
Chapter 8
Electronic structure of complex oxides

Alexander I. Lichtenstein

Abstract This work discusses the electronic structure magnetic properties and
metal–insulator transition in transition metal oxides (TMO). The unique feature
of these compounds related to the fact that the spin, charge and orbital degrees of
freedom plays an important role in all physical properties. While the local den-
sity approximation is quite reasonable for the electronic structure of a metallic ox-
ide, the additional Hubbard-like correlation is important for the energy spectrum
of insulating magnetic oxides. The LDA+U method was proven to be a very effi-
cient and reliable tool in calculating the electronic structure of systems where the
Coulomb interaction is strong enough to cause localization of the electrons. It works
not only for nearly core-like 4f -orbitals of rare-earth ions, where the separation of
the electronic states on the subspaces of the infinitely slow localized orbitals and
infinitely fast itinerant ones is valid, but also for such systems as transition metal
oxides (NiO). The main advantage of LDA+U method over model approaches is
its “first principle” nature with a complete absence of adjustable parameters. At the
same time, all the most subtle and interesting many-body effects (such as spectral
weight transfer, Kondo resonances, and others) are beyond the LDA+U approach.
The LDA+DMFT method seems to be effective and useful to describe the dynam-
ical character using the self-energy instead of the effective exchange-correlation
potential acting on the electrons. The results for metal–insulator transition in com-
plex transition metal oxides demonstrate that the dynamical mean field theory gives
an opportunity to unify the many-body theory with the practice of first-principle
calculations of the electronic structure and properties for real materials.

8.1 Introduction

Complex oxides systems are the most common class of materials, including iron-
stone and red oxide film, Fe2O3 as well as magnetite, Fe3O4, which naturally exists
in the brain cell of a tun-fish as a half-metallic surface and helps to navigate in the
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ocean along the magnetic parallel probably using the GMR-effect [1, 2]. Recently,
so-called colossal magnetoresistent manganites, La1−xSrxMnO3, have attracted a
lot of attention [3]. Finally, one of the most interesting discoveries of the last decades
related with the high-temperature superconductivity in cuprates, Ls1−xSrxCuO4,
so-called LSO (by J.G. Bednorz and K.A. Müller) [4] was also related with tran-
sition metal oxides, and many other oxides such as YBCO (YBa2Cu3O7), BISCO
(Bi2Sr2CaCu2O8) [5].

The wide class of oxide materials, so-called Mott-insulators, are very impor-
tant from the physics point of view: they are famous antiferromagnetic insulators,
MnO, CoO and NiO, which cannot be described from the standard band theory.
The ferromagnetic metallic oxides also exists and EuO represents a classical case of
metal–insulator transition under oxygen deficiency. Another famous example of ox-
ide systems with the metal–insulator transition are the well-known V2O3 and Ti2O3
crystals showing under some conditions an unusual paramagnetic M–I transition
without influence of magnetically ordered low-temperature insulating phase.

A common feature of all these transition metal oxides is the existing of well lo-
calized 3d-orbitals with the strong Coulomb interactions between the d-electrons.
These electrons are responsible for all unusual electronic properties of oxide sys-
tems and strong chemical bonding due to a large hybridization with oxygen 2p-
orbitals. A large variety of interesting properties of complex oxide materials related
to the delicate balance between chemical bonding, which try to delocalized the d-
electrons and Coulomb interaction which tends to localize magnetic d-electrons.

In this Lecture we will discuss effects of electron–electron interactions on the
electronic structure, magnetic behavior and insulating properties of complex transi-
tion metal oxides (TMO).

First neutron scattering investigation of magnetic oxide MnO by C.G. Shull and
co-workers in 1951 [6] support Néel’s idea on the antiferromagnetic ordering. The
corresponding theoretical models for insulating and magnetic behaviors of such
transition-metal oxides (NiO as a prototype) with partially filled d-shells have been
developed later by N.F. Mott, P.W. Anderson, and J.H. van Vleck [7].

Recently, interest has grown in the heterogeneous ferromagnetic materials, such
as thin-film transition metals multilayers which display so-called giant magnetore-
sistance (GMR) [2] and used in the new generation of MR read-head devices. In
connection to this discovery, it has become recognized that some 3d transition-metal
oxide, possess even larger room-temperature magnetoresistivity associated with a
paramagnetic–ferromagnetic phase transition in a small magnetic field. Such an ef-
fect, called the colossal magnetoresistance (CMR) [3], is the result of a unique type
of metal–insulator transition (MIT) in these oxides. The CMR-compounds are the
manganite perovskite T1−xDxMnO3 where T is a trivalent lanthanide cation (e.g.
La) and D is a divalent, alkaline-earth cation (e.g. Ca, Sr, Ba). For the end member
of the dilution sites, LaMnO3 and CaMnO3, the ground state is antiferromagnetic
(AF) as in MnO. In a certain range of doping, x ≈ 0.2–0.4, the ground state is fer-
romagnetic (FM), and the paramagnetic-to-ferromagnetic transition is accompanied
by a sharp drop in resistivity ρ(T). This phenomenon has been known to exist in
manganites since 1950. In addition to the FM-states, there is another type of col-
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Fig. 8.1 Metal–insulator
phase diagram with the two
routes for the metal–insulator
transition (MIT): The
filling-control (FC-MIT) and
bandwidth-control (BC-MIT)

lective state with orbital and charge order, typically observed for x > 0.3. The new
interest come in connection with GMR-success and supported by a rich possibility
of the bandwidth-controlling MIT, related with the geometrical factor of lattice dis-
tortion (different doping-size cations, which change a so-called electron-correlation
strength U/t [8], the average Coulomb energy over effective hopping parameter);
as well as filling-control of MIT due to different concentrations of the divalent ions.
Such an unique possibility of artificially controlling magnetic and electrical proper-
ties (Fig. 8.1) could lead to a new class of artificially designed materials [9].

8.2 Spin, Charge and Orbital Degrees of Freedom

Let us discuss first the important ingredients for the electronic structure of such
compounds. The variety of phases with the different magnetic, conducting and lat-
tice properties suggest that both the spin, charge and orbital degrees of freedom play
an important roles in their unique physical behavior. There are not many materials
in nature where all these different quantum variables are coupled together and could
be changed on the very small energy scale.

The spin degrees of freedom define a magnetic ordering in the oxides and are
couples by pure quantum exchange interactions. Starting from classical Heisenberg–
Dirac–van Vleck theory of exchange interactions, we can write the effective ex-
change Hamiltonian for non-degenerate case in the Heisenberg form:

Hex = −2
∑

ij

Jij
−→
S i

−→
S j (8.1)

here
−→
S i is the spin operator for site i, and Jij are exchange integrals. A positive

sign of Jij corresponds to the ferromagnetic exchange interaction, while negative
sign related to the antiferromagnetic one. It is easy to understand the source of ferro-
magnetic exchange interactions, starting from the total electron–electron Coulomb
interactions (in atomic units e = m = � = 1):

Hint = 1

2

∑

ijklσσ ′
〈ij | 1

r12
|kl〉c+

iσ c+
jσ ′clσ ′ckσ
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Fig. 8.2 The Anderson
kinetic exchange interaction

where |i〉 is an orthogonal localized basis set for the site i, σ is the spin index and c+
iσ

(ciσ ) are the fermionic creation (annihilation) operators for electrons with the spin
σ on the site i. Taking into account the “exchange” part of the Coulomb interactions
with k = j and l = i (the so-called “potential” exchange interactions):

Jij = 〈ij | 1

r12
|ji〉

and using the following definition of the local spin-operator:

−→
S i = 1

2

∑

σ,σ ′
c+
iσ

−→σ σσ ′ciσ ′

in terms of the Pauli matrices −→σ = (σx, σy, σz), one could obtain the Heisenberg
exchange Hamiltonian (8.1).

In order to realize the principal mechanism of the antiferrimagnetic exchange in-
teractions we consider a simple non-degenerate half-field Hubbard model (Fig. 8.2)
with only two parameters: hopping integral, t , and on-site Coulomb interactions, U :

H =
∑

i,j,σ

tij
(
c+
iσ cjσ + c+

jσ ciσ

) + U
∑

i

ni↑ni↓

where the Hubbard parameter U is defined through the total energy differences:

U = E
(
dn+1) + E

(
dn−1) − 2E

(
dn

)

In the limit of strong Coulomb interaction U > W = 2zt (z is the number of the
nearest neighbors) there is one electron per atom in the half-field case. There are
additional exchange interactions in the second order perturbation theory with the
coupling parameters:

Jij = −2t2
ij

U
(8.2)

After P.W. Anderson this type of interaction is called “kinetic” exchange. It is
related to the lowering of the total energy for the antiferromagnetic state due to
virtual hopping (Fig. 8.2). These processes are forbidden in the ferromagnetic state
due to the Pauli principle.

In a magnetic oxide like MnO, the main mechanism of antiferromagnetic cou-
pling is the so-called superexchange interactions via oxygen 2p-states, since Mn-
atoms are separated by oxygen. The simplest “180-degree” Mn–O–Mn superex-



8 Electronic structure of complex oxides 171

Fig. 8.3 The mechanism of
superexchange interactions

change path was shown in Fig. 8.3 and corresponds to the p–d model Hamiltonian:

Hpd = ε0
d

∑

i,σ

c+
diσ cdiσ − tpd

∑

i,j,σ

(
c+
diσ cpjσ + c+

pjσ cdiσ

)

+ Ud

∑

i

ni↑ni↓ + Up

∑

j

nj↑nj↓

where Up is the oxygen Coulomb energy and the charge-transfer energy defined as

Δ = E
(
dn+1L

) − E
(
dn

)

here L means a hole in the anion band, n is the number of d-electrons.
In this case the exchange interactions appear in the fourth order of perturbation

theory:

J = −2t4
pd

Δ2

(
1

Ud

+ 2

2Δ + Up

)
(8.3)

if Δ 	 U , we neglect the second term in parentheses and could rewrite this superex-
change interaction like the Anderson kinetic exchange (8.2) with the effective d–d

hopping integrals via O2p states equal to tdd = t2
pd/Δ.

