
Chapter 2
Introduction to Group Analysis and Invariant
Solutions of Integro-Differential Equations

The method is a technique which I have applied twice.
Maxim of a traditional professor in mathematics.
G. Polya

In this chapter we give an introduction into applications of group analysis to equa-
tions with nonlocal operators, in particular, to integro-differential equations. The
first section of this chapter contains a retrospective survey of different methods for
constructing symmetries and finding invariant solutions of such equations. The pre-
sentation of the methods is carried out using simple model equations. In the next
section, the classical scheme of the construction of determining equations of an
admitted Lie group is generalized for equations with nonlocal operators. In the con-
cluding sections of this chapter, the developed regular method of obtaining admitted
Lie groups is illustrated by applications to some known integro-differential equa-
tions.

2.1 Integro-Differential Equations in Mathematics
and in Applications

Equations with nonlocal operators include integro-differential equations (IDE), de-
lay differential equations, stochastic differential equations and some other types of
less-known equations. They have been intensively studied for a long time already,
in mathematics and in numerous scientific and engineering applications.

The most known integro-differential equations are kinetic equations (KE) which
form the basis in the kinetic theories of rarefied gases, plasma, radiation transfer, co-
agulation. The Boltzmann kinetic equation [10] in rarefied gas dynamics, the Vlasov
and Landau equations in plasma physics [2], and the Smolukhovsky equation in co-
agulation theory [71] are widely used and have become classical. Numerous gen-
eralizations of these equations are also used in other applications. Brief outlines of
delay and stochastic differential equations are presented in Chaps. 5 and 6.
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58 2 Group Analysis of Integro-Differential Equations

The kinetic equations describe the time evolution of a distribution function (DF)
of some interacting particles such as gas molecules, ions, electrons, aerosols, etc.
DF has the meaning of a nonnormalized probability density function defined on the
space of dynamical variables of particles. A large number of independent variables
and the presence of complicated integral operators are typical features of KEs. KEs
for dynamical systems with strong pair particle interaction include special opera-
tors which are called collision integrals. In general, they are integral operators with
quadratic nonlinearity and multiple kernels as in the Boltzmann and Smolukhovsky
equations. For systems where collective (averaged) particle interactions are of prin-
cipal importance, the nonlocal operators have the form of functionals of DF, as for
example, in the Vlasov equation for collisionless plasma or in the Bhatnagar–Gross–
Krook equation in rarefied gas dynamics [12]. These peculiarities create large dif-
ficulties for investigation of integro-differential equations by both analytical and
numerical methods. Starting with the classical paper [48], partial simplification of
these difficulties was done by reducing the integro-differential equations to infinite
systems of first order differential equations for power moments of DF. Such systems
are derived by integration of the original integro-differential equation with power
weights with respect to some dynamical variables. Using certain asymptotical pro-
cedures [25] one can transform infinite systems for moments into hydrodynamic
type finite partial differential equation systems such as the Navier–Stokes system
for the Boltzmann equation or the system of ideal magnetic hydrodynamics for the
Vlasov–Maxwell system. The mathematical theory of these systems has been in-
dependently developed from the studies of the corresponding integro-differential
equations.

2.2 Survey of Various Approaches or Finding Invariant
Solutions

In pure mathematical theories and especially in applied disciplines a special at-
tention is given to the study of invariant solutions of integro-differential equations
which are directly associated with fundamental symmetry properties of these equa-
tions. In Chap. 1 an application of the classical Lie group theory for finding invari-
ant solutions of differential equations was presented. Group analysis in this case is
an universal tool for calculating complete sets of searched symmetries. However a
direct transference of the known scheme of the group analysis method on integro-
differential equations is impossible. As shown since the first work in this way [28]
(see also [29]) the main obstacle consists in a presence of nonlocal integral opera-
tors. Several approaches to this problem were worked out during a long history of
studying invariant (self-similar) solutions of IDEs. The main of these approaches
can be classified as follows:

(1) Use of a presentation of a solution or an admitted Lie group of transformations
on the basis of a priori simplified assumptions;

(2) Investigation of infinite systems of differential equations for power moments;
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(3) Transformation of an original integro-differential equation into a differential
equation;

(4) Direct derivation of a Lie group of transformations through corresponding de-
termining equations and construction of a representation of invariant solutions
of IDE.

Methods of the first and fourth groups one can characterize as direct methods be-
cause they deal directly with an original IDE. At the same time the methods of the
second and third groups are indirect. They are based on the replacement of a consid-
ered integro-differential equation by an infinite system of differential equations or
by a single differential equation. This allows one to analyze derived equations using
the standard methods of the classical Lie group theory outlined in Chap. 1.

In the present section a brief survey of all these approaches is given. Each method
is illustrated with a simple (model) integro-differential equation with minimal num-
ber of variables. It allows us to explain an essence of the method without too cum-
bersome calculations. The most noticeable results obtained in corresponding frame-
works are annotated with references.

2.2.1 Methods Using a Presentation of a Solution or an Admitted
Lie Group

Methods of this type have an heuristic character. Possibilities of their universaliza-
tion are restricted. Just to them one can relate epigraph of the chapter. They have no
direct relations with group theoretical analysis. However, these methods intuitively
use some symmetry properties of equations. This allows one to choose a form of a
solution or an admitted transformation. It is worth to note that most known invariant
solutions of IDEs for today were obtained applying these methods.

Local-Equilibrium or Stationary Solutions Historically the first approach of
finding invariant solutions of integro-differential (kinetic) equations was based on
splitting original equation in two simpler equations [10, 48]. One of these equations
allows one to define a structure of a seeking solution. Consistence with another
equation provides an explicit form of the solution. Using this method (local) equi-
librium and stationary solutions of some kinetic equations were obtained. Here an
application of this approach to basic types of integro-differential kinetic equations
is considered.

The Kac equation [38] is the simplest model of the full Boltzmann kinetic equa-
tion. This equation is

∂f

∂t
+ v

∂f

∂x
+ F

∂f

∂v
= J (f,f ), (2.2.1)

where

J (f,f ) =
∞∫

−∞
dw

π∫

−π

dθg(θ)[f (v′)f (w′) − f (v)f (w)]. (2.2.2)
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Here f (t, v, x) is the distribution function (DF), t ∈ R
1+, v, x ∈ R

1, J (f,f ) is the
collision operator (integral), F is an external force, g(θ) = g(−θ) is a kernel asso-
ciated with details of particle interaction subject to the normalization condition

π∫

−π

g(θ) dθ = 1.

For the sake of brevity only the velocity arguments of DF are saved in the integrand
of (2.2.2). In this case the function g(θ) corresponds to the Maxwell molecular
model [25]. The collision transformation (v,w) → (v′,w′) is given by the group of
rotations in R2 = R1 × R1 (see (1.1.2)) with the matrix representation A

(v′,w′) = (v,w)A, A =
(

cos θ − sin θ

sin θ cos θ

)
.

Separating (2.2.1) in two parts, the form of local equilibrium solutions (so-called
Maxwellians) is obtained from the equation J (f,f ) = 0. This equation is satisfied
for any function g(θ) if and only if

f (v′)f (w′) − f (v)f (w) = 0, (2.2.3)

or, that is the same,

lnf (v′) + lnf (w′) = lnf (v) + lnf (w).

This means that lnf (v) is a summation invariant of the group of rotations in R2.
Using the infinitesimal generator (1.1.7) X = w∂v − v∂w of the group, one obtains
from XI = 0 that in this case the unique summation invariant is v2 +w2 = v′2 +w′2.
This gives us that the local Maxwellian solutions of (2.2.1) have the form

fM(t, v, x) = a(t, x) exp [−b(t, x)v2]. (2.2.4)

It is worth to emphasize a crucial step which consists here in solving functional
equation (2.2.3). In turn, the solution is defined by summation invariants of the
group of transformations corresponding to a collision interaction. For example, in
the case of monatomic gas we deal with the group of rotations in R6 = R3 × R3

which has four such invariants [25].
The function (2.2.4) has also to satisfy the equation

∂fM

∂t
+ v

∂fM

∂x
+ F

∂fM

∂v
= 0.

For example, if the force F = −ϕ′ is conservative with the potential ϕ(x), then
b = const, a = C exp (−2bϕ) and the well-known Maxwell–Boltzmann distribution
fM(v, x) = C exp [−b(v2 + 2ϕ)] in potential field is obtained.1

The local Maxwellian solutions of the full Boltzmann equation were completely
studied using the outlined method by outstanding scientists: J.C. Maxwell [48],

1The complete study of local Maxwellian solutions of (2.2.1) done in [21].
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L. Boltzmann [10], T. Carleman [14], H. Grad [27]. The local-equilibrium solu-
tions for kinetic equations with similar collision integrals such as the linear Boltz-
mann equation in the neutron transfer theory [25], the Landau kinetic equation in
the plasma physics [2], the Wang Chang–Uhlenbeck equation in the kinetic theory
of polyatomic gases [25] and others were constructed using similar approach.

There exists a wide class of integro-differential equations which include integral
operators in the form of functionals depending on their solutions. In particular, ki-
netic equations with a self-consistent field (so-called Vlasov-type equations) belong
to this class. These equations are used in plasma physics, gravitational astrophysics,
theory of nonlinear waves and others. In this case such equations have the form of
a first order partial differential equation with associative equations for functionals.
According to the theory of differential equations their general solutions are arbitrary
differentiable functions of first integrals. This property allows one to find invariant
solutions of some simple problems.

To illustrate this approach let us consider the one-dimensional problem of equi-
librium of a plane gravitating homogeneous layer [59]. The problem is described by
the Vlasov–Poisson system:

v
∂f

∂x
+ F

∂f

∂v
= 0, (2.2.5)

d2ϕ

dx2
= C. (2.2.6)

Here f (v, x) is the distribution function of gravitating particles, v ∈ R1 is the par-
ticle velocity, x ∈ [−1,1] is the space coordinate, F = −ϕ′ is the gravity force,
ϕ(x) is the gravitational potential. The density of particles ρ(x) is the zeroth-order
moment of the DF:

ρ(x) =
∫

f (v, x) dv. (2.2.7)

Since the density is constant along a layer, it can be written as ρ(x) = ρ0H(1 −
x2), where H is the unit Heaviside step-function. The right hand side of (2.2.6)
is constant C = ρ0. Then F(x) = −x and the general solution of (2.2.5) is f =
f0(E), where the first integral E = v2/2+x2/2 is the energy invariant of the particle
motion. It is also necessary to satisfy the self-consistency condition (2.2.7). In fact,
one has to solve the integral equation of the first kind

∫
f0(E)dv = ρ0H(1 − x2).

The last equation can be transformed into the Abel equation by the substitution
y = 1 − 2E:

z∫

0

f0(y)dy√
z − y

= ρ0H(z), z = 1 − x2.
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The Abel equation is invertible for an arbitrary right hand side [72]:

f0(y) = 1

π

d

dy

y∫

0

ρ0H(z)dz√
y − z

.

Finally, one obtains

f0(E) = ρ0H(1 − 2E)

π
√

1 − 2E
.

Invariant solutions were similarly obtained for gravitating problems with cylin-
drical and spherical symmetries (see references in [59]). It is obvious that this
method can also be used in other applications of the Vlasov-type equations with
two independent variables. In particular, the one-dimensional dynamics of colli-
sionless plasma with a neutralizing background and a potential field is described by
the following system

∂f

∂t
+ v

∂f

∂x
+ F

∂f

∂v
= 0, (2.2.8)

∂F

∂x
= 1 −

∞∫

−∞
dv f,

∂F

∂t
=

∞∫

−∞
dv f v. (2.2.9)

From [1] it follows that there exists some transformation, which maps (2.2.8),
(2.2.9) to the above stationary Vlasov–Poisson system. Then, one can derive non-
stationary solutions of the Vlasov–Maxwell system (2.2.8), (2.2.9) starting from the
stationary solutions.

A Priori Choice of Invariant Transformations

1. Nikolskii’s transformations.

First time this approach was systematically applied to the Boltzmann integro-
differential equation by A.A. Nikolskii in the series of papers [51–53]. Transfor-
mations obtained by this approach provide nonstationary space-dependent solutions
from space-homogeneous.

Let us illustrate the Nikolskii approach using the Kac equation (2.2.1). In the
space-homogeneous case and in absence of the external force F it becomes

∂f (t, v)

∂t
= J (f,f ). (2.2.10)

Assume that fh(t, v) is a solution of (2.2.10). The Nikolskii transformation is

fs(t, x, v) = fh(t̄, v̄), (2.2.11)

where

t̄ = τ(t), v̄ = (1 + t/t0)

(
v − x

t + t0

)
. (2.2.12)
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Here τ(t) is a temporarily unknown function. One can consider the quantity c =
v − x

t+t0
as the heat (eigen) microscopic velocity of a particle, and the quantity

U = x

t + t0

as the macroscopic velocity of a continuum (model gas) in the space position x.
Flows with this velocity distribution in the framework of the one-dimensional ideal
gas dynamics were studied by L.I. Sedov [61]. For t, t0 > 0 it is an expansion flow
of a gas; if t0 < 0 it is a compression flow. Therefore the solution (2.2.11), (2.2.12)
is called “expansion–compression” motions of a model gas. This means that the
distribution function fs of eigen velocities is the same at each space point at any
given instant.

Substitution of (2.2.11) into the left hand side of (2.2.1) with F(x) = 0 gives

∂fs

∂t
(t, x, v) + v

∂fs

∂x
(t, x, v) = dτ

dt
(t)

∂fh

∂t
(t̄ , v̄), (2.2.13)

where (t̄ , v̄) are defined by (2.2.12). Taking into account that fh(t, v) is a solution
of (2.2.10), one can write

dτ

dt
(t)

∂fh

∂t
(t̄ , v̄)

= dτ

dt
(t)

∞∫

−∞
dw̄

π∫

−π

dθg(θ)[fh(v̄
′)fh(w̄

′) − fh(v̄)fh(w̄)], (2.2.14)

where v̄′ = v̄ cos θ + w̄ sin θ , w̄′ = −v̄ sin θ + w̄ cos θ .
By virtue of linearity of the collision transformation for dilations of the velocity

space we have

(λv′, λw′) = (λv,λw)A.

