
Chapter 1
Introduction to Group Analysis of Differential
Equations

In this chapter we introduce the basic concepts from Lie group analysis: continuous
transformation groups, their generators, Lie equations, groups admitted by differen-
tial equations, integration of ordinary differential equations using their symmetries,
group classification and invariant solutions of partial differential equations. It con-
tains also an introduction to the theory of Lie–Bäcklund transformations groups
and approximate groups. The reader interested in studying more about Lie group
methods of integration of differential equations is referred to [8] and to the recent
textbook [10].

1.1 One-Parameter Groups

1.1.1 Definition of a Transformation Group

We will consider here only one-parameter groups. Let Ta be an invertible transfor-
mation depending on a real parameter a and acting in the (x, y)-plane:

x̄ = f (x, y, a), ȳ = g(x, y, a), (1.1.1)

where the functions f and g satisfy the conditions

f
∣
∣
a=0 = x, g

∣
∣
a=0 = y. (1.1.2)

The invertibility is guaranteed if one requires that the Jacobian of f,g with respect to
x, y is not zero in a neighborhood of a = 0. Further, it is assumed that the functions
f and g as well as their derivatives that appear in the subsequent discussion are
continuous in x, y, a.

Definition 1.1.1 A set G of transformations (1.1.1) is a one-parameter transforma-
tion group if it contains the identical transformation I = T0 and includes the inverse
T −1

a as well as the composition TbTa of all its elements Ta,Tb ∈ G. By a suitable
choice of the group parameter a, the main group property TbTa ∈ G can be written

TbTa = Ta+b,
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2 1 Introduction to Group Analysis

that is

f
(

f (x, y, a), g(x, y, a), b
) = f (x, y, a + b),

g
(

f (x, y, a), g(x, y, a), b
) = g(x, y, a + b).

(1.1.3)

In practical applications, the conditions (1.1.3) hold only for sufficiently small
values of a and b. Then one arrives at what is called a local one-parameter group G.
For brevity, local groups are also termed groups.

1.1.2 Generator of a One-Parameter Group

The expansion of the functions f,g into the Taylor series in a near a = 0, taking
into account the initial condition (1.1.2), yields the infinitesimal transformation of
the group G (1.1.1):

x̄ ≈ x + ξ(x, y)a, ȳ ≈ y + η(x, y)a, (1.1.4)

where

ξ(x, y) = ∂f (x, y, a)

∂a

∣
∣
∣
a=0

, η(x, y) = ∂g(x, y, a)

∂a

∣
∣
∣
a=0

. (1.1.5)

The vector (ξ, η) with components (1.1.5) is the tangent vector (at the point (x, y))
to the curve described by the transformed points (x̄, ȳ), and is therefore called the
tangent vector field of the group G.

Example 1.1.1 The group of rotations

x̄ = x cosa + y sina, ȳ = y cosa − x sina

has the following infinitesimal transformation:

x̄ ≈ x + ya, ȳ ≈ y − xa.

The tangent vector field (1.1.5) is sometimes also written as a first-order differ-
ential operator

X = ξ(x, y)
∂

∂x
+ η(x, y)

∂

∂y
, (1.1.6)

which behaves as a scalar under an arbitrary change of variables, unlike the vector
(ξ, η). Lie called the operator (1.1.6) the symbol of the infinitesimal transformation
(1.1.4) or of the corresponding group G. In the current literature, the operator X

(1.1.6) is called the generator of the group G of transformations (1.1.1).

Example 1.1.2 The generator of the group of rotations from Example 1.1.1 has the
form

X = y
∂

∂x
− x

∂

∂y
· (1.1.7)
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1.1.3 Construction of a Group with a Given Generator

Given an infinitesimal transformation (1.1.4), or the generator (1.1.6), the transfor-
mations (1.1.1) of the corresponding one-parameter group G are defined by solving
the following equations known as the Lie equations:

df

da
= ξ(f, g), f

∣
∣
a=0 = x,

dg

da
= η(f,g), g

∣
∣
a=0 = y.

(1.1.8)

We will write (1.1.8) also in the following equivalent form:

dx̄

da
= ξ(x̄, ȳ), x̄

∣
∣
a=0 = x,

dȳ

da
= η(x̄, ȳ), ȳ

∣
∣
a=0 = y.