To understand the diverse physical properties of magnetic oxides from a uni-
fied point of view it is important to clarify the systematics of different metallic
and insulating compounds as function of the main parameters: Coulomb correla-
tions, U , bandwidth, W , and charge transfer energy, Δ. These parameters depend
on the chemical environment and can be calculated from the electronic structure.

The simple ionic picture of 3d-transition metal oxides Me2+O2− results in the
insulating behavior only for MgO and CaOr. For ScO, TiO the metallic behavior
is related with the large d-bandwidth: U < W . In this situation splitting between
d-states due to Coulomb correlation is smaller than the bandwidth due to effective
Me-O-Me hopping and the system is metallic for partially filled d-band (Fig. 8.4).
On the other hand the oxide like MnO, NiO are insulators and N.F. Mott, was the first
who suggested that it is due to the strong correlation: U > W . Let us consider the
simple lattice model with a single electron orbital on each site. Two electrons sitting
on the same site would feel a large Coulomb repulsion (Fig. 8.2). This interaction
splits the d-band into two: the lower band is formed from electrons which occupied
an empty site and the upper one from electrons which occupied a site already taken
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Fig. 8.4 Scheme of metal
and correlated Mott-insulator

Fig. 8.5 The scheme of
charge transfer insulator

by another electron. With the one electron per site the lower band (so-called lower
Hubbard band) would be full and upper one (so-called upper Hubbard band) would
be empty if the bandwidth is not very large (U > W , Fig. 8.4). This type of insulator
from the partially occupied d-shell is called Mott-insulator.

In reality, photoemission experiments show that most of the magnetic oxides like
MnO, NiO etc. are so-called charge-transfer insulators [10], where top of the valence
band is predominantly of O2p character, while the bottom of the empty conducting
band has mainly the Me3d character as in the upper Hubbard band. The correspond-
ing theoretical parameter range should be U > Δ > W and is schematically shown
in Fig. 8.5, according to Zaanen–Sawatzky and Allen theory [10]. The general phase
diagram in U–Δ–W space (WM is a metal d-bandwidth, and WL is a ligand–oxygen
bandwidth) is present on Fig. 8.6. We first discuss the insulating part of this diagram.
For U > Δ the band gap is of p–d type and the anion or ligand p-band is located
between the lower and upper Hubbard bands. This gap is a charge transfer gap and
the corresponding compounds (NiO, FeO, LaMnO3 etc.) are charge transfer insula-
tors. In this case band gap is proportional to Δ. If U < Δ, on other hand, the band
gap is of the d–d type and it is called Mott–Hubbard gap while the corresponding
compounds (such as V2O3) are called Mott–Hubbard insulators. It has a band gap
of the magnitude ∼ U . The straight line U = Δ separate the Mott–Hubbard and the
charge transfer regimes. The diagram also contains a metallic region near the Δ-
axis (d-metal as TiO, YTiO3) or near U -axis (p-metal as V2O5). This classification
scheme is very useful for oxides material science; more examples one could find in
the recent review article [9].
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Fig. 8.6 The Zaanen–
Sawatzky–Allen phase
diagram

Fig. 8.7 The octahedral
ligand MeO6 complex and
scheme of d-states in the
crystal field

Since the magnetic oxides contain transition metal d-ions, the orbital degrees
of freedom also play an important role in all physical properties. Because the 3d-
orbital has the angular momentum L = 2, it has fivefold degeneracy. In the transition
metal compounds 3d-ion is surrounded by octahedral complex of the ligand-oxygen
ions (Fig. 8.7). In the cubic crystal field, fivefold atomic d-level splits into the lower
threefold degenerate t2g states and twofold degenerate eg states. In the perovskite
structure, the MeO6 octahedra are a main chemical “block” of the lattice and the eg

orbitals, which pointed in the direction to the ligand atoms, hybridize much better
with oxygen than the t2g orbitals and has a larger bandwidth. If the crystal has the
orthorhombic distortions like in CMR-compound LaMnO3, then the eg orbitals split
into the x2 − y2 and 3z2 − r2 states while the t2g orbitals states split into the yz, zx,
and xy states.

In general, the relevant electronic orbitals for light transition metals are different
from heavy ones. In compounds with the light transition metal elements, such as
Ti, V, and Cr, the t2g bands are important, while in magnetic oxides with the heavy
transition-metal ions such as Co, Ni, and Cu, the t2g bands are fully occupied and
located far below the Fermi level, therefore the most important orbitals are the eg

ones. If the degenerate t2g- or eg-orbitals are partially filled, it normally leads to the
crystal distortion due to cooperative Jahn–Teller effect and results in orbital ordered
superstructure.

In magnetic insulators, the spin and orbital degrees of freedom could be cou-
pled via the exchange (superexchange) interactions and therefore, magnetic struc-
ture can be strongly dependent on the orbital ordering [11]. We consider the simplest
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Fig. 8.8 The Kugel–
Khomskii model for double
degenerate states

case of the double degenerate e1
g configurations or so-called Kugel–Khomskii model

(Fig. 8.8). Two eg orbitals x (which stands for x2 − y2) and z (for 3z2 − r2) could
be described by the spin s = 1/2 operator as well as pseudospin τ = 1/2 opera-
tor, where τz = +1/2 corresponds to z-state and τz = −1/2 corresponds to x-state.
Different orbital and spin configurations for two atoms with the degenerate eg or-
bitals shown on Fig. 8.8, together with the total energy changes due to the kinetic
exchange interaction. The most energetically stable configuration is the last one
with the ferromagnetic spin and antiferromagnetic orbital ordering. It has the lower
transfer energy excitation equal to (U–I ), instead of U as for non-degenerate or
antiferromagnetic cases. This is a consequence of the inter-atomic Hund exchange
interactions (I ). The general spin–orbital exchange Hamiltonian for doubly degen-
erate eg case can be written as follows [11]:

Hex = −2
∑

ij

J1
−→
Si

−→
Sj + J2

−→τi
−→τj + 4J2(

−→
Si

−→
Sj )(

−→τi
−→τj ) (8.4)

where J1 = −(2t2/U)(1 − I/U) and J2 = −(2t2/U)(1 + I/U), for U 	 I .
We have discussed some model approaches to the electronic structure of mag-

netic oxides. In the next section we turn to a more quantitative electronic-structure
scheme.

8.3 Correlated Electronic Structure Scheme

8.3.1 LDA+U Method

The proper description of the electronic structure for the complicated materials like
LaMnO3 is a hard many-electron problem. The most successful “first-principle”
method is the density functional theory [12, 13] within the Local (Spin-) Den-
sity Approximation (L(S)DA), where the exchange-correlation potential is approxi-
mated by the homogeneous electron gas model. The LDA has proved to be very effi-
cient for the extended systems, such as large molecules and solids [14]. For strongly
correlated materials like NiO, application of LDA is problematic. Such systems usu-
ally contain transition-metal or rare-earth metal ions with partially filled d- (or f -)
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shell. When applying to transition-metal compounds the LDA method with orbital-
independent potential one has as a result the partially filled d-band with metallic
type of the electronic structure and itinerant d-electrons. This is definitely a wrong
answer for the late-transition-metal oxides where d-electrons are well localized and
there is a sizable energy separation between occupied and unoccupied subbands
(lower Hubbard band and upper Hubbard band in a model Hamiltonian approach).

There were several attempts to improve on the LDA scheme for strongly corre-
lated systems. One of the most popular approaches is the Self Interaction Correc-
tion (SIC-LDA) method [15]. It reproduces quite well the localized nature of the
d-electrons in transition metal compounds, but SIC one-electron energies are usu-
ally in strong disagreement with spectroscopy data and for transition metal oxides
occupied d-bands are located too much below the oxygen valence band.

The standard Hartree–Fock (HF) method is also appropriate for describing Mott
insulators with spin- and orbital-symmetry broken states. However, a serious prob-
lem of the Hartree–Fock approximation is the unscreened nature of the Coulomb
interaction used in this method. The bare value of Coulomb interaction parameter
U is rather large (15–20 eV) while screening in a solid leads to much smaller values,
8 eV and less [16]. Due to the neglecting of screening, the HF energy gap values are
a factor of 2–3 larger than the experimental values.

The best way of addressing this problem is so-called GW-approximation [17],
which may be regarded as a Hartree–Fock method with a frequency- and orbital-
dependent screening of the Coulomb interaction. Unfortunately GW-method is com-
putationally heavy and even with modern powerful computers any calculations for
complex systems are practically impossible. The most successful and computa-
tionally simple scheme for magnetic oxides and other correlated materials is the
so-called LDA+U method [18], where the frequency-dependent screened GW-
Coulomb potential is approximated by statically screened Coulomb parameter U .

The main idea of LDA+U method [17, 18] is to separate electrons into two
subsystems: localized d- or f -electrons for which Coulomb d–d correction should
be taken into account and delocalized s-, p-electrons which could be described by
using LDA orbital-independent one-electron potential. Let us consider a d-ion as
an open system with a fluctuating number of d-electrons. If we suggest that the
Coulomb energy of d–d interactions as a function of total number of d-electrons
N = ∑

ni given by the LDA is a good approximation (but not the orbital energies),
then the correct formula for this energy is E = UN(N − 1)/2. Let us subtract this
expression from the LDA total energy functional and add a Hubbard like term (ne-
glecting for a while exchange and non-sphericity). As a result we have the following
functional:

E = ELDA − UN(N − 1)/2 + 1

2
U

∑

i �=j

ninj (8.5)

The orbital energies εi are derivatives of (8.5) with respect to orbital occupations ni :

εi = ∂E/∂ni = εLDA + U

(
1

2
− ni

)
(8.6)
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This simple formula shifts the LDA orbital energy by −U/2 for occupied orbitals
(ni = 1) and by +U/2 for unoccupied orbitals (ni = 0) as in the atomic limit of the
Hubbard model.