Hence, the collision integral under such dilations is transformed as follows

J (f,f )(λv) = λJ (f,f )(v). (2.2.15)

Let us additionally assume that the studied class of distribution functions fh(t, v)

leaves the collision integral invariant with respect to the translations of the velocity
space

f̄h(t, v) = fh(t, v − a).

This property corresponds [16] to the physical meaning of the distribution function
as the particle number density in the velocity space. In this functional class the
collision integral J (f,f ) has the property

J (f̄h, f̄h)(v) = J (fh,fh)(v − a). (2.2.16)

Sequentially exploiting the properties of the collision integral (2.2.15) and then
(2.2.16), the equation (2.2.13) becomes

∂fs

∂t
+ v

∂fs

∂x
= (1 + t/t0)

dτ

dt
J (fs, fs). (2.2.17)
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Hence, the function fs(t, x, v) determined by (2.2.11), (2.2.12) is a solution of the
equation

∂f

∂t
+ v

∂f

∂x
= J (f,f )

if and only if the unknown function τ(t) satisfies differential equation

dτ

dt
(1 + t/t0) = 1.

Choosing τ(0) = 0, one obtains that τ(t) = t0 ln(1 + t/t0) for any positive t . If
the factor in front of J (fs, fs) in (2.2.17) is chosen as an arbitrary constant, then
(2.2.12) is an equivalence transformation [56].

It is known [38] that for t → ∞ a solution of the space homogeneous equation
(2.2.10) with arbitrary initial data converges to the absolute Maxwellian distribu-
tion fM .

One can note that in an expansion flow for t, t0 > 0 the equilibrium distribution
is reached

lim
t→∞fs(t, x, v) = fM(v).

Whereas in an compression flow (where t0 < 0) one has for t → −0 that

fs(0, x, v) = fh

(
τ(0), v − x

t0

)
�= fM(v),

and the equilibrium distribution is not achieved (see [52]).
In many IDEs the differential operator has a similar form. If the collision inte-

gral possesses similar invariant properties, then Nikolskii’s transformation can also
be applied. Here it can also be mentioned the linear Boltzmann equation [25], the
Landau equation [2] and some others. Unfortunately, as a rule, solutions of space
homogeneous equations excepting stationary equilibrium solutions are unknown.

2. The Bobylev approach.

All methods for constructing invariant solutions of IDEs presented in this sub-
section have ad-hoc character. This means that they are not universal and, hence,
have a confined field of applications. As a rule, such methods are based on intu-
itive windfalls rather than on systematic approach. The most outstanding results in
the frameworks of this direction were derived by Bobylev [5–7]2 for the Boltzmann
kinetic equation for Maxwell molecules.

Here the windfall was the Fourier transform of the Boltzmann equation (BE)
with respect to the velocity variables. The transformation drastically simplified an
investigation of mathematical properties of BE. This has allowed one not only to
obtain a new nontrivial symmetry of BE but also to complete a relaxation theory of
a Maxwellian gas.

2Some generalizations of the Bobylev approach were also done in [24].
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Let us demonstrate the Bobylev approach on the space homogeneous Kac model
as was done in [32]. The Cauchy problem for the distribution function f (t, v) has
the form

∂f

∂t
=

∞∫

−∞
dw

π∫

−π

dθg(θ)[f (v′)f (w′) − f (v)f (w)], (2.2.18)

f (0, v) = f0(v). (2.2.19)

The equilibrium solution of (2.2.18) when t → ∞ is the absolute Maxwellian
distribution

fM(v) = 1√
2π

exp(−v2/2). (2.2.20)

The problem (2.2.18), (2.2.19) possesses the mass and energy conservation laws of
the forms

∞∫

−∞
f (t, v) dv =

∞∫

−∞
f0(v) dv = 1,

∞∫

−∞
v2f (t, v) dv =

∞∫

−∞
v2f0(v) dv = 1.

(2.2.21)

For an arbitrary integrable function ψ(v) and the collision integral (2.2.2) the
integral identity takes place

I (ψ) =
∞∫

−∞
dvψ(v)J (f,f )

=
∞∫

−∞

∞∫

−∞

π∫

−π

g(θ)(ψ(v′) − ψ(v))f (v)f (w)dvdwdθ. (2.2.22)

The direct and inverse Fourier transforms are defined as follows

ϕ(k) =
∞∫

−∞
f (v)e−ikv dv. (2.2.23)

f (v) = (2π)−1

∞∫

−∞
ϕ(k)eikv dk. (2.2.24)

Applying the direct transform (2.2.23) to (2.2.18) and taking into account identity
(2.2.22), one can derive the Fourier representation of the Cauchy problem (2.2.18),
(2.2.19):

∂ϕ(t, k)

∂t
= Ĵ (ϕ,ϕ), ϕ(0, k) = Φ(k), (2.2.25)
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where

Ĵ (ϕ,ϕ) =
π∫

−π

dθg(θ)[ϕ(k cos θ)ϕ(k sin θ) − ϕ(k)ϕ(0)],

and

Φ(k) =
∞∫

−∞
f0(v)e−ikv dv. (2.2.26)

Note that an essential simplification of the collision term occurred:3 the collision
term contains a single integral over the collision parameter θ .

The Fourier transform of the equilibrium solution (2.2.20) is

ϕM(k) = exp

(
−k2

2

)
. (2.2.27)

The conservation laws (2.2.21) in terms of Fourier transforms become

ϕ(t,0) = Φ(0) = 1,
∂2ϕ(t, k)

∂k2

∣∣∣∣
k=0

= ∂2Φ(k)

∂k2

∣∣∣∣
k=0

= −1. (2.2.28)

One can easily verify that (2.2.25) admits some simple groups of transformations.
In fact, there is a group of translations of the time t̄ = t + a . The corresponding
infinitesimal generator of this group is X1 = ∂t .

It is necessary to point out that each transformation in the k-space has a corre-
sponding representation in the original v-space. In such a way there is a dilation
group in the k-space

k̄ = eak, X2 = k∂k. (2.2.29)

This transformation leads to the change of variables in the v-space:

f̄ (t, v) = e−af (t, e−av).

This property corresponds to the transformation defined by the infinitesimal gener-
ator:

Y2 = v∂v + f ∂f .

The Bobylev symmetry of (2.2.25) is defined by the formula

ϕ̄(t, k) = exp

(
−ak2

2

)
ϕ(t, k). (2.2.30)

This symmetry corresponds to the infinitesimal generator X3 = − k2

2 ϕ∂ϕ .

3More impressive simplification the Fourier transform gives for the full Boltzmann equation with
Maxwell molecules: the five-fold collision integral is reduced to a two-fold integral [7]. Unfor-
tunately for other power-like molecular potentials Fourier transform does not give simplifications
[33].
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The invariance of (2.2.25) with respect to the change (2.2.30) is easily ascer-
tained. Because the existence of an inverse Fourier transform requires that a ≥ 0,
the transformation (2.2.30) determines a semigroup. Using (2.2.24) and the convo-
lution theorem, one can obtain the corresponding semigroup in the v-space:4

f̄ (t, v) = 1√
2πa

∞∫

−∞
f (t,w)dw exp

[
− (v − w)2

2a

]
. (2.2.31)

Here corresponding an infinitesimal generator is the one-dimensional Laplace oper-
ator

Y5 = 1

2
∂vv.

The invariant solution of the problem (2.2.25) which is consistent from the phys-
ical point of view has to satisfy the initial conditions (2.2.26), the conservation laws
(2.2.28) and has to converge to ϕM(k) (2.2.20) for t → ∞. Taking into account
these demands, the invariant solution similar to the well-known BKW-mode [5] is
constructed in the following way.5

To reduce the number of independent variables and to use simultaneously the
new symmetry (2.2.30) one can seek for a solution in the form

ϕ(k, t) = exp

(
−ak2

2

)
Ψ (x), x = τ(t)k, (2.2.32)

where τ(t) is determined later. Substituting the presentation (2.2.32) into (2.2.25)
and taking into account its invariance under the transformation (2.2.30), one obtains

dτ

dt

1

τ
x

dΨ

dx
= Ĵ (Ψ,Ψ ).

To separate variables here it is necessary to set

dτ

dt

1

τ
= c.

The last equation determines the function τ(t) = θ0 exp(ct), where c and θ0 are
arbitrary constants. To satisfy the initial conditions one has to require

ϕ(k,0) = exp

(
−ak2

2

)
Ψ (θ0k) = Φ(k).

Hence, the representation of the invariant solution (2.2.32) becomes

ϕ(k, t) = exp

[
1

2
a(x2 − k2)

]
Φ(x). (2.2.33)

4The invariance of the Boltzmann equation with isotropic Maxwell molecular model with respect
to semigroup (2.2.31) was discovered in [50] but it was not used by the author for constructing
invariant solutions and for a long time this result was lost.
5The authors of BKW-mode [42] used a much more long and intricate approach.
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Since Φ(0) = 1, for asymptotic convergence of (2.2.33) to the equilibrium so-
lution (2.2.27), it is sufficient to accept that a = 1 and c < 0. Simultaneously this
solution satisfies the mass conservation law. The energy conservation law will be
automatically satisfied after constructing the solution in the explicit form.

One can check that the invariant solution (2.2.33) is determined by the infinites-
imal generator X = −c−1X1 + X2 − X5. In fact, solving the first-order partial dif-
ferential equation

X(I) ≡ −c−1 ∂I

∂t
+ k

∂I

∂k
− k2ϕ

∂I

∂ϕ
= 0,

one derives two independent integrals I1 = kθ0 exp(ct) = kτ(t) and I2 = ϕ ×
exp(k2/2) which are independent invariants (see Chap. 1). Since for constructing
the invariant solution one requires that

I2 = h(I1),

one has the representation of the invariant solution ϕ = exp(−k2/2)h(x). Finally to
satisfy the imposed demands it is sufficient to set h(x) = exp(x2/2)Φ(x).

Substitution of the presentation (2.2.33) into (2.2.25) gives the factor-equation

c x

(
dΦ

dx
+ xΦ

)
= Ĵ (Φ,Φ). (2.2.34)

To find the BKW-mode one uses the Taylor expansion

Φ(x) = 1 +
∞∑

n=1

cn

n! x
n, (2.2.35)

where the choice c0 = 1 explicitly accomplishes the mass conservation law.
After substitution (2.2.35) into (2.2.34) one obtains a specific nonlinear spectral

problem for the coefficients cn. Even coefficients c2k (n = 2k) are separately deter-
mined from closed subsystem. In particular, c2 = −1 and the energy conservation
law is satisfied. Some resonance property of even eigen values allows to cut the
series (2.2.35) and find a solution in the form

Φ(x) = 1 − x2, x = kτ(t) ≡ kθ0 exp(ct), c = −1

8

π∫

−π

dθg(θ) sin2 2θ.

Applying the inverse Fourier transform to (2.2.33), one can derive the explicit
expression of the BKW-mode6 in the v-space:

f (t, v) = 1√
2π(1 − λ(t))

[
1 + λ(t)

2(1 − λ(t))

(
v2

1 − λ(t)
− 1

)]
exp

[
− v2

2(1 − λ(t))

]
,

where λ(t) = τ 2(t) and 0 < θ2
0 < 2/3.

6It is worth to note that the Fourier transform of the Boltzmann equation and the explicit solution
rediscovered in [6, 7, 42] were first derived in unknown MS thesis of R. Krupp (see Ref. [15]).
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3. Scaling conjecture.

In the work of the authors [28] some generalization of known symmetry proper-
ties of the Boltzmann equation and its models was proposed. In application to the
Kac model in absence of an external force F

∂f

∂t
+ v

∂f

∂x
= J (f,f ), (2.2.36)

the admitted Lie group G of transformations Ta was sought in the form

f̄ = ψ(t̄, x̄, a)f, t = q(t̄, x̄, a), x = h(t̄, x̄, a),

v = r(t̄ , x̄, a)v̄.
(2.2.37)

Here {f, t, x, v} and {f̄ , t̄ , x̄, v̄} are original and transformed variables, respec-
tively, ψ, h, θ, r, p are unknown functions which define the sought group G with
the group parameter a. These functions have necessarily to satisfy the main group
superposition property in the form

Tb Ta = Ta+b, (2.2.38)

and the identity property for the group parameter a = 0:

ψ(t̄, x̄,0) = 1, q(t̄ , x̄,0) = t̄ , h(t̄ , x̄,0) = x̄,

r(t̄ , x̄,0)v̄ = v̄.
(2.2.39)

The Lie group of transformations G is said to be admitted by (2.2.36) or (2.2.36)
admits the group G if transformations (2.2.37) convert every solution of (2.2.36)
into a solution of the same equation. This means that if a function f (t, x, v) is a
solution of (2.2.36), then the function

f̄ (t̄ , x̄, v̄, a) = ψ(x̄, t̄ , a) f (q(x̄, t̄ , a), h(x̄, t̄ , a), r(t̄ , x̄, a)v̄) (2.2.40)

satisfies the equation

∂f̄

∂t̄
+ v̄

∂f̄

∂x̄
= J (f̄ , f̄ ). (2.2.41)

By virtue of the properties of the collision integral (2.2.16) and (2.2.37), one can
show that

J (f̄ , f̄ ) = g(t̄, x̄, a)J (f,f ) (2.2.42)

with some function g(t̄, x̄, a).
Calculating the derivatives of the function f̄ (t̄ , x̄, v̄, a) (2.2.40) and the collision

integral J (f̄ , f̄ ), one gets

∂f̄

∂t̄
= ∂ψ

∂t̄
f + ψ

(
∂f

∂t

∂q

∂t̄
+ ∂f

∂x

∂h

∂t̄
+ ∂f

∂v

∂r

∂t̄
v

)
,

∂f̄

∂x̄
= ∂ψ

∂x̄
f + ψ

(
∂f

∂t

∂q

∂x̄
+ ∂f

∂x

∂h

∂x̄
+ ∂f

∂v

∂r

∂x̄
v

)
,

J (f̄ , f̄ )(t̄ , x̄, v̄, a) = ψ2(t̄ , x̄, v̄, a)

r(t̄ , x̄, v̄, a)
J (f,f )(t, x, v),
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where (t, x, v) are defined by (2.2.37). Since the function f (t, x, v) is a solution of
the Kac equation (2.2.36), the collision integral J (f,f ) can be exchanged with the
left hand side of this equation. This gives that

J (f̄ , f̄ ) = ψ2

r

(
∂f

∂t
+ rv̄

∂f

∂x

)
.

