
Chapter 4
Plasma Kinetic Theory: Vlasov–Maxwell
and Related Equations

4.1 Mathematical Model

Plasma is an ionized gas of charged particles. Plasma is distinguished from usual
gases in the sense that plasma particles give rise to essential electromagnetic fields.
Hence, the usual Boltzmann kinetic approach that takes into account only paired col-
lisions should be supplemented by influence of electromagnetic fields generated in
plasma on the motion of plasma particles. The plasma inhomogeneity caused by the
electromagnetic field (i.e. inhomogeneous distribution of charged plasma particles)
results in generation of induced charges and currents. The latter in turn creates the
electromagnetic field, that anew modifies the motion of plasma particles. Therefore
the correct description of a system of plasma particles should meet the condition of
self-consistency.

The analysis of an infinite system of equations of motion for all plasma particles
is conventionally replaced by studying a distribution function of coordinates and
impulses of all plasma particles. The key point here is that plasma is a gas, thus all
plasma particles move independently.1 Therefore one can use one-particle distribu-
tion function f α(t, r,p) that defines the probability to find a particle of α species
with the impulse p at time t and point r . The conservation of probability yields

df α

dt
≡ f α

t + r t f
α
r + pt f

α
p = 0.

1Usually it is assumed for gas particles that the energy of their interaction is small compared to
their kinetic energy. Up to the order of magnitude the latter can be estimated as κT , where T

is the temperature and κ is the Boltzmann constant. For charged plasma particles the energy of
interaction is of the order of e2N1/3, where N−1/3 is the mean distance between particles, e is a
charge and N is the number of particles in a unit volume. Hence the plasma demonstrates the gas
property provided that

e2N1/3 � κT .

This inequality holds for all real plasmas.
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Noting that r t = v is a particle velocity and pt for charged particles is defined by
the Lorentz force

eα

{
E + 1

c
[v × B]

}
,

the equation for the distribution function for any plasma particle species takes the
form:

f α
t + vf α

r + eα

{
E + 1

c
[v × B]

}
f α

p = 0. (4.1.1)

The charge and current densities are defined via distribution function

ρ =
∑
α

eαm3
α

∫
dvf αγ 5,

j =
∑
α

eαm3
α

∫
dvf αγ 5v, γ = 1√

1 − v2/c2
,

(4.1.2)

where summation is taken over all plasma particle species. These charge and current
densities enter the field equations and define electric and magnetic fields in plasma
in a self-consistent manner. Equation (4.1.1) in view of the field equations

B t + c rotE = 0; divE = 4πρ;
Et − c rotB + 4πj = 0; divB = 0,

(4.1.3)

are known as kinetic equations with a self-consistent field. The efficiency of this
equation for description of plasma properties was first demonstrated by Vlasov [1].
At present Vlasov’s kinetic equation with a self-consistent field is a basic equation
in the theory of a collisionless2 plasma (e.g., hot plasma used in the plasma fusion
experiments).

Meanwhile in describing the evolution of distribution functions frequently it is
more convenient to use not standard Vlasov equations (4.1.1) with Euler velocity v,
but their hydrodynamic analogue [2–4] with Lagrangian velocity w. At transition to
Lagrangian notations instead of the Euler velocity v and the Euler momentum p for
each particle species two vector functions are introduced, the velocity V α(t, r,q)

and the momentum P α(t, r,q), depending upon the Lagrangian momentum q and
Euler coordinates r and time t , and related to v and p by the formulas

v = V α(q, r, t), p = P α(q, r, t),

V α = c2P α(m2c4 + c2(P α)2)−1/2.
(4.1.4)

2Equation (4.1.1) is approximate, as it neglects collisions of plasma particles. In view of particle
collisions their motion becomes correlated. This effect leads to appearance of non-zero term in the
right-hand side of (4.1.1), the so-called collision integral. However, the explicit form of the colli-
sion integral depends on particular conditions defined by the plasma properties in every concrete
situation, and we will not discuss them here. In many particular problems collision effects can be
neglected.
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The change of variables (4.1.4) eliminates in the resulting equations for distribu-
tion functions for particle of each species the derivatives of these functions upon the
Lagrangian momentum q . Hence, Lagrangian formulation of the kinetic descrip-
tion of plasma is fulfilled via the equations of hydrodynamic type for the density
Nα(t, r,w) and the velocity V α(t, r,w), which depend upon t , r and w,

Nα
t + div(NαV α) = 0,

V α
t + (V α∇)V α

= eα

mα

√
1 −

(
V α

c

)2{
E + 1

c
[V α × B] − 1

c2
V α(V α · E)

}
.

(4.1.5)

Here the index α indicates the plasma particle species with the charge eα and mass
mα and the charge and current densities, ρ and j , are in turn determined by the
motion of plasma particles:

ρ =
∑
α

eαm3
α

∫
dwNαΓ 5,

j =
∑
α

eαm3
α

∫
dwNαV αΓ 5, Γ = 1√

1 − (w/c)2
.

(4.1.6)

It is typical, that (4.1.5) do not contain Lagrangian velocity w (or Lagrangian mo-
mentum q) in explicit form. In order to find the dependence upon q one should solve
these equations with the “initial” conditions V α = w, Nα = Nα

0 (t0, r,w) which
hold for vanishing electric and magnetic fields E = B = 0 at some t = t0. In par-
ticular, in homogeneous plasma “initial” conditions for the density Nα has the form
Nα

0 = nα0f
α
0 (q), where the stationary and homogeneous function f α

0 (q) of La-
grangian momentum q coincides with the function f α

0 (p) of Euler momentum p.
Given the density Nα(t, r,w) and the velocity V α(t, r,w) that depend upon

Lagrangian momentum the particles distribution function in Euler representation is
restored with the help of the following relations (the index of particles species in
these formulas is omitted)

N(t, r,q) = f
(
p = P (q, r, t), r, t

)
det

(
∂Pi

∂qj

)
, v = c2p(m2c4 + c2p2)−1/2,

w = c2q(m2c4 + c2q2)−1/2, V = c2P (m2c4 + c2P 2)−1/2.

(4.1.7)

The system of equations (4.1.4)–(4.1.7), (4.1.3) presents the Lagrangian formulation
[2–4] of Vlasov–Maxwell equations, in which (4.1.6) appear as non-local material
relations.

The search for particular solutions of the joint system of Vlasov–Maxwell equa-
tions (4.1.1)–(4.1.3) or its Lagrangian formulation (4.1.5)–(4.1.7) is very impor-
tant both in theoretical treatment and practical applications. The group analysis of
the system of Vlasov–Maxwell equations, which forms the essence of this chap-
ter, offers a nice opportunity in constructing these solutions. The main obstacle
in finding symmetry group for systems (4.1.1)–(4.1.3) and (4.1.5)–(4.1.7) with the
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help of a standard Lie algorithm is the non-locality of material relations (4.1.2)
and (4.1.6). The first successful attempt in this field [5] deals with calculating the
continuous point Lie group for the system (4.1.1)–(4.1.3) in the one-dimensional
non-relativistic approximation of homogeneous electron plasma using the methods
of moments. On the contrary we will follow a general algorithm [6–8] based on the
direct method of calculation of symmetries, described in Chaps. 2 and 4.

This chapter is structured as follows. Section 4.2 introduces an approach for
calculating symmetries of integro-differential equations used in this chapter. In
Sect. 4.3.1 we describe in details the application of the general algorithm to the most
simple one-dimensional non-relativistic model of one-component charged electron
plasma that arises from (4.1.1)–(4.1.3) while treating only one particle species (elec-
trons) and in one-dimensional plane geometry. We also neglect relativistic effects
here. We consider this model since it is physically simple and informative from the
group standpoint. The model has the same characteristic features as the complete
three-dimensional system of kinetic equations for collisionless relativistic electron–
ion plasma. The only difference is in the a smaller amount of calculations necessary
for constructing and solving the group determining equations. For this reason, the
next models are analyzed in less detail.

In the next sections we present the result of group analysis for the succes-
sively complicated systems that take into account other plasma species (Sects. 4.3.3,
4.3.4), relativistic effects (Sects. 4.3.2, 4.3.4), the presence of stationary or moving
ion background (Sects. 4.3.5, 4.3.6). We also consider the so-called quasi-neutral
approximation for plasma particles dynamics (Sect. 4.3.7). Symmetry of plasma
kinetic equations in three dimensional geometry is analyzed for electron gas in
Sect. 4.4.1 and for electron–ion plasma in Sect. 4.4.2. We also discuss the symmetry
of plasma kinetic equations in Lagrangian variables (Sect. 4.5).

The special section is devoted to symmetry of Benney equations (Sect. 4.6). Here
we apply both our algorithm and method of moments to demonstrate the incomplete-
ness of the algorithm to describe all the admitted symmetries.

Section 4.7 is devoted mainly to particular problems that illustrate the efficiency
of the symmetry approach to integro-differential equations to find solutions to vari-
ous particular problems of interest. Here we especially draw attention to symmetries
known in mathematical physics as renormgroup symmetries. Section 4.7 demon-
strates the method of their construction as well as examples of applications.

4.2 Definition and Infinitesimal Test

To extend the classical Lie algorithm to integro-differential equations it appears nec-
essary to resolve several problems. First, one should define the local one-parameter
transformation group G for the nonlocal (integro-differential) equations and formu-
late the invariance criteria that lead to determining equations, which appear also
nonlocal. Secondly, and a procedure of solving nonlocal determining equations
should be described.
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4.2.1 Definition of Symmetry Group

Let an integro-differential equation under consideration be expressed as a zero
equality for some functional (here we indicate only one argument for a function f ),
defined for x1 ≤ x ≤ x2,

F [f (x)] = 0, (4.2.8)

and let G be a local one-parameter group that transforms f to f̃ (x, a),

f̃ (x, a) = f + aκ + o(a), x̃ = x. (4.2.9)

Here we use the canonical group representation hence independent variables x do
not vary. Then the local group G of point transformations (4.2.9) is called a symme-
try group of integro-differential equations (4.2.8) iff for any a the function F does
not vary [9] (see also Chap. 2),

F [f̃ (x, a)] = 0. (4.2.10)

Differentiating (4.2.10) with respect to group parameter a and assuming a → 0
gives the invariance criterion in the infinitesimal form akin to (1.1.31) in Chap. 1. In
view of the canonical form of transformations (4.2.9) the functional F depends upon
a via f̃ . Therefore to find the infinitesimal invariance criterion we should calculate
the derivative dF/da.

4.2.2 Variational Derivative for Functionals

Let f (x, a) be a differentiable function with respect to a, f (x, a) and ∂f (x, a)/∂a

continuous functions for a ≥ 0, x1 ≤ x ≤ x2. The derivative dF/da [10]

d

da
F [f (x, a)] = δF

[
f (x, a) ;f ′

a (x, a)
]
, (4.2.11)

is given by variation of the functional δF , defined as a linear in δf part of a differ-
ence

δF = F [f + δf ] − F [f ].
Let F [f (x, a)] be a differentiable functional (recall that the functional F , defined
on the interval [x1, x2], is called a differentiable functional [10] if it has the first
derivative in each point of this interval). Then the last formula is rewritten in the
following form

δF =
x2∫

x1

F ′[f (x);q]δf (q)dq. (4.2.12)
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Here the derivative F ′[f (x);y] = δF/δf (y) of the differentiable functional F with
respect to a function f in the point y is defined via the principal (linear) part of an
increment of the functional as a limit (if it exists) (see [10]):

δF [f ]
δf (y)

= lim
ε→0

{F [f + δfε] − F [f ]}∫
Δ

dyδfε(y)
; y ∈ [x1, x2]. (4.2.13)

In (4.2.13) the infinitesimal variation δfε(y) ≥ 0 is a continuously differentiable
function given on fixed interval Δ = [x1, x2] which differs from zero only in ε-
vicinity of a point y, and the norm ‖δfε‖C1 → 0 at ε → 0.

Example 4.2.1 Let b(y) be a continuous function and F [f ] a linear functional

F [f ] =
x2∫

x1

b(y)f (y)dy.

By δfε denote a variation that differs from zero only in ε-vicinity of a point q . Then
using the mean value theorem

F [f + δfε] − F [f ] =
x2∫

x1

b(y)δfε dy = b(q)

x2∫
x1

δfε dy,

we get the variation derivative

δF [f ]
δf (q)

= lim
ε→0

b(q)

∫
Δ

δfε(y)dy∫
Δ

δfε(y)dy
= b(q). (4.2.14)

Choosing b(y) = 1/(
√

2πσ) exp(−(y − y0)
2/2σ 2) we obtain

δF [f ]
δf (q)

= 1√
2πσ

exp

(
− (y − y0)

2

2σ 2

)
. (4.2.15)

In the limit σ → 0 we have b(y) → δ(y − y0), F [f ] → f (y0) and hence

δf (y0)

δf (q)
= δ(y0 − q). (4.2.16)

4.2.3 Infinitesimal Criterion

According to Sect. 4.2.1 to write the infinitesimal criterion for the symmetry group
for nonlocal equations one should differentiate (4.2.10) with respect to group pa-
rameter a and assume a → 0, i.e. calculate the limit of the derivative dF/da for
vanishing a. Combining (4.2.11), (4.2.12) and assuming a → 0 in view of (4.2.9)
we get

dF [f̃ ]
da

∣∣∣∣
a=0

=
∫

κ(y)
δF [f (x)]

δf (y)
dy ≡ YF, (4.2.17)
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where we have introduced the generator Y defined by its action on function F as
follows:

Y(F ) =
∫

κ(y)
δF

δf (y)
dy.

We will write this operator formally in the form

Y =
∫

κ(y)
δ

δf (y)
dy. (4.2.18)

Hence, the invariance criterion for F with respect to the admitted group can be
expressed in an infinitesimal form using the canonical group operator Y ,

YF
∣∣
F=0 = 0, (4.2.19)

which generalizes the action of a standard canonical group operator (see formula
(1.5.7) in Chap. 1) not only on differential functions but on functionals as well us-
ing variational differentiation in the definition of Y [7]. One can verify by direct
calculation that the action of Y on any differential function and its derivatives, e.g.,
f and fx, . . . produces the usual result: Yf = κ, Yfx = Dx(κ) and so on. Hence,
if F describe usual differential equations then formulas (4.2.19) lead to standard
local determining equations, while for F having the form of integro-differential
equations formulas (4.2.19) can be treated as nonlocal determining equations as
they depend both on local and nonlocal variables. As we treat local and nonlocal
variables in determining equations as independent it is possible to separate these
equations into local and nonlocal. The procedure of solving local determining equa-
tions is fulfilled in a standard way using Lie algorithm based on splitting the system
of over-determined equations with respect to local variables and their derivatives.
As a result we get expressions for coordinates of group generator that define the
so-called group of intermediate symmetry [7]. In the similar manner the solution of
nonlocal determining equations is fulfilled using the information borrowed from an
intermediate symmetry and by “variational” splitting of nonlocal determining equa-
tions using the procedure of variational differentiation. Therefore, the algorithm of
finding symmetries of nonlocal equations appears as an algorithmic procedure that
consists of a sequence of several steps: (a) defining the set of local group variables,
(b) constructing determining equations on basis of the infinitesimal criterion of in-
variance, that employs the generalization of the definition of the canonical operator,
(c) separating determining equations into local and nonlocal, (d) solving local deter-
mining equations using a standard Lie algorithm, (e) solving nonlocal determining
equations using the procedure of variational differentiation.

4.2.4 Prolongation on Nonlocal Variables

To complete we describe the procedure of prolongation of a symmetry group on
nonlocal variables, say in the form of the integral relation

J (u) =
∫

F (u(z))dz. (4.2.20)
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To fulfill this procedure one should first rewrite the operator, say Y , in a canonical
form and then formally prolong this operator on the nonlocal variable J

Y + κ
J ∂J ≡ κ∂u + κ

J ∂J . (4.2.21)

The integral relation between κ and κ
J is obtained by applying the generator

(4.2.21) to the definition of J , i.e. to (4.2.20). Substituting the explicit expression for
the coordinate κ of the known operator Y and calculating integrals obtained gives
the desired coordinate κ

J ,

κ
J =

∫
δJ (u)

δu(z)
κ(z)dz

≡
∫

δF (u(z′))
δu(z)

κ(z)dzdz′ =
∫

Fuκ(z)dz. (4.2.22)

4.3 Symmetry of Plasma Kinetic Equations in One-Dimensional
Approximation

This section discuss the symmetry of Vlasov–Maxwell equations (4.1.1)–(4.1.3)
for plane (one-dimensional) geometry. We start with the case of a one component
non-relativistic electron plasma (electron gas) and proceed with a set of different
models, including multi-component plasma, relativistic plasma, plasma with neu-
tralizing moving and stationary ion background.

4.3.1 Non-relativistic Electron Gas

Consider the system of Vlasov–Maxwell equations (4.1.1)–(4.1.3) for charged elec-
tron gas. In case of non-relativistic motion of electrons in the self-consistent electric
field E the one-dimensional Vlasov kinetic equation for the distribution function f

is written as follows:

ft + vfx + e

m
Efv = 0. (4.3.1)

Here the potential field E obeys the Poisson equation and the corresponding
Maxwell equation

Ex = 4πρ, Et + 4πj = 0, (4.3.2)

and charge density ρ and current density j are expressed as the integrals

ρ = em

∫
dvf, j = em

∫
dvf v (4.3.3)

over electron velocities. Momentarily, we will assume that the charge e and mass m

of the electron (parameters of the system) are invariants. The dependent variables
E, j , and ρ are functions of two arguments, time t and coordinate x,

E = E(t, x), j = j (t, x), ρ = ρ(t, x), (4.3.4)
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and the distribution function

f = f (t, x, v) (4.3.5)

has three arguments, t , x and electron velocity v. It follows from (4.3.4) that electric
field intensity E, current density j , and charge density ρ are independent of electron
velocity v. Hence we have three additional differential constraints

Ev = 0, jv = 0, ρv = 0, (4.3.6)

which should be used in group analysis of the system (4.3.1)–(4.3.3) as well as
compatibility condition for the field equations (4.3.2), known as continuity equation,

ρt − jx = 0. (4.3.7)

The coordinates ξ and η of the Lie point symmetry group generator

X = ξ1 ∂

∂t
+ ξ2 ∂

∂x
+ ξ3 ∂

∂v
+ η1 ∂

∂f
+ η2 ∂

∂E
+ η3 ∂

∂j
+ η4 ∂

∂ρ
, (4.3.8)

are considered as functions of the seven variables

t, x, v, f, E, J, ρ. (4.3.9)

These coordinates are solutions to the determining equations, which, in turn, appear
as necessary and sufficient conditions for the invariance of system (4.3.1)–(4.3.3),
(4.3.6) with respect to the group with generator (4.3.8). Local (differential) deter-
mining equations can be stated and solved directly in terms of the generator (4.3.8).
In this section we however use the canonical form

Y = κ
1 ∂

∂f
+ κ

2 ∂

∂E
+ κ

3 ∂

∂j
+ κ

4 ∂

∂ρ
, (4.3.10)

for the generator (4.3.3), which offers substantial advantages in the group analysis
of the complete system of Vlasov–Maxwell equations because of non-locality of the
system.

