketchpad (Jackiw, 1988) dynamic
geometry environment. There we find evidence not only of Papert’s blurring of
roles, but, moreover, of a role inversion, in which computers become “students”
and learners become “teachers” through their discursive interaction. We explore
this claim in detail by analyzing specific linguistic mechanisms through which
Sketchpad’s design constructs and shapes its users’ experience. Where typical DG
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research focuses on visual technology representations of mathematics, our emphasis
here on verbal representations better allows us to pursue social, rather than cogni-
tive, implications of technology design. Language, the participationists claim, is
not only the critical tool for analyzing social roles in a classroom, but the medium
in which those roles are defined and perpetually renegotiated. A stronger claim,
from Wittgenstein through Vygotsky and Sfard (2008), is that language forms both
the center and horizon of all mathematical knowing. In bringing Sfard’s discourse
approach to DG, we seek not to displace claims about the importance (to that tech-
nology) of visual cognition but rather to extend those approaches with critical tools
better suited to the analysis of social roles and their meanings.

Discursive Roles of the Computer

What is the role of the computer in the classroom? Many models and metaphors have
been proposed (Pimm, 1983, offers a useful catalogue of such metaphor). Perhaps
the least subtle way to conceive of the computer’s structural role in the mathematics
classroom is simply as a novel medium in which mathematics is represented and
manipulated—in the tradition of paper, blackboard, or—reaching back—papyrus
and clay tablet. This is the conception that underlies descriptions of electronic
blackboards, digital notebooks, or indeed the broad term of art multi-media. As a
metaphor, this construction resituates to the computer where one “does the math,”
but leaves the more active classroom roles of the teacher and the student—as
instructor and apprentice, in the mathematics’ “doing”—powerfully untouched by
the computer. A more content-oriented technological incarnation of this idea is
the paradigm of computer as textbook—again, essentially a medium combined
with authoritative curricular inscriptions in that medium. And it is easy to read
Sketchpad’s presentation of a blank sketch with drawing tools in this metaphor—
basically as a digitally-enhanced medium for creating and depicting geometric
drawings. And yet, when the student drags a vertex in Sketchpad, or more gen-
erally, executes a command in a computer environment, the computer responds.
This takes us almost immediately beyond the realm of all prior media, which
“respond” only to the degree they obey certain physical laws. In other words, the
computer must be seen as taking on some discriminatory agency1 in the class-
room, and so—though powerful in its emphasis on representation—the metaphors
of “computational media” do not help understand this fundamental interactivity.

1 Pickering (1995) argues for the central role of agency in scientific work, and even accords mate-
rial agency to the tools, machines, and artifacts of the scientific laboratory. While he also discusses
individual human and disciplinary agency in the specific context of mathematics, he discounts any
possibility of material agency there. A re-interpretation of the possible role of material agency in
the development of mathematics might accord the various media traditionally used in mathematics
a much more important role than merely unresponsive devices for inscription and representation.
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An early metaphoric attempt to invest the computer with greater classroom
agency explored the possibility of computer as teacher. This construction is explicit
in the no longer fashionable program of “computer-aided instruction” (CAI), where
the computer substituted for a human teacher in the presentation of test material
to a human learner. Over the past twenty years, CAI has been replaced as a term
by “computer-aided learning” (CAL), but the metaphor’s agenda remains the same:
The learner in question is the human student user; and software “aides” the learner
by instructing her. We can see this language-slippage in the titles and abstracts of
many present-day journals articles.2

Much of this disfavor into the term of CAI has fallen reflecting the degree to
which early attempts at positioning computer as teacher failed to respect the sen-
sitive and complex role of the human teacher in the mathematics classroom. And
yet, the paradigm survives, even though the language changes to hide its tracks:
Twenty years after “end” of CAI, the broadest conception of educational software
still operative in schools is software that presents subject matter, drills technique,
and assesses quantitative response (Becker, Ravitz, & Wong, 1999).

Whether these computational activities are hallmarks of “the teacher” does not
interest us. Instead, we claim that in order for the computer’s fundamental interac-
tivity to be explained through metaphors of computational teaching, that it must not
simply act as a teacher (that is, wield authority, command knowledge) but interact
as a teacher (in its communication with and response to students). Thus to test the
legitimacy of this metaphoric paradigm,3 we seek in the following sections to iden-
tify discursive markers characterizing teacher interactions with students, and then to
evaluate the computer’s interactions with students in those same terms.

Organization of Discourse Around Evaluation

According to Stubbs (1979), the most conspicuous characteristic of a teacher’s
discourse—in terms of speech events in the classroom—is its constant organiza-
tion around organizational and evaluative commenting. Pimm (1994) notes that
these “meta-comments” arise from the teacher’s stance that “the utterances made
by pupils are seen as appropriate items for comment themselves” (p. 139). Such
meta-commenting might include echoing or re-voicing what a student has said; or
showing how it fits, or does not fit, with the rules and norms of the classroom.
(Stubbs highlights the way in which this type of discourse is exclusively characteris-
tic of teaching; in any other context, “it is generally regarded as boring, incongruous,
inappropriate, pedantic, devious!”).

2 Consider this article focusing on CAL-based arithmetic instruction: “This study develops and
implements a computer-assisted learning (CAL) program [featuring] both multiplicative facts and
the instruction of meanings behind those facts (Chang, Sung, Chen, & Huang, 2008, p. 2904, our
emphasis).”
3 Pimm (1983) also offers several metaphors for the computer such as super-calculator and image-
maker, but also computer as human being.
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In writing about specific types of meta-commenting that occur in classrooms
around the use of precise mathematical language or rules, Hewitt (2001) describes
the example of students working on plotting the point (2, 3) on the Cartesian coor-
dinate system. While student utterances such as “you go two up and three over”
are perfectly well-understood by the teacher and could be executed successfully by
any reasonable interpreter, we would not be surprised if the teacher were to re-voice
this as “yes, you go three over and two up” or even “yes, you go three in the pos-
itive direction horizontally and two in the positive direction vertically,” repeating
and normalizing sequence, structure, and vocabulary not explicit in the equivalent
student experience.

Breaking Conversational Maxims

Given Stubbs’ point that this core aspect of teacher meta-commentary would seem
inappropriate in most other conversational settings, we might not be surprised to
find other ways in which discursive patterns in teaching break conversational norms.
Grice’s (1975) conversational maxims, which flesh out the cooperative principles by
which normal speakers extract meaning from normal conversations, offer a means
for articulating additional characteristic features of teacher-talk.4 The first of Grice’s
four maxims is that of quality, in which one speaker assumes the other is represent-
ing himself honestly. (The other maxims involve quantity, relevance, and manner.)
This first maxim is violated when speakers lie or intentionally contribute something
factually erroneous, but also, perhaps more subtly, when they do something such as
feign incomprehension or incompetence.

Teachers routinely violate Grice’s maxim of quality when they ask a question to
which they already know the answer. Since in normal conversation, speakers assume
the maxim of quality, the fact that the teacher regularly asks such questions—and
moreover, that students know the teacher is inauthentic in her feigned ignorance of
the answer—marks the classroom conversational contract as highly unusual. Just
how unusual is seen when we substitute students not already acculturated to the
teacher’s duplicity, as illustrated in Crawford’s (1996) study of Australian aborigi-
nal schoolchildren first encountering anglo-saxon school mathematics. “Aboriginal
communities find the educational practice, used frequently by teachers of math-
ematics, of asking students questions when the answer is already known to the
teacher, extremely puzzling and distasteful (p. 135).” Thus we place “didactic
duplicity” along with “meta-commenting” as hallmarks of teacher interaction with
learners.

4 See Gerofsky (1999) for a discussion of the application of Grice’s maxims to the use of word
problems in mathematics.
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Authority and Imperatives

Pimm (1994) asks the question of how different teachers might manifest the control
they have through their discourse. Clearly, one way of doing this is through the meta-
commenting, since the constant evaluation of student utterances allows the teacher
to retain a position of power. More forcefully, teachers’ discourse often relies on
the imperative voice: do this, stop doing that, factor here and solve there—than any
peer-to-peer discourse. As evident from these examples, the commands apply not
only to classroom management but also to mathematical actions. Regardless of the
form of instruction (constructivist, traditional, or other), the issuing of commands by
the teacher places the student in the position of being commanded and as responsible
for carrying out the instruction of the teacher.

That the imperative voice is a standard predicate construction in mathematics
writing makes it an even more notable discursive choice for the mathematics teach-
ers. Students also encounter the imperative voice in their textbooks, which like the
teacher, become sources of authority. Herbel-Eisermann (2009) points to the way
in which the dynamic of power and authority between the teacher and the text-
book plays out. And while sometimes authority is given to the textbook, the teacher
remains the director, and the student the directed.

Neither Medium Nor Teacher

If the computer is to be seen as playing the role of the teacher, then we would expect
it to engage in patterns of discourse similar to the three described above: To take
student utterances as opportunities for evaluative commenting; to engage in forms
of conversation that are marked by didactic dishonesty (such as asking questions to
which they already know the answers); and to retain and deploy authority through
the use of the imperative voice. However, in considering the interaction between the
student and Sketchpad, we find that Sketchpad engaging in markedly different—and
even, perhaps, opposite—discursive patterns.

Consider first the discursive characteristic of meta-commenting in relation to
Hewitt’s example of plotting points. If the student were to enter (2, 3) on the com-
puter, expecting to go 2 up and 3 over—an expectation that teachers tolerate and
correct, in student conversation—the computational result would not match the stu-
dent’s inarticulate intent. In its response pattern—producing the wrong result—the
computer does not re-voice; it doggedly executes. This is indeed feedback, as is
Hewitt’s teacher’s revoicing, but it is feedback of a fundamentally different type.
One sense of “feedback” is rich in judgment; it is the criticism of an able or worthy
expert, and the sort implied by sentences such as “I really value your feedback.”
Separate from this is “feedback” as used, say, in biomechanics, where the term
describes a raw phenomenon, a Newtonian response. Meta-commentary is the first
form of feedback; computer execution, the second. That the latter feedback is fun-
damentally non-evaluative, in a psychological sense, is critical. The student does
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not wonder whether she was actually right or wrong in her interaction with the com-
puter, nor whether her solution is actually valued. Instead, the student must decide
whether what Sketchpad did was what the student wanted: The student evaluates
Sketchpad.

Again referring to the example of plotting points, we note that the computer
does not violate the maxim of quality. It does not pretend to misunderstand; it does
not ask, “Now, how do we plot points?” Instead, the computer responds exactly as
it has been instructed to do, not calling into question the intention of the student.
But the computer has indeed responded, and the next utterance will be the stu-
dent’s. While some may feel that the computer’s response lacks flexibility, Hewitt
argues that students find it psychologically easier to follow the arbitrary and concise
rules of the computer than those of the teacher, who does indeed have much greater
communicational flexibility.

While Sketchpad does not ask question to which it already knows the answer;
it does ask questions. For example, when a user selects a shape, and then selects
the rotation command, a dialogue box appears, which asks the user for the angle
of rotation to be used. Sketchpad does not already know the answer to this ques-
tion and relies on the user to provide it. In fact, it is the user that frequently asks
Sketchpad questions to which they already “know” the answer: measuring an angle
that has already been constructed to be 90◦, calculating the sum of a triangle’s three
angles, then dragging its vertices around, when it is already “known” that the sum
is invariant. By repurposing the software’s tools (or features) supporting inquiry
and conjecture instead to the more vainglorious purposes of didactic demonstration
and even self-indulgence, students engage in exactly the duplicity of the teacher
feigning ignorance of methods, or surprise at conclusions, with which she is—in
fact—already entirely familiar.

Finally, regarding the third characteristic of teacher talk, we observe that the
computer issues no instructions or commands. In fact, an important role reversal
occurs in students’ interactions with Sketchpad, in which it is the student who must
take on the responsibility of issuing commands: Nothing will happen on the blank
sketch without the student first issuing a command, through a literally imperative
voice. As we develop in the next section, student utters statements like Construct
Midpoint, Plot New Function, and Measure Circumference.

In all of this analysis, we of course do not deny that there is, in fact. often—
almost always—a real and human teacher who has instigated the students’ work
with the computer. Equally often, this work has been initiated with that teacher’s
command (“Students, construct an equilateral triangle.”), or with didactic duplicity
(“Students, who can help me remember how to construct an equilateral triangle?”),
or with other teacherly language. We are not concerned here with that teacher and
the student’s relation to her; what we are drawing attention to is the way in which,
once the student engages with the software, he himself becomes invested with the
power to decree, direct, and demand. It is no longer possible to see the role of the
computer here as that of a teacher. And indeed, we reach a surprising insight: Not
only is the machine clearly not acting as “teacher” in this relationship, but the stu-
dent clearly is. In terms of the evaluative, conversive, and imperative markers of the
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interaction, the student—the mathematics learner—learns from the relationship not
by being taught by Sketchpad, but rather, by teaching Sketchpad.

The Sketchpad Trajectory Through Language

Is this premise credible? If Sketchpad cannot speak, in what sense can it partici-
pate in discourse? We are imputing rough parity between human and machine in
terms of their capacity for discursive engagement—a move many science-fiction
authors warn is ill-advised. And yet, we claim there is a coherent and well-defined
linguistic trajectory to users’ interactions with Sketchpad, an explicit interplay and
evolution of language (about the student’s desires, capabilities, comprehensions, and
motivations) that, at the outset, enables our claim of “discourse,” and in the denoue-
ment, legitimates it. In this second section, we turn to take a detailed look at the
design of Sketchpad, to situate and explain this linguistic trajectory in specific ref-
erence to the program’s user interface and modes of use. In this analysis, we adopt
the perspectives of “interaction design” or “experience design” (Moggridge, 2007),
methodologies and critiques that differ from conventional graphic design and indus-
trial design by viewing the designed object as fundamentally temporal in nature,
capable of responding to its user in ways that stimulate iterated responses to those
(first-order) responses—in short, design philosophies that highlight the interactivity
of, and in, designed objects.

In bringing such a perspective to Sketchpad, we must name our human subjects
with care. “Students” and “teachers” are distinct actors defined by the drama of the
classroom, just as “learner” and “expert” are roles potentially defined by a special-
ized observing assessor. But in interactions with software like Sketchpad, there is
only one human role, that of “the user,” and it is for this distinct role that the soft-
ware constructs an experience and situates the conditions of its use. Thus as we
track an individual’s engagement with this constructed experience, we can expect to
see them occupy multiple roles simultaneously (student and user; or teacher, user,
and expert), and can expect those roles to occasionally coincide and occasionally
conflict.

Pre-verbal Origins

Before we consider Sketchpad’s “language,” we acknowledge that readers only
somewhat familiar with Sketchpad may well be puzzled by the idea that there is any
language in the software. Most relevant research literature characterizes Sketchpad
as a “Dynamic Geometry” environment—indeed, the term was invented to describe
Sketchpad—and thus positions it as primally concerned with moving and interac-
tive images, rather than with words, language, or discourse! Of course, dynamism
and visualization are integral to the Sketchpad experience, and our focus here on
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language in no way attempts to deny their primary roles in shaping students’ expe-
rience with the software. Indeed, the significant features of the Sketchpad screen
on first starting the program are entirely visual: a large, blank drawing canvas (the
user’s “sketch”) and a set of graphical icons representing drawing tools (compass,
straightedge, and point plotter) for placing and constructing (visual representa-
tions of ) geometric objects directly in the sketch. Thus, a student taking first
steps in Sketchpad operates pre-linguistically, pre-symbolically, and almost pre-
semiotically: The meanings of interface elements (such as the compass or a straight
edge tool) are iconic in form5 and the properties of geometric objects under consid-
eration (such as length or area) are inherent physical dimensions of their on-screen
representations. As the student begins to wield these tools first experimentally, and
then with more confident dexterity—placing endpoints here and here, inscribing
a triangle, ah, just there—there is a growing sense of interaction, but not yet of
language-based communication.

The Emergence of Vocabulary

The first words a student is likely to encounter in Sketchpad are those of the
program’s menus. Reading in English’s left-to-right order, the overall menu bar
begins with several menus—File, Edit, etc.—so conventional in appearance (from
other programs) that they operate almost iconically for any reasonably experienced
computer user.

The first menu to promise geometric or mathematical distinctiveness is the
Construct menu (Fig. 1), which in Sketchpad’s mathematical design, consolidates
all of the program’s strictly Euclidean capabilities.6 Beyond the curricular obvious-
ness of that choice, for our purposes, there are several interesting characteristics
of choices in this menu. Most importantly, they are composed of and described by
words. This is perhaps obvious, but such words act not merely to distinguish among
choices; they also introduce or support some normative mathematical vocabulary
with which the student may or may not already be familiar. Second, many of these
choices cause actions that can be equally accomplished using only the (visual) draw-
ing tools. “Points on Objects” and “Points of Intersection,” for example, can be

5 In Pierce’s semiotics (1977), the idea of iconic representation is considered the simplest or crudest
form of semiotic register; in Saussure’s (1916) more linguistically-oriented semiology, the iconic
(which Saussure prefers to call the symbolic—that is, the sign whose meaning is fixed by its visual
or morphological homology to an extra-lingual system of meanings, rather than only to intra-
lingual structural variation) is deemed entirely pre-semiotic.
6 Later menus—again from the left-to-right trajectory—introduce transformational primitives, and
then analytic geometry, and finally some tools for graphing and algebra. All of these tools oper-
ate geometrically in a broad sense but are “not Euclidean” in that they represent mathematical
capabilities (or, said differently, axiomatic foundations) beyond those which give rise to Euclidean
geometry.
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Fig. 1 The basic Sketchpad interface: a sketch (center), the toolbox (left), and the menu bar (top).
Menus display both enabled and disabled choices, based on current sketch selections

performed by clicking the Point tool on the relevant objects or their crossings. Thus
these and six other commands on the menu are straightforward analogs for known
operations and offer simple new representations (though not, since verbalized, nec-
essarily “equivalent” representations) of those known functions. More generally, all
commands on this menu perform some construction that can be achieved with a
multi-step construction of the drawing tools. (For example, the command “Point at
Midpoint (of a segment)” command is itself equivalent to a construction involving
two circles of which the given segment is a radius, followed by a line through those
circles’ intersections.) Menu choices are thus short-cuts for these more lengthy pos-
sible (or, depending on the student, actual) pre-linguistic work experiences. Third,
read together with their menu title in the attentional flow of expressing a menu
choice within Sketchpad’s interface, the names become full imperative commands—
“Construct point of intersection! Construct Parallel Lines”—with the computer as
the implicit subject of these sentences. (“You construct a point of intersection!”) The
speaker of these imperatives is, of course, the user; and indeed, since every actual
menu choice is preceded by the formulation of an intent to choose, the user’s full
psychological expression becomes the sentence “I want you to construct a point of
intersection; I want you to construct parallel lines.”

Taken collectively, these observations suggest that the prototypical student envi-
sioned by this design encounters language in Sketchpad first as a naming vocabulary
for familiar operations, but also perhaps as promising a more succinct or effective
representation of operations than can be realized through other, more physically
embodied, modes of effort. Finally, all of this language exists in the service of the
user, for articulating commands that the computer then executes; and our introduc-
tion to the power of verbal symbolization comes through the act of speaking, rather
than of being spoken-to.
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From Vocabulary to Grammar; From Grammar to Plot

Not all commands, however, are available at the same time. A central principle of the
software’s operation is that to enable a menu command, the user must first “select”
any mathematical prerequisites of that command. Selection—highlighting an object
with the pointer tool—is the computer’s deixis, it elevates a particular object into
the special focus of the here and now. For example, the user selects one (or more)
segments—and Sketchpad enables the Midpoint (or Midpoints) command. In one
sense, this action extrapolates a gesture widespread in software interface design.
(Thus, to italicize a phrase in a word processor, the user selects the phrase, then
chooses “Italics” from some Style menu or button.) But in another sense, it’s a
stricter distillation of that trope, into a more formal and mathematical process of
reasoning from input (a segment) to output (its midpoint). This is perhaps less
obvious—indeed, other geometry packages such as Cabri (Baulac, Bellemain, &
Laborde, 1988) and GeoGebra do it exactly backwards to this (for more discussion
on the question of order, see Laborde & Laborde, 2008, p. 37). (There, the user
first chooses the desired output—the “Midpoint” command—and then hunts around
looking for relevant inputs.)

Selective (and selection-based) command enabling has several immediate conse-
quences in the Sketchpad experience. For genuinely new users, it is not uncommon
to first encounter the Construct menu when absolutely nothing in it is enabled
(because nothing is selected). The user cannot speak, unless she has something to
speak about! At the same time, students are not thrown into (or, more poetically,
off of) a tower of Babel: One’s options at all times reflect operations that make
sense in one’s local context, rather than the full and unordered catalog of the soft-
ware’s complete functionality. As one gains dexterity with this interaction paradigm,
it develops a sense of mathematical contingency and dependency—segments imply
midpoints—which in turn imposes discipline (at times the user must reflect a
moment: “What uniquely defines the parallel line through this point here?”), but
also at times opens an educational opportunity (“ah ha—and of course the same
thing defines a perpendicular line!”).

Ultimately, by determining which commands—which words—are appropriate
and available in which contexts, the selection protocol imposes an operational
grammar on the raw vocabulary of the menus. Selecting just a point does little to
activate the Construct Menu. However, selecting a point and a segment not only
fits into the grammar of constructing a parallel line—or a perpendicular one—but
also affords the chance to construct a “Circle by Center+Radius”—a construc-
tion that uses the compass to copy given segment lengths. Grammar thus in turn
implies—linguistically, at least—the possibility of speakers engaging in more pow-
erful, subtle, or sensitive speech acts than the simple gruff commands of “construct
this! construct that!”

We see this possibility unfold in the larger temporal trajectory of a Sketchpad
construction sequence. Vocabulary and grammar combine, in time, to form a math-
ematical narrative or dialogue between the user and the tool. This dialogue—what
Sedig and Sumner (2006) perspicaciously refer to as Sketchpad’s “menu-based
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conversation” (p. 29)—emerges spontaneously through the effects of the selection
protocol over time. While users must select their intended input before issuing a
command, the software responds to that command by constructing and selecting its
result. Thus, the output of one operation (the selected result) is already poised, by
the software’s conversational response, to act as the input to the user’s next conver-
sational salvo. If the student engages in any forward-reasoning trajectory—a chain
of dependent constructions, a derivation, or a proof—the conversational ball pur-
suing this “line of thought” moves forward in the form of selection, and is handed
back and forth, from student to machine, from machine to student. This narrative
gives a sense of momentum—of mathematical “plot” or “story arc”—while at the
same time accomplishes a focusing away, a suppression of all the things of which
it makes no sense to speak at this moment in the story.

Plot Summary and the Moral of the Story

Finally, we consider the far end of the designed Sketchpad construction trajec-
tory, in the experience of creating what is known in Sketchpad as a “custom tool.”
Custom tools—like procedures in Logo, or like scripts and macros in early ver-
sions of Sketchpad and Cabri—encapsulate some set of operations for reuse later.
In Sketchpad, one creates a custom tool by selecting a constructed example of the
object that one wishes to conveniently recreate and choosing to Create New Tool
from a relevant menu. Sketchpad responds by prompting the user for a name for
that encapsulated operation (and an optional descriptive comment). The user may
inspect the “script” defining the tool—a written transcript of the operations used to
define it, formalized in a conventional, written geometric notation—but more impor-
tantly, the user may now use the newly-created tool, which appears with her previous
tools in the program’s toolbox, to apply the construction quickly to arbitrary inputs.
(Figure 2 displays the script of a tool created from straightforward construction of
an equilateral triangle—in this case, named by the user “my first equilateral �”;
Fig. 3 shows several ornamental constructions rapidly made using that new tool to
generate equilateral triangles.)

Again, language plays a prominent role in the interface design of this summa-
tive construction experience. First, and most dramatically, the representation of a
student’s construction presented in script view is fundamentally textual in nature
(Fig. 2). In its substantive revoicing of the student’s geometry and in its distilled
sequential logic, notational flourish, and somewhat ostentatious mathematical lan-
guage, it has the flavor not just of some work but of an opus. This seems teacherly.
And yet, while of course Sketchpad generates this script, the software is only acting
as a sophisticated copyist. In an important sense, the script is the student’s own opus:
The steps are the steps she herself used to construct her own equilateral triangle—
or her own construction, whatever it may be that she has constructed. This is the
document of her entire effort; and announces to the world “the whole story” of how
she accomplished the (remarkable!) result on the left. In this sense, the mere pres-
ence of the script’s language is perhaps more important than what it has to say:
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Fig. 2 A student construction and the script describing it as a custom tool. The title and comment,
at top, are generated by the student; the description of the script’s logic is generated by Sketchpad

Fig. 3 Various motifs created with the new My First Equilateral � tool

After all, what it says is already so much more palpable and viscerally present in
the construction selected at left. At this moment, all of the ornate mathematical lan-
guage fades somewhat, revealing the most important piece of language as that which
the student typed herself: the tool’s name (and comment). This name becomes the
name by which the tool is forever after accessed in the software’s interface—the
detailed script is quickly hidden away. Thus the name serves as the summary of
the entire narrative the student has just authored, as the moral of the story—or
its “takeaway”—in the sense of that distilled essence of a plot that we hope per-
sists past any recollection of its detailed narrative unfolding, and which we can take
into new contexts as a new and enhanced understanding, as we complete our move
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from the mathematical particular of our first constructed equilateral triangle to the
mathematical generalization of all future and all possible equilateral triangles.

Thus, to summarize, we see a complete, evolutionary, and narratively-contoured
linguistic trajectory in the design intent of a student’s experience in (and “through”)
the software. This trajectory begins in a pre-verbal exploration of core and simple
drawing tools and moves into language with the introduction of menu vocabulary
and commands. A specific and systemic protocol enables commands, leading to a
linguistic grammar of interaction, and this same protocol equally describes those
commands’ results, leading to a language-based sense of conversation or even plot.
Successfully managed, the result is at once a formal piece of mathematical language,
a demonstration of achievement, and an operational enhancement to the software’s
functionality. At the end of the story, a cycle completes: All of the narrative flower-
ing of the construction trajectory folds back in on itself, and its verbalized structure
collapses and distills itself back into a new, pre-verbal drawing tool (the My First
Equilateral � tool, new in the toolbox) where it waits, poised in anticipation of the
next construction episode.

This is clearly an idealized description. Readers familiar with Sketchpad will
know that while our overall description of this trajectory may feel piecewise cor-
rect, that trajectory rarely manifests itself in the complete structure we describe here.
Pitfalls abound. Students lose track of which tool is which. For some, reading the
menu text is a tremendous barrier. Others cannot figure out how to construct what
they want to construct; and others again—who construct it perfectly—go on to re-
construct it by hand five times in a row without ever defining a reusable new tool. We
are, after all, describing an interaction design rather than a classroom observation.
Even from that perspective, our comments are highly limited in their scope. In this
hermeneutic analysis of Sketchpad’s user interface, we have ignored completely the
whole premise of Dynamic Geometry—which is surely the main point of this par-
ticular software—and even in terms of language within it, we have scarcely heeded
the way in which the program’s language acts to introduce and reify standard vocab-
ulary for school geometry, or the way in which computer-based language provides a
context in which formal and obdurate constraints on acceptable inputs are perceived
as completely unobjectionable, by students (who are familiar with it from all other
software interactions), rather than as some unnatural and unwelcome sinister game
played on them by math teachers. Finally, from a “close reading” of this particular
software’s user interface design, we reach conclusions applicable only to Sketchpad,
and not to other software at large, or even to other programs that seem Sketchpad-
like. Nonetheless, we put these various objections aside to focus on what is core to
our claims. Even if never fully realized by a single student in a single setting, the
overall intended design trajectory of a technology is still relevant in the contour and
meaning with which it endows (and sometimes combines) the fragments of actual
experience that make up use of the software. Evaluating the potency of those mean-
ings in turn helps inform our consideration of Sketchpad’s impact on individual
students. In Sketchpad’s interaction design, we find the presence of a totalizing dis-
cursive structure co-fabricated by the user and the machine. In the linguistic form
of this structure, Sketchpad determines both a vocabulary and a grammar to the
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language of communication, and in this sense acts as an authority. But it is the user
who actually breathes sentences and intentions into the software’s grammar, who
enunciates its subjects, enacts its predicates, and arrives at its objects. In the narra-
tive form of this discursive structure, the user is the first-person subject of their own
mathematical autobiography, and—on the other side of the screen—Sketchpad acts
as that narrator’s occasional foil, able listener, and expert scribe.

Conclusion

In this chapter, we have considered the issue of learning through teaching from a dis-
cursive perspective on learners’ teaching machines. Our analysis considered, first,
the nature of language interactions at the classroom level, in terms of the roles of the
different players in the classroom, and second, the individual language of a student
in conversation with the computer. In terms of the former, we examined the discur-
sive characteristics associated with mathematics classroom teachers and found that,
from this point of view, the computer is not discursively analogous to the teacher;
and that, moreover, the language and interaction of the user with the computer posi-
tions the student as the teacher. We might still ask, if the user is teaching, what is
the mathematical learning involved in learning through teaching? After all, the goal
of the mathematics classroom is not to turn students into teachers!

Our answer to this question is embedded in the discursive perspective adopted
by our critique. Following Sfard’s definition (2008) of learning as a change in
one’s pattern of communication, we explore here how teaching Sketchpad one’s
desires and intentions relates to the more prosaic task of learning geometry. In
the previous section, we illustrated the user’s interaction with the software along a
discursive evolutionary trajectory, from pre-verbal origins, through vocabulary and
grammar, to plot and narrative. Intertwined in this trajectory are layers of math-
ematical meanings, or of mathematics that becomes meaningful at the moment it
becomes discursively recognizable and articulable. Thus in meeting new vocabu-
lary, students meet new mathematical concepts (segments, circles) and definitions.
The syntactic structures in which students learn to wield new terms correspond to the
mathematical structures in which those concepts interact. In Sketchpad “menu con-
versations” about rotation, users mark angles and fix centers, then select pre-images
and rotate them (by those angles, with respect to those centers) into transformed
images. These structures indicate how specific mathematical pieces (points, angles,
turns) fit together, and how new specific concepts and definitions (such as rotation)
emerge by making the coming-together of mathematical pieces precise. Where spe-
cific software syntax helps frame specific mathematical structures, the more general
grammar of software interactions introduces users to the much broader structure
of mathematical reasoning. The software move from selected prerequisites to con-
structed results mirrors the causal structure of mathematical derivation, in which
independent givens (quantities, axioms, postulates) are bound together through
logically robust and general templates into new results (solutions, theorems, proofs).
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At an even broader level, by situating users explicitly as authors and editors of math-
ematical narrative, the software encourages users to the practice of mathematical
analysis (which we might constitute, discursively, as what has not yet been said, that
should be), and to mathematical inquiry (what has not yet been said, that might be).

Thus, we see two distinct roles of language in a discourse-analytic close-reading
of the Sketchpad experience. First, language reveals itself as a means both of oppres-
sion and of liberation within the learning environment, in constructing individual
subject positions and in giving individuals the tools to reconstruct and reconfig-
ure them. Second, rich strata of mathematical content, process, and culture are
embedded in discursive practice and students’ induction into, and eventual fluency
in, mathematical language mirrors their introduction and eventual facility within
these domains. In considering how these twin roles of language relate to students’
learning mathematics, we find Papert’s lofty aim—of students’ “learning to speak
mathematics” (p. 13) functions not only as a metaphor, but as a mechanism.
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What Experienced Teachers Have Learned from
Helping Students Think About Solving
Equations in the One-Variable-First Algebra
Curriculum

Robin Marcus and Daniel Chazan

Introduction

Our chapter proceeds in five parts. We begin with a task that teachers face, deciding
how to begin to introduce students to complex ideas. Arguably, this task of teach-
ing may be responsible for the growth of the unique mathematical knowledge for
teaching that teachers possess (Cohen, 1993, argues for the role of “unpacking” in
the growth of teachers’ knowledge; Ball and colleagues, e.g., Hill, Schilling, & Ball,
2004, provide evidence for mathematical knowledge that is uniquely the province
of teachers.). We then turn to the particular cast this task of teaching takes in the
context of introducing students to equations in school algebra. The next two sec-
tions then focus on the context in which the two teachers teach and their responses
to a set of interview prompts and their actions in classroom observations. The final
section reviews the interview and observation data and underscores the evidence
we see for the teacher learning that informs the practice of these two experienced
teachers.

The Difficult Task of Choosing Explanatory Starting Points

As teachers, and others responsible for the development and delivery of curricu-
lum, work to introduce students to complex mathematical notions, starting to convey
complex ideas to students is always difficult. Starting places for an explanation can
be too abstract or formal, and as a result divorced from students’ experience (as crit-
ics argued with New Math set theoretic definitions of number). Or starting places
can be too specific and concrete. In such a case, students must abstract the essential
aspects of a concept from examples that have many other aspects, and they may
often include unintended aspects of the example in their definition (as suggested
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by Vinner, 1983 in his introduction of the term concept image, in addition to con-
cept definition). While a powerful and concrete example can serve as an important
conceptual anchor, as researchers have found (e.g., Vinner and Dreyfus, 1989, with
respect to students and functions and Even, 1993, with respect to preservice teach-
ers and functions) such concept images can later become pedagogical obstacles (in
the sense of Sierpinska, 1992). Students may have to disconnect a particular image
from a concept in order to develop a broader sense of a concept, one that matches
its definition and not a particular example (Lakatos’ 1976 rational reconstruction of
the history of the Descartes-Euler conjecture finds a similar dynamic in the work of
mathematicians).