Taking into account that f (t, x, v) is an arbitrary solution of (2.2.36) one can split
the derived equation with respect to f and its derivatives:

f : ∂ψ

∂t̄
+ v̄

∂ψ

∂x̄
= 0,

∂f

∂t
: ∂q

∂t̄
+ v̄

∂q

∂x̄
− ψ

r
= 0,

∂f

∂x
: ∂h

∂t̄
+ v̄

∂h

∂x̄
− rv̄

ψ

r
= 0,

∂f

∂v
: ∂r

∂t̄
v̄ + ∂p

∂t̄
+ v̄

∂r

∂x̄
v̄ = 0.

Additional splitting of these equations with respect to the variable v̄ gives the equa-
tions

∂ψ

∂t̄
= 0,

∂ψ

∂x̄
= 0, (2.2.43)

∂q

∂t̄
− ψ

r
= 0,

∂q

∂x̄
= 0, (2.2.44)

∂h

∂t̄
= 0,

∂h

∂x̄
− ψ = 0, (2.2.45)

∂r

∂t̄
= 0,

∂r

∂x̄
= 0. (2.2.46)

From (2.2.43) one has that ψ = ψ(a). The general solution of (2.2.45) is

h(t̄, x̄, a) = x̄ψ(a) + c1(a)

with an arbitrary function c1(a). Equations (2.2.46) define that

r = r(a).

The general solution of (2.2.44) is

q(t̄, x̄, a) = t̄
ψ(a)

r(a)
+ c2(a),

where c2(a) is an arbitrary function.
Thus, using the properties of the collision integral (2.2.15), one derives that the

form of admitted transformations (2.2.37) is

f̄ = ψ(a)f, t = t̄
ψ(a)

r(a)
+ c2(a),

x = x̄ψ(a) + c1(a), v = r(a)v̄.

(2.2.47)
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The identity conditions (2.2.39) of transformations (2.2.47) at a = 0 impose the
additional relations

ψ(0) = 1, c1(0) = 0, r(0) = 1, c2(0) = 0. (2.2.48)

The requirement to satisfy the main Lie group property (2.2.38) for the variable
f and v leads to the conditions

ψ(a)ψ(b) = ψ(a + b), r(a)r(b) = r(a + b). (2.2.49)

Using (2.2.48), the general solutions of these equations are

ψ(a) = exp(ĉ1a), r(a) = exp(ĉ2a),

where ĉ1 and ĉ2 are arbitrary constants. Hence, transformations (2.2.47) become

f̄ = exp(ĉ1a)f (x, v, t), x̄ = (x − c1(a)) exp(−ĉ1a),

v̄ = v exp(−ĉ2a), t̄ = (t − c2(a)) exp[−(ĉ1 − ĉ2)a)]. (2.2.50)

Since there is one-to-one correspondence between an infinitesimal generator and
a Lie group, the undefined functions c1(a) and c2(a) in (2.2.50) can be found from
the system of Lie equations.

Recall that the coefficients of the admitted generator of the Lie group G

X = ξ t ∂

∂t
+ ξx ∂

∂x
+ ξv ∂

∂v
+ ζ f ∂

∂f

are defined by the formulae

ξ t = dt̄

da

∣∣∣∣
a=0

= −c′
2(0) − (t − c2(0))(ĉ1 − ĉ2),

ξx = dx̄

da

∣∣∣∣
a=0

= −c′
1(0) − ĉ1(x − c1(0)),

ξv = dv̄

da

∣∣∣∣
a=0

= −ĉ2v,

ζ f = df̄

da

∣∣∣∣
a=0

= ĉ1f.

By virtue of (2.2.48), one obtains that

ξ t = −c′
2(0) − t (ĉ1 − ĉ2),

ξx = −c′
1(0) − ĉ1x,

ξv = −vĉ2,

ζ f = ĉ1f.
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Thus, one has the basis of admitted generators

ĉ1 : X4 = f ∂f − t∂t − x∂x,

ĉ2 : X3 = v∂v − t∂t ,

c′
1(0) : X1 = ∂x,

c′
2(0) : X2 = ∂t .

(2.2.51)

Now after finding the invariants of the group XiJ = 0 (i = 1, . . . ,5) by the usual
way, one can obtain representations of invariant solutions.

It is seen that the integral transformation (2.2.31) is absent in transformations
(2.2.50). However, as will be shown in Chap. 3 such simple scaling conjecture al-
lows us [28] to define 11-parameter Lie algebra admitted by the full Boltzmann
equation and all known extensions for some special cases of molecular potentials
(see also [31]).

4. Teshukov’s wave-type solutions.

It is worth to mention here one more approach which was developed by
V.M. Teshukov. In [67] an extension of the theory of characteristics for systems of
integro-differential equations was proposed. Using the generalized characteristics
and Riemann invariants, simple waves of a system of integro-differential equations
were determined.

The system of integro-differential equations describing evolution of rotational
free-boundary flows of an ideal incompressible fluid in a shallow-water approxima-
tion is the following

hut + uux + vuy + gh = 0, ux + vy = 0,

ht +
( h∫

0

udy

)

x

= 0.
(2.2.52)

Here (u, v) is the fluid-velocity vector, h is the layer depth, g is the gravitational
acceleration, x and y are the Cartesian plane coordinates, and t is time. The impen-
etration condition v(x,0, t) = 0 is satisfied at the layer bottom. Equations (2.2.52)
are considered in the Eulerian–Lagrangian coordinates x′, λ, t ′, where

x = x′, t = t ′, y = Φ(x′, λ, t ′),

and Φ = Φ(x′, λ, t ′) is the solution of the Cauchy problem

Φt + u(x,Φ, t)Φx = v(x,Φ, t), Φ(x,λ,0) = Φ0(x,λ).

In the new coordinates (2.2.52) become

ut (x,λ, t) + u(x,λ, t)ux(x,λ, t) + g

1∫

0

Hx(x, v, t) dv = 0,
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Ht(x,λ, t) + (u(x,λ, t)H(x,λ, t))x = 0,

where the prime is omitted and H(x,λ, t) = Φλ(x,λ, t) > 0.
Solutions of the simple wave type are sought in the form

u = U(α(x, t), λ), H = P(α(x, t), λ),

where α(x, t) is a function of two variables. The functions U(α,λ), P(α,λ) have to
satisfy the equations

(u(α,λ) − k)uα(α,λ) + g

1∫

0

Pα(α,μ)dμ = 0,

(u(α,λ) − k)Pα(α,λ) + P(α,λ)uα(α,λ) = 0,

where k = −αt/αx . The existence of simple waves, their properties and extensions
for other systems of integro-differential equations were studied in [17, 68–70].

2.2.2 Methods of Moments

The method of moments for finding symmetries of integro-differential equations is
based on the idea to use an infinite system of partial differential equations which is
equivalent to the original integro-differential system of equations. The general idea
of consideration such a system goes back to the pioneering paper [48] where the
Boltzmann equation was studied by using the power moments defined on a solution
of the Boltzmann equation.

The moment method for obtaining symmetries consists of the following steps.
A finite subsystem of N moment equations is chosen. Applying the classical group
analysis method developed for partial differential equations to the chosen subsys-
tem, one finds the admitted Lie group (algebra) of this subsystem. Expanding the
subsystem and letting N → ∞, the intersection of all calculated Lie groups is car-
ried out. The final step consists of returning the obtained symmetries for the moment
representation to the symmetries of the original integro-differential equations.

The first application of this method was done in [64] for the system of the
Vlasov–Maxwell collisionless plasma equations.

It is worth to notice that among the indirect methods of studying symmetries of
IDEs, the method of moments is the most universal ones, despite of the substantial
restrictions of its applications.

Let us demonstrate this approach by the simple model Kac equation (2.2.1). The
power moments for this model are defined as:

Mn =
∫

vnf dv, v ∈ R1 (n = 0,1, . . .).

Multiplying (2.2.1) with vn and integrating it with respect to v, one obtains on the
left hand side the expression

∂Mn

∂t
+ ∂Mn+1

∂x
.
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This expression represents two terms which are typical for the moment system of
a kinetic equation. For integration of the right hand side one can use the following
integral identity for the collision integral (2.2.2):

I (vn) =
∞∫

−∞
dvvnJ (f,f )

= 1

2

∞∫

−∞

∞∫

−∞

π∫

−π

g(θ)[v′n + w′n − vn − wn]f (v)f (w)dv dw dθ,

(2.2.53)

where v′ = v cos θ + w sin θ and w′ = w cos θ − v sin θ . Integrating the moment
system for the Kac equation (2.2.1) is obtained

∂Mn

∂t
+ ∂Mn+1

∂x
− ΛnM0Mn =

n−1∑
m=1

Hm,n−mMmMn−m (n = 0,1, . . .),

(2.2.54)

where

Λ2k =
π∫

−π

g(θ)[cos2k θ + sin2k θ − 1 − δk0]dθ,

Λ2k+1 =
π∫

−π

g(θ)[cos2k+1 θ − 1]dθ (k = 0,1, . . .),

Hm,n−m = 1

2
Ck

n

π∫

−π

g(θ)[cosm θ sinn−m θ + (−1)m sinm θ cosn−m θ ]dθ.

It is seen that for any N the last equation of the N -order system contains the
moment MN+1. Hence each truncated subsystem is unclosed. However this does
not impede one to find a symmetry.

Applying the classical group analysis method to this system, and solving the
determining equations, one obtains that the admitted generator is

X(3) = k1X1 + k2X2 + k3Y
(3)
3 + k4Y

(3)
4 + p1(t)∂M2 + (q1(t, x) − xp′

1(t))∂M3 ,

where

X1 = ∂t , X2 = ∂x,

Y
(3)
3 = x∂x + M1∂M1 + 2M2∂M2 + 3M3∂M3 ,

Y
(3)
4 = t∂t − M0∂M0 − 2M1∂M1 − 3M2∂M2 − 4M3∂M3 .

(2.2.55)
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The part of system (2.2.54) including the fourth moment M4 consists of the equa-
tions

∂M0

∂t
+ ∂M1

∂x
= 0,

∂M1

∂t
+ ∂M2

∂x
− Λ1M0M1 = 0,

∂M2

∂t
+ ∂M3

∂x
= 0,

∂M3

∂t
+ ∂M4

∂x
− Λ3M0M3 = (H1,2 + H2,1)M1M2.

(2.2.56)

Notice that: (a) system (2.2.56) contains (2.2.55) as a subsystem; (b) the set of
derivatives for splitting the determining equations of system (2.2.56) contains the set
of derivatives for splitting the determining equations of system (2.2.55). Because of
these two properties, the generator admitted by system (2.2.56) can be obtained by
expanding the operator X

(3)
3 on the space of the variables t, x,M0,M1,M2,M3 and

M4:

X(4) = k1X1 + k2X2 + k3Y
(3)
3 + k4Y

(3)
4 + p2(t,M4)∂M2

+ (q2 − xp2t ∂t )∂M3 + ζ∂M4,

where p2 = p2(t,M4), q2 = q2(t, x,M4) and ζ = ζ(t, x,M1,M2,M3,M4). Apply-
ing this operator to system (2.2.56) one obtains that

p2 = 0, q2 = 0

and

ζ = (4k3 − 5k4)M4 + q3(t).

This means that the admitted generator of system (2.2.56) is

X(4) = k1X1 + k2X2 + k3Y
(4)
3 + k4Y

(4)
4 + q3(t)∂M4 ,

where

Y
(4)
3 = Y

(3)
3 + 4M4∂M4

= x∂x + M1∂M1 + 2M2∂M2 + 3M3∂M3 + 4M4∂M4 ,

Y
(4)
4 = Y

(3)
4 − 5M4∂M4

= t∂t − M0∂M0 − 2M1∂M1 − 3M2∂M2 − 4M3∂M3 − 5M4∂M4 .

During calculations the following condition was used

H1,2 + H2,1 �= 0.

One can check that if H1,2 + H2,1 = 0, then the operator X(4) is also admitted by
system (2.2.56).

Proceeding by this way, one obtains that the only generator which is admitted by
all finite subsystems of (2.2.54) is

X = k1X1 + k2X2 + k3Y3 + k4Y4,
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where

Y3 = x∂x +
∞∑

k=1

kMk∂Mk
, Y4 = t∂t −

∞∑
k=0

(k + 1)Mk∂Mk
.

The operator X is more convenient to rewrite in the form

X = k1X1 + k2X2 + k3X3 + k4X4,

where

X3 = Y4, X4 = Y3 + Y4 = x∂x + t∂t −
∞∑

k=0

Mk∂Mk
.

Let us define corresponding generators in the space of the original variables
(t, x, v, f ).

Consider the generator

X3 = t∂t −
∞∑

k=0

(k + 1)Mk∂Mk
.

It is necessary to obtain the corresponding group of transformations in an explicit
form. Solving the Lie equations one has

t̄ = tea, x̄ = x, M̄k = Mke
−(k+1)a (k = 0,1,2, . . .). (2.2.57)

It is logical to assume that the variables v and f are also scaled in the space of the
variables t , x, v, f :

v̄ = veαa, f̄ = f eβa.

Using this change, the transformed function and the transformed moments are de-
termined by the formulae

f̄ (t̄ , x̄, v̄) = f (t̄e−a, x̄, v̄e−αa)eβa,

M̄k =
∞∫

−∞
v̄kf̄ (v̄) dv̄ = eβa

∞∫

−∞
v̄kf (v̄e−αa) dv̄

= e(β+(k+1)α)a

∞∫

−∞
vkf (v) dv = Mke

(β+(k+1)α)a.