4.3.1.1 Non-relativistic Electron Gas: The Solution to the Local Determining
Equations

The invariance conditions for Vlasov kinetic equation (4.3.1), the field equations
(4.3.2), and (4.3.6) with respect to the group with canonical generator (4.3.10) are
given by the six local determining equations

Dt(κ
1) + vDx(κ

1) + e

m
EDv(κ

1) + e

m
κ

2fv = 0,

Dx(κ
2) = 4πκ

4, Dt (κ
2) = −4πκ

3, (4.3.11)

Dv(κ
2) = 0, Dv(κ

3) = 0, Dv(κ
4) = 0,

which should be solved with taking into account the fact that the group variables
(4.3.9) and the corresponding derivatives are related by the manifold (4.3.1)–(4.3.3),
(4.3.6) and (4.3.7). Here we use the standard notations (see, e.g. Chap. 1) for the



154 4 Plasma Kinetic Theory

operator of total differentiation Di with respect to the group variable indicated by
the subscript. For example, the operator Dv of total differentiation with respect to v

is given by

Dv ≡ ∂

∂v
+ fv

∂

∂f
+ fvt

∂

∂ft

+ fvx

∂

∂fx

+ fvv

∂

∂fv

+ · · · . (4.3.12)

The solution of the system of local determining equations (4.3.11) is given by the
following formulas for the coordinates κ of the generator (4.3.10):

κ
1 = η1 − ftξ

1 − fx

[
x

(
A4 + 1

2
ξ1
t

)
+ β

]
− fv

[
v

(
A4 − 1

2
ξ1
t

)
+ 1

2
xξ1

t t + βt

]
,

κ
2 = E

[
A4 − 3

2
ξ1
t

]
+ m

e

[
1

2
xξ1

t t t + βtt

]
− Etξ

1 − Ex

[
x

(
A4 + 1

2
ξ1
t

)
+ β

]
,

κ
3 = j

[
A4 − 5

2
ξ1
t

]
+ ρ

[
1

2
xξ1

t t + βt

]
+ 3

8π
Eξ1

t t

− m

4πe

[
1

2
xξ1

t t t t + βttt

]
− jt ξ

1 − jx

[
x

(
A4 + 1

2
ξ1
t

)
+ β

]
,

κ
4 = − 2ρξ1

t + m

8πe
ξ1
t t t − ρtξ

1 − ρx

[
x

(
A4 + 1

2
ξ1
t

)
+ β

]
.

(4.3.13)

The coordinates (4.3.13) depend upon three arbitrary functions

ξ(t), β(t), η1(f ) (4.3.14)

and A4 is an arbitrary constant. The group symmetry with the generator (4.3.10)
and coordinates (4.3.13) admitted by the system of equations (4.3.1), (4.3.2), (4.3.6)
will be referred to as the intermediate group symmetry of the complete system of
the self-consistent field equations (4.3.1)–(4.3.3). The symmetry is generated only
by the differential equations in the integro-differential Vlasov–Maxwell system and
does not take into account integral terms in the material equations (4.3.3), which de-
termine charge and current densities of electrons. The intermediate group symmetry
(4.3.10), (4.3.13) plays an auxiliary role in obtaining the final equations for the coor-
dinates ξ and η of the generator (4.3.8) of the desired Lie group. The charge density
ρ and the current density j have a concrete physical meaning. By introducing them
as independent group variables in the set (4.3.9) along with t , x, v, f , and E, we
divide the group analysis of the local and the nonlocal part of the Vlasov–Maxwell
system into two stages. The intermediate symmetry (4.3.10), (4.3.13) completes the
local group analysis of the system. In what follows we shall see that the nonlocal
determining equations appearing as invariance conditions for the material equations
(4.3.3) with respect to the sought Lie group eliminate the arbitrary dependence of ξ ,
β and η1 on t and f .

4.3.1.2 Non-relativistic Electron Gas: Nonlocal Determining Equations and
Their Solutions

Since the material equations (4.3.3) are nonlocal (they involve integration of the
distribution function f and of the product vf over the electron velocity v), the



4.3 Symmetry of One-Dimensional Plasma Kinetic Equations 155

differentiation with respect to f in the first term of the canonical generator (4.3.10)
should be generalized so as to act not only on functions of f but also on linear
functionals (4.3.3) of f . Hence, we represent this term as the integral of variational
derivative with respect to f with weight κ

1 over electron velocity v:

κ
1 ∂

∂f
≡
∫

dvκ
1(v)

δ

δf (v)
. (4.3.15)

For brevity, we indicate only the integration variable v as an argument of f and
of κ

1. Our shorthand notation implies that the coordinate κ
1(v) of the canonical

generator in (4.3.15) stands for the following extended expression in (4.3.13), de-
pending on integration variable v:

κ
1(v) ≡ η1(f (t, x, v)) − ξ1ft (t, x, v) −

[
x

(
A4 + 1

2
ξ1
t

)
+ β

]
fx(t, x, v)

−
[
v

(
A4 − 1

2
ξ1
t

)
+ 1

2
xξ1

t t + βt

]
fv(t, x, v). (4.3.16)

When applied to functions of f , the operator of the differentiation with respect to
f in (4.3.15) gives the usual result, i.e. it coincides with the ordinary differentiation
with respect to f . When applied to linear functionals of f , i.e., to the charge and
current densities (4.3.3), the derivative in (4.3.15) permits us to introduce the varia-
tional derivative on the right-hand side in (4.3.15) under the integral over v together
with the coordinate κ

1 of the canonical generator (4.3.10).
Substituting (4.3.15) in (4.3.10) and using the a well-known identity

δf (v)

δf (v′)
= δ

(
v − v′) , (4.3.17)

where δ is the Dirac delta-function we obtain the invariance conditions for the inte-
gral material equations (4.3.3) with respect to the Lie group with canonical generator
(4.3.10), the nonlocal determining equations [7, 8]

κ
4 − em

∫
dvκ

1 = 0, κ
3 − em

∫
dvvκ

1 = 0. (4.3.18)

The integration in (4.3.18) is over all values of v, just as in (4.3.3) and (4.3.15).
Let us consider the first of the two determining equations in (4.3.18) in more detail.
Substituting the coordinates κ

1 and κ
4 from (4.3.13) into the determining equa-

tions in question and taking into account (4.3.3) for charge density ρ, we reduce the
determining equations to the simple form

em

∫
dv
[
η1(f (v)) + f (v)K (t)

]− m

8πe
ξ1
t t t (t) = 0. (4.3.19)

The coefficient K in the product K f in the integrand on the left-hand side in
(4.3.19) is independent of v and f ; specifically, we have

K (t) = A4 + 3

2
ξ1
t . (4.3.20)

The derivation of the determining equations (4.3.19) involves integrating by parts
with respect to v, which removes the derivative fv from the integrand in the nonlocal
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term in the original determining equations. The resultant antiderivative f is assumed
to vanish at the ends of the infinite integration interval, that is,

f → 0, v → ±∞. (4.3.21)

The determining equations (4.3.19) is a linear nonhomogeneous integral equation
for η1, which can easily be solved. According to the general ideas of Lie technique,
(4.3.19), as well as any determining equation, is an identity with respect to the group
variable f . Therefore, it remains valid after differentiating with respect to f . Since
the determining equations (4.3.19) is an integral equation, we should use variational
differentiation with respect to f rather than ordinary differentiation. Taking into
account that nonhomogeneous term proportional to ξ1

t t t in (4.3.19) is independent
of f , we obtain:

δ

δf (v′)

∫
dv
[
η1(f (v)

)+ f (v)K (t)
]= 0. (4.3.22)

The nonlocal equation (4.3.19), which is an identity with respect to f , should
be combined with its differential corollary (4.3.22) in the sense that a solution
to (4.3.22) is also a solution to (4.3.19). Introducing the variational derivative in
(4.3.22) under the integral over v,∫

dv
{
η1

f + K
} δf (v)

δf (v′)
= 0. (4.3.23)

and evaluating the integral over v with the aid of the delta-function (4.3.17) that ap-
pears in the integrand, as a consequence of (4.3.19), we obtain a first-order ordinary
differential equation for the dependence of the coordinate η1 of the determining
equations (4.3.8) on f :

η1
f + K = 0. (4.3.24)

Its solution depends on one arbitrary constant

η1 = −K f + A. (4.3.25)

Since the coordinate η1 is independent of t , we immediately obtain the condition

Kt = 0 (4.3.26)

imposed on the coefficient K of the determining equations (4.3.19). It follows from
(4.3.20) and (4.3.26) that

ξ1
t t = 0. (4.3.27)

As was mentioned above, it is necessary to consider (4.3.25) for η1, appearing as a
direct consequence of variational differentiation (4.3.9) of the determining equations
(4.3.19) with respect to the distribution function f , together with (4.3.19):

em

+∞∫
−∞

dvA − m

8πe
ξ1
t t t (t) = 0. (4.3.28)
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In view of (4.3.27), the second term on the left-hand side in (4.3.28) is zero. There-
fore, (4.3.28) is reduced to

Aem

+∞∫
−∞

dv = 0, (4.3.29)

whence follows that the integration constant A in (4.3.25) is zero, that is, we have

η1 = −K f. (4.3.30)

The integration of (4.3.30) yields

ξ1(t) = A1 + 2A3t. (4.3.31)

We insert the explicit formula (4.3.31) for the dependence of ξ1 on t into expression
(4.3.20) for the coefficient K and obtain

K = 3A3 + A4, (4.3.32)

whence follows the definite expression for the coordinate

η1(f ) = −(3A3 + A4)f. (4.3.33)

Equations (4.3.31) and (4.3.33) are the basic result of solving the first nonlocal
determining equations in (4.3.18) and define explicit dependence of ξ and η on t and
f in the intermediate group symmetry (4.3.13). The second nonlocal determining
equations in system (4.3.18) pertains to the invariance of electron current density
with respect to the admitted Lie group. By substituting the extended expressions for
the coordinates κ

3 and κ
1 from (4.3.13) into this determining equations, we easily

reduce it to the following linear nonhomogeneous integral equation for η1, which is
similar to (4.3.19):

em

∫
dvv

(
η1 + f K

)+ 3

8π
Eξ1

t t − mx

8πe
ξ1
t t t t − m

4πe
βttt = 0. (4.3.34)

The passage from (4.3.18) to (4.3.34) involves integration by parts with respect
to v. Here we take into account conditions (4.3.21), which state that the electron
distribution function f decays rapidly for large velocities. The coefficient K in the
product K vf in the integrand on the left-hand side in (4.3.34) has the same form
(4.3.20) as in (4.3.19). Hence, taking into account (4.3.27) and (4.3.30), we see that
the determining equations (4.3.34) is reduced to βttt = 0, which implies

β(t) = A2 + A5t + 1

2
A6t

2. (4.3.35)

Substitution of (4.3.31), (4.3.33) and (4.3.35) into (4.3.13) yields canonical coordi-
nates that satisfy determining equations (4.3.11), and (4.3.18), and therefore define
the sought for group symmetry
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κ
1 = − A1ft − A2fx − A3 (3f + 2tft + xfx − vfv) − A4 (f + xfx + vfv)

− A5 (tfx + fv) − A6

(
t2

2
fx + tfv

)
,

κ
2 = − A1Et − A2Ex − A3 (3E + 2tEt + xEx) − A4 (−E + xEx)

− A5tEx − A6

(
t2

2
Ex − m

e

)
,

κ
3 = − A1jt − A2jx − A3 (5j + 2tjt + xjx) − A4 (−j + xjx)

− A5 (tjx − ρ) − A6

(
t2

2
jx − tρ

)
,

κ
4 = − Alρt − A2ρx − A3 (4ρ + 2tρt + xρx) − A4xρx

− A5tρx − A6

(
t2

2

)
ρx.

(4.3.36)

Formulas (4.3.36) refer to the following six basic generators, written in a non-
canonical form [7]:

X1 = ∂

∂t
, X2 = ∂

∂x
,

X3 = 2t
∂

∂t
+ x

∂

∂x
− v

∂

∂v
− 3f

∂

∂f
− 3E

∂

∂E
− 5j

∂

∂j
− 4ρ

∂

∂ρ
,

X4 = x
∂

∂x
+ v

∂

∂v
− f

∂

∂f
+ E

∂

∂E
+ j

∂

∂j
, X5 = t

∂

∂x
+ ∂

∂v
+ ρ

∂

∂j
,

X6 = t2

2

∂

∂x
+ t

∂

∂v
+ m

e

∂

∂E
+ tρ

∂

∂j
.

(4.3.37)

The set of generators (4.3.37) span the six-dimensional Lie algebra

L6 = 〈X1,X2, . . . ,X6〉. (4.3.38)

Generators (4.3.37) of the six-parametric continuous point Lie group admitted by
the Vlasov–Maxwell equations (4.3.1)–(4.3.3), have clear physical meaning: the op-
erators X1 and X2 describe translations along t and x-axes, the generator X3 and
X4 relate to dilations, which can be easily verified, and the generators X5 define the
Galilean transformations. The finite transformations corresponding to the generator
X6 have the following form for each of six variables (4.3.9):

t̄ = t; x̄ = x + at2

2
; v̄ = v + at; f̄ = f ;

Ē = E + ma

e
; j̄ = j + atρ; ρ̄ = ρ.

(4.3.39)

In mechanics, the one-parameter transformation group with generator X6 can be
interpreted for the first three equations in (4.3.39) as the transformation of variables
due to passing into a coordinate system moving linearly with constant acceleration
a = const with respect to the laboratory frame.



4.3 Symmetry of One-Dimensional Plasma Kinetic Equations 159

4.3.1.3 Including Electron Charge and Electron Mass into Group
Transformations

The set of group variables (4.3.9) can be extended by involving the parameters e and
m of the Vlasov–Maxwell equations (4.3.1)–(4.3.3) into the group transformations

X = ξ1 ∂

∂t
+ ξ2 ∂

∂x
+ ξ3 ∂

∂v
+ ξ4 ∂

∂e
+ ξ5 ∂

∂m

+ η1 ∂

∂f
+ η2 ∂

∂E
+ η3 ∂

∂j
+ η4 ∂

∂ρ
. (4.3.40)

The extension adds two more basis generator to the algebra (4.3.37), (4.3.38). They
correspond to the dilations of electron charge and mass:

X7 = e
∂

∂e
+ m

∂

∂m
− 2f

∂

∂f
, X8 = m

∂

∂m
+ E

∂

∂E
+ j

∂

∂j
+ ρ

∂

∂ρ
. (4.3.41)

The operators (4.3.41) commute with each other and with all operator (4.3.37), so
that the set (4.3.37), (4.3.41) is the eight-dimensional Lie algebra

L8 = 〈X1,X2, . . . ,X6,X7,X8〉. (4.3.42)

If the electron charge and mass are not invariant, then the general operator of the
continuous point Lie group admitted by the Vlasov–Maxwell equations (4.3.1)–
(4.3.3) is given by

X =
8∑

α=1

Aα(e,m)Xα. (4.3.43)

It corresponds to an infinite group with continual arbitrariness given by eight func-
tions Aα depending on two of the nine variables

t, x, v, e,m,f,E, j,ρ (4.3.44)

and can be obtained by solving local and nonlocal determining equations for the
coordinates of the generator under the conditions

f = f (t, x, v, e,m); E = E(t, x, e,m);
j = j (t, x, e,m); ρ = ρ(t, x, e,m)

(4.3.45)

in a way similar to that given in the previous sections.
The infiniteness of the Lie group (4.3.44), (4.3.37), (4.3.41) is due to the fact that

the parameters e and m that are arbitrary elements of the group classification are
included in the set of the group variables (4.3.44). This procedure that looks trivial
from the group analysis viewpoint is typical in “classical” renormalization group
method in quantum field theory (for details see Sect. 4.7). In the similar manner to
take into account the relativistic motion of electrons, we have to introduce a third
parameter, namely, the light velocity in vacuum (denoted by c). We can pass to
relativistic velocities also in the one-dimensional approximation with the same field
equations (4.3.2). In doing so, the one-parameter Galilean group with the generator
X5 from (4.3.37) is transformed into the Lorentz group and is inherited (in the sense
of [11, 12]) in an arbitrary order with respect to the parameter v/c, which takes into
account the finiteness of the light velocity. This will be demonstrated in Sect. 4.3.2.
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4.3.2 Relativistic Electron Gas

The one-dimensional system of self-consistent field equations (4.3.1)–(4.3.3) for
charged relativistic electron gas is modified as follows:

ft + vfx + eEfp = 0, ρ = e

∫
dpf, j = e

∫
dpf v. (4.3.46)

In contrast to (4.3.1) and (4.3.3), instead of electron velocity v we use moment p,
which can be expressed in terms of v by the well-known equality

p = mvγ ≡ mv
(
1 − (v/c)2)−1/2

, (4.3.47)

where γ is the relativistic factor. Using (4.3.47) and passing from electron moment
p to electron velocity v in (4.3.46), we obtain the equations

ft + vfx + e

m
γ −3Efv = 0, (4.3.48)

ρ = em

+c∫
−c

dvγ 3f, j = em

+c∫
−c

dvγ 3f v, (4.3.49)

which differ from (4.3.1) and (4.3.3) in that the relativistic factor γ > 1 is taken
into account. In finding symmetry of the integro-differential system of equations
(4.3.48), (4.3.49), (4.3.2), and (4.3.6) we assume that not only time t , coordinate x,
and electron velocity v but also charge e, electron mass m, and light velocity c are
independent variables.