(1.1.9)

Example 1.1.3 Consider the infinitesimal transformation

x̄ ≈ x + ax2, ȳ ≈ y + axy.

The corresponding generator has the form

X = x2 ∂

∂x
+ xy

∂

∂y
· (1.1.10)

The Lie equations (1.1.9) are written as follows:

dx̄

da
= x̄2, x̄

∣
∣
a=0 = x,

dȳ

da
= x̄ȳ, ȳ

∣
∣
a=0 = y.

The differential equations of this system are easily solved and yield

x̄ = − 1

a + C1
, ȳ = C2

a + C1
.

The initial conditions imply that C1 = −1/x, C2 = −y/x. Consequently we arrive
at the following one-parameter group of projective transformations:

x̄ = x

1 − ax
, ȳ = y

1 − ax
· (1.1.11)

One can represent the solution to the Lie equations (1.1.9) by means of infinite
power series (Taylor series). Then the group transformation (1.1.1) for a generator
X (1.1.6) is given by the so-called exponential map:

x̄ = eaX(x), ȳ = eaX(y), (1.1.12)

where

eaX = 1 + a

1!X + a2

2! X
2 + · · · + as

s! Xs + · · · . (1.1.13)
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Example 1.1.4 Consider again the generator (1.1.10) discussed in Example 1.1.3:

X = x2 ∂

∂x
+ xy

∂

∂y
·

According to (1.1.12)–(1.1.13), one has to find Xs(x) and Xs(y) for all s =
1,2, . . . . We calculate several terms, e.g.

X(x) = x2, X2(x) = X(X(x)) = X(x2) = 2!x3, X3(x) = X(2!x3) = 3!x4,

and then make a guess:

Xs(x) = s!xs+1.

The proof of the latter equation is given by induction:

Xs+1(x) = X(s!xs+1) = (s + 1)!x2xs = (s + 1)!xs+2.

Furthermore, one obtains

X(y) = xy, X2(y) = X(xy) = yX(x) + xX(y) = yx2 + xxy = 2!yx2,

X3(y) = 2![yX(x2) + x2X(y)] = 2![y(2x3) + x2xy] = 3!yx3,

then makes a guess

Xs(y) = s!yxs

and proves it by induction:

Xs+1(y) = s!X(yxs) = s![syxs+1 + xs(xy)] = (s + 1)!yxs+1.

Substitution of the above expressions in the exponential map yields:

eaX(x) = x + ax2 + · · · + asxs+1 + · · · .
One can rewrite the right-hand side as x(1 + ax + · · · + asxs + · · ·). The series in
brackets is manifestly the Taylor expansion of the function 1/(1−ax) provided that
|ax| < 1. Consequently,

x̄ = eaX(x) = x

1 − ax
.

Likewise, one obtains

eaX(y) = y + ayx + a2yx2 + · · · + asyxs + · · ·
= y(1 + ax + · · · + asxs + · · ·).

Hence,

ȳ = eaX(y) = y

1 − ax
.

Thus, we have arrived at the transformations (1.1.11):

x̄ = x

1 − ax
, ȳ = y

1 − ax
·
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1.1.4 Introduction of Canonical Variables

Theorem 1.1.1 Every one-parameter group of transformations (1.1.1) reduces to
the group of translations t̄ = t + a, ū = u with the generator X = ∂

∂t
by a suitable

change of variables

t = t (x, y), u = u(x, y).

The variables t, u are called canonical variables.

Proof Under a change of variables the differential operator (1.1.6) transforms ac-
cording to the formula

X = X(t)
∂

∂t
+ X(u)

∂

∂u
. (1.1.14)

Therefore canonical variables are found from the linear partial differential equations
of the first order:

X(t) ≡ ξ(x, y)
∂t (x, y)

∂x
+ η(x, y)

∂t (x, y)

∂y
= 1,

X(u) ≡ ξ(x, y)
∂u(x, y)

∂x
+ η(x, y)

∂u(x, y)

∂y
= 0.

(1.1.15)

�

1.1.5 Invariants (Invariant Functions)

Definition 1.1.2 A function F(x, y) is an invariant of the group G of transforma-
tions (1.1.1) if F(x̄, ȳ) = F(x, y), i.e.

F
(

f (x, y, a), g(x, y, a)
) = F(x, y) (1.1.16)

identically in the variables x, y and the group parameter a.