(2.2.58)

Thus, comparing with (2.2.57), one gets

β + α = −1, α = −1.

This gives the generator

X3 = t∂t − v∂v.

Similar to the previous generator one obtains for the generator

X4 = x∂x + t∂t −
∞∑

k=0

Mk∂Mk
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that

t̄ = tea, x̄ = xea, M̄k = Mke
−a (k = 0,1,2, . . .). (2.2.59)

Comparing this with (2.2.58), one finds

β + α = −1, α = 0.

This gives the generator

X4 = x∂x + t∂t − f ∂f .

Therefore, the Kac equation (2.2.1) admits the Lie group with the generators:7

X1 = ∂t , X2 = ∂x, X3 = t∂t − v∂v, X4 = x∂x + t∂t − f ∂f .

Starting with [64] (see also [65]) the moment method was applied to Vlasov-
type equations such as different modifications of the Benney equation [41], where a
transition to a moment system is natural. In order to use the classical group analysis
method it is necessary that each finite subsystem of a moment system contains a
finite number of moments. Taking into account this property one can mention the
papers [12, 13] where the moment method was used for the group analysis of the
Bhatnagar–Gross–Krook (BGK) kinetic equation of rarefied gas dynamics. In the
simplest model case this equation takes the form

∂f

∂t
+ v

∂f

∂x
= ν(f0 − f ). (2.2.60)

Here as in (2.2.1), the distribution function is f = f (t, v, x), t ∈ R
1+, v, x ∈ R

1. The
local Maxwellian distribution

f0 = n

(
1

2πT

)1/2

exp

[
− (v − V )2

2T

]

is defined through the moments of an unknown solution

n =
∫

dv f, V = 1

n

∫
dv v f, T = 1

n

∫
dv (v − V )2 f.

Equations similar to the BGK-equation with the so-called relaxation collision
integral are also considered in the kinetic theory of molecular gases (the Landau–
Teller equation [45]), in the plasma physics, etc. For these equations, a finite sub-
system for power moments contains a finite set of moments. However, in the
general case of dissipative kinetic equations such as the Boltzmann equation, the
Smolukhovsky equation and others this property is exceptional. For example, the
Boltzmann equation only has this property for Maxwellian-type molecular interac-
tion. As noted, this case of the Boltzmann equation can be modeled by the Kac
equation. The application of the group analysis method to the moment system cor-
responding to the Kac equation has been demonstrated above. For arbitrary inter-
molecular potentials, each moment equation contains an infinite number of mo-
ments. For this reason, in the general case the difficulty of constructing an admitted

7This Lie group coincides with the group obtained by using the scaling conjecture (compare with
(2.2.51)).
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Lie group for such a system is equally difficult as the direct integration of the mo-
ment system as a whole.

Other difficulties related with finding an admitted Lie group of transformations
using moment equations consist of some problems of inverse transition from a Lie
group of transformations for the moment system to the corresponding Lie group of
the original equation. In all known cases [12, 13, 41, 64] one deals with the Lie group
of scaling transformations similar to the example for the Kac equation considered
above. The scaling transformations are naturally carried out on the original variables
v, f . However, for more complicated transformations such a transition may be not
as easy.

It is clear that the form of a moment system and its Lie group depend on a
moment representation. As an example for the Boltzmann equation with Maxwell
molecules (also for the Kac model (2.2.1)) an alternative to the power moments can
be presented by the Fourier coefficients of the expansion of the distribution function
in Hermitian polynomials. In general there are no results on relations between these
possible approaches.

Moreover, as a rule there are no rigorous proofs of equivalence between an orig-
inal kinetic equation and the corresponding moment system. In some cases the Lie
group obtained by the moment method coincides with the Lie group calculated by
the regular method [29] applied to the original equations. For example, this hap-
pens for the 4-parameter Lie group derived for the moment system of the Vlasov
equation [64] and for the Vlasov equation [30]. The 11-parameter Lie group of the
Boltzmann equation with arbitrary power potential found in [12, 13] and the Lie
group calculated directly from the equation [28] also coincide. At the same time as
shown in [37], the finite Lie group calculated in [41] using the moment method for
the Benney equation is not complete. Since the Benney equation possesses [44] an
infinite set of conservation laws, one can expect that the finite dimension of the de-
rived Lie algebra contradicts the infinite set of conservation laws. This inconsistency
was considered in detail in [37] (see also Chap. 4).

These remarks show that in finding symmetries of IDEs, the relatively universal
moment method cannot be a valuable alternative to the regular method which is
constructed as a generalization of the classical Lie method for differential equations.

2.2.3 Methods Using a Transition to Equivalent Differential
Equations

The idea of these approaches is quite obvious. However, its realization in each case
has very individual features. Therefore the survey of these approaches is restricted
here by several examples. In spite of this restriction any of the chosen examples
illustrates a technique which is used at least in two papers.

Vlasov-Type Equations as First-Order Partial Differential Equations There
exists the possibility of a direct application of the classical group analysis (see
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Chap. 1) for finding invariant solutions of the Vlasov-type kinetic equations. The
idea of this application is related with the following.

It is well-known [20] that the Lie group admitted by the first-order quasilinear
partial differential equation

ut + ai(x,u)uxi
= b(x,u) (2.2.61)

coincides with the Lie group admitted by the characteristic system of ordinary dif-
ferential equations of the quasilinear equation (2.2.61)

du

dt
= b(x,u),

dxi

dt
= ai(x,u) (i = 1,2, . . . , n).

Here x = (x1, x2, . . . , xn).
Having this in minds let us separately consider the Vlasov kinetic equation (2.2.8)

which can be rewritten in the form

∂f

∂t
+ ẋ

∂f

∂x
+ F

∂f

∂ẋ
= 0, (2.2.62)

where f = f (t, x, ẋ), F = F(t, x), and ẋ = v. Here the self-consistency of the
force F given by the Maxwell system (2.2.9) is temporarily neglected. Following
[1] one makes the transition from the characteristic system of (2.2.62)

d t

1
= d x

ẋ
= dẋ

F
(2.2.63)

to the equivalent second-order ordinary differential equation

Φ ≡ d2x

dt2
− F(t, x) = 0.

According to the remark given above, it is clear that this equation admits the same
Lie group as (2.2.62) and (2.2.63). In notations of Chap. 1 the infinitesimal criterion
for the generator

X = ξ(t, x)∂t + η(t, x)∂x,

to be admitted by the equation Φ = 0 is

X(2)Φ|Φ=0 ≡ (ξΦt + ηΦx + ζ1Φẋ + ζ2Φẍ)|Φ=0 = 0. (2.2.64)

Here X(2) is the second prolongation of the infinitesimal generator X, and the coef-
ficients ζ1 and ζ2 are defined by the prolongation formulae. Calculations give that
the determining equation (2.2.64) becomes

(ηx − 2ξt )F − ξFt − ηFx + ηtt + (2ηtx − ξtt − 3ξxF )ẋ

+ (ηxx − 2ξtx)ẋ
2 − ξxx ẋ

3 = 0.

Splitting this determining equation with respect to powers of ẋ one finds

ξxx = 0, ηxx − 2ξtx = 0,

2ηtx − ξtt − 3ξxF = 0, (ηx − 2ξt )F − ξFt − ηFx + ηtt = 0.
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The general solution of the first two equations is [1]

ξ = xh1(t) + h2(t), η = 2x2h′
1(t) + xh3(t) + h4(t),

where hi(t) (i = 1,2,3,4) are arbitrary functions. Using the standard technique of
constructing invariant solutions, for particular choices of the functions hi(t) (i =
1,2,3,4) the Vlasov equation (2.2.62) is reduced to the stationary Vlasov equation
in the new variables f̄ , x̄, V :

ϕ1
∂f̄

∂x̄
+ ϕ2

∂f̄

∂V
= 0,

where ϕ1(x̄, V ), ϕ2(x̄,V ) are some known functions. The last equation can be inte-
grated only in a few particular cases. Notice also that these obtained solutions have
to be consistent with the Maxwell system (2.2.9). A brief survey of these results
one can find in [1]. It is clear that the presented approach is effective just for similar
one-dimensional problems in plasma physics, gravitational astrophysics, etc., where
the Vlasov-type equation with three independent variables appeared.

Use of the Laplace Transform Successful applications of the Laplace and other
integral transforms for reducing integro-differential equations to differential ones
are restricted by some degenerated cases. As a rule these equations either possess a
high symmetry in the phase space or present exact solvable models [23].

As a first example let us consider the Fourier-image of the spatially homogeneous
and isotropic Boltzmann equation derived in [4]

ϕt (x, t) + ϕ(x, t)ϕ(0, t) −
1∫

0

ϕ(xs, t)ϕ(x(1 − s), t) ds = 0. (2.2.65)

One can notice that any solution of (2.2.65) possesses the property ϕ(0, t) = const.
This property corresponds to the mass conservation law of the Boltzmann equation.

The change xs = y reduces (2.2.65) to the equation with the convolution-type
integral:

xϕt (x, t) + xϕ(x, t)ϕ(0, t) −
x∫

0

ϕ(y, t)ϕ(x − y, t) dy = 0. (2.2.66)

In analysis of (2.2.66), one can assume that

ϕ(0, t) = 1. (2.2.67)

Then applying the Laplace transform

u(z, t) = L {ϕ(x, t)} =
∞∫

0

e−zxϕ(x, t) dx, (2.2.68)
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to (2.2.66) one comes to the partial differential equation8

∂2u

∂z∂t
+ ∂u

∂z
+ u2 = 0. (2.2.69)

Since (2.2.69) is a partial differential equation, one can apply to this equation the
classical group analysis method. In fact, assuming that the infinitesimal generator
of the admitted Lie group is

X = τ∂t + ξ∂z + η∂u,

the determining equation of this Lie group is(
X(2)Ψ

)
|(2.2.69)

= (
ηuzt + ηuz + 2uη

)
|(2.2.69)

= 0. (2.2.70)

Here the coefficients ηuz and ηuzt are defined by the prolongation formulae

ηuz = Dzη − utDzτ − uzDzξ, ηuzt = Dtη
uz − uztDtτ − uzzDtξ.

The general solution of the determining equation (2.2.70) is

X = c1Y1 + c2Y2 + c3Y3 + c4Y4,

where

Y1 = ∂t , Y2 = ∂z, Y3 = −z∂z + u∂u, Y4 = et (−∂t + u∂u).

Notice that the original equation (2.2.65) admits the Lie algebra with the basis
[28]9

X1 = ∂t , X2 = xϕ∂ϕ, X3 = x∂x, X4 = ϕ∂ϕ − t∂t .

The well-known solution of (2.2.65) is the BKW-solution [4, 42]: ϕ = 6ey(1 − y),
where y = xe−t . This solution is an invariant solution of (2.2.65) under the Lie
group of transformation corresponding to the subalgebra10 {X1 + X3}.

Let us study the symmetries of (2.2.69) which inherit the symmetries of (2.2.65)
and vice versa.

It is trivial to check that the transformations related with the generator X1 in the
space of the variables (x, t, ϕ) are inherited in the space of the variables (z, t, u).

The transformations corresponding to the generator X2 map functions as

ϕ̄(x̄, t̄ ) = eax̄ϕ(x̄, t̄).

Hence the Laplace transform (2.2.68) maps solutions of (2.2.65) as follows

ū(z̄, t̄) = L {ϕ̄(x̄, t̄ )} =
∞∫

0

e−z̄x̄ ϕ̄(x̄, t̄ ) dx̄ =
∞∫

0

e−(z̄−a)x̄ϕ(x̄, t̄) dx̄ = u(z̄ − a, t̄).

8This equation coincides with the equation obtained in [66] for the moment generating function of
power moments of the original distribution function.
9Complete calculations using the regular method are presented in the next section.
10This solution is usually considered as invariant solution with respect to transformations corre-
sponding to the subalgebra {X2 − X3 + c−1X1} which is similar to {X1 + X3}.
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This means that the symmetry corresponding to the generator X2 becomes the sym-
metry corresponding to the generator Y2.

Implementation of a similar procedure for the generator X3 gives

ϕ̄(x̄, t̄) = ϕ(e−ax̄, t̄),

and the Laplace transform (2.2.68) maps solutions of (2.2.65) as follows

ū(z̄, t̄ ) = L {ϕ̄(x̄, t̄ )} =
∞∫

0

e−z̄x̄ ϕ̄(x̄, t̄ ) dx̄ =
∞∫

0

e−z̄x̄ϕ(e−ax̄, t̄) dx̄

= ea

∞∫

0

e−ea z̄e−a x̄ϕ(e−ax̄, t̄) de−ax̄ = eau(eaz̄, t̄).

This relates the symmetry corresponding to the generator X3 and the symmetry
corresponding to the generator Y3.

The heritage property fails for the generator X4 = ϕ∂ϕ − t∂t , where the transfor-
mations are

ϕ̄(x̄, t̄) = eaϕ(x̄, ea t̄),

and the Laplace transforms of the functions L (ϕ̄) and L (ϕ) are related by the
formula

ū(z̄, t̄) = L {ϕ̄(x̄, t̄ )} =
∞∫

0

e−z̄x̄ ϕ̄(x̄, t̄ ) dx̄

= ea

∞∫

0

e−z̄x̄ϕ(x̄, ea t̄) dx̄ = eau(z̄, ea t̄).

Thus the symmetry related to the generator X4 = ϕ∂ϕ − t∂t in the space of the
variables (z, t, u) becomes the symmetry corresponding to the generator

Y5 = −t∂t + u∂u.

The last generator is not admitted by (2.2.69). It is explained by the restriction
pressed by the condition (2.2.67): if ϕ(0, t) = 1, then ϕ̄(0, t̄) = eaϕ(0, ea t̄) =
ea �= 1.

Let us analyze symmetry of the generator Y4 = et (−∂t + u∂u) admitted by
(2.2.69). The transformations corresponding to this generator are

t̄ = t − ln(1 + aet ), ū = (1 + aet )u.