Omitting the calculations akin to that were done in the previous Sect. 4.3.1 we
present the final expression for the group generator in the form of a linear combina-
tion of seven basic generators with the coefficients Aα that are arbitrary functions
of three variables [7]:

X =
7∑

α=1

Aα(e,m, c)Xα,

X1 = ∂

∂t
, X2 = c

∂

∂x
,

X3 = t
∂

∂t
+ x

∂

∂x
− 2f

∂

∂f
− E

∂

∂E
− 2j

∂

∂j
− 2ρ

∂

∂ρ
,

X4 = 1

c

(
x

∂

∂t
+ c2t

∂

∂x
+ (c2 − v2)

∂

∂v
+ ρc2 ∂

∂j
+ j

∂

∂ρ

)
, (4.3.50)

X5 = x
∂

∂x
+ v

∂

∂v
+ c

∂

∂c
− f

∂

∂f
+ E

∂

∂E
+ j

∂

∂j
,

X6 = m
∂

∂m
+ E

∂

∂E
+ j

∂

∂j
+ ρ

∂

∂ρ
,

X7 = e
∂

∂e
+ m

∂

∂m
− 2f

∂

∂f
.
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The generators (4.3.50) span the seven-dimensional Lie algebra

L7 = 〈X1,X2, . . . ,X7〉 (4.3.51)

with numerical structural constants. The last three generators in (4.3.50), which de-
termine the dilations of electron charge and mass and of light velocity, commute
with all remaining generator in (4.3.50) and with one another. The first four gener-
ators in (4.3.50) form the four-dimensional subalgebra

L4 = 〈X1,X2,X3,X4〉. (4.3.52)

The finite transformations given by solutions to the Lie equations for the generator
X4 (the Lorentz transformations) correspond to hyperbolic rotations in the planes
(ct, x) and (cp, j), and to the linear-fractional transformation of electron velocity v

with group parameter a:

t̄ = t cosh(ac) + (x/c) sinh(ac), x̄ = x cosh(ac) + ct sinh(ac),

v̄ = (v + c tanh(ac))(1 + (v/c) tanh(ac))−1,

ρ̄ = ρ cosh(ac) + (j/c) sinh(ac), j̄ = j cosh(ac) + cρ sinh(ac),

ē = e, m̄ = m, c̄ = c, f̄ = f, Ē = E.

(4.3.53)

The generator X4 from (4.3.50) and its finite transformations in the form (4.3.53)
extends the Galilean generator X5 from (4.3.37) to the relativistic domain of elec-
tron velocities. Comparing the algebras (4.3.37) and (4.3.50) of the point symmetry
groups we see that transition from non-relativistic to relativistic electron gas deletes
the generator X6 from (4.3.37).

The algebra (4.3.50), (4.3.51) is fairly consistent with the physical ideas on
the symmetry of system (4.3.48), (4.3.2) and (4.3.49), developed in the theory of
plasma. The characteristic feature of the system is in that the relativistic effects are
taken into account for electron motion but the finite value of light velocity c is ig-
nored in the field equations (4.3.2) in one dimensional approximation. However, we
can extend the scope of the method by taking into account the three-dimensional rel-
ativistic motion of electrons in self-coordinated electric field E and magnetic field
B obeying the Maxwell equations. This is done in Sect. 4.4.1.

4.3.3 Collisionless Non-relativistic Electron–Ion Plasma

In this section we turn to a model that contains two plasma particle species, namely
electrons and ions. It means that the basic system of equations should be supple-
mented by the kinetic equation for the ion distribution function f̄ and the corre-
sponding items in the field equations,

ft + vfx + e

m
Efv = 0, f̄t + vf̄x + ē

m̄
Ef̄v = 0,

ρ =
∫

dv(emf + ēm̄f̄ ), j =
∫

dvv(emf + ēm̄f̄ ), (4.3.54)

Ex = 4πρ, Et + 4πj = 0.
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The solution of the local and nonlocal determining equations for non-relativistic
Vlasov–Maxwell equations for electron–ion plasma is fulfilled in the same root as
for the electron gas model. The final result is given as the general element of the Lie
algebra of point symmetry operators of the Vlasov–Maxwell equations (4.3.54) is
determined by the linear combination [8]

X =
9∑

α=1

Aα(e,m, ē, m̄)Xα, (4.3.55)

X1 = ∂

∂t
, X2 = ∂

∂x
,

X3 = 2t
∂

∂t
+ x

∂

∂x
− v

∂

∂v
− 3f

∂

∂f
− 3f̄

∂

∂f̄
− 3E

∂

∂E
− 5j

∂

∂j
− 4ρ

∂

∂ρ
,

X4 = t
∂

∂x
+ ∂

∂v
+ ρ

∂

∂j
,

X5 = x
∂

∂x
+ v

∂

∂v
− f

∂

∂f
− f̄

∂

∂f̄
+ E

∂

∂E
+ j

∂

∂j
, (4.3.56)

X6 = 1

em

∂

∂f
− 1

ēm̄

∂

∂f̄
, X7 = e

∂

∂e
+ m

∂

∂m
− 2f

∂

∂f
,

X8 = m
∂

∂m
+ m̄

∂

∂m̄
+ E

∂

∂E
+ j

∂

∂j
+ ρ

∂

∂ρ
,

X9 = ē
∂

∂ē
+ m̄

∂

∂m̄
− 2f̄

∂

∂f̄
.

4.3.4 Collisionless Relativistic Electron–Ion Plasma

This section presents the result of the symmetry group calculation for the relativistic
analogue of equations discussed in the previous section:

ft + vfx + e

mγ 3
Efv = 0, f̄t + vf̄x + ē

m̄γ 3
Ef̄v = 0,

Ex = 4πρ, Et + 4πj = 0,

ρ =
∫

dvγ 3(emf + ēm̄f̄ ), j =
∫

dvγ 3v(emf + ēm̄f̄ ).

(4.3.57)

The Lie group admitted by the Vlasov–Maxwell equations (4.3.57) is a one-
dimensional analog of the group with algebra (4.3.50) provided that the parameters
e, m, ē, m̄ and c are invariant [8]:

L5 = 〈X1,X2,X3,X4,X5〉, (4.3.58)

X1 = ∂

∂t
, X2 = c

∂

∂x
,

X3 = t
∂

∂t
+ x

∂

∂x
− 2f

∂

∂f
− 2f̄

∂

∂f̄
− E

∂

∂E
− 2j

∂

∂j
− 2ρ

∂

∂ρ
,
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X4 = 1

c

(
x

∂

∂t
+ c2t

∂

∂x
+ (c2 − v2)

∂

∂v
+ c2ρ

∂

∂j
+ j

∂

∂ρ

)
, (4.3.59)

X5 = 1

em

∂

∂f
− 1

ēm̄

∂

∂f̄
.

Here the first, second, and fourth generators coincide with those of algebra L4 for
the relativistic electron gas. The dilation generator X3 in (4.3.59) differs from the
corresponding generator in (4.3.50) by the term (−2f̄ ∂f̄ ) containing the ion parti-

tion function f̄ . The quasi-neutrality operator X5 in (4.3.59) is new as compared
with the four-dimensional “electron” algebra (4.3.52) in Sect. 4.3.2. Taking into
consideration transformations of parameters, we obtain the four generators

X6 = c
∂

∂c
+ x

∂

∂x
+ v

∂

∂v
− f

∂

∂f
− f̄

∂

∂f̄
+ E

∂

∂E
+ j

∂

∂j
,

X7 = m
∂

∂m
+ m̄

∂

∂m̄
+ E

∂

∂E
+ j

∂

∂j
+ ρ

∂

∂ρ
,

X8 = ē
∂

∂ē
+ m̄

∂

∂m̄
− 2f̄

∂

∂f̄
,

X9 = e
∂

∂e
+ m

∂

∂m
− 2f

∂

∂f

(4.3.60)

in addition to the basis (4.3.59).
The general element of the Lie point algebra is a linear combination of nine

generators with coefficients that are arbitrary scalar functions of five variables,

X =
9∑

α=0

Aα(e,m, ē, m̄, c)Xα. (4.3.61)

We omit the calculations that lead to (4.3.59)–(4.3.60), since they just reproduce the
calculations made above.

Sections 4.3.3 and 4.3.4 demonstrate the point symmetry of kinetic equations
of collisionless electron–ion plasma. Two additional Lie groups admitted by the
Vlasov–Maxwell equations of quasi-neutral plasma are presented in the next sec-
tions. In contrast to present section, these equations correspond to a simplified model
of electron plasma, i.e., we consider ions as a positively charged background neu-
tralizing the negative charge of the electron plasma. Thus we omit the kinetic Vlasov
equations for the ion distribution function and describe ions by means of “hydrody-
namic” parameters.
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4.3.5 Non-relativistic Electron Plasma Kinetics with a Moving
and Stationary Ion Background

The non-relativistic one-dimensional equations of self-consistent fields for electron
plasma with moving positive homogeneous ion background neutralizing the charge
of electrons read

ft + vfx + e

m
Efv = 0; Ex = 4πρ, Et + 4πj = 0,

ρ = em

∫
dvf + ēn, j = em

∫
dvvf + ēnu.

(4.3.62)

Here f is the partial function of non-relativistic electrons with charge e < 0 and
mass m. The parameters ē, n, and u correspond to the ion charge (ē > 0), ion den-
sity n, and ion velocity u, respectively. Unlike the case of the electron–ion plasma
(Sect. 4.3.3), the ion mass m̄ is not involved in (4.3.62) and the ion motion is de-
scribed by the term ēnu in the plasma current density j . Group analysis of (4.3.62)
give rise to a ten-dimensional Lie algebra L10 with numerical structural constants
[8]:

L10 = 〈X1,X2, . . . ,X10〉, (4.3.63)

X1 = 1

ω

∂

∂t
, X2 = u

ω

∂

∂x
,

X3 = (x − ut)
∂

∂x
+ (v − u)

∂

∂v
− f

∂

∂f
+ E

∂

∂E
+ (j − uρ)

∂

∂j
,

X4 = sin(ωt)
∂

∂x
+ ω cos(ωt)

∂

∂v
+ 4πēn sin(ωt)

∂

∂E
+ ω cos(ωt)(ρ − ēn)

∂

∂j
,

X5 = cos(ωt)
∂

∂x
− ω sin(ωt)

∂

∂v
+ 4πēn cos(ωt)

∂

∂E
− ω sin(ωt)(ρ − ēn)

∂

∂j
,

X6 = ut
∂

∂x
+ u

∂

∂v
+ u

∂

∂u
+ uρ

∂

∂j
,

X7 = 2t
∂

∂t
+ x

∂

∂x
− v

∂

∂v
− 4n

∂

∂n
− u

∂

∂u
− 3f

∂

∂f
− 3E

∂

∂E
− 5j

∂

∂j
− 4ρ

∂

∂ρ
,

X8 = e
∂

∂e
+ m

∂

∂m
− 2f

∂

∂f
,

X9 = m
∂

∂m
+ n

∂

∂n
+ E

∂

∂E
+ j

∂

∂j
+ ρ

∂

∂ρ
, X10 = ē

∂

∂ē
− n

∂

∂n
.

(4.3.64)

Here ω is the well-known Langmuir electron frequency

ω =
(

−4πeēn

m

)1/2

.
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The general element X of the Lie algebra is a linear combination of all generators

X =
10∑

α=1

Aα(e,m, ē, n,u)Xα, (4.3.65)

with coefficients Aα , which are arbitrary functions of the five variables

e,m, ē, n,u. (4.3.66)

Parameters (4.3.66) are invariants of the first five generators (4.3.64) and when the
ion velocity is zero, u = 0, these generators correspond to the result obtained in [5].

The additional terms, which are missing in generators obtained in [5], take into
account the transformation of the plasma current density j (which is equal to the
electron current in the limit (4.3.62)), while the plasma charge density ρ is invariant.
These terms are the prolongation of the group in [5] to the nonlocal variables

ρ = em

∫
dvf + ēn, j = em

∫
dvvf, (4.3.67)

and can be omitted in case we consider the group of transformations in the space of
group variables {t, x, v, f,E}.

The generator X6 in (4.3.64) is due to the nonzero ion velocity u included in the
set of variables (4.3.66) together with all variables involved in group transforma-
tions. By doing this we preserve an analog of the Galilean subgroup in the admitted
Lie group, which is absent in the five-parameter group [5] (here a is a group param-
eter):

t ′ = t, x′ = x + (ea − 1)ut, v′ = v + (ea − 1)u, e′ = e, m′ = m,

ē′ = ē, n′ = n, u′ = uea, f ′ = f,

E′ = E, ρ′ = ρ, j ′ = j + (ea − 1)uρ.

(4.3.68)

This example shows the importance of including parameters into group transforma-
tions.

4.3.6 Relativistic Electron Plasma Kinetics with a Moving Ion
Background

In this section we present the result of the symmetry group calculation for relativistic
equations generalizing (4.3.62):

ft + vfx + e

mγ 3
Efv = 0; Ex = 4πρ, Et + 4πj = 0,

ρ = em

∫
dvγ 3f + ēn, j = em

∫
dvγ 3vf + ēnu,

γ ≡ [
1 − (v/c)2]−1/2

.

(4.3.69)

An infinite symmetry group admitted by (4.3.69) is given by a linear combination
of the eight generators [8]
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X =
8∑

α=1

Aα(e,m, ē, n,u, c)Xα, (4.3.70)

X1 = ∂

∂t
, X2 = c

∂

∂x
,

X3 = t
∂

∂t
+ x

∂

∂x
− 2n

∂

∂n
− 2f

∂

∂f
− E

∂

∂E
− 2j

∂

∂j
− 2ρ

∂

∂ρ
,

X4 = 1

c

[
x

∂

∂t
+ c2t

∂

∂x
+ (c2 − v2)

∂

∂v
+ (c2 − u2)

∂

∂u

+ un
∂

∂n
+ c2ρ

∂

∂j
− j

∂

∂ρ

]
, (4.3.71)

X5 = e
∂

∂e
+ m

∂

∂m
− 2f

∂

∂f
,

X6 = m
∂

∂m
+ n

∂

∂n
+ E

∂

∂E
+ j

∂

∂j
+ ρ

∂

∂ρ
, X7 = ē

∂

∂ē
− n

∂

∂n
,

X8 = c
∂

∂c
+ x

∂

∂x
+ v

∂

∂v
+ u

∂

∂u
− f

∂

∂f
+ E

∂

∂E
+ j

∂

∂j
,

This example again shows the importance of the inclusion of the parameters into the
group transformations: the six generators in (4.3.71) are due to the noninvariance of
the parameters.

4.3.7 Non-relativistic Electron–Ion Plasma in Quasi-neutral
Approximation

Essential progress in studying dynamics of plasma expansion and acceleration of
ions was achieved by use of quasi-neutral approximation [13, 14], suitable for de-
scriptions of plasma flows with characteristic scale of density variation which is
large in comparison with Debye length for plasma particles. In this approximation
charge and current densities in plasma are set equal to zero, that essentially sim-
plifies the initial model with non-local terms. Thus, instead of the complete system
of Vlasov–Maxwell equations (4.1.1)–(4.1.3) with the corresponding material rela-
tions here we will only use the kinetic equations for particle distribution functions
for various species

f α
t + vf α

x + (eα/mα)E(t, x)f α
v = 0 (4.3.72)

with additional non-local restrictions imposed on them, which arise from vanishing
conditions for the current and the charge densities∫

dv
∑
α

eαf α = 0,

∫
dvv

∑
α

eαf α = 0. (4.3.73)

At that the electric field E is expressed through the moments of distribution func-
tions:
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E(t, x) =
(∫

dvv2∂x

∑
α

eαf α

)(∫
dv
∑
α

e2
α

mα

f α

)−1

. (4.3.74)

Equations (4.3.72), (4.3.73) describe one-dimensional dynamics of a plasma, which
is inhomogeneous upon the coordinate x; thus the distribution functions of particles
f α depend upon t , x and the velocity component v in the directions of plasma
inhomogeneity.

The group of point Lie transformations admitted by system (4.3.72) and (4.3.73)
is specified by the following set of infinitesimal operators [14]:

X1 = ∂

∂t
, X2 = ∂

∂x
, X3 = t

∂

∂t
− v

∂

∂v
, X4 = x

∂

∂x
+ v

∂

∂v
,

X5 =
∑
α

f α ∂

∂f α
, X6 = t

∂

∂x
+ ∂

∂v
,

X7 = t2 ∂

∂t
+ tx

∂

∂x
+ (x − vt)

∂

∂v
,

Xα = 1

Zα+1

∂

∂f α+1
− 1

Zα

∂

∂f α

(4.3.75)

with the general element of the algebra represented by their linear combination

X =
7∑

j=1

cjXj +
∑
α

bαXα. (4.3.76)

In the operators Xα in system (4.3.75), Zα = eα/|e| is the charge number of the
particle species α, and the index α + 1 denotes the particle species that follows α.
The operators Xα exist only in plasma with the number of particle types larger than
or equal to two and their number is less than the number of plasma components by
one. Transformation of charge and mass of particles are not included in (4.3.75).

The method for calculating the admitted symmetry group used here qualitatively
differs from the method used earlier in Sect. 4.3 in that the electric field E is treated
not as one of the dependent variables but as an unknown function of the variables t

and x, E(t, x). This case of finding the symmetry logically follows from the simpler,
quasineutral model of plasma (4.3.72), (4.3.73) in contrast to the complete system
of Vlasov–Maxwell equations (4.3.1)–(4.3.3). It is easy to verify that the transla-
tion operators X1 and X2, the Galilean transformation operator X6, and the quasi-
neutrality operators Xα are contained in the symmetry group obtained in Sect. 4.3.3
by a different method without assuming that E is an arbitrary function of two vari-
ables to be determined. The two dilation generators specified in (4.3.56) are obtained
by combining the three expansion operators X3, X4, and X5 from (4.3.75) and by
adding the contributions responsible for the dilation transformations of the electric
field E, charge density ρ, and electric current density j . The projective group op-
erator X7 is new among the generators (4.3.75). Since here, in contrast to (4.3.54),
we chose a different normalization of the particle distribution functions, the quasi-
neutrality generators, Xα , contrary to (4.3.56) contain factors that do not depend on
particle mass.
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4.4 Group Analysis of Three Dimensional Collisionless Plasma
Kinetic Equations

In this section we calculate the point symmetry of the self-consistent field equations
for three dimensional kinetic models of collisionless plasma. In the first subsection
the group analysis is fulfilled for the three-dimensional kinetic equations of relativis-
tic electron gas. In the second one the same is done for the model of quasi-neutral
multi-species plasma.

4.4.1 Relativistic Electron Gas Kinetics

We start with the equations of kinetic theory for collisionless relativistic electron
gas, described by the system of equations (4.1.1)–(4.1.3) where only one parti-
cle species, electrons, are taken into account. As in one-dimensional case, (4.1.1)–
(4.1.3) should be supplemented by additional differential constraints

Ev = 0, Bv = 0, jv = 0, ρv = 0, (4.4.1)

which explicitly show that electromagnetic fields and momenta of the distribution
function do not depend on the electron velocity v.