The LDA+U orbital-dependent potential [17] gives upper and lower Hubbard
bands with the energy separation between them equal to the Coulomb parameter U ,
thus reproducing qualitatively the correct physics for Mott–Hubbard insulators. To
construct a realistic computational scheme, one needs to define in a more general
way an orbital basis set and to take into account properly the direct and exchange
Coulomb interactions inside a partially filled d-atomic shell in “rotationally invari-
ant” form [19].

We need to identify the region in space where the atomic characteristics of the
electronic states have largely survived (‘atomic spheres’), which is not a problem for
at least d- or f -electrons. Within these atomic spheres one can expand in a localized
orthonormal basis |inlmσ 〉 (i denotes the site, n the main quantum number, l the
orbital quantum number, m the magnetic number and σ spin index). Although not
strictly necessary, let us specialize to the usual situation where only a particular nl

shell is partly filled. The density matrix is defined by

nσ
mm′ = − 1

π

∫ EF

ImGσ
inlm,inlm′(E)dE (8.7)

where Gσ
inlm,inlm′(E) = 〈inlmσ |(E − Ĥ )−1|inlm′σ 〉 are the elements of the Green

function matrix in this localized representation, while Ĥ will be defined later on.
In terms of the elements of this density matrix {nσ }, the generalized LDA+U func-
tional [17] is defined as follows:

ELDA+U
[
ρσ (r),

{
nσ

}] = ELSDA[
ρσ (r)

] + EU
[{

nσ
}] − Edc

[{
nσ

}]
(8.8)

where ρσ (r) is the charge density for spin-σ electrons and ELSDA[ρσ (r)] is the
standard LSDA functional. Equation (8.8) asserts that the LSDA suffices in the ab-
sence of orbital polarizations, while the latter are driven by

EU
[{n}] = 1

2

∑

{m},σ

{〈
m,m′′∣∣Vee

∣∣m′,m′′′〉nσ
mm′n−σ

m′′m′′′

+ (〈
m,m′′∣∣Vee

∣∣m′,m′′′〉 − 〈
m,m′′∣∣Vee

∣∣m′′′,m′〉)nσ
mm′nσ

m′′m′′′
}

(8.9)

where Vee are the screened Coulomb interactions among the nl electrons. Finally,
the last term in (8.8) corrects for double counting (in the absence of orbital polar-
izations, (8.8) should reduce to ELSDA) and is given by

Edc

[{
nσ

}] = 1

2
UN(N − 1) − 1

2
J
[
N↑(

N↑ − 1
) + N↓(

N↓ − 1
)]

(8.10)

where Nσ = Tr(nσ
mm′) and N = N↑ + N↓. U and J are screened Coulomb and

exchange parameters [16].
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In addition to the usual LDA potential, we find an effective single particle poten-
tials to be used in the single particle Hamiltonian:

Ĥ = ĤLSDA +
∑

mm′
|inlmσ 〉V σ

mm′
〈
inlm′σ

∣∣ (8.11)

V σ
mm′ =

∑

{m}

{〈
m,m′′∣∣Vee

∣∣m′,m′′′〉n−σ
m′′m′′′

+ (〈
m,m′′∣∣Vee

∣∣m′,m′′′〉 − 〈
m,m′′∣∣Vee

∣∣m′′′,m′〉)nσ
m′′m′′′

}

− U

(
N − 1

2

)
+ J

(
Nσ − 1

2

)
(8.12)

The Vee’s remain to be determined. We again follow the spirit of LDA+U by as-
suming that within the atomic spheres these interactions retain largely their atomic
nature. Moreover, it is asserted that LSDA itself suffices to determine their values,
following the well-tested procedure of the so-called supercell LSDA approach [16]:
the elements of the density matrix nσ

mm′ have to be constrained locally and the sec-
ond derivative of the LSDA energy with respect to the variation of the density matrix
yields the wanted interactions. In more detail, the matrix elements can be expressed
in terms of complex spherical harmonics and effective Slater integrals Fk as

〈
m,m′′∣∣Vee

∣∣m′,m′′′〉 =
∑

k

ak

(
m,m′,m′′,m′′′)Fk (8.13)

where 0 ≤ k ≤ 2l and

ak

(
m,m′,m′′,m′′′) = 4π

2k + 1

k∑

q=−k

〈lm|Ykq

∣∣lm′〉〈lm′′∣∣Y ∗
kq

∣∣lm′′′〉

For d-electrons one needs F 0, F 2, and F 4 and these can be linked to the Coulomb
and Stoner parameters U and J obtained from the LSDA-supercell procedures via
U = F 0 and J = (F 2 + F 4)/14, while the ratio F 2/F 4 is to a good accuracy con-
stant ∼0.625 for 3d elements [17].

The new Hamiltonian (8.11) contains an orbital-dependent potential (8.12) in the
form of a projection operator. This means that the LDA+U method is essentially
dependent on the choice of the set of the localized orbitals in this operator. That
is a consequence of the basic ideology of the LDA+U approach: the separation of
the total variational space into a localized d-orbitals subspace, with Coulomb in-
teraction between them treated with a Hubbard type term in the Hamiltonian, and
the subspace of all other states for which local density approximation for Coulomb
interaction is regarded as sufficient. The arbitrariness of the choice of the localized
orbitals is not as crucial as might be expected. The d-orbitals for which Coulomb
correlation effects are important are indeed well localized in direct space and retain
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Fig. 8.9 Mapping of the
lattice model to the quantum
impurity model in the
Dynamical Mean Field
Theory

their atomic character in a solid. The experience of using the LDA+U approxima-
tion in various electronic structure calculation schemes shows that the results are
not sensitive to the particular form of the localized orbitals.

Due to the presence of the projection operator in the LDA+U Hamiltonian (8.11)
the most straightforward calculation scheme would be to use atomic-orbitals type
basis sets, such as the LMTO (Linear Muffin–Tin Orbitals) [20]. However, as soon
as localized d-orbitals are defined, the Hamiltonian in (8.11) can be realized even in
schemes using plane waves as a basis set, such as pseudopotential methods.

8.3.2 LDA+DMFT: General Considerations

The natural generalization of LDA+U scheme for the local dynamical effects use
the recently developed efficient many-body approach—the dynamical mean-field
theory (DMFT) [21–23]. The DMFT-scheme map the interaction lattice models onto
quantum impurity models (Fig. 8.9) subject to a self-consistency condition [24]).
The resulting many-body multi-orbital impurity problem can be solved by various
rigorous approaches (Quantum Monte Carlo, exact diagonalization etc.) or by ap-
proximated schemes such as Iterated Perturbation Theory (IPT), local Fluctuating-
Exchange (FLEX) approximation, or Non-Crossing Approximation (NCA) [24]).

In this section we describe LDA+DMFT approach for the electronic structure
calculations. The method was first applied to La1−xSrxTiO3 [25] which is a classi-
cal example of strongly correlated metal. A general formulation of LDA+DMFT,
including the justification of the effective impurity formulation in multi-band case,
has been discussed in Ref. [26].

In order to describe the LDA+DMFT scheme, we start from the Hamiltonian
of (8.8) where the LDA part was taken from a first-principle LMTO tight-binding
method [20, 27] and interaction part is reduced to density–density correlation:

HLMTO =
∑

ilm,j l′m′,σ

(
δilm,j l′m′ εil n̂ilmσ + tilm,j l′m′ ĉ†

ilmσ ĉj l′m′σ
)

(8.14)

(i is site index, lm are orbital indices).
As we have mentioned above, the LDA one-electron potential is orbital inde-

pendent and Coulomb interaction between d-electrons is taken into account in this
scheme in an averaged way. We generalize this Hamiltonian for the explicit local
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Coulomb correlations with the additional interaction term for correlated il shell:

Hint = 1

2

∑

ilmm′σ
Uil

mm′nimσ nim′−σ

+ 1

2

∑

ilm �=m′σ

(
Uil

mm′ − J il
mm′

)
nimσ nim′σ (8.15)

where i is the site index and m is the orbital quantum numbers; σ =↑,↓ is the
spin projection; c+, c are the Fermi creation and annihilation operators (n = c+c);
ε and t in (8.14) are effective one-electron energies and hopping parameters ob-
tained from the LDA in the orthogonal LMTO basis set. To avoid the double-
counting of electron–electron interactions one must at the same time subtract the
averaged Coulomb interaction energy term, which is present in LDA. In the spirit of
LDA+U scheme we introduce new ε0

d where d–d Coulomb interaction is excluded:

ε0
dσ = εdσ − U

(
nd − 1

2

)
+ 1

2
J

(
nσ

d − 1

2

)
(8.16)

where U and J are the average values of Umm′ and Jmm′ matrices and nd is the
average number of d-electrons.