These transformations map a function u(z, t) into the function

ū(z̄, t̄ ) = 1

1 − aet̄
u
(
z̄, t̄ − ln(1 − aet̄ )

)
.

The corresponding relations of the originals are

ϕ̄(x̄, t̄ ) = 1

1 − aet̄
ϕ
(
x̄, t̄ − ln(1 − aet̄ )

)
. (2.2.71)
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These transformations of the function ϕ(x, t) define the generator

X5 = et (−∂t + ϕ∂ϕ).

Considering (2.2.71) at x̄ = 0, one gets

ϕ̄(0, t̄) = 1

1 − aet̄
ϕ
(
0, t̄ − ln(1 − aet̄ )

)
.

Because of the mass conservation law ϕ(0, t) = const the operator X5 is not admit-
ted by (2.2.65).

One notices that differences of the Lie group admitted by (2.2.65) and the Lie
group admitted by (2.2.69) come from the assumption (2.2.67). In fact, the direct
application of the Laplace transformation to (2.2.66) leads it to the equation

∂2u

∂z∂t
+ k

∂u

∂z
+ u2 = 0, (2.2.72)

where k = ϕ(0, t). Recall that according to the mass conservation mass law
ϕ(0, t) = const. Because the functions u(z, t) and ϕ(x, t) are related by the Laplace
transform, one can conclude that k = L −1{u(z, t)}(0, t). Hence (2.2.72) is also a
nonlocal equation and one cannot apply the classical group analysis method to this
equation. This also explains the appearance of the new transformations.

Another way of applying the Laplace transform to (2.2.65) was proposed in [8].
Using the assumption (2.2.67) and the substitution y = e−λ tx, the equation (2.2.66)
is reduced to the equation

−λy2 dϕ(y)

dy
+ yϕ(y) −

y∫

0

ϕ(w)ϕ(y − w)dw = 0, (2.2.73)

where λ is constant. The Laplace transform u(z) = L {ϕ(y)} leads (2.2.73) into the
second-order ordinary differential equation

λzu′′ + (2λ + 1)u′ + u2 = 0. (2.2.74)

Considering λ = 1/6, and exploiting the substitution v(p) = p−2 −p−3u(p−1), the
equation (2.2.74) was reduced in [8] to the equation defining the Weierstrass elliptic
function [72]:

v′′ = 6v2. (2.2.75)

In the simplest case of choice of the invariants of the Weierstrass function g2 = g3 =
0 one has v(p) = (p − p0)

−2, where p0 > 1 is constant. Returning to the original
variables, one gets the solution

ϕ(y) = (1 − y/p0)e
y/p0 .

This is the Fourier image of the known BKW-solution of the Boltzmann equation
[6]. However, the transition to the differential equation (2.2.74) does not allow one
to describe explicitly the class of invariant BKW-solutions in whole (compare with
corresponding example in the next section).
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Let us proceed here with application of the classical group analysis method to
(2.2.74). For arbitrary λ this equation admits the generator

Z0 = −z∂z + u∂u.

Additional admitted generators occur for λ satisfying the equation

(6λ − 1)(3λ + 2)(2λ + 3)(λ − 6) = 0.

These generators are

λ = 1/6 : Z1 = z2∂z + (2 − 3uz)∂u,

λ = −2/3 : Z2 = √
z∂z,

λ = −3/2 : Z3 = 3z2/3∂z − uz−1/3∂u,

λ = 6 : Z4 = z−7/63z2∂z − (1 + 2uz)∂u.

The presence of two admitted generators allows one to use Lie’s integration al-
gorithm:11 using canonical coordinates this algorithm reduces finding solutions of a
second-order ordinary differential equation to quadratures. In fact, the use of canon-
ical variables gives the changes

λ = 1/6 : u = z−1 − z−3v, p = z−1,

λ = −2/3 : u = v, p = √
z,

λ = −3/2 : u = z−1/3v, p = z1/3,

λ = 6 : u = z−1 − z−2/3v, p = z1/6.

In all of these cases (2.2.74) is reduced to the only equation (2.2.75). Since (2.2.75)
is homogeneous, one can apply the substitution v′ = h(v). This substitution leads to
the equation

h′h = 6v2.

Integrating this equation, one obtains

h2 = 4v3 + c1,

where c1 is an arbitrary constant. Thus

v′ = γ
√

4v3 + c1 (γ = ±1),

and the function v(p) is found from the equation∫
dv√

4v3 + c1

= γp + c2.

In particular, for c1 = 0 one has

v = (γp + c2)
−2.

11See Chap. 1 for details.
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This determines a particular solution of (2.2.74) for the chosen λ:

λ = 1/6 : u = 1

z
− 1

z(γ + c2z)2
,

λ = −2/3 : u = 1

(γ
√

z + c2)2
,

λ = −3/2 : u = 1

z1/3(γ z1/3 + c2)2
,

λ = 6 : u = 1

z
− 1

z2/3(γ z1/6 + c2)2
.

The particular solutions of (2.2.65) are obtained by applying the inverse Laplace
transform to the found functions. It is worth to note that solutions for λ < 0 has no
physical meaning for the original equation (2.2.65). The case λ = 1/6 was studied
in [8]. In the case where λ = 6 it is difficult to find inverse Laplace transform.

Other examples of applications of integral transforms to small dimensional mod-
els of the Boltzmann equation one can find in [23, 46].

The use of the Laplace transform in the studies of more real kinetic equations one
can find in the coagulation theory [71]. In fact, the Smolukhovsky kinetic equation
of homogeneous coagulation is of the form

∂f (t, v)

∂t
= 1

2

v∫

0

d v1β(v − v1, v1)f (t, v − v1) f (t, v1)

− f (t, v)

∞∫

0

d v1β(v, v1) f (t, v1). (2.2.76)

The Cauchy problem for this equation is considered with the following initial data

f (0, v) = f0(v).

Application of the Laplace transform F(z) = L {f (v)} to (2.2.76) with the coagula-
tion kernel β(v, v1) = b(v+v1) gives one the first-order partial differential equation

∂F (t, z)

∂t
+ b

(
(F (t, z) − F(t,0))

∂F (t, z)

∂z
+ MF(t, z)

)
= 0,

where

M =
∞∫

0

dvvf (t, v) = const

is the total mass of coagulating particles. The obtained equation can be integrated
in an explicit form. However, the inverse Laplace transform of the derived solution
is only possible for a few initial functions f0(v). More substantial results of a direct
group analysis of (2.2.76) are presented in Chap. 3.
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Use of a Moment Generating Function This approach has a very restricted set
of applications and just used in a few works which are devoted to invariant solutions
of the spatially homogeneous and isotropic Boltzmann equation with isotropic scat-
tering model [43, 54, 66]. The original interest of the study in [43] was the system
of normalized power moments for the formulated case of the Boltzmann equation.
As shown in [9] this system can be easily derived by the substitution of the Taylor
expansion

ϕ(x, t) =
∞∑

n=0

(−x)n

n! Mn(t)

into (2.2.65). Such obtained system takes the form

dMn

dt
+ Mn = 1

n + 1

n∑
k=0

MkMn−k (n = 0,1,2, . . .). (2.2.77)

The moment generating function is introduced as follows

G(ξ, t) =
∞∑

n=0

ξn Mn(t).

Multiplying (2.2.77) by ξn and summing over all n, one finds

∂G

∂t
+ G =

∞∑
n=0

ξn

n + 1

n∑
k=0

MkMn−k.

Noting that

G2 =
∞∑

n=0

ξn
n∑

k=0

MkMn−k,

the last equation can be transformed to the next differential equation

∂2(ξG)

∂t∂ξ
+ ∂(ξG)

∂ξ
= G2. (2.2.78)

The change of variables

ξ = (z + 1)−1, ξG = u(z, t)

leads (2.2.78) into

∂2u

∂z∂t
+ ∂u

∂z
+ u2 = 0. (2.2.79)

This equation coincides with (2.2.69), but the variables z, u in (2.2.79) and in
(2.2.69) have a different origin.

Using further transformations of (2.2.79) and very complicated calculations, the
invariant BKW-solution was also derived in [43]. Notice that in this approach the
inverse transition to the distribution function is related with large difficulties.



2.2 Survey of Various Approaches 87

In [66] the equation (2.2.79) was studied by the classical group analysis method
as done above for (2.2.69). The same admitted Lie algebra with the basis of the
generators {Y1, . . . , Y4} was obtained there. It is natural that the discrepancy between
this Lie algebra and the admitted Lie algebra of the original equation was also noted.
Studying this discrepancy, the authors showed that the class of the BKW-solutions
is the only one which satisfies the mass conservation law M0(t) = 1 (ϕ(0, t) = 1).
Recall that for (2.2.79) this law corresponds to the condition

u(z = ∞, t) = 0.

It was also proposed in [66] to make use of other obtained there classes of invariant
solutions of (2.2.79) to the spatially homogeneous and isotropic Boltzmann equation
with some source term. In this case (2.2.79) has a nonzero function ψ(z, t) in the
right hand side and the determining equations impose conditions on the function
ψ(z, t).

Some years later the described above approach was directly applied in [54] to
the spatially homogeneous and isotropic Boltzmann equation with a source term.
Instead of nonautonomous equation (2.2.79) the slightly different equation

∂2u

∂z∂t
+ M0(t)

∂u

∂z
+ u2 = σ

was considered. This allowed the author to weaken the conditions imposed on the
source function comparing with [66].

Some Other Technique In the framework of this subsection it is also worth to
mention two more approaches which could pretend to be universal. Since they are
based on very specific mathematical techniques, they are not widespread.

The method developed in [18] consists in reducing the original integro-
differential equation to a system of boundary differential equations. As an example
of such a transition one can consider the simple one-dimensional Gammershtein
integral equation

u(x) =
b∫

a

K(x, s, u(s)) ds, (2.2.80)

where the kernel K(x, s, u) is a given function and x ∈ [a, b]. The equivalent system
of boundary differential equations is introduced as follows

vs(x, s) = K(x, s, u(s)), v(x, a) = 0,

u(x) = v(x, b).

The new dependent variable v is nonlocal because it depends on all values of a
solution u(x) on the interval [a, b]. For this reason one calls the derived system as
a covering of (2.2.80).

In the more interesting case of the Smolukhovsky equation (2.2.76) which is
considered in [18] the corresponding covering takes the form
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uv1(v, v1, t) − uv(v, v1, t) = β(v, v1)f (t, v)f (t, v1),

u(v, v1, t) = −u(v1, v, t),

wv1(v, v1, t) = β(v, v1)f (t, v), w(v,0, t) = 0.

Using homomorphisms of the intervals of the independent variables variation, the
constructed covering is formally rewritten as another differential system. For this
system a very complex generalization of the classical group analysis in the geomet-
rical interpretation was developed. Its explanation here would be very long and it is
omitted. One can only remark that there are many coverings for the same integro-
differential equation. Because of that one can obtain different results using this ap-
proach.

More technically simple method of reducing integro-differential equations to dif-
ferential ones was suggested in [28, 29]. In this method one uses Weil’s fractional
integrals and derivatives. The ν-order (ν > 0) integral is defined as

W−ν
x f (x) = 1

Γ (ν)

∞∫

x

dy(y − x)ν−1f (y),

where Γ (x) is the Euler gamma-function. Correspondingly, α-order Weil’s deriva-
tive is

Wα
x f (x) = EnW−(n−α)

x f (x), n − 1 < α < n, En = (−1)n
dn

dxn
.

For example, one can consider the spatially homogeneous and isotropic Boltzmann
equation with asymptotic collision integral [29]

xαft (x, t) + f (x, t) −
1∫

0

f (sx, t)f ((1 − s)x, t) ds = 0.

Reducing it to the equation with the convolution-type integral and using the Laplace
transform as was done for (2.2.65), one obtains

∞∫

0

dxe−zx(x1+αf (x)) − F(z, t) − F 2(z, t) = 0.

In terms of Weil’s derivatives one can rewrite the last equation in the form

W 1+α
z Ft − F(z, t) − F 2(z, t) = 0.

Since some properties of fractional Weil’s derivatives are analogical to the prop-
erties of usual derivatives, this representation can ease the search for the admitted
dilation group.12 Because for arbitrary α the operator Wα

x is nonlocal, for other
transformations one needs a corresponding generalization of the classical group

12See also [11].



2.3 Regular Method for Calculating Symmetries 89

analysis scheme. A variant of such generalization with another definition of frac-
tional derivatives was announced in [26].

In conclusion one can summarize that all methods of reducing integro-differential
equations to differential equations are confronted with the same difficulties. Among
them: the lack of universality, the complexity of direct and inverse transformations,
the possible violation of homomorphism of admitted groups and others.

2.3 A Regular Method for Calculating Symmetries of Equations
with Nonlocal Operators

The survey presented in the previous section gives a sufficiently complete idea about
methods for finding invariant solutions of integro-differential equations. However it
is worth to note that none of these methods allows one to be sure that a derived Lie
group is the widest Lie group admitted by considered equations. There exists the
only way to derive such result: it is necessary to develop a method for construct-
ing determining equations defining a Lie group admitted by the studied integro-
differential equations. Then the completeness of an obtained Lie group will be a
corollary fact of the uniqueness of the general solution of the determining equa-
tions.

In this section a regular direct method of a complete group analysis of equations
with nonlocal operators will be presented. In applications of group analysis to these
equations it is necessary to pass the same successive stages as for differential equa-
tions. The central conception of an admitted Lie group of equations with nonlocal
terms will be defined as a Lie group satisfying determining equations. In contrast to
partial differential equations the property of an admitted Lie group to map any solu-
tion into a solution of the same equations will be not required, although the method
developed for constructing the determining equations uses this property. In practice
the algorithm for obtaining determining equations becomes no more difficult than
for partial differential equations. The main difficulty consists of solving the deter-
mining equations because they also contain some nonlocal operators. As for partial
differential equations splitting the determining equations helps to obtain their gen-
eral solution. The splitting method can be based, for example, on the existence of
the solution of a Cauchy problem. The realization of the splitting method depends
on properties of a Cauchy problem of studied nonlocal equations. In the next section
we demonstrate two different approaches.