The canonical group generator Y of the continuous point Lie group admitted by
system (4.1.1)–(4.1.3), (4.4.1) has the form

Y = κ
1 ∂

∂f
+ −→

κ
2 ∂

∂E
+ −→

κ
3 ∂

∂B
+ −→

κ
4 ∂

∂j
+ κ

5 ∂

∂ρ
, (4.4.2)

where the first term is given by the following three-dimensional relativistic analog
of representations (4.3.15) in Sect. 4.3.1:

κ
1 ∂

∂f
=
∫

dvκ
1(v)

δ

δf (v)
. (4.4.3)

As in (4.1.2), the integration domain in this formula is the sphere |v| < c of ra-
dius c. The procedure of symmetry group construction is similar to that in the one-
dimensional case though calculus are a little bit more tedious here. As a result we
get the group that is represented by the following basic generators [6, 8] (for conve-
nience, they are written in a non-canonical form):

X0 = ∂

∂t
, Xi = c

∂

∂xi

,

Yi = 1

c

[
xi

∂

∂t
+ c2t

∂

∂xi

+ (c2δis − vivs)
∂

∂vs

− ceiskBs

∂

∂Ek

+ ceiskEs

∂

∂Bk

+ c2ρ
∂

∂ji

+ ji

∂

∂ρ

]
,

(4.4.4)

Zi = eisk

(
xs

∂

∂xk

+ vs

∂

∂vk

+ Es

∂

∂Ek

+ Bs

∂

∂Bk

+ js

∂

∂jk

)
,
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X4 = t
∂

∂t
+ xs

∂

∂xs

− 2f
∂

∂f
− Es

∂

∂Es

− Bs

∂

∂Bs

− 2js

∂

∂js

− 2ρ
∂

∂ρ
.

Here summation is performed over repeated indices, δis and eisk are the Kronecker
symbols of the second and the third order, 1 ≤ i, s, k ≤ 3.

Generators (4.4.4) form the 11-dimensional Lie algebra

L11 = 〈X0,X,Y ,Z,X4〉 (4.4.5)

and any infinitesimal operator in (4.4.4) has a simple physical meaning. The gen-
erators X0 and X correspond to time and space translations, respectively. The op-
erator Y generates Lorentz transformations, which do not involve the distribution
function f , e.g., hyperbolic rotations in the planes (ct,x) and (cρ,j) and linear-
fractional transformations of the electron velocity v. Lorentz transformations of
vectors E and B correspond to the transformation of the 4-tensor of electromag-
netic field (see [15, §22, 23]). The operator Z generates rotations. The operator
X4 generates dilations, and it is the only group transformations in (4.4.4) which
involve f .

The 10-dimensional algebra of the Poincaré group,

L10 = 〈X0,X,Y ,Z〉 (4.4.6)

is included in (4.4.5), L10 ⊂ L11, and it also appears in the independent (local) group
analysis of the Maxwell equations (4.1.2),

X = ξ1 ∂

∂t
+ ξ2 ∂

∂x
+ η2 ∂

∂E
+ η3 ∂

∂B
+ η4 ∂

∂j
+ η5 ∂

∂ρ
, (4.4.7)

as a subalgebra of the 16-dimensional algebra

L16 = 〈X0,X,Y ,Z,U0,U , X̄4, X̄5〉 (4.4.8)

of the conformal group admitted by (4.1.2). Here the scalar U0 and the vector U

operators are given by

U0 = 1

c2

[
1

2
(c2t2 + x2)

∂

∂t
+ c2txi

∂

∂xi

− c(2ctEi − eiskBsxk)
∂

∂Ei

− c(2ctBi + eiskEsxk)
∂

∂Bi

+ c2(−3tji + ρxi)
∂

∂ji

+ (−3tρc2 + jixi)
∂

∂ρ

]
,

Ui = 1

c

[
txi

∂

∂t
+
(

xixs + 1

2
(c2t2 − x2)δis

)
∂

∂xs

+
(

xkEi − (E · x)δik (4.4.9)

− 2xiEk − cteiskBs

)
∂

∂Ek

+ (
xkBi − (B · x)δik − 2xiBk + cteiskEs

) ∂

∂Bk

+ (
xkji − (j · x)δik − 3xijk + c2tρδik

) ∂

∂jk

+ (tji − 3ρxi)
∂

∂ρ

]
.
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The two last (scalar) generators in (4.4.8) generate the dilations

X̄4 = t
∂

∂t
+ xi

∂

∂xi

− 2Ei

∂

∂Ei

− 2Bi

∂

∂Bi

− 3ji

∂

∂ji

− 3ρ
∂

∂ρ
,

X̄5 = Ei

∂

∂Ei

+ Bi

∂

∂Bi

+ ji

∂

∂ji

+ ρ
∂

∂ρ
.

(4.4.10)

The invariance conditions for the kinetic Vlasov equation (4.1.1) violates the con-
formal part (4.4.9) of group (4.4.8) when the intermediate group symmetry is taken
into account. Adding the dilation operators (4.4.10) and “correcting” the sum by tak-
ing into account the dilation of f we obtain a “prototype” of the generator X4 in the
algebra (4.4.5). Thus, using the relation between the algebras L10, L11 and L16 we
can interpret the result (4.4.5) in terms of the group symmetry of the Maxwell equa-
tions (4.1.2). The nonlocal determining equations yield the contribution (−2f ∂f )

into the generator X4 in (4.4.6); this term cannot be obtained from the standard
group analysis, but it is easily reproduced from physical considerations.

Including parameters e, m, and c in the set of group variables of the system under
consideration we add three scalar generators to (4.4.6) and thereby take into account
dilations of the electron charge, mass, and the light velocity c in vacuum:

X5 = m
∂

∂m
− 2f

∂

∂f
+ Es

∂

∂Es

+ Bs

∂

∂Bs

+ js

∂

∂js

+ ρ
∂

∂ρ
,

X6 = e
∂

∂e
+ m

∂

∂m
− 4f

∂

∂f
,

X7 = c
∂

∂c
+ xs

∂

∂xs

+ vs

∂

∂vs

− 3f
∂

∂f
+ Es

∂

∂Es

+ Bs

∂

∂Bs

+ js

∂

∂js

.

(4.4.11)

Then the Lie group of the Vlasov–Maxwell equations (4.1.1)–(4.1.3) becomes in-
finite and the common element X of the operator algebra depending on 14 scalar
functions of three variables e, m, and c is given by [8]

X =
7∑

α=0

Aα(e,m, c)Xα + b(e,m, c)Y + g(e,m, c)Z. (4.4.12)

The group analysis of the equations of collisionless electron gas (single-component
charged plasma) performed in the present section is supplemented in the next sec-
tion by the group analysis of kinetic equations of a quasi-neutral multi-component
(electron–ion) plasma.

4.4.2 Relativistic Electron–Ion Plasma Kinetic Equations

In this Section we point to the distinctive features that arise for the symmetry group
of a multi-species electron–ion plasma (with k > 1 particle species), as compared
to algebra (4.4.5). Starting with Vlasov–Maxwell equations (4.1.1)–(4.1.3) in the
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most general form with 1 ≤ α ≤ k and adding (4.4.1) we come after fulfilling the
procedure used above to the following 11 + (k − 1)-parameter Lie group [6, 8]

L11+(k−1) = 〈X0,X,Y ,Z,X4,X
μ〉, 2 ≤ μ ≤ k, (4.4.13)

including the Poincaré group as a subgroup. The first ten (scalar) generators of the
algebra (4.4.13) are listed in (4.4.5) and span the algebra (4.4.8). The infinitesimal
operator X4 in (4.4.13), in contrast to X4 in (4.4.9), includes dilations of all distri-
bution functions f α :

X4 = t
∂

∂t
+ xs

∂

∂xs

− 2
k∑

μ=1

f μ ∂

∂f μ
− Es

∂

∂Es

− Bs

∂

∂Bs

− 2js

∂

∂js

− 2ρ
∂

∂ρ
. (4.4.14)

The algebra L11+(k−1) contains k − 1 new operators not included in L11 in (4.4.9);
these are the “quasi-neutrality operators”

Xμ = 1

e1(m1)3

∂

∂f 1
− 1

eμ(mμ)3

∂

∂f μ
, 2 ≤ μ ≤ k, (4.4.15)

typical for the multi-component plasma. The quasi-neutrality generator (4.4.15) de-
termines consistent translation transformations of the distribution functions f μ.

Including 2k+1 parameters (masses and charges of particles and light velocity in
vacuum) of multi-component plasma equations in the set of group variables yields
2k + 1 additional generators of dilations (1 ≤ λ, ν ≤ k)

X5 = c
∂

∂c
+ xs

∂

∂xs

+ vs

∂

∂vs

− 3
k∑

q=1

f q ∂

∂f q
+ Es

∂

∂Es

+ Bs

∂

∂Bs

+ js

∂

∂js

,

X6 =
k∑

q=1

mq ∂

∂mq
− 2

k∑
q=1

f q ∂

∂f q
+ Es

∂

∂Es

+ Bs

∂

∂Bs

+ js

∂

∂js

+ ρ
∂

∂ρ
,

Xλ = eλ ∂

∂eλ
+ mλ ∂

∂mλ
− 4f λ ∂

∂f λ
,

Xν = eν ∂

∂eν
+ mν ∂

∂mν
− 4f ν ∂

∂f ν
.

(4.4.16)

Then the Lie group admitted by the Vlasov–Maxwell equations (4.1.1)–(4.1.3) be-
comes infinite and its general element X depends on 3k+9 arbitrary scalar functions
of the 2k + 1 group variables eα , mα , and c:

X =
6∑

α=0

Aα(eα,mα, c)Xα + b(eα,mα, c)Y + g(eα,mα, c)Z

+
k∑

μ=2

Aμ(eα,mα, c)Xμ +
k∑

λ=1

Aλ(e
α,mα, c)Xλ +

k∑
ν=1

Aν(e
α,mα, c)Xν.

(4.4.17)
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4.5 Symmetry of Vlasov–Maxwell Equations in Lagrangian
Variables

This section is devoted to calculation of the symmetry group for the system of equa-
tions (4.1.5)–(4.1.7) that presents the Lagrangian formulation of the known Vlasov–
Maxwell equations (4.1.1)–(4.1.3). The infinitesimal operator of the admitted local
group of point one-parameter transformations in a standard form

X = ξ1 ∂

∂t
+ ξ2 ∂

∂r
+ ξ3 ∂

∂w
+
∑
α

η1α ∂

∂Nα
+
∑
α

η2α ∂

∂V α

+ η3 ∂

∂E
+ η4 ∂

∂B
+ η5 ∂

∂j
+ η6 ∂

∂ρ
, (4.5.1)

where coordinates ξ i and ηk depend upon t , r , w, Nα , V α , E, B , j and ρ. In the
canonical form this operator is given as:

Y =
∑
α

κ
1α ∂

∂Nα
+ −→

κ
2α ∂

∂V α + −→
κ

3 ∂

∂E
+ −→

κ
4 ∂

∂B
+ −→

κ
5 ∂

∂j
+ κ

6 ∂

∂ρ
,

κ
1α = η1α − DNα, −→

κ
2α = η2α − DV α,

−→
κ

3 = η3 − DE, −→
κ

4 = η4 − DB,

−→
κ

5 = η5 − Dj , κ
6 = η6 − Dρ,

D ≡ ξ1∂t − (ξ2 · ∇r) − (ξ3 · ∇w).

(4.5.2)

The current and charge densities in (4.1.6) are moments of functions Nα and V α

and, similar to electric and magnetic fields in Maxwell equations (4.1.3), do not
depend upon the plasma particles velocity. This lead to additional differential con-
straints

Ew = 0; Bw = 0; jw = 0; ρw = 0, (4.5.3)

that are obvious from the physical point of view, however essential for calculating
symmetries of Vlasov–Maxwell equations.

Following the procedure, fulfilled in the preceding section, we obtain the continu-
ous Lie point transformation group for Vlasov–Maxwell equations (with Lagrangian
velocity), which we present in a non-canonical form (compare to (4.4.5), (4.4.13) in
Sect. 4.4)

P0 = i
∂

∂t
, P = i

∂

∂r
,
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B = r
∂

∂t
+ c2t

∂

∂r
− c

[
B × ∂

∂E

]
+ c

[
E × ∂

∂B

]
+ c2ρ

∂

∂j
+ j

∂

∂ρ

+
∑
α

(
NαV α∂Nα + c2∂V α − V α

(
V α · ∂

∂V α

))
,

R =
[
r × ∂

∂r

]
+
[
V α × ∂

∂V α

]
+
[
E × ∂

∂E

]
+
[
B × ∂

∂B

]
+
[
j × ∂

∂j

]
,

D = t
∂

∂t
+ r

∂

∂r
− 2

∑
α

Nα ∂

∂Nα
− E

∂

∂E
− B

∂

∂B
− 2j

∂

∂j
− 2ρ

∂

∂ρ
,

X∞ = ξ
∂

∂w
−
(

5
(w · ξ)

c2
γ 2 + (∇w · ξ)

)∑
α

Nα ∂

∂Nα
.

(4.5.4)

The operators in (4.5.4) has a simple physical interpretation: Pμ = (P0,P), where
μ = 0,1,2,3, specify translation in time and translation along the three components
of radius-vector r , B defines Lorentz transformations, consisting of hyperbolic rota-
tions (boosts) in the {ct, r} and {cρ,j} planes, linear-fractional transformations of
the velocity V α , transformations of the density Nα and transformations of compo-
nents of the 4-tensor of the electromagnetic field (see, e.g., §24, 25 in [15]), while R
specifies circular rotations. These ten (scalar) operators define the Poincaré group:3

L10 = 〈P0,P,B,R〉.
In (4.5.4) this is supplemented by the operator D, specifying dilations, and the op-
erator of the infinite subgroup X∞ (see also [16] and [17] (p. 419, vol. 2)), speci-
fying the consistent transformations of Lagrangian velocity and the density of the
plasma particles. Thus, provided parameters eα,mα and c are not involved in trans-
formations the continuous Lie point group, admitted by Vlasov–Maxwell equations
with Lagrangian velocity, is defined by the 11-dimensional subalgebra, specified
by the algebra L10 of the Poincaré group and the one-dimensional algebra with
the dilation operator D, and the infinite-dimensional subalgebra with the opera-
tor X∞.

To end of this section we prolong the generators (4.5.4) to the space of Fourier
variables for functions, independent of Lagrangian velocity w. From a point of ini-
tial representation, specifying of the Fourier transformation, say, of a charge density

ρ̃(ω,k) =
∫

dt drρ(t, r) exp(iωt − ikr), (4.5.5)

3Frequently the six operators specifying hyperbolic and circular rotations in (c2t, xk) and (xj , xk)

planes, respectively (j, k = 1,2,3; r = (x1, x2, x3)), are written in a universal form using the
operators Mμν , where M0k = iB0k and Mjk = iRjk . The three operators (M23,M31,M12) are
components of the vector-operator M = [r × P].
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is equivalent to introduction of a new non-local variable. Similar to Sect. 4.2.4 to ful-
fill the procedure of prolongation of Lie point group operator (4.5.1) on a non-local
variable, we rewrite down this operator in the canonical form (4.5.2) and formally
prolong it on the non-local variable ρ̃(ω,k)

Ỹ ≡ Y + κ̃
6 ∂

∂ρ̃
. (4.5.6)

The integral relation between κ
6 and κ̃

6 results while applying the operator (4.5.2)
to (4.5.5). Here we consider it as the definition of the variable ρ̃

κ̃
6 =

∫
dt drκ

6 exp(iωt − ikr). (4.5.7)

Substituting κ
6 from (4.5.5), (4.5.6) into (4.5.7) and calculating the integrals ob-

tained (integrating by parts), we get the desired coordinate κ̃
6. For example, for

the operator of time translations P0 the coordinate κ
6 = −iρt after substitution into

(4.5.5) yields the following expression for the coordinate κ̃
1e = −ωρ̃ in Fourier

variables. Other coordinates of a canonical operator are calculated in a similar way.
Inserting these results into (4.5.6), restricting the group to Fourier variables not con-
taining dependencies upon Lagrangian velocity w (i.e. leaving in (4.5.7) only the
contributions responsible for transformation of these variables in Fourier represen-
tation) and returning back to non-canonical representation, we obtain the following
set of operators for 11-parametric Lie point group in {ω,k} representation (see also
[16])

P̃0 = −ω

(
Ẽ

∂

∂Ẽ
+ B̃

∂

∂B̃
+ j̃

∂

∂ j̃
+ ρ̃

∂

∂ρ̃

)
;

P̃ = k

(
Ẽ

∂

∂Ẽ
+ B̃

∂

∂B̃
+ j̃

∂

∂ j̃
+ ρ̃

∂

∂ρ̃

)
;

B̃ = c2k
∂

∂ω
+ ω

∂

∂k
− c

[
B̃ × ∂

∂Ẽ

]
+ c

[
Ẽ × ∂

∂B̃

]
+ c2ρ̃

∂

∂ j̃
+ j̃

∂

∂ρ̃
;

R̃ =
[
k,

∂

∂k

]
+
[
Ẽ × ∂

∂Ẽ

]
+
[
B̃ × ∂

∂B̃

]
+
[
j̃ × ∂

∂ j̃

]
;

D̃ = −ω
∂

∂ω
− k

∂

∂k
+ 3Ẽ

∂

∂Ẽ
+ 3B̃

∂

∂B̃
+ 2j̃

∂

∂ j̃
+ 2ρ̃

∂

∂ρ̃
.

(4.5.8)

Formulas (4.5.8) supplement the group (4.5.4) by the appropriate transformations of
variables in Fourier-space. For example, Lorentz transformations with the operator
B are supplemented with hyperbolic rotations in {ω,ck} and {cρ̃, j̃} planes and
transformations of the 4-tensor of the Fourier-components of the electromagnetic
field.
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4.6 Vlasov-Type Equations: Symmetries of the Benney
Equations

4.6.1 Different Forms of the Benney Equations

The Benney equations referred to by the name of the author of a pioneering work
[18] appear in long wavelength hydrodynamics of an ideal incompressible fluid of
a finite depth in a gravitational field. From the group theoretical point of view they
are of particular interest due to the existence of an infinite set of conservation laws
obtained in [18]. The latter property of the Benney equations emphasizes their sig-
nificance that goes far beyond an interesting example of an integrable system of
hydrodynamic equations.

In practice, the Benney equations are used in various representation. One of them
is the kinetic Benney equation (a kinetic equation with a self-consistent field):

ft + vfx − A0
xfv = 0, A0(t, x) =

+∞∫
−∞

f (t, x, v)dv. (4.6.1)

This equation appears as a unique representative of a set of hierarchy of kinetic
equations of Vlasov-type [19]. A detailed study of its group properties will lead to
better understanding of the symmetry properties of kinetic equations of collisionless
plasma, namely the Vlasov–Maxwell equations.

Another form of the Benney equations is an infinite set of coupled equations

Ai
t + Ai+1

x + iA0
xA

i−1 = 0, i ≥ 0 (4.6.2)

for a countable set of functions Ai of two independent variables, time t and the
spatial coordinate x. In terms of hydrodynamics these functions appear as averaged
values (with respect to the depth) of integer powers i ≥ 0 of the horizontal com-
ponent of the liquid flow velocity. The corresponding integrals that describe this
averaging are taken over the vertical coordinate in the limits from the flat bottom up
to the free liquid surface. Solutions, Hamiltonian structure and conservation laws
for (4.6.2) were discussed in details in [20, 21].