Theorem 1.1.2 A function F(x, y) is an invariant of the group G if and only if it
solves the following first-order linear partial differential equation

XF ≡ ξ(x, y)
∂F

∂x
+ η(x, y)

∂F

∂y
= 0. (1.1.17)

Proof Let F(x, y) be an invariant. Let us take the Taylor expansion of F(f (x, y, a),

g(x, y, a)) with respect to a:

F
(

f (x, y, a), g(x, y, a)
) ≈ F(x + aξ, y + aη) ≈ F(x, y) + a

(

ξ
∂F

∂x
+ η

∂F

∂y

)

,

or

F(x̄, ȳ) = F(x, y) + aX(F) + o(a),
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and substitute it in (1.1.16):

F(x, y) + aX(F) + o(a) = F(x, y).

It follows that aX(F) + o(a) = 0, whence X(F) = 0, i.e. (1.1.17).
Conversely, let F(x, y) be a solution of (1.1.17). Assuming that the function

F(x, y) is analytic and using its Taylor expansion, one can extend the exponential
map (1.1.12) to the function F(x, y) as follows:

F(x̄, ȳ) = eaXF (x, y)
def=

(

1 + a

1!X + a2

2! X
2 + · · · + as

s! Xs + · · ·
)

F(x, y).

Since XF(x, y) = 0, one has X2F = X(XF) = 0, . . . ,XsF = 0. We conclude that
F(x̄, ȳ) = F(x, y), i.e. (1.1.16) thus proving the theorem.

It follows from Theorem 1.1.2 that every one-parameter group of transformations
in the plane has one independent invariant, which can be taken to be the left-hand
side of any first integral ψ(x, y) = C of the characteristic equation for (1.1.17):

dx

ξ(x, y)
= dy

η(x, y)
· (1.1.18)

Any other invariant F is then a function of ψ , i.e. F(x, y) = Φ(ψ(x, y)). �

Example 1.1.5 Consider the group with the generator

X = x
∂

∂x
+ 2y

∂

∂y
·

The characteristic equation (1.1.18) is written

dx

x
= dy

2y

and yields the first integral ψ = y/x2. Hence, the general invariant is given by
F(x, y) = Φ(y/x2) with an arbitrary function Φ of one variable.

The concepts introduced above can be generalized in an obvious way to the multi-
dimensional case by considering groups of transformations

x̄i = f i(x, a), i = 1, . . . , n, (1.1.19)

in the n-dimensional space Rn of points x = (x1, . . . , xn) instead of transformations
(1.1.1) in the (x, y)-plane. The generator of the group of transformations (1.1.19) is
written

X = ξ i(x)
∂

∂xi
, (1.1.20)

where

ξ i(x) = ∂f i(x, a)

∂a

∣
∣
∣
a=0

.
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The Lie equations (1.1.9) become

dx̄i

da
= ξ i(x̄), x̄i

∣
∣
a=0 = xi. (1.1.21)

The exponential map (1.1.12) is written:

x̄i = eaX(xi), i = 1, . . . , n, (1.1.22)

where

eaX = 1 + a

1!X + a2

2! X
2 + · · · + as

s! Xs + · · · . (1.1.23)

The extension of the exponential map to a function F(x) is written

F(x̄) = eaXF (x) ≡ F(x) + aX(F(x)) + a2

2! X
2(F (x)) + · · · . (1.1.24)

Definition 1.1.2 of invariant functions of several variables remains the same,
namely an invariant is defined by the equation F(x̄) = F(x). The invariant test given
by Theorem 1.1.2 has the same formulation with the evident replacement of (1.1.17)
by its n-dimensional version:

n
∑

i=1

ξ i(x)
∂F

∂xi
= 0. (1.1.25)

Then n − 1 functionally independent first integrals ψ1(x), . . . ,ψn−1(x) of the char-
acteristic system for (1.1.25):

dx1

ξ1(x)
= dx2

ξ2(x)
= · · · = dxn

ξn(x)
(1.1.26)

provides a basis of invariants. Namely, any invariant F(x) is given by

F(x) = Φ
(

ψ1(x), . . . ,ψn−1(x)
)

. (1.1.27)