The screened Coulomb and exchange vertex for the d-electrons are defined as

Umm′ = 〈
mm′∣∣Vee

(
r − r′)∣∣mm′〉, Jmm′ = 〈

mm′∣∣Vee

(
r − r′)∣∣m′m

〉

Then a new Hamiltonian will have the following form:

H = H 0 + Hint
(8.17)

H 0 =
∑

ilm,j l′m′,σ

(
δilm,j l′m′ ε0

il n̂ilmσ + tilm,j l′m′ ĉ†
ilmσ ĉj l′m′σ

)

In the reciprocal space matrix elements of the operator H 0 are

H 0
qlm,q ′l′m′(k) = HLDA

qlm,q ′l′m′(k) − δqlm,q ′l′m′δql,id ld

[
U

(
nd − 1

2

)
− 1

2
J

(
nσ

d − 1

2

)]

(8.18)

(q is an index of the atom in the elementary unit cell).
In the local, frequency dependent dynamical mean-field theory the effect of

Coulomb correlation is described by self-energy operator Σ(iω). The inverse Green
function matrix is defined as

G−1
qlm,q ′l′m′(k, iω) = iω + μ − H 0

qlm,q ′l′m′(k) − δql,q ′l′δql,id ld Σm,m′(iω) (8.19)

where μ is chemical potential, and the local Green function obtained via integration
is over the Brillouin zone:

Gqlm,q ′l′m′(iω) = 1

VB

∫
dkGqlm,q ′l′m′(k, iω) (8.20)

(VB is the volume of the Brillouin zone).
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A so-called bath Green function which defines a hybridization with the surround-
ing crystal in the effective Anderson model and preserves the double-counting of the
local self-energy is obtained by a solution of the effective impurity problem [24]:

G −1
m,m′(iω) = G−1

m,m′(iω) + Σ
m,m′ (iω) (8.21)

In the simplest case of massive downfolding to the d-orbitals problem, we could
incorporate the double counted correction in the chemical potential μ obtained self-
consistently from the total number of d-electrons

1

β

∑

iωn

eiωn0+
G(iωn) = Nd (8.22)

here ωn = (2n + 1)πT are the Matsubara frequencies for temperature T ≡ β−1

(n = 0,±1, . . . ). Further, one has to find the self-energy Σm(iω) in terms of the
bath Green function G0m(iω) and use it in the self-consistent LDA+DMFT loop
(8.20), (8.21).

8.3.3 The Quantum Monte Carlo Solution of Impurity Problem

Here we describe at first the most rigorous way to solve an effective impurity prob-
lem using the multi-band Quantum Monte Carlo (QMC) method [28, 29]. In the
framework of LDA+DMFT approach it was used first in Ref. [30] for the case of fer-
romagnetic iron. In this method the local Green functions is calculated for the imag-
inary time interval [0, β] with the mesh τl = lΔτ , l = 0, . . . ,L − 1, and Δτ = β/L

(β = 1
T

is the inverse temperature) using the path-integral formalism [24].
The multi-orbital DMFT problem and general cluster DMFT scheme can be re-

duced to the general impurity action (see Fig. 8.9):

S = −
∫ β

0
dτ

∫ β

0
dτ ′ ∑

i,j

c+
i (τ )Gij

(
τ − τ ′)cj

(
τ ′) + 1

2

∫ β

0
dτ

∑

i,j

ni(τ )Uij nj (τ )

where i = {m,σ } are orbital (site) and spin. Without spin–orbital coupling we have
Gij = G σ

m,m′δσσ ′ .
The auxiliary fields Green-function QMC use the discrete Hubbard–Stratanovich

transformation were introduced by Hirsch [31]

exp

{
−ΔτUij

[
ninj − 1

2
(ni + nj )

]}
= 1

2

∑

Sij =±1

exp
{
λijSij (ni − nj )

}

where Sij (τ ) are the auxiliary Ising fields for each pair of orbitals and time slice
with the strength

λij = arccosh

[
exp

(
Δτ

2
Uij

)]
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Using Hirsch transformation one can integrate out fermionic fields in the path
integral [24] and resulting partition function and Green function matrix have the
following form:

Z = 1

2Nf L

∑

Sij (τ )

det
[
Ĝ−1(Sij )

]

Ĝ = 1

Z

1

2Nf L

∑

Sij (τ )

Ĝ(Sij )det
[
Ĝ−1(Sij )

]

where Nf is the number of Ising fields, L is the number of time slices, and Ĝ(Sij )

is the Green function in the auxiliary Ising fields:

G−1
ij (S) = G −1

ij + Δiδij δττ ′

Δi = (
eVi − 1

)

Vi(τ ) =
∑

j (�=i)

λij Sij (τ )σij

here we introduce the generalized Pauli matrix:

σij =
{+1, i < j

−1, i > j

For efficient calculation of the Green function in arbitrary configuration of Ising
fields Gij (S) we use the following Dyson equation [31]:

G′ = [
1 + (1 − G)

(
eV ′−V − 1

)]−1
G

The QMC important sampling scheme allowed us to integrate over the Ising
fields with the abs(det[Ĝ−1(Sij )]) as a stochastic weight [24, 31]. For a single spin-
flip Sij , the determinant ratio is calculated as follows:

det[Ĝ]/det
[
Ĝ′] = RiRj − Rij

Ri = 1 + [
1 − Gii(τ, τ )

]
Δi(τ)

Rj = 1 + [
1 − Gjj (τ, τ )

]
Δj(τ)

Rij = Gij (τ, τ )Δj (τ )Gji(τ, τ )Δi(τ )

and the Green function matrix updated in the standard manner [24, 31]:

G′
i1j2

(τ1, τ2) = Gi1j2(τ1, τ2) + [
Gi1i (τ1, τ ) − δi1iδτ1,τ

]
Δi(τ)/R

i
(τ )Gij2(τ, τ2)

Gnew
i1j2

(τ1, τ2) = G′
i1j2

(τ1, τ2) + [
G′

i1j
(τ1, τ ) − δi1j δτ1,τ

]
Δj(τ)/R

j
(τ )G′

jj2
(τ, τ2)
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Fig. 8.10 Mapping of the
lattice model to the quantum
cluster-impurity model in the
Cluster Dynamical Mean
Field Theory

Using the output local Green function from QMC and input bath Green functions
the new self-energy is obtain via (8.21) and the self-consistent loop can be closed
through (8.20). The main problem of the multi-band QMC formalism is the large
number of the auxiliary fields sl

mm′ . For each time slice l it is equal to M(2M − 1)

where M is the total number of the orbitals which gives 45 Ising fields for the
d-states case and 91 fields for the f -states. Analytical continuations of the QMC
Green functions from the imaginary time to the real energy axis can be done within
the maximum entropy method [32].

8.3.4 Cluster LDA+DMFT Scheme

When considering the effects like charge-ordering or d-wave superconductivity
which involves explicitly the electronic correlations on different sites, a cluster gen-
eralization of the LDA+DMFT scheme would be necessary. The most natural way
to construct this generalization is to consider the cluster as a “super-site” in an ef-
fective medium (for simplicity, consider here the case of two-site cluster). Then the
crystal supercell Green function matrix can be written as

G(k, iω) = [
(iω + μ) ∗ 1 − h(k) − Σ(iω)

]−1

where hαβ(k) is the effective hopping matrix, Σαβ(iω) is the self-energy matrix of
the N-site supercell dimension which is assumed to be local, i.e. k-independent, and
μ is the chemical potential.

In the cluster version of the DMFT scheme, one can write the matrix equation
for a bath Green function matrix G which describes effective interactions with the
rest of the crystal:

G −1(iω) = G−1(iω) + Σ(iω) (8.23)

where the local cluster Green function matrix is equal to Gαβ(iω) = ∑
k Gαβ(k, iω),

and the summation runs over the Brillouin zone of the lattice.
The most efficient ways to solve the cluster-impurity problem is to use the general

matrix-QMC scheme described above. This scheme corresponds to so-called “free
cluster” approach (Fig. 8.10) [33, 34]. Alternatively, periodic modification of the
DMFT in the k-space or so-called “dynamical cluster approximation” [35, 36] can
be used.
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8.4 Mott–Hubbard Insulators

We will review now the applications of these new methods and computational
schemes to real correlated materials.

8.4.1 Electronic Structure of Transition Metal Oxides

The advantages of the simultaneous treatment of the localized and delocalized elec-
trons in the LDA+U method and especially in the LDA+DMFT approaches are
seen most clearly for the transition metal compounds, where 3d-electrons, while re-
maining localized, hybridize quite strongly with other orbitals. Late-transition metal
oxides, for which LSDA results strongly underestimate the energy gap and magnetic
moment values (or even give qualitatively wrong metallic ground state for the insu-
lators CoO and CaCuO2), are well described by the LDA+U [17].

As already mentioned, sometimes it is necessary to take into account also the
intra-atomic Coulomb interaction on the oxygen sites to have a satisfactory agree-
ment with the experimental data. Here we present the results of such calculations for
transition metal oxides [37]. The important part of the LDA+U calculation scheme
is the determination of Coulomb interaction parameters U and J in (8.12): Coulomb
parameter Up for p-orbitals of oxygen, Ud for transition metals ion and Hund’s
parameter J for d-orbitals of transition metals. To get Ud and J one can use the
supercell procedure [16] or the constrained LSDA method [38], which are based
on calculation of the variation of the total energy as a function of the local occupa-
tion of the d-shell. We took the values of Coulomb parameters (Ud ∼ 7–8 eV and
J ∼ 0.9–1 eV) from the previous LDA+U calculation [18]. The problem is how to
determine the Coulomb parameter Up .

Due to the more extended nature of the O(2p) Wannier states in comparison
with transition metal d states, the constrained occupation calculations cannot be
implemented as easy as for the d-shell of transition metals. Nevertheless, several
independent and different techniques were used for this purpose previously by dif-
ferent authors. McMahan et al. [39] estimated the value of Up in high-Tc related
compound La2CuO4 using the constrained LDA calculation where only atomic-
like O(2p)-orbitals within oxygen atomic spheres were considered instead of the
more extended Wannier functions. The corresponding value of the Coulomb inter-
action parameter Up was obtained as 7.3 eV. This value can be considered as the
upper limit of the exact Up . The LDA calculations gave the estimation that only
75 % of Wannier function density lies in the oxygen atomic sphere so that renor-
malized value of Coulomb interaction parameter for oxygen Wannier functions is
Up = (7.3) × (0.75)2 = 4.1 eV [39].