From the kinetic point of view the system (4.6.2) can be treated as a system of
equations for moments of the distribution function f that obeys the kinetic Benney
equation (4.6.1)

Ai(t, x) =
+∞∫

−∞
vif dv, i ≥ 0. (4.6.3)

This fact with the explicit formulation of the Benney equation (4.6.1) was first stated
independently in [22, 23]. The Lagrangian change of the Euler velocity v,

v = V (t, x,u) (4.6.4)

yields one more representation for Benney equations (4.6.1):

ft + Vfx = 0, Vt + V Vx = −A0
x, A0(t, x) =

∫
Vuf (t, x,u)du. (4.6.5)
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Equations (4.6.3) are readily converted into the hydrodynamic-type form

nt + (nV )x = 0, Vt + V Vx = −A0
x, A0 =

∫
n(t, x,u)du, (4.6.6)

if one employs the “density” n depending on the Lagrangian velocity u:

n = f (t, x,u)Vu. (4.6.7)

Using the form (4.6.6) of the Benney equations an infinite set of conservation laws
were constructed in [22] with the densities regarded as functions of the Lagrangian
velocity u.

The knowledge of the complete Lie–Bäcklund symmetry for the Benney equa-
tions in different representations (4.6.1)–(4.6.6) can clarify the question of structure
of solutions and conservation laws for these equations. This statement is partially
confirmed by the fact that one of the main results of the works [20, 21], namely
the higher order Benney equations, can be re-formulated in terms of the first order
Lie–Bäcklund group, admitted by the system (4.6.2). Unfortunately, the complete
description of the Lie–Bäcklund symmetry for (4.6.2) is not available in the liter-
ature. This section is devoted to calculating an infinite (countable) part of the Lie
point symmetries of the moment equations (4.6.2).

4.6.2 Lie Subgroup and Lie–Bäcklund Group: Statement
of the Problem

A Lie subgroup, admitted by the kinetic Benney equation (4.6.1) in the space of four
variables

t, x, v, f (4.6.8)

is defined by five basic infinitesimal operators

X1 = ∂

∂t
, X2 = ∂

∂x
, X3 = t

∂

∂x
+ ∂

∂v
,

X4 = t
∂

∂t
− v

∂

∂v
− f

∂

∂f
, X5 = x

∂

∂x
+ v

∂

∂v
+ f

∂

∂f
.

(4.6.9)

With the less computation difficulties this group can be obtained using the approach
developed in Sect. 4.3.1.

Prolongation of infinitesimal operators (4.6.9) on nonlocal variables (4.6.3) ex-
tends the set of variables (4.6.8) up to a countable set

t, x, v, f, A0, . . . , Ai, . . . . (4.6.10)

In the latter case infinitesimal operators (4.6.9) rewritten in the canonical form and
restricted on the sub-manifold

t, x, A0, . . . , Ai, . . . (4.6.11)
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are given by the following expressions

X1 =
∞∑
i=0

(
Ai+1

x + iAi−1A0
x

) ∂

∂Ai
; X2 =

∞∑
i=0

Ai
x

∂

∂Ai
;

X3 =
∞∑
i=0

(
iAi−1 − tAi

x

) ∂

∂Ai
;

X4 =
∞∑
i=0

[
(i + 2)Ai − t (Ai+1

x + iAi−1A0
x)
] ∂

∂Ai
;

X5 =
∞∑
i=0

[
(i + 2)Ai − xAi

x

] ∂

∂Ai
.

(4.6.12)

It can be easily checked that infinitesimal operators (4.6.12) are admitted by Benney
equations (4.6.2) and it goes without saying that they directly result from the group
analysis of Benney equations (4.6.2). Just in this way (i.e., using the method of
moments) infinitesimal operators (4.6.9) were first obtained in [19] by using non-
canonical form of infinitesimal operators (4.6.12) with the subsequent passage to
the representation (4.6.9) in the space of variables (4.6.10).

4.6.3 Incompleteness of the Point Group: Statement of the Problem

It is evident, however, that the subgroup (4.6.12) does not exhaust the complete
group symmetry of Benney equations (4.6.2). The incompleteness of the result
(4.6.12) is obvious form many points of view. Here we shall only point on the non-
conformity of finite dimension of the algebra (4.6.12) to the infinite set of conserva-
tion laws for Benney equations, and on the infinite extension of the point symmetry
group for Benney equations in the form of (4.6.5), (4.6.6) with Lagrangian veloc-
ity. Here of principle significance for us is the following statement [24]: the group
(4.6.12) is incomplete not only from the standpoint of Lie–Bäcklund symmetry for
Benney equations but also from the standpoint of the Lie point symmetry. The va-
lidity of the statement can be proved by direct solving of determining equations for
the first order Lie–Bäcklund group (contact group, that is not reduced to point one)

Dt(κ
i ) + Dx(κ

i+1) + iAi−1Dx(κ
0) + iA0

xκ
i−1 = 0, i ≥ 0, (4.6.13)

where coordinates κ
i of canonical operator

X =
∞∑
i=0

κ
i ∂

∂Ai
, (4.6.14)

depend upon the countered set of group variables

t, x; A0, . . . , Aj , . . . ; A0
x, . . . , A

j
x, . . . ; j ≥ 0. (4.6.15)

To prove the above statement one can consider only partial solutions of determining
equations (4.6.12)

κ
i = ηi(A0, . . . ,Aj , . . .); i, j ≥ 0, (4.6.16)
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that depend upon moments Aj , j ≥ 0, and does not depend upon t , x. It appears
that thanks to these infinitesimal operators (4.6.14), (4.6.16) an infinite extension of
the group (4.6.12) takes place. Now the problem is to find these operators.

4.6.4 Determining Equations and Their Solution

Before proceeding further we write determining equations of first-order Lie–
Bäcklund group, admitted by a more infinite system of coupling equations for func-
tions Ai(t, x) with the arbitrary element ϕ(A0)

Ai
t + Ai+1

x + iAi−1[ϕ(A0)
]
x

= 0, i ≥ 0. (4.6.17)

For the coordinates κ
i of canonical infinitesimal operator (4.6.14) the following

chains of determining equations are valid which result from splitting (4.6.17) with
respect to second derivatives:

κ
i+1
A0

x
+ iϕ1A

i−1
κ

0
A0

x
=

∞∑
j=0

jϕ1A
j−1

κ
i

A
j
x

, i ≥ 0;

κ
i+1
A

j
x

+ iϕ1A
i−1

κ
0
A

j
x

= κ
i

A
j−1
x

; i ≥ 0, j ≥ 1,

κ
i
t + κ

i+1
x + iϕ1A

i−1
κ

0
x + A0

x

(
iϕ1κ

i−1 + iϕ2A
i−1

κ
0)

+
∞∑

j=0

[
iϕ1A

i−1A
j
xκ

0
Aj − (

A
j+1
x + jϕ1A

0
xA

j−1)
κ

i
Aj + A

j
xκ

i+1
Aj

]

−
∞∑

j=0

jA0
x

(
ϕ1A

j−1
x + ϕ2A

0
xA

j−1)
κ

i

A
j
x

= 0, i ≥ 0.

(4.6.18)

Here ϕ1 and ϕ2 are the first and the second derivatives of the function ϕ with re-
spect to its argument. From the various standpoints at list three distinct values of
the function ϕ are specified. In case ϕ(A0) = A0 we come to kinetic Benney equa-
tions (4.6.2), whereas for ϕ = a(A0)2 extension of the admitted point group takes
place thanks to projective transformations in t, x-plane (see [19]). For ϕ = a lnA0

the corresponding kinetic equation

ft + vfx − a
A0

x

A0
fv = 0, A0 =

+∞∫
−∞

dvf, (4.6.19)

that gives rise to the discussed system of equations for moments, is of special in-
terest in plasma theory. It appears as the equation for the distribution function of
plasma ions, while electrons obey the Boltzmann distribution. More complicated
dependencies of ϕ(A0) upon A0 can also be of interest in plasma physics for non-
Boltzmann distribution functions for hot electrons. Equation (4.6.19) was studied in
details in [25].
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For the Benney equations (4.6.2) the determining equations (4.6.18) are rewritten
in the following form

κ
i+1
A0

x
+ iAi−1

κ
0
A0

x
−

∞∑
j=0

jAj−1
κ

i

A
j
x

= 0, i ≥ 0,

κ
i+1
A

j+1
x

− κ
i

A
j
x

+ iAi−1
κ

0
A

j+1
x

= 0, i ≥ 0, j ≥ 0.

κ
i
t + κ

i+1
x + iAi−1

κ
0
x + A0

x

⎛
⎝iκi−1 −

∞∑
j=0

jAj−1
κ

i
Aj −

∞∑
j=0

(j + 1)A
j
xκ

i

A
j+1
x

⎞
⎠

+ iAi−1
∞∑

j=0

A
j
xκ

0
Aj +

∞∑
j=0

A
j
xκ

i+1
Aj −

∞∑
j=0

A
j+1
x κ

i
Aj = 0, i ≥ 0.

(4.6.20)

Under conditions (4.6.16) the determining equations (4.6.20) are split and reduced
to two infinite chains of equalities, namely one-dimensional (vector) and two-
dimensional (tensor):

ηi+1
A0 −

∞∑
j=0

jAj−1ηi
Aj + iAi−1η0

A0 + iηi−1 = 0, i ≥ 0;

ηi+1
Ak+1 − ηi

Ak + iAi−1η0
Ak+1 = 0, i ≥ 0, k ≥ 0.

(4.6.21)

The apparent difficulty in analytical solving of the given system of determining
equations (4.6.21) is due to a “nonlocal” nature of the second term in the vector
chain in the form of an infinite sum with respect to index j ≥ 0. The measure of
this non-locality is characterized by a number of nonzero components of tensor ηi

j .
But in fact in case of an overdetermined system (4.6.21) we obtain a finite upper
value of the summation index j < ∞, which depends upon the other index i of this
tensor.4 Then we come to a much more simplified (but equivalent) formulation of
the system (4.6.21)

ηi+1
A0 −

i−2∑
j=0

jAj−1ηi
Aj + iηi−1 = 0, ηi+1

Ai = 0, i ≥ 0;

ηi+1
Ak+1 = ηi

Ak , ηi
Ai+k = 0, i ≥ 0, k ≥ 0.

(4.6.22)

Before proceeding to enumerating all solutions of the system of determining equa-
tions (4.6.22), we present here yet another form of the chain in (4.6.22)

ηi+1
A0 −

i−2∑
j=0

jAj−1η
i−j

A0 + iηi−1 = 0, i ≥ 0. (4.6.23)

This form can be employed to clarify the general structure of these solutions on
basis of the corresponding generating functions.

4For more details we refer the reader to [24].
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4.6.5 Discussion of the Solution of the Determining Equations

The integrability procedure in itself for determining equations (4.6.22) is of no dif-
ficulties. For example the first six coordinates ηi (0 ≤ i ≤ 5) of the desired infinites-
imal operator (4.6.14), (4.6.16) are given by the following formulas for the general
solutions of determining equations (4.6.22) that depend upon six arbitrary constants
Cj (0 ≤ j ≤ 5) and are described by polynomials in moments Al

η0 = C0, η1 = C1, η2 = C2 − C0A0, η3 = C3 − 2C1A0 − C0A1,

η4 = C4 − 3C2A0 − 2C1A1 + C0[−A2 + (A0)2], (4.6.24)

η5 = C5 − 4C3A0 − 3C2A1 + C1[−2A2 + 3(A0)2]+ C0(−A3 + 2A0A1).
It appears that the polynomial dependence of any solution ηi of determining equa-
tions (4.6.22) upon moments Aj is a general property of components of the vector
ηi for any i ≥ 0. The example (4.6.24) demonstrates that the procedure of obtaining
solutions of determining equations (4.6.22) is reduced to their enumeration. To be
concrete, we assume the following scheme of indicating of the k-th basic solution
ηi

k of determining equations (4.6.22) for the coordinate ηi :

ηi
k =

⎧⎨
⎩

0, i < k;

1, i = k;

0, i = k+1;

[
ηi

k

]= i − k, i ≥ k + 2; i, k ≥ 0. (4.6.25)

In the solutions (4.6.25) this scheme demands quit definite choice of values of inte-
gration constants Cj in the form of Kronecker symbols

Cj = δjk; j, k ≥ 0. (4.6.26)

The last of the four equalities for ηi
k in (4.6.25) (in square brackets) indicates the

homogeneity degree (i − k) of the polynomial “tail” of the solution ηi for i ≥ k + 2
in accordance with the attributed to any of the moments Ai of the order i the homo-
geneity degree, which is equal to positive number (i + 2) (see e.g. [20])[

Ai
]= i + 2, i ≥ 0. (4.6.27)

For instance, the component η5
1 of the basis solution ηi

1 of determining equations
(4.6.22) in accordance with (4.6.24), (4.6.25) and (4.6.26) has the homogeneity de-
gree equal to four

η5
1 = −2A2 + 3(A0)2; [

η5
1

]= 4. (4.6.28)

The indexing of the presented infinite (countable) vectors ηi by one more integral
number k ≥ 0 yields the desired representation of all linear independent solutions of
determining equations (4.6.22) in the form of tensor of the second rank (matrix) ηi

k ,
in which the lower index k ≥ 0 indicates the index of the basis infinitesimal operator
in the general element of an infinite Lie algebra under consideration

X =
∞∑

i,k=0

Ckηi
k

∂

∂Ai
. (4.6.29)
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Under the conditions (4.6.25) the integration of determining equations (4.6.22) for
the given basis vector ηi

k for a fixed value k ≥ 0 is carried out with boundary condi-
tions, that are imposed by requirements (4.6.25) in a single way.

The representation of matrix ηi
k for different lines are as follows (i is the column

number, k is the line number)

ηi
k = {0, . . . ,0,1,0,−(k + 1)A0,−(k + 1)A1, . . .}. (4.6.30)

Here zeroes preceding unity describe matrix elements, which exist only for i < k,
i.e. which are located below the principle diagonal i = k, that contains only units.
The first nearest upper off-diagonal i = k +1 also contains only zeroes. Expressions
for elements from the second i = k + 2 and the third i = k + 3 upper off-diagonals
are given in (4.6.30) explicitly: they contain monomials, the homogeneity degree of
which is equal to 2 and 3 respectively, while the numerical coefficient (k + 1) is
defined by the line number.

In general, any one of the nonzero off-diagonals i = k + s with the number s ≥ 2
is presented by polynomials with the homogeneity degree equal to s. This “line
scheme” (4.6.30) is readily illustrated by a pictorial rendition of elements of the
high left block of the discussed matrix (0 ≤ i ≤ 5, 0 ≤ k ≤ 3)

ηi
k =

⎛
⎜⎜⎜⎝

1 0 −A0 −A1 −A2 + (A0)2 −A3 + 2A0A1 . . .

0 1 0 −2A0 −2A1 −2A2 + 3(A0)2 . . .

0 0 1 0 −3A0 −3A1 . . .

0 0 0 1 0 −4A0 . . .

. . . . . . . . . . . . . . . . . . . . .

⎞
⎟⎟⎟⎠ .

(4.6.31)

As a more illustrative example we present here the element ηi
1 of the matrix (4.6.30)

with sufficiently high column number i = 10 and the homogeneity degree 9, that is
located in the line with k = 1 (the second from above)

η10
1 = −2A7 + 6A5A0 + 6A4A1 + 6A3A2 − 12A3(A0)2

− 24A2A1A0 − 4(A1)3 + 20A1(A0)3. (4.6.32)

4.6.6 Illustrative Example for Matrix Elements

A much more comprehensive idea of definite expressions of matrix elements ηi
k is

given by the following list of elements (with the previous result included) of the first
11 columns (0 ≤ i ≤ 10) and 4 lines (0 ≤ k ≤ 3) of matrix ηi

k , which define the k-th
basic solution of determining equations (4.6.22) for vectors ηi

k of the canonical in-
finitesimal operator (4.6.14), (4.6.16). The lower index “k” is omitted for simplicity.

(0) k = 0; η0 = 1, η1 = 0, [ηi] = i, i ≥ 2.

η2 = −A0,

η3 = −A1,
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η4 = −A2 + (A0)2,

η5 = −A3 + 2A0A1,

η6 = −A4 + 2A0A2 + (A1)2 − (A0)3,

η7 = −A5 + 2A0A3 + 2A2A1 − 3A1(A0)2,

η8 = −A6 + 2A0A4 + 2A3A1 + (A2)2 − 3A2(A0)2

− 3A0(A1)2 + (A0)4,

η9 = −A7 + 2A0A5 + 2A4A1 + 2A3A2 − 3A3(A0)2

− 6A0A1A2 − (A1)3 + 4A1(A0)3,

η10 = −A8 + 2A0A6 + 2A5A1 + A4[2A2 − 3(A0)2] + A3[A3 − 6A0A1]
+ A2[−3(A1)2 − 3A0A2 + 4(A0)3] + 6(A1)2(A0)2 − (A0)5.

(1) k = 1; η0 = 0, η1 = 1, η2 = 0, [ηi] = i − 1, i ≥ 3.

η3 = −2A0,

η4 = −2A1,

η5 = −2A2 + 3(A0)2,

η6 = −2A3 + 6A0A1,

η7 = −2A4 + 6A0A2 + 3(A1)2 − 4(A0)3,

η8 = −2A5 + 6A0A3 + 6A2A1 − 12A1(A0)2,

η9 = −2A6 + 6A0A4 + 6A3A1 + A2[3A2 − 12(A0)2]
− 12A0(A1)2 + 5(A0)4,

η10 = −2A7 + 6A0A5 + 6A4A1 + 6A3[A2 − 2(A0)2]
− 24A0A1A2 + A1[−4(A1)2 + 20(A0)3].

(2) k = 2; η0 = 0, η1 = 0, η2 = 1, η3 = 0, [ηi] = i − 2, i ≥ 4.

η4 = −3A0,

η5 = −3A1,

η6 = −3A2 + 6(A0)2,

η7 = −3A3 + 12A0A1,

η8 = −3A4 + 12A0A2 + 6(A1)2 − 10(A0)3,

η9 = −3A5 + 12A0A3 + 12A2A1 − 30A1(A0)2,

η10 = −3A6 + 12A0A4 + 12A3A1 + 6(A2)2

− 30A0(A1)2 + 15(A0)4 − 30A2(A0)2.

(3) k = 3; η0 = 0, η1 = 0, η2 = 0, η3 = 1, η4 = 0, [ηi] = i − 3, i ≥ 5.

η5 = −4A0,

η6 = −4A1,

η7 = −4A2 + 10(A0)2,
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η8 = −4A3 + 20A0A1,

η9 = −4A4 + 20A0A2 + 10(A1)2 − 20(A0)3,

η10 = −4A5 + 20A0A3 + 20A2A1 − 60A1(A0)2.