1.1.6 Invariant Equations (Manifolds)

Let x = (x1, . . . , xn) ∈ Rn. Consider an (n − s)-dimensional manifold M ⊂ Rn

defined by a system of equations1

F1(x) = 0, . . . ,Fs(x) = 0, s < n. (1.1.28)

It is assumed that

rank

∥
∥
∥
∥

∂Fk

∂xi

∥
∥
∥
∥

M

= s. (1.1.29)

1Manifolds are treated locally and all functions under consideration are supposed to be continuous
and differentiable sufficiently many times.
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Definition 1.1.3 The system of equations (1.1.28) is said to be invariant with respect
to the group G of transformations (1.1.19),

x̄i = f i(x, a), i = 1, . . . , n,

if each solution x = (x1, . . . , xn) of the system (1.1.28) is mapped to a solution
x̄ = (x̄1, . . . , x̄n) of the same system, i.e.

F1(x̄) = 0, . . . ,Fs(x̄) = 0. (1.1.30)

We also say that (1.1.28) admit the group G. The invariance of (1.1.28) means that
the manifold M ⊂ Rn defined by (1.1.28) is also invariant in the sense that each
point x on the surface M is moved by G along the surface M , i.e. x ∈ M implies
that x̄ ∈ M .

Theorem 1.1.3 The system of equations (1.1.28) admits the group G of transfor-
mations (1.1.19) with the generator X (1.1.20) if and only if

XFk

∣
∣
M

= 0, k = 1, . . . , s. (1.1.31)

Proof (See also [8], Sect. 7.2.) Let the system (1.1.28) be invariant under the
group G, i.e. let (1.1.30) hold for every point x ∈ M and every admissible value
of the group parameter a. Taking into account that

Fk(x̄) = Fk(x) + aXFk + o(a), k = 1, . . . , s,

and that Fk(x) = 0 whenever x ∈ M , one arrives at (1.1.31).
Let us prove now that (1.1.31) imply the invariance of the system (1.1.28), i.e.

that (1.1.30) hold for any point x ∈ M . We assume in what follows that the functions
Fk(z) and XFk(z) are analytic in a neighborhood of the manifold M . Then (1.1.31)
can be written in the form

XFk(z) = λl
k(z)Fl(z), k = 1, . . . , s, (1.1.32)

where the coefficients λl
k(z) are bounded in a neighborhood of M . Equations

(1.1.32), together with (1.1.24), provide the proof. Indeed, it follows from (1.1.32)
that

X2Fk = X(λl
k)Fl + λl

kX(Fl) =
[

X(λ
p
k ) + λl

kλ
p
l

]

Fp.

Iteration and substitution into (1.1.24) yields Fk(x̄) = Λl
k(x)Fl(x). It follows that

(1.1.30) hold, thus completing the proof. �

Remark 1.1.1 The condition (1.1.29) is used for reducing (1.1.28) to the form
(1.1.32).
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1.1.7 Representation of Regular Invariant Manifolds
via Invariants

Definition 1.1.4 Let G be a one-parameter group of transformations (1.1.19) with
the generator (1.1.20),

X = ξ i(x)
∂

∂xi
.

An invariant manifold M of the group G is said to be regular with respect to G if
at least one of the coefficients ξ i(x) does not vanish on M , and it is singular if all
coefficients ξ i(x) of the generator X vanish on M .

Invariant manifolds of a given group G can be equivalently represented by dif-
ferent systems of equations (1.1.28). A general procedure for constructing invariant
manifolds is provided by the following theorem on representation of regular invari-
ant manifolds by invariant functions (for the proof, see [16], §8.7, or [8], Sect. 7.2.2).

Theorem 1.1.4 Let G be a group of transformations (1.1.19). Any regular (n − s)-
dimensional manifold M ⊂ Rn can be represented by a system of equations (1.1.28)
with invariant functions Fk , i.e. (see (1.1.27))

Fk(x) = Φk

(

ψ1(x), . . . ,ψn−1(x)
)

, k = 1, . . . , s, (1.1.33)

where ψ1(x), . . . ,ψn−1(x) is a basis of invariants of the group G.