As a rule considered equations or systems along nonlocal operators also include
operators or equations with partial derivatives. Hence, the definition of an admitted
Lie group for equations with nonlocal terms has to be consistent with the definition
of an admitted Lie group of partial differential equations.

Since the definition of an admitted Lie group given for partial differential equa-
tions cannot be applied to equations with nonlocal terms, before giving a definition
the concept of an admitted Lie group requires further discussion. This discussion
assists in establishing a definition of an admitted Lie group for equations with non-
local terms.
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2.3.1 Admitted Lie Group of Partial Differential Equations

One of the definitions of a Lie group admitted by a system of partial differential
equations (S) is based on a knowledge of the solutions:13 a Lie group is admitted by
the system (S) if any solution of this system is mapped into a solution of the same
system. Two other definitions are based on the geometrical approach: equations are
considered as manifolds. One of these definitions deals with the manifold defined by
the system (S). Another definition works with the extended frame of the system (S):
system (S) and all its prolongations.14 Notice that the definitions based on the ge-
ometrical approach have the following inadequacy. There are equations which have
no solutions, however they have an admitted (in this meaning) Lie group. Although
the geometrical approach has the advantage that it is simple in applications.

Here it should be also mentioned that different approaches have been developed
for finite-difference equations. Review of these approaches can be found in [22] and
in references therein.

The classical geometrical definition of an admitted Lie group deals with invariant
manifolds: the group is admitted by the system of equations

(S) S(x,u,p) = 0 (2.3.1)

if the manifold defined by these equations is invariant with respect to this group. All
functions are assumed enough times continuously differentiable, for example, of the
class C∞. The manifold

(S) = {(x,u,p) | S(x,u,p) = 0},
defined by (2.3.1), is considered in the space J l of the variables

x = (x1, x2, . . . , xn), u = (u1, u2, . . . , um), p = (pj
α) (j = 1,2, . . . ,m; |α| ≤ l).

Here and below the following notations are used:

pj
α = Dαuj , Dα = D

α1
1 D

α2
2 . . .Dαn

n ,

α = (α1, α2, . . . , αn), |α| = α1 + α2 + · · · + αn,

α, i = (α1, α2, . . . , αi−1, αi + 1, αi+1, . . . , αn),

where Dj is the operator of the total differentiation with respect to xj (j =
1,2, . . . , n).

Any local Lie group of point transformations

x̄i = f i(x,u;a), ūj = ϕj (x,u;a), (2.3.2)

13Definitions of an admitted Lie group of partial differential equations are discussed in [47],
Chap. 6, Sect. 1, [55], Sect. 2.6, [35], Sect. 1.3, [36] (see also Chap. 1), Sect. 9.2, [62], [49],
Sect. 6.1 and references therein.
14According to the Cartan–Kähler theorem, after a finite number of prolongations the system (S)

becomes either involutive or incompatible. Therefore, from the theory of compatibility point of
view, there is no necessity for infinite prolongations of the system (S).
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is defined by the transformations of the independent and dependent variables15 with
the generator

X = ξ i(x,u)∂xi
+ ηj (x,u)∂uj ,

where

ξ i(x,u) = df i

da
(x,u;0), ηj (x,u) = dϕj

da
(x,u;0).

Here a is the group parameter.
Lie groups admitted in the sense of the geometrical approach have the property

to transform any solution of the system of equations (S) into a solution of the same
system. This property can be taken as a definition of the admitted Lie group of
partial differential equations (S).

Definition 2.3.1 A Lie group (2.3.2) is admitted by system (S) if it maps any solu-
tion of (S) into a solution of the same system.

This definition supposes that the system (S) has at least one solution.
Recall that the determining equations for the admitted group are obtained as fol-

lows. Let a function u = uo(x) be given. Substituting it into the first part of trans-
formation (2.3.2) and using the inverse function theorem one finds

x = gx(x̄, a). (2.3.3)

The transformed function ua(x̄) is given by the formula

ua(x̄) = f u(gx(x̄, a), uo(g
x(x̄, a));a).

The transformed derivatives are p̄
j
α(x̄, a) = ϕ

j
α(x,uo(x),p(x);a), where p(x)

are derivatives of the function uo(x), x is defined by (2.3.3), and the functions
ϕ

j
α(x,u,p;a) are defined by the prolongation formulae. The prolongation formulae

are obtained by requiring the tangent conditions

duj − p
j
k dxk = 0, dpj

α − p
j
α,kdxk = 0, (2.3.4)

to be invariant. For example, for the first order derivatives

dūj − p̄
j
k dx̄k = (

(ϕ
j
xk

+ ϕ
j

ui p
i
k) − p̄

j
s (f s

xk
+ f s

ui p
i
k)

)
dxk = 0

or

Φ − PF = 0,

where Φ , F and P are matrices with the entries

Φ
j
k = ϕ

j
xk

+ ϕ
j

ui p
i
k, F s

k = f s
xk

+ f s
ui p

i
k, P

j
s = p

j
s

(s, k = 1,2, . . . , n; j = 1,2, . . . ,m).

15For the sake of simplicity only a Lie group of point transformations is discussed. For tangent
transformations the study is similar.
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Since the matrix F is invertible in a neighborhood of a = 0, one has

P = ΦF−1.

For higher order derivatives the prolongation formulae are obtained recurrently.
Let the function uo(x) be a solution of a system (S). Because of the given def-

inition any transformation of the admitted Lie group transforms any solution to a
solution of the same system, the function ua(x̄) is also a solution of the system (S):

S̄(x̄, a) = S(x̄, ua(x̄), p̄j
α(x̄, a)) = 0.

In the last equations, instead of the independent variables x̄, a one can consider the
independent variables x, a:

¯̄S(x, a) = S̄(f x(x,uo(x);a), a).

Differentiating the functions ¯̄S(x, a) or S̄(x̄, a) with respect to the group parameter
a and setting a = 0, one obtains the determining equations(

∂

∂a

¯̄S(x, a)

)
(x,0) = (XS)(x,uo(x),p(x)) = 0 (2.3.5)

or (
∂

∂a
S̄(x̄, a)

)
(x̄,0) = (X̃S)(x,uo(x),p(x)) = 0. (2.3.6)

The operator X̃ is the canonical Lie–Bäcklund operator [34]

X̃ = η̄j ∂uj + Dαη̄j ∂
p

j
α

equivalent to the generator X. Here

η̄j = ηj (x,u) − ξβ(x,u)p
j
β .

Since the function uo(x) is a solution of the system (S), the solutions of the
determining equations (2.3.5) and (2.3.6) coincide.

For solving the determining equations one needs to know arbitrary elements. In
the geometrical definitions the arbitrary elements are coordinates of the manifolds.
In the case of the determining equations (2.3.5) or (2.3.6) for establishing the arbi-
trary elements one can use, for example, a knowledge of the existence of a solution
of the Cauchy problem.

From one point of view the last definition (related to a solution) is more difficult
for applications than the geometrical definitions. Although, from another point of
view, this definition allows the construction of the determining equations for more
general objects than differential equations: integro-differential equations, functional
differential equations or even for more general type of equations.

2.3.2 The Approach for Equations with Nonlocal Operators

Let us consider an abstract system of integro-differential equations:

Φ(x,u) = 0. (2.3.7)
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Here as above u is the vector of the dependent variables, x is the vector of the
independent variables. Assume that a one-parameter Lie group G1(X) of transfor-
mations

x̄ = f x(x,u;a), ū = f u(x,u;a) (2.3.8)

with the generator

X = ηj (x,u)∂uj
+ ξ i(x,u)∂xi

,

transforms a solution u0(x) of (2.3.7) into the solution ua(x) of the same equations.
The transformed function ua(x) is

ua(x̄) = f u(x,u(x);a),

where x = ψx(x̄;a) is substituted into this expression. The function ψx(x̄;a) is
found from the relation x̄ = f x(x,u(x);a) using the inverse function theorem. Dif-
ferentiating the equations Φ(x,ua(x)) with respect to the group parameter a and
considering the result for the value a = 0, one obtains the equations

(
∂

∂a
Φ(x,ua(x))

)
|a=0

= 0. (2.3.9)

For integro-differential equations one needs to have an existence of the inverse
function defined on some interval. Because of the localness of the inverse function
theorem this is one of the obstacles for applying to integro-differential equations the
definition of an admitted Lie group based on a solution. However, notice that (2.3.9)
coincide with the equations

(X̄Φ)(x,u0(x)) = 0 (2.3.10)

obtained by the action of the canonical Lie–Bäcklund operator X̄, which is equiva-
lent to the generator X:

X̄ = η̄j ∂uj ,

where η̄j = ηj (x,u) − ξ i(x,u)p
j
i . The actions of the derivatives ∂uj and ∂

p
j
α

are
considered in terms of the Frechet derivatives. Equations (2.3.10) can be constructed
without requiring the property that the Lie group should transform a solution into a
solution. This allows the following definition of an admitted Lie group.

Definition 2.3.2 A one-parameter Lie group G1 of transformations (2.3.8) is a sym-
metry group admitted by (2.3.7) if G1 satisfies (2.3.10) for any solution u0(x) of
(2.3.7). Equations (2.3.10) are called the determining equations.

Remark 2.3.1 For a system of differential equations (without integral terms) the
determining equations (2.3.10) coincide with the determining equations (2.3.6).
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The way of obtaining determining equations for integro-differential equations
is similar (and not more difficult) to the way used for differential equations. No-
tice also that the determining equations of integro-differential equations are integro-
differential.

The advantage of the given definition of an admitted Lie group is that it provides
a constructive method for obtaining the admitted group. Another advantage of this
definition is the possibility to apply it for seeking Lie–Bäcklund transformations,16

conditional symmetries and other types of symmetries for integro-differential equa-
tions.

The main difficulty in obtaining an admitted Lie group consists of solving the
determining equations. There are some methods for simplifying determining equa-
tions. As for partial differential equations the main method for simplification is their
splitting. It should be noted that, contrary to differential equations, the splitting of
integro-differential equations depends on the studied equations. Since the determin-
ing equations (2.3.10) have to be satisfied for any solution of the original equations
(2.3.7), the arbitrariness of the solution u0(x) plays a key role in the process of
solving the determining equations. The important circumstance in this process is
the knowledge of the properties of solutions of the original equations. For example,
one of these properties is the theorem of the existence of a solution of the Cauchy
problem.

Along splitting determining equations there are some other ways to simplify
them. For example, for the Vlasov-type or Benney kinetic equations a specific ap-
proach was proposed in [40]. The principal feature of this approach consists of treat-
ing equally the local and nonlocal variables in determining equations. It allows one
to separate these equations in “local” and “nonlocal” parts. For solving local part
of the determining equations the classical group analysis method is applied. As the
result one gets a group generator which defines so-called intermediate symmetry. In
the final step using the information adopted from intermediate symmetry the non-
local determining equations are solved by special authors’ procedure of variational
differentiation (see Chap. 4 for details).

Remark 2.3.2 A geometrical approach for constructing an admitted Lie group for
integro-differential equations is applied in [18, 19].

2.4 Illustrative Examples

This section deals with two examples which illustrate the method developed in the
previous section. In the first example the method is applied to the Fourier-image of
the spatially homogeneous isotropic kinetic Boltzmann equation. This is an integro-
differential equation which contains some nonlinear integral operator with respect
to a so-called inner variable. The complete solution of the determining equation is

16There are some trivial examples of such applications for integro-differential equations.
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given [28] by constructing necessary conditions for the coefficients of the admit-
ted generator. These conditions are obtained by using a particular class of solutions
of the original integro-differential equation. It is worth to note that the particular
class of solutions allowed us to find the general solution of the determining equa-
tion.

Another example considered in this section is an application of the developed
method to the equations describing one-dimensional motion of a viscoelastic con-
tinuum. The corresponding system of equations includes a linear Volterra integral
equation of the second type. The method of solving the determining equations in
this case differs from the previous example. The arbitrariness of the initial data in
the Cauchy problem allows one to split the determining equations. Solving the split
equations which are partial differential equations, one finds the general solution of
the determining equations.

2.4.1 The Fourier-Image of the Spatially Homogeneous Isotropic
Boltzmann Equation

In the case of the spatially homogeneous and isotropic Boltzmann equation corre-
sponding distribution function f (v, t) depends only on modulus of a molecular ve-
locity v and time t . The Fourier-image of the spatially homogeneous and isotropic
Boltzmann equation was derived in [4]. The considered equation is (2.2.65):

Φ ≡ ϕt (x, t) + ϕ(x, t)ϕ(0, t) −
1∫

0

ϕ(xs, t)ϕ(x(1 − s), t) ds = 0. (2.4.1)

Here ϕ(x, t) = ϕ̃(k2/2, t), and the Fourier transform ϕ̃(k, t) of the distribution func-
tion f (v, t) is defined as

ϕ̃(k, t) = 4π

k

∞∫

0

v sin(kv)f (v, t) dv.

Further the existence of a solution of the Cauchy problem of (2.4.1) with the initial
data

ϕ(x, t0) = ϕ0(x) (2.4.2)

is used.17

By virtue of the initial conditions (2.4.2) and the equation (2.4.1), one can find
the derivatives of the function ϕ(x, t) at time t = t0:

17See, for example, [9].
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ϕt (x, t0) = −ϕ0(0)ϕ0(x) +
1∫

0

ϕ0(sx)ϕ0((1 − s)x) ds,

ϕxt (x, t0) = −ϕ0(0)ϕ′
0(x) + 2

1∫

0

sϕ′
0(sx)ϕ0((1 − s)x) ds,

ϕtt (x, t0) = −ϕ2
0(0)ϕ0(x) − 3ϕ0(0)

1∫

0

ϕ0(sx)ϕ0((1 − s)x) ds

+ 2

1∫

0

1∫

0

ϕ0((1 − s)x)ϕ0(ss
′x)ϕ0(s(1 − s′)x)ϕ0((1 − s)x) ds ds′.