To conclude, we present a result of calculation of the infinite (countable) part of
Lie point group admitted by the system of Benney equations — moment equations
(4.6.2). In standard (non-canonical representation) the point Lie group of Benney
equations (4.6.2) is described by the infinitesimal operator

X = ξ1 ∂

∂t
+ ξ2 ∂

∂x
+

∞∑
i=0

ηi ∂

∂Ai
, (4.6.33)

where coordinates ξ and η obey the system of determining equations

ηi+1
A0 −

∞∑
j=0

jAj−1ηi

A
j
x

+ iηi−1 + iAi−1(η0
A0 + ξ1

t − ξ2
x

)

+ (i + 1)Aiξ1
x − ξ2

t δi,0 = 0,

ηi+1
Ak+1 − ηi

Ak + iAi−1(η0
Ak+1 + ξ1

x δ0,k

)
+ (ξ1

t − ξ2
x )δi,k + ξ1

x δi+1,k − ξ2
t δi,k+1 = 0,

ηi
t + ηi+1

x + iAi−1η0
x = 0, i, k ≥ 0.

(4.6.34)

Determining equations (4.6.34) result from (4.6.20) in account of relationships be-
tween coordinates of infinitesimal operators (4.6.33) and (4.6.14)

κ
i = ηi + ξ1(Ai+1

x + iAi−1A0
x) − ξ2Ai

x. (4.6.35)

Infinitesimal operators (4.6.12), that were presented above, gives rise to the follow-
ing coordinates

ξ1 = K4 + K5t, ξ2 = K1 + K2t + K3x,

ηi = iAi−1K2 + (i + 2)Ai(K3 − K5).
(4.6.36)

The problem of finding coordinates of the operator (4.6.33) was first treated in [19],
where only these solutions, namely (4.6.9), (4.6.12) and (4.6.36), were described.
The main result described in Sect. 4.6 is that point symmetries of Benney equations
(4.6.2) are exhausted by formulas (4.6.12) and solutions of determining equations
(4.6.22), i.e. determining equations (4.6.34) do not have any other solutions. Solu-
tions of determining equations (4.6.22) which are responsible for the infinite part of
the point group probably have not been known so far [24].

As a next step it seems intriguing to generalize the result (4.6.35), i.e. to find the
first order Lie–Bäcklund group admitted by Benney equations (4.6.2) with coordi-
nates κ

i of the canonical infinitesimal operator (4.6.14), that has the linear form

κ
i = ηi +

∞∑
j=0

ηi,jA
j
x, i ≥ 0. (4.6.37)
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Though the unique existence of the linear form (4.6.37) as well as the complete
solution of determining equations5 for the tensor ηi,j has not yet been obtained, all
known facts are in agreement with this linear form. In particular, results of [20, 21]
mentioned above are consistent with the following expression for the tensor ηi,j of
the linear form

η
i,j
s =

∞∑
k=0

kHs
Akδi+k,j+1 + s

s−j−2∑
k=0

(i + k)Ai+k−1Hs−1
Aj+k+1; i, j, s ≥ 0.

(4.6.38)

Here s is the number of the basis solution (similar to that used for ηi in (4.6.28)),
Hs is a polynomial of the homogeneity degree (s + 2) in moments Ai . Compat-
ibility conditions for determining equations for the tensor ηi,j give rise to many
relationships for Hs , for example

∞∑
j=0

jAj−1Hs
Aj = sHs−1, s ≥ 0. (4.6.39)

An explicit form for the polynomial H 7 is presented below just to illustrate the
aforesaid

H 7 = A7 + 7A5A0 + 7A4A1 + 7A3A2 + 21A3(A0)2 + 42A2A1A0

+ 7(A1)3 + 35A1(A0)3. (4.6.40)

Comparison between formulas (4.6.32) and (4.6.40) shows that they differ only in
numerical values (and signs) of coefficients. The generating function for polynomi-
als Hs is given in [20, 21]. So constructing of a recursion operator, which relates
solutions of determining equations (4.6.22) for the point group to the solutions of
the determining equations for the first order Lie–Bäcklund symmetry defined by the
linear form (4.6.37) with coefficients given by (4.6.38) in particular is of principal
interest.

4.7 Symmetries in Application to Plasma Kinetic Theory.
Renormalization Group Symmetries for Boundary Value
Problems and Solution Functionals

The above Sects. 4.3–4.6 deal with calculating symmetries for systems of integro-
differential (nonlocal) equations while this section gives illustrations of symmetry
applications to problems of mathematical physics with nonlocal equations.

5For simplicity these equations are omitted here.
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4.7.1 Introduction to Renormgroup Symmetries

In mathematical physics a solution of a physical problem usually appears as a so-
lution of some boundary value problem. Note that the symmetry of boundary value
problem solutions is closely related to RenormGroup (RG) symmetry, introduced in
mathematical physics in the beginning of the 1990s [26, 27] (see also reviews [28,
29, 32]). As for the notion of Renormalization Group, or briefly RenormGroup, this
was imported to mathematical physics from the most complicated part of theoretical
physics, quantum field theory. Recall that the (Lie transformation) group structure
discovered by Stueckelberg and Petermann in the early 1950s in calculation results
in renormalized quantum field theory and the exact symmetry of solutions related
to this structure were used in 1955 by Bogoliubov and Shirkov to develop a reg-
ular method for improving approximate solutions of quantum field problems, the
RG method. This method is based on the use of the infinitesimal form of the exact
group property of a solution to improve a perturbative (that is, obtained by means
of the perturbation theory) representation of this solution. The improvement of the
approximation properties of a solution turns out to be most efficient in the presence
of a singularity, because the correct structure of the singularity is then recovered.

In extending the RG conceptions in quantum field theory to boundary value prob-
lems of classical mathematical physics the main achievement was the development
of a regular algorithm (see the reviews [28–32]) for finding symmetries of the RG
type by means of the modern group analysis. The existence of such an algorithm
eliminates the usual deficiency of the RG approach beyond the scope of quantum
field theory problems: finding the group property of solutions requires using special-
purpose methods of analysis, usually nonstandard, in each particular case. The new
algorithm has the same aim of finding an improved solution (in comparison with the
initial approximate solution) as the algorithm of Bogoliubov’s RG method, but in
finding symmetries of a solution of a boundary value problem it uses a scheme of
calculations similar to that of the modern group analysis. The attribute ‘renormal-
ization group’ thus points to similarities existing between these symmetries and the
symmetries in quantum field theory related to the operation of renormalization of
masses and charges (coupling constants).

Initially [26, 28, 29], applying the RG algorithm was mainly limited to problems
based on differential equations, although this algorithm can be used formally in any
problem for which a regular way of calculating symmetries for the basic equations
can be specified. Hence, transition to such objects, which until recently were not a
subject of group analysis, in particular, to integral and integro-differential equations,
essentially expands the area of the RG symmetry applications [30–32].

In problems with involved equations, e.g., in transfer theory with integro-dif-
ferential Boltzmann equation or in quantum field theory with an infinite chain of
coupled integro-differential Dyson–Schwinger equations, only some solution com-
ponents or their integrated characteristics satisfy a sufficiently simple symmetry.
Thus, in the one-velocity plane transfer problem, the RG property is related [33] to
the asymptotics of the “density of particles, moving deep into the medium” n+(x),
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x → ∞, not entering the Boltzmann equation.6 In such problems, integral relations
form the problem skeleton. But they can appear as some independent objects for
applying the RG symmetry constructed for solutions of differential equations. Fre-
quently, not the solution itself in its entire range of the variables and parameters but
rather some integral characteristic, a solution functional, is of physical interest. This
characteristic can appear, for example, as a result of averaging (integrating) over
one of the independent variables or of transition to a new integral representation, for
example, a Fourier representation.

This section is structured as follows. In Sect. 4.7.2, one finds an introductory ex-
ample of the RG algorithm in mathematical physics, illustrated by a solution of a
simple boundary value problem. In Sect. 4.7.3, a general scheme for constructing the
RG algorithm, valid for models with both local (differential) and nonlocal terms, in-
cluding integral and integro-differential equations, is described. Section 4.7.4 gives
several examples of application of the RG algorithm.

4.7.2 RG Symmetry: An Idea of Construction and Its Simple
Realization

We preface the description of the RG algorithm with the following simple argument.
Let the Lie group G with generator

X = ξ t ∂

∂t
+ ξx ∂

∂x
+ η

∂

∂y
(4.7.1)

be defined for the system of the first-order partial differential equations

yt = F (t, x, y, yx) . (4.7.2)

The typical boundary value problem for (4.7.2) is the Cauchy problem with bound-
ary manifold defined by

t = 0, y = ψ(x). (4.7.3)

Solution of this Cauchy problem is the G-invariant solution iff for any generator
(4.7.1), function ψ satisfies the equation [34, §29]

η(0, x,ψ) − ξx(0, x,ψ)ψx − ξ t (0, x,ψ)F (0, x,ψ,ψx) = 0. (4.7.4)

The solution of Cauchy problem (4.7.2), (4.7.3) coincides with orbit of the group G,
and the boundary manifold is not the invariant manifold of the group.

This example gives an instructive idea for constructing generators of RG sym-
metries. The milestones here are (a) considering the boundary value problem in the
extended space of group variables that involve parameters of boundary conditions
in group transformations, (b) calculating the admitted group using the infinitesimal

6This is representable as the integral
∫ 1

0 n(x,ϑ)d cosϑ of the kinetic equation solution n(x,ϑ).
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approach, (c) checking the invariance condition akin to (4.7.4) to find the symme-
try group with the orbit that coincides with the boundary value problem solution,
and (d) using the RG symmetry to find the improved (renormalized) solution of the
boundary value problem.

The complete algorithm [28, 29, 31, 32] will be described in detail in the next
section; here we only give a general grasp of the problem using a trivial example,
the boundary value problem for the Hopf equation

vt + vvx = 0, v(0, x) = εU(x), (4.7.5)

where U is an invertible function of x and the parameter ε defines the initial am-
plitude at the boundary t = 0. For small values of t � 1/ε, i.e., near the boundary,
t → 0, a perturbation theory (PT) solution of (4.7.5) has the form of a truncated
power series in εt ,

v = εU − ε2tUUx + O
(
t2). (4.7.6)

It is obvious that this solution is invalid for large distances from the boundary, when
εtUx � 1. The RG symmetry gives a way to improve the perturbation theory result
and restore the correct structure of the boundary value problem solution in the vicin-
ity of a singularity (in the event that such singularity appears for some finite value
of t).

It is convenient to introduce the new function u = v/ε and rewrite (4.7.5) in the
form

ut + εuux = 0, u(0, x) = U(x). (4.7.7)

In order to calculate the renormgroup symmetries, we add the parameter ε to the
list of the independent variables and consider the manifold (termed in general the
basic manifold) given by (4.7.7) in the space of variables {t, x, ε, u,ut , ux}. Then
we calculate the generator

X = ξ t ∂

∂t
+ ξx ∂

∂x
+ ξε ∂

∂ε
+ η

∂

∂u
(4.7.8)

of the group admitted by the first equation in (4.7.7) and obtain the following coor-
dinates of the generator (4.7.8):

ξ t = ψ1, ξx = εuψ1 + ψ2 + x(ψ3 + ψ4), ξ ε = εψ4, η = uψ3,

(4.7.9)

where ψi , i = 2,3,4, are arbitrary functions of ε, u, and x − εut and ψ1 being
an arbitrary function of all the group variables. These formulas define an infinite-
dimensional Lie algebra with four generators

X1 = ψ1
(

∂

∂t
+ εu

∂

∂x

)
, X2 = ψ2 ∂

∂x
,

X3 = ψ3
(

x
∂

∂x
+ u

∂

∂u

)
, X4 = ψ4

(
ε

∂

∂ε
+ x

∂

∂x

)
.

(4.7.10)
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Suppose that a particular solution of boundary value problem (4.7.7),

S ≡ u − W(t, x, ε) = 0,

which defines an invariant manifold of group (4.7.8), (4.7.9) is known. The corre-
sponding invariance condition evaluated on frame S is similar to (4.7.4):

XS|[S] ≡ (W − xWx)ψ
3 − Wxψ

2 − (εWε + xWx)ψ
4 = 0. (4.7.11)

The term with ψ1 does not give any input in (4.7.11) since it is proportional to
Wt + εWWx and vanishes on the solutions of (4.7.7). Equation (4.7.11) is valid
for all t . Hence, it remains valid for t → 0, when W is replaced with approximate
solution, which follows from (4.7.6),

W = U − εtUUx + O
(
t2). (4.7.12)

In this limit, t → 0, condition (4.7.11) gives a relation between the ψi , i = 2,3,4
(no restrictions are imposed on ψ1), that can be easily prolonged on t �= 0,

ψ2 = −χ(ψ3 + ψ4) + (u/Uχ)ψ3, χ = x − εut, (4.7.13)

where the derivative Uχ should be expressed, due to the boundary condition, either
in terms of χ or u. By substituting (4.7.13) in (4.7.9), we obtain a group of a smaller
dimension with generators

R1 = ψ1
(

∂

∂t
+ εu

∂

∂x

)
,

R2 = uψ3
[(

εt + 1/Uχ

) ∂

∂x
+ ∂

∂u

]
, (4.7.14)

R3 = εψ4
(

tu
∂

∂x
+ ∂

∂ε

)
.

The above procedure, which transforms (4.7.10) to (4.7.14), is the restriction of the
group (4.7.8) on a particular solution.

The boundary value problem solution defines a manifold, that, by construction,
turns to be invariant for any generator Ri . Hence, (4.7.14) defines the desired RG
symmetries. This means that the boundary value problem solution can be con-
structed by use any of generators in (4.7.14), the generator R3 for example. Without
loss of generality, we choose εψ4 = 1 and obtain the finite RG transformations (a is
a group parameter)

x′ = x + atu, ε′ = ε + a, t ′ = t, u′ = u, (4.7.15)

where t and u are invariants of the RG transformations while the transformations of
ε and x are translations, which also depend on t and u in the case of x. For ε = 0,
in view of (4.7.6), we have x = H(u), where H(u) is a function inverse to U(x).
Eliminating a, t, u from (4.7.15) and omitting the primes on variables, we obtain
the desired solution of boundary value problem (4.7.7) in the implicit form

x − εtu = H(u). (4.7.16)
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This in fact is the improved perturbation theory solution (4.7.6), which is valid not
only for small εt � 1, provided dependence (4.7.16) can be resolved uniquely. De-
pending upon H(u) it gives either proper singular behavior at some finite t → tsing

or correct asymptotic behavior at t → ∞.

Example 4.7.1 One example of the first option is the solution of the boundary value
problem for the linear function U(x) = x. This yields the solution v = εx(1+εt)−1,
which remains finite as t → ∞.

Example 4.7.2 For the second option, we can select, for instance, a sine wave
U(x) = − sinx at the boundary. Then solution (4.7.16) describes the well-known
distortion of the initial profile of a sine wave, transforming it into a saw-tooth shape
[35, Chap. 6, §1], with a singularity forming at a finite distance tsing = 1/ε from the
boundary.

We note that for finding solution (4.7.16) of the boundary value problem we use
only the known symmetry of the solution and the corresponding perturbation theory
(PT).

The peculiarity of the procedure for constructing RG symmetries is the multi-
choice first step, which depends on how the boundary conditions are formulated
and the form in which the admitted group is calculated. For example, instead of
calculating the Lie point symmetry group, we can consider the Lie–Bäcklund sym-
metries (see Sect. 1.5 in Chap. 1) with the canonical generator R = κ∂u, where κ

depends not only on t , x, ε, and u but also on higher-order derivatives of u. We
can seek κ in the form of a power series in ε, and invariance condition (4.7.11) is
formulated as vanishing of κ at t = 0. Depending on the choice of the zeroth-order
term representation, we obtain either an infinite or a truncated power series for κ,
for example, a form linear in ε,

R = κ

∂

∂u
, κ = 1 − ux

Ux(u)
− εtux. (4.7.17)

This RG generator (4.7.17) is equivalent to the Lie point generator R2 in (4.7.14)
and therefore gives the same result.

Another possibility for calculating RG symmetries for boundary value prob-
lem (4.7.7) is offered by taking some additional differential constraints consistent
with boundary conditions and input equations into account. For example, when the
boundary condition in (4.7.7) is linear in its argument, U(x) = x, the differential
constraint can be chosen as uxx = 0; this equality reflects the invariance of the orig-
inal equation with respect to the second-order Lie–Bäcklund symmetry group. Cal-
culating the Lie point symmetry group for the joint system of this constraint and
the Hopf equation gives another way to find RG symmetries for boundary value
problem (4.7.7).

The above example demonstrates the key features of the RG algorithm in mathe-
matical physics. The details of the general approach are discussed in the next sec-
tion.
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Fig. 4.1 Scheme of RG
algorithm

4.7.3 Renormgroup Algorithm

The general construction scheme of the RG algorithm (shown in Fig. 4.1) is given
as four consecutive steps [28–32]:

I. constructing the basic manifold RM ,
II. calculating the admitted (symmetry) group G ,

III. restricting it on the particular boundary value problem solution and constructing
RG , and

IV. seeking an analytic solution.

4.7.3.1 Basic Manifold RM

The initial issue is to construct the RG symmetry and appropriate transformations
that involve the parameters of partial solution. Therefore, the purpose of step I is
to include all the parameters, both from the equations and from the boundary con-
ditions on which a particular solution depends, in group transformations in one or
another way. This purpose is achieved by constructing a special manifold RM
given by a system that consists of s kth-order differential equations and q nonlocal
relations

Fσ (z,u,u(1), . . . , u(k)) = 0, σ = 1, . . . , s, (4.7.18)

Fσ (z,u,u(1), . . . , u(r), J (u)) = 0, σ = 1 + s, . . . , q + s. (4.7.19)

The nonlocal variables J (u) here are introduced by integral objects,

J (u) =
∫

F (u(z))dz. (4.7.20)

The presence of relations (4.7.19) in the system determining RM characterizes the
basic difference between the case of a nonlocal problem and the case of a boundary
value problem for differential equations, for which RM is a differential manifold.
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4.7.3.2 Admitted Group G

Step II is to calculate the widest admitted group G for system (4.7.18), (4.7.19). In
application to an RM defined only by system of differential equations (4.7.18), the
question is about a local group of transformations in a space of differential func-
tions A , for which system (4.7.18) remains unchanged. This group is defined by
the generator of form (4.7.8) prolonged on all higher-order derivatives,

X = ξ i ∂

∂zi
+ ηα ∂

∂uα
+ ζ α

i

∂

∂uα
i

+ ζ α
i1i2

∂

∂uα
i1i2

+ · · · , (4.7.21)

where ξ i([z,u]), ηα([z,u]) ∈ A and

ζ α
i = Di(κ

α) + ξjuα
ij , ζ α

i1i2
= Di1Di2(η

α − ξ iuα
i ) + ξjuα

ji1i2
.