Example 1.1.6 Let G be the group of dilations

x̄ = xea, ȳ = yea, z̄ = ze2a

in the three-dimensional space R3. The generator of this group is

X = x
∂

∂x
+ y

∂

∂y
+ 2z

∂

∂z
·

The characteristic equations (1.1.26) are written

dx

x
= dy

y
= dz

z

and yield the following basis of invariants for the group < G:

ψ1 = x2

z
, ψ2 = y2

z
·

According to Theorem 1.1.4, any regular two-dimensional invariant manifold (a sur-
face in R3) is given by Φ(ψ1,ψ2) = 0:

Φ
(x2

z
,
y2

z

)

= 0.
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In particular, taking Φ(ψ1,ψ2) = ψ1 + ψ2 − C with any constant C we obtain a
paraboloid

x2 + y2

z
− C = 0.

The left-hand side of this equation is an invariant function with respect to the
group G. But if multiply the above equation by z, we represent the same invari-
ant paraboloid by the equation

x2 + y2 − Cz = 0

whose left-hand side is not an invariant function.

1.2 Symmetries and Integration of Ordinary Differential
Equations

1.2.1 The Frame of Differential Equations

Any differential equation has two components, namely, the frame and the class of
solutions (see [8]). For example, the frame of a first-order ordinary differential equa-
tion

F(x, y, y′) = 0

is the surface F(x, y,p) = 0 in the space of three independent variables x, y,p. It is
obtained by replacing the first derivative y′ in the differential equation F(x, y, y′) =
0 by the variable p.

The class of solutions is defined in accordance with certain “natural” mathemat-
ical assumptions or from a physical significance of the differential equations under
discussion.

The crucial step in integrating differential equations is a “simplification” of the
frame by a suitable change of the variables x, y. The Lie group analysis suggests
methods for simplification of the frame by using symmetry groups (or admissible
groups) of differential equations.

Consider, as an example, the following Riccati equation:

y′ + y2 − 2

x2
= 0. (1.2.1)

Its frame is defined by the algebraic equation

p + y2 − 2

x2
= 0 (1.2.2)

and is a “hyperbolic paraboloid”. For the Riccati equation (1.2.1), a one-parameter
symmetry group is provided by the following scaling transformations (non-
homogeneous dilations) obtained in Sect. 1.2.7:

x̄ = xea, ȳ = ye−a. (1.2.3)
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Indeed, the transformations (1.2.3) after the extension to the first derivative y′ and
the substitution y′ = p are written

x̄ = xea, ȳ = ye−a,

p̄ = pe−2a.
(1.2.4)

One can readily verify that the frame of (1.2.2) is invariant with respect to the trans-
formations (1.2.4). Let us check the infinitesimal invariance condition (1.1.31). The
generator (1.1.20) of the group of transformations (1.2.4) has the form

X = x
∂

∂x
− y

∂

∂y
− 2p

∂

∂p
.

One can easily check that the invariance condition is satisfied. Indeed:

X
(

p + y2 − 2

x2

)

= −2p − 2y2 + 4

x2
= −2

(

p + y2 − 2

x2

)

,

and hence X(p + y2 − 2
x2 )|(1.2.2) = 0. For the transformations (1.2.3), the canonical

variables are

t = lnx, u = xy. (1.2.5)

In the canonical variables (1.2.5), the Riccati equation (1.2.1) becomes:

u′ + u2 − u − 2 = 0 (u′ = du/dt). (1.2.6)

Its frame is obtained by substituting u′ = q in (1.2.6) and is given by the following
algebraic equation:

q + u2 − u − 2 = 0. (1.2.7)

The left-hand side of (1.2.7) does not involve the variable t . Thus the curved frame
(1.2.2) has been reduced to a cylindrical surface protracted along the t-axis. Namely
it is a “parabolic cylinder”. We see that, in integrating differential equations, the
decisive step is that of simplifying the frame by converting it into a cylinder. For
such purpose, it is sufficient to simplify the symmetry group by introducing canon-
ical variables. In consequence, any first-order ordinary differential equation with a
known symmetry reduces to the integrable form u′ = f (u) similar to (1.2.6).

Of course, in certain particular examples the equation in question may be solved
by other means. For example, it is well-known that the substitution y = (ln |u|)′
reduces (1.2.1) to Euler’s equation

x2u′′ − 2u = 0

having the general solution u = C1x
−1 + C2x

2. Hence, the general solution of
(1.2.1) has the form

y = d

dx
ln

∣
∣
∣
C1

x
+ C2x

2
∣
∣
∣ = 2C2x

3 − C1

x(C2x3 + C1)
·

If C2 �= 0 one has the solution

y = 2x3 − C

x(x3 + C)
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depending on one arbitrary constant C = C1/C2. The case C2 = 0 yields the singu-
lar solution y = −1/x.