Later Hybertsen et al. [40] suggested the scheme to calculate Up , which consists
of two steps: (i) via constrained-density-functional approach one can obtain the en-
ergy surface E(Nd,Np) as a function of local charge states and (ii) simultaneously
extended Hubbard model was solved in mean-field approximation as a function of
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Fig. 8.11 La2CuO4 DOS calculated by the LDA+U (left column) and the LDA+U(d+p) (right
column) methods [37]. (On all figures the total DOS is presented per formula unit, the DOS of
particular states are per atom. Fermi energy corresponds to zero.)

local charge states Nd and Np . Corresponding Coulomb interaction parameters were
extracted as those which give the energy surface matching the microscopic density-
functional calculations results [40]. The obtained values for Up are 3–8 eV, depend-
ing on the parameters of calculations. Another way to estimate Up is to use Auger
spectroscopy data, where two holes in O(2p)-shell are created in the excitation pro-
cess. Such fitting to the experimental spectra gave the value of Up = 5.9 eV [41]. In
the LDA+U(d+p) calculations [37] the value Up = 6 eV was used.

Comparison between the LDA+U (left column) and the LDA+U(d+p) (right
column) calculated density of states (DOS) of NiO, MnO and La2CuO4 is pre-
sented in Figs. 8.11, 8.12, 8.13. For all compounds one can see that the main dif-
ference between the LDA+U(d+p) and the LDA+U calculated densities of states
is the increased energy separation between the oxygen 2p and transition metal 3d

bands. The larger value of “charge transfer” energy (O(2p)–Me(3d)) (Me = Ni,
Mn, Cu) leads to the enhanced ionicity and decreased covalency nature of the elec-
tronic structure: the unoccupied bands have more pronounced 3d character and the
admixture of oxygen states to those bands becomes weaker.
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Fig. 8.12 MnO DOS calculated by the LDA+U (left column) and the LDA+U(d+p) (right col-
umn) methods [37]

Fig. 8.13 NiO DOS calculated by the LDA+U (left column) and the LDA+U(d+p) (right column)
methods [37]

The ground state is correctly described both by LDA+U and LDA+U(d+p) cal-
culations as antiferromagnetic insulator for all compounds. The values of energy
gaps and spin magnetic moments are presented in Table 8.1 (see the discussion of
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Fig. 8.14 DOS calculated by the LDA+U (dashed line) and the LDA+U(d+p) (solid line) Ni(3d)
and Mn(3d) in comparison with superimposed XPS and BIS spectra [42]

experimental data in [37]). One can see that the values obtained in the LDA+U(d+p)

calculations are in general in better agreement with experiment than the LDA+U

calculated values. While the increasing of the energy gap values with applying Up

correction was obviously expected with the increasing of “charge transfer” energy
in the compounds belonging to the class of “charge transfer” insulators [10], the
increasing of the magnetic moments values is a more complicated self-consistency
effect due to the increased ionicity in the LDA+U(d+p) calculations compared with
the LDA+U results.

In Fig. 8.14 the DOS obtained by LDA+U(d+p) and LDA+U calculations for
MnO and NiO compounds are compared with the superimposed XPS and BIS spec-
tra corresponding to the removal of an electron (the occupied bands) and addition
of an electron (the empty bands), respectively. The better agreement with the ex-
perimental data of position of the main peaks of unoccupied band relative to the
occupied one is the direct confirmation of the importance of taking into account
Coulomb interactions in oxygen 2p-shell.

It is instructive to compare the results of the LDA+U calculations for NiO with
the first-principle “Hubbard I” approach [26]. First of all, to describe Mott insulators
in LDA+U approach (as well as in SIC approach) it is necessary to assume mag-
netic and (or) orbital long-range order [17]. In LDA+DMFT it is possible to con-
sider the paramagnetic Mott insulators in the framework of ab initio calculations.
Moreover, it is possible to obtain not only the Mott–Hubbard gap in the electron
spectrum but also satellites and multiplet structure. The following effective Slater
parameters, which define the screened Coulomb interaction in d-shell for NiO, have
been used: F 0 = 8.0 eV, F 2 = 8.2 eV, F 4 = 5.2 eV [18]. We have started from the
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Fig. 8.15 Density of states
for paramagnetic nickel oxide
in the LDA and HIA
approximations as well as
Ni-atom Green function.
Reprinted figure with
permission from Ref. [26].
Copyright 1998 by The
American Physical Society

non-magnetic LDA calculations in the LMTO nearly orthogonal representation [27]
for experimental crystal structures of NiO. The minimal basis set of s, p, d-orbitals
for NiO corresponds to 18 × 18 matrix of the LDA Hamiltonian h(k). The occupa-
tion number for correlated electrons are 8.4 electrons in the d-shell of Ni. Using the
corresponding atomic self energy for Ni-atom the total DOS for NiO has been cal-
culated. In Fig. 8.15 we compare the paramagnetic LDA results with HIA scheme.
It is well known that paramagnetic LDA calculations cannot produce the insulating
gap in nickel oxide: the Fermi level is located in the middle of the half-filled eg

bands [17]. In the HIA approximation there is a gap (or pseudogap in Fig. 8.15 due
to temperature broadening) of the order of 3.5 eV even in this “nonmagnetic” state.
This gap and the satellites at −5 and −8 eV are related to the structure of atomic
Green function shown in the lower panel of Fig. 8.15.

8.4.2 Exchange Interactions in Transition-Metal Oxides

The values of the intersite exchange interaction parameters Jex depend on the pa-
rameters of the electronic structure in a rather indirect implicit way. The developing
of the good calculating scheme for exchange parameters is very important because
the ab-initio calculation is often the only way to describe the magnetic properties
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Table 8.1 Calculated and
experimental values of energy
gaps (eV), spin magnetic
moments (μB ) and intersite
exchange interaction
parameters Jex (meV)

LDA+U LDA+U(d+p) Experiment

La2CuO4 Eg 0.7 2.0 2.0

μB 0.45 0.68 0.60

Jex −82.9 −100.9 −136

MnO Eg 3.8 4.5 3.6, 3.8

μB 4.51 4.59 4.58, 4.79

J 1
ex 5.4 −5.4 −4.8, −5.4

J 2
ex −9.3 −5.1 −5.6, −5.9

NiO Eg 1.8 2.8 4.0, 4.3

μB 1.50 1.64 1.64, 1.77

J 1
ex −0.8 −0.2 −1.4

J 2
ex −23.2 −19.4 −19.0

of complicated compounds such as, for example, “spin-gap” systems [43]. Recently
Solovyev and Terakura [44] did a very through analysis of the exchange interac-
tion parameters for MnO calculated using different methods of electronic structure
calculations. They used the positions of the Mn(3d)-spin-up and Mn(3d)-spin-down
bands relative to the oxygen 2p states as adjustable parameters to fit the values of ex-
change interaction for the nearest and second Mn-Mn neighbors. Their results gave
nearly the same splitting between Mn(3d)-spin-up and Mn(3d)-spin-down states as
in standard LDA+U calculations (10.6 eV ) but the position of those states relative
to the oxygen band was shifted approximately on 3 eV up relative to the LDA+U

case. It is practically the same as we have in our LDA+U(d+p) calculations, because
with Up = 6 eV the shift of the position Me(3d)-band relative to the oxygen O(2p)-
band is equal to Up/2 = 3 eV.

Comparison between LDA+U and LDA+U(d+p) calculated Jex parameters and
experimental data is presented in Table 8.1. Jex were calculated from the Green
function method as second derivatives of the ground state energy with respect to
the magnetic moment rotation angle [19, 30, 45–48] as was described above. Again
one can see that in general the LDA+U(d+p) gives better results than the LDA+U ,
especially for the MnO compound.

The change in the electronic structure, due to the U -corrections affect the su-
perexchange interactions (see e.g. (8.3)). It is useful to compare the spin-wave spec-
trum for different U with experimental one for NiO (Fig. 8.16). We can see the
improvement of theoretical spin-wave dispersion in magnetic oxide compare with
the standard LSDA calculations, which overestimate exchange excitations by factor
of three [49]. For reasonable value of U = 9–13 eV, theoretical spin-wave spectrum
in the LDA+U scheme agree quite well with the experimental one.
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Fig. 8.16 The spin-wave
spectrum of NiO as a function
of U compared with LDA
result and experiment.
Reprinted figure with
permission from Ref. [49].
Copyright (1998) by the
American Physical Society

8.4.3 Orbital Magnetism: CoO

As we mention already at the beginning, novel phenomena caused by strong cou-
pling among spin, orbital and lattice degrees of freedom are the central issue in the
physics of transition-metal compounds for the last few years. One of the modes,
when this coupling is mediated by the relativistic spin–orbit (S–O) interaction leads
to the orbital magnetism, which is manifested in the magnetocrystalline anisotropy,
magneto-optical effects, magnetic X-ray circular dichroism, etc. Due to the quench-
ing effects in the crystal field, the orbital moments are expected to be well localized
in the spherical potential region near atomic nuclei, and well described in terms of
site-diagonal elements of the one-particle 10 × 10 density matrix in the basis of
atomic-like (3d) orbitals nγ1γ2 = 〈γ1|n̂(r, r′)|γ2〉 as 〈L̂〉 = TrSL(L̂n̂), where L̂ is the
orbital angular momentum operator, γ ≡ {s,m} is the joint index including spin (s)
and azimuthal (m) counterparts, and TrSL denotes the trace over all s and m. The
matrix n̂ = ‖nγ1γ2‖ generally consists of both spin-diagonal and spin-non-diagonal
elements. The latter can be due to the S–O interactions or a non-collinear magnetic
order.