Meanwhile, the classical Lie algorithm using the infinitesimal approach seems to
be inapplicable to a manifold RM set by system (4.7.18), (4.7.19). The issue is that
the RM in this case is not determined locally in the space of differential functions.
Therefore, the main advantage of the Lie computational algorithm, namely, repre-
sentation of the determining equations as an over-determined system of equations
is not realized here. Furthermore, the procedure for prolongation the group operator
of point transformations on nonlocal variables is not defined in the framework of
classical group analysis.

In modifying the RG algorithm, we rely on the direct method for calculating
symmetries described in Chaps. 2 and 4. Therefore, constructing the symmetries
for the nonlocal equations also appears as an algorithmic procedure. This is the
generalization of the second step of the algorithm to the case where RM is an
integral or integro-differential manifold.

4.7.3.3 Restriction of the Admitted Group on Solutions

The group G found in step II and determined by operators (4.7.21) is generally
wider than the RG of interest, which is related to a particular solution of a boundary
value problem. Hence, to obtain the RG symmetry, we need step III, restricting the
group G on a manifold determined by this particular solution. From the mathemat-
ical standpoint, this procedure consists in checking the vanishing conditions for a
linear combination of coordinates κ

α
j of a canonical operator equivalent to (4.7.21)

on some particular boundary value problem solution Uα(z),{∑
j

Aj
κ

α
j ≡

∑
j

Aj
(
ηα

j − ξ i
ju

α
i

)}
|uα=Uα(z)

= 0. (4.7.22)

The form of the condition set by relation (4.7.22) is common for any solution of the
boundary value problem, but how the restriction procedure of a group is realized
may differ in each partial case. In the general scheme (given at the beginning of the
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section), it is related to the dashed arrow connecting the “initial object” (a perturba-
tion theory solution of a particular boundary value problem) to the object arising as
a result of step III.

In calculating combination (4.7.22) on a particular solution Uα(z), the latter is
transformed from a system of differential equations for group invariants to algebraic
relations. Note two consequences of step III. First, the restriction procedure results
in a set of relations between Aj and thus “links” the coordinates of various group op-
erators Xj admitted by RM (4.7.18), (4.7.19). Second, it (partially or completely)
eliminates an arbitrariness that can arise in the values of the coordinates ξ i and ηα

in the case of an infinite group G .
As a rule, the procedure of restricting the group G reduces its dimension. After

performing this procedure a general element (4.7.21) of a new group RG is repre-
sented by a linear combination of new generators Ri with coordinates ξ̂ i and η̂α and
arbitrary constants Bj :

X ⇒ R =
∑
j

BjRj , Rj = ξ̂ i
j

∂

∂xi
+ η̂α

j

∂

∂uα
. (4.7.23)

The set of operators Rj , each containing the required solution of a problem in
the invariant manifold, defines a group of transformations RG , which we also call
RenormGroup.

4.7.3.4 Renormgroup Invariant Solutions

The three steps described above completely form the regular algorithm for con-
structing the RG symmetry, but to finish a final step is needed. This step IV uses the
RG symmetry operators to find analytic expressions for new, improved boundary
value problem solutions (compared with the input perturbative solution).

From the mathematical standpoint, realizing this step involves use of RG-inva-
riance conditions set by a joint system of equations (4.7.18) and (4.7.19) and the
vanishing conditions for a linear combination of the coordinates κ̂

α
j of the canonical

operator equivalent to (4.7.23),
∑
j

Rj
κ̂

α
j ≡

∑
j

Bj
(
η̂α

j − ξ̂ i
j u

α
i

)= 0. (4.7.24)

The need to use RM in constructing the boundary value problem solution is shown
in the scheme by the dashed arrow connecting these objects.

Specification of step IV concludes the description of the regular algorithm of RG
symmetries construction for models with integro-differential equations. We note that
last the two steps are basically the same as for models with differential equations.
The next sections contains a set of examples showing the ability of the upgraded RG
algorithm.
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4.7.4 Examples of RG Symmetries in Plasma Theory

4.7.4.1 Nonlinear Dielectric Permittivity of Plasma

Nonlinearity of electrodynamics of real medium is due to nonlinear relation between
the induced current and charge density inside the medium and the electromagnetic
field. This relation, named the material equation, originates from a dependence of
an electric induction vector upon the electromagnetic field (see [36], p. 48). The
induction vector D(t, r) is related to the electric field E(t, r) and the current density
j(t, r) via an equality, which in Fourier representation has the following form (here
variables “with tildes” are used to distinguish the Fourier representation from the
usual space-time representation):

D̃(ω,k) = Ẽ(ω,k) + i
4π

ω
j̃(ω,k). (4.7.25)

In an effort to describe weak-turbulent plasma, processes of particle-wave scatter-
ing, parametric instabilities, generation of harmonics, and etc., the material equation
is represented as a series in positive powers of electromagnetic fields. Hence, the
current density j̃(ω,k) is expressed as a sum

j̃(ω,k) =
∑

l

˜j (l)(ω,k),
˜j (l)(ω,k) � O(Ẽ

l
). (4.7.26)

In view of time and spatial dispersion the relation between the induced current and
the field appears as integral, nonlocal, that results in the material equation which in
Fourier representation has the following form [36]:7

D̃i(ω,k) = εij (ω,k)Ẽj (ω,k) +
∞∑

n=2

∫
δ(ω − ω1 − · · · − ωn)

× δ(k − k1 − · · · − kn)εij1...jn (ω1,k1; . . . ;ωn,kn)

× Ẽj1(ω1,k1) . . . Ẽjn(ωn,kn)dω1 dk1 . . . dωn dkn. (4.7.27)

We compare (4.7.26) and (4.7.25) with (4.7.27) to establish a relation between the

current density j̃
(l)

of the appropriate order l ≥ 2 and multi-index tensors of non-
linear dielectric permittivity of plasma εij1...jn , which are kernels of nonlinear (with
respect to electromagnetic field) integral terms in series (4.7.27).

Usually, without use of the RG algorithm, the nonlinear dielectric permittivity for
hot plasma is obtained by iterating the Vlasov kinetic equation for the distribution
function of particles f (t, r,v) (4.1.1) with a stationary and homogeneous in coordi-

7Here the bottom index specifies on a corresponding tensor component, instead of designating a
derivative.
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nate r background distributions f0(v) in powers of a self-consistent electromagnetic
field (here we omit an index of particles):

f (t, r,v) = f0(v) +
∑
l≥1

f (l)(t, r,v), f (l) � O(El ),

j (l)(t, r) = em3
∫

f (l)γ 5v dv.

(4.7.28)

As for the nonlinear dielectric permittivity for cold plasma it is usually obtained
by iterations of more simple equations of collisionless hydrodynamics for density
N(t, r) and velocity V (t, r) of particles (written down here for one sort of particles
in non-relativistic approach)

Nt + div(NV ) = 0, V t + (V · ∇)V = e

m

{
E + 1

c
[V × B]

}
, (4.7.29)

in which the electric E and the magnetic field B obey Maxwell equations (4.1.3),
and charge ρ and current j densities have the form

ρ = eN, j = eNV . (4.7.30)

In the right-hand part of (4.7.30) summation upon various species of plasma parti-
cles is implied, however for simplification of notations the index of species is omit-
ted and only one sort of particles, for example electrons is underlined further.

It is commonly accepted, that formulas for the nonlinear dielectric permittivity in
hot plasma are more general, than in cold (see, for example, [36], Chap. 2) and they
are reduced to the last in that specific case, when the distribution function of plasma
particles upon momentum in the initial equilibrium state is represented by the Dirac
delta-function, f0(v) = δ(v). With growth of the order of nonlinearity (l ≥ 4) an
algebraic procedure of symmetrization for nonlinear dielectric permittivity tensors
becomes more cumbersome in hot plasma, than in cold. The use of RG algorithm
allows to establish a one-to-one correspondence between tensors of the nonlinear
dielectric permittivity in cold and hot plasma in any order of nonlinearity l and
also specifies a way of obtaining expressions for tensors of the nonlinear dielectric
permittivity in hot plasma from appropriate “cold” expressions.

For this purpose we present a current density of the given order j̃
(l)

(ω,k) in hot

plasma as a convolution of two functions, the partial current density ĵ
(l)

(ω,k,w),
which depends on the Lagrangian velocity of particles w, and an equilibrium veloc-
ity distribution function of particles in absence of electromagnetic fields f0(w),

j̃
(l)

(ω,k) =
∫

f0(w)ĵ
(l)

(ω,k,w)dw. (4.7.31)

An expression for the partial current density for f0(w) = δ(w), i.e. in cold plasma
(w = 0), is obtained by iterating (4.7.29), (4.7.30) with respect to the self-consistent

field, while a transition from ĵ
(l)

(ω,k,0) to ĵ
(l)

(ω,k,w) with arbitrary w �= 0 is
carried out with the help of group of transformations, defined by the appropriate RG
symmetry operator.
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Since the procedure of construction of the multi-index nonlinear dielectric per-
mittivity tensor in hot plasma from the appropriate expressions in cold plasma is
identical for the permittivity tensor of any order we illustrate it by using linear
with respect to a self-consistent electric field E material relations in non-relativistic

plasma. In cold plasma Fourier-components of the partial current ĵ
(1)

(ω,k,0) and
charge �̂(1)(ω,k,0) densities, which are linear in the field Ẽ(ω,k), are obtained by
linearizing (4.7.29), (4.7.30) on a background of the homogeneous and equilibrium
electron density ne0 and are determined by well-known relations

ĵ
(1)

(ω,k,0) = i
e2ne0

mω
Ẽ; �̂(1)(ω,k,0) = i

e2ne0

mω2
(k · Ẽ). (4.7.32)

The use of the latter in (4.7.25) gives a scalar dielectric permittivity for cold homo-
geneous non-relativistic plasma,

ε(ω,k) = 1 − 4πe2ne

mω2
. (4.7.33)

Expressions (4.7.32) define zero-order terms in expansion of the partial current den-

sity ĵ
(l)

(ω,k,w) in powers of plasma particles velocity w. For obtaining the next
terms of this series one should use the kinetic description of plasma. Here it ap-
pears more convenient to use instead of Vlasov equations (4.1.1) with the Euler
velocity v the non-relativistic hydrodynamic analogue (4.1.5) of Vlasov equations
with Lagrangian velocity w and the equilibrium distribution function f0(w). Such
(Lagrangian) formulation of the kinetic description of plasma results from a non-
relativistic limit of (4.1.5), and coincides in the form with (4.7.29), with that, how-
ever, an essential difference, that as against (4.7.29) the density N(t, r,w) and the
velocity V (t, r,w) now depend upon Lagrangian velocity as well and in the homo-
geneous non-perturbed plasma state obey the “initial” conditions at t = t0 = −∞

N(t0, r,w) = ne0f0(w), V (t0, r,w) = w;

E(t0, r) = B(t0, r) = 0,

∫
f0 dw = 1.

(4.7.34)

In a non-relativistic limit material relations (4.1.6) also become simpler (we use
different normalization for the distribution function here, hence material relations
do not contain mass multipliers)

ρ(t, r) = e

∫
N dw, j(t, r) = e

∫
NV dw. (4.7.35)

Linearizing the equations of plasma kinetics in Lagrangian variables on the back-
ground of the basic state (4.7.34) results to the following formulas for corrections
to the partial current density for small values of w:

ĵ
(1)

(ω,k,w)

= i
e2ne0

mω

{
Ẽ + 1

ω

(
w(k · Ẽ) + k(w · Ẽ)

)}+ O(w2). (4.7.36)
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To prolong this formula on any nonzero values of w we employ the RG symmetry
operator which is constructed from the Lie group of point transformations (4.5.4),
admitted by plasma kinetic equations. Two operators of the admitted group are of
interest for us, namely, the operator of translations in Lagrangian velocity, which
results from the operator X∞, and the operator of Galilean transformations, which
is a non-relativistic analogue of the operator of Lorentz transformations B in the set
(4.5.4),

Z1 = ∂

∂w
, Z2 = t

∂

∂r
+ ∂

∂V
− 1

c

[
B × ∂

∂E

]
+ ρ

∂

∂j
. (4.7.37)

Let us proceed in the operator Z2 from the velocity V and the density N to the par-
tial current and charge densities, ĵ and �̂, prolong the operator obtained on Fourier
variables and combine it with the operator of translations Z1. As a result we get the
operator that leaves the partial current density (4.7.36) invariant at w → 0, i.e. the
required RG symmetry operator

R = k
∂

∂ω
+ ∂

∂w
− 1

c

[
B̃ × ∂

∂Ẽ

]
+ �̂

∂

∂ ĵ
. (4.7.38)

The operator (4.7.38) is related to a three-parameter group with the vector param-
eter w, and its final transformations (the variables with primes here correspond to
transformed variables)

ω′ = ω + kw; (β ′
is/ω

′)Ẽ′
s = (1/ω)Ẽi; �̂′ = �̂; ĵ ′

i = β ′
si ĵs;

k′ = k; B̃
′ = B̃ = (c/ω) [k × Ẽ]; βis = δis + kiws/(ω − kw),

(4.7.39)

give the required relationship between the value of the partial current density
ĵ(ω,k,0) at w = 0 (in cold plasma) and the analogous value of the partial cur-
rent density ĵ(ω,k,w) with any w �= 0. When integrating over velocity w with the
“weight” f0(w), following (4.7.31), we get an expression for a current density of
the given order in hot plasma which defines the appropriate multi-index nonlinear
dielectric permittivity tensor of plasma.

Example 4.7.3 In particular, in the linear in the electric field approximation the use
of (4.7.32) leads to the relationship

ĵi
(1)

(ω,k,w) = ie2ne0

mω
βsiβsaẼa(ω,k). (4.7.40)

Substitution of (4.7.40) into (4.7.31) and the further use of j̃i
(1)

(ω,k) in (4.7.25)
gives the required expression for the tensor of the linear dielectric permittivity for
hot homogeneous non-relativistic plasma in the absence of external fields with the
equilibrium distribution function f0(w)

εab(ω,k) = δab − 4πe2ne0

mω2

∫
f0(w)βsaβsb dw. (4.7.41)

Formula (4.7.41), which arises from the scalar equality (4.7.33) as a result of ap-
plication of RG transformations to partial current density in cold plasma with the
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subsequent integration over the group parameter, illustrates an opportunity of ob-
taining a tensor of dielectric permittivity of hot plasma from the appropriate “cold”
expression [27].

Example 4.7.4 RG symmetry generator (4.7.38) results from symmetry operators
admitted by the plasma kinetic equations after their subsequent prolongation on so-
lution functionals, partial current and a charge densities in Fourier representation.
Thus a linear in the electromagnetic field approximation used above is not an es-
sential restriction, as relations between transformed (primed) and non-transformed
partial current and a charge density remains linear under group transformations
(4.7.39). It means, that it is also possible to apply transformations (4.7.39) to partial
current and a charge densities of any order l, i.e. the offered RG scheme allows to
build nonlinear dielectric permittivity tensors of any order in hot plasma proceed-
ing from the appropriate “cold” expressions for the nonlinear dielectric permittivity.
Omitting intermediate calculations, we present a result of such construction

εij1...jn(ω1,k1; . . . ;ωn,kn) =
∫

f0(w)ε̄ab1...bn(Ω1,k1; . . . ;Ωn,kn)

× ΩΩ1 . . .Ωn

ωω1 . . .ωn

βai(ω,k)βb1j1(ω1,k1) . . . βbnjn(ωn,kn)dw;
n ≥ 2; (4.7.42)

ω = ω1 + · · · + ωn; k = k1 + · · · + kn;
Ω ≡ (ω − kw), Ωi ≡ (ωi − kiw), i = 1, . . . , n.

Here ε̄ corresponds to the nonlinear dielectric permittivity tensor in cold collision-
less plasma without external fields. For example, for the nonlinearity of the second
order it is determined by the formula

ε̄isj (Ω1,k1;Ω2,k2)

= − 4πie3ne0

2!m2ΩΩ1Ω2

(
ki

Ω
δjs + k1s

Ω1
δij + k2j

Ω2
δis

)
. (4.7.43)

The similar result can be obtained and for relativistic plasma, however thus it is
necessary to use not the three-parameter group of Galilean transformations, but the
six-parameter group including Lorentz transformations and rotations.

4.7.4.2 Adiabatic Expansion of Plasma Bunches

Here RG algorithm is applied to the problem of expansion of plasma bunches and
related generation of the accelerated particles. The mechanisms and characteristics
of ions triggered by the interaction of a short-laser-pulse with plasma are of current
interest because of their possible applications to the novel-neutron-source develop-
ment and isotope production. In the near future ultra-intense laser pulses will be
used for ion beam generation with energies useful for proton therapy, fast ignition
inertial confinement fusion, radiography, neutron-sources.
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The commonly recognized effect responsible for ion acceleration is charge sep-
aration in the plasma due to high-energy electrons, driven by the laser inside the
target. During the plasma expansion, the kinetic energy of the fast electrons trans-
forms into the energy of electrostatic field, which accelerates ions and their energy
is expected to be at the level of the hot-electron energy. The mathematical model de-
scribing this phenomenon is based on plasma kinetic equations with a self-consistent
field (4.1.1)–(4.1.3), which is rather complicated for analytical treatment. How-
ever, to describe plasma flows with characteristic scale of density variation large
compared to Debye length for plasma particles, the quasi-neutral approximation is
used. In this approximation charge and current densities in plasma are set equal
to zero, that essentially simplifies the initial model with nonlocal terms. Instead of
the system of Vlasov–Maxwell equations (4.1.1), (4.1.3) with the corresponding
material equations here we use only the kinetic equations for particle distribution
functions for various species (4.3.72) with additional nonlocal restrictions imposed
on them, which arise from vanishing conditions for the current and the charge den-
sities (4.3.73). Initial conditions for solutions of (4.3.72) and (4.3.73) correspond to
distribution functions for electrons and ions, specified at t = 0

f α
∣∣
t=0 = f α

0 (x, v). (4.7.44)

Equations (4.3.72), (4.3.73) describe one-dimensional dynamics of a plasma bunch,
which is inhomogeneous upon the coordinate x; thus the distribution functions of
particles f α depend upon t , x and the velocity component v in the directions of
plasma inhomogeneity. Analytical study of such yet simplified model represents the
essential difficulties, but due to application of RG algorithm it is possible not only to
construct solution at various initial particle distribution functions but also to find the
law of variation of particles density without calculations of distribution functions
for particles in an explicit form [14, 32].

For construction of RG symmetries we consider (step I) a set of local (4.3.72)
and nonlocal (4.3.73) equations as RM , in which the electric field E(t, x) appears
as some arbitrary function to be found of its variables. Calculating the Lie group of
point transformations admitted by this manifold (step II) is given by (4.3.75), and in
particular contains the generator of time translations and the projective group gen-
erator. Precisely these operators enables to construct a class of exact solutions to the
initial problem that are of interest, as a linear combination of the operator of time
translations and the operator of the projective group leaves the approximate pertur-
bation theory solution of the initial value problem f α = f α

0 (x, v) + O(t) invariant
at t → 0, i.e. it is the RG symmetry operator,

R = (1 + Ω2t2)
∂

∂t
+ Ω2tx

∂

∂x
+ Ω2(x − vt)

∂

∂v
, (4.7.45)

which results from the group restriction procedure (step III), for spatially symmetric
initial distribution functions with the zero average velocity. It is possible to treat the
constant Ω as the ratio of a characteristic sound velocity cs to initial inhomogeneity
scale of the density of electrons, L0.