1.2.2 Prolongation of Group Transformations and Their
Generators

The transformation of derivatives y′, y′′, . . . under the action of the point transfor-
mations (1.1.1), regarded as a change of variables, is well-known from Calculus. It
is convenient to write these transformation formulae by using the operator of total
differentiation:

D = ∂

∂x
+ y′ ∂

∂y
+ y′′ ∂

∂y′ + · · · .

Then the transformation formulae, e.g. for the first and second derivatives are written

ȳ′ ≡ dȳ

dx̄
= Dg

Df
= gx + y′gy

fx + y′fy

≡ P(x, y, y′, a), (1.2.8)

ȳ′′ ≡ dȳ′

dx̄
= DP

Df
= Px + y′Py + y′′Py′

fx + y′fy

. (1.2.9)

Starting from the group G of point transformations (1.1.1) and then adding the trans-
formation (1.2.8), one obtains the group G(1), which acts in the space of the three
variables (x, y, y′). Further, by adding the transformation (1.2.9) one obtains the
group G(2) acting in the space (x, y, y′, y′′).

Definition 1.2.1 The groups G(1) and G(2) are termed the first and second prolon-
gations of G, respectively. The higher prolongations are determined similarly.

Substituting into (1.2.8), (1.2.9) the infinitesimal transformation (1.1.4),

x̄ ≈ x + aξ, ȳ ≈ y + aη,

and neglecting all terms of higher order in a, one obtains the following infinitesimal
transformations of derivatives:

ȳ′ = y′ + aD(η)

1 + aD(ξ)
≈ [y′ + aD(η)][1 − aD(ξ)]
≈ y′ + [D(η) − y′D(ξ)]a ≡ y′ + aζ1,

ȳ′′ = y′′ + aD(ζ1)

1 + aD(ξ)
≈ [y′′ + aD(ζ1)][1 − aD(ξ)]
≈ y′′ + [D(ζ1) − y′′D(ξ)]a ≡ y′′ + aζ2.

Therefore the generators of the prolonged groups G(1), G(2) are
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X(1) = ξ
∂

∂x
+ η

∂

∂y
+ ζ1

∂

∂y′ , ζ1 = D(η) − y′D(ξ), (1.2.10)

X(2) = X(1) + ζ2
∂

∂y′′ , ζ2 = D(ζ1) − y′′D(ξ). (1.2.11)

These are called the first and second prolongations of the infinitesimal operator
(1.1.9). The term prolongation formulae is frequently used to denote the expressions
for the additional coordinates:

ζ1 = D(η) − y′D(ξ) = ηx + (ηy − ξx)y
′ − y′2ξy, (1.2.12)

ζ2 = D(ζ1) − y′′D(ξ) = ηxx + (2ηxy − ξxx)y
′

+ (ηyy − 2ξxy)y
′2 − y′3ξyy + (ηy − 2ξx − 3y′ξy)y

′′. (1.2.13)

1.2.3 Group Admitted by Differential Equations

Let G be a group of point transformations and let G(1), G(2) be its first and second
prolongations, defined in the previous section.

Definition 1.2.2 We say that a group G of point transformations (1.1.1) is a sym-
metry group of a first-order ordinary differential equation

F(x, y, y′) = 0, (1.2.14)

or that (1.2.14) admits the group G if (1.2.14) is form invariant under the transfor-
mations (1.1.1), or, in other words, if the frame of (1.2.14) is invariant (in the sense
of Definition 1.1.3) with respect to the first prolongation G(1) of the group G.

Likewise, an nth order differential equation

F(x, y, y′, . . . , y(n)) = 0 (1.2.15)

admits a group G if the frame (the surface in the space x, y, y′, . . . , y(n)) is invariant
with respect to the nth prolongation G(n) of G.

Consider (1.2.15) written in the form solved with respect to the y(n):

y(n) = f (x, y, y′, . . . , y(n−1)) (1.2.16)

with a smooth function f . The main property of a symmetry group first proved by
S. Lie (the proof for first-order equations is given, e.g. in [13], Chap. 16, Sect. 1,
Theorem 1) is the following.