In the rotationally invariant LDA+U scheme, one needs to include S–O interac-
tion in the LDA functional and change correlated terms to the spin-density matrix
form [50]:

EU [n̂] = 1

2

∑

{γ }
(Uγ1γ3γ2γ4 − Uγ1γ3γ4γ2)nγ1γ2nγ3γ4 (8.24)

It was shown that the renormalization can be described by retaining the atomic-like
form for the electron–electron (e–e) interactions Uγ1γ3γ2γ4 = 〈m1m3| 1

r12
|m2m4〉×

δs1s2δs3s4 with the screened effective Slater integrals F 0, F 2, and F 4. If the orbital
populations are integer (0 or 1), n̂2 = n̂ holds. Then, an analog of two Hund’s rules
can be derived from EHF[n̂]: first, the s-dependent occupation is driven by J ; sec-
ond, the m-dependent occupation is driven by B = 1

441 (9F 2 − 5F 4). This is the
atomic picture. In solids, however, the local orbital populations are fractional and
shall be treated as independent variational degrees of freedom.

Let us illustrate this scheme for the rock-salt oxide CoO, where the orbital mo-
ment is not necessarily quenched in the 2

3 filled t2g manifold [51]. The antiferro-
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Fig. 8.17 Relaxation to the new magnetic equilibrium after turning on the S–O interaction in CoO:
Orbital moment (full line) and deviations of spin (white squares) and orbital (black squares) mag-
netic moments from the [001] axis. The inset shows trajectories of the spins attached to magneti-
cally different Co sites in the plane (110). Open and filled arrows correspond to the initial and final
states. After reaching the equilibrium, a small tetragonal distortion c/a = 0.988 has been turned
on at the point shown by the arrow. Reprinted figure with permission from Ref. [50]. Copyright
(1998) by the American Physical Society

magnetic spin order additionally lowers the cubic symmetry of CoO to the trigonal
one, resulting in complicated anisotropy effects.

The results of our numerical calculations are shown on Fig. 8.17. We start with
a self-consistent LDA+U solution without S–O interaction where spins can take an
arbitrary direction and there is no orbital moment. With turning on the S–O interac-
tion, a typical relaxation process to the new equilibrium state as a function of itera-
tion steps is shown in Fig. 8.17, where we used U = 8 eV, J = 1 eV and B = 0.1J ,
suggested by the constraint-LSDA calculations. On approaching the equilibrium, the
orbital moment grows at the Co site and is stabilized between two high-symmetry
directions [001] and [111], causing a similar reorientation of the spin counterpart.
The orbital instability is directly related with the appearance of the band gap in CoO.
Once the band gap opens when U varies in the wide range from 2.2 to 8 eV, the or-
bital moment becomes well localized and the angle θ is stabilized between −29°
and −35°. On the contrary, U = 0 closes the band gap, and aligns magnetic mo-
ments parallel to the cube diagonal. Finally, the magnetostriction is responsible for
the tetragonal deformation in CoO in the direction c/a < 1 which further enhances
the orbital magnetic moment (Fig. 8.17).

8.4.4 Transition Metal Perovskite: LaMeO3

The transition metal perovskite LaMeO3 presents an interesting group of magnetic
oxide with very rich properties accompanying the metal–insulator transition and re-
lated to CMR-phenomena. Traditionally ferromagnetism in the mixed manganite
system La1−xDxMnO3 (D = Ca, Sr, and Ba) for 0.2 < x < 0.4 is related to the
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Fig. 8.18 The crystal and
antiferromagnetic structure of
perovskite LaMnO3

Fig. 8.19 Upper panel:
Orbital ordering along c axis
and in a–b plane of
orthorhombic LaMnO3
lattice. Shaded orbits denote
occupied eg states of
3x2 − r2 and 3z2 − r2

symmetry, and orbits with
broken lines denote empty eg

states of the y2 − z2 and
x2 − z2 symmetry. Local
displacements of the oxygen
atoms are shown by arrows.
Lower panel: Schematic
position of the t2g↑, t2g↓ and
eg↑ band split by Jahn–Teller
distortion in the LDA
calculations. Reprinted figure
with permission from
Ref. [52]. Copyright (1996)
by the American Physical
Society

“double-exchange” model of Zener: Mn3+–O–Mn4+, while antiferromagnetism of
the undoped system, x = 0, corresponds to Anderson superexchange (Fig. 8.18).
The ferromagnetic sign of the double-exchange interactions is easy to understand in
connection with Kugel–Khomskii exchange in degenerate eg state (Fig. 8.8), since
Mn3+ ion is exactly double degenerate t3

2ge
1
g case. The recent investigation shows

that the crystal distortion (Table 8.2) also plays an important role in magnetic and
electronic properties of manganites. In order to see how the crystal distortion (due
to cooperative Jahn–Teller effect for orbital degenerate e1

g of Mn3+ ion) related to
insulating properties, we show in Fig. 8.19 the scheme of the LDA-energy band in
orbital ordered state [52]. The crystal structure of LaMnO3 has two principal types
of distortion: the local tetragonal distortion of the oxygen atoms around each Mn-
site (the Jahn–Teller distortion) and small tilting of MnO6 octahedra resulting in
the orthorhombic superstructure with four formula unit in the primitive cell. The
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Table 8.2 Crystal and
magnetic structure of some
complex oxides

Compound Crystal structure Magnetic structure

LaTiO3 orthorhombic AFM–G

LaVO3 monoclinic canted AFM

LaCrO3 orthorhombic AFM–G

LaMnO3 orthorhombic AFM–A

LaFeO3 orthorhombic AFM–G

LaCoO3 rhombohedral paramagnetic

LaNiO3 rhombohedral paramagnetic

LaCuO3 tetragonal paramagnetic

strength of the crystal distortion appears to be sufficient to split double degenerate
eg states around the Fermi level and create a band gap and the orbital ordering.
Moreover the calculated exchange interactions change the sign from ferromagnetic
in the undistorted lattice, to the proper antiferromagnetic in the orbital ordered or-
thorhombic crystal (Table 8.2).

Finally we discuss the general trends in the electronic structure of magnetic per-
ovskite oxides. On Fig. 8.20 we present the band structure of LaMeO3 series (Me =
Ti, V, Cr, Mn, and Fe) calculated in the LSDA and LDA+U approaches with two
type of the U -corrections. The left panel corresponds to the U -corrections added
only to the localized t2g states of Me3+-ion, since the eg states in the perovskite
structure are much more delocalized [53]. The right panel corresponds to the stan-
dard LDA+U scheme with the U -corrections applied to all d-states. Since the U -
corrections to the t2g states are much smaller due to the effective screening from eg

states: Ut2g ≈ (1 + δneg/δnt2g
)U and general tendency of the local charge conser-

vation: δneg/δnt2g
< 0, this LDA+U scheme (left panel in Fig. 8.20) is much closer

to the LSDA results. For LaMnO3, on the other hand, both LDA+U methods give
similar electronic structure, because Mn3+ ion has a large Hund splitting. Neverthe-
less, the LSDA method and the “Ut2g

scheme” underestimate the value of the band
gap in comparison with the experimental gap value 1.1 eV.

8.5 Highly Correlated Metallic Oxides

8.5.1 Doped Mott Insulators

The LDA+DMFT approach was successfully applied to study electronic structure
of correlated oxide with perovskite structure [54]. Transition metal perovskites have
been studied for decades because of their unusual electronic and magnetic properties
arising from narrow 3d bands and strong Coulomb correlations. The 3d1 perovskites
are particularly interesting since, despite their lack of multiplet structure, similar
materials have very different properties: SrVO3 and CaVO3 are correlated metals,
while LaTiO3 and YTiO3 are Mott insulators with gaps of, respectively, 0.2 and
1 eV [9].
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Fig. 8.20 Density of states for LaMeO3 perovskite obtained with LDA+Ut2g
(left panel) and with

LDA+U (right panel) method. Dotted line in the left panel corresponds to LDA results. Position
of the Fermi level shown by vertical dashed line. Reprinted figure with permission from Ref. [53].
Copyright (1996) by the American Physical Society

In Fig. 8.21 we show the DMFT spectral functions together with the LDA total
DOS. For cubic SrVO3 we reproduce the results of previous calculations [55]: the
lower Hubbard band (LHB) is around −1.8 eV and the upper Hubbard band (UHB)
around 3 eV. Going to CaVO3, the quasiparticle peak loses weight to the LHB,
which remains −1.8 eV, while the UHB moves down to 2.5 eV. These results are in
good agreement with photoemission data [9] and show that SrVO3 and CaVO3 are
rather similar, with the latter slightly more correlated. From the linear regime of the
self-energy at small Matsubara frequencies we estimate the quasiparticle weight to
be Z � 0.45 for SrVO3 and Z � 0.29 for CaVO3. For a k-independent self-energy
as assumed in DMFT, this yields m∗

m
= 1

Z
� 2.2 for SrVO3 and �3.5 for CaVO3, in

reasonable agreement with experimental values obtained from optical conductivity
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Fig. 8.21 LDA+DMFT spectral function for different perovskite compounds at T = 770 K (thick
line) and LDA DOS (thin line). Reprinted with permission from Ref. [54]. Copyright 1998 by the
American Physical Society

(2.7 and 3.6). For LaTiO3 and YTiO3 the LHB is around −1.5 eV, in accord with
photoemission [9], but despite very similar bandwidths (W = 2.1 and 1.9 eV), the
gaps are very different, 0.3 and 1 eV, and this agrees with experiments. This result
shows that in 3d1 systems the Mott transition and the gap-size depend not only on
U/W , but on the full band structure.