(2.4.3)

2.4.1.1 Admitted Lie Group

The generator of the admitted Lie group is sought in the form

X = ξ(x, t, ϕ)∂x + η(x, t, ϕ)∂t + ζ(x, t, ϕ)∂ϕ.

The determining equation for (2.4.1) is

Dtψ(x, t) + ψ(0, t)ϕ(x, t) + ψ(x, t)ϕ(0, t)

− 2

1∫

0

ϕ(x(1 − s)s, t)ψ(xs, t) ds = 0, (2.4.4)

where ϕ(x, t) is an arbitrary solution of (2.4.1), Dt is the total derivative with respect
to t , and the function ψ(x, t) is

ψ(x, t) = ζ(x, t, ϕ(x, t)) − ξ(x, t, ϕ(x, t))ϕx(x, t) − η(x, t, ϕ(x, t))ϕt (x, t).

In the determining equation (2.4.4) the derivatives ϕt , ϕxt and ϕtt are defined by
formulae (2.4.3).

The method of solving the determining equation (2.4.4) consists of in studying
the properties of the functions ξ(x, t, ϕ), η(x, t, ϕ) and ζ(x, t, ϕ). These properties
are obtained by sequentially considering the determining equation on a particular
class of solutions of (2.4.1). This class of solutions is defined by the initial condi-
tions

ϕ0(x) = bxn (2.4.5)

at the given (arbitrary) time t = t0. Here n is a positive integer. The determining
equation is considered for any arbitrary initial time t0.

During solving the determining equation we use the following properties. Multi-
plying any solution of (2.4.1) by eλx , one maps it into a solution of the same equation
(2.4.1). Taking into account the β-function [39]
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B(m + 1, n + 1) =
1∫

0

sm(1 − s)n ds = m!n!
(m + n + 1)!

one uses the notations

Pn = (n!)2

(2n + 1)! , Qn = 2Pn

(2n)!n!
(3n + 1)! .

Notice that

2Pn+1 = Pn

1

1 + 1
n+1

and

lim
n→∞Pn = 0, lim

n→∞Qn = 0, lim
n→∞

Qn

Pn

= 0.

Assume that the coefficients of the infinitesimal generator X are represented by
the formal Taylor series with respect to ϕ:

ξ(x, t, ϕ) =
∑
l≥0

ql(x, t)ϕl,

η(x, t, ϕ) =
∑
l≥0

rl(x, t)ϕl, ζ(x, t, ϕ) =
∑
l≥0

pl(x, t)ϕl.

Equation (2.4.4) is studied by setting n = 0,1,2, . . . , and varying the parame-
ter b.

If n = 0, then the determining equation (2.4.4) becomes

ζ̂ (x, t) + b(ζ̂ (0, t) + ζ̂ (x, t)) − 2b

1∫

0

ζ̂ (xs, t) ds = 0.

From this equation one obtains

∂p0

∂t
= 0,

∂pl+1

∂t
(x, t) + pl(x, t) + pl(0, t) − 2

1∫

0

pl(xs, t) ds = 0

(l = 0,1, . . .).

(2.4.6)

Here and below ζ̂ , ξ̂ and η̂ are the coefficients of the operator X evaluated for the
initial data (2.4.5).

If n ≥ 1 in (2.4.5) one finds that

ϕt (x, t0) = Pnb
2x2n, ϕx(x, t0) = nbxn−1,

ϕtt (x, t0) = Qnb
3x3n, ϕtx(x, t0) = 2nPnb

2x2n−1.

The determining equation (2.4.4) becomes
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ζ̂t + b

(
−nxn−1ξ̂t + xnζ̂ (0, t) − 2xn

1∫

0

(1 − s)nζ̂ (xs, t) ds

)

+ b2

(
− Pnx

2nη̂t + Pnx
2nζ̂ϕ − 2nPnx

2n−1ξ̂ − δn1ξ̂ (0, t)

+ 2nx2n−1

1∫

0

(1 − s)nsn−1ξ̂ (xs, t) ds

)

+ b3

(
− nPnx

2n−1ξ̂ϕ − Qnx
3nη̂ + 2Pnx

3n

1∫

0

(1 − s)ns2nη̂(xs, t) ds

)

− b4(P 2
n x4nη̂ϕ

) = 0. (2.4.7)

Using the arbitrariness of the value b, the equation (2.4.7) can be split into a
series of equations by equating to zero the coefficients of bk (k = 0,1, . . .) in the
left-hand side of (2.4.7).

For k = 0 the corresponding coefficient in the left-hand side of (2.4.7) vanishes
because of the first equation of (2.4.6).

For k = 1, the equation (2.4.7) yields:

x

(
−p0(x, t) + 2

1∫

0

(1 − (1 − s)n)p0(xs, t) ds

)
− n

∂q0(x, t)

∂t
= 0.

By virtue of arbitrariness of n, one finds

p0(x, t) = 0,
∂q0(x, t)

∂t
= 0.

These relations provide that ζ̂ (0, t) = 0.
For k = 2 one obtains the equation

x

(
− p1(x, t) − p1(0, t) + 2

1∫

0

(1 − (1 − s)nsn)p1(xs, t) ds

+ Pn

(
p1(x, t) − ∂r0(x, t)

∂t

))
− n

∂q1(x, t)

∂t
− 2nPnq0(x, t)

+ 2n

1∫

0

(1 − s)nsn−1q0(xs, t) ds = 0.

Consecutively dividing by n, Pn and letting n → ∞, one obtains

p1(x, t) = c0 + c1x,
∂q1(x, t)

∂t
= 0, q0(x, t) = c2x,

∂r0(x, t)

∂t
= −c0,

where c0, c1, c2 are arbitrary constants.
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For k = 3, one has

xn+1

(
−p2(x, t) − p2(0, t) + 2

1∫

0

(1 − (1 − s)ns2n)p2(xs, t) ds

− Pn

∂r1(x, t)

∂t
+ 2Pnp2(x, t) + 2Pn

1∫

0

(1 − s)ns2nr0(xs, t) ds − Qnr0(x, t)

)

+ xn

(
−n

∂q2(x, t)

∂t
− 2nPnq1(x, t) + 2n

1∫

0

(1 − s)ns2n−1q1(xs, t) ds

)

− nPnq1(x, t) = 0.

Similar to the previous case (k = 2) one finds

q1(x, t) = 0,
∂q2(x, t)

∂t
= 0, p2(x, t) = 0,

∂r1(x, t)

∂t
= 0, r0(x, t) = −c0t + c3,

where c3 is an arbitrary constant.
For k = 4 + α (α = 0,1, . . .), the equation (2.4.7) yields

xn+1

(
∂pα+4(x, t)

∂t
− 2

1∫

0

(1 − s)ns(3α)np3+α(xs, t) ds

+ (3 + α)Pnp3+α(x, t) − Pn

∂r2+α(x, t)

∂t
− (α + 1)P 2

n rα+1(x, t)

+ 2Pn

1∫

0

(1 − s)ns(3+α)nrα+1(xs, t) ds − Qnrα+1(x, t)

)

+ nxn

(
−∂qα+3(x, t)

∂t
− 2Pnqα+2(x, t)

+ 2

1∫

0

(1 − s)ns(α+3)n−1qα+2(xs, t) ds

)

− n(α + 2)Pnqα+2(x, t) = 0.

From this equation one obtains

pα+3(x, t) = 0, qα+2(x, t) = 0, rα+1(x, t) = 0 (α = 0,1, . . .).

Thus, from the above equations, one finds

ξ = c2x, η = c3 − c0t, ζ = (c1x + c0)ϕ (2.4.8)
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with the arbitrary constants c0, c1, c2, c3. Formulae (2.4.8) are the necessary con-
ditions for the coefficients of the generator X to satisfy the determining equa-
tion (2.4.4). One can directly check that they also satisfy the determining equation
(2.4.4). Thus, the calculations provide the unique solution of the determining equa-
tion (2.4.4).

Because of the uniqueness of the obtained solution of the determining equation
(2.4.4) one finds a constructive proof of the next statement.

Theorem 2.4.1 The four-dimensional Lie algebra L4 = {X1,X2,X3,X4} spanned
by the generators

X1 = ∂t , X2 = xϕ∂ϕ, X3 = x∂x, X4 = ϕ∂ϕ − t∂t (2.4.9)

defines the complete Lie group G4 admitted by (2.4.1).

2.4.1.2 Invariant Solutions

For constructing an invariant solution one has to choose a subalgebra. Since any sub-
algebra is equivalent to one of the representatives of an optimal system of admitted
subalgebras, it is sufficient to study invariant solutions corresponding to the optimal
system of subalgebras. Choosing a subalgebra from the optimal system of subalge-
bras, finding invariants of the subalgebra, and assuming dependence between these
invariants, one obtains the representation of an invariant solution. Substituting this
representation into (2.4.1) one gets the reduced equations: for the invariant solu-
tions the original equation is reduced to the equation for a function with a single
independent variable.

The optimal system of one-dimensional subalgebras of L4 consists of the subal-
gebras

X1, X4 + cX3, X2 − X1, X4 ± X2, X1 + X3, (2.4.10)

where c is an arbitrary constant. The corresponding representations of the invariant
solutions are the following.

The invariants of the subalgebra {X1} are ϕ and x. Hence, an invariant solution
has the representation ϕ = g(x), where the function g has to satisfy the equation

g(x)g(0) −
1∫

0

g(xs)g(x(1 − s)) ds = 0. (2.4.11)

The Maxwell solution ϕ = peλx is an invariant solution with respect to this subal-
gebra. Let a solution of (2.4.11) be represented through the formal series g(x) =∑

j≥0 ajx
j . For the coefficients of the formal series one obtains

a0

(
1 − 2

(k + 1)!
)

ak =
k−1∑
j=1

j !(k − j)!
(k + 1)! ajak−j (k = 2,3, . . .).
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Noticing that the value a0 = 0 leads to the trivial case g = 0, so that one has to as-
sume a0 �= 0. Because (2.4.11) admits scaling of the function g, one can set a0 = 1.
Since the multiplication by the function eλx transforms any solution of (2.4.11)
into another solution, one also can set a1 = 0. Hence, all other coefficients vanish,
aj = 0 (j = 2,3, . . .). Thus, the general solution of (2.4.11) is g = eλx . This means
the uniqueness of the absolute Maxwell distribution as was mentioned in the above
section.

In the case of the subalgebra {X4 + cX3} the representation of an invariant solu-
tion is ϕ = t−1g(y), where y = xtc, and the function g has to satisfy the equation

cyg′(y) − g(y) + g(y)g(0) −
1∫

0

g(ys)g(y(1 − s)) ds = 0. (2.4.12)

Assuming that a solution is represented through the formal series g(y) = ∑
j≥0 ajy

j ,
one obtains the equations for the coefficients

a0 = 0, (c − 1)a1 = 0, (ck − 1)ak =
k∑

j=0

j !(k − j)!
(k + 1)! ajak−j (k = 2,3, . . .).

The case where ck �= 1 for all k (k = 1,2, . . .) leads to the trivial solution g = 0
of (2.4.12). If c = α−1 where α is integer, then ak = 0 (k = 1,2, . . . , α − 1), the
coefficient aα is arbitrary, and for other coefficients ak (k = α + 1, α + 2, . . .) one
obtains the recurrence formula

(α−1k − 1)ak =
k−1∑
j=1

j !(k − j)!
(k + 1)! ajak−j .

The representation of an invariant solution of the subalgebra {X2 − X1} is ϕ =
e−xtg(x), where the function g satisfies the equation

−xg(x) + g(x)g(0) −
1∫

0

g(xs)g(x(1 − s)) ds = 0.

If one assumes that a solution can be represented through the formal series g(x) =∑
j≥0 ajx

j , the first two terms of the series, obtained after substitution, are

a0 = 0, a1(6 + a1) = 0.

The case a1 = 0 leads to the trivial solution g = 0. If a1 �= 0, then the other coeffi-
cients are defined by the recurrent formula

(
1 − 6

k(k + 1)

)
ak−1 = −

k−2∑
j=1

j !(k − j)!
(k + 1)! ajak−j (k = 3,4, . . .).
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An invariant solution of the subalgebra {X1 + X3} has the form ϕ = g(y), where
y = xe−t . The function g has to satisfy the equation

−yg′(y) + g(y)g(0) −
1∫

0

g(ys)g(y(1 − s)) ds = 0. (2.4.13)

The solution of this equation g = 6ey(1 − y) is known as the BKW-solution [3,
42].18 This solution was obtained by assuming that the series g(y) = ey

∑
j≥0 ajy

j

can be terminated. In fact, substituting the function g(y) = ey
∑

j≥0 ajy
j into

(2.4.13) for the coefficients ak one obtains the equations

a0 + a1 = 0, 2 (a0 − 6) a2 = a1(6 + a1), 6 (a0 − 6) a3 = a2(12 + a1),(
a0(1 − 2

(k + 1)
) − k

)
ak = ak−1

(
1 + 1

k(k + 1)
a1

)
+ 2

k(k2 − 1)
ak−2a2

+
k−2∑
j=2

j !(k − j)!
(k + 1)! ajak−j (k = 4,5, . . .).

(2.4.14)

One can check that the choice a0 = 6, a1 = −6, and ak = 0 (k = 2,3, . . .) satisfies
(2.4.14).

A representation of an invariant solution of the subalgebra {X4 ± X2} is ϕ =
t−(1±x)g(x), where the function g has to satisfy the equation

(1 ± x)g(x) − g(x)g(0) +
1∫

0

g(xs)g(x(1 − s)) ds = 0.

2.4.2 Equations of One-Dimensional Viscoelastic Continuum
Motion

One of models describing the one-dimensional motion of a viscoelastic continuum
is based on the equations [60]

vt = σx, et = vx, σ +
t∫

0

K(t, τ )σ (x, τ ) dτ = ϕ(e), (2.4.15)

where the time t and the distance x are the independent variables, the stress σ ,
the velocity v, and the strain e are the dependent variables. The Volterra integral
equation in the system (2.4.15) describes a dependence of the stress σ on the strain e,

18This solution is usually considered as invariant solution with respect to the subalgebra {X2 −
X3 + c−1X1} which is similar to {X1 + X3}.
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K(t, τ ) is a kernel of heredity, ϕ(e) is a known function. It is assumed that K �= 0
and ϕ′(e) �= 0.