One goal of this chapter is, in the context of algebra instruction, to identify
classroom actions by teachers that reflect the mathematical knowledge they have
developed through teaching. We will use the pedagogical challenge of starting
places, as well as the notions of concept image, concept definition, and pedagogical
obstacle to identify such teacher actions—to identify teachers’ mathematical knowl-
edge in action. This exploration involved interviews of teachers in a US high school
and observations of their teaching. In the paper, we illustrate the terms decompress-
ing, trimming, and bridging outlined in the framework for knowledge of algebra
for teaching developed by Ferrini-Mundy, Floden, McCrory, Burrill, and Sandow
(2005). We begin with a curricular analysis and then provide background context on
the teachers we interviewed and observed.

A One-Variable-First Perspective on Solving Equations
and Systems of Equations

Equations appear throughout mathematics in different guises. They are sometimes
thought of as mathematical objects worthy of exploration in their own right (e.g.,
the now-defunct mathematical field of study called Theory of Equations). At other
times, they are representations of other mathematical objects (e.g., as signaled by
the locution “the equation of a function” or “equation of a line”). From his study of
school algebra curricula and his experience as a writer of curricula, Zalman Usiskin
(1988) suggests that in the US school curriculum, equations are treated in five dif-
ferent ways: as formulae, equations to solve, identities, properties of numbers, or
the equation of a function (p.9). A common school textbook definition avoids these
subtleties by offering a criterion for recognizing an equation when one sees one: An
equation is a string of symbols with an equal sign in it.

Mathematics educators have studied equations as they appear in a range of school
mathematics contexts. Researchers interested in students’ transition from arithmetic
to algebra have expressed concern about ways in which the equal sign in arithmetic
is a call for carrying out an action on the expression on the left in order to know
what to write for the expression on the right, while in algebra students are asked to
act on both sides of the equation. Pedagogical interventions based on this concern
(e.g., Herscovics & Kieran, 1980) are premised on the notion that overcoming a
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particular view of the equal sign will help students be more successful in algebra.
In this chapter, we will make a similar argument within the kinds of equations that
students and teachers typically see in school algebra; in particular, we will focus
on examples that all fall within a single type in Usiskin’s framework, equations to
solve, what Freudenthal (1983) calls interrogative algebraic sentences (p. 310) and
for which he invents a new notation.

In particular, in this chapter, we will focus primarily on issues involving equa-
tions in one and two variables, and peripherally on systems of equations involving
two variables. Though we are aware of critiques of school algebra (such as, Fey,
1989) and of reform perspectives (like Heid, Choate, Sheets, & Zbiek, 1995; or
Yerushalmy & Schwartz, 1993), we will focus on issues that arise in traditional US
curricular approaches to developing students’ flexible understandings of equations
and solving in the context of these equations and systems of equations.

The equations that students in the US meet in introductory algebra (Algebra I or
its equivalent) are usually equations in one or two variables, first equations in one
variable and then equations in two. These equations have an equal sign, may or may
not represent a function, they may or may not admit to closed form solution, and for
the most part, with the exception of units on quadratic equations and absolute value,
they are linear.

In making this short list of characteristics of equations, we suggest that equations
in one and two variables, as treated by the curriculum, are quite different one from
another. As others have argued with respect to arithmetic and algebra equations
(e.g., Nathan & Koedinger, 2000), we would like to suggest that these differences
matter for teaching and learning.

Most US curricula introduce students to equations in algebra by starting with
linear equations in one variable. Some texts organize these into one-step or two-step
equations, others organize them by the types of operations used to solve them (e.g.,
McConnell et al., 1990). By way of contrast, functions-based approaches to algebra
(like Fey & Heid, 1995), begin with functions, a subset of equations in two variables,
before introducing equations in one variable to solve. In typical textbooks, students
are asked to solve linear equations in one variable. Starting with this comparatively
simple task can challenge students to distinguish three related goals (isolating the
variable, finding values to make true sentences, and representing a solution set) that
will only become distinct with more complex tasks (Fig. 1).

Students are taught procedures to solve equations by operating on both sides of
the equation to isolate the variable. They are then taught to check their solution by

Meaning of solve Equations like: 3x + 2 = 4x – 7

Isolate the variable Taught to students

Find member(s) 
of the solution set

Implicit part of checking

Represent the 
solution set

Implicit, until more than one 
solution

Fig. 1 The goals of solving
linear equations in one
variable
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substituting the solution back into the original equation. This check procedure builds
on the notion that solving the equation is meant to find value(s) of the variable for
which the equation will be a true statement. Finally, work with linear equations in
one variable can support a view of the variable as an as of yet unknown number.
In “most” cases, there is only one such number. The notion of a solution set, and
solving as representing the solution set to an equation, is implicit until attention
changes from linear equations to quadratic equations or to inequalities, or when
linear equations with no solution or infinitely many solutions are addressed.

Intriguingly, the typical school algebra curriculum takes a very narrow approach
to equations in one variable. Students, and teachers, rarely see equations of one
variable that cannot be solved by isolating the variable, equations like: 4(x−1)−x =
3x − 4, 2 x = x 2, or |x − 2| = |x + 1| + 3. While such examples drive a wedge
between the “isolate the variable” and “find values that make the statement true” or
the “describe the solution set” meanings of solve,1 they do not regularly appear in
classrooms.

When the curriculum moves to equations in two variables, there is a large transi-
tion for students. A linear equation in two variables defines a function, explicitly or
implicitly. Equations in two variables challenge the as of yet unknown number view
of literal symbols like x and y. And, solving changes (Fig. 2). Building on the “iso-
late a variable” meaning of solve, linear equations in two variables can be solved
for a particular variable, but there is a disconnect between isolating the variable and
finding member(s) of the solution set. With linear equations in one variable, iso-
lating the variable had resulted in finding the (unique) solution, except in “special
cases”; whereas, with equations in two variables, isolating the variable may facil-
itate finding members of the solution set, but it is just a first step toward that end.
Isolating the variable is now signified by “solve for,” and finding members of the
solution set now requires a different set of actions—one must choose a value for one
variable and then solve the resulting equation in one variable in order to be able to
write down an ordered pair that is a solution to the equation.

The “represent the solution set” meaning of solve is more available, though it
is easy to overlook. Any equation in two variables represents a solution set that
can be graphed on the Cartesian plane. Isolating a variable may make the task of
graphing the equation easier, but even without doing any manipulation, the equation
defines the solution set (as it did as well earlier with equations in one variable).
While all of these different meanings of solve are still at play with equations in
two variables, the command “solve” is generally not used; instead it is replaced by
solve for, create a table of (x, y) values, or graph. Similarly, checking a solution
becomes checking that an ordered pair satisfies the equation. This shift in language
potentially obscures the connections among these actions and with the concept of
solution.

1 In what follows, we are concentrating on the solving of equations. When we use the phrase the
“meaning of solve,” we intend in the context of solving equations.



Solving Equations in the One-Variable-First Algebra Curriculum 173

Meaning of solve

Equations like:

3x + 2 = 4x – 7

Equations like:

9x + 3y = 12

Systems like:

⎩
⎨
⎧

−=−
=+

4

732

yx

yx

Isolate the variable Taught to students. Becomes “solve for”. A step in possible 
solution procedures.

Find member(s) of 
the solution set

Implicit part of 
checking.

Not part of “solve 
for.”  Signified by 
“create a table”.

Stated goal.  Part of 
checking.

Represent the 
solution set

Implicit, until more 
than one solution.

More readily 
available.  Signified 
by “graph”.

Implicit, until more 
than one solution.

Fig. 2 Tracking the meanings of “solve” across the one-variable-first school algebra curriculum

Finally, when the curriculum turns to a short unit on systems of equations, the
meaning of the word “solve” takes yet another turn. With systems of linear equa-
tions, the notion of isolating the variable becomes a step in one solution procedure,
no longer a defining meaning for the operation of solving. While the notion of solv-
ing for a member of the solution set moves to the background with equations in
two variables, this meaning returns to the forefront with the move to systems of
two linear equations in two variables. Students find the coordinated values of x and
y that satisfy both equations. With systems of two linear equations, the notion of
representing the solution set can be lost again, as it was with the linear equation
in one variable, though it can be resurrected by examining systems involving non-
linear equations, or systems with no solutions, or infinitely many, or systems of
inequalities.

Our point in cataloguing the meanings of “solve” as one moves through the cur-
riculum is to emphasize the transitions, or discontinuities (in the sense of Tall, 2002),
required of students as they move through a one-variable-first curricular approach
to equations in school algebra (A functions-based approach to algebra would have a
different, but related, set of transitions, see Yerushalmy & Chazan, 2008). In seeking
to identify teacher learning through teaching, we focus on how teachers deal with
the challenges of helping students with these curricular transitions.

Before turning to examples of teachers grappling with their own understandings
of these transitions and how to communicate with their students, we give a little
background on the teachers and our interaction with them.

Context

We would like to juxtapose our analysis of equations and solving in the school
algebra, one-variable-equations-first way of introducing algebra with interviews
and observations of teachers in a US high school. We precede examination
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of the thinking and actions of these teachers with some background informa-
tion that situates them in their local context and indicates how we interacted
with them.

The teachers we interviewed and observed are from one high school in a district
that ranks among the 20 largest school districts in the US. Like many schools that are
described as urban schools in the US, this high school has a predominantly minority
population (96%), high turnover among teachers (only 39% of classes are taught by
a “highly qualified” teacher), a high rate of poverty among the families of students
(51% on free/reduced meals), a high rate of student mobility (24% in, 17% out),
poor student achievement on exams (a passing rate of 16% on a state Algebra 1 test
in 2004), and a low graduation rate (65%).

The teachers we interviewed and observed were teaching introductory school
algebra (Algebra I) to high school students (mostly grade 9, age 14 and above).
Students in the state must pass high school algebra and geometry courses in order
to graduate. Students are required to pass an algebra end of course exam for
graduation.

The Text

The adopted textbook in the school district is Prentice Hall’s Algebra: Tools for
a Changing World (Bellman et al., 1998). This text combines a fairly standard
approach to solving equations, as we described earlier, with an earlier-than-standard
introduction of functions of one variable and their defining equations.

In the first chapter of the Prentice Hall algebra text, equations are defined
(p. 11) as indicating that two expressions are equal. The first equations that stu-
dents meet are function rules, defined as equations (of two variables) that describe
functions. For example, on page 11, the first example of an equation is t = s – 2,
but the example of an equation in the glossary at the back of the book is x + 5
= 3x – 7. The remainder of the first chapter then deals with order of operations,
arithmetic with integers, properties of real numbers, experimental probability, and
introductions to matrices and spreadsheets. Chapter 2 returns to functions and their
representations.

After the material on functions of one variable, chapter 3 focuses on equations
of one variable. It begins with a balance scale analogy for equations and describes
solving an equation containing a variable as finding “the value (or values) of the
variable that make the equation true” (p. 108). Solutions are defined as these val-
ues. The chapter contains six sections that develop techniques for solving linear
equations in one variable by “get[ting] the variable alone on one side of the equal
sign” (p. 108) using inverse operations. Students first solve one-step equations, then
two-step equations, then equations that contain like terms on one side, parentheses,
fractions, and percents.

In chapter 4, students meet linear equations in one variable with a variable on
both sides of the equal sign. In the main body of the text, the technique for solving
linear equations in one variable with a variable on both sides involves applying the
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properties of equality “to get terms with variables on the same side of the equation”
(p. 164), initially aided by the use of algebra tiles. “Special types of equations,”
those having no solution and those that are identities, are introduced and defined.
In the homework exercises, students are asked to write identity or no solution when
they encounter such equations. At the end of the exercises for this section, there
is a Self-Assessment journal prompt: “Summarize what you know about solving
equations with variables on both sides by writing a list of steps for solving this type
of equation” (p. 168). Following, there is a Technology page that provides a list of
steps and practice exercises for using a graphing calculator to solve an equation with
the variable on both sides by graphing and finding the x-coordinate of the point of
intersection (p. 169). This chapter also contains one section on solving equations in
more than one variable for a particular variable.

In chapter 5, students take a closer look at linear equations in two variables, with
an emphasis on graphing linear equations and writing equations for lines in both
slope-intercept and standard form. Then, in chapter 6, they meet systems of linear
equations in two variables.

Our Interview and Classroom Observation

Our interview was designed to explore how teachers think about what an equation
is and how to teach students about equations. With these goals in mind, we focused
on understanding:2

• how teachers conceptualize “x” in their work with students,
• whether they believe that it is reasonable in an algebra class to conceptualize

equations as questions about or comparisons of functions,
• how they distinguish for themselves between solving in the context of equations

of one and two variables,
• how they conceptualize the role in an algebra class of equations in one variable

in which the variable cannot be isolated,
• how they talk with students about expressions and equations, and
• how these issues interconnect and interrelate in their thinking about the design of

instruction in a year-long course.

After a few introductory background questions, we began by asking teachers how
they explain to beginning algebra students what an equation is. Then we presented
the first major item: a card sort task. Teachers were presented with nine equations
(Fig. 3) on nine index cards and asked to discuss them in relation to their con-
ception of equations, to compare and contrast them, to order the cards in the ideal
order in which they would want students to meet these examples, and to explain the
reasoning behind their choices.

2 Our interview is based on earlier work by Chazan, Yerushalmy, and Leikin (2007; 2008).
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• y = 3x – 4 

• 9x – 3y = 12

• 4(x – 1) – x = 3x – 4

• g(x, y) = 3x – y

• 3x2 + x – 2 = 0

y = 3x2 + x – 2

• 3x – 4 = 12

• f(x) = 3x – 4

• 3(x – 2) + 2 = 4x – 4(x – 3)

•

Fig. 3 Equations presented
to the teachers for a card sort
task

Subsequent items included tasks that asked teachers the following:

• to compare and contrast the following three tasks:

1. Solve 3x – 4 = 12.
2. If y = 3x – 4, what value of x makes y = 12?
3. If f(x) = 3x – 4, what value of x makes f(x) = 12?

• then to respond to two student solutions: a numerical solution based on the use
of tables and a solution that involved operations on both sides of an equation.

• how they would talk with students about how to solve an equation like:
4(x − 1) − x = 3x − 4 .

• how they would solve equations like
√

(3x − 4)2 = 3x − 4 , 2x = x2

• and whether they would think that equations like this belong in an algebra class.
• how they think about solving 9x − 3y = 12
• and how they might respond to students who, when asked to simplify, set an

expression equal to zero and solved it.

The responses to these tasks provide rich glimpses of how the teachers under-
stand what an equation is and how they imagine one might gradually introduce
students to the complexities involved in this mathematical construct.

The following fall we observed the teachers we had interviewed while they were
teaching a unit on solving linear equations in one variable (chapter 3 in their text).
This is when the textbook first introduces solving equations. For some of the stu-
dents, it may have been their first experience with solving equations. At the time of
our observations, both teachers had been teaching the solving of linear equations for
about one week.

In the next section, we choose to focus on two teachers for whom we have both
an interview and a classroom observation and who gave evidence for learning from
their teaching. Ms. Alley was in her third year of teaching at the time of the obser-
vation, and she had taught Algebra 1 each year. She had also taught pre-algebra and
pre-calculus. Ms. Alley has an undergraduate degree in mathematics and describes
herself as a mathematician. Ms. Lewis was in her sixth year of teaching, and she
primarily teaches Algebra 1; although some years she taught pre-algebra as well.
Ms. Lewis changed careers to become a math teacher; her undergraduate degree
was in finance.
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Both teachers explained that a primary reason why they are assigned to teach
Algebra 1 every year is because they both have a reputation as effective class-
room managers. It became evident during our conversations that both teachers care
deeply about their students and have given a lot of thought to how to best prepare
their Algebra 1 students for future mathematics courses and success on high stakes
exams.

Ms. Alley and Ms. Lewis

On Equations: What Are They? What Is Their Place in the School
Algebra Curriculum?

Early in the interview, we asked the teachers how they explain to students what an
equation is. An excerpt from Ms. Lewis’ response follows:

Now that’s a good question. Have I ever explained what an equation is? Now, when we set
up an equation from a word problem, I mean, I can tell them where everything goes, but
– what is an equation? Um. Hmm. Let me think about that. Good question. Um. <pause>
Well we solve an equation to get a value for the variable. So an equation would be. . . hmm.
Now I understand the concept of it, but putting it into words, okay, let me think about that.
Can you help me out? . . . I mean, I know what an equation is, I know what the ultimate goal
is. . . of an equation: to find a value for the variable that would make the equation true. . . .

But they understand that I solve for the particular variable that will make this equation true;
but, to give them a definition, I mean, that would really be hard to think of what a definition
would be.

Ms. Alley gave examples of equations: x + 5 = 7 and x – 5 = 12. She explained
that she first gives students examples with blanks instead of x; then she tries to have
students extend their informal solving to the formal procedures. When presented
with the nine equations on index cards in the first task, Ms. Alley distinguished equa-
tions one would “solve as equations” (those containing one variable) and “equations
that are functions” (those containing two variables).

Ms. Lewis made many more distinctions: equations with variables on both sides,
two-step equations, equations in slope-intercept form, and two-variable equations.
For Ms. Lewis, functions are distinct from equations; although she used equa-
tion to describe linear equations in two variables (i.e. Ms. Lewis distinguishes
f(x) = 3x – 4 as a function, but describes y = 3x – 4 as an equation). In ordering
the equations, she considered the amount and type of solving involved—the earlier
the equations move in her order, the more solving is involved and the easier it is to
isolate the variable. For example, an equation of the form ax2 +b = c is “like a two-
step [linear] equation, and then you just take the square root at the end; so equations
of that sort will occur fairly early.” This may suggest that an equation of the form
ax + b = c, a “two-step equation,” is her concept image of equation because that
becomes the basis for “moving up” other equations.
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Ms. Alley’s primary focus in describing and explaining equations was also solv-
ing; however, she indicated that she wants students “to understand how to write a
function first—what it is to put something in and get something out—so they under-
stand that there is a solution.” Despite this statement early in the interview, there
was little evidence later in the interview, and in the classroom observation, of an
impact from the early introduction to functions on the treatment of linear equations
in one variable.

Both teachers agreed that non-routine equations do not warrant much atten-
tion in an introductory algebra course. Ms. Lewis was not at all comfortable
with the idea of including equations for which isolating the variable does not
solve the equation in the school algebra curriculum; except perhaps for honors or
gifted/talented students, after they have “mastered” techniques for solving. When
probed, she was not at all concerned that a very tiny portion of all possible equa-
tions can be solved by known symbol manipulation techniques. Similarly, when
asked about the importance of providing opportunities for students to grapple with
making sense of linear equations that are identities or contradictions, as will be out-
lined below on page 182, Ms. Alley indicated that this issue is not central to her
instruction.

Advanced users of mathematics readily interpret the various types of equa-
tions they encounter using mathematical context to inform their interpretations;
however, for students in the process of developing their concept definition of
equation, such interpretations are not immediately correct—sometimes differences
between equations are given too much weight and on other occasions important
differences are overlooked. In order for teachers to help their students develop
increasingly sophisticated understandings of equations, they must first interrogate
their sophisticated understandings and then examine equations from the informa-
tion available to their students in order to understand the complexities their students
face. This process of examining a mathematical object, concept, or skill from an
advanced perspective and then from a novice perspective, revealing complexities
that are obscured by more sophisticated mathematical understanding, is described as
decompressing in the Knowledge for Algebra Teaching Framework (Ferrini-Mundy
et al., 2005).

On Solving: What’s the Name of the Game? Isolate the Variable!

Both teachers emphasized how important it is for algebra students to learn how to
solve equations. When asked about her primary goals for her Algebra I classes, Ms.
Lewis responded, “Definitely solving equations I would say.” She further explained,

. . .what’s more important for them: to understand it, or just to be able to punch it in their
calculator and write something that they really don’t understand? . . . I know the teacher
who teaches Trig and Algebra 2/Trig and the Trig Analysis; he’s an old teacher. Ok, so you
know how the older teachers are – solve, solve, solve. . . . So for my kids to be successful
when they go to him, they need to know how to solve.
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During her interview, Ms. Alley commented, “You can only make solving equa-
tions so exciting; whereas, that’s the basis of everything you learn after it, and you
have to know it.”

Both Ms. Alley and Ms. Lewis commented on the difficulty students have with
solving (via symbol manipulation), even with “simple” equations. In their attempts
to help their students manage this difficulty, they both place a heavy emphasis on
the phrase “isolate the variable” as articulating the goal of solving when they first
introduce students to solving in the context of linear equations in one variable.

When we observed Ms. Alley teaching a lesson on solving linear equations in one
variable, she repeatedly asked the class, “What’s the name of the game?”, to which
the students responded in chorus, “Isolate the variable!” During an observation of a
lesson at the same point in the algebra curriculum, Ms. Lewis explained to her class,
“The number that is on the same side as the variable is the one we want to get rid
of. . .so we can isolate the variable. . .’cause remember: that’s the goal.”

All the teachers we observed used language about removing “zero pairs,” a term
for additive inverses that is intended to be student-friendly, as part of the procedure
to isolate the variable. This language is introduced in the textbook when explaining
how to use algebra tiles to model solving a linear equation in one variable.

One might wonder what drives the teachers’ decisions to emphasize solving as
isolating the variable, rather than as finding the value or values of the variable that
make the statement true. The teachers’ responses to two different hypothetical stu-
dents’ solutions to questions that could be answered by solving the equation 3x – 4
= 12 provide some insight. Sam’s solution involved operating on both sides of the
equation to isolate x, while Karim’s solution involved creating a table of sequential
(x, 3x – 4) values to approximate the value of x for which 3x – 4 equals 12. Both
teachers expressed a preference for Sam’s solution.

Ms. Alley commented, “It isn’t that I wouldn’t accept it [Karim’s solution], I’m
saying I would be less inclined to accept it.” She further explained that she viewed
Karim’s solution as “guesstimating”; she sees rounding, Sam’s method for approxi-
mating the value of x, as better estimation. When asked how her view would change
if Karim used proportional reasoning to interpolate a precise value for x, she said that
that would make his solution completely acceptable, but she would never teach this
method because “No student would ever be able to see it—like, you have to give the
students ways that they’ll be able to see, and after teaching for 2 years, they would
never see it that way. They don’t think critically.” Karim’s solution builds upon the
early experience with functions Ms. Alley advocated at the start of her interview;
however, her comments here suggest that not only does she not use thinking about
functions in her teaching of solving equations in one variable, she does not believe
that it is feasible to do so.

Similarly, Ms. Lewis could not understand why Karim would use a table to solve
3x – 4 = 12. She explained that she would never teach students to solve this way;
she would teach them by solving (i.e. using symbol manipulation to isolate the vari-
able). She views Karim’s solution as using higher order thinking as compared to
Sam’s, which she calls “basic, basic solving.” Ms. Lewis further explained that
when two variable equations are introduced, students would create tables and answer
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Which student solved correctly?

Kendra: Tony:

x – 3 = 12

+ 3    + 3

x       = 15

x       = 15

+ 15    + 15

x – 3 = 12

– 12   – 12

x – 15 = 0

Fig. 4 A problem presented
by Ms. Lewis

related questions about inputs and associated outputs of functions; however, this is
not connected to solving one-variable equations.

The comments from both teachers about Sam’s and Karim’s solutions suggest
that the goal of finding the values that make the equation a true statement may
receive less emphasis when teaching students to solve linear equations in one vari-
able because such an emphasis may be seen as encouraging guesstimating or other
undesirable strategies. Even though they have observed students struggle to solve
“simple” linear equations via symbol manipulation, their comments further suggest
that they believe that the usual algorithm is the easiest way to help students learn to
solve equations.

During our interview, Ms. Alley commented, “it’s just like I tell my kids, there’s
not one way to do every problem. So, . . . I think every student finds a way that they
like the best, and then uses that.” However, though this rhetoric suggests valuing
multiple solution strategies, in the context of solving linear equations in the class-
room, perhaps as a result of students’ difficulties with solving equations, there was
a focus on the usual algorithm. In fact, during our observation, a student started two
or three times to explain that she had solved an equation a different way and arrived
at the same solution. Both times Ms. Alley interrupted the student, “This is the only
way,” referring to a very specific procedure for isolating the variable by operating
on both sides of the equation.

Similarly, when we observed Ms. Lewis, she presented a problem that asked stu-
dents to evaluate two hypothetical students’ solutions of a one-step linear equation to
her class (Fig. 4). In the discussion that followed, Ms. Lewis focused on the strategic
importance of isolating the variable and indicated that Kendra had solved correctly.
According to Ms. Lewis, Tony had solved incorrectly because his first step did not
progress him toward the goal of isolating the variable; therefore, Tony required two
steps to solve the equation, rather than just one step.

Both teachers emphasized a particular procedure for solving equations in one
variable that involves operating on both sides of an equation to isolate the variable
in the least number of moves possible. At this point in the curriculum, “solving”
is synonymous with this procedure; other procedures that might find the value(s)
of the variable that make an equation a true statement are not considered solving.
And, though they will come in later, the notions of finding members of the solution
set, or describing the solution set as a whole, are not emphasized. This emphasis on
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isolating the variable seems like an attempt to ease the transition to solving equations
in two variables for a particular variable.

Thus, as they choose starting points and seek to build on these to develop
sophisticated understandings in their students, both teachers attempt to reduce the
complexity of solving linear equations in one variable in order to make the content
accessible to students. Ferrini-Mundy et al. (2005) call this practice trimming, when
the essence of the mathematics is preserved, but simplified, in order to help students
gain access to complex ideas.

On Identities and Contradictions: Assigning a Label

Early in the interviews we asked teachers to consider the equation 4(x – 1) – x =
3x – 4. We asked them what questions or difficulties they expected students to have
and how they would help students to interpret a “solution” of 0 = 0. Ms. Lewis
explained,

I try to make them think of the same as being identity, and different as being no solution. . . .
so that’s the way that I try to make them understand that . . . They know that if my variable
cancels, that my variable’s gone, that it’s one of two things. I look at what’s left. If I have,
. . . numbers that are same, it’s ‘identity’, or numbers that are different, it’s ‘no solution’.

When asked whether students understand that for an identity, x could be any
number, she replied that they do not; “that’s higher order thinking.” Ms. Alley
explained,

They’ll think because it doesn’t have ‘x = something’ that it implies no solution. And that’s
why . . . I show them on their graphing calculator. I’m like, ‘well graph it, and . . . see what
it comes out to when you’re talking about functions; . . . put this as one, and put this as
another, and see it’s the same line, and that means that it’s always true.’ So, if they say
‘always true’ or ‘never true’—I try not to say ‘no solution’ and ‘infinite’, but that’s just the
mathematician in me—so, what I should say: ‘always true’ and ‘not true’.

When we described using a graphing calculator to create a table and/or graph of
both sides of the equation to help students understand that x could be any number,
Ms. Lewis said,

That could be taking it a step higher, to make them understand that it could be any number.
Because I think that’s the big picture. . . . I think I concentrate so much on the little things,
that. . . the big picture just never comes into view. . . . You made a good point when you said
that, I was like – oh, that would be wonderful to do – but, would they really understand that?
Now while I’m looking at that on a calculator, yeah, I really do. Because, I mean, . . .when
we get to. . .systems and the equations come out to be the same, they understand that it is
one line, which both things are the same. I mean they understand that concept. But I never
thought of doing it in that manner and putting it in the calculator. That would be a good
idea. That would be a good idea. I never thought of that.
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In a later discussion of a system of two linear equations in two variables,
Ms. Alley said of the equation 4(x – 1) – x = 3x – 4,

Usually these equations are far and few between. So, you might get one or two on a test,
or three or four on a homework assignment. So it’s just for them to know: hey, if I get
‘something = something’, it means either ‘no solution’ or ‘infinite solutions’. So graphing,
I wouldn’t really emphasize graphing for [the one-variable equation], where I would for
[the system of equations].

Linear equations in one variable that are identities or contradictions challenge the
isolate-the-variable meaning of solve and require thinking about solving as finding
the value(s) of the variable that make the equation a true statement in order to make
sense of the results obtained by the procedure for isolating the variable. Both teach-
ers, following the approach taken in the textbook, avoid this complexity by teaching
students to label these “special cases” as identity or infinite solutions or no solution.
The teachers’ strategies with identities and contradictions are another example of
these teachers attempting to trim complexity in order to make mathematical content
accessible to their students.

On Solving Equations in Two Variables: Changing
the Name of the Game

When we asked Ms. Lewis how she thought about solving equations like 9x – 3y =
12, she explained that equations in two variables are first introduced in Chapter 5
of the textbook, where students learn to solve for y and also to find values for x and
y. Ms. Lewis was the only teacher we interviewed who explicitly mentioned both
notions of solving equations in two variables. We followed up by asking her if she
found it difficult to explain to students what it means to solve for y, since she had
earlier defined solving as finding the values of the variable that make the equation
true, even though she had emphasized that isolating the variable was the way to
find such values. Even though she focuses on isolating the variable as the name of
the game in solving, she responded that this is a difficulty for students and further
explained,

. . .when you say solve, they’re looking for one answer, that x is equal to something or y is
equal to something. And then when you say ‘Solve for y’. . . So I made it a point, I never
say ‘solve for y’. . .if I say ‘solve’, I think that they would understand that I’m looking for a
value for x and a value for y. But. . .I try not to say ‘solve for y’. . .I would just say. . .‘write
this in the slope-intercept form’. I won’t say ‘solve for y’. Because when you say ‘solve for
y’ they’re gonna say ‘y = 4’ or. . .something like that.

Ms. Alley focuses on finding values of x and y when discussing solving linear
equations in two variables, and she heavily emphasizes thinking about this process
as evaluating functions, whether explicitly or implicitly defined. Referring to the
equations y = 3x – 4 and 9x – 3y = 12, Ms. Alley explained, “I would use function
boxes where I would have an x and y, an input and output.” She contrasted this way
of thinking to how she thinks about solving equations like 3x – 4 = 12, which she
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would “solve as a two-step equation.” She went on to clarify, “Or if I had a system
of equations I could solve for an x and a y.”

When asked how she explains to students what “solve” means when they are
asked to “solve for y,” Ms. Alley responded, “. . .The solving for x and y’s, and
you’re given an input, you have to find an output, . . .that’s more of like a function
rule, a function box, an in-and-out; whereas solving in that case is you’re solving
for a variable.” Several times during the interview she referred to solving an equa-
tion in two variables for a particular variable as “transforming” the equation into a
function; and thus, Ms. Alley, like Ms. Lewis, is able to avoid using the language
“solve for y.”

Even though solving for a given variable in a two-variable equation is proce-
durally the same as isolating the variable in a one-variable equation, both teachers
find that students encounter difficulty because their “answer” is not “an answer.”
Even though both teachers characterize solving equations in one variable as iso-
lating a variable, students still are focused on solving as producing a numerical
solution.

With the introduction of equations in two variables, Ms. Alley and Ms. Lewis
try to keep two meanings of solve in play. They want their students to be aware
both of the method, isolating the variable, and the notion of identifying members
of the solution set. Ms. Alley and Ms. Lewis were the only two teachers whom
we interviewed that acknowledged the notion of solving as finding members of the
solution set in the context of equations in two variables, in addition to the isolate the
variable notion of solving. As experienced teachers, both felt that the transition from
solving equations in one variable to solving equations in two variables is big enough
that it warrants changing the name of the game in a sense. Since their students had
come to expect a numerical solution as the result of solving, both teachers referred to
solving in the context of equations in two variables as finding numerical values for
x and y. Recognizing the importance of the skill of isolating a variable, the teachers
employed other language (rewriting the equation or transforming it into a function)
to help their students navigate the transition to solving a multivariate equation for a
given variable, which yields a solution that is an algebraic expression rather than a
numerical value.

In this manner, Ms. Alley and Ms. Lewis illustrate another of the Knowledge of
Algebra for Teaching actions (Ferrini-Mundy et al., 2005), bridging, establishing
connections or links between students’ and teachers’ understandings and between
different mathematical concepts or skills. With their terminology, they attempt to
help their students navigate the transition from solving linear equations in one
variable to solving linear equations in two variables.

Evidence for Learning Through Teaching

In this paper, we describe how two teachers grapple with a problem that all teach-
ers confront, helping students build more sophisticated understandings from more
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limited ones. Specifically, in teaching algebra, every teacher or curriculum designer
needs to introduce equations to students—do they deal with equations in one vari-
able first, or functions in one variable (defined by equations in two variables)? When
teaching equations in one variable, do they start with equations of the form ax + b
= cx + d, or build up to that? When do they introduce the idea that not all equa-
tions can be solved? And, depending on these decisions, as complexity is added, or
greater generality is sought, how does one help students make the transition from
where they have come to where they will now go?

In line with the district curriculum guide and the textbook, the two teachers we
have described, Ms. Alley and Ms. Lewis, use similar strategies, some of which are
common strategies in the US in Algebra 1 classrooms. They start with equations in
one variable first; they carefully build up from less complicated equations to more
complicated equations. And, they trim the complexity of the mathematics to aid
their students; for example, they intentionally do not explore equations that are not
amenable to closed form solutions.

Ms. Alley and Ms. Lewis teach in a particularly challenging teaching context
where students’ achievement is low. Both have a number of strengths as teach-
ers. Both teachers know the school algebra curriculum well; both teachers revealed
sensitivity to student difficulties in learning to solve equations that suggests a
capacity to learn from teaching; and both teachers respond to these observed dif-
ficulties through their teaching in the best ways they know how. In particular, both
teachers give evidence of learning from their teaching by recognizing the difficul-
ties their students have when facing the transition from solving equations in one
variable to solving equations in two variables. This transition is difficult largely
because students have observed that solving an equation in one variable, except
in “special cases,” yields a unique numerical solution. Challenging this percep-
tion, Ms. Alley utilizes a graphical representation to initially help students “see”
that some equations in one variable have no solutions and others have infinitely
many.