Doping of LaTiO3 by a very small value of Sr (few percent) leads to the transi-
tion to a paramagnetic metal with a large effective mass. As photoemission spectra
of this system also show a strong deviation from the noninteracting electrons picture,
La1−xSrxTiO3 is regarded as an example of strongly correlated metal. Photoemis-
sion spectroscopy of the early transition metal oxides provides a direct tool for the
study of the electronic structure of strongly correlated materials. A comparison of
the experimental photoemission spectra [56, 57] with the results obtained from LDA
and LDA+DMFT(QMC) [55] at 1000 K are shown in Fig. 8.22. To take into account
the uncertainty in U , we present the results for U = 3.2, 4.25 and 5 eV. All spectra
are multiplied with the Fermi step function and Gaussian-broadened with a broad-
ening parameter of 0.3 eV to simulate the experimental resolution [56, 57]. The
LDA band structure calculation clearly fails to reproduce the broad band observed
in the experiment at 1–2 eV below the Fermi energy [56, 57]. Taking the correla-
tions between the electrons into account, this lower band is easily identified as the
lower Hubbard band whose spectral weight originates from the quasiparticle band
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Fig. 8.22 Comparison of the
experimental photoemission
spectrum [56, 57], the LDA
result, and the
LDA+DMFT(QMC)
calculation for LaTiO3 with
6 % hole doping and different
Coulomb interactions
U = 3.2, 4.25, and 5 eV.
Reprinted from Ref. [55] with
kind permission from
Springer Science+Business
Media

at the Fermi energy and increases with U . The best agreement with experiment con-
cerning the relative intensities of the Hubbard band and the quasiparticle peak and,
also, the position of the Hubbard band is found for U = 5 eV. The value U = 5 eV
is still compatible with the ab-initio calculation of this parameter. One should also
note that the photoemission experiment is sensitive to surface properties. Due to the
reduced coordination number at the surface, the bandwidth is likely to be smaller
and the Coulomb interaction to be less screened, i.e., larger. Both effects make the
system more correlated and, thus, might also explain why better agreement is found
for U = 5 eV. Besides, the polycrystalline nature of the sample and, also, spin and
orbital [58] fluctuation, not taking into account in the LDA+DMFT approach, could
further reduce the quasiparticle weight.

The LDA+DMFT approach not only explains the existence of the lower Hubbard
band in doped LaTiO3, but also, in contrast to LDA, reproduces the qualitative pic-
ture of the spectral weight transfer from the quasiparticle band to the lower Hubbard
band, the position of the lower Hubbard band, and the narrowing of the quasiparticle
band.

8.5.2 Metal–Insulator Transition in Ti2O3

The complicated electronic properties of TMO closely related with delicate balance
between electron–electron interactions and chemical bonding. Let us discuss the
general trends in competition correlation effects and hybridization (Fig. 8.23). In
the limit of weak Coulomb interactions there is strong bonding–antibonding split-
ting among the d-orbitals. In the opposite case, where the on-site electron–electron
interactions U is much stronger than d–d hybridization tij the wave-function will be
localized with large renormalization of intersite hybridization and reduced bonding–
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Fig. 8.23 General trends in
correlated electronic
materials with the strong
chemical d–d bonds as
function on interacting
strength U/t

antibonding splitting among the quasiparticle bands. In addition, there are non-
quasiparticle, so-called Hubbard bands: Lower-Hubbard (LH) and Upper-Hubbard
(UH) bands with the splitting of the order of Coulomb interaction U . Therefore
the strong interactions reduced the chemical bonding and otherwise in the limit of
strong bonding–antibonding splitting, the correlation effects largely reduced. Here
we discuss this competition of correlation effects and chemical bonding for the ex-
ample of Ti2O3 [59].

The complicated electronic structure and the nature of the metal–insulator transi-
tion (MIT) in Ti2O3 and V2O3 has been the object of intensive experimental and the-
oretical investigation over the past half century [9]. Recent progress in high-energy
photoemission spectroscopy [60] and correlated electrons dynamical-mean field the-
ory (DMFT) [24] has shed new light on the MIT in V2O3. It has been shown that a
realistic description of the metallic and insulating phases of V2O3 can be obtained
from the combination of a band structure scheme with the local electron–electron
interaction given from DMFT [61]. The correlation effects in Ti2O3 are less clear
but angle resolved photoemission experiment [62] shows a strong reduction of the
Ti 3d-bandwidth compared to band structure calculations. The important question
is related to the mechanism of the small, about 0.1 eV, semiconductor band-gap for-
mation. The generally accepted view is that the MIT is related to the decrease of the
c/a ratio in rhombohedral Ti2O3 and the formation of a Ti–Ti pair along z-axis [63].
Below the broad (almost 250 K in width) MIT at around 470 K the Ti–Ti pair dis-
tance is seen to decrease without any change of the rhombohedral structure or the
formation of long-range antiferromagnetic order [64]. This is in contrast to the case
of V2O3 where the V–V pair distance increases within a monoclinic distortion in
the antiferromagnetic phase [9].

Ti2O3 has an α-Al2O3 corundum structure (Fig. 8.24) in the metallic and in-
sulating phases with two formula units per rhombohedral cell [65, 66]. Each Ti
atom is surrounded by the octahedron of oxygens leading to the large t2g–eσ

g split-
ting. The trigonal distortion gives an additional splitting of t2g bands into eπ

g –a1g

states and a1g subbands of Ti–Ti pair form strong bonding–antibonding counter-
parts (Fig. 8.24). In principle, the large decrease of the Ti–Ti distance could split
further an occupied single-degenerate a1g states from a double-degenerate eπ

g states

of t2g subband and form the insulating d1 configuration of this Ti compound. Never-
theless, state of the art LDA calculations have shown that for reasonable Ti–Ti pair
distances Ti2O3 will stay metallic [67].
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Fig. 8.24 Left:
Rhombohedral unit cell of
Ti2O3 corundum structure.
Titanium ions are indicated
by the red color, oxygens by
green, and the pair of Ti
atoms in z direction by blue.
Right is a schematic
representation of the t2g

splitting in Ti2O3 (top part)

In order to investigate the role of electron–electron interactions in the formation
of this insulating low-temperature phase one needs an accurate estimation of the
a1g and eg bandwidths in this complex structure [68]. For example a simple free
[Ti2O9]12− cluster mean-field investigation can easily produce a gap due to drastic
underestimation of the a1g and eg bandwidths [69]. On the other hand a more accu-
rate band structure calculation within the unrestricted Hartree–Fock approximation
results in a large gap antiferromagnetic state [70]. Thus it is crucial to use both the
correct Green-function embedding of the Ti–Ti pairs as well as a more accurate
treatment of the electron–electron interaction.

The role of metal–metal pair formation and the “molecular” versus band pictures
of the electronic structure have attracted much attention in these compounds [71].
The combination of a strong on-site Coulomb interaction and the large anisotropy
between the hopping parameters in and perpendicular to the pair direction can fa-
vor a localized molecular-orbital picture of the insulating phase. However, realistic
tight-binding calculations for V2O3 have shown the importance of long-range hop-
ping parameters [72]. It is also unclear how good an on-site approximation is for
the electron–electron interaction. Since the pair forms a natural “molecular like”
element in the corundum-type Ti2O3 structure it might be expected that non-local
electron correlations are important in this system. Thus an approach which com-
bines pair and beyond pair hopping with non-local electron interactions would seem
to be ideal for this problem.

We apply the cluster DMFT (CDMFT) scheme [33, 34], which contains all the
physics of correlated pairs in crystals to determine the origin of the insulating phase
and the MIT in Ti2O3. A numerically exact multi-orbital Quantum Monte-Carlo
(QMC) scheme is deployed for the solution of the CDMFT problem and an accurate
first principles tight-binding parametrization used for the one electronic structure.
Our strategy here is to investigate the gap formation using single site [25, 26] and
cluster LDA+DMFT with only local correlations included. We then deploy the full
non-local CDMFT and in this way are able to directly elucidate the impact non-local
Coulomb interactions have on the physics. We show that the competition between
strong bonding within the Ti–Ti pair and localization from correlation effects leads
to the unique situation of the small semiconducting gap structure in Ti2O3 oxide
and that non-local Coulomb correlations are of crucial importance for the physics
of these small gap insulators.
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Fig. 8.25 DOS for the single
site (upper panel) and cluster
(lower panel) DMFT
calculations with different
values of the Coulomb
repulsion U and J = 0.5 eV.
Inset: N(0) versus Coulomb
parameter. Filled dark green
circles: DMFT results with
J = 0.5 eV, filled orange
squares: DMFT with
J = 0 eV. Open blue circles
and violet squares are
CDMFT with J = 0.5 and
0 eV, respectively

We start with the orthogonal LDA Hamiltonian HLDA
mm′ (k) in the massively down-

folded N th order muffin-tin orbital representation [73] (m corresponds to the 12 t2g

orbitals of two Ti–Ti pairs in rhombohedral unit cell) and include different Coulomb
interactions (see Fig. 8.24). DMFT results for the local and non-local Coulomb in-
teractions are presented in Figs. 8.25, 8.26.