Let the infinitesimal generator of a Lie group admitted by (2.4.15) be

X = ζ e∂e + ζ v∂v + ζ σ ∂σ + ξx∂x + ξ t ∂t

with the coefficients depending on (t, x, v, e, σ ). The determining equations are
(
Dt ζ̂ v − Dxζ̂ σ

)
|(S)

= 0,
(
Dt ζ̂ e − Dxζ̂ v

)
|(S)

= 0, (2.4.16)⎛
⎝ϕ′ζ̂ e − ζ̂ σ −

t∫

0

K(t, τ )ζ̂ σ (x, τ ) dτ

⎞
⎠

|(S)

= 0, (2.4.17)

where

ζ̂ e = ζ e − ξxex − ξ t et , ζ̂ v = ζ v − ξxvx − ξ tvt , ζ̂ σ = ζ σ − ξxσx − ξ tσt

with the functions e(x, t), v(x, t), σ(x, t) satisfying (2.4.15) substituted in them.
The complete set of solutions of the determining equations is sought under the as-
sumption that there exists a solution of the Cauchy problem19

e(xo, t) = e0(t), v(xo, t) = vo(t), σ (xo, t) = σo(t)

with arbitrary sufficiently smooth functions e0(t), vo(t), σo(t).
Derivatives of the functions e(x, t), v(x, t), σ (x, t) at the point x = xo can be

found from (2.4.15):

vt = v′
o, σt = σ ′

o, σx = v′
o, vx = et = g1

ϕ′ , ex = g2

ϕ′ , (2.4.18)

where

g1 = σ ′
o + K(t, t)σo +

t∫

0

Kt(t, τ )σo(τ ) dτ, g2 = v′
o +

t∫

0

K(t, τ )v′
o(τ ) dτ.

Substituting the derivatives vt , σt , σx, vx, et , ex into the determining equations
(2.4.16), considered at the point xo, one obtains

v′
o

(
ζ v
v − ηt − ζ σ

σ + ξx − ηeg1
) + (v′

o)
2(−ηv + ξσ ) + g2(−ζ σ

e + σ ′
oηe) + v′

og2ξe

+ ζ v
σ σ ′

o + ζ v
t − ζ σ

x + σ ′
oηx + g1

(
ζ v
e − ζ σ

v + σ ′
oηv − ξσ σ ′

o − ξt − ξeg1
) = 0,

v′
o(ζ

e
v − ζ v

σ + ηx + ξσ g1) + (v′
o)

2ησ + g2(−ξσ σ ′
o − ζ v

e − ξt ) + v′
og2(−ξv + ηe)

+ ζ e
σ σ ′

o + ζ e
t − ζ v

x + g1(ζ
e
e − ησ σ ′

o − ηt − ζ v
v + ξx + g1(−ηe + ξv)) = 0.

These equations can be split with respect to vo, v
′
o, v

′
o + ∫ t

0 K(t, τ )v′
o(τ ) dτ . In fact,

setting the function vo(t) such that

vo(t) = a1 + a2(t − to) + a3
(t − to)

n+1

(n + 1)
(n ≥ 1),

19These conditions are boundary conditions, rather than initial conditions.
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one finds at the time t = to:

vo(to) = a1, v′
o(to) = a2,

v′
o(to) +

to∫

0

K(to, τ )v′
o(τ ) dτ

= a2

(
1 +

to∫

0

K(to, τ ) dτ

)
+ a3

to∫

0

K(to, τ )(τ − to)
n dτ.

(2.4.19)

Since the set of the functions (t − to)
n (n ≥ 0) is complete in the space L2(0, to],

and to is such that K(to, τ ) �= 0, there exists n for which
∫ to

0 K(to, τ )(τ − to)
n dτ �=

0. Hence, for the given values vo(to), v
′
o(to),

∫ to
0 K(to, τ )v′

o(τ )dτ one can solve
(2.4.19) with respect to the coefficients a1, a2, a3. This means that the values
vo, v

′
o, v

′
o + ∫ t

0 K(t, τ )v′
o(τ ) dτ are arbitrary and one can split the determining equa-

tions with respect to them. Splitting the determining equations, one finds

ξv = ξe = ξσ = 0, ηv = ηe = ησ = 0, ζ v
e = −ξt ,

ξx − ηt = ζ σ
σ − ζ v

v , ζ σ
e = 0, ζ e

v − ζ v
σ = −ηx,

(2.4.20)

(ζ v
σ + ηx)σ

′
o + ζ v

t − ζ σ
x = g1(2ξt + ζ σ

v )),

ζ e
σ σ ′

o + ζ e
t − ζ v

x = g1(ηt + ζ v
v − ξx − ζ e

e ).
(2.4.21)

Equations (2.4.21) also can be split with respect to

σo(to), σ ′
o(to), e(to), σ ′

o(to) + K(to, to)σo(to) +
to∫

0

Kt(to, τ )σo(τ ) dτ.

In fact, let

σo(τ ) = a1 + a2(τ − to) + (to − τ)2(a3ψ1(τ ) + a4ψ2(τ )).

If the determinant

Δ =
⎛
⎝

to∫

0

K(to, τ )(to − τ)2ψ1(τ )dτ

⎞
⎠

⎛
⎝

to∫

0

Kt(to, τ )(to − τ)2ψ2(τ ) dτ

⎞
⎠

−
⎛
⎝

to∫

0

K(to, τ )(to − τ)2ψ2(τ )dτ

⎞
⎠

⎛
⎝

to∫

0

Kt(to, τ )(to − τ)2ψ1(τ )dτ

⎞
⎠

is equal to zero for all functions ψ1,ψ2 ∈ L2[0, to], then by virtue of K(t, τ ) �= 0
one obtains that there exists a function f (t) such that

Kt(t, τ ) = f (t)K(t, τ ). (2.4.22)

The general solution of this equation in some neighborhood of the point t = to has
the form

K(t, τ ) = h(t)g(τ ), (2.4.23)
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where f (t) = h′(t)/h(t). The kernels of the type20 (2.4.23) are excluded from the
study, because for these kernels system of equations (2.4.15) is reduced to a system
of differential equations. Thus, for nondegenerate kernels, (2.4.21) can be split with
respect to the considered values:

ζ v
σ + ηx = 0, ζ v

t − ζ σ
x = 0,2ξt + ζ σ

v = 0, ζ e
σ = 0,

ζ e
t − ζ v

x = 0, ηt + ζ v
v − ξx − ζ e

e = 0.
(2.4.24)

For the case z = −∞ one also obtains (2.4.24).
Integrating (2.4.20), (2.4.24), one finds

ξ = t (c1x + c2) + c3x
2 + c5x + c6, η = x(c3t + c4) + c1t

2 + c7t + c8,

ζ v = −e(c1x + c2) − σ(c3t + c4) − v(2c1t + 2c3x + c5 − c9) + λxt ,

ζ σ = −σ(3c1t + c3x + c7 − c9) − 2v(c1x + c2) + λtt ,

ζ e = −e(c1t + 3c3x + 2c5 − c7 − c9) − 2v(c3t + c4) + λxx.

(2.4.25)

Here ci (i = 1,2, . . . ,9) are arbitrary constants, and λ(x, t) is an arbitrary function
of two arguments.

For studying the remaining determining equations (2.4.17) it is convenient to
write

zo = ζ σ + 2vξt = −σ(3c1t + c3x + c7 − c9) + λtt ,

z1 = ζ e + 2vηx = −e(c1t + 3c3x + 2c5 − c7 − c9) + λxx.
(2.4.26)

Substituting (2.4.18) into (2.4.17) and evaluating some integrals by parts, one
obtains

ϕ′z1 − zo −
t∫

0

K(t, τ )zo(τ )dτ + 2vo(ξt − ϕ′ηx) + vo(0)K(t,0)(ξ(t) − ξ(0))

+
t∫

0

vo(τ ) ((ξ(t) − ξ(τ ))Kτ (t, τ ) + ξt (τ )K(t, τ )) dτ − K(t,0)η(0)σo(0)

−
t∫

0

σo(τ ) (Kτ (t, τ )η(τ ) + Kt(t, τ )η(t) + K(t, τ )ηt (τ )) dτ = 0. (2.4.27)

Because of the arbitrariness of the function vo(t), from the last equation one finds

K(t,0)(ξ(t) − ξ(0)) = 0, (2.4.28)

ξt − ϕ′ηx = 0, (2.4.29)

(ξ(t) − ξ(τ ))Kτ (t, τ ) + ξt (τ )K(t, τ ) = 0, (2.4.30)

20They are called degenerate kernels.
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ϕ′z1 − zo −
t∫

0

K(t, τ )zo(τ ) dτ − K(t,0)η(0)σo(0)

−
t∫

0

σo(τ )
(
Kτ (t, τ )η(τ ) + Kt(t, τ )η(t)

+ K(t, τ )ηt (τ )
)
dτ = 0. (2.4.31)

Substituting (2.4.25) into (2.4.29) and splitting them with respect to x, one obtains

c1 = 0, c3 = 0, (2.4.32)

c2 = ϕ′c4. (2.4.33)

Equations (2.4.28)–(2.4.31) become

c4K(t,0) = 0, (2.4.34)

c4 ((t − τ)Kτ (t, τ ) + K(t, τ )) = 0, (2.4.35)

ϕ′ (λxx + eo(c7 + c9 − 2c5)) + c7σo − λtt

−
t∫

0

K(t, τ )λtt (τ ) dτ − c9ϕ(eo) − c8K(t,0)σo(0)

−
t∫

0

σo(τ )(c4x + c7τ + c8)Kτ (t, τ )

+ (c4x + c7τ + c8)Kt (t, τ ) dτ = 0. (2.4.36)

If there exist functions ψi(τ) = (t − τ)ni (i = 1,2) such that the determinant

Δ1 =
⎛
⎝

t∫

0

z3(t, τ, x)ψ1(τ )τ (t − τ) dτ

⎞
⎠

⎛
⎝

t∫

0

K(t, τ )τ (t − τ)ψ2(τ ) dτ

⎞
⎠

−
⎛
⎝

t∫

0

z3(t, τ, x)ψ2(τ )τ (t − τ) dτ

⎞
⎠

⎛
⎝

t∫

0

K(t, τ )τ (t − τ)ψ1(τ ) dτ

⎞
⎠

is not equal to zero, then choosing the function σo(τ ) one can obtain contradictory
relations. Hence, Δ1 = 0 for all functions ψi(τ). Here z3(t, τ, x) = (c4x + c7τ +
c8)Kτ + (c4x + c7t + c8)Kt . Because K(t, τ ) �= 0 and the system of the functions
(t − τ)n is complete in L2[0, t], there exists a function f1(t, x) such that

z3(t, τ, x) = f1(t, x)K(t, τ ). (2.4.37)

Substituting (2.4.37) into (2.4.36), using (2.4.16), and splitting with respect to σo(0),
σo(t) and eo(t), one obtains
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c7 + f1 = 0, (2.4.38)

c8K(t,0) = 0, (2.4.39)

ϕ′(λxx + eo(c7 + c9 − 2c5)
) + ϕ(c7 − c9) − λtt

−
t∫

0

K(t, τ )λtt (τ ) dτ = 0. (2.4.40)

Splitting (2.4.37) with respect to x, and because of (2.4.38), one finds

c4(Kτ + Kt) = 0, (2.4.41)

(c7t + c8)Kt + (c7τ + c8)Kτ = −c7K. (2.4.42)

Regarding (2.4.34), (2.4.35) and (2.4.41), one obtains

c4 = 0. (2.4.43)

If c2
7 + c2

8 �= 0, then from (2.4.39), (2.4.42), one finds that c8 = 0 and K =
(c7t)

−1R(τ/t). The kernels of this type are excluded from the study, because they
have a singularity at the time t = 0. Hence,

c7 = 0, c8 = 0, (2.4.44)

and the group classification of (2.4.15), (2.4.16) is reduced to the study of (2.4.40).
From (2.4.40) it follows that the kernel of the admitted Lie groups is given by the

generators

X1 = ∂x, X2 = ∂v. (2.4.45)

Extensions of the kernel (2.4.45) are obtained for specific functions ϕ(e).
If ϕ′′ �= 0, then the classifying equations are

ϕ′ (c10 + e(c9 − 2c5)) − c9ϕ = c11, (2.4.46)

λtt +
t∫

0

K(t, τ )λtt (τ ) dτ = c11, (2.4.47)

where c10, c11 are arbitrary constants. Hence, the extension of the kernel of admitted
Lie groups occurs for the following cases:

(a) If ϕ = α + β ln(a + ce), then the additional generator is

Y1 = −cx/2∂x + cv/2∂v + (a + ce)∂e + βcμ(t)∂σ .

(b) If ϕ = α(a + ce)β + γ (β �= 1), then system of equations (2.4.15) admits the
generator

Y2 = (β − 1)cx∂x + (β + 1)cv∂v + 2(ce + a)∂e + 2βc(σ − γμ(t))∂σ .

(c) If ϕ = α + exp(γ e) (γ �= 0), then there is the additional generator

Y3 = γ x∂x + γ v∂v + 2γ (σ − αμ(t))∂σ + 2∂e.
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(d) If the function ϕ(e) is linear ϕ = Ee + E1, then along with the generators
X1,X2 system (2.4.15), (2.4.16) also admits the generators

Y4 = v∂v + σ∂σ + e∂e, Yλ = λxt ∂v + λtt ∂σ + λxx∂e.

Here α,β, γ, a, c are constant, the function μ(t) is an arbitrary solution of the
equation

μ(t) +
t∫

0

K(t, τ )μ(τ) dτ = 1,

and the function λ(x, t) is a solution of the equation

Eλxx = λtt +
t∫

0

K(t, τ )λtt (τ ) dτ.

Remark 2.4.1 This approach was also used for other models of elasticity in [57,
63].
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