In the context of solving equations in two variables for a particular variable,
both teachers attempt to alleviate students’ discomfort with isolating a variable
and not obtaining a number as the result by departing from the standard instruc-
tions that appear in their textbook and using more descriptive commands that more
clearly indicate the desired form of the result. For example, rather than use the
standard instruction “solve for” that appears in their text, and declare that when
solving equations in two variables, one cannot solve without being told for what
variable one is solving, Ms. Lewis instructs students to “write this [linear equa-
tion] in the slope-intercept form,” and Ms. Alley describes solving in this context
as “transform[ing] the equation into a function.” And, more idiosyncratically, to
maintain continuity with their students’ expectations, they call identifying members
of the solution set (now pairs of coordinates) “solving” the equation in two vari-
ables. These departures from standard practice are important windows into teachers’
knowledge developed from practice.

While some might criticize the teachers for trimming inappropriately by overem-
phasizing isolate the variable as the meaning of “solve” in the case of linear
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equations in one variable, or for bridging inappropriately by using nonstandard lan-
guage to talk about solving in the context of linear equations in two variables, for
us, these classroom actions reveal sensitivity both to students and to mathematics.
The sensitivity displayed by these classroom interactions is one that developed for
these teachers in teaching; through teaching, they became aware of the pedagogical
obstacle presented by the transition between solving in the context of equations in
one variable and solving for a variable in the context of an equation in two variables;
they identified a pattern in student difficulty.

This pattern in student difficulty is around a transition in the curriculum, a
transition that perhaps seems unimportant from the viewpoint of more advanced
understandings. From a more advanced standpoint, both sorts of solving involve
isolating a variable and the difference in the result of isolating the variable is unim-
portant. But, for a teacher, this sort of distinction becomes important as they work
to help students eventually come to see this difference in result as unimportant.
These teachers are aware of the similarity between these two contexts of solving
and indeed do their best to emphasize it to their students. But, they are aware that
this is not enough. They seek other ways to deal with the transition that their stu-
dents must make between having the result of isolating a variable be a number or
an expression. They have decided that, for their students, differences that are not
salient to experts are important differences.

While Ms. Alley and Ms. Lewis used nonstandard language to help their students
bridge from solving equations in one variable to solving equations in two variables,
they kept two meanings of solve active. The standard approach of insisting that
one cannot solve an equation in more than one variable unless told for which vari-
able to solve suppresses the meaning of solve as finding members of the solution
set, which may in turn suppress connections between an equation and its graph.
Other researchers have found that students often fail to make important connections
between equations and their graphs, in particular that every point on the graph of an
equation is a member of its solution set (Knuth, 2000 with respect to high school
students in college-preparatory mathematics classes ranging from first year algebra
to calculus and VanDyke & White, 2004 with respect to entering college calculus
students).

By emphasizing solving an equation in two variables as finding coordinated pairs
of values that make the equation true, Ms. Alley and Ms. Lewis are laying the
groundwork to emphasize connections between the equation and a table of values
and the graph of the line. We did not have the opportunity to observe Ms. Alley
or Ms. Lewis during instruction on linear equations in two variables, but it seems
to us that finding members of the solution set is a potentially useful bridge to the
problem of finding all members of the solution set, which can be represented as
a graph—a line when the equation is linear. For us, these teachers’ actions serve
not only to create a bridge between students’ understanding of solving equations
in one variable to solving equations in two variables, but also, potentially, to create
a bridge between linear equations and their graphs. At the same time, Ms. Alley
and Ms. Lewis bridge equations in two variables with students’ prior knowledge
of function rules through their use of alternative language for “solve for.” Both
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teachers acknowledge alternate meanings of solve in the context of equations in
two variables, and the language they use for these meanings points to important
mathematical connections.

Without advocating that the particular teacher decisions outlined in this paper are
the optimal decisions to make, methodologically, we suggest that classroom actions
in response to tasks of teaching, like decompressing and trimming complex math-
ematical ideas for students and bridging those ideas, are places where one can find
teachers’ knowledge in action and where one find the results of learning from teach-
ing. Moreover, in the context of instruction where much is mandated by textbook
and curriculum guide, teachers’ knowledge is easiest to identify when teachers make
choices that depart from what is either mandated or what is the norm. Even in cir-
cumstances where much is mandated, teachers still make many choices about how
and when to introduce concepts and skills and what to emphasize; teachers have to
decide when to introduce complexity and when to remove it. Fully weighing the
potential short- and long-term payoffs, as well as tradeoffs, of such instructional
decisions requires not only knowledge of the procedures and definitions of algebra,
but also knowledge of various representations and the connections among them, of
alternative approaches to teaching and learning, and of more advanced mathemat-
ics and its requisite skills, concepts, and habits of mind, as well as knowledge of
one’s students and patterns in the difficulties that they experience in their learning.
We suggest that in the context of such work, one can find the kinds of knowledge
of mathematics and sensitivity to nuances of mathematical differences that perhaps
are uniquely the province of teachers, rather than mathematicians or engineers. The
challenge that faces teacher educators and professional developers is how to create
contexts that facilitate the learning of such knowledge.
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Part III
Examples of Learning Through Teaching:

Mathematical Pedagogy

Interlude 2

As we already acknowledged, our initial idea when conceiving of this book was to
focus on teachers’ learning of mathematics. However, as the authors shared with
us and the readers their own learning or the learning of teachers they observed,
supervised, or collaborated with, many pedagogical issues surfaced.

As mentioned earlier, in order to explore the overlapping ideas related to both
mathematical content and the teaching and learning of mathematics, we found
the distinction between mathematical pedagogy and pedagogical mathematics as
introduced by Mason (2007) useful (see also Introduction and the Interlude 1).
To reiterate, mathematical pedagogy involves strategies for teaching mathemat-
ics and useful constructs, whereas pedagogical mathematics involves mathematical
explorations useful for, and arising from, pedagogical considerations. We use this
distinction as a lens for considering the chapters in this volume, focusing in Part III
on mathematical pedagogy.

Mathematical Pedagogy

Mathematical pedagogy – as an outcome of teachers’ learning – is explored in a vari-
ety of implementations. In several chapters it is conflated with what Mason (2007)
denotes as mathematical didactics: Tactics for teaching specific topics or concepts.

Despite the emphasis on pedagogical mathematics in Part II we also find clear
examples of mathematical pedagogy in those chapters. For example, a search for
teaching strategies that results in improving students’ learning is featured in the
work of Marcus and Chazan. In their study, Ms. Alley and Ms. Lewis, who had
acknowledged students’ difficulty in dealing with linear equations of two unknowns,
and the variety of interpretations that emerge from the instruction to “solve”, devel-
oped a different set of instructions to enable the expressing of one variable in
terms of another. What may initially appear as a “trimming” the idea of finding
a solution, may in fact, as the authors acknowledge, serve as an appropriate bridge
between students’ initial understanding of “solving” and a broader mathematical
interpretation.
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In Part III we see more pedagogically focused examples: Liljedahl elaborates
on sources of rapid changes in the strategies employed by the teachers in their
mathematics classrooms: restructuring classroom learning from a traditional frontal
presentation to collaborative group-work (Mary), exploring a series of interest-
ing problem solving tasks (Mitchell), and communicating ideas (Danica). Alcock
describes in detail the approaches she developed for teaching a Real Analysis
course for a large class. These approaches are based on coordinating her personal
experience and concern about students’ learning with the current research litera-
ture. However, as Alcock acknowledges, her methods raise many yet-unanswered
questions for further research.

Yerushalmy and Elikan demonstrate how a teacher who implements a reform-
oriented inquiry-based mathematical curriculum develops her proficiency in manag-
ing whole class discussion. They also show reflections of two groups of teachers –
one group involved with the reform Visual Math curriculum and another teaching
using traditional methods – to the same video episodes. The differences in their
foci of attention, from noting the nuances in interactions to being concerned with
control and clarity, reflect differences in these teachers’ learnt practices and their
interpretation of the teacher’s role.

Doerr and Lerman focus on the communicative practices learned by Cassie, one
of the teachers participating in their research project. They describe Cassie’s learn-
ing of the role of reading and writing, and the use of oral language, when teaching
mathematics. They emphasize her appreciation of the centrality of these practices
as one of the outcomes of her learning.

While some teaching strategies are developed by teachers for their own prac-
tice, there are cases where teaching strategies are suggested, or even imposed, by
a third party. This party can be a researcher, as in the case of Michael in Kieran
and Guzman’s study, or an instructor/supervisor of student-teachers’ practica, as in
Hewitt’s study. In the latter, several uncommon strategies – denoted as the “links
lesson” and “silent lesson” – are demonstrated to student-teachers, with a require-
ment to implement these in their teaching. A search for appropriate responses to
pupils, especially when novice teachers have to “think on their feet” and respond
“in the moment,” is featured in this chapter. Despite initial resistance, these lessons
had a transformative effect on teachers, broadening their awareness of the notion of
feedback and shifting their attention from providing clear explanations to listening
to their students.

The common implicit theme in these chapters is the centrality of the teaching set-
ting for teachers’ learning. That is to say, the specific pedagogy learned by teachers
could not have been developed by means other than teaching practice.
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Exploring Reform Ideas for Teaching Algebra:
Analysis of Videotaped Episodes
and of Conversations About Them

Michal Yerushalmy and Shulamit Elikan

The Challenge of Whole-Group Algebra Inquiry

In the past decade, school mathematics has moved to assimilate graphing technol-
ogy into teaching and learning practices in both teacher demonstrations and student
problem solving (NCTM, 1989, 2000; Nemirovsky, 1996; Stacey & Kendal, 2004;
Kieran & Yerushalmy, 2004). Algebra reform has followed several approaches,
some of which can be categorized as “a function approach to algebra,” that orga-
nize the curriculum around the concept of function, emphasize and support concrete
representations, and base learning on situations that appear realistic and are cen-
tered on modeling at different levels. In this type of curriculum, students make
conjectures and perform actions with tools and representations in ways that were
not possible in traditional algebra (Yerushalmy & Chazan, 2008). A large part of
the learning is built on student ideas mediated by tools and activities. A key out-
come of these innovations is changes in the sequence of learning and in the scope
of traditional algebraic processes and objects. To this end, we have been develop-
ing and studying a guided inquiry technology-based algebra curriculum for grades
7–9 (Visual Math CET, 1995). The function approach we adopted and the curricu-
lum we designed accordingly shift the emphasis from procedures to operations on
functions. By its choice of sequence and the nature of the tasks, the “Visual Math”
curriculum offers opportunities for students to raise questions and for teachers to
offer tasks that promote inquiry in algebra. Each task has more than one solution,
often demands considering aspects that have not been taught, and can be extended
to support a compound problem-solving process.

In the inquiry algebra class, where students explore and conjecture, the teacher’s
primary role is to promote and organize discussions. Understanding this type of
teaching is a major challenge for educators (Chazan & Ball, 1999). On one hand,
studies suggest what teachers in reform classrooms should not do: for example,
they should not teach solution methods, they should avoid telling, and emphasize
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listening. But as Chazan and Ball (ibid.) suggested in “Beyond being told not to
tell,” in normal classroom discussions teachers do a variety of things: give yes and
no answers, ask questions, answer student comments, draw conclusions, ask for
clarifications, comment on student answers, etc. What do we expect that teachers do
differently in a reform classroom discussion?

In the published diary of her first year as a teacher of “Visual Math,” Levenberg
(1995) describes major difficulties and dilemmas relating to her conduct as a teacher,
her accomplishments in guiding mathematical inquiry, in general, and when using
the computer, in particular. Whole-group discussions were particularly different
from what she was used to:

Although it isn’t entirely dark [when projecting computer screens], I miss the eyes of the
students.
I prepared an exposition introducing variables. A frontal lesson boosts my self-confidence.
When I see the eyes of all the students then I have the feeling that I am teaching (Is that
so?).
The new trend is the class debate – I can create a debate that would last through the break. . .

for example, a graphic description that suited a verbal description excited four students. I
tried not to take sides nor to respond to the argument, but my body language denounced me
(the children can read my facial expressions). (ibid., p. 73)

Beyond expressing her feelings as a teacher, Levenberg tried to clarify the diffi-
culties inherent to whole-group discussions by analyzing elements that her students
needed to learn:

Debates disturb me. The voice tone (using vocal cords for persuading) may be disturbing
and the self-expression is not always clear. But eventually they will learn to do it. It is inter-
esting that such an ancient doctrine (Greece and Rome) is recapitulated in this curriculum
and that discussions replace the ever-lasting paper assignments (ibid., p. 77).

In an interview held in May 1998 after three years of teaching “Visual Math,”
Gilead interviewed by Yerushalmy, Elikan, and Chazan (2000) talked about the
nature of class assignments and team work that stimulate mathematical inquiry and
lead to acquisition of knowledge. Gilead outlined the class events and queried the
feasibility of whole-group discussions as a tool for acquiring shared knowledge. As
Gilead described what happens in the classroom, she addressed the issue of class
discussions and questioned how instructive whole-group discussions were.

[Students’] team-work has to lead eventually to class discussion if you wish to dis-
tribute knowledge from the individual to the audience. Now the question remains if this
is really instructive? If seven eloquent children talk, how does it affect the rest of the
students?

Talking about her role as a teacher, Gilead emphasized the new, unplanned
aspects and situations that occur during class discussion:

I taught twice the seventh grade and each time new things emerge. This doesn’t happen in
traditional algebra class. Every lesson is a surprise. My challenge as a teacher in this kind
of discussion is that there is no clear end to it, and it’s hard to navigate this kind of class
(Yerushalmy et al., 2000)
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Discussions in algebra class are often considered difficult to initiate and maintain
because school algebra is concerned mostly with symbols and procedures and not
with discussions about big ideas, which seems more appropriate to do in geometry
class. Teaching algebra for understanding, teachers must figure out how to open
classrooms to questions about algebraic symbols, about meanings of expressions
and equations, and about symbol manipulation. Carl, a mathematics educator who
observed an algebra class at the Holt school (in Chazan, Callis, & Lehman, 2008)
could not imagine that algebra beginners can be “so engaged in conversations about
mathematics” (p. 166). Monitoring student knowledge through discussions produces
various types of tension. Tensions are generated

– when the teacher must listen to individual students and at the same time keep the
class active and instructive as a whole;

– when right or wrong ideas are offered by students;
– when teaching procedures, explaining rules, assigning problems, and introducing

ways of finding the right answers must be reconciled with partnership with the
students in resolving ambivalences;

– when it is necessary to find content that instigates discussions and at the same
time teaches proficiency of basic skills and procedures that may not encourage
classroom discussion.

Lampert (1990) described the unique relationship that must evolve in a class
that seeks to function as an inquiring mathematical community where students
constantly convey their observations eliciting ongoing and concluding arguments
from peers and themselves. Previous studies about the professional development
of teachers maintained that long practice is needed to embrace these change pro-
cesses (Wood, 1995; Schifter, 1996, Chazan, Callis, & Lehman, 2008). The work of
Leikin and colleagues about learning through teaching in reform secondary school
suggested that teachers deepen and broaden their mathematical and pedagogical
knowledge while teaching in the reform-oriented classroom. They learned new (for
them) solutions to mathematical problems, new justifications to mathematical state-
ments and they learned the art of problem posing (Leikin & Rota, 2006; Leikin,
2005).

In the present chapter, we attempt to understand what practitioners learn from
their practice when adopting reform curricula that emphasize discussion-intensive
lessons. First, we perform a comparative analysis of two class discussions with the
same teacher and same students occurring two years apart. We analyze the discus-
sion quantitatively and qualitatively and describe what the teacher learned from
her practice. Then, we perform qualitative comparative analysis of two groups of
teachers reflecting on the same two video episodes. Our analysis is based on the
work of Lampert and Ball (1998), Santagata, Zannoni, and Stigler (2007), and the
work of Herbst and Chazan (2003), who explored the practical rationality of math-
ematics teaching by analyzing conversations of videotaped episodes of teachers
attempting to engage students in geometry proofs. Following Herbst and Chazan
(ibid.), we examine the reality that viewers construct from the artifact we designed
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to learn about their teaching practices. By comparing the conversations of two
groups of teachers who practice different algebra curricula, we attempt to gain a
better understanding of which parts of the conversations are rooted in the episode
as an artifact and which are personal constructions rooted in the reality of their
practice.

Learning Through Teaching: First Round

Choosing the Video Episodes

As part of formative assessment of the “Visual Math” curriculum, we created a
collection of video records focusing on investigative discussions, argumentation,
and reasoning processes that would allow us to witness the construction of rele-
vant mathematics knowledge. We used this collection to prepare episodes that can
be shared by groups or individuals as practice cases to reflect upon (Yerushalmy
et al., 2000). For the present chapter we selected two episodes from this collec-
tion. Each episode documents a conversation that takes place during a whole-group
algebra class discussion and refers to a situation that does not usually occur in the
traditional algebra class. In both episodes the discussion focuses on a similar task:
understanding the meaning of a symbolic expression. In the first episode it is raised
as an entirely open exploration: “find the expressions that represent a straight line.”
In the second one it was the class that offered, in a previous lesson, various expres-
sions as solutions to a given problem in context, and in our episode the teacher
chose to discuss interpretations of the meaning of one of the proposed expressions.
The teacher and students are the same in both episodes; in the first episode the stu-
dents are in the 7th grade, in the second episode, two years later, they are in the
9th grade.

Comparative Analysis of Interaction and Authority

One’s almost immediate reaction watching the two video episodes is that in Episode
1 the teacher acted as expected in a traditional teaching situation. She surrendered
her authority for short periods of time only, mainly when using the computer to
present student suggestions. She acted under the constraints of time, of her original
plans, and of the required curriculum, and guided the discussion in the direction of
the planned answer. In Episode 2 the teacher acted differently: She circumscribed
the boundaries of the discussion, listened to the students, and raised questions that
were consistent with the themes chosen by her but more often by her students. The
difference between the discussion routines is clear.

Comparative quantitative analysis using Cazden’s (1988) model confirms the
differences. Conversational interactions in a traditional class discussion are often
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Fig. 1 Interaction analysis (percentages of interactions) of episode discussions based on Cazden’s
IRE Model

described as a process of initiation, response, and evaluation. Cazden’s triad model
trails the number of initiations, reactions, and evaluations, in which the teacher asks
a question, the student answers, and the teacher evaluates the answer. Then another
question follows, and so on. Students do not expect to contribute to initiations, and
teachers dominate the reactions, focusing on assessing student answers. Figure 1
depicts a graphic view on the two episodes analyzed using Cazden’s model:

In our analysis we extended the IRE model to document both student and teacher
interactions. The interactions in Episode 1 resemble the traditional teaching proce-
dures, where the discussion is dominated by teacher initiations, student responses,
and teacher evaluations. This quantitative presentation does not paint a comprehen-
sive picture. Viewing the episodes, we identified aspects that are not apparent in
figure 1.

Episode 1 is divided into three parts. The first part was based on guided inquiry
with a functions’ graphing application that took place in a preceding lesson. The
discussion began with the teacher’s request to receive a list of rules the students
had found for qualifying a linear function using the graphing software. The students
offered answers and the teacher reconciled suggestions and conclusions, recalled
student responses, at times rephrasing them, but did not take a stand or present a
position. The students were barely capable of describing and explaining their com-
puter lab results, and the teacher initiations and evaluations injected new relevant
terms and descriptions. Two students disagreed about a rule that might describe a
linear function. The teacher supported the discussion by asking the opinion of the
rest of the students about the disagreement. In the second part the teacher provided
examples to refute the hypotheses, using the application to let the students view the
relevant examples. There were fewer teacher’s initiations and evaluations and more
student insertions based on onscreen examples. The teacher rephrased the task, ask-
ing students to provide expressions systematically (not from the list used to prepare
for the discussion), and she mostly ignored suggestions that were not relevant to a
formalization of the rule that qualifies the line ax + b. The third part began with a
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student proposing that the less used expression (x + a) · b can also be accepted as
a linear rule. The teacher seemed surprised and decided to ignore this proposal for
the rest of the discussion.

To further characterize and quantify relevant details, we used Lindsay’s (1990)
model to analyze types of initiations, responses, and feedback involved in the
episodes rather than separating student and teacher actions. According to Lindsay,
initiation is characterized by the type of request: choice elicitation (request to select
the right answer from several choices); product elicitation (request the offer of a
product); process elicitation (request an opinion or explanation); and meta-process
elicitation (request an explanation of the process). The reply usually mirrors the type
of initiation used, enabling categorization of the answers. Evaluations are based
on three strategies that a teacher may adopt to improve and encourage responses:
involvement strategy (asking for an explanation, example, or illustration); recall-
ing strategy (recalling on the student’s response to reinforce it); and simplification
strategy (repeating the student’s answer in the student’s words or in different terms
to validate the answer).

According to this analysis (see Table 1), the discussion in Episode 1 is charac-
terized by an almost equal number of choice, process, and metaprocess initiations
and by fewer questions that demand a fact as an answer. This distribution of ini-
tiations usually creates a similar distribution of types of responses. Over half the
student responses consisted of voicing descriptions of findings and opinions about
what they found, watching the graphing application in the previous lab-class and
during the discussion. The more frequent strategy used for evaluation was recalling
by repeating, rephrasing, and simplifying student answers without stating a position
or judging. The students were engaged in making rules, but the teacher often inter-
rupted and changed the discussion or repeated their statements to the class. Thus,
although the IRE model described what may be interpreted as a “telling” teacher and
“responding” students, in the subsequent analysis the episode appears as an arena

Table 1 Episodes 1 and 2: Percent of arguments based on subsequent classification

Elicitation Type Episode 1 Episode 2

Initiation Choice 26 0
Product 19 14
Process 26 21
Metaprocess 30 64

Response Choice 24 0
Product 14 14
Process 54 68
Metaprocess 8 18

Evaluation Promoting replies 20 29
Recalling 47 71
Simplifying 33 0
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that provides students with ways to describe their own understandings, although the
process is always initiated by the teacher.

The IRE analysis of Episode 2 (Fig. 1) shows that both students and teacher were
involved in initiating, responding, and evaluating. The quantitative analysis reveals
that student insertions outnumbered those by the teacher and initiations were equal
in number. Students dominated the discussion, and their participation as initiators
and responders overweighed the teacher’s.

This episode took place two years after the first, involving the same teacher
and more or less the same group of students. The mathematics was the algebra of
quadratic functions. The discussion focused on one of the models that several groups
of students arrived at while solving a problem during group work at a previous les-
son: f (x) = −1.25x(x − 80). The teacher wrote the function on the board and asked
the students to consider it. The task was to reconstruct the story in the problem from
this expression by explaining the structure of the expression and the meaning of the
coefficients. Amit presented his arguments, which apparently enjoyed the approval
of his team. The teacher did not respond. Inna, from another team, interrupted with
a comment prompted by ambivalence in the story. Assuming that she can quickly
solve Inna’s misunderstanding, the teacher clarified the process described in the
story. Inna was not satisfied with the answer and interrupted again. At this point
other students attempted to answer Inna’s question. Inna, a generally less involved
student, was determined to obtain further clarifications and argued that the story and
the model presented an illogical situation. Apparently her arguments were not due to
what the teacher had thought were a minor misunderstanding but were rooted deeper
in the challenge of describing a process that behaves as an increasing function with
a decreasing rate of change. The teacher allowed the students to continue the dis-
cussion. Inna’s questions caused Amit and his team to rephrase their arguments in
order to strengthen them and to persuade others.

The subsequent analysis of Episode 2 (Table 1) shows a complete absence of
choice elicitations: Most of the initiations, by both teacher and students, were of the
metaprocess type, mainly requests asking for explanations of answers. There was a
comparatively small number of evaluations (Fig. 1) dominated by students repeating
their peers’ answers and by the teacher repeating student statements without taking
a stand, for example, “I see someone who doesn’t agree yet. . ..”

The primary and subsequent analyses shed light on changes in practices and
norms that occurred within this setting. The first episode captured the teacher’s first
year of the guided inquiry teaching and the students’ first year of algebra study;
the second episode captured both teacher and students in the third year of this
activity. Note that the comparative analysis is indicative not only of the learning
through teaching that teachers underwent, but also of the new ways acquired by
the students over the preceding two years. The teacher conducted discussions in
both episodes, and in both episodes “telling” was involved in different forms. In
the first episode, the teacher told students whether their answers were wrong or
right but she also re-played student comments and rephrased and broadcast stu-
dent descriptions to the class. This was one of the first attempts of the teacher
to lead a non-authoritative discussion that allowed the students to discover, argue,
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and, thereby, comprehend the mathematical idea. Unlike in the traditional view of
conversations about algebra, most teacher initiations and student responses were
made to seek an opinion, and only one fourth of the statements were product
(yes/no) answers. In Episode 1, the teacher reduced the immediacy of her evalu-
ation and initiations when working with the graphing application, probably because
she felt that her students were headed in the direction that she wanted to fol-
low and were obtaining computer’s feedback with fewer evaluations on her part.
Two years later, probably owing to her own growing experience, the maturity of
the students, and their more advanced knowledge of algebra, the teacher acknowl-
edged the mathematical value of the conversation that proceeded almost without her
intervention.

Disagreements appeared in both episodes. Based on Chazan and Ball (1999)
analysis of the meaning and function of disagreements in mathematical discussions,
we assume that stimulating and handling disagreements is a key concern in any class
discussion. In both episodes the discussion was prompted by an important task that
was suitable for producing disagreements. In the first episode the teacher presented
an open task, and the students, who had no formal symbolic knowledge, brought a
wide open collection of conjectures to the discussion based on observation of visual
patterns while graphing with the software application. Throughout the episode, we
learn that the teacher’s goal was to reach a specific answer, central to her curricular
agenda: the expression ax+b. Thus, in Skemp’s terms (1976), there was a mismatch
between the assigned task and what the students wanted to engage in (or what they
assumed they were asked to engage in) and what the teacher attempted to achieve.
Following Marti Schnepp distinctions (in Schnepp & Chazan, 2002), we would have
described it as mixing two strategies of guided inquiry: in one, the teacher is a lis-
tener and an observer and in the second, the teacher is more involved in directing
the discussion toward a planned curricular goal. In Episode 1, disagreement did not
produce consensus, and the clock and curricular goals received higher priority. At
the beginning of Episode 2, the teacher explicitly presented a clear goal: Interpreting
the numerical coefficients that appear in the expression as part of the story. But after
the teacher acknowledged the conceptual depth of the disagreement between Inna
and the rest of the class, she seemed satisfied with the agenda and the productivity
of the discussion.

The change in practice that appears in Episode 2 reflects also a change in the
social and emotional atmosphere. In the first episode the discussion was not con-
solidated by the students, who kept providing answers of different types going in
different directions. Students often did not listen to each other, did not comment on
their peers’ statements, and were anxious to offer their best answers to the teacher’s
questions. The teacher, concerned with losing her students’ attention, controlled
the diversity by her own initiations and by immediate evaluations. In the second
episode, the students were greatly involved and sought to settle the conflict them-
selves. The teacher commented and stressed some points in the disagreement, but
generally remained an observer, causing students to reevaluate and rethink their
ideas.
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Learning Through Teaching: Second Round

In editing an episode, we design an artifact because we isolate a short segment drawn
from reality, but omit its context. Thus, the episode invites viewers to “reconstruct
a possible reality from where that episode could have come” (Chazan & Herbst,
2003, p. 6). In creating such setting we hoped to study learning through teaching
by examining constructions of teachers with different teaching practices. We use
two comparable episodes to elicit specific elements we deemed important in reform
and traditional algebra discussions. We asked two groups of teachers to watch the
two episodes and we recorded their conversations or collected their written records.
One group contained four teachers who taught “Visual Math” algebra but were not
familiar with the school and the teacher appearing in the episodes. The second group
contained five junior high and high school teachers who taught traditional algebra.
The second group commented in writing.

Constructions by Teachers Who Practice Guided Inquiry

Four junior high school mathematics teachers, teaching “Visual Math” at the same
school, met as part of their adoption of the reform curriculum to discuss issues
related to whole-group inquiry. The meeting was led by an experienced educator
who asked teachers to watch the two episodes and prepare to talk about issues that
are meaningful to them. While watching the videos, the teachers were asked to con-
sider the conditions that support or disrupt discussion, the teacher’s involvement in
leading the discussion and the students’ involvement in conversations, and the qual-
ity of the mathematics being taught. The conversation that followed the viewing
lasted hours. We summarized the discussed topics under the following five areas.

How Does One Learn to Discuss?

Noga: Did these students learn how to talk to each other? Here when they speak
with each other, they also consult each other. I am trying to teach students to speak
to each other, because usually when they want to answer other students’ questions
or to comment they look and talk only toward me (Episode 2).

Noga was surprised that students spoke at length and communicated with each
other. She recognized the features she missed in her class discussion: students
addressing each other, responding to each other’s questions, and looking at each
other. Noga spoke about her difficulties changing the traditional norm of always
addressing the teacher. She understood that learning and teaching should address
the social interaction, part of what Lampert (2001) described as the social complex-
ities of practice. Noga pointed out elements distinguishing the two episodes that
we had originally missed. For example, in Episode 1 a few students tried to turn
around to face their peers, but they were stopped by the teacher who assumed that it
was appropriate to work in a small group but not when participating in whole-class
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discussion. In Episode 2, the students sat in small groups, naturally turning to each
other while speaking.

Who Convinces Whom? Is This the Teacher’s or the Students’ Job?

Noga: I didn’t see them getting answers to their questions. The first child was left
behind. . . She [the student] had very reasonable questions that would have helped
her understand the question before getting the solution. And she didn’t get answers
(Episode 2).

Viki: Somehow in the end it is supposed to make sense. In the end things become
clear, otherwise there is a problem and the students won’t understand. The nice
thing about the discussion is that each student can add something and in the end
everything is summed up (Episode 2).

Noga: She [the teacher] doesn’t give the answers. . . I noticed that she sometimes
leads the students back to the original problem or repeats the student’s arguments.
When you repeat them it raises second thoughts and this can definitely help the
discussion.

Nurit: She [the teacher] is not judgmental, she doesn’t say right or wrong. It’s
important because otherwise she would close the discussion. If she says right or
wrong there is no reason to continue the discussion (Episode 1).

The teachers exchanged ideas about the diverse views and put forward by the
students. They were troubled by what seems to disturb every teacher involved in
whole-group discussion: how to answer without terminating the discussion? Should
the teacher answer, and when? Is it legitimate to deny the students’ basic demand
to receive an answer to a question? Noga realized that not telling does not mean
not answering, and she identified in Episode 1 the indirect ways the teacher used by
repeating the students’ comments and leading them to the answer.

In Episode 2, no acceptable solution was reached, and the discussion did not
end. The teachers’ conversation went beyond what was shown in the video, and
Viki envisioned a “happy end” where in the end the teacher summarized most of the
students’ arguments.

Why Is Mathematic Discussion Necessary?

Viki: Whole-group discussions can lead to new discussions or underline other
important issues. And every team starts working on its own and develops new ideas.
Maybe the discussion can raise other group ideas, and the rest of the class can talk
about them and check them. And there is also a concluding discussion.

Nurit: First of all, it enhances reasoning, thinking together about a problem. Each
student contributes something to the discussion. In our society it’s possible to solve
problems through teamwork. Different opinions are offered. . . but there are smart
individualistic students who don’t consult when they face a difficulty are stuck with
it. Sometimes a weak student can provide a good idea that leads to the solution. So
it’s very important to think and work together.
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This conversation reflects two modes of whole-group discussion. Viki thought
that the discussion provides an opportunity for the teacher to introduce order in
variability: She can open a discussion with one important aspect and acknowledge
the work of individuals by bringing it to the knowledge of the class or attempting to
reach a consensus. Nurit, however, spoke about the need to understand diversity of
ideas and grant students the opportunity to clarify ambiguous issues. Nurit recog-
nized that the discussion gives each student a chance to speak or listen, in contrast
to the classic situation in which the best students offer their solutions. The discus-
sion helps clarify certain issues, and a question asked by any of the students can
generate a useful comment. Nurit emphasized that discussion was an opportunity
for everyone to experience collaboration in problem solving.

What Does It Mean to “Be With Me” in a Discussion?

Nurit: We never have 100% of the students with us. But we try to reach out as
much as possible. If I talk to all of them and I don’t conduct a discussion with every
group, or if I write things on the board and some children don’t look at me, there
is no chance of their being with me. Minimal conditions are needed for the student
to know what we are talking about. This is my feeling. When he looks it doesn’t
necessarily mean that he understood, but if he doesn’t look, it means he doesn’t
know.

Also, when children talk with each other during discussion, the teacher doesn’t
say that they are wrong but lets them continue. I guess that by the end of the lesson
they know what’s right and what’s wrong. When I teach it’s hard for me not to
respond immediately, so sometimes I nod (Episode 2).

Constructing the reality from the episodes the viewers often ignored the fact that
the episode spanned 2–5 minutes and tended to generalize them to a full class period,
reaching the conclusion that only a fixed and small number of students participated
in the discussion. This constructed reality apparently bothered teachers who asked
whether students who did not speak in class and looked passive were participating

Nurit: It is my duty to make everyone talk; otherwise how do I know whether
they understood? What is the best way to seat them for a discussion? Do all students
need to look at the teacher or the board? Should the discussion involve the whole
class or only small groups? What body language is expected from the teacher? They
are all watching me, and if I move my head I disrupt the discussion.

What Is an Appropriate Task?

Ellen: A basic condition for a discussion is a suitable assignment. We learned the
lesson. In the beginning we also used the questions from the “Visual Math” book
“as is,” and it didn’t work, just like here. As Nurit said, not all students were with
us (Episode 1).