The bare LDA density of states (DOS) is shown in Fig. 8.26 by the dashed lines
for the low temperature structure (LTS, ∼300 K [65, 66]) and high temperature
structural (HTS, ∼870 K [65, 66]) data on the upper and lower panels, respectively.
Both LTS and HTS electronic structures are metallic within the LDA scheme. The
a1g subband (green dashed line in Fig. 8.26) has a strong bonding–antibonding split-
ting in contrast to the eπ

g subbands (red dashed line). The bandwidth of the HTS is
approximately 2.8 eV and smaller than the bandwidth of the LTS (3.2 eV) due to
the reduction of the ta1g,a1g

hopping from −0.85 to −0.63 eV.
The Hamiltonian and the self-energy matrix have the following super-matrix

form corresponding to the symmetry of two Ti–Ti pairs in the unit cell:

⎛

⎜⎜⎝

H11 + Σ11 H12 + Σ12 H13 H14
H21 + Σ21 H22 + Σ11 H23 H24

H31 H32 H33 + Σ11 H34 + Σ12
H41 H42 H43 + Σ21 H44 + Σ11

⎞

⎟⎟⎠ (8.25)
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Fig. 8.26 Partial and total CDMFT (solid line) compared to the LDA (dashed) DOS with
W = 0.5 eV and Va1g

= Veg = 0. Total DOS are shown by black, the eg states by red, and a1g

states by green. On the upper panel the low temperature structure and β = 20 eV−1 are used. For
the lower panel the high temperature structure and β = 10 eV−1 are used. The diagonal Ga1g

, Geg

and the largest Ga1g−a1g
off-diagonal Green functions are shown in the upper inset by the green,

red and blue colors, respectively. In the lower inset the ReΣa1g,a1g
with intersite Coulomb inter-

actions are shown by blue (we have added 0.25 eV to this quantity to make it visible in the same
region), ReΣ ′

a1g,a1g
without intersite Coulomb interactions by orange and ImΣa1g

are shown by
green

where Hij (k) and Σij (ωn) are 3 × 3 matrices for the t2g states and Σ11 and Σ12
correspond to the intrasite and intersite contributions to the self-energy, respectively.

Firstly, in Fig. 8.25 we show the total DOS for both conventional single site
and cluster DMFT where only local electron correlations have been included. The
QMC simulation has been carried out for β = 20 eV−1, which corresponds to a
temperature of T � 580 K which is on the border of the MIT. In the upper panel of
Fig. 8.25 are shown the DMFT results with U = 2, 3, 4 eV and exchange parameter
J = 0.5 eV. For all values of Coulomb interactions there is a peak below the Fermi
level at around −0.5 eV, predominantly of a1g character with in all cases the same
intensity. Above the Fermi level there are two peaks. The first is at 0.5 eV and has
eg character while the other peak is strongly dependent on the Coulomb parameter
and can be associated with an upper Hubbard band. A lower Hubbard band can be
seen at around −2 eV. We see that for all values of U the shape of the pseudogap
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is unchanged and the system remains metallic. On the lower part of Fig. 8.25 the
results of the CDMFT calculation are shown for the same values of the Coulomb
and exchange parameters. The general structure of the DOS is seen to be similar to
the single site calculation, however, one may note interesting differences. The lower
a1g quasiparticle band is decreased in intensity and shifted towards the Fermi level
from −0.6 eV to −0.3 eV on increasing U from 2 to 4 eV. This has the result that for
U = 4 eV the pseudogap is now located directly at Fermi level, whereas for other
U -values and for all DMFT results it lies on the slope of the quasiparticle peak.

Using the temperature DOS at the Fermi level, defined as N(0) ≡ − ImG(ω0)/π

with ω0 = πT we are able to estimate the critical value of U . This is indicated in
the inset in the upper panel of Fig. 8.25. We see that for the single site calculations
N(0) depends weakly on U and the system will remain metallic up to very large
values, about 8 eV, of the Coulomb parameter. On the other hand for the cluster
calculation N(0) is seen to decrease strongly as a function of U for both values of
exchange parameter, and the critical value for an insulating solution is now lower at
U ∼ 5–6 eV. As expected for the d1 configuration the finite value of the exchange
parameter effectively decreases the Coulomb interaction matrix. We see the single
site results are in greater contradiction to the experiment as compared to LDA (see
Fig. 8.26): the local Coulomb interaction leads to the reduction of the bonding–
antibonding splitting of the a1g subband and this acts to suppress gap formation. On
the other hand in the cluster case a small semiconducting gap is developed for large
U due to dynamical antiferromagnetic correlation [74] in the Ti–Ti pair.

Nevertheless, using the DMFT scheme with only local correlations there remains
a dramatic absence of gap formation in Ti2O3. We now deploy the full non-local
correlation in CDMFT which is normally regarded to the effect of non-local cor-
relations on low and high temperature electronic structure [33, 34]. We have used
different values of the non-local Coulomb parameters and found that the most im-
portant interactions correspond to non-diagonal W terms [75]. For both structures
we have chosen values of U = 2 eV and J = 0.5 eV which are close to those
from constrained LDA estimations [53], while the off diagonal Coulomb param-
eters have been chosen as Veg = 0.6, Va1g

= 1.0 and W = 0.5 eV. On the upper
panel of Fig. 8.26 is shown the total and partial DOS for β = 20 eV−1. Shown also
is the LDA result. One can see that for the reasonable parameters chosen we can
reproduce the correct value of the semiconducting gap ∼0.1 eV while keeping the
bonding–antibonding splitting on the LDA level. In the lower panel the high temper-
ature metallic solution corresponding to β = 10 eV−1 is shown. Here we emphasize
that the proper inclusion of the structural effect [76] on the LDA level is important
as evinced by the fact that for β = 20 eV−1 and high temperature Hamiltonian we
again obtain a metallic solution. The eg states are similar for both LTS and HTS cal-
culations with a small shift of occupied part and clearly seen gap in LTS case. How-
ever, the difference between the LTS and HTS phases is more pronounced for the
a1g states. The bonding–antibonding splitting in the LTS is about 2.5 eV whereas in
the HTS case it is only 1.5 eV. The occupied a1g states in the LTS phase are shifted
down opening the insulating gap. The important difference between the large U and
small U plus non-local Coulomb interaction is the absence of well defined Hub-
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bard bands. This absence makes possible a critical test of the theory proposed here,
and thus it would be very interesting for photoemission experiments to check the
existence or not of a lower Hubbard band at around −2 eV.

We have shown that the cluster LDA+DMFT calculation with a moderate
Coulomb repulsion among the a1g orbitals is essential to produce the high tem-
perature semimetallic state and the low temperature insulating state. To under-
stand the role play of the intersite Coulomb interaction we focus on the quantity
ta1g,a1g

+ ReΣa1g,a1g
(iω) which we can interpret as a frequency dependent “effec-

tive a1g − a1g hopping” which describes the hopping matrix element in the titanium
pair. We find that this quantity is surprisingly frequency dependent (see lower inset
of Fig. 8.26).

The main role of the intersite Coulomb interaction is dynamic and results in
the effective a1g–a1g hopping that changes with the frequency. This enhancement
produces a strong level repulsion of the bonding–antibonding a1g levels, lowering
the a1g level relative to the eg level at the low frequency. This effect combined
with a small narrowing of the a1g band opens the eg–a1g band gap which results in
the insulating state. We checked that this enhancement of the effective hopping as
frequency is decreased is absent if we turned off the intersite Coulomb repulsion.

8.6 Conclusions

We have discussed the electronic structure magnetic properties and metal–insulator
transition in TMO. The unique feature of these compounds related to the fact that the
spin, charge and orbital degrees of freedom plays an important role in all physical
properties. While the local density approximation is quite reasonable for the elec-
tronic structure of metallic oxide, the additional Hubbard-like correlation is impor-
tant for energy spectrum of insulating magnetic oxides. The most difficult problem
is the doping dependence of the electronic structure for the charge-transfer insula-
tors and the joint efforts of ab initio calculations and many-body model approaches
remains the most efficient way for electronic structure of magnetic oxides [9].

The LDA+U method was proven to be a very efficient and reliable tool in cal-
culating the electronic structure of systems where the Coulomb interaction is strong
enough to cause localization of the electrons. It works not only for nearly core-
like 4f -orbitals of rare-earth ions, where the separation of the electronic states on
the subspaces of the infinitely slow localized orbitals and infinitely fast itinerant
ones is valid, but also for such systems as transition metal oxides (NiO), where 3d-
orbitals hybridize quite strongly with oxygen 2p-orbitals. In spite of the fact that
the LDA+U is a mean-field approximation which is in general insufficient for the
description of the metal–insulator transition and strongly correlated metals, in some
cases, such as the metal–insulator transition in FeSi and LaCoO3, LDA+U calcula-
tions gave valuable information by giving insight into the nature of these transitions.
However, in general LDA+U overestimates the tendency to localization as is well
known for Hartree–Fock type methods. The main advantage of LDA+U method
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over model approaches is its “first principle” nature with a complete absence of
adjustable parameters. Another asset is the fully preserved ability of LDA-based
methods to address the intricate interplay of the electronic and lattice degrees of
freedom by computing total energy as a function of lattice distortions. When the
localized nature of the electronic states with Coulomb interaction between them is
properly taken into account, this ability allows to describe such effects as polaron
formation and orbital polarization. As the spin and charge density of the electrons
is calculated self-consistently in the LDA+U method, the resulting diagonal and
off-diagonal matrix elements of one-electron Hamiltonian could be used in more
complicated calculations where many-electron effects are treated beyond mean-field
approximation.

At the same time, all the most subtle and interesting many-body effects (such
as spectral weight transfer, Kondo resonances, and others) are beyond the LDA+U

approach. To describe these effects a dynamical character of the effective potential
acting on the electrons should be taken into account, or, in other words, we have to
work with the Green function instead of the density matrix and with the self-energy
instead of the effective exchange-correlation potential. The LDA+DMFT method
seems to be effective and useful form of such approaches. In particular, in contrast
with the LDA+U method it is not necessary to consider only the magnetically or
orbitally ordered phases to describe the Mott insulator states, spectral weight effects
are taken into account. These results for the metal–insulator transition in complex
transition metal oxides demonstrate that the dynamical mean field theory does give
us an opportunity to unify the many-body theory with the practice of first-principle
calculations of the electronic structure and properties for real materials.
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