Invariants of the RG generator (4.7.45) are two combinations, x/
√

1 + Ω2t2 and
v2 +Ω2(x − vt)2, and particle distribution functions f α . Hence, solutions of initial
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value problem at any time t �= 0 (step IV) are expressed via these invariants in terms
of initial values (4.7.44),

f α = f α
0 (I (α)), I (α) = 1

2

(
v2 + Ω2(x − vt)2)+ eα

mα

Φ0(x
′). (4.7.46)

Here the dependence of Φ0 upon the variable x′ = x/
√

1 + Ω2t2 is defined by
quasi-neutral conditions (4.3.73), and the electric field E = −Φx is found with the
help of the potential

Φ(t, x) = Φ0(x
′)
(
1 + Ω2t2)−1

. (4.7.47)

Formulas (4.7.46) give the solution to the initial value problem (4.3.72), (4.3.73).
However, for practical applications we need frequently more rough characteristic
of plasma dynamics, for example, a density of particles (ions) of the given species
nq(t, x) which can be calculated using the appropriate distribution function:

nq(t, x) =
∞∫

−∞
f q(t, x, v)dv. (4.7.48)

In view of the complex dependence upon the invariant I (α) it is not always possible
to carry out direct integration of a distribution function over velocity in the analyt-
ical form, therefore here the procedure of prolongation of the operator on solution
functionals described in Sect. 4.2.1.4 comes to the aid. As the density nq(t, x) is a
linear functional of f q , the prolongation of the operator (4.7.45) on the functional of
the solution (4.7.48) in the narrowed space of variables {t, x, nq} gives the following
RG operator

R = (1 + Ω2t2)
∂

∂t
+ Ω2tx

∂

∂x
− Ω2tnq ∂

∂nq
. (4.7.49)

The solution of Lie equations for the operator R in view of initial conditions
(4.7.44) gives relations between invariants of this operator, namely one of the com-
binations J = x/

√
1 + Ω2t2 already given for the operator (4.7.45) and the prod-

uct J q = nq
√

1 + Ω2t2 for arbitrary t �= 0 with their values at t = 0: J|t=0 = x′,
J q |t=0 = Nq(x′). This relationship immediately leads to the formulas that charac-
terize spatial-temporal distribution of the density of ions of a given species in terms
of the initial density distribution

nq = 1√
1 + Ω2t2

Nq

(
x√

1 + Ω2t2

)
,

Nq(x′) =
∞∫

−∞
f

q

0 (I (q))dv.

(4.7.50)

Example 4.7.5 We illustrate general results with reference to expansion of a plasma
slab, consisting of cold (α = c) and hot (α = h) electrons and of two ion species
(q = 1,2). Let initially (at t = 0) ions are characterized by Maxwellian distribution
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functions with densities n10, n20 � n10 and temperatures T1, T2, and the distribu-
tion function of electrons looks like two-temperature Maxwellian distribution with
the appropriate densities nc0 and nh0 � nc0 (nc0 + nh0 = Z1n10 + Z2n20) and tem-
peratures Tc and Th � Tc of hot and cold components. From the physical point of
view such choice of initial conditions refer to an expansion of the target consisting
of heavy ions with a small impurity of light ions adsorbed on a surface (for example,
protons) which preliminary was heated quickly by a short pulse of laser radiation
with formation of a group of hot electrons. Then the solution of the initial problem
(4.7.46) is represented as:

f e = nc0√
2πvT c

exp

(
−I (c)

v2
T c

)
+ nh0√

2πvT h

exp

(
−I (h)

v2
T h

)
,

f q = nq0√
2πvT q

exp

(
−I (q)

v2
T q

)
, v2

T α = Tα

mα

, q = 1,2,

(4.7.51)

where invariants I (α) are given by relations:

I (c)

v2
T c

= E + (1 + Ω2t2)

2v2
T c

(v − u)2,
I (h)

v2
Th

= E
Tc

Th

+ (1 + Ω2t2)

2v2
T h

(v − u)2,

I (q)

v2
T q

= −E

(
ZqTc0

Tq0

)
+ U2

2v2
Tq

(
1 + Zqme

mq

)
+ (1 + Ω2t2)

2v2
Tq

(v − u)2.

(4.7.52)

Here u = xtΩ2/(1 + Ω2t2) is a local velocity of plasma particles, U = xΩ/√
1 + Ω2t2, and a potential Φ is expressed via the function E ,

E = eΦ

Tc

(1 + Ω2t2) + U2

2v2
T c

, (4.7.53)

that is obtained from the transcendental equation,

nc0 =
∑

q=1,2

Zqnq0 exp

[(
1 + ZqTc

Tq

)
E − U2

2v2
T q

(
1 + Zqme

mq

)]

− nh0 exp

[(
1 − Tc

Th

)
E

]
. (4.7.54)

Formulas (4.7.51)–(4.7.54) completely define the behavior of distribution functions
of all particle species considered in the given example when studying the expansion
of a plasma slab. At that the space-temporal distribution of the ion density of the
given species is determined by formulas (4.7.50), in which the ion density Nq for
the initial distribution functions specified above has the form

Nq = nq0 exp

[
E

(
ZqTc0

Tq0

)
− U2

2v2
Tq

(
1 + Zqme

mq

)]
, q = 1,2, (4.7.55)

where the relation between the function E with the variable U still is from (4.7.54).
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Fig. 4.2 Left panel: typical experimental setup for registration of fast ions from the foil under
ultra short laser pulses (from Ref. [37]). Right panel: the “universal” density Nq of plasma ions
— carbon ions (curves (C)) and protons (curves (H )) — versus the dimensionless “coordinate”
χ2 = (x/L0)

2/(1 + Ω2t2). Dotted curves with short and long strokes show the dependencies of a
dimensionless density for hot and cold electrons

On Fig. 4.2 we illustrate the typical “density” distribution (4.7.55) for a plasma
slab, consisting of cold and hot electrons and two ions species: carbon ions C+4

(q = 1) and protons H+1 (q = 2). Block curves show dependence of a dimension-
less “universal” density of plasma ions Nq = (nq0/nc0)Nq , referred to the maximal
density of cold electrons, upon the dimensionless “coordinate” χ2 = (x/L0)

2/(1 +
Ω2t2), referred to the characteristic initial density scale of ions L0. “Universality”
of this dependencies is the direct consequence of a relation which exists between
invariants of the RG operator (4.7.49). Dotted curves give the distribution of the di-
mensionless density of cold electrons (short strokes), (nc/nc0)

√
1 + Ω2t2 and hot

electrons (long strokes), (nh/nc0)
√

1 + Ω2t2, respectively.
Similar results are obtained for more complex distribution functions [14] and

beyond the scope of the model used for the one-dimensional expansion, for example
for spherically-symmetric expansion of a plasma bunch [38].

4.7.4.3 Coulomb Explosion of a Cluster in Ultra-short Laser Pulses

In this section we apply RG symmetry to the model that is used in a plasma kinetic
theory for describing the Coulomb explosion of sub-micron plasmas in the field
of multi-terrawatt femto-second laser pulses. Recent developments in this field have
enabled examination of the fundamental physics of Coulomb explosion of nanoscale
targets and ion acceleration at multi-MeV energies in different geometries of laser-
plasma interaction experiments [39–41]. The mechanisms and characteristics of ions
triggered by the interaction of a short-laser-pulse with plasma are of current inter-
est because of their possible applications to the novel-neutron-source development,
x-ray source, proton radiography, and isotope production.

The macroscopic state of cluster particles is governed by distribution functions
f (for cluster ions with mass M and charge Ze), that dependents on time t , a co-
ordinate x of a particle, and its velocity v (for simplicity we consider the one-
dimensional plane geometry). Evolution of distribution functions is described by
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the solution to the Cauchy problem to the Vlasov kinetic equation with the corre-
sponding initial condition f |t=0 = f0(x, v), supplemented by the Poisson equation
for the electric field E (similar to (4.3.1)),

ft + vfx + (Ze/M)Efv = 0, Ex − 4πZe

∫
dvf = 0, f

∣∣
t=0 = f0(x, v).

(4.7.56)

Analytical study of such yet simplified model represents the essential difficulties,
but due to application of RG algorithm it is possible to obtain solution at various
initial particle distribution functions and find particles density, mean velocity and
energy spectra. To construct RG symmetries we consider a set of local and non-local
equations in (4.7.56) and the evident constraint Ev = 0 as RM . The Lie group of
point transformations admitted by this manifold consists of six generators

X0 = ∂

∂t
; X1 = ∂

∂x
; X2 = t

∂

∂x
+ ∂

∂v
;

X3 = x
∂

∂x
+ v

∂

∂v
− f

∂

∂f
+ E

∂

∂E
;

X4 = 2t
∂

∂t
+ x

∂

∂x
− v

∂

∂v
− 3f

∂

∂f
− 2E

∂

∂E
;

X5 = (t2/2)
∂

∂x
+ t

∂

∂v
+ (M/Ze)

∂

∂E
,

(4.7.57)

describing time and space translations, X0 and X1, Galilean boosts, X2, dilations,
X3 and X4, and the generator X5. Finite transformations defined by X5 correspond
to passing into a coordinate system moving linearly with constant acceleration with
respect to the laboratory coordinate system. Two commutating generators in the
above list (4.7.57), namely generator of Galilean boosts and generator of the transi-
tion to a uniformly accelerated frame, appear as the required RG symmetry genera-
tors [31],

R1 = (t2/2)
∂

∂x
+ t

∂

∂v
+ (M/Ze)

∂

∂E
, R2 = t

∂

∂x
+ ∂

∂v
. (4.7.58)

Successive application of finite transformations defined by theses generators shifts
initial coordinates h and velocities ν for any particle in the phase space to new
values,

R(t,h, ν) = h + νt + (Ze/2M)E(h)t2, U(t, h, ν) = ν + (Ze/M)E(h)t,

(4.7.59)

and the function E(h) is defined by initial conditions (we assume the electric field
to vanish at x = 0)

E(h) = 4πZe

h∫
0

dy

∞∫
−∞

dvf0(y, v). (4.7.60)
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The “partial” distribution function, specified by values h and ν, is the invariant of
RG symmetry generators (4.7.58). Hence, the distribution function which is the so-
lution to (4.7.56) is obtained by integrating this “partial” distribution function over
all initial parameters, i.e. initial velocities and coordinates of plasma particles,

f (t, x, v) =
∞∫

−∞
dν

∞∫
−∞

dhf0(ν,h)δ(x − R(t,h, ν))δ(v − U(t,h, ν)).

(4.7.61)

For “cold” cluster particles, f0 ∝ δ(ν), we need only one RG generator, R1, to con-
struct the solution of a boundary value problem. The zero and the first moments of
the distribution function yield the density and the mean velocity distributions of the
cluster ions, which enable to estimate the maximum energy of the accelerated ions,
the ion energy spectrum and the relation between this spectrum and the initial ion
density distribution [39, 40]. The similar approach to the spherical geometry [41]
shows that the inhomogeneity of the initial cluster density distribution leads to the
solution singularity at finite time interval even for initially immovable ions.

4.7.4.4 Renormgroup Algorithm Using Functionals

We consider some boundary value problem for local equations and assume that we
are interested in an integral characteristic of the solution, given by a linear func-
tional of this solution J (u), say by (4.7.20). We also assume that for a particular
solution u of this boundary value problem, the RG algorithm has been used to find
an RG symmetry with a generator R. To find RG symmetry generator for the func-
tional J (u), we prolong the RG symmetry operator R on nonlocal variable (4.7.20)
in much the same way as in Sect. 4.2.4. Considering the prolonged operator R in
the narrowed space of the variables defining the solution functional, we obtain the
required infinitesimal RG symmetry operator for integral characteristic J (u).

To demonstrate how formulas (4.7.20) and (4.2.22) actually work for functionals
of solutions we consider a boundary value problems for a system of two nonlinear
first-order partial differential equations for functions v and n > 0:

vt + vvx = αϕ(n)nx, nt + vnx + nvx = 0,

v(0, x) = αW(x), n(0, x) = N(x),
(4.7.62)

with constant α and a nonlinearity function ϕ of the variable n. Depending on the
sign of αϕ(n), these equations are of either the hyperbolic (αϕ(n) < 0) or the elliptic
(αϕ(n) > 0) type. In the first case, (4.7.62) corresponds to the standard equations of
gas dynamics for one-dimensional planar isentropic motion of gas with the density
n and velocity v. The second case relates to equations of quasi-Chaplygin media.8

8The term ‘quasi-Chaplygin media’ is used in the discussion of nonlinear phenomena developing
in accordance with the mathematical scenario for the Chaplygin gas, i.e., the gas with a negative
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To calculate the RG symmetries for (4.7.62) it appears convenient to rewrite these
equations in the hodograph variables τ = nt and χ = x − vt ,

τv − ψ(n)χn = 0, χv + τn = 0, ψ = n/αϕ. (4.7.63)

Then the RG symmetry is given by the canonical Lie–Bäcklund operator [42]

R = f
∂

∂τ
+ g

∂

∂χ
, (4.7.64)

with coordinates f and g that are linear functions of variables τ and χ and their
derivatives with respect to n up to a fixed order s. Following the RG algorithm
one should add the invariance conditions f = 0, and g = 0, to the basic manifold
(4.7.63) and solve the resulting system of equations to get the solution to the bound-
ary value problem (4.7.62). This procedure may appear complicated in the case of
cumbersome formulas for coordinates f and g of RG symmetry generator (4.7.64).

In analyzing (4.7.62) for various physical problems such as a light beam behavior
in a nonlinear medium the appearance of a solution singularity on the axis x = 0
represents the most attracting physical effect. This effect can be understood without
knowledge of a complete solution by applying the RG algorithm to a functional
of the solution, n0(t) ≡ n(t,0), the value of the variable n on the axis x = 0. As
the RG symmetry generator (4.7.64) is defined in the space of hodograph variables
it is convenient to use another functional of the solution introduced by a formal
relationship

τ 0 =
∫

δ(v)τ (v,n)dv. (4.7.65)

Using (4.7.65) in (4.2.22) gives the coordinate f 0 of the canonical RG generator for
the functional τ 0. Here we present two simple illustrations.

Example 4.7.6 Consider a solution of the boundary value problem for (4.7.62) with
α = 1, ϕ(n) = 1 for W(x) = 0 and N(x) = cosh−2(x). The RG symmetry generator
for this boundary value problem is defined by (4.7.64) in which coordinates f and
g are given as

f = 2n(1 − n)τnn − nτn − 2nv(χn + nχnn) + nv2τnn/2,

g = 2n(1 − n)χnn + (2 − 3n)χn + v (2nτnn + τn) + (v2/2) (nχnn + χn) .
(4.7.66)

For RG symmetry (4.7.66), a solution exists on a finite interval 0 ≤ t ≤ tsing, until a
singularity occurs on the axis x = 0 at t = tsing = 1/2, when vx(tsing,0) → ∞ and
the value of n remains finite, n(tsing,0) = 2:

v = −2nt tanh(x − vt), n2t2 = n cosh2(x − vt) − 1. (4.7.67)

adiabatic exponent. At first glance, such a model looks like the standard model of gas dynamics,
but it corresponds to the negative first derivative of the ‘pressure’ with respect to the ‘density.’
A characteristic feature of quasi-Chaplygin media is a universal mathematical form of various
nonlinear effects accompanying the development of an instability.
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From the physical standpoint, solution (4.7.67), which was previously obtained in
[43], describes the evolution of a planar light beam in a medium with a cubic nonlin-
earity (a quasi-Chaplygin medium) for the boundary condition N(x) = cosh−2(x).
The quantities n and v define the intensity and the eikonal derivative of the beam.

Prolongation of the RG symmetry generator (4.7.64), (4.7.66) on functional
(4.7.65) gives the generator in the space {n, τ 0}

R = f 0 ∂

∂τ 0
, (4.7.68)

with the coordinate

f 0 = 2n(1 − n)τnn − nτn. (4.7.69)

The RG invariance condition f 0 = 0 for operator (4.7.68) leads to an ordinary
second-order differential equation for the function τ 0(n), which must be solved with
initial conditions τ 0(1) = 0, and τ 0

n

√
n − 1|n→1 = 1/2 that follows from the origi-

nal equations (4.7.63) for v = 0. This solution,

τ 0 = √
n − 1, (4.7.70)

results from (4.7.67) as well, but the method is simpler and solution (4.7.67) is not
explicitly required.

Example 4.7.7 Turn now to a solution of the boundary value problem for (4.7.62)
with α = −1, ϕ(n) = 1/n for W(x) = 0 and N(x) = exp(−x2). The RG symmetry
generator for this boundary value problem is defined by (4.7.64) with the following
coordinates f and g

f = −n2 lnnτnn − (n/2)τn + τ/2 + v(n3χnn + (3/2)n2χn),

g = −n2 lnnχnn + (n/2)(1 + 4 lnn)χn + χ/2 + v (nτnn + τn/2) .
(4.7.71)

For RG symmetry (4.7.71), the solution describes a monotonic evolution (decrease)
with time t of the density n ≥ 0, while the particle velocity continues to be linearly
dependent on the coordinate:

v = x
√

2qe−q2/2, n = e−q2/2 exp
(−x2e−q2)

,

t = (
√

π/2)erfi
(
q/

√
2
)
.

(4.7.72)

Solution (4.7.72), which was discussed in [44], describes an expanding plasma layer
with the initial density distribution N(x) = exp(−x2).

Prolongation of the RG symmetry generator (4.7.64), (4.7.71) on functional
(4.7.65) gives the generator (4.7.68) in the space {n, τ 0} though with a different
coordinate

f 0 = −n2 lnnτnn − (n/2)τn + τ/2. (4.7.73)

On account of (4.7.73) the RG invariance condition f 0 = 0 for operator (4.7.68)
leads to an ordinary second-order differential equation for the function τ 0(n), which
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must be solved with initial conditions τ 0(1) = 0, and τ 0
n

√
1 − n

∣∣
n→1 = −1/2 that

follows from the original equations (4.7.63) for v = 0. This solution,

τ 0 =
√

π

2
nerfi

(√
ln

1

n

)
, (4.7.74)

correlates with (4.7.72) for v = 0.

In conclusion we notice that expressions (4.7.70) and (4.7.74) result from the com-
plete solutions as well. However, the RG algorithm for functionals presents here an
elegant way of obtaining these formulas without calculating the complete solutions
to boundary value problems.
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