Ellen discussed the need to match the assignment to the class situation as a
condition for an appropriate discussion. She claimed that many students did not par-
ticipate in Episode 1 because the assignment was not appropriate. Ellen referred to
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unsuccessful early attempts in her own teaching experience. Although teachers find
it difficult not to adhere to the textbooks and to diversify (Pimm, 1996), Ellen argued
that teachers should not adopt any textbook problem but rather examine how would
the task appropriately serve the goals and the setting of their planned discussion.

Viki: I think it’s very important that the task refers to a theme from daily life.
Something that will make the children think harder. The student who did not get the
quadratic equation and just experimented with the given numbers. . . . this is still a
nice work (Episode 2).

Viki as well related the difference between the two episodes to the different
nature of the tasks and argued that a question from a realistic context provides
every student the opportunity to be involved and learn, thus creating a better
discussion.

Constructions by Teachers Who Teach Algebra Traditionally

Five experienced junior high and high school teachers who teach traditional alge-
bra showed interest in the “Visual Math” curriculum and asked to learn more about
technology-based algebra taught as guided inquiry from practicing teachers and the
development team. We suggested them to view and analyze the episodes and we
asked them to answer some questions. The teachers received the video and were
advised to watch the episodes several times. Teachers were given information about
the classes and the climate, the age of the students, their mathematics background,
and a short description of the lessons that preceded and followed the episode.
The leading question we asked was, What resemblances do you find between the
episodes and your work as a teacher? In addition, we asked questions similar to
those posed to the “Visual Math” practitioners about the language of mathematic,
the teacher’s and students’ roles, assignments, and discussions’ principles. Often
teachers chose not to answer the questions in order but to write a personal opinion
and interpretation of each episode. Their responses were analyzed and compared
with responses collected from mathematics educators. The results of this system-
atic analysis are described by Elikan (1999). Below is a selection of the most salient
constructions of classroom reality as viewed by two sub-groups: first, the reflections
of junior high teachers, followed by those of the senior high school teachers.

Junior high school teachers’ main concern was securing students’ confidence and
motivation.

Mina: The discussion contributes to the students’ understanding and helps build
their self-confidence. The teacher asks the students to define the function and
she repeats and clarifies the instructions. She could have been more involved
(Episode 1).

Ravit: They seem to lack expertise in algebra. The inquiry starts with the students
having very few clues about what they are looking for. The assignment is important
for the students because it encourages insecure students who are afraid to speak.
The teacher guides the class, trying to reach the goal and her [planned] conclusion.
But in the end she reaches a dead end (Episode 1).
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They were also concerned whether the discussion contributed to completing the
assignment.

Ravit: Two students from two different groups argue and lead the discussion. The
teacher expands the discussion, asks guiding questions, and gives others permission
to speak. She gives other students the opportunity to clarify some issues [to their
classmates]. I would rather have her answer the students’ questions (Episode 2).

They recognized the strategies the teacher used to motivate student involve-
ment and identified what they viewed as difficulties related to the minimal teacher
involvement in providing answers.

Most of the responses of the senior high school teachers focused on the teacher’s
performance and on the way she led the class. Control is a dominant issue in their
view:

Shery: The teacher lost control during the lesson. She didn’t comment, she
didn’t interfere, didn’t make clear what is right and what is wrong. The teacher
must be more assertive and check the level of understanding. She was not focused
enough. She should be more involved, directing, and conclusive, and ask more direct
questions (Episode 2).

It was hard for them to understand how listening to students can help teach
mathematics. They showed deep concern about how students feel in class:

Ron: There is a danger that the students will lose their self-confidence. . . Too
many instructive techniques can confuse the students... The students look puzzled. . .

(Episode 1)
They indicated confusion that was caused by the lack of discipline and the inabil-

ity to balance the contributions among all the students. The viewers concluded
that discussions are not suitable for large classes. They pointed out that only a
few students participated in the discussion, and the more talkative ones sometimes
dominate the discussion (not always on relevant issues).

Shery: The number of active students in class was small. Many students did not
participate. Not all the students were given a chance to speak. Most of the students
couldn’t join the discussion and express their opinion. There were too many students
in class. The discussion was disrupted because one student took control of it. . . two
students from two groups argued with each other. . . (Episode 1)

Senior high school teachers considered the time frame of the discussion to be too
long, a waste of time when the answer is simple and basic. They thought that the
assignment in Episode 1, dealing with linear expressions, was simple and should not
require a discussion, which is perceived as an instrument to present different options
required to solve a mathematical problem.

Ron: The assignments required a simple technique that doesn’t require a
discussion (Episode 1).

Others thought that the task was not appropriate for discussion because it was
too far from the students’ knowledge.

Monny: The discussion didn’t contribute at all. The question is too complicated
for the students because they lack algebra expertise (Episode 1).

At the same time, the teachers thought that it was important to use mathe-
matical problems in context, as in Episode 2, because the variety of methods
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available for reaching a solution in problems of this type makes the discussion
worthwhile.

Monny: The question requires understanding, persuasion, and translation into
mathematical language. A good assignment for discussion (Episode 2).

The discussion was perceived as an arena for the teacher to display various
methods for a solution of more complex problems, mainly word-problems in
context.

Shery: A realistic question highlights the use of mathematics in daily life. The
question in not closely related to algebra and requires intuition and personal con-
sideration. There are a few optional solutions, and reaching them will enrich the
student (Episode 2).

Learning Through Teaching: Constructions That Uncover
Teaching Practices

Summarizing the analysis of the two sources of data, we argue that the conversations
about the two episodes are helpful in studying teaching practices and that they indi-
cate processes of learning from teaching. Note, however, that the implications of the
different settings in which we studied the two groups (as a result of technical con-
straints) may have had been greater than we had originally assumed. Colleagues
within the same mathematics department, teaching the reform algebra program,
share a common set of goals that can affect their conversation. Individuals watching
a video and inquiring individually about it do not share these goals. But the answers
documented in both settings, and the clear, consistent distinctions between the two
groups support our suggestion that the constructions produced with the artifact
indeed reflect commitments and requirements learned through different practices
of teaching.

The group of the four “Visual Math” teachers participating in the conversation
about the video episodes was going through a major change of their algebra curricu-
lum and teaching. Watching the video episodes, they recognized practices similar
to those taking place in their algebra classes, and they spoke about their own issues
and tensions in ways that went beyond the specific actions in the episodes. In gen-
eral, they directed their attention to Episode 2. Having recognized the reality they
lived in the episodes, they probably considered Episode 2 as a more appropriate
climate for discussion. They were not interested in the differences between the two
episodes, in evaluating the changes, or in criticizing what may be viewed as the less
mature reality of Episode 1. Instead, they focused on what provided them with an
opportunity to describe their own practices.

Their reflections on Episode 2 illustrate their commitment to engage all students
in the construction of knowledge through active learning and to guide whole-group
discussions as a way to achieve this objective. It also became clear that they were
committed to teaching that goes beyond the regular covering of the mathematics
curriculum. They were concerned with what Lampert (2001, p. 265) described as
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“teaching students to be people who study in school.” They made it clear that
they are familiar with a classroom reality in which students talk and relate to each
other, are ready to listen to others’ ideas, learn to think together, and learn from the
diversity of ideas. Because they identified differences between the two tasks being
discussed, they spoke about their own sense and responsibility for the curriculum
and the assigned tasks.

From their commitments we learn about their dilemmas. They identified in the
episode activities apparently causing the tensions they faced. They appreciated the
confrontations in the video as the ideal climate for learning, which they do not yet
know how to achieve. Episode 2 helped Noga to describe her difficulties in achiev-
ing a desirable discussion. Noga indicated that she would like to learn how to teach
her students to discuss. Watching the teacher attempt to guide without “telling,”
the viewers at first questioned whether the students really learned, but gradually,
upon reflection, they were persuaded that even if students had difficulties during the
few minutes shown in the video they would understand “by the end of the lesson.”
Nurit praised the teacher’s habit not to provide judgmental feedback, and recalled
her own failure to act in this way: “I nod my head.” There is an implicit ques-
tion whether “not telling” is consistent with the commitment to help students learn.
Noga started by criticizing the practice of not providing answers to questions, but
gradually identified several ways of “telling” that she was able to appreciate.

The second group consisted of five teachers that taught traditional algebra cur-
riculum. The two junior high school teachers of this second group expressed
commitment to constructing a secure environment for learning algebra. In their view,
this environment requires a leading and guiding teacher. Although new for them,
they appreciated the conversations taking place in both video episodes and were
concerned about whether the discussion provided the teacher with the opportunity
she needed to teach important mathematics. They did not extend their constructions
to go beyond the specific episode, to speak explicitly about their own practices, or
to discuss the great challenges involved in teaching this way. The three high school
teachers expressed stronger commitment to teach the correct mathematics using an
accurate vocabulary. The leading teaching practice exhibited in their reflections was
“control.” The teachers identified actions and norms that did not agree with their
practices, in which the teacher controls the situation, asserts her views, determines
who speaks and when, cuts short long conversations, points out exactly what is true
or false, formulates conclusions, and asks questions to verify the students’ compre-
hension. Engagement with problems in context through discussion made sense to
them because it is not considered to be a purely mathematical conversation, and
therefore requires argumentation skills that are different from the ones required in
mathematical tasks such as the one in Episode 1. The ideal climate they envisioned
for a discussion involved a task that can be discussed in a clear, simple, and univalent
mathematical language and a teacher who knows when to interfere so that students
are never lost. They did not address the possible challenges and complexities of the
whole-class discussion, and although they did not explicitly refer to their own prac-
tices they did not hesitate to provide clear suggestions about tasks and teaching that
would improve what they have seen.
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Concluding Remark

The first group, which was undergoing a process of re-learning to teach algebra
as a subject for guided inquiry, used the episodes as a mirror. Eventually, they
recognized central components of their own teaching reality and focused on what
provided them with an opportunity to describe their own practices, dilemmas, and
tensions. The episodes opened for the group that taught traditional algebra a window
to somewhat distant classroom reality. Watching these new views they implicitly
uncover their own pedagogical principles, making an effort to “fix” the reality they
viewed in ways that would coincide with their practices.
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On Rapid Professional Growth: Cases
of Learning Through Teaching

Peter Liljedahl

Introduction

I do professional development. That is, I professionally develop inservice teachers
in a number of different formal educational settings to achieve a number of different
inservice goals. The sort of work that I am involved in is more than simply the
delivery of workshops, it is often the creation and maintenance of a community
of practice in which ideas are provisional, contextual, and tentative and are freely
exchanged, discussed, and co-constructed (Little & Horn, 2007; McClain & Cobb,
2004; Wenger, 1998). Working within this context I am both a facilitator and a
researcher. I facilitate the setting and I research my effectiveness. However, while
it is true that as a researcher I am interested in the down-stream effects of the work
that I am engaged in (improvement in students’ experiences and performance, etc.),
it is equally true that I am also interested in the effects on the teacher participants.
There is much that happens in this regard.

Method

Working as both the facilitator and the researcher interested in the contextual and
situational dynamics of the setting itself I find myself too embroiled in the situation
to adopt the removed stance of observer. At the same time, my specific role as facil-
itator prevents me from adopting a stance of participant observer. As such, I have
chosen to adopt a stance of noticing (Mason, 2006, 2002). This stance allows me
to work within the inservice setting to achieve my professional development goals
while at the same time being attuned to the experiences of the persons involved. I
notice, first and foremost, myself. I attend to my choices of activities to engage in
and the questions I choose to pose. I attend to my reactions to certain situations as
well as my reflections on those reactions, both in the moment and after the session.
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More importantly, however, I attend to the actions and reactions of the teacher par-
ticipants both as individuals and as members of a community. And in so doing,
from time to time I notice phenomena that warrant further observation and/or inves-
tigation. Often these are phenomena that occur in more than one setting and speak
to invariance between individuals, settings, contexts, or behaviors. Once identified,
these phenomena can be investigated using methodologies of practitioner inquiry
that combine the role of educator with researcher – in this case teacher educator
with researcher (Cochran-Smith & Lytle, 2004).1

Using this methodology of noticing within a diverse number of professional
development settings – from workshops to learning teams to graduate programs – I
have, from time to time, noticed teachers undergoing rapid and profound2 changes
in their beliefs and practices. This phenomenon is rare. Most teachers engaged in
inservice work follow a trajectory of change that is much more pedestrian. At first
such changes surprised me and I was immediately suspicious of the self-reported
accounts of the almost instantaneous revision of practice that some teachers spoke
about. But as more and more of these accounts accumulated I decided to investigate
further. I stepped out of my role as facilitator and assumed a stance of researcher.
I began to interview teachers, to visit their classrooms, to observe their teaching.
I spoke with their colleagues, their administrators, and their students. I took field
notes and I wrote narratives (Clandinin, 1992; Clandinin & Connelly, 1996).

Over time patterns began to emerge within the individual cases that I inves-
tigated. Using a grounded theory (Creswell, 2008) approach, the phenomenon
of rapid and profound change began to fragment and converge into six differ-
ent themes: conceptual change, accommodating outliers, reification, leading belief
change, exo/endospection, and critical questions. Each of these six themes, although
not entirely distinct, embodies a different mechanism for transformation of teaching
practice that needs a unique theoretical framework to bring it into sharper focus.3

The first three of these themes – conceptual change, accommodating outliers, and
reification – are situated within what teachers have learned through their own teach-
ing and are, thus, the three themes that I explore here. In what follows I present three

1 It should be noted that the main distinction between a methodology of noticing and a method-
ology of practitioner inquiry is that noticing does not presuppose a research question. It is a
methodology of attending to the unfolding of the situation while being attuned to the occurrence
of phenomena of interest.
2 Rapid and profound are relative terms. What is rapid for one person is not for another. Likewise,
what is profound for one is not for another. In general, a transformation is deemed to be profound
if a teacher’s new practice is both visibly and invisibly different. That is, there are substantial
differences evident from the perspective of an outside observer AND the teacher claims to have
undergone a substantial change within how they view their teaching. In practice, this transformation
is seen as being rapid if the bulk of the transformation occurs within a period of less than one
month.
3 The grounded theory approach that is used to spawn the six themes is not sufficient for analyzing
the themes. At the same time, each theme, although not discrete, is distinct enough to be seen as its
own phenomenon. As such, each theme is analyzed using the theoretical framework most relevant
to its particular characteristics.
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abbreviated cases4 (and their analysis) each of which was selected for its ability to
succinctly exemplify one of the three aforementioned themes.

The Case of Mary

Mary is an elementary school teacher with more than 20 years of experience.
Although she has taught mostly every grade in the elementary curriculum, Mary
has spent most of her years teaching the intermediate grades (4, 5, 6, 7). In recent
years she has become disillusioned with the teaching of mathematics. In particular,
she is questioning her ability to have a meaningful impact on students within the
structures that she must work. Mary is unhappy with the current mathematics cur-
riculum as well as the dispositions of her students with respect to mathematics and
the learning of mathematics. For Mary, both the curriculum and her students expect
the same things from her – to deliver mathematics in a piecemeal fashion with each
dose carefully and precisely dispensed. She sees the curriculum as being a collec-
tion of disjoint topics each of which needs to be mastered in turn. There is little
connection across these topics and there seems to be very little thinking required
of the students. Mary reports that the teaching of mathematics is mundane. It is the
one subject in her teaching where she feels that she lacks connection with her stu-
dents as learners. She talks about the teaching of mathematics in very traditional
ways – from the standard review-demonstrate-mimic-practice lesson plan to the use
of homework, quizzes, and tests to leverage students’ commitment to the acquisition
of the taught skills. Ironically, she does not see herself as this type of teacher in the
other subjects that she teaches. Most troubling to her, in this regard, is that she sees
herself as bending to the will of her students. This is how they see mathematics and
mathematics teaching and she is playing right into their expectations.

To revitalize herself, and to work with students in a more meaningful way in
the context of mathematics, Mary decided to leave the classroom and work more
closely with students within a learning support context. In particular, she works in
supporting “at risk” students in the areas of mathematics and language arts. She finds
this work to be rewarding in that she does not have to conform to the expectations of
the students and the curriculum. However, she misses the dynamics of the classroom
environment.

4 In my research, I distinguish between cases and narratives. Although both generated in the tra-
dition of narrative inquiry (Clandinin, 1992; Clandinin & Connelly, 1996) cases and narratives are
written for different purposes. Narratives are written in the first person and are meant to capture
some of the hidden aspects of a teacher’s practice such as beliefs, anxieties, intentions, and goals.
These are deeply personal aspects and require close relationships and deep trust in order to be
produced. Cases, on the other hand, are written in the third person and deal more with the visible
aspects of teaching such as lesson routines and assessment schemes. They may also include per-
sonal aspects such as goals, but these are usually aspects that are freely given or espoused. In all
cases, both narratives and cases are shared with participants as a way to both enrich the descriptions
and confirm their validity.
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It was at this point in her career that Mary decided to enrol in an Elementary
Mathematics Education Master’s program. The program, which spans two years,
is a collection of seven courses, each of which is designed to look at mathematics
or mathematics education from a different perspective. Mary hoped that her par-
ticipation in such a program would allow her to find what it was she felt she was
missing in her practice. She did. Part way through her second course in the program,
Mary returned to a regular classroom and completely reconstructed the teaching of
mathematics for her new students. This was not a slow change.

As the instructor for the second course in the program I first met Mary in
November when she was still very much disillusioned with the state of affairs in
mathematics education, in general, and in her teaching, in particular. At the begin-
ning of January, when she returned to the regular classroom she was a completely
different mathematics teacher. Her classroom was now a place of inquiry and dis-
covery, of meaning making and thinking. She had expectations of her students in
the context of mathematics . . . and they lived up to them. Her classroom was trans-
formed. Rows of desks were replaced by students working in groups of four at
tables. There was no longer a well-defined “front” of the classroom as Mary now
utilized the entire classroom for teaching and students were valued as partners in
learning AND teaching. Mary was also re-examining the whole notion of assess-
ment as a tool for learning as opposed to a way to control student behavior. Not only
was her transformation as a mathematics teacher profound, it was fast when viewed
in the context of professional growth in general, and even faster when viewed in the
context of Mary’s long teaching career.

Mary’s Transformation as a Case of Conceptual Change

Mary reported that she had participated in many professional development work-
shops and district-based initiatives, from constructing assessments to piloting new
textbooks and resources. But each of these failed to inform her practice in any sig-
nificant way. In fact, many of them simply reinforced the very paradigm she was
trying to escape. Based on interviews with Mary, I determined that what eventually
initiated Mary’s rapid transformation was the recasting of her view of mathemat-
ics curriculum from content to context. This resulted from an in-class exercise
we did in which we looked at the mathematics curriculum documents from the
perspective of mathematical processes. This view places the processes (such as
estimation, problem solving, communication) as the primary goal of mathematics
education and relegates traditional topics (such as geometry, fractions) to the con-
text in which these processes are actualized. This view was what Mary was missing.
In the mathematical processes she found the meaning that she felt was absent from
her practice.

Mary had begun her transformation long before she entered the masters program,
however. She had long ago rejected the beliefs upon which her practice was built as
well as the beliefs upon which she saw the curriculum as being built. Outwardly



On Rapid Professional Growth: Cases of Learning Through Teaching 213

there was no change, however. She still taught mathematics the same way as she
always had . . . and in the way she had been taught mathematics. And, although
there seemed to be no difference in her teaching, Mary was persistently seeking a
new way to teach.

The transformation that Mary underwent – belief rejection followed by belief
replacement – can be seen as a special form of conceptual change, a theory that
emerged out of Kuhn’s (1970) interpretation of changes in scientific understand-
ing through history. Kuhn proposed that progress in scientific understanding is not
evolutionary, but rather a “series of peaceful interludes punctuated by intellectu-
ally violent revolutions”, and in those revolutions “one conceptual world view is
replaced by another” (p. 10). That is, progress in scientific understanding is marked
more by theory replacement than theory evolution. Kuhn’s ideas form the basis
of the theory of conceptual change (Posner, Strike, Hewson, & Gertzog, 1982)
which has been used to hypothesize about the teaching and learning of science.
More recently, this theory of conceptual change has been applied to the learning of
mathematics (Greer, 2004; Tirosh & Tsamir, 2004; Vosniadou, 2006; Vosniadou &
Verschaffel, 2004). The theory has also been shown to be relevant to the meta-
conceptual, motivational, affective, and socio-cultural factors of learning as well
(Vosniadou, 2006).

In general, the theory of conceptual change starts with an assumption that in
some cases people form misconceptions about phenomena based on lived experi-
ences, that these misconceptions stand in stark contrast to the accepted theories that
explain these phenomena, and that these misconceptions are robust. It is not a the-
ory that applies to learning, in general. It is highly situated, requiring four primary
criteria for relevance (Vosniadou, 2006) – (1) it is applicable only in those instances
where misconceptions are formed through lived experiences and in the absence of
formal instruction, (2) there is a phenomenon of concept rejection, (3) there is a
phenomenon of concept replacement, and (4) there is the possibility of the forma-
tion of synthetic models. I propose that each of these criteria is equally relevant
to the instance of Mary’s rapid reformation of her beliefs about mathematics and
the teaching and learning of mathematics as well as the rapid reformation of her
teaching practice.

To begin with, Mary’s relevant lived experiences occurred in her time as a
student. As a learner of mathematics she has experienced both the learning of math-
ematics and the teaching of mathematics, and these experiences have impacted
on her beliefs about the teaching and learning of mathematics (Chapman, 2002;
Feiman-Nemser, McDiarmid, Melnick, & Parker, 1987; Lortie, 1975; Skott, 2001).
The question is – can these experiences be viewed as having happened outside of a
context of formal instruction (criteria #1)? Although her experiences as a learner of
mathematics are situated within the formal instructional setting of a classroom, the
object of focus of that instruction is on mathematics content. That is, while content
is explicitly dealt with, within such a setting theories of learning, methodologies of
teaching, and philosophical ideas about the nature of mathematics are not. Secondly,
Mary had clearly rejected the paradigm in which she was working, and although this
rejection did not manifest itself in her actual practice, it did exist within her belief
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structures around mathematics and the teaching and learning of mathematics (cri-
teria #2). Mary then searched for something more meaningful around which she
could construct her teaching practice. When she did eventually encounter the afore-
mentioned view of mathematical processes as curriculum it instantly displaced the
already rejected paradigm which she was still reluctantly using (criteria #3).

Finally, a “synthetic model” is a term reserved for the description of an incom-
plete or incorrect model. It is a middle ground between the initially rejected concept
and the concept that is to be acquired. In many cases, it is a synthesis of the old and
the new as the learner is making use of old resources to make sense of new ideas.
In relation to Mary, a synthetic model manifested itself in the fact that although
she made rapid and profound changes to her teaching practice she still continued to
make changes and improvements as time went on (criteria #4). This is not unusual.
Change begets change and as Mary settles into her new teaching practice she saw
more and more details that required attention. This is no different than the context
of a student’s conceptual change around a mathematics or scientific concept. The
synthetic models they develop are most often temporary and tentative, often giving
way to more and more refined models as conceptual understanding is achieved.

Although Mary’s case exemplifies rapid professional growth through a process of
conceptual change she is only one of eight cases that I have encountered. In general,
there are many teachers who engage in inservice education opportunities because
they are extremely disillusioned with the paradigms that they are working in. They
have learned, through their own teaching, that they do not work for them and they
are looking for something better. Sometimes they find it, sometimes they do not.
When they do find something better they may be able to transform their practice
quickly . . . as Mary did.

The Case of Mitchell

Mitchell is a middle school teacher with eight years of teaching experience. He has
always taught mathematics and he has a very clear sense of what is important for
students to learn in mathematics and what his role as a teacher is in this context. For
Mitchell, mathematics is really just a game – a game with set rules and very clear
outcomes. Mathematics is a collection of skills and facts that need to be mastered
before going on to the next level. As a teacher, he sees his job as assuring that each
student learns these skills and facts – and to not let anyone advance to the next grade
until they have done so. He also has a very clear idea of what the students’ role is.
Their job is to learn the material that is being taught and to be able to demonstrate
mastery at the end of a unit . . . and at the end of the year. Mitchell is a traditional
mathematics teacher in every sense of the word and he has no issues about stating so.

Mitchell’s mathematics classroom is a pillar of traditional teaching. He adheres to
a standard lesson of review-demonstrate-mimic-practice and students are expected
to seek his help if they are stuck or do not understand. He only uses questions that
are unambiguous and lead to closed-form single solutions. He feels that mathematics
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needs to be taught (and learned) in this fashion and that all of the problems that face
mathematics education are due to deviation from this tradition.

Ironically, Mitchell is not this traditional in teaching his other subjects (science,
language arts, and social studies) so there are some aspects of more reform oriented
teaching that have seeped into his mathematics lessons. For example, he does allow
his students to sit in pairs and to work together on in-class assignments. He also,
from time to time, gives a problem solving activity to students, but he sees this as
extracurricular and does not allow it to figure into his assessment and evaluation
schemes.

Mitchell does not shun professional development opportunities, engaging in them
with the expectation that he will “get something out of them.” However, he openly
admits that many of these opportunities turn out to be things that he already does,
which further reinforces his conviction that his method of teaching is “on the right
track.” Occasionally he learns something that is interesting, which he then imple-
ments in his teaching. This is how he came to start doing some problem solving
activities in his classroom, and as he states, “there are some really fun activities
that I now do with my kids.” Of course, there are things he sees in workshops that
he also dismisses outright as being “completely pointless,” such as a session on
performance-based assessment that he once attended.

Although I had met Mitchell as a participant in a number of single session work-
shops, I did not begin to interact with Mitchell until he became a member of a
district-based learning team that I was facilitating. This team was formed for the
purpose of creating numeracy tasks for district wide assessment. Mitchell came to
this learning team with the expressed purpose of offering some of his expertise in
creating “really comprehensive final exams.”

The first task of this team was to co-construct a definition of numeracy. Initial
attempts to do this resulted in definitions that were more closely associated with
fluency of arithmetic. In order to get past this initial definition, I suggested that they
think of students that they had taught in the past who were very good in mathe-
matics, and to further think what qualities they possessed that allowed them to be
good in mathematics. This dramatically changed the discourse about numeracy and
rather quickly a more sophisticated definition emerged – “Numeracy is not only an
awareness that mathematical knowledge and understandings can be used to inter-
pret, communicate, analyze, and solve a variety of novel problem solving situations,
but also a willingness and ability to do so.”

The team then set out to design a task that would measure some of the capac-
ities embodied within this definition. Over the course of four additional meetings
stretched out over approximately eight weeks the team went through three itera-
tions of a design-test-refine process before they arrived at the final task (see Fig. 1).
During this process I saw Mitchell undergo a tremendous transition in his teaching.
After pilot testing the initial version of the task he was talking about things that
needed to change in his classroom in order for his students to be successful. He was
restructuring the way he thought about and facilitated group work; he was redefin-
ing his own notion of what constituted a good mathematics question . . . and a good
mathematics answer; and he was trying to find ways to change the dispositions of
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Fig. 1 An example of a refined numeracy task

the students in his classroom. In a very short period of time, Mitchell came to change
most of what he held to be true about mathematics and mathematics teaching and
learning.

This is not to say that Mitchell completely reconstructed his teaching practice
overnight. He spent the remainder of that school year struggling to actualize some of
his ideas as he swam against the current of already entrenched student expectations
and dispositions. At the beginning of the following school year, however, his class-
room was truly transformed. Lessons were now modeled on explorations initiated
by interesting (often open ended) tasks which were worked on in groups and con-
cluded with whole class discussion. His assessment practices were also completely
redesigned, although still very much a work in progress.

Mitchell’s Transformation as a Case of Accommodating Outliers

Unlike Mary, Mitchell did not come to the learning team looking for answers. He did
not reject the teaching paradigm that he was working under, his teaching practice, or
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his world view of teaching mathematics. Quite opposite to Mary, Mitchell’s teach-
ing can be seen as impenetrable. He participated in a wide variety of professional
development opportunities, but nothing had any effect on his practice. Invoking the
discourse of adaptation á la Piaget, we might say that Mitchell was not accommo-
dating new ideas into his existing schema of teaching mathematics (Piaget, 1968).
He tended to deal with new ideas about the teaching of mathematics in one of the
three ways. First, and most common, Mitchell would find within his professional
development experience something specific that resonates with his current teaching.
This point of commonality was then used to support his basic assumption that “I
already do that.” He was able to make this claim no matter how minute the point
of commonality was. A nice example of this was Mitchell’s insistence that he used
effective questioning in his teaching because, when teaching from the front of the
class, he asked a lot of questions and when he attended a workshop on effective
questioning he learned that sometimes an effective question can be short and very
directed, as his always were. Aside from ensuring that very little of substance pen-
etrated his practice, this strategy of assumed commonality also served to entrench
Mitchell’s teaching practice as he was constantly reassured that he was “going in
the right direction.”

If Mitchell did not find any points of commonality, but the new ideas that pre-
sented to him caught his interest he tended to incorporate them into his practice. But
he would do so without letting it impact on his conception of himself as a mathe-
matics teacher, or on his general notions about mathematics and the teaching and
learning of mathematics. As an example, Mitchell very easily introduced a program
of problem solving into his practice. He had a small, but good, collection of problem
solving tasks that he gave to his students from time to time. There was no attempt to
assess their performance on these tasks or to pull some of the affordances such tasks
could offer into the rest of his teaching. As such, he kept it very much as an extracur-
ricular activity not allowing it to redefine his teaching or his conception of himself
as a teacher. Mitchell was not only assimilating these problem solving experiences –
he was actively not accommodating them.

Finally, if Mitchell found no points of commonality and no points of interest he
would simply dismiss the new ideas presented to him as “pointless.” As mentioned,
this very effectively allowed him to deal with the complex nature of alternative
assessment in general and the specific ideas around performance-based assessment
in particular.

Ironically, as effective as Mitchell was at avoiding accommodation, it was accom-
modation that eventually led to the revision of his practice. From interviews with
Mitchell it became clear that a real turning point for Mitchell was the construc-
tion of the definition of numeracy. The definition itself meant very little to him, it
was more the consideration of the good students Mitchell had had in the past that
lead to deeper changes. Mitchell had always been aware of these students, but he
had effectively not allowed their existence to impact on his aggregated vision of
a mathematics student. To him they were outliers, as were the capacities that they
possessed. For Mitchell, a student was seen from a deficit perspective. They were
children that lacked specific knowledge – knowledge that he possessed and would



218 P. Liljedahl

apportion out to them over the course of the school year. When he started to think of
these outliers he not only saw them as capable, but he also saw a whole spectrum of
skills that he had never really considered before. Problem solving abilities, divergent
thinking, awareness of the mathematics inherent in a specific context, the ability to
use mathematical concepts broadly in different contexts, etc. were suddenly seen as
capacities that all students needed in order to be successful in mathematics.

As Mitchell struggled to reform his teaching for the remainder of that first year
my work with him continued. In subsequent interviews Mitchell revealed that he
was now beginning to make sense of why the problem solving tasks that he had
previously been using as extracurricular were so effective at developing some of
these aforementioned capacities. At the same time, Mitchell was beginning to see
a new set of capacities requisite for students to be successful at the numeracy tasks
that he had participated in designing. Group work, ability to articulate thinking,
persistence, tolerance of ambiguity, and comfort with being stuck were now the
deficiencies that he wanted to address.

In the consideration of both talented students and good problem solving tasks
Mitchell was finally accommodating information into his practice. But this was not
new information. Rather, it was information that he had previously incorporated into
his schema by keeping it as outliers. That is, he had kept it compartmentalized and
away from his normal constructs of what constituted a mathematics student and a
mathematical activity, respectively. In the end, the reform of his teaching happened
when he began to accommodate these outliers.

Mitchell is not the only teacher that I have encountered who was so effective
at not accommodating new information. There have been many others. It is easy
for a teacher to become entrenched in their practice, and it is easy for them to stay
entrenched by using the “I already do that” strategy that Mitchell did. In my data
there are five additional cases in which such teachers reformed their practice. In
each case their change was initiated by an eventual accommodation of outlying
information – information that was acquired through their own teaching.

The Case of Danica

Danica has been teaching middle school for 13 years during which time she has
always enjoyed teaching mathematics. Her teaching, in general, and mathematics
teaching, in particular, is dynamic and progressive. She is always willing to try
something new and is a keen consumer of professional development opportunities.

Danica is unhappy with her mathematics teaching, however. She has a sense
that what she is doing is correct, but her teaching “lacks cohesion.” She feels that
she is being pulled in so many directions by so many “new ideas” that she does
not know who she is as a teacher any more. She is experimenting with forma-
tive assessment, pilot testing a new textbook, implementing problem solving in her
classroom, and engaging students in her group work. Outwardly there is nothing
really wrong with her teaching. But she feels she is lacking a holistic understanding
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of how it all fits together. She feels that everything she tries is sitting alongside
every other thing she has tried and none of them are working in harmony with each
other.

I first began working with Danica in the same learning team as Mitchell. And
like Mitchell, this experience had a transformative effect on Danica. Almost imme-
diately she gained confidence as she found cohesion in her teaching. This confidence
continued to grow over the course of the rest of the meetings. Danica had found a
thread that bound all of her previously disjoint ideas about teaching mathematics
together – a thread of communication. Danica started to build all of her teaching
around the idea that students needed to be able to articulate their thinking. This gave
meaning to her efforts at group work, formative assessment, and problem solving.
And, at the end of that school year Danica came to a surprising conclusion for her-
self and her students – students who were better able to articulate their thinking
actually thought better.

Danica’s Transformation as a Case of Reification

In interviewing Danica it became clear that for her, like Mitchell, the beginning of
this transformation was the co-construction of the definition of numeracy. Unlike
Mitchell, however, Danica was searching for a way to bring together her discrete
experiences and the construction of the definition facilitated this. For Danica this
was a reifying experience (Wenger, 1998).

For the most part, teaching has no concrete form. It exists in time and space in the
relationships with students and the interactions between curriculum and learners. In
essence, teaching is an experience. Occasionally this experience can be reified into
some artifact that, at least for the creator, embodies the experience of teaching. For
Wenger (1998), reification is “the process of giving form to our experiences by
producing objects that congeal this experience into thingness” (p. 58).

For Danica the definition embodied teaching . . . ideal teaching. But it wasn’t her
teaching . . . at least not yet. The process of co-constructing the definition was an
act of synthesis, drawing on the teaching experiences of eight different teachers.
Danica contributed to this process, and as a result saw herself in part of the defi-
nition. However, the definition became so much more for her. This definition was
the reification of the types of students she wanted to produce, and because she had
contributed to its formation she felt she had access to all that it embodied.

That is not to say that all of Danica’s transformation could be attributed to the
reciprocating relationship she had with the definition . . . but it was the start. The
design and pilot testing of the numeracy task had a similar and, I would say, more
profound effect on her practice. Again, the initial task that was created was a reifica-
tion of aspects of all of the teachers’ aspirations. For Danica, it carried within it the
capacities that she wanted to develop within her students; capacities that she knew
were important, and that she knew were absent within her students. The pilot test-
ing of the task on her own students only served to solidify her resolve as with each
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iteration Danica became aware of more mathematical and pedagogical affordances
embedded within the task (Liljedahl, Chernoff, & Zazkis, 2007) – each of which
could now be used to achieve her goals.

Danica now possessed a definition and a task, each of which embodied the
essence of the teacher she wanted to be. In these she found the thread of communi-
cation (or more specifically, the ability to articulate thinking) that bound her disjoint
efforts together. Her assessment practices now had a purpose, as did her focus on
group work and problem solving.

Danica is far from unique in this regard. Of the many teachers who I have worked
with in the capacity of task design, 11 others have experienced a similar, although
not as profound, transformation. The co-construction of tasks reifies teaching in
ways that simple lesson plans, tests, and worksheets do not. They are both con-
nected to individual teachers and idealized amalgamations of the best of teaching.
However, other experiences tell me that it is not unique to the goal of task design.
I am seeing similar effects working with a group of teachers in designing perfor-
mance assessments and I have observed the same effects in teachers engaged in
lesson study. The commonality in all these is teachers co-constructing some arti-
fact of teaching . . . reifying and amalgamating the best of their experiences and
aspirations.

Discussion on Cases of Rapid Professional Development

There is an invariance that ties these three cases together. Although initiated by
some disturbance (Mason, 2002) – a critical question, activity, or event – within the
professional development setting the rapid and profound changes that followed burst
from a basis of experience – experience in the classroom. These three teachers, and
the 23 other teachers their cases represent, had already built up a large potential to
change prior to entering into the professional development setting. In fact, in some
cases it was this very build-up that brought them to the professional development
setting to begin with. Both Mary and Danica came seeking something. They did
not necessarily know what, but they knew that there was something missing from
their practice. When they found what they were seeking they were instantly able to
make sense of it and to utilize it in reformulating their practice. For Mary it was
a viewpoint, a way to look at curriculum that allowed her to shed the oppressive
paradigm that she was working in. For Danica it was an artifact, a definition and a
task that embodied within it – and could act as a model for – the type of learning
that she wanted to facilitate.

For Mitchell it is a little bit different. He was not really seeking anything in
particular when he came to the learning team. However, like Mary and Danica he
did come with a wealth of experience and a high potential for change. In his case,
the critical activity that he encountered caused him to re-evaluate the outliers that
he came in with and to accommodate them into his understanding of what it meant
to teach and learn mathematics.
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In general, Mary, Mitchell, and Danica (as well as the 23 other documented
cases) came to the professional development setting with a potential for rapid profes-
sional growth already in place. From dissatisfaction with structures and paradigms
to incongruencies in their teaching to unrealized gains from prior experiences,
each of them had developed this potential through their own teaching, and in their
own teaching experiences. In general, literature on the professional development of
teachers does not do enough to acknowledge this.

Discussion on Professional Development Through Teaching

Current research on mathematics teachers and the professional development of
mathematics teachers can be sorted into three main categories: content, method, and
effectiveness. The first of these categories, content, is meant to capture all research
pertaining to teachers’ knowledge and beliefs including teachers’ mathematical con-
tent knowledge, both as a discipline (Ball, 2002; Davis & Simmt, 2006) and as
a practice (Hill, Ball, & Schilling, 2008). Recently, this research has been domi-
nated by a focus on the mathematical knowledge teachers need for teaching (Ball &
Bass, 2000; Ball, Hill, & Bass, 2005; Davis & Simmt, 2006; Delaney, Ball, Hill,
Schilling, & Zopf, 2008; Stylianides & Ball, 2008) and how this knowledge can be
developed within preservice and inservice teachers. Also included in this category
is research on teachers’ beliefs about mathematics and the teaching and learning of
mathematics and how such beliefs can be changed within the preservice and inser-
vice setting (Liljedahl, in press, 2007; Liljedahl, Rolka, & Rösken, 2007). Some
of the conclusions from this research speak to the observed discontinuities between
teachers’ knowledge/beliefs and their practice (Cooney, 1985; Karaagac & Threlfall,
2004; Skott, 2001; Wilson & Cooney, 2002) and, as a result, call into question the
robustness and authenticity of this knowledge/beliefs (Lerman & Zehetmeir, 2008).

The second category, method, is meant to capture the research that focuses on a
specific professional development model such as action research (Jasper & Taube,
2004), lesson study (Stigler & Hiebert, 1999), communities of practice (Little &
Horn, 2007; McClain & Cobb, 2004; Wenger, 1998), or more generally, collegial
discourse about teaching (Lord, 1994). This research is “replete with the use of
the term inquiry” (Kazemi, 2008, p. 213) and speaks very strongly of inquiry as
one of the central contributors to teachers’ professional growth. Also prominent in
this research is the centrality of collaboration and collegiality in the professional
development of teachers and has even led some researchers to conclude that reform
is built by relationships (Middleton, Sawada, Judson, Bloom, & Turley, 2002).

More accurately, reform emerges from relationships. No matter from which discipline your
partners hail, no matter what financial or human resources are available, no matter what
idiosyncratic barriers your project might face, it is the establishment of a structure of
distributed competence, mutual respect, common activities (including deliverables), and
personal commitment that puts the process of reform in the hands of the reformers and
allows for the identification of transportable elements that can be brokered across partners,
sites, and conditions. (ibid., p. 429).
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Finally, work classified under effectiveness is meant to capture research that
looks at changes in teachers’ practice as a result of their participation in some form
of a professional development program. Ever present in such research, explicitly
or implicitly, is the question of the robustness of any such changes (Lerman &
Zehetmeir, 2008).

As powerful and effective as this aforementioned research is, however, it can no
longer ignore the growing disquiet that somehow the perspective is all wrong. In
fact, it is from this very research that this disquiet emerges. The questions of robust-
ness (Lerman & Zehetmeir, 2008) come from a realization that professional growth
is a long term endeavor (Sztajn, 2003) and participation in preservice and inservice
programs is brief in comparison. At the same time there is a growing realization
that what is actually offered within these programs is often based on facilitators’ (or
administrators’ or policy makers’) perceptions of what teachers need as opposed to
actual knowledge of what teachers really do need (Ball, 2002). Even the impact of
relationships, one of the pillars of professional delivery methodologies, is coming
under closer scrutiny. Questions about the complexity of relationships (Nickerson,
2008) are calling into question the exact nature of the collaborative and collegial
interactions with distinctions being made between the public and private faces of
practice (Little, 2002). That is, what components of their practice is a teacher actu-
ally willing to share and how do those choices affect the subsequent discourse and
professional growth (Little, 2002)? The classification of teachers’ knowledge into
subcategories is also beginning to be seen as problematic (Askew, 2008, Davis &
Simmt, 2006) in light of the complex, integrated, and situated nature of teaching, as
are some of the long-held beliefs about teachers as learners (Ball, 2002) and the sys-
temic practice of looking at teachers’ knowledge as deficit (Askew, 2008). Finally,
the very notions of our ability to change someone (in this case, a teacher) is being
challenged (Mason, 1994).

This disquiet is leading, slowly and tentatively, toward the emergence of a new
paradigm where the professional growth of teachers is seen as natural (Leikin, 2006;
Liljedahl, in press; Perrin-Glorian, DeBlois, & Robert, 2008; Sztajn, 2003) and
teachers are seen as agents in their own professional learning (Ball, 2002). But such
a paradigm shift is going to require a complementary shift in how we look at certain
stalwart traditions around teacher education. To begin with, we are going to have
to challenge assumptions around what it means for teachers to be learners, and as
such, relook at the effectiveness of inservice teaching methodologies such as model-
ing good practice and models of inservice delivery such as single workshops (Ball,
2002). We are going to have to change the way we look at teachers’ knowledge,
beliefs, goals, motivations, plans, and practice as well as what we consider as, and
how we treat, evidence of these (Kazemi, 2008). We are even going to have to begin
looking at discontinuities between teachers’ knowledge, beliefs, goals, motivations,
plans, and practice as sensible in the larger scheme of teachers’ natural professional
growth (Ball, 2002; Leatham, 2006; Liljedahl, 2008). Finally, we are going to have
to rethink the structures of professional development programs and what it means
to be responsive to the needs of teachers as they progress through their personal
learning plans (Ball, 2002; Liljedahl, in press).
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Conclusion

I began this chapter by stating that I do professional development. I wish to retract
this statement. Instead I would like to state that I work with teachers in the context of
their professional growth. Within this context I am sometimes privileged to observe
their growth and sometimes I am even able to contribute to their professional growth.
Sometimes the growth is planned and sometimes it is predictable. And occasionally
the growth is neither planned nor predictable. But in all cases, my role in comparison
to the breadth and depth of teachers’ experiences, their agency, and their occasional
intentionality, can be seen as ancillary at best. I am but a disturbance (Mason 2002).
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Interactions Between Teaching and Research:
Developing Pedagogical Content Knowledge
for Real Analysis

Lara Alcock

Introduction

This chapter is about five of my current practices in teaching undergraduate mathe-
matics. It is about my reasons for engaging in these practices and the way that they
have been influenced by reflection on my teaching experience. I use the teaching
of Real Analysis as a focus and, as such, the chapter is about aspects of my cur-
rent pedagogical content knowledge for this subject. However, I also relate these
practices to general issues in teaching and learning. One overarching theme is the
need to help students develop skills on multiple levels, from understanding particu-
lar concepts to learning generally productive study habits. In all of these respects I
write as a teacher.

I also write partly as a researcher, assessing what I do not know about the effec-
tiveness of the five practices. As a researcher, I know that the vast majority of my
teaching practices are unevaluated. My developing understanding of specific and
general problems in learning Analysis leads me to invent, borrow, and use new ideas
every time I teach the course. This means that I make modifications to my teaching
faster than I can make a critical assessment of whether or not they work. I think
that this is probably typical, and not necessarily bad – the creative work of mak-
ing adjustments keeps me enthusiastic and my teaching “fresh.” But it means that I
use a number of practices for which I have a good theoretical rationale but little or
no empirical evidence of effectiveness. Indeed, I know that if I experience personal
satisfaction with a way of communicating an idea, I tend to conflate this with its
effectiveness from a students’ perspective.

With this in mind, this chapter constitutes an attempt to elucidate rationales
for the five practices and to clarify what would be necessary in order to ascertain
whether they genuinely aid learning. This discussion also leads to a second over-
arching theme – that of how best to use the lecture time available. As will become
clear, the balance in my lecturing has shifted in recent years from explaining the
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mathematical content toward teaching how to interact with that content. This is
in response to frequent conversations with students in which I have found myself
giving explanations of how to study the material when I am not there. As with the
specific practices, however, I do not know whether this shift has had a positive effect
on my students’ learning. Overall, therefore, a good alternative title for this chapter
would be Things I Don’t Know About Teaching Real Analysis.

My Current Approach to Lecturing

Before talking about the specific practices, I briefly lay out my overall views as a
lecturer of Analysis. I have taught this subject in a variety of formats, including
“supervisions” for groups of four students, co-operative classes of 20–30, and lec-
ture classes of over 100. Most recently I have been working with large lecture classes
in a UK university. Whatever the format, I see it as my role to explain the material in
a way that allows students to: develop conceptual understanding consistent with the
formal theory, follow the arguments, understand and appreciate the overall structure
of the subject, and learn to reconstruct, adapt and apply the theorems and proofs. In
the process, I discuss logical language and proof strategies, and I expect that my stu-
dents will improve their ability to handle these. Students are expected to undertake
exercises in which they make minor adaptations to given proofs or in which they are
led through the steps of a proof. However, my approach is content-focused and I do
not see it as my role to teach students how to construct proofs, in general. In most
of the institutions where I have worked, other courses have dealt specifically with
material on basic logic, quantifiers, conditional statements, proof types, etc.

My current approach involves giving lectures for which students are provided
with “gappy” notes. These notes contain statements of definitions, theorems, etc.,
and tasks for students to work on together. There are gaps for students to respond
to tasks and to fill in proofs and draw diagrams as I lecture. I use these notes to
facilitate considerably more student–student discussion than might occur in a typical
mathematics lecture. This is because, while I do not believe that there is anything
wrong with traditional lecturing per se, I do believe that we often do a poor job of
teaching students how to learn abstract material from lecture notes. Much of this is
clarified in the rest of this chapter.

Five Current Practices

The practices that will be discussed are as follows:

1. Regular testing on definitions;
2. Tasks involving extending example spaces;
3. Tasks involving constructing and understanding diagrams;
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4. Resources for improving proof comprehension;
5. Tasks involving mapping the structure of the whole course.

For each of these I do three things in the sections below. First, I describe how I
came to focus on the practice, through teaching and research experience. Second,
I describe the practice and explain what mathematical skills I hope it will help
students to develop. Third, I discuss what I do and do not know about the effective-
ness of the practice, and attempt to formulate specific research questions, answers
to which would help me to make more informed decisions about how to use my
lecturing time.

Regular Testing on Definitions

One of the first things I learned when I began my PhD in mathematics education
was that students are often unaware of the status of mathematical definitions. They
tend to interpret definitions as dictionary definitions, which describe a pre-existing
concept, rather than as technical definitions that precisely specify the extension of
a concept and should be used as a basis for deductions (Davis & Vinner, 1986;
Tall & Vinner, 1981; Vinner, 1991). Thus new undergraduates often do not know
that when mathematicians say, “Prove that every convergent sequence is bounded,”
what they mean is, “Prove that every sequence that satisfies the definition of con-
vergence also satisfies the definition of bounded.” Consequently, many reason about
such statements by using concept images instead (Alcock & Simpson, 2002, 2004;
Tall & Vinner, 1981; Vinner, 1991). This is particularly problematic in Analysis, in
which students often hold conceptions that are at odds with the formal theory, due
to a combination of the language of limits and convergence (Cornu, 1991; Davis
& Vinner, 1986; Monaghan, 1991) and a variety of informal experiences with
the ideas of limits and infinity (Przenioslo, 2004; Roh, 2008; Sierpinska, 1987;
Williams, 1991).

This phenomenon was evident in my own teaching (of small groups of first year
undergraduates) at the time, and obviously it is extremely important pedagogical
content knowledge for a teacher of Analysis. Awareness of it means that throughout
the course, I stress the importance of definitions and regularly explain their role in
deciding whether an object has a property, in constructing general proofs and in
mathematical theory as a whole. I also emphasize the importance of definitions by
having regular 10-minute, 10-question tests in which students are required to state
definitions and theorems from the course (they are also required to give examples,
more of which is discussed in the next section). I like to do this every week, but in
large lecture classes where this is not practical, I do it every two weeks instead.

I have reservations about this practice, because such testing may promote rote
memorization. This is not something I want to encourage – I want my students to
take a “deep” approach to understanding the course material and not to attempt to
memorize it as a set of unconnected facts or statements (cf. Biggs, 1987, p. 15, cited
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in Kember, 1996). On the other hand, testing is possibly the most effective means
that a teacher has of emphasizing the importance of an idea. I have learned, through
my experience of teaching and marking examinations, that not having regular tests
means that some students will not learn definitions as the course progresses at all.
This puts them in a far worse position: They cannot hope to decide whether an
object satisfies a definition or to recognize the use of a definition within a proof,
unless they know what that definition is. So I have taken the view that in this case,
the possibility of rote learning is the lesser of the two evils. I am inclined to agree
with Bell (1993, p. 6), who focused on inquiry in mathematics learning but stated
that, “This does not, of course, rule out important ancillary activities, such as the
memorizing of important data or the practising of frequently needed skills.”

What I do not have is empirical evidence for the effectiveness of this regular
testing. This means that in my current course I am giving up an entire lecture’s
worth of time (out of 22 available lectures) to this practice without knowing whether
it would be better for me to use that time simply to give another lecture. In fact, at
my institution, the question is more interesting than this, because many comparable
courses use a whole lecture for a single test approximately two thirds of the way
through the course (much like an American mid-term). It could be that a single test
would not promote regular study in the same way, but could involve longer, more
in-depth questions. With all of this in mind, some questions pertinent to my teaching
include the following:

• Does regular testing of definitions lead to better understanding, as measured by
examination performance or in some other way?

• How much time do students spend studying for such tests and how would they
otherwise have spent this time (do the tests promote more study or simply
different study)?

• How do students study for such tests (do they attempt rote memorization or some
other strategy)?

• Do regular small tests lead to better or worse understanding/performance than a
single, more in-depth test?

Tasks Involving Extending Example Spaces

In response to knowledge about students’ restricted concept images, I began vary-
ing the examples I use in my teaching. For instance, I often give something like
[-253,0] instead of [0,1] as an example of closed interval and draw diagrams to
show convergent sequences that are not monotonic, continuous functions that do
not increase from the bottom left of the diagram and are not everywhere differen-
tiable, etc. However, there is a limit to what one can do in this regard when time
for giving illustrative examples is restricted, and I have also begun using more
extensive example classification tasks in my teaching. This development was first
prompted by teaching a version of an Analysis course that made use of the notions
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of open and closed sets and related concepts. The book I was using (as is typi-
cal) presented a definition, an example, and occasionally a non-example. In order
to refamiliarize myself with the concepts, I found myself applying the definitions
to many more sets. This helped me to become aware of the range of possible vari-
ation (cf. Marton, 2007; Mason, 2002) and to build myself a sort of “prototype”
that I could then use as generic. As a result of this experience I set a task for stu-
dents in which they would consider the application of definitions of open, closed,
limit point, etc. to each of a list of sets of real numbers including [0,1], (0,1),
[0,1), {0}, N, Q, R, and the Cantor set. This constituted my first concerted effort
to avoid a situation in which students developed an inappropriately restricted con-
cept image (e.g. Schwarz & Hershkowitz, 1999; Zazkis & Leikin, 2007) so that
they would be less likely to treat an example as generic when, in fact, it incor-
porates unnecessary properties (Mason & Pimm, 1984). Teaching in this way was
eye-opening for me in that it took far longer than I had expected for the students
to complete the task. It was, however, consistent with research indicating that some
students (the majority, in this case) did not spontaneously generate examples as a
routine response to newly encountered definitions (cf. Alcock, in press; Dahlberg &
Housman, 1997).

More recently, I have become familiar with further research on example gen-
eration and use. Example spaces (Watson & Mason, 2005), and tasks designed to
promote their development, have been widely discussed (Mason, 2002; Watson &
Mason, ibid.; Goldenberg & Mason, 2008). Particular attention has been paid to the
role and structure of examples that promote cognitive conflict (Zazkis & Chernoff,
2008), to the way in which teachers and children make decisions about example
classification (Tsamir, Tirosh, & Levenson, 2008), and to the relative value of dif-
ferent counterexamples in explaining the falsity of a general statement (Peled &
Zaslavsky, 1997). At the undergraduate level, this is of particular relevance because
we wish the student’s personal example space for a concept to be consistent with
the conventional example space as specified by the definition (using the terms in
the sense of Watson & Mason, 2005). Further, one reason for students’ poor prov-
ing capacity is a lack of familiarity with examples of concepts (Moore, 1994),
which is important because at least some successful mathematicians do use exam-
ples in a substantive way in their own reasoning (e.g. Alcock & Inglis, 2008;
Weber, 2008).

With this in mind, I have become progressively more systematic in my use of
such activities. This year, I devoted the first two Analysis lectures to a “Chapter 0”
for which I did very little lecturing and the students worked with each other on tasks
that asked them to do the following:

1. Use number line diagrams to represent twelve different sets (including some
written as intervals and some expressed in other ways such as {x:|x - 12| < 2},
{1 - 1/n:n ∈ N} and {[2n,2n + 1]:n ∈ N});

2. Use provided definitions to classify each set as bounded above or not, to give
three upper bounds if possible, and to state the supremum if possible;

3. Sketch graphs of 16 different functions, including



232 L. Alcock

f (x) = |sin x| , f (x) = ||x| − 1| , f (x) =
{

0 x �= 0
1 x = 0

, and f (x) =
{

0 x /∈ Q
x x ∈ Q

;1

4. Use provided definitions to decide whether each of the functions is bounded
below, has a minimum at 0, and/or is decreasing.

5. Discuss (without definitions at this stage) whether they thought each of the
sixteen functions has a limit at 0, is continuous at 0, and/or is differentiable at 0.

My intentions were to remind students about of a lot of previously-studied defi-
nitions for set and function properties, to expand their awareness of variation in the
example space of real functions, and to allow them to become aware of uncertainty
in their own knowledge about key concepts. For this reason, I chose to use example
classification rather than generation tasks, because I wanted to introduce functions
that the students had probably not encountered before and would probably not spon-
taneously invent, but that would later be useful for understanding boundaries of
formal concepts. Of course, these tasks also allowed me to place early emphasis on
the importance of definitions, and made it clear to the students that this would be a
course in which active engagement was expected during lecture time.

This practice provided me with a useful set of experiences to refer back to in
order to help the students see that they were making progress. As with the definition
tests, however, from a research point of view I have no real measure of whether this
was time well spent. With particular regard to the use of example classification tasks
it would be useful for me as a teacher to know the following:

• To what extent are students able to independently classify examples as satisfying
definitions or not (how much guidance do they need in interpreting quantified
statements, for example)?

• Does correctness in such tasks improve if students are allowed to discuss the
classifications in groups (should they be asked to work individually, or would
discussion be better, even if it takes longer)?

• Do students have better recall of definitions when they have used these to clas-
sify examples than when they have listened to an explanation and/or seen these
classifications demonstrated (perhaps with written proofs) by a lecturer?

Tasks Involving Constructing and Understanding Diagrams

Diagrams are, for me, a very important part of Analysis. Interestingly, and probably
for historical printing reasons, many textbooks have very few diagrams. Like other
lecturers, however, I draw many in my lectures and regularly encourage students
to make use of them in supporting their own reasoning. Through conducting task-
based research interviews, I have also become aware that giving a diagram alongside

1Obviously this function cannot be sketched accurately, but the intention was for the students to
notice this and to think about how to give some reasonable representation.
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a proof is probably not enough. Diagrams can provide insight (e.g. Gibson, 1998),
but it is not always easy for students to make detailed links between what is in the
diagram and what is in a formal proof. This means that the step between seeing that
a result must be true and proving it can seem insurmountable (Alcock & Weber, in
press; see also Raman, 2003). Through my small-class teaching, I have also learned
that students often find it difficult to draw a diagram based on verbal and algebraic
information. As a result, I now spend more time walking students through the pro-
cess of drawing diagrams; for instance, noting explicitly that | f(x) − f(a)| < ε can
be thought of in terms of distances, and noting that it is “about f(x) values” so that
appropriate labels should go on the y-axis of a diagram.

I have also become progressively more systematic in designing tasks to develop
students’ diagram construction skills. I now have two tasks that I set during lecture
time, each of which requires students to draw and think about their own diagram.
The first of these is included in a set of instructions for proving the Mean Value
Theorem,2 which begins as follows:

1. Write down the assumptions.
2. Draw a nice big diagram representing the situation given by the assumptions.

Make the graph curvy rather than straight, and make sure you make f (a) and
f (b) different from each other.

3. Draw in the straight line that passes through the points (a,f(a)) and (b, f(b)) .
4. Convince yourself that the equation of this line may be written as

y = f (a) +
(

f (b) − f (a)

b − a

)
(x − a).

.5. We are going to consider a new function d defined on [a,b] by

d(x) = f (x) −
[

f (a) +
(

f (b) − f (a)

b − a

)
(x − a)

]
.

Don’t panic. Label a point x on your x-axis and indicate vertically above it what
d(x) is measuring.
. . .

In writing tasks like this, which lead students through the reasoning needed to
construct a proof, I have been very much inspired by Burn (1992). The additional
focus on steps in drawing a diagram, however, is a more recent development for me.

The second task uses a similar set of instructions for a different purpose, that of
developing understanding of the definitions of lower and upper sums in Riemann
integration. The definitions state the following:

Suppose that f is bounded on [a, b] .

2 If a function f:[a, b] → R is continuous on [ a, b ] and differentiable on ( a, b) , then there exists
c ∈ ( a, b) such that f ′(c) = f (b)−f (a)

b−a .
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The lower sum of f relative to the partition P is

L(f ; P) =
n∑

j=1
mj(xj − xj−1), where mj = inf

{
f (x):xj−1 ≤ x ≤ xj

}
.

The upper sum of f relative to the partition P is

U (f ; P) =
n∑

j=1
Mj(xj − xj−1), where Mj = sup

{
f (x) : xj−1 ≤ x ≤ xj

}
.

I knew before I had taught this material that this would cause problems for the
students, because it involves an off-putting amount of new notation and because
recognizing that the idea is actually very simple involves being able to see clearly
and accurately how this notation relates to a diagram. My gappy notes at this point,
therefore, have the following set of instructions:

Consider the function f given by f (x) = x2 on the interval [0,2].

Now consider the partition P =
{

0, 1
2 ,1, 3

2 ,2
}

. Draw a big graph of f on the

relevant interval, and mark the points of this partition on the x-axis.
Now look at the definition of lower sum.
What is n in this case?
What are x1, x0 and m1? Indicate m1 on the y-axis in the diagram.
What are x2, x1 and m2? Indicate m2 on the y-axis in the diagram.
By making similar observations, write down an expression for L(f ; P1), and

indicate how we can “see” the area it represents on the diagram.
Write down an expression for U(f ; P1) too.

Now consider the partition P2 =
{

0, 1
4 , 2

4 , 3
4 ,1, 5

4 , 6
4 , 7

4 ,2
}

. Without doing any

calculations, answer the following questions:

1. Will L(f ; P2) be greater than or less than L(f ; P1)?
2. Will U(f ; P2) be greater than or less than U(f ; P1)?
3. Will U(f ; P2) be greater than or less than L(f ; P1)?
4. Which of L(f ; P1), L(f ; P2), U(f ; P1) and U(f ; P2) will give the best

approximation to the area under the graph?
5. Which of these answers could be different if we had a different function?

Of course, there are other ways of teaching about this concept. One could begin
with a diagram and develop the definition from this. One could also use dynamic
demonstrations (a very nice geogebra demonstration is available, for instance3).
However, in addition to understanding the concept, I want students to improve their
ability to interpret formal notation and develop their own diagrams when I am not
there to help. Again, this is an issue of balancing small-scale with large-scale learn-
ing goals. (I will use the geogebra demonstration after the students have completed
the above exercise).

Research-wise, there are many interesting questions here, which I believe have
been minimally investigated, at least at the tertiary level. Extensive work has been

3 Under “Examples” at http://www.geogebra.org/cms/
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done on providing students with diagram-based interactive materials designed to
facilitate engagement with the formal limit concept (e.g. Tall, 1997) and with con-
cepts and proofs in geometry (e.g. Marriotti, 2000), but I do not believe we know
very much about students’ capacity to construct and understand static diagrams such
as one might see in a set of Analysis lecture notes. Also, my experience is that
many students claim that they do not like diagrams. I have become convinced that
a teacher should not necessarily be trying to change their minds about this, largely
due to mathematicians’ introspective claims about differences among expert practice
(e.g. Burton, 2004; Hadamard, 1945) and to evidence showing that some successful
mathematics students operate almost entirely syntactically in at least some proof sit-
uations (e.g. Alcock & Inglis, 2008; Alcock & Weber, in press). But I still encourage
my students to engage seriously with diagrammatic representations before deciding
whether or not this helps them, so it would be useful for me to have answers to
questions such as those given below:

• To what extent can students construct diagrams to represent (Analysis) definitions
or theorems?

• To what extent can students who have completed a course such as Analysis draw
diagrams to illustrate concepts/definitions/theorems from the course?

• What proportion of students (perhaps at the end of such a course) believe that dia-
grams are important/indifferent/superfluous to their understanding of the course,
and is this in any way correlated with their achievement?

Resources for Improving Proof Comprehension

Analysis involves a lot of proofs. I present and explain most of these in lectures;
students construct some through Burn-inspired exercises (Burn, 1992, as above).
Students are also advised to work on “the other case” in proofs in which only one
case is covered in lectures.4 They are then expected to write familiar proofs during
their examination (“part (b)” of each of my examination questions usually requires
giving a substantial proof from the course). A large part of their work, therefore,
should be in understanding these proofs, but I know from my experience in marking
examinations that many do not manage this well enough to perform well.

In fact, I know very little about whether and how my students go about study-
ing proofs. I believe this is probably typical of undergraduate lecturers. We do not
usually know how much time our students spend studying their lecture notes, nor
how they spend this time. This is true in the case of research, too. Research on study
habits has generally focused on subject areas other than mathematics (e.g. Entwistle
& Ramsden, 1983; Kember, 1996; Vermunt, 2007) and studying a single proof in
enough detail to understand it probably involves quite different skills from those

4 For instance, in considering the Interior Extremum Theorem (if f is differentiable on (a, b) and
attains a maximum or minimum at c ∈ ( a, b) , then f ′ (c) = 0), I prove the maximum case and
students are advised to write out a proof for the minimum case.
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needed to assemble material from a variety of sources in order to write a coherent
essay, for example.

Research in mathematics education does indicate that students find it difficult to
construct proofs, and that they often behave as though their beliefs about the nature
of proof were different from those of expert mathematicians (Harel & Sowder, 1998,
2007; Recio & Godino, 2001; Weber, 2001). Work more closely related to students’
interpretations of written mathematics shows that there is often a distinction between
what students find personally convincing and what they believe is acceptable as
a proof (Healy & Hoyles, 2000), and that their ability to distinguish valid from
invalid proofs is unreliable though may improve with ongoing mathematical educa-
tion (Segal, 2000) or with prompts to think more carefully about what has been read
(Alcock & Weber, 2005; Selden & Selden, 2003). Research is now beginning to
reveal some of the processes mathematicians use to validate given proofs and check
their own arguments (Inglis, Mejia-Ramos, & Simpson, 2007; Weber, 2008), though
checking for correctness is not necessarily the same as reading for comprehension,
the latter of which is a much more common task for students. It certainly seems
that students often lack the ability to correctly “unpack the logic” of a mathematical
statement and, therefore, establish whether the structure of a proof is such that it
could conceivably prove that statement (Selden & Selden, 1995).

There is not a great deal of research on proof comprehension per se (Mejia-
Ramos, 2008). Conradie and Frith (2000) discussed testing for comprehension of
a presented proof by asking questions about its logical structure and about rea-
sons for the validity of its statements. They suggested this as an alternative form of
examination question that might avoid rewarding rote memorization. Lin and Yang
studied proof comprehension with regard to geometry, first establishing comprehen-
sion criteria based on existing literature and on mathematicians’ reflections, then
using these to design a set of questions about a particular proof (Lin & Yang, 2007;
Yang & Lin, 2008). They distinguished six facets of proof comprehension: basic
knowledge, logical status, integration or summarization, generality, application or
extension, and appreciation or evaluation.

I have not tried using proof comprehension tasks in tests, but in a bid to teach
proof comprehension skills, I have designed a set of resources to demonstrate how
one might go about understanding proofs by examining their internal logical rela-
tionships and overall structures. These resources are termed “e-Proofs” and I have
constructed them for eight selected proofs in my Analysis course5. The e-Proofs are
available to the students via the university’s virtual learning environment (VLE).
Each is presented as a sequence of screens with accompanying audio commentary,
and each comes in three versions:

1. A basic version in which the proof appears one line at a time and the audio
commentary simply reads that line;

2. A line-by-line version in which the whole proof is visible but grayed out, with
each screen showing one line (or part of a line) fully visible, and arrows and

5 With the support of a Loughborough University Academic Practice Award.
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Fig. 1 A screen shot from the line-by-line version of an e-Proof

boxes indicating why that line is valid and its relationships to the other parts of
the proof (a screen shot is shown in Fig. 1);

3. A chunk version, in which the whole proof is visible but grayed out, with each
screen showing several lines fully visible and a box indicating what that section
achieves (Fig. 2).

My intention is that the basic version should function as an opportunity to “watch
the lecture” again (and might be particularly useful to second language English
speakers who found it difficult to keep up), that the line-by-line version should direct
attention to logical relationships among the lines (cf. Yang & Lin’s logical status)
and, in particular, to the process of inferring warrants to check each line’s validity
(cf. Alcock & Weber, 2005), and that the chunks version should help students to
break a proof into parts and see it as having a relatively small number of main ideas
(cf. Yang & Lin’s integration or summarization). Overall, much of the information
in the line-by-line and chunk versions is of the kind that would be discussed by a
lecturer, but would be lost when the material is codified in static lecture notes.

I have been using the e-Proofs in lectures, usually giving out a copy of the whole
proof, allowing students a few minutes to read and discuss it, then running through
the line-by-line and chunk versions. It is difficult to quantify this experience, but
my feeling is that using the e-Proofs has helped students to realize early on how



238 L. Alcock

Fig. 2 A screen shot from the chunks version of an e-Proof

much work there can be in comprehending a proof, and that it has led to me making
substantially more comments about this comprehension process.

For these reasons, I find the e-Proofs are useful, but once again I do not know
whether they will actually improve comprehension of the proofs or learning in the
course, in general. One particular issue is that I deliberately chose not to make an e-
Proof for every proof in the course, partly because of time constraints, but primarily
because I want students to develop their general proof comprehension skills and to
transfer these to the other proofs in this course and beyond. So some questions I
have are as follows:

• How do students usually go about studying proofs in lecture notes?
• Do students understand and remember a proof better if they spend time studying

an e-Proof than if they spend time studying a standard written version?
• Are students who have studied e-Proofs better able to independently break down

and understand a new proof than those who have not?

Tasks Involving Mapping the Structure of the Whole Course

The definitions tests, example classification tasks, diagram construction tasks, and
e-Proofs are all things I use to get students actively thinking and doing mathemat-
ics during lecture time. They are all designed to address general skills in advanced
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mathematics, but at any given time they nonetheless focus on some particular defini-
tion/theorem/proof. Success in such a course, however, demands more than getting
to grips with small elements of the content. It also depends upon the ability to man-
age one’s learning efficiently, and to master a large amount of material in a restricted
amount of time. Universities in the UK are increasingly providing general study
skills advice through websites, and some institutions are going as far as instating
modules dedicated to study skills and key employability skills (though I do not
know of cases where this is happening in mathematics departments). However, as
noted above, we do not know very much about mathematics students’ study habits.

As a lecturer I do a number of things to help my students think of their learning
in an integrated way and to be aware of their ongoing progress. One of these, which
I did for the first time this year, is to make a very specific extended list of “mea-
surable” course objectives/expectations to accompany the rather briefer and more
ambiguous statements in the course specifications. The extended list (which could
also be appropriate for other proof-based mathematics courses) reads as follows:

By the end of this course you should be able to

• fully and accurately state and explain the meaning of all the definitions;
• understand the role of definitions in providing a basis for systematic structuring

of the Analysis topics of continuity, differentiability, and integrability;
• fully and accurately state and explain the meaning of all the theorems;
• fully and accurately write proofs of a large proportion of the theorems in the

course (you should aim to be able to write proofs for all of them);
• explain line-by-line why the proofs are valid and describe their overall structure;
• use notation and logical language in a precise and unambiguous way;
• give a variety of examples of numbers, sets, and functions that satisfy definitions

from the course and combinations of definitions from the course;
• sketch graphs and draw detailed diagrams to represent concepts, theorem state-

ments, and reasoning in proofs;
• understand the relationships between the definitions and theorems across the

whole course;
• with appropriate direction and hints, explore extensions and applications of

theorems and of the reasoning used in proofs.

These are not elegant, and as with the definitions testing, there is a risk that some
of them will be seen as an invitation to rote learning. However, my concern in the
past has been that students are unaccustomed to this type of mathematics, and that
they do not know at the outset what will be expected of them in the examination.
This is my first real attempt to write objectives that are clear enough for what Biggs
(2003) calls aligned teaching, in which “The curriculum is stated in the form of clear
objectives, which state the level of understanding required rather than simply a list of
topics to be covered. The teaching methods are chosen that are likely to realize those
objectives; you get students to do the things that the objectives nominate. Finally,
the assessment tasks address the objectives, so that you can test to see if the students
have learned what the objectives state they should be learning.” I find it useful to
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refer back to these objectives during “review” parts of lectures (I have about 20
minutes of review for each of the three major topics of continuity, differentiability,
and integrability) and to invite the students to talk briefly to each other about whether
they are progressing with respect to each one.

The remainder of each review is taken up with another learning-management
activity based on the study strategies I developed as an undergraduate: Students
each make their own one-column summary of the completed topic, with a view to
ending up with a one-page course summary. In the final review session (or a longer
revision lecture) I also use this list to help students decide how to focus their revision
time. They are instructed to mark each item according to the following scheme:

• A tick (
√

) to indicate full knowledge and understanding;
• A question mark to indicate partial knowledge and understanding;
• A cross to indicate minimal or no knowledge and understanding.

I then suggest that they should work primarily on the items with question marks,
since these are the ones on which they are likely to make the most progress (and
since moving these items to the “ticks” pile will probably cause others to move from
a cross to a question mark as they become accessible from the secure knowledge).

I give lecture time to these activities because I believe that they are important and
because, while I hope that students would do them in their own time, I suspect that
many would not: There is often a sense in the room that this is something new, or at
least something that has not previously been done as a course progresses. As with
my other practices, however, I do not have any actual evidence of this, and I do not
know whether this represents lecture time well spent. It would be useful for me to
have answers to questions such as given below:

• What summarizing activities do students typically do for mathematics courses,
and when?

• How do students decide what to work on during their revision time?
• Do clear, detailed course objectives (in undergraduate mathematics courses) lead

to better knowledge/understanding of mathematical material?

Discussion: Interactions Between Teaching and Research

There is a substantial two-way relationship between my teaching and research.
Developments in my practice are often driven by my needs as a teacher but
informed, or at least subsequently rationalized, with reference to mathematics edu-
cation research. Knowledge of research literature also gives me advance warning
of difficulties my students are likely to face, and conducting my own research has
given me the opportunity to seriously listen to students’ reasoning. The latter has
given me insight that I would not have acquired as a teacher alone, especially in
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situations in which I am lecturing to large classes (even in small class or one-to-
one situations, the tendency is to interrupt students, or at least to hear what I expect
to hear). Conversely, my teaching puts me face-to-face with students’ immediate
questions and responses to tasks and alerts me to new areas of potential research
interest.

The relationship between teaching and research is not unproblematic, however. I
have never tried, for instance, to conduct systematic research on my own teaching or
with my own current students6. I am not confident of my ability to remain objective
in doing such work, and I do not want my students to become confused about my
role. There is also the problem, mentioned in the introduction, that I do not make
changes to my teaching one at a time, in a way that would allow me (or, preferably,
someone else) to evaluate their effectiveness. Indeed, it may be meaningless to try
to do that, for the reasons Schoenfeld points out:

Imagine that one could construct a test fair to both old and new instruction. And suppose
that students were randomly assigned to experimental and control groups, so that standard
experimental procedures were followed. Nonetheless, there would still be serious potential
problems. If different teachers taught the two groups of students, any differences in outcome
might be attributable to differences in teaching. But even with the same teacher, there can
be myriad differences. There might be a difference in energy or commitment: Teaching
the “same old stuff” is not the same as trying out new ideas. Or students in one group
might know they are getting something new and experimental. This alone might result in
significant differences. (Schoenfeld, 2000, p. 645)

Where I do see possibilities, and where my primary interest currently lies, is
in documenting students’ responses to particular research-informed tasks, in order
to provide information for lecturers about how their students are likely to interpret
such tasks and what outcomes can be expected if they are used in or alongside
lectures. While we wrestle with the less tractable questions, I think that there is
considerable potential for design research at this scale. Its outcomes could provide
mathematicians with a way to begin using more unusual, research-based instruction
in a small-scale way as part of their existing teaching, in much the same way that
teachers can use tasks from professional development experiences with their own
classes.

Conclusion: Overarching Themes in Teaching

In this concluding section I return to the two overarching themes running through
this chapter. The first of these is the need to help students develop skills on mul-
tiple levels. The practices discussed above vary in this respect. Some are about
developing an understanding of individual concepts. Some are about what Hounsell
and Hounsell (2007) might call ways of thinking and practicing in mathematics:
knowing the status of definitions within mathematical theory, learning to translate

6 Beyond collecting fairly basic, anonymous, opinion-based feedback.
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between diagrams and formal language, learning to infer warrants in order to under-
stand proofs, and so on. Some are about study habits, and what kind of thing a
student ought to spend their study time doing. This variety, in my view, is part of
what makes subjects at the transition-to-proof level so difficult: There are many,
mutually supporting skills to be developed at once. I would stress, however, that I
do not think this transition needs to be impossible; as discussed here, I believe that
there are many practical things a teacher can do to help their students develop these
skills.

This, however, brings us back to the main question of the second theme, which
teachers negotiate all the time: how best to use the time available? As indicated
above, my own teaching has become progressively less about the mathematical con-
tent and more about how to interact with this content. In this sense my focus has
shifted from small-scale learning goals (that my students understand a particular
concept or theorem) to larger-scale goals (that they develop the ability to relate
examples to definitions, to draw diagrams, to break down proofs, and to make use-
ful summaries of large amounts of material). This has contributed to a change in my
overall lecturing style: whereas for the small-scale goals, a clear explanation might
be best or at least quickest, for those at a larger scale, interactive lecture activities
often seem more appropriate. I am content with this shift since it means that my
students are more actively involved in learning and debating during lecture time,
which also provides me with more opportunity for gaining insight into their current
thinking. But it remains the case that there are all sorts of things I could do, in many
different combinations, and I really have no evidence-based mechanism for decid-
ing how much time to devote to what. This is quite a sobering thought, but also one
that throws up many interesting sub-questions and challenges for those interested in
research and development in learning and teaching.
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Teachers Learning from Their Teaching:
The Case of Communicative Practices

Helen M. Doerr and Stephen Lerman

Introduction

The nature of the professional knowledge of teachers, in our case teachers of math-
ematics, has been and continues to be of major interest in research on teaching.
Research has focused on three major questions: What does the professional knowl-
edge base for teaching mathematics look like; how do practicing teachers acquire
it; and does it develop from practice and if so how? In this chapter, we will address
these questions, and in particular the third question, by examining some of the data
from a four-year research project carried out by the first author and her colleagues.1

The focus of the research project was to investigate the role of literacy in mathe-
matics teaching, taken to include speaking, writing, and reading. Broadly speaking,
literacy is driven by the need to communicate, a driving force that encompasses
social development, in general, and all learning, in particular. The shared question
for the researchers and teachers was how to develop students’ abilities and skills for
communication in the mathematics classroom. The researchers also focused on how
experienced and competent teachers learned from their teaching, in this case about
the development of students’ abilities to communicate mathematically.

In this chapter, we wish to distinguish between the nature of teachers’ knowledge
and the development of that knowledge. Our primary interest is in the latter: how
that knowledge develops as teachers interact with other teachers and researchers
and experiment with new ideas that become absorbed into their repertoire of pro-
fessional knowledge. For us, watching what teachers do as they engage in practice
leads to a focus on pedagogical strategies or actions in the classroom. Going further
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and unpacking why teachers do what they do leads us and them to a focus on inter-
pretation, reasoning, and explanations about their teaching of mathematics. Several
years ago, Hiebert and colleagues (Hiebert, Gallimore, & Stigler, 2002) posed the
question of what does the professional knowledge base for teaching mathematics
look like? In addressing this question, we find it useful to work with a distinction
between local and global theories, drawing on arguments that have been put forth
to describe the role of design research in the field of education (Cobb, Confrey,
diSessa, Lehrer, & Schauble, 2003; Design-Based Research Collective, 2003). We
also draw on researchers (diSessa & Cobb, 2004; Lewis, Perry, & Murata, 2006)
who have described how local theories grounded in classroom practice can con-
tribute to a theoretically grounded knowledge base for teaching. Teachers, such as
those in this study, often develop strategies to deal with the very specific issues that
arise for them in practice. Such strategies are specific responses to problem situ-
ations involving particular students, materials, and mathematical goals. But at the
same time, some of these strategies are local theories or principles for action that
can cut across contexts and can be adapted to other problem situations. For example,
the teachers in this study developed, over a lengthy period of time, a way of work-
ing with the development of students’ mathematical writing through a sophisticated
model for thinking about writing and a resulting set of rich resources (Doerr &
Chandler-Olcott, 2009). The teachers realised that they could use the same way of
thinking to approach the development of students’ mathematical reading skills. In
this sense, local theories are more than “mere” strategies that are relevant to a partic-
ular time and place and no more. These local theories are principles for action that
can be shared among teachers and across contexts and problem situations. Our focus
in this chapter is on how these aspects of teachers’ knowledge develop in practice
and potentially contribute to the professional knowledge base for teaching.

This raises the question of whether there are global theories about the pro-
fessional knowledge base for teaching. Can we identify generally accepted the-
ories about teaching mathematics, taking pedagogy and mathematical knowledge
together, as inseparable? We know that mathematical knowledge has some kind of
universal certainty, but we are much more cautious about the certainty of math-
ematical pedagogic knowledge. The former exhibits a strong grammar, enabling
one to be quite specific about what is being claimed, and there are deductive
and inductive methods for verification or refutation. The latter exhibits a much
weaker grammar, leading to different and in many senses incommensurable dis-
courses. However, our experience leads us to believe that there are some elements
of a global mathematical pedagogic knowledge, as we are calling it. For exam-
ple, we find that teachers reading Skemp’s (1976) article about instrumental and
relational thinking for the first time are almost always very persuaded and take
the ideas into their thinking about teaching. Similarly, many teachers respond
positively to Wood’s (1998) descriptions of funneling and focusing classroom con-
versations, which was very significant for the teachers in this study, as we will
report below. But neither of these elements of mathematical pedagogic knowl-
edge is as universally accepted as, say, the Pythagorean theorem or the Euclidean
algorithm.



Teachers Learning from Their Teaching 249

Turning now to our primary interest, how the professional knowledge base for
teaching mathematics develops, we hypothesize that one way is through teachers
learning from their teaching as they work together, with the support of university
researchers, and sharing their ideas with others through dissemination at confer-
ences and in journals. Our concern is to elaborate on the process whereby teachers
learn from their teaching and, in so doing, potentially contribute to the development
of the professional knowledge base for teaching mathematics.

Background of the Study

The data reported in this chapter are from a four-year research project on math-
ematics and literacy. The research was carried out by a team of university-based
researchers in mathematics education and literacy education, working in concert
with mathematics teachers in a mid-sized urban district in the United States. The
district had recently adopted what are known as Standards-based curriculum mate-
rials, namely, Connected Mathematics Project (CMP), (Lappan, Fey, Fitzgerald,
Friel, & Phillips, 1998). These particular Standards-based materials, along with sev-
eral others, were developed with the support of the National Science Foundation
in the 1990s to align with curriculum standards that had just been put forward by
the National Council of Teachers of Mathematics (NCTM, 1989). These materi-
als represent a significant shift from traditional textbook materials in that they are
structured around a sequence of “investigations” that require the students to engage
with mathematical tasks that need to be interpreted through the stories, pictures,
diagrams, and charts in the texts. In addition, the students are expected to provide
descriptions, explanations, and justifications about their work with the tasks, both
orally and in writing. As such, these curricular materials presented new challenges
for the teachers who now needed to learn to support the development of students’
abilities to communicate mathematically. In this chapter, we report on the learning
that occurred for one of the teachers as she learned to address the literacy demands
of these mathematically rich and contextually complex curricular materials.

The teachers participating in this project were from one high school and its three
feeder schools. The results reported here are from one of the teachers, Cassie, in
the feeder school where the first author worked with the teachers. Belmont School
had approximately 860 students and 45 teachers and support staff and was consid-
ered high poverty with over 80% of the students qualifying for free or reduced-fee
lunch. The school population was quite diverse with approximately 31% African-
American, 21% Asian, 35% Caucasian, and 11% Latino/a students. Approximately
20% of these students were English language learners, and 25% were identified
as having special needs. As we began the project, it was the second year using the
CMP materials for most of the teachers. There were five participating teachers at this
school, who taught grades 6 through 8 (student ages 11–13). Four of the teachers
were very experienced; one was in her first year teaching as we began this project.
Cassie was in her 11th year teaching; she was enthusiastic about the use of the CMP
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materials. Cassie held multiple teaching certifications as she was certified to teach
middle grades mathematics, special education, and elementary education. She was
teaching students in both grade 7 and grade 8 as we began our work together.

The work with the teachers consisted primarily of four on-going activities: sum-
mer workshops, quarterly project meetings with teams from other project schools,
bi-weekly team meetings, and “lesson cycles” (described more fully below). The
first week-long summer workshop provided an introduction to the project for all
the teachers as we began our collaborative work in addressing the literacy demands
of the Standards-based texts. As the project progressed, the teachers at Belmont
School chose to work together for three weeks each summer to develop specific
instructional goals and plans related first to mathematical writing and later to math-
ematical reading. During the school year, the quarterly project meetings and the
bi-weekly team meetings provided forums for the sharing and continued discussion
of instructional strategies.

Since our primary research questions concerned teachers’ learning about math-
ematical communication in their own practices, we used “lesson cycles” to work
jointly on planning, implementing, and debriefing lessons for supporting literacy
opportunities for students (Doerr & Chandler-Olcott, 2009). Each lesson cycle con-
sisted of three elements: (1) A planning session that followed the overall CMP
guidelines for the investigations, but asked specifically the question “what are the
literacy opportunities in this lesson?” In planning with this focus, the teacher dis-
cussed her ideas for reading the text, described opportunities for students to speak
with each other, and identified prompts for student writing that would be used in
the lesson. (2) The implementation of the lesson, where a member of the research
team would observe the lesson, take extensive field notes, and generate questions
for discussion that arose during the observation related to the literacy opportuni-
ties in the lesson. (3) A de-briefing session with the teacher, where the intent of the
session was to collaboratively gain insight into the teachers’ thinking about the lit-
eracy opportunities of the lesson and to collect shareable artifacts from the lesson,
such as insights gained or tools used to support students’ learning. The de-briefing
session often centered on a discussion of the students’ written work and how that
might be used to inform subsequent lessons. The planning and debriefing sessions
were audio-taped and later transcribed. Brief memos were written based on notes
taken and the artifacts of the session. The lesson cycles began halfway through the
first year of the project and continued through the fourth year of the project. Each
teacher participated in a lesson cycle approximately once every three to four weeks
with a member of the research team.

The observation of the lesson allowed us to focus on the teachers’ pedagogic
strategies enacted during the lesson. The planning and debriefing sessions gave us
a focus on how the teacher interpreted and reasoned about the events that occurred
in the classroom. Taken together, these sessions and the observations led to our
developing insights into the development of students’ abilities to communicate their
mathematical thinking.

From the beginning of the project, the teachers at Belmont School shared a com-
mon focus on the need for their students to become better mathematical writers.



Teachers Learning from Their Teaching 251

This was, in part, driven by the high-stakes testing that took place at the end of grade
eight, where students were asked to explain their reasoning or solution strategies in
writing. All the teachers felt a school-level shared responsibility for preparing stu-
dents for this exam. The focus on writing was also driven, in part, by the curricular
materials that included many tasks that asked students to explain their reasoning or
solution strategies. The teachers valued these tasks, since they required elaborated
descriptions and explanations. Finally, the focus on writing reflected the teachers’
concerns for many of their students who were not at grade level in reading or writ-
ing for reasons of second language learning, learning disabilities, or special needs.
This shared interest in student writing became the focus of the discussions at the
bi-weekly team meetings, during the lesson cycles, and at the summer workshops.

At the end of the third year of the project, the teachers wanted to give increased
attention to students’ mathematical reading. In part, this shift occurred as a conse-
quence of the progress that the teachers had made in planning for the development
of students’ written expression. They wanted to take what they had learned from
their success in improving students’ writing and address students’ development as
mathematical readers. In part, this shift was influenced by the teachers’ increas-
ing sense that reading was a critical barrier to students’ performance on the state
exams. At Belmont School, we never had an explicit, sustained focus on oral lan-
guage within the project, although other schools in the project did. However, this is
not to suggest that either the researchers or the teachers saw reading, writing and
speaking as unrelated or disconnected practices. Indeed, it was quite the contrary!
There were many instances of the teachers explicitly and specifically using writing
to support speaking, using speaking to support reading, and so on. These teach-
ers developed in their perspectives and practices on the relationships or interplay
among reading, writing, and speaking. But that interplay is not the focus of this
chapter.

Our data sources included field notes from the summer work sessions, the quar-
terly project-wide meetings and the bi-weekly school-level team meetings and the
field notes and transcripts from the lesson cycles. In addition, each teacher was inter-
viewed five times: once prior to the start of the project and at the end of each year
of the four-year project. At the final interview, each teacher was asked to reflect
back on her experiences in the project and to share the stories and events that had
been most salient from her perspective and the insights that she had into teaching
through participating in the project. This final interview is the starting point for the
results reported in this chapter. We are using our shared analysis of this final inter-
view to frame the learning that took place for Cassie by using how she told the
story of her own learning about mathematical communication. We wish to point out
that Cassie’s perspectives on her learning occurred through her sustained interac-
tions with her colleagues, her students, the researchers, and the curriculum. Taken
together, these interactions provided a focus on the role of communicative prac-
tices in the classroom and this sustained focus appears to have been a critical factor
in supporting the development of Cassie’s knowledge of teaching. We begin with
Cassie’s insights into the role of oral language, writing, and reading in teaching
mathematics.
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Insights Related to Oral Language

I Used to Be a Big Funneler

An important area of learning for Cassie occurred as she came to recognize that
her patterns of questioning were largely dominated by the kinds of initiate-respond-
evaluate (Mehan, 1979) patterns that Wood (1998) described as “funneling.” We
referred to this above when discussing teachers’ acquisition of the professional
knowledge base for teaching mathematics. Cassie saw this as a problematic area in
her own practice in that it created the “illusion of learning.” She explained that she
had taught material, but when she tested students, she was finding that they had not
mastered it. She now sees her funneling as a cause of the difficulty and something
that she could change. Cassie explained the following:

Deep down inside I’d say, you know, I taught this stuff. I thought they had it. I gave a test,
and they didn’t have it. Where are they losing it? It’s like you’re looking at the kids and
wondering where they’re losing it when, in fact, it turned out, it was the way I was doing
things. It was me. Because they weren’t getting it. They were just regurgitating what they
thought I wanted to hear.

Cassie was very self critical as she says that “I think I had a lot of kids who had
the illusion of learning because I’m saying they had this [understanding]. No, I had
this [understanding] and I was feeding it to them. And that was not very helpful.”
She realized that funneling created the illusion that the students had learned the
mathematics she was trying to teach, but in the end this strategy did not help her
students learn.

Cassie attributed her own learning about this to two factors. The first factor was a
set of articles by Wood (1998) and by Herbel-Eisenmann and Breyfogle (2005) that
draws on Wood. The team of teachers read and discussed these articles during one
of their summer team meetings. We also looked at some video clips of teachers from
professional development materials with these articles in mind. Together these arti-
cles describe funneling conversations and an alternative approach called “focusing.”
Cassie pointed out that “it’s hard not to funnel” and that it still occurred in her prac-
tice: “not that I’m still not guilty of funneling now and then, because I am. But it’s
something you watch out for now.” Cassie pointed out that this is a difficult practice
to change; working on alternatives is not easy. She was now much more cognizant
of when she was falling into the funneling trap. As Chazan and Ball (1999) point out
about this changed role for the teacher: When the role of the teacher is not telling,
then what is it? At the end of the project, Cassie was still working on this new role
for herself.

The second factor that influenced Cassie’s learning was a conversation that
occurred during one of the lesson cycles in the third year of the project. During the
observation of the class, Cassie had a conversation with one of her students, Kiesha,
who was having difficulty in solving a particular problem that drew on understand-
ing the area of a rectangle. This student was low achieving in mathematics and her
school attendance was poor, thus contributing to her achievement. Cassie’s conver-
sation with Kiesha highlighted the extreme difficulties that Cassie experienced in
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the moment of teaching as she was struggling to not funnel Kiesha into the solution
to the problem. Cassie’s distress in this episode was clearly visible as she turned
to another student for help in her conversation with Kiesha and then later to the
researcher who was observing the lesson. Cassie’s conversation with Kiesha was a
very long one and did not come to a “successful” ending.

During the debriefing of the lesson, Cassie attributed part of the difficulty to a
mathematical issue. Kiesha did not appear to have had prior experience with CMP
in grade six where the concepts of area and perimeter are developed; she had trans-
ferred to this school in grade seven. Cassie is familiar with lessons from grade six,
both because of her prior teaching experience at that grade level and because of the
work of the project. She referred to the “bumper cars” which is the context of stu-
dents’ initial investigation into area and perimeter in grade 6 (where the problem is
cast in terms of the area that the bumper cars drive in and edges that are needed to
fence in the area). Cassie saw that this context might have helped Kiesha by giv-
ing her something to draw on in reasoning about the current problem: “I think that
makes a difference because she didn’t have that context to fall back on.” The stu-
dent’s familiarity with that context might have provided Cassie with a language to
draw on as an alternative to funneling. Cassie later shared this conversation with her
colleagues and for Cassie it became known as the “Kiesha conversation.” Cassie
saw this as the increasingly important role of context in developing mathematical
connections to support students’ learning.

We see Cassie’s struggle over the Kiesha conversation as the local enactment of
a principle for action: Kiesha’s having missed an important context had an adverse
impact on her consequent ability to draw on the relevant mathematics of area and
perimeter. Cassie was operating under her emerging and more global theory of
resisting funneling, thus leading to a frustrating interchange with the student. This
interchange sharpened awareness on Cassie’s part that what she wanted to elicit
from Kiesha was her reasoning about the problem, while not feeding her with an
answer.

Letting Kids Develop Their Own Words for Concepts

Cassie recognized that students needed to have opportunities to discuss mathemat-
ics, but it was not easy for Cassie to engage students in having discussions. Cassie
had classes with significant numbers of students with behavioral problems and many
students whose basic skill levels were very low. Cassie had used an activity struc-
ture for paired interactions called “Rally Coach” that had been introduced through
a project workshop on Kagan structures (www.kaganonline.com). In this activity
structure, students work in pairs on a sequence of problems, where each partner
checks the previous work and coaches the other student if need be. This structure
enabled Cassie “to let go a little bit” so that the students’ interactions could hap-
pen. Cassie saw this paired coaching as giving students an opportunity to teach each
other. Cassie explained the following:
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Teaching it makes it so much clearer and that’s why I like the Rally Coach. And I think
that’s something I began this year and I don’t know if I should have. Skill levels are kind of
weird to do that. . . . When I gave them more time at the end of the year and I was willing to
let go a little bit, I think the kids did better [working in pairs] on that information than if I
just let them work independently [by themselves]. They really need that [paired] discussion.

But Cassie’s view of oral language was not simply that students need opportu-
nities to talk. Rather, Cassie had developed a view of the different kinds of talk
that needed to happen so that that students’ language for mathematical ideas would
develop over time. Her framing of this development (an example of a local theory
or principle for action) was influenced by the work of Herbel-Eisenmann (2002),
described in an article that was read and discussed by the team of teachers during
their summer work together. In her work, Herbel-Eisenmann frames the develop-
ing language of students in three main categories: “contextual language,” “bridging
language,” and “official mathematical language.” The language that depends on spe-
cific contexts or problem situations is referred to as “contextual language.” This
category often occurs when using CMP, since instruction is organized around and
driven by the solution of mathematical problems in specific contexts (such as the
bumper cars or a walking race). Herbel-Eisenmann delineates two forms of bridging
language: that which is idiosyncratic to the student- or teacher-generated language in
a particular classroom and that which is transitional mathematical language in that it
refers to a particular process or representation without a contextual reference. These
forms of bridging language help students move from less mathematical ways of talk-
ing about ideas to ways that are more mathematically precise. Herbel-Eisenmann
argues that bridging language “offers access to a larger range of students because
classroom discussion can include more levels of entry” (p. 101). This argument
resonated with Cassie and the other teachers in the project.

The third category of the framework is that of “official mathematical language.”
This refers to the language that is “part of the mathematical register and would be
recognized by anyone in the mathematical community” (p. 102). The teachers took
up these three descriptors for students’ oral language, as well as for students’ written
language. However, in so doing, the teachers renamed Herbel-Eisenmann’s cate-
gory of “contextual language” as “everyday language.” This was, at least in part,
a recognition on their part that in many cases they needed to address the “every-
day” meanings students had for words that might be unfamiliar to them by reason
of context, life experiences, and/or second language learning. Herbel-Eisenmann’s
framing of students’ language development became a local theory of mathematical
pedagogic knowledge used by Cassie and the other teachers to guide their actions
in planning and in teaching lessons.

Cassie articulated these principles as the need for students to “develop their own
words for concepts.” She saw this as essential for building their understanding of
concepts and she doubted the efficacy of giving students the official mathemati-
cal language. Cassie explained her views: “I think if they develop their own words
for concepts, they’re going to understand those concepts more clearly than if we
give them the official math language. I think that’s really important.” She recalled
an episode in her classroom that occurred near the end of the fourth year of the
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project. In this episode, the students were explaining how they found various equiv-
alent expressions by combining like terms. When one student gave his description,
the special education provider, who was with the class at the time, interjected and
pressed the student to say that two terms could not be combined because they were
“not like terms.” Cassie was unhappy with this interjection and felt it took away
the student’s voice. She argued: “We’re not giving kids enough time to develop that
everyday math language, the bridging [language]. I think the students had a good
description in their own words about what was going on. Instead, we’re giving them
the words they really have no connection to.” She was adamant that the student’s
description, given in bridging language, was satisfactory for now and that the student
needed to express his ideas in his own words. She further commented:

Because what he said was perfectly okay. It made perfect sense. . . . He said it wasn’t the
same [the terms were not alike] . . . His explanation was perfectly fine. I think a lot of kids
understood his explanation. And when the words “like terms” came in, I think a lot of kids
said, ‘okay, that’s too much. I’m done.’ I think we do that quite a bit.

Cassie recognized that the student’s description was a temporary bridge to official
mathematics language. The description made sense to the student who gave the
description, and other students were able to gain entry into this student’s way of
expressing his idea about adding like terms.

Cassie was both self-critical and reflective on her own learning from this episode.
Recognizing the futility of giving students words that they have no connection to,
she saw her role as helping students make connections. Later, she talked about stu-
dents needing to connect the words “slope” and “rate of change” since they refer
to the same underlying concept. Cassie said: “We’re giving them the words they
really have no connection to. I mean, we’re not connecting it. And I think that needs
to be done. And that really surprised me because I used to do stuff like that [not
helping with connections].” She articulated a new role for herself in wanting to hear
what students have to say, recognizing from Herbel-Eisenmann’s framework that
what one student has to say may help others understand. Cassie said: “And now
I wanted to know what they have to say. Because sometimes what they have to
say will sometime trigger something in someone who doesn’t understand.” Cassie’s
principles for action and a new role for herself in the classroom emerged from her
reading, her interactions with the researchers and her fellow teachers, in the context
of addressing issues of concern in her practice.

Insights Related to Mathematical Writing

Writing Over Time . . . Because I Actually Saw Growth
in the Students

This comment by Cassie is a reference to an episode that occurred early in the
project where she had given her students the same writing prompt (“what makes
two figures similar”) at the beginning, middle, and end of a unit of instruction on
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similar figures. Cassie and the researcher (first author) had an extended conversa-
tion about this writing, and Cassie spent some time classifying various examples of
students’ work. There were three categories that Cassie used in this classification:
weak, average and strong. These represented her assessment of the level of student
understanding that was evident in the writing. In this process, Cassie was often ten-
tative with her judgments about what students might understand, especially for those
students with special needs (perhaps diagnosed with a learning difficulty related to
written expression) or second language learners. There were many students whose
growth she could see over time and this was exciting. Cassie said: “I actually saw
the growth in students . . . It’s just like you really get a picture of what they’re think-
ing and what they know about math.” These insights into students’ thinking were
useful for her instruction. However, what was most striking about her analyses of
this student work was her realization that there were some students who started out
weak and stayed weak. This greatly concerned Cassie and provided her with com-
pelling evidence that she needed to change her instructional strategies to address
the needs of these students. This analysis of student writing furthered Cassie’s more
general commitment to using writing for insight into student thinking and student
growth. Later in the project, Cassie selected an example of this “writing over time”
and shared it with her colleagues and at a national conference. This example of writ-
ing over time became a local theory (or principle for action) for Cassie and the other
teachers to draw on in their teaching practices.

Insights Related to Mathematical Reading

The Reading “Is Where We Lose a Lot of Kids”

From the beginning of the project, the teachers had identified that their students
struggled with reading the CMP investigations. As with oral language and writing,
the teachers were concerned with the learning of students who were below grade
level in reading, students with special needs, and second language learners. The
teachers wanted to improve the students’ abilities to read and interpret the ques-
tions on the ever-present state assessments. Cassie reflected the concerns of all the
teachers when she commented: “I was struggling with the groups [of students] I’ve
had the last couple of years and I was trying to figure out what can I do. And I’ve
had lower readers. But the group that really sticks out is the one I had this [last]
year. They were very low readers. Most of them were special ed students.” To help
these students gain access to the investigations, Cassie developed what she called
“guided notes.” This was influenced, in part, by her collaboration with the reading
and language arts teacher who was a member of Cassie’s grade level team.

Over the course of the project, Cassie developed her expertise in using these
guided notes. One critical episode occurred during a summer workshop when she
articulated to the other teachers the rationale behind the construction of these
“guided notes” sheets and how they are used in her teaching. Cassie summarized
the three components of the guided notes structure: “First, have the students read a
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passage independently and high-light important information. Second, give the stu-
dents the guided notes sheets. Third, review the notes as a class.” Cassie explained
that the guided notes sheets required the students to re-read the text (since the sheet
of questions is given out to the students after they have initially read the text). The
questions focus on the important information in the problem, supporting students
in internalizing and applying information from the text. In sharing this pedagogic
knowledge with her colleagues during a summer workshop, Cassie offered explicit
guidelines (or principles for action) for creating effective questions: “Create ‘right
there’ questions, create questions that allow students to make predictions, create
questions that allow students to apply their knowledge.” Each of these categories
served specific instructional purposes: The “right there” question had the answer
“right there” in the text, providing easy access for all students, while focusing on
the most important information in the problem. The prediction question engaged stu-
dents with interpreting and making inferences from the text; the application question
engaged students with specific mathematical elements in the problem. The ratio-
nales for these categories are the underpinnings of Cassie’s local theory for the
efficacy of the guided notes strategy.

Cassie described how the guided notes strategy gave even her very low readers
(some of whom were at grade two reading level) access to an investigation on linear
relationships that centered on a walking race (and hence walking rates) and a head
start for one of the racers. Cassie commented about the reading of the story for that
investigation:

There’s a lot of information in that little bit. Not a lot of reading, but a lot of information
about the head starts and the walking rates. And so doing the reading and the discussion
[with the guided notes], everyone knew what was going on [in the story]. And that investi-
gation was open, then, for everyone to do the math. The reading wasn’t slowing them down.
And we need to do more of that, because that’s where we lose a lot of kids.

The guided notes strategy pushed the students to go back and re-read the text.
This re-reading of the math text was a crucial idea for Cassie and the other teachers
as they had realized (through our summer workshop) the full extent to which they re-
read mathematical texts. Indeed, in many lessons, Cassie would say to her students
“This is math reading. How many times do we read it?” It was the guided notes that
enabled Cassie to help the students have a more focused purpose for going back
and doing this re-reading. Cassie described how spending the time in re-reading and
discussing these central stories helped her students remember the context and helped
them make mathematical connections. The design of these guided notes was driven
by clear principles that served explicit instructional purposes. As such, this became
a local theory for Cassie and the teachers in this project.

Some Broader Changes

In addition to the learning that occurred relative to specific classroom practices of
oral language, reading and writing, Cassie articulated two changes that addressed
broader aspects of her practice. The first change was related to her perspective
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on the centrality of communicative practices in learning mathematics. The second
change occurred in relationship to her use of the curricular materials. We discuss
each change in turn.

Reading, Writing, and Speaking Really Are Central to Math

The first (and perhaps the most sweeping) insight was that “reading, writing, and
speaking really are central to math.” Cassie reflected that she had “always wanted
to think, oh, that’s just the math that’s the important part.” She now saw the neces-
sity of directly addressing students’ skills and abilities to read, write and speak
as central to students’ mathematical learning. She quickly acknowledged that stu-
dents would have difficulty with these practices, but now saw that she had a role
to play in supporting students’ development as they acquired these practices. Her
work with her colleagues and her developing repertoire of instructional strategies
related to communicative practices began to shape this role for her. But Cassie con-
tinued to acknowledge the difficulties in forging this new role. She commented
that “organized chaos isn’t my thing” as she wanted her classroom to be well-
organized and structured and that this worked against her giving up some control
when the consequence of that might be more “chaos” in the room – often reflected
in off-task behaviors and conversations by students. As the project progressed,
Cassie continued to experiment with forms of group work and paired work that
became much more common events in her classroom, as students engaged in various
communicative practices.

Making the Program “A Little More Traditional. That’s What
I Was Doing.”

Cassie’s perspectives and responses to the curricular materials changed over time.
She directly attributed this change to the project’s focus on communicative practices.
She pointed out that she initially “like[d] CMP, but I was still very traditional with it.
I took a program that was not traditional and made it a little more traditional. That’s
what I was doing.” In terms of the literature on curriculum use (Remillard, 2005),
this could be interpreted as her taking a new set of curricular materials and adapting
and enacting the materials in ways that largely left her core practices intact. But her
core practices began to change. Cassie pointed out that because of the math and liter-
acy project, she began to experiment in her practice; because the teachers had chosen
writing as a focus for the team, this experimentation was largely one of trying writ-
ing with her students. The results of this writing often gave Cassie new insight into
what her students were thinking and into how she might want to plan for the next
day’s instruction. These insights into students’ thinking and instructional decisions
influenced changes in Cassie’s practice. As Cassie said “you start to do little things
here and there. And you start to see the value of it. And then you do it more and
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more and more.” These were not all-at-once or “aha” moment changes in Cassie’s
teaching, but rather these changes occurred incrementally, as they were tried and
revised in practice. In looking back, Cassie now characterized these changes as sub-
stantial: “It’s just amazing how much it changes. Because you’re just looking out
for the literacy and where can I do this. And what can I have the kids write about
to see what they really understand? Can I get a Rally Coach out of this? . . . Where
can I get them talking? And that’s how you think.” This new perspective is closely
related to Cassie’s first insight, namely, that reading, writing and speaking are cen-
tral to mathematics learning. Attending to these practices had become central to her
teaching and this supported her shift from a traditional teaching approach to one
that was more nearly aligned with the Standards-based vision that under-girded the
conceptualization of the CMP curricular materials. Cassie pointed out how much of
a change this has been for her: “And then it becomes part of your teaching, [so] that
you don’t even remember what you were like before. . . . I used to teach like that.
And I know I did. I taught the traditional way. And, now, I’m like good God, I’d
rather gouge my own eyes out than teach [like] that.”

Discussion

We will address each of our three major questions in turn, indicating what we have
learned from the project in terms of each of the questions, in the hopeful expectation
that we are speaking beyond the specifics of this project to mathematics teaching in
general. As we noted in our opening paragraphs, the main emphasis in this chapter
is on the third question.

Our first question addresses the nature of the professional knowledge base for
teaching mathematics. This knowledge base differs from the mathematics content
knowledge base in the lack of expectation of the same degree of certainty in the
former as compared to the latter. This is not surprising given that education is a
social science, not a physical science. What becomes accepted in a research field
depends on the gate-keeping procedures of the research community, which certainly
change over time.

Educational research is located in a knowledge-producing community. . . Of course, com-
munities will display a great deal of variation in their cohesiveness, the strength of their
‘disciplinary matrix’, and the flexibility of the procedures by which they validate knowledge
claims. (Scott & Usher, 1996, p. 34)

In terms of the “knowledge producing community” argument by Scott and Usher
(1996), and others, we understand that there is something we can call the profes-
sional knowledge base for teaching mathematics whose validity lies only in its
acceptance by members of the community. This is a weak claim, we recognize, given
especially that what is accepted by one group of researchers may not be accepted
by others (witness the debates around constructivism). Perhaps the most fruitful
engagement with theory is the resonance with and local adoption, and therefore test-
ing, of accepted theories, such as funneling, and the generation of local theories that
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are meaningful and powerful in that context but, with sharing and dissemination,
find resonance more widely.

Regarding our second question, and moving towards our third, we argue that we
have seen the acceptance by the teachers of theories from well-known research in
the field, such as Wood (1998) on funneling and Herbel-Eisenmann and Breyfogle
(2005) on contextual language, bridging language and official mathematical lan-
guage. We have also seen the development of pedagogic theories that are at least
initially local, as for example when Cassie said that “reading, writing and speaking
really are central to math.” This insight initially developed from a perceived need
to support students in developing their writing so as to evidence their reasoning and
solution strategies and then subsequently to support their reading the texts of math-
ematical investigations. A focus on writing led to principles for action embodied
in sophisticated planning tools and a set of shared pedagogical strategies, which
carried across to reading. At a later stage, the teachers presented their work at a
meeting of the National Council of Teachers of Mathematics (NCTM) and their
experiences and, in particular, the theories that they had developed about their work
(such as Cassie’s statement above) were communicated to the audience and res-
onated strongly with them. We would want to say that we are now seeing the locally
initiated theories becoming more global as “generally accepted theory.”

The study has pointed to some key factors in that acquisition and potential devel-
opment of a professional knowledge base for teaching: Working with colleagues;
collaborating with researchers who come into the school; having a local focus that is
important to the teachers; engaging in a longitudinal process. These factors interact
with each other, as we will point out below.

In the mathematics education community we have long used the notion of reflec-
tive practice as a potential tool from which teachers can gain insight into their
teaching and hence learn. We would argue, both in principle and from the experi-
ence of the project, that reflective practice requires an interlocutor to be meaningful.
Reflection calls to mind looking at oneself in a mirror, where what one “reads”
there is entirely within the sphere of one’s own interpretation. The need to explain
what one is doing, examine what one is doing with others with the aim of change
and improvement is what makes the idea of learning from reflection potentially
a reality. Cassie’s experience of the interjection of the special education provider
concerning combining like terms focused her attention on the need to give stu-
dents “time to develop their everyday math language” in a way that, working on
her own and not having the other teachers and the researchers with whom to com-
municate, would have been far less fruitful and perhaps would not have happened
at all.

The interaction with researchers was vital in a number of ways. First, we feel sure
that the extended engagement of the teachers with issues of reading, writing and
speaking mathematics would not have happened without the researchers. Second,
the researchers provided informed input throughout the project and research litera-
ture played a very important part. Cassie was able to see her “illusion of learning” as
resulting from her unintentional funneling, when the teachers encountered Wood’s
work in a summer team meeting. Not only did the notion give a language for what
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was happening, it provided also the possibility for change, as we see in Cassie’s
story. We have little evidence, regrettably, that such intensive teamwork in research-
ing and developing the teaching of mathematics continues beyond engagement with
researchers in projects or beyond higher degree study, for which the pressures on
teachers are certainly to blame.

Equally, we feel sure that the local focus, on issues that arose in their classrooms,
was an essential factor in the teachers’ learning. They knew that the Standards-
based curricular materials provided new challenges for their students and that they
needed to respond in ways that would support their students’ learning. There may
even have been some skepticism about how much of an effect there would be on
students’ understanding and performance with a focus on writing, then reading and
speaking, but it is clear that the teachers learned a great deal about the importance
of these aspects of mathematical thinking. As Cassie said, she saw the importance
of “writing over time . . . because I actually saw growth in the students.”

We return to our third question, “does the professional knowledge base for teach-
ing mathematics develop from practice and if so how,” which has been our major
concern and interest in this chapter. We have already suggested that the teach-
ers in the study adopted theories that came from the literature, thus were largely
researchers’ productions, and subsequently developed their own theories in response
to locally perceived needs (nascent research questions) into more global theories as
they were disseminated and were found to resonate with others. At the same time,
we as a community need to continue to work with the differences in the strengths
of the grammars of mathematics and of mathematics education, as we mentioned in
the early part of this chapter.

Teachers are both productive and reproductive in this knowledge domain, that
is, they both adapt and adopt theories from the field of professional knowledge for
teaching mathematics and produce their own. In the transition from local theories to
more global theories, teachers potentially produce new elements of the professional
knowledge base. This latter stage depends largely, of course, on the possibility of
dissemination amongst the mathematics education community, both those engaged
in school practice and the research community. We would argue that we have pre-
sented strong evidence, in Cassie’s story, of both the teachers’ potential contribution
to the professional knowledge base in the guided notes and the insight that reading,
writing, and speaking are central to mathematics, and the actual contribution, as
presented at the national conference, of the effects of writing over time.
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Feedback: Expanding a Repertoire
and Making Choices

Dave Hewitt

Teaching is a complex activity and yet it can be viewed by some from the outside as
a relatively simple process of passing on information in a clear way. My own expe-
rience of learning to teach – something which I feel I am still involved with 30 years
after teaching my first lesson – is that my awareness of the complexity involved in
teaching has increased over time. The more I fool myself into thinking I am sort-
ing one aspect out, the more I become aware of issues which I had not considered
before. In one way it is precisely this which makes teaching such a fascinating and
engaging activity, in another way it can become frustrating for those who seek def-
inite answers to the question of how to teach. Wheeler (1998, p. 98) suggested that
rather than thinking of teaching as an art or a science we might “settle for teaching
as essentially a technical matter – not in the sense of a full-fledged technology but
as a set of knowhows, a sort of kitbag for dealing with the practical demands of
the classroom, a kind of bricolage.” In this spirit I explore here one aspect of such
a kitbag, that of how a teacher might respond to contributions which pupils make
in the classroom. These are not planned contributions but more responses to the
in-the-moment incidents, many of which are unexceptional but all of which require
decisions to be taken as to whether and how to respond. The issue of giving feed-
back to pupils’ comments is, of course, a complex issue and here I am concentrating
on particular aspects of such feedback – that of whether to act as judge when giv-
ing feedback and whether to offer explanations. The effects of such feedback are
not my concern here (see Kluger & DeNisi, 1996, for a general review of effects
of feedback) but instead I am interested in the beliefs which might lay behind such
decisions. In this case my interest is with student teachers, some of whom are on a
one year Post-Graduate Certificate in Education (PGCE) course and some of whom
are in the second year of a two-year PGCE course (due to their degrees not having
sufficient mathematics content).
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Calderhead (1984) classified different types of decisions that teachers make as
reflective, immediate, and routine. For student teachers, who have little or no expe-
rience of teaching in a classroom, relatively little is routine and ways to respond to
pupils in the classroom can be based upon what is familiar such as their personal
mathematical knowledge. They can judge whether an answer is correct or not –
this requires subject matter knowledge rather than pedagogic content knowledge
(Shulman, 1986). So acting as judge to pupil comments can be initially a common
form of feedback to pupil comments. Offering explanations also requires subject
matter knowledge but in addition there is a sense of becoming aware of audience
and trying to offer “clear” explanations. Explaining stresses one’s own personal
knowledge and as such it is possible to try to explain something in response to what
a pupil has done without needing to try to understand what that pupil was think-
ing. A shift away from explaining can require a corresponding shift from attending
to oneself to attending to the pupils. Iannone and Nardi (2005) offer an example
of a lecturer shifting from providing model answers to questions ahead of a lec-
ture (demonstrating the lecturer’s own knowledge) to waiting until after receiving
work from the students and responding to their collective errors. As part of the
PGCE course we want to shift their attention away from their own performance
and onto what the pupils are doing. We also want to widen the student teachers’
awareness of possible ways of responding so that they can make informed and rea-
soned choices rather than following a limited range of already known possibilities.
Scherer and Steinbring (2006, p. 171) spoke of experienced teachers when they said
that “The communicative patterns and reciprocal actions between teacher and stu-
dents are usually stable, unconscious habits, which have grown over the years, and
which make it possible to cope spontaneously with the complex teaching events
in which all the participants are involved” (their emphasis). The need to cope with
such complexities as exist in a classroom drives certain responses into spontaneous
unconscious actions as there is a need to respond quickly. Student teachers also
begin teaching with existing images of what it is to be a teacher and have a certain
set of spontaneous actions and responses within the classroom. Our desire during
their PGCE year is to help them become aware of a greater range of ways to respond
and also to develop a personal pedagogy which can inform their choice in how to
respond. During a lesson, decisions need to be made in the moment and afterwards
there is the luxury to reflect upon that decision and to consider alternative ways
of acting. One way to work on practice is to reflect on a moment when an action
was taken, perhaps out of habit or lack of awareness of alternative possible actions.
This reflection classically takes place after the event at the end of a lesson. Over
time such reflection becomes particularly powerful if the ability to reflect and con-
sider alternative actions occurs closer and closer to the event itself. Eventually, the
awareness of issues and of alternative actions can occur in the moment so that the
action taken is no longer one of habit but one which is informed through choice
(Mason, 2002). Doerr (2006, p. 256) identified “ways of responding with pedagogic
strategies” as one of three dimensions of teachers’ knowledge. However, this might
include a teacher responding relatively mechanistically with a pedagogic strategy
read from a book or heard from a tutor. My interest is not so much responding
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with pedagogic strategies but having a response informed by a personal pedagogy
developed through personal beliefs and theories. Smith (2003) discussed both public
and personal theories, based on Mason’s (1998) description of “outer research” and
“inner research.” The public theories coming from outside, such as the school, uni-
versity, government, and the personal theories coming from their own sensitivities,
experiences, and ideas. The same classroom can be seen in different ways accord-
ing to the sensitivities and awareness of an observer. Ainley and Luntley (2007)
argued that experienced teachers have what they call “attentional skills,” which I
interpret as resulting from the awareness they have of teaching and learning issues,
and which inform the attention they give to classroom events and the readings they
have of those events. Thus, teachers’ actions are a result of judgement rather than
rule following. They proposed that “teacher education has to be as much concerned
with the development of attentional skills and the capacity for attention-dependent
responses as it is with the ability to set appropriate learning objectives and plan
lessons effectively” (ibid., p. 5). In trying to develop our student teachers’ aware-
ness and sensitivity to different ways in which they might respond to pupils’ work,
a number of experiences and activities were built into their course throughout the
year. This was in the belief that it was through student teachers having experiences,
and working on those experiences, that they will develop awareness and sensitivity.
The experiences and activities were as follows:

1. Teaching placement 1 – Links lesson
2. University session – Ball and box activity and polyominoes activity
3. Teaching placement 2 – Silent lesson

The student teachers were asked on two occasions during their teaching place-
ments to teach a certain form of lesson to a class (a “links” lesson during their
first placement and a “silent” lesson during their second). Both forms of lessons
were chosen so as to take the student teachers a little outside their normal comfort
zone and work with pupils in a way which was different to the way in which they
had normally worked with pupils up to that point in time. In this way we hoped
they would come to know, through their own experience of working with pupils,
different ways of working and extend the possibilities open to them in the future.
The details of these lessons are given later. The other way of raising awareness was
through a specific session run at the university between the two teaching placements.
This involved two related activities which offered personal experiences related to
feedback.

The “Links” Lesson

On their first teaching placement, student teachers were asked to teach a lesson
where they did not attempt to teach anything directly themselves. We chose this due
to some student teachers being initially concerned with their own “performance”
in the classroom in terms of presenting and explaining mathematics. We felt that
asking student teachers quite early on in their teaching experience to teach a lesson
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where they were not personally explaining or presenting some mathematics might
contrast with the lessons they were teaching up to that point in time. We modeled the
form of lesson with them in a session at the university where the word “Calculus”
was written in the middle of the board and I asked student teachers what came to
mind when they thought of this. Gradually I wrote up on the board, in the form of
words and connecting lines originating from the word “Calculus,” what was offered
by each student teacher. After a period of time a web-like diagram emerged with
various lines interconnecting the offerings made from the student teachers. Up to
this point in the session, I had taken the role of a scribe, checking on occasions
that what I wrote represented what they said and that interconnection lines were
appropriate. I then asked whether there was anything written up on the board which
someone would like to ask a question about and this led into questions being raised,
student teachers clarifying terms or explaining some mathematics behind what was
written on the board. My role was one of managing this process (one voice speaking
at a time, checking whether what was said was helpful or whether more needed to
be said, etc.) rather than actually offering any explanations myself. At times student
teachers would come up to the board to draw or write something, or offer examples.
The session ended with me coming out of role to reflect upon the “lesson” they had
just experienced.

We discussed the form the lesson had taken and the possible purpose of such a
lesson in relation to a series of lessons. Implicitly we were interested in our stu-
dent teachers becoming aware that there was an alternative way to respond when a
pupil does not know something, the teacher does not always have to start explain-
ing. Many years ago I was observing a student teacher, whom I will call Richard (all
names used from now are pseudonyms). He was teaching pupils who were used to
exploring mathematical situations and were involved in discussing something they
had seen on a computer. Richard was mainly observing and listening to the pupils
and looked relaxed. Then a pupil asked why something had happened on the screen.
Richard hesitated but then gave a short explanation. Another pupil said they did not
understand what Richard said and this led to a series of increasingly long explana-
tions from Richard with him becoming noticeably frustrated that some pupils were
not understanding what he said. I noticed the posture of many pupils change from
leaning forward in their chairs (as if being active in the lesson and interested in what
was happening) to one where they were leaning backwards (as if relaxing and being
passive within the lesson and less interested in what was happening). This led me to
label such a scenario as the explanation trap (Hewitt, 1994). Once a teacher takes
on the role of being the person who explains then this can lead to pupils shifting
from active participants using their own awareness to try to account for something
themselves to relative passive participants who await a “clear” explanation from the
teacher. The more a teacher explains, the more a loop is established with pupils
shifting from exploring, noticing, and accounting for what they notice and instead
taking on the role of sitting back and expecting the teacher to explain, and so the
more a teacher might feel the need to explain further, etc. In some cases it can lead
to a teacher feeling that they are doing all the work and the students almost enjoying
saying “I don’t understand” after each explanation.
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The current student teachers were told they had to teach a lesson of the form I
had modeled, choosing the topic and class and 31 of them reported back at a review
afternoon where they came back to the university in the middle of their first place-
ment. In written reflections about the links lesson 14 student teachers wrote about
how they used praise and positive comments and avoided negative comments, whilst
15 of them wrote of not being judgmental and avoiding saying yes or no to sugges-
tions coming from the pupils and instead either deflecting questions or replying with
questions themselves. For many student teachers this lesson raised the awareness of
considering the use of questioning as a form of feedback rather than providing judg-
mental comments or explaining. For example, Aliya commented “I tried not to say
‘no’ or give the answer if the pupils were nearly right. I tried to bounce contribu-
tions off pupils, so was asking things like ‘how do you mean?’, ‘what else?’, ‘so
what about if I. . .?’. . . Instead of me giving them an answer they can bounce ideas
and answers from each other and work it out themselves.” Questioning was used
by many student teachers to ask pupils to give examples or give further reasoning
behind their answers. One student teacher commented “I would ask them a ques-
tion about what they had just offered. I wasn′t asking them to find a correct answer.
I was still trying to respond in a way that made them think about their maths.” A
key aspect of the learning many student teachers expressed was an awareness that
there is not a dichotomy of telling or questioning, but that the form of questioning is
something to be explored – there are different types of questions. The nature of the
questioning had shifted from just asking closed mathematical questions into using
probing questions which invited greater depth of mathematical thought.

The nature of the activity the student teachers were asked to carry out resulted
in less explaining from the student teachers and a greater depth of mathematical
thought from the pupils. Esme commented she wanted to repeat this form of lesson
again as she wanted to “get the pupils thinking and expressing themselves instead
of me giving them all the explanations/answers.” This was a change in the role most
of the student teachers took in their lessons and also resulted in a change in the
nature, quality and quantity of pupil contributions. The shift away from explaining
to questioning brought an awareness of a shift in the balance of work being car-
ried out by the student teachers and pupils. Some comments from student teachers
indicated this

“I tried to ask more questions and do less of the work. . . it felt like they were
doing the work more, instead of me.” (Penny)

“Although you are in control the pupils are doing all the work.” (Kevin)
“This actually got the pupils to do the hard work rather than me giving them

definitions of things.” (Aliya)

Many student teachers felt pupils were thinking harder about the mathematics
and the balance of who is doing the work within a lesson changed from student
teacher to pupils. This was, of course, one lesson and this does not imply that the
awarenesses shown reflecting on this one lesson resulted in a change of usual prac-
tice in other lessons. Indeed in Esme’s comment above, she wanted to repeat this
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particular lesson in order to explore pupils, thinking and expressing themselves and
her doing less explaining, rather than seeing this as a potentially general way of
responding to pupils throughout all her lessons. However, I claim that one aspect of
learning is awareness raising and this is a necessary part of a journey to developing
practice. So I do not expect changes in practice to happen immediately after aware-
ness is raised since, as Griffin (1989) right points out, teaching takes place in time
and learning takes place over time.

Ball and Box Activity

After the student teachers had completed their first teaching placement they returned
to the university for a few weeks ahead of starting their second school placement.
Whilst at university, one session involved two activities, the first of which was the
ball and box activity. This involved one student teacher whose task was to throw five
balls, one at a time, into a box. This student teacher, whom I will call the “thrower,”
sat with fellow student teachers in a circle and the task was repeated five times as
follows:

1. The thrower was blind folded and did not know the position of the box;
2. The thrower was still blind folded but had feedback from a teacher – “Teacher

1.” This teacher said after each ball thrown only whether it had landed in the box
or not;

3. The thrower was still blind folded but had feedback from a different teacher
– “Teacher 2.” This teacher said after each ball was thrown, the position the
ball landed with respect to the box (e.g. one metre to the right and three metres
behind – relative to the thrower);

4. The thrower took off the blind fold and could see the box;
5. A third teacher – “Teacher 3” – offered some input ahead of the thrower throwing

the first ball. This teacher asked the thrower to imagine a video having been taken
of them throwing the ball successfully into the box and invited the thrower to
imagine the video being played backwards with the ball coming out of the box
and back into their hand. They were then asked to play in their mind the video
going forwards again whilst throwing the ball.

After each of the five stages there was a short period of time where the thrower
commented on the quality of feedback with occasional comments from other student
teachers. At the end of the activity the group as a whole reflected upon the quality
of feedback and also considered mathematical equivalents of such feedback. The
whole group of student teachers were split into two groups with one group involved
in this activity whilst the other was involved in a separate session run in a different
room by my colleague, Pat Perks. The groups then swapped round. I will report on
comments labeling them as coming from group 1 (Gp 1) or group 2 (Gp 2).
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The initial activity with the thrower blindfolded and not knowing the position
of the box was generally met with humour. Neither thrower from the two groups
was successful with any of his/her throws. The balls were thrown in quite different
places. As Latif commented “Brownian motion comes to mind.”

The second set of throws had the thrower still blindfolded but now there was
feedback from Teacher 1 as indicated above. The thrower (Gp 2) commented that
the feedback was “pretty useless really. It didn’t offer me anything where I might get
it closer to the box next time.” Latif (Gp 1) related this back to a previous assignment
where they were asked to mark pupils’ homework by just using ticks and crosses one
week followed by marking using only written comments the next week. Information
was collected from pupils about what they felt about each type of marking. Barry
(Gp 2) also related this to marking pupils’ work saying “it is the equivalent of ticks
and crosses on your work. In some ways they know they have or haven’t got it
right but there is no idea of how to improve.” The thrower in group 1 felt frustrated
because she was not allowed to ask questions (a rule I had made in order that only
a certain type of feedback was experienced at each stage) as she felt the feedback
was not useful to her. This raised an issue of whether there is an environment in a
classroom whereby pupils feel able to ask questions about their work and indeed
are encouraged to consider what feedback they might find useful in order to help
them improve. This does not mean that they will necessarily receive that feedback
because it may be that a teacher decides for pedagogic reasons not to provide it. For
example, a pupil might ask the teacher to tell them how to do a question and their
teacher might have a belief that just telling pupils how to do a question will not help
them develop their awareness of mathematics and might instead lead to that pupil
seeing mathematics as a set of procedures to memorize. A different teacher might
feel that offering an example of what needs to be done would be helpful for that
pupil doing other questions of a similar type and might not want to give other types
of feedback due to a sense of limited available time and a need to move on to new
topics. Doerr (2006, p. 257) said that “It is precisely a teacher’s perceptions and
interpretations of classroom situations that influence when and why as well as what
the teacher does.” However, it is not just their perceptions but also their existing
repertoire of ways to respond and a set of beliefs which guide selection from that
repertoire which influence what a teacher does. Thus, pupils may not get what they
want in terms of feedback as it might conflict with the pedagogic beliefs that teacher
holds about how to help pupils learn mathematics.

The third set of throws had feedback from Teacher 2. The throwers from both
groups got their balls much closer to the box but still none went in the box. Thrower
2 commented “After the first one I knew how far away I was so I could adjust
the next one to try and get a bit closer. Rather than just throwing them aimlessly
around the room. I felt like I was improving that time.” Both throwers seemed very
positive after their throws despite the fact that they got none in the box. Thrower 1
commented that “I like the way he (Teacher 2) said she got zero but she was very
close. That’s encouraged me a little bit.” Feedback does not always have to concern
the mathematical content but can also concern emotional support. Empathizing with
the feeling of being stuck, for example, and sharing the fact that being stuck is
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a common experience when working on mathematics, can help that person deal
emotionally with the sense of being stuck. This can help them shift from giving up
on the mathematics due to the uncomfortable emotion of being stuck and seeing
this as meaning they cannot do what is asked of them, into accepting such feelings
as common experiences when working on mathematics and that there are strategies
which can be taken to help shift from that state (see Mason, Burton, & Stacey, 1985,
for some strategies).

The fourth set of throws involved the throwers taking off their blindfolds. They
managed to get at least one of their balls into the box with the rest being close.
Thrower 1 said “I could see what I was doing. I could see where the box was, what
to aim for.” There was a sense of someone feeling more in control, they could now
work on the task more independently as they had a clarity of not only what they
were aiming for but also an awareness of their own processes on the way to achiev-
ing that task. I asked Thrower 1 what sort of feedback she had got. The response of
“I haven’t got any. It is just what I see” indicated to me a sense of thinking about
feedback only in terms of what was received from another person. She did not seem
to consider that feedback might come from her own senses through her paying atten-
tion to what happened and adjusting, as a consequence, what she could do in future.
The continuation of my questioning with Thrower 1 was as follows:

Dave: Tell me about what you see. . .. Is that feedback?
Thrower 1: No [said in a very definite tone]. Well I guess it is in that the result is

feedback. I only got one ball in the box. That is feedback that I could
work out.

Dave: After you threw the first ball did you do anything different when you
threw the second ball?

Thrower 1: Yes, I threw harder.
Dave: And why did you throw harder?
Thrower 1: Because the first ball did not quite make the box. So I threw the second

ball harder but then that went too far.
Dave: OK. So that affected your third ball?
Thrower 1: Yep.
Dave: It sounds like you got feedback there.
Thrower 1: OK.

The “OK” at the end did not sound particularly convincing! Initially she was
very clear that she did not get feedback but then considered the result of getting
one ball in the box as feedback. A classroom activity is itself only a pedagogic
tool to help pupils in their learning – the real aim is learning, improving, not so
much succeeding in the stated aim of the activity. Here the thrower saw feed-
back in terms of the number of balls in the box, the explicit stated activity aim
of the activity, and was disappointed. However, she was successful in terms of an
implicit learning aim of gaining more control over her ability to throw a ball. Tahta
(1981) talked about activities having outer and inner meanings. The outer mean-
ing here concerns the explicit task of throwing the ball into a box. However, a
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teacher might have an inner meaning for the task, in this case using the task as
a vehicle to improve someone’s control over their throwing. The inner meaning
concerns the significant awarenesses and skills developed through focused engage-
ment with the outer activity. The outer meaning may not be seen as of particular
importance for a teacher choosing an activity. For example, I might offer an inves-
tigation such as asking pupils to find how many squares (of varying sizes) there are
on a chessboard. It is of little importance to me whether pupils retain the answer
to this question – it is not something on the mathematics curriculum and it is not
a fact which is significant for further work in mathematics. The outer meaning is
not of importance. However, the choice of such an activity is based on the inner
meanings which are involved – being able to see different sized squares, devel-
oping strategies to tackle what might appear initially as too difficult a problem,
having a way of counting, knowing that all squares have been counted and none
have been counted twice, imposing a structure onto something which felt chaotic,
seeing generality which can lead to extending the original scenario into larger sized
squares, rectangles, going into three or more dimensions, and so on. As a teacher
I do not really care about the outer meaning – actually knowing the number of
squares. However, I do want my pupils to care, otherwise they will not engage in
the activity and, therefore, will not gain inner meanings. The inner meanings are
developed as a consequence of the focus being on the outer meaning. My question-
ing with Thrower 1 tried to focus attention onto the inner meaning of the activity
and although she could identify ways in which she changed her throwing as a result
of what she noticed she did not seem convinced that this was something to label as
feedback.

With the fifth and last set of throws, Teacher 3 offered an image for the thrower
prior to them actually throwing the balls. Thrower 1 did not get any of her balls
into the box but still felt Teacher 3 was helpful. She said “once I was imagining
the ball going in, I really did think it would.” So gaining a belief in herself was
considered helpful even though she did not actually get any into the box. Here the
attention seemed to be on the inner meaning. This was also the case with Thrower
2 who despite having got three balls into the box felt that Teacher 3 was only a
little helpful as he put his success down to getting used to “taking the shot. . . rather
than [Teacher 3]’s mental picture.” His attention seemed to be with his own sense of
throwing rather than anything to do with the relative success he had in getting balls
into the box.

Remarks were made in both groups about how Teacher 3’s imagery helped the
throwers make better use of their own feedback. Carol (Gp 1) said “when you sort of
delve into an unknown area of mathematics you don’t always know what to notice
and what to adjust. The imagery isn’t re-winding, undoing the mathematics you
have just done and trying to replay it forward. The imagery, the equivalent imagery
for a mathematics lesson wouldn’t be undo this sum, it would be nurturing to help
pupils know what to pay attention to.”

This showed an awareness of what it can feel like as a learner. There may be lots
of feedback from engagement in an activity itself which a learner has the potential
to notice and which someone more skilled might certainly notice. However, without
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a sense of what to pay attention to can result in little from the potential actually
being seen as relevant. With the ball activity, a thrower’s own feedback may concern
where they noticed the ball landing, yet their attention might need to be with their
arm as much as the ball or box. Mason (1989) talked of the significance of where
attention is placed in respect to the mathematical act of abstraction and generally
where attention is placed is crucial in what pupils notice and work on. This is also
the case with teachers and their craft of teaching. With our student teachers we
deliberately set up a week’s observation after they have taught for three weeks.
This is because we feel that the experiences involved in teaching can help student
teachers become aware of what it is they need to attend to when observing. The
act of noticing requires a person to direct their attention onto certain aspects. A
teacher can offer valuable feedback to a learner through directing where to place
their attention, a more subject specific version of what Winne and Marx (1982)
described as “orientating” – controlling the focus of pupils’ attention. This will help
them notice particular aspects which may be relevant to the success of the task at
hand and which the learner might not have known to be relevant. Chazan offers
an example where pupils he was working with were disagreeing over whether a
zero should be included in a set of numbers when finding the average. He made a
conscious decision to ask a question which shifted attention away from the zero,
by asking what the average they have calculated (without the zero) would mean
(Chazan and Ball, 1999). Such an act of directing attention was an attempt to offer
something which might help and was different to playing the role of judge and
telling pupils who was “right.”

Student teachers were able to relate Teacher 1 to different mathematics contexts
such as Tracy (Gp 1) who said “I thought of enlargement. You could just say do it,
get on with questions and then just go tick, cross, tick, cross, so if one person got a
tick you would go Oh OK then, so I can do that one and you can try and work it out
for yourself but if you got them all wrong you still wouldn’t have any inclination
whatsoever if you had nothing but ticks and crosses.”

Teacher 3 continued the issue of what my student teachers considered to be feed-
back. Some student teachers felt that what Teacher 3 offered was not feedback as
it was said in advance of balls being thrown. The significance of what was offered
was that it applied to the coming attempt rather than being a comment about the
last attempt. Yet the reason for why it might be offered could be due to a previous
attempt. For example, if all the balls had gone into the box in the previous attempt
then it might not have been said. However, if the previous attempt was such that
the teacher felt such an image might be useful then it was being said because of
the previous attempt even though it applied to the next attempt. The idea of offer-
ing general strategies or directing pupils’ attention are examples of ways of offering
feedback which concern their future attempts.

I asked both groups for a quick response, either yes or no, as to whether
they felt Teacher 1 (who had just given a kind of yes/no response saying
whether the ball had landed in the box or not) was helpful in the feedback
they gave. There was a resounding “no.” This was significant for the next
activity.
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Polyominoes

Immediately following the ball and box activity I moved on to a different activity
with the student teachers where I had the set of all 17 pentominoes and tetrominoes
(see Fig. 1) on the right hand side of an interactive whiteboard.

I said there were some of these that I liked and some of these that I did not like
and the student teachers’ task was to find what I liked about the ones that I did.
The activity involved them collectively deciding to drag one of the shapes to the left
side of the board. If I liked it, the shape stayed there. If I did not like it, I moved it
down to the bottom of the board. There was also a point system where points were
taken off for every one which I rejected. Throughout the activity there was a lot of
discussion about properties of these shapes, including possible paths from square to
square within a shape, and symmetry. There was conversation about how rotating
these shapes affected the discussion they had regarding paths. There was also dis-
cussion of logic issues such as which shape would give the most information to them
given the possible rules they were considering. There was a sense of a lot of mathe-
matics taking place. The student teachers were motivated and involved, with one of
the two groups complaining when I brought the activity to a premature close before
they had decided upon a rule. They reflected on the fact that my role, as teacher,
was one where I only said “yes” or “no.” This feedback was similar to Teacher 1 in
the previous activity which they had almost unanimously decided was not helpful.
Yet the same kind of feedback in this activity helped generate mathematical activity.
There was a sense of the same kind of feedback might not be helpful in some con-
texts whilst being very helpful in others. So the form of feedback does not have a
universal value but is context dependent. These activities had an inner aim of raising
the students’ awareness that there is variety in the form feedback can take, that the
nature of feedback can be significant for a pupil’s learning and that its usefulness is
context dependent.

Silent Lesson

During the student teachers’ second teaching placement we wanted to get them to
teach a lesson which they would not normally have done. The aim was similar to

Fig. 1 a collection of pentominoes and tetrominoes
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the “links” lesson in their first placement and once again I modeled the lesson with
them at university before they adapted it for a particular class when on teaching
placement. The lesson was one where neither the teacher nor the pupils spoke whilst
a particular activity was carried out collectively as a whole class (for other accounts
of such a lesson see Brown & Coles, 2008; Brown & Waddingham, 1982). I will
give brief details of the lesson here.

After working on getting student teachers attentive and silent there was already
a curiosity as I did so without speaking. I wrote up on the board, quite slowly, some
numbers as in Fig. 2.

I passed the pen onto a student teacher and pointed to below the number 3 in
Fig. 2. Initially the student teacher was unclear what was expected but still came up
and wrote a number down; in this case it was number 8. I took the pen and drew an
arrow from the 8 and then thought for a while after which I wrote 72. I passed the
pen on to a different student teacher and pointed to below the 8 and that person came
up and wrote the number 5. I took the pen, draw another arrow and paused looking
at the group of student teachers offering the pen generally, rather than to a specific
student teacher. After a while someone came up and wrote down what they thought
the number would be. I took the pen and drew a � if I was happy with that number
or a � if I was not. The lesson continued with me taking a more withdrawn role
although I was always quick to respond (silently) if someone was about to speak.
After a while, when I felt the majority of student teachers knew my rule, I wrote
fractions or decimals as start numbers and later on wrote an “n” on the board and
ended up with two rules offered. I then continued but this time wrote a number for
the result and drew a backwards arrow for a possible start number. Figure 3 gives a
simplified sense of what the board looked like at the end of the activity.

We discussed certain aspects of the lesson (now with everyone allowed to talk)
and the student teachers discussed ways in which they might adapt this activity for
particular classes. One feature which followed on from the polyominoes activity
was that feedback was once again in the form yes/no and this feedback seemed to
help motivate mathematical activity.

On a review day when student teachers returned to the university from their sec-
ond teaching placement they shared how their silent lessons had gone. We had found
this quite a powerful lesson for the student teachers as many of them were very
apprehensive about running such a lesson mainly due to a sense that none of their

3 12

Fig. 2 Beginning of the
silent lesson



Feedback: Expanding a Repertoire and Making Choices 275

3 12 0.2         0.06  0.24 

8         72
3

2

9

10

5         25  30 12  6 

12       156 n nn +2

1         1  0  2 n )1( +nn

4         20   4            20

23       552 20
?           68.64 7.8 –1 

–5 

–3

Fig. 3 A simplified idea of
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classes would be quiet. Nearly all student teachers reported a very positive experi-
ence and being amazed that the class was indeed quiet and that they had managed to
run this activity in silence. Several weeks following this, I asked them to write some
reflections down about this silent lesson in relation to the issue of feedback.

Several student teachers, from the 29 who gave written responses, commented
how being silent was different to how they normally worked in the classroom. So
there was a sense of change being forced – things had to be different to usual in this
lesson. Different behaviors were developed as a consequence such as more exag-
gerated expressions, gestures and actions, scanning pupils’ faces more regularly,
greater eye contact, clapping and use of pointing were all mentioned as well as the
use of smiley faces on the board. A sense of an expanded repertoire came through
from their writing such as Carol who wrote “Previously feedback was mainly ver-
bal, but this showed that the pupils can get feedback from me just from my facial
expressions.” Indeed, when considering the use of voice in later lessons Wendy com-
mented that “More recently changes of voice tone have also played a big part in the
feedback I give in class.” So the absence of voice has brought with it an increased
awareness of possible variation within the use of voice. Four student teachers com-
mented that the lesson brought greater involvement from the pupils generally and
also brought in pupils who in other lessons had not contributed so much.

There were three themes I noticed from within their writing. The first was notic-
ing some benefits to offering visual feedback. Tracy commented that “Pupils can
understand visual rather than auditory instructions” and Steve reflected on a partic-
ular class he taught through the placement saying that “All of them were SEN [pupils
with identified Special Educational Needs] and in the past confusion has often come
from my language – which many struggle with as they have communication difficul-
ties. Visual prompts, however, left them with less confusion – so I have learnt that
often words are not enough – or even not necessary at all” (his emphasis). Andy felt
that the lack of verbal comments forced the pupils to pay greater attention to the
visual feedback. Others talked about using visual along with verbal feedback at the
same time. The use of pointing was mentioned by 11 of the student teachers with
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some writing explicitly about referring back to previous answers. George said that
since the silent lesson he has based feedback more on previous contributions pupils
have given in the lesson. Steve talked about using pointing with a particular group
saying “Too often with this group pupils have been confused about not what to write
but how or where to write it” (his emphasis). This reveals for me an increased aware-
ness of the focus of feedback he might offer this group of pupils and that pointing,
in this case, has a role to play in such feedback.

The second theme concerned the lack of explaining and the ability of students to
work things out for themselves. This was commented on by well over half the 29
responses I got from student teachers. There was some surprise at what the pupils
were able to learn without being provided with an explanation. Andy commented
“The pupils didn′t need specific details and lots of explaining in order to focus on an
exercise and to successfully perform it.” Indeed even if mistakes were made several
student teachers wrote about how they now wait and see whether other pupils notice
those mistakes. For example, Kay commented that “given time and freedom pupils
can work out answers for themselves. It’s not always necessary to jump in and help
them.” Aliya said that “If the pupil was half correct I’d wait until someone else came
up and noticed what was wrong. . . I do not just give the answers anymore.” Some
student teachers commented on how they now use peer and self assessment in class,
one student teacher commenting on how she then uses questioning to ask pupils why
they think something is right or wrong. A sense of thinking about pupils as more
independent learners came through in many of the writings with some explicitly
mentioning this.

The third theme was the use of a delayed response. Seven student teachers wrote
about how they found that after a pupil had written on the board a delay in putting
a sad or happy face had a powerful effect and created productive tension. Steve
commented that if “one pupil offers an answer and teacher gives a response – only
the one pupil and the teacher are involved. If one pupil gives an answer and it is left
there without response but with a visual prompt [head and eyes only] which suggest
a response will happen eventually, then all the pupils in the room are potentially
involved in the process just by having their own opinion” (his emphasis). Kevin
wrote about what he had taken from the silent lesson and used in other lessons:
“One thing it did give to me was the use of giving time to answer questions and
waiting for response rather than just giving the feedback straight away.”

These themes showed significant learning of the student teachers through the
depth with which they now spoke about giving feedback. With the first lesson
we asked them to teach (“links”), the pupils were recalling things they had learnt
before and perhaps doing a little reminding themselves of some of those things.
This time pupils were engaged in a new challenge and many student teachers learnt
that pupils were capable of working things out for themselves. This realization is
all the more powerful because it came from them observing what happened within
their own classroom whilst they were teaching. This was not a story told to them
by someone else, nor was it an observation of an experienced teacher’s classroom.
The ownership of the experience gives a sense of truth and also a sense of future
possibilities.
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Two Student Teachers’ Lessons

I visited two student teachers, Steve and Dianne, towards the end of their two year
PGCE course when they were finishing their second placement and video recorded
one of each of their lessons. Following the recording I interviewed each of them
separately, playing back selected moments from the lesson and getting them to talk
about what thinking was behind what they said or did. These student teachers were
chosen due to a mixture of factors: they were from a group I had visited earlier
in their placements; they were already strong enough in the classroom to be sure
of achieving the standards required to pass the course; I wanted one male and one
female; and their timetables fitted in with my own existing commitments.

Steve’s Lesson

Steve’s lesson was with a Year 8 class (12–13 year olds). In this school the pupils
were organized in ability classes or “sets,” with Steve’s class being set seven out
of eight. He was working on properties of two-dimensional shapes in a number of
different ways: a discussion with the whole class; an activity involving them getting
into particular groups at the front of the class; and working on a task in pairs. I noted
that Steve did not tell them much during the lesson but used questioning extensively.
However, there were times when he did state something and at one point I noted he
gave some definitions when he felt many of the pupils had already gained an idea of
those definitions. Part of the interview was as follows:

Dave: Some people would say that is a crazy way round that when you think your
class do know about something you do give them the definition and when
they don’t know about something you won’t give them the definition.

Steve: Yes I suppose it is a crazy way round but I think once they have got the
definition then you are just emphasising a point whereas if they don’t then
there’s some exploring to be done.

An articulation of something which Steve felt the students were already aware is
both a form of stressing but is also a way of re-forming what is already noticed into
formal mathematical language. Steve commented that he wants to “attach the words
to that meaning rather than the other way round” and so would not introduce math-
ematical words unless meaning which related to those words was already around –
meaning first, words second. Another time in which Steve offered something was
when two pupils were working together trying to decide where different cards, each
with a polygon drawn on, should be placed within a grid on a large sheet of paper
(see Fig. 4).

Two pupils were looking at two of the cards – a square and an isosceles trapezium
(see Fig. 5) – which they had placed in the bottom right cell in the grid indicating
both shapes satisfied the properties “some sides are equal length” and “more than 1
right angle.” Steve begun the following dialogue with the pupils:
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Steve: That one [the isosceles trapezium]got more than one right angle?
Pupil 1: Yes, it’s got two.
Steve: Show me where the right angle is.
Pupil 2: There and there [pointing to the two obtuse angles].
Steve: OK, so which were the right angles in this bit [pointing at square]?
Pupil 2: There, there, there and there [pointing at the four corners of the square].
Steve: What’s special about a right angle? Is it possible that that can be a right

angle and that can be a right angle [pointing to one angle from the square
and then one obtuse angle from the isosceles trapezium]?

Pupil 1: Yes.
Steve: Can we have right angles which are different? So that one right angle

which was different from another right angle?
Pupil 1: That side is not straight [pointing to one of the “sloping” sides of the

isosceles trapezium]. [Pupil 1 moves it to cell indicating it has “1 right
angle” and “no sides are equal lengths.”]

Steve: Has it got one right angle as well? So this here [pointing to a right angle
in the square]you say is a right angle, OK. There is only one particular
type. . . [Pupil 1 moves the isosceles trapezium card to the cell indicating
it has “more than 1 right angle” and still “no sides of equal lengths”]. Ah,
so that one you are saying has no sides of equal lengths [Pupil 2 moves
it to “1 right and angle’ and “some sides are equal length’]. I think you
are just randomly placing it now. Take it off, take it off [Pupil 1 points
to the cell which would indicate “more than 1 right angle” and “some
sides of equal length” and Pupil 2 moves it there]and have another look
at it [Steve places it off the sheet] and tell me, see if you can find some
right angles there. Definitely right angles [Pupil 2 picks it up and places
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it back in the cell indicating “more than 1 right angle” and “some sides
of equal length”]. OK show it to me again.

Pupil 2: [Pupil 2 points to the obtuse angles of the isosceles trapezium] There and
there.

Steve: So let me show you something special about a right angle. OK? 90
degrees [picks up an envelope and points to a corner].Is that a right
angle?

Pupil 1: Yes.
Pupil 2: Yes.
Steve: OK [placing a corner of the envelope on a right angle of the square]. So

that, you are happy that that is a right angle?
Pupil 1: Yes.
Pupil 2: Yes.
Steve: What about this one [pointing to the obtuse angle of the isosceles

trapezium]?
Pupil 2: [Puts the envelope corner onto the obtuse angle to reveal that it does not

fit the angle exactly] No.
Steve: So that’s not.
Pupil 1: No right angles. Here [pointing to the cell indicating “no right angles”

and “‘no sides are equal lengths.” Pupil 2 moves it there].
Steve: OK.
Pupil 2: [Moves it to the cell indicating “no right angles” and “some sides are

equal length”] go on here [moves it back again].

[Steve now deals with another pupil and moves away from Pupil 1 and Pupil 2].
This interchange started with Steve questioning them but after a while he decided

that something else was needed. Steve said

“I wasn’t actually, up until I picked up the envelope, offering him any sort of insight that
would help him. My questions weren’t helping him find whether this shape had right angles
or not. . . He could see the right angles on the shape which didn’t have any right angles,
so he needed something more. . . The feedback there was actually to offer him a means or
strategy to help him to establish whether this works. Again, I wasn’t saying yes or no. I was
just saying well here is a way of finding out.”

The fact that the pupils appeared to be having difficulty with deciding whether
an angle was a right angle or not might be as much to do with knowing the social
convention of exactly what gets labeled “right angle” and what does not, as with
their awareness of angle. Since “right angle” is a socially agreed term there is a
sense of either someone having a consistent meaning for that term with the rest of
the mathematics community or not. If not, then it is not necessarily a mathematical
issue but an issue about conventions. Elsewhere (Hewitt, 1999) I have argued that
pupils need to be informed of names and social conventions whether from a book,
a teacher, the internet, or wherever. Pupils can invent names and invent conven-
tions but the only way to know whether they have the same name or convention as
the mathematics community is by being informed in some way. Rather than telling
the pupils Steve found something which both he and the pupils agreed was a right
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angle. This then becomes the mediator in determining whether other angles were
right angles as well. The way in which the corner was manipulated as it was carried
from one place to another and held against the angles of the shape indicated a math-
ematical property of a right angle – it remains a right angle through rotation and
translation. For example, right angles do not have to involve a horizontal line. So
the envelope corner and the way in which it was moved forms the mediator for what
is conventionally known as a right angle. This is another way in which a pupil can be
informed – an example is found where all parties agree that indeed it is an example
and this is then manipulated, preserving the relevant mathematical properties, to act
as a tool to check whether other things have this property. Here the teacher would
need to be the person who either controls the manipulation or watches over manip-
ulations of that common object so as to ensure the relevant mathematical properties
remain. In this case, Steve might allow rotation of the envelope but not allow it to
be creased in a way which affects the angle at the corner.

Toward the end of the interview I asked Steve how he had and will continue to
develop a range of possible strategies in responding to pupils. His reply was one of
learning from the pupils he teaches:

You say something and look for a reaction in a way. Certainly when a particular type of
feedback has had a particularly good reaction in terms it has helped or created a discussion
or something like that, you try it again. . . I think also the feedback you give, you know you
can have a completely different perception of something than the kid and so the feedback
can be completely meaningless to them. . . So actually that comes out by finding out what
kind of misconceptions are, not necessary about the type of feedback you give and testing
the feedback but about learning about certain misconceptions. So there has to be some sort
of activity in which actually very little feedback is given and therefore you can judge where
they are at and find out what the misconceptions were.

The misconceptions issue had arisen earlier in the interview when I suggested
that there were different ways in which the statement “more than 1 right angle”
can be interpreted (having more than one angle which is a right angle, and having
one angle whose size is more than one right angle) and this led him to re-evaluate
a response he had given as he could see that his feedback would not have made
much sense if the pupil concerned had this different interpretation. His thoughts
about feedback were consistent with much of what I observed during the lesson
where he often just listened or observed what the pupils were doing or saying, and
used questioning extensively to find out what they were thinking about. I gained a
sense of someone who now was learning through listening to his pupils and that he
will continue developing his skills within the classroom as he has a strong sense of
knowing where to place his attention in order to continue learning within this area.

Dianne’s Lesson

Dianne taught a Year 9 class (13–14 year olds) in a single sex girls’ school. Again
classes were organized in ability classes with her class being set two out of six.
The lesson addressed angle properties involving lines and led into an activity on
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bearings. During the first part of the lesson when she was getting answers back from
the pupils, she had a very fluent way of responding to pupils. She used questions but
what I noticed immediately was the fluency and speed with which each question
was asked following a response from the pupil. For example:

Dianne: Angle A is what, [Pupil A]?
Pupil A: 79 degrees.
Dianne: And how did you get that?
Pupil A: I took 79, mean I took 281 away from 360.
Dianne: And why did you do that?
Pupil A: Because 360 degrees is the, 360 degrees is how many you get all the way

around.
Dianne: Excellent, that is called angles round a point, [Pupil A]. Really, really

good. Fantastic.

This came out in the interview when Dianne said that “the three things I was
interested in was the answer, the method and the key language.” Her series of ques-
tions indeed brought out these three aspects and seemed to take the form of a pattern
of questioning. This is a pattern of interaction (Voigt, 1995) which brings out all
three aspects which Dianne wanted to focus on. Unlike funneling (Bauersfeld, 1988;
Wood, 1998) this pattern did not begin to reduce the scope of pupil response but
created a structure for Dianne to hear what a pupil thought about this question. It
provided a series of questions which dug deeper into a pupil’s thinking and stressed
what Dianne felt was important in pupils’ responses. Interestingly, later on a differ-
ent pupil gave all three aspects within her initial response, perhaps having registered
the form of response her teacher wanted.

Dianne was clear that it was not the answer which she was primarily interested
in, instead she used questioning to get at the mathematics involved in getting the
answer:

That’s the bit I am interested in, the explanation not the answer. So the answer is just the
consequence of them actually understanding what they are doing. I think that they can prove
to themselves they are right because of their explanation, they can prove to everyone else
that they are right because of their explanation, they don’t have to listen to me saying ‘yes
that is right’, ‘no that’s wrong’ because they worked it out for themselves.

Even if a teacher does not act as the judge of whether something is right or wrong
they can play a significant role in pupils deciding the correctness of their work by
using questioning to help bring out the explanations and the thinking behind an
answer. Such explanations and thinking becomes the material with which pupils
can then work in order to decide the correctness of their thinking. I noticed that
once all three aspects Dianne was interested in were said – answer, method, and key
language – she did confirm correctness by saying “Excellent. . . really, really good.
Fantastic.” Indeed she also did tell the pupil something by naming the property Pupil
A used as “angles round a point.” In respect to when she felt she would tell things,
Dianne said:

I think if they were getting confused with the language, with the angles, complementary,
corresponding, alternative then yes I would because it is just an arbitrary name that has
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been given to the problem. But if they are getting confused with what the angles actually
were and what the relationship between those angles were and which angles we are talking
about then no I wouldn’t, or I wouldn’t be happy if I had made a statement about that
because I don’t feel that I need to make a statement about that because they can just work
it out.

There was a sense here of her having taken on board the arbitrary/necessary
divide (Hewitt, 1999) which was part of a session at University. In this divide,
the arbitrary are names and conventions which pupils need to be informed about
and need to be memorized, whereas the necessary are properties and relationships
which is where mathematics lies and which can become known through awareness
without having to be informed by someone else. This had now become a strong part
of her practice and a way in which she decided what to tell and what not to tell.

Another aspect of her teaching I noticed was the fact that if a pupil did not give a
correct response Dianne would stick with that pupil and ask further questions rather
than moving onto a different pupil. In an extreme example, Dianne asked a series
of 19 questions to one pupil until a correct answer and appropriate reasoning was
given by that pupil. This was a significant change in her practice since her first
school placement. She commented on what was behind her making this shift:

Firstly, well there are lots of reasons I guess. Because I’ve had good feedback about doing
that when I do it in lessons. The teacher picks up on it and says ‘oh I like the way you stuck
with that girl and kept on until she got the answer’ and so there I think ‘so therefore it must
be a good thing. So I will do it again.’ But also I mean I think it is educationally beneficial
for them that they can see that the teacher isn’t going to give up on them and that actually
they do know it and they can get to the right answer and they can give an explanation that’s
valid.

What struck me from Dianne’s comments was the combination of learning from
pupils during her own practice in the classroom, listening to feedback from expe-
rienced teachers and, significantly, these are supported by her own set of beliefs. I
know Dianne well enough to feel that she is not someone just to do what an expe-
rienced teacher tells her is a good thing to do. Her own developing pedagogy and
her attention to what happens within her classroom are key to the development she
makes within her practice as a teacher.

Final Remarks

On our PGCE course we offer our students activities and tasks which are designed
to offer personal experiences relevant to the issues we are trying to raise with our
students. This comes from a belief that having personal experience of something is
more powerful than listening to the experience of others. However, as Mason (2002,
p. 8) said “one thing we do not seem to learn from experience, is that we do not
often learn from experience alone.” Having an experience is one thing but work-
ing on that experience is required to develop awareness and sensitivities. We can
only work with what we know about and as such we “force” our student teachers
to undertake lessons outside their comfort zone which extend ways of working in
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the classroom. In the comments made following these sessions many of our stu-
dents were surprised at how effective a shift in their practice was, from commonly
offering explanations to giving none at all. Pupils engaged positively with the math-
ematical challenge and tried to work out things themselves. We consider that this
personal experience of learning through changing the students’ own actions in the
classroom and them seeing the consequences is more powerful than being told such
things are possible within a university session. For some of our students there was
a considerable shift in practice from giving explanations to considering other forms
of feedback, such as waiting to allow other pupils to give their thoughts, using body
language, asking a series of questions, listening and allowing time for pupils to
work things out for themselves. This did not mean that they never told pupils things
but some of the student teachers developed a clear set of beliefs which informed
the way in which they responded to pupils, including when to tell and when not to
tell. From comments made it seems that there was a mix of experiences which have
been influential, not only those experiences inside classrooms but also the university
sessions on feedback and the arbitrary/necessary divide, along with an assignment
which involved marking work in different ways.

Using Tahta’s (1981) idea of inner and outer meanings again, the lessons we
asked our student teachers to undertake had a certain outer meaning which, for
example, might be “keeping silent” for the silent lesson. However, my own inner
meaning for asking them to carry out such a lesson concerned students experiencing
pupils working mathematically: having conjectures; testing out those conjectures;
expressing rules; etc. All of this happening without a teacher explicitly telling pupils
what to do. The lesson is a vehicle for our student teachers to experience pupils
working in this way during one of their own lessons. Our hope is that this expe-
rience might lead to our student teachers working with their pupils in ways which
uses these mathematical abilities of pupils more in future lessons. Likewise, the
activities I used for the university sessions, such as the polyominoes activity, have
an outer meaning of trying to find my rule but the inner meaning involves students
experiencing involvement in mathematical activity when the teacher was giving no
other feedback that yes/no, after already deciding that yes/no feedback was not help-
ful in the previous activity. Thus raising their awareness that judgmental decisions
about the quality of feedback are context dependant. The activities at university
and lessons the student teachers were asked to do in schools had as their focus outer
meanings which provided a vehicle for the students to experience personally aspects
of the desired inner meanings.

Finally, I return to Wheeler’s (1998) metaphor of a kitbag – a set of knowhows
for dealing with practical situations in a classroom. I wonder about the nature of
what might be in this kitbag with regard to giving feedback to pupils. Rather than a
collection of things to do, which might be carried out mechanically, I see the kitbag
as an awareness of different possible ways of acting, along with a set of beliefs
forming a strong personal pedagogy which will inform choices taken. Although the
lessons we asked our student teachers to carry out and the activities they were given
at university were designed to help them become aware of other possible ways of
responding to pupils, in the end the extending of possibilities is only one aspect of
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what is important because this only gives an extended range. In the end a choice
needs to be made so the “why choose this rather than that?” is as important as the
awareness that there exists a “this” and “that.”
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Conclusion

In introducing the chapters in this volume we chose to employ the notions of math-
ematical pedagogy and pedagogical mathematics because, in several cases, we had
difficulty separating mathematics learned through and for teaching from pedagogy.
However, the chosen categories of classification only reinforced the realization that
mathematics and pedagogy are closely intertwined, creating a kind of a circular
approach, interchanging the focus of attention and the supporting background.

In our opening chapter (Leikin & Zazkis), we described a number of factors that
support or impede learning through teaching. Here, in our conclusion, we high-
light two important themes that traverse the chapters. These are the notions of
communication and of “critical event.”

Communication and Interaction

Undoubtedly, teachers’ interactions with their students are the main source of learn-
ing through teaching in the majority of chapters in this volume. Some chapters place
special emphasis on the analysis of communicative practices. For example, commu-
nication is a central issue in the study of Doerr and Lerman. They introduce a teacher
named Cassie and discuss the change in her views and pedagogical practices related
to reading, writing, and the use of oral language in a mathematics classroom.

Focus on the communication of mathematical ideas by and among students
has been mentioned by Liljedahl, as a development of Mary’s pedagogical strate-
gies. Leikin and Zazkis used a six-step interaction model, developed by Leikin
(2005), to analyze the case of Einat − a teacher who diverted from a preplanned
lesson and, challenged by the need to refute her students’ incorrect conjecture,
developed a new pedagogical approach. In Yerushalmy and Elikan’s chapter, the
importance that teachers assign to a classroom algebra-focused discussion, to com-
munication among students and to listening to students, appears to be one of the
main differences between the “traditional” and “reform” teachers. Yerushalmy and
Elikan employed an IRE (Initiation-Response-Evaluation) model (Cazden, 1988) of
instructional interactions to analyze LTT.

A related issue is that of miscommunication in language usage − or assigning a
different meaning to the mathematical concept of divisor by a teacher and a learner,
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and what can be learned from it – is discussed in the case of Lora in Leikin and
Zazkis’ chapter.

It is not surprising that interaction with students is one of the most important
factors in teachers’ learning. After all, even when interpreting teaching broadly, to
include preparation and marking, the heart of teaching is interaction with students.
However, while interaction with students is mentioned by most authors as a trigger
for learning, there are other kinds of interaction that support learning and intensify
reflection. This includes interaction among teachers when they are “collaborating
in their inquiries” (Mason, Doerr & Lerman) and interaction with a researcher or
a research team (Doerr & Lerman, Kieran & Guzman, Leikin, Liljedahl, Marcus,
& Chazan, and Hewitt). In particular, Tzur highlights the role of teacher educator
in prompting “teachers’ noticing in situations that would other wise go unnoticed,”
acknowledging the sense of threat that such an interaction may elicit.

Though interaction was first considered among humans, interaction between
teaching and research is the theme explicitly developed in Alcock’s chapter, where
the author skillfully situates her development of teaching in the contemporary
research literature. Furthermore, technology puts a different spin on the issues of
interaction. It serves as a vehicle to promote interaction among teachers, among
students, and between teachers and researchers. This is the case for teachers who
are analyzing videos of the lessons located in the same classroom (Yerushalmy
& Elikan) as well as for teachers located thousands miles apart and using online-
communication for their discussion (Borba & Zulatto). The study of Kieran and
Guzman demonstrates that interaction with a computer output promotes students’
conjecturing and prepares a background for proving activities. These student activ-
ities are the foundation for their teacher’s learning (Michael). These researchers
acknowledge the centrality of CAS (Computer Algebra System) in Michael’s learn-
ing, as the task could not have been managed without it. The centrality of technology
in the Borba and Zullatto study is twofold; online communication allows interaction
at a distance to present a mathematical problem and Dynamic Geometry software
is assisting the instructor’s learning to eventually resolve the problem. Similarly, in
Yerushalmy and Elikan’s study, computer software promotes one teacher’s learn-
ing within a reform curriculum and a video-recording of those lessons aids in the
learning of other teachers through a discussion and analysis of teaching.

Furthermore, Jackiw and Sinclair present a rather uncommon view on communi-
cation; they discuss the discursive interaction of a user of a Geometer’s Sketchpad
Dynamic Geometry environment. They demonstrate that the characteristics of this
interaction position a user as a teacher, whose learning takes place while teaching
or interacting with the computer software.

Critical Event and Search for Equilibrium

We agree with Ball and Bass (2000) that

No repertoire of pedagogical content knowledge, no matter how extensive, can adequately
anticipate what it is that students may think, how some topic may evolve in a class, the need
for a new representation or explanation for a familiar topic (ibid., p. 88).
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Further, we believe that the same claim should not be restricted to pedagogical con-
tent knowledge, as it applies similarly to knowledge of subject matter. This need
for something “new” is an opportunity for learning. The chapters in this volume
reinforce the idea explicitly mentioned by Leikin in Part I: Teachers’ pedagogical
knowledge and their mathematical knowledge are mutually related, where strength
in one contributes towards developing strength in the other.

It was mentioned repeatedly in the chapters that teachers’ mathematical knowl-
edge, their attentiveness to students, and instructional interaction are some of the
supporting factors of teachers’ learning through their practice. However, all these
cannot initiate change until there is a triggering event followed by a reflection on this
event. Mason calls such an event an “experience of disturbance.” More explicitly,
Mason (2002) stated.

Most frequently there is some form of disturbance which starts things off. It may be a
surprise remark in a lesson, a particularly poor showing on a test, something said by
a colleague, something asserted in a journal or book, or a moment of insight (ibid., p. 10).

Tzur describes the phenomenon as a “misfit” between an effect on students and
teachers’ anticipation and suggests that learning occurs as a result of “shaking” the
teachers’ “deeply entrenched anticipations.” Echoing these ideas, Zazkis refers to
memorable and unexpected experiences that “shake the routine.”

The triggering event can be short, such as a student’s question (Borba & Zulatto,
Zazkis), a student’s suggestion (Leikin & Zazkis, Leikin), a student’s mistake, mis-
understanding or identified difficulty (Doerr & Lerman and Marcus & Chazan), a
student’s success in providing an alternative unexpected solution when dealing with
challenging material (Leikin & Zazkis, Leikin and Tzur), or unexpected feedback
from a computer (Jackiw & Sinclair and Borba & Zulatto). It can also be longer, con-
sisting of teachers’ involvement in professional development initiatives (Liljedahl,
Tzur, Hewitt), implementation of new curricula (Yerushalmy & Elikan and Marcus
& Chazan), new teaching approaches or implementation of novel tasks (Leikin,
Hewitt, Kieran & Guzman, Liljedahl), teachers’ participation in research projects
(Doerr & Lerman, Kieran & Guzman), or a self-motivated desire to improve one’s
teaching and students’ understanding of mathematics (Alcock).

As an umbrella to these descriptions, a Piagetian construct of disequilibration
comes to mind. In Piaget’s theory of child development, disequilibration and a desire
to achieve equilibrium are the deriving forces for the continuous reconstruction of
knowledge. A similar claim can be made about teachers’ learning in their practice:
A triggering event creates a disequilibration and a state of equilibrium is achieved by
developing new knowledge, whether within mathematical pedagogy or pedagogical
mathematics.

However, in order to unsettle a teacher’s equilibrium, the teachers need, accord-
ing to Tzur, a “predisposition toward unexpected situations as an opportunity, not
a threat.” How to achieve such a predisposition? Further research will focus on
this question explicitly. Though the chapters in this volume describe valuable ideas,
elaborate on contributing and impeding factors, and provide illustrative evidence for
teachers’ learning, it remains an “unrealized potential.” Realizing this potential is
an ongoing effort for teachers, educators, and researchers alike. This book lays a
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foundation and opens the gate for a deliberate and more informed investigation in
this direction.
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