Theorem 1.2.1 A group G is a symmetry group for (1.2.16) if and only if G converts
any classical solution (i.e. n times continuously differentiable) of (1.2.16) into a
classical solution of the same equation.
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1.2.4 Determining Equation for Infinitesimal Symmetries

According to Sect. 1.1.3, it is sufficient to find infinitesimal symmetries, i.e. genera-
tors (1.1.6) of symmetry groups.

Here, the algorithm of construction of infinitesimal symmetries is discussed for
second-order equations

F(x, y, y′, y′′) = 0. (1.2.17)

The infinitesimal invariance criterion has the form:

X(2)F
∣
∣
F=0 ≡ (ξFx + ηFy + ζ1Fy′ + ζ2Fy′′)

∣
∣
F=0 = 0, (1.2.18)

where ζ1 and ζ2 are computed from the prolongation formulae (1.2.12) and (1.2.13).
Equation (1.2.18) is called the determining equation for the group admitted by the
ordinary differential equation (1.2.17).

If the differential equation is written in the explicit form

y′′ = f (x, y, y′), (1.2.19)

the determining equation (1.2.18), after substituting the values of ζ1, ζ2 from
(1.2.12), (1.2.13) with y′′ given by the right-hand side of (1.2.19), assumes the form

ηxx + (2ηxy − ξxx)y
′ + (ηyy − 2ξxy)y

′2

− y′3ξyy + (ηy − 2ξx − 3y′ξy)f

− [ηx + (ηy − ξx)y
′ − y′2ξy]fy′ − ξfx − ηfy = 0. (1.2.20)

Here f (x, y, y′) is a known function (we are dealing with a given differential equa-
tion (1.2.19) while the coordinates ξ and η of the generator (1.1.6)),

X = ξ(x, y)
∂

∂x
+ η(x, y)

∂

∂y
,

are unknown functions of x, y. Since the left-hand side of (1.2.20) contains the
quantity y′ considered as an independent variable along with x, y, the determin-
ing equation splits into several independent equations, thus becoming an overdeter-
mined system of differential equations for ξ(x, y), η(x, y). Solving this system, we
find all the infinitesimal symmetries of (1.2.19).

1.2.5 An Example on Calculation of Symmetries

Let us find the operators

X = ξ(x, y)
∂

∂x
+ η(x, y)

∂

∂y

admitted by the second-order equation

y′′ + 1

x
y′ − ey = 0. (1.2.21)
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Here f = ey − 1
x
y′ and the determining equation (1.2.20) has the form

ηxx + (2ηxy − ξxx)y
′ + (ηyy − 2ξxy)y

′2

− y′3ξyy + (ηy − 2ξx − 3y′ξy)

(

ey − y′

x

)

+ 1

x
[ηx + (ηy − ξx)y

′ − y′2ξy] − ξ
y′

x2
− ηey = 0.

The left-hand side of this equation is a third-degree polynomial in the variable y′.
Therefore the determining equation decomposes into the following four equations,
obtained by setting the coefficients of the various powers of y′ equal to zero:

(y′)3 : ξyy = 0, (1.2.22)

(y′)2 : ηyy − 2ξxy + 2

x
ξy = 0, (1.2.23)

y′ : 2ηxy − ξxx +
( ξ

x

)

x
− 3ξye

y = 0, (1.2.24)

(y′)0 : ηxx + 1

x
ηx + (ηy − 2ξx − η)ey = 0. (1.2.25)

Integration of (1.2.22) and (1.2.23) with respect to y yields:

ξ = p(x)y + a(x), η =
(

p′ − p

x

)

y2 + q(x)y + b(x).

Let us substitute these expressions for ξ , η into (1.2.24), (1.2.25). As the dependence
of ξ and η on y is polynomial, while the left-hand sides of (1.2.24), (1.2.25) contain
ey , we must have

ξy = 0, ηy − 2ξx − η = 0.

The first of these gives us p = 0, that is, the equality ξ = a(x); taking this into
account, the second condition can be written in the form

q(x) − 2a′(x) − b(x) − q(x)y = 0.

Hence q = 0, 2a′ + b = 0. Therefore

ξ = a(x), η = −2a′(x).

Substituting these expressions into (1.2.24), we have
(

a′ − a

x

)′ = 0,

from which a = C1x lnx + C2x; here (1.2.25) is satisfied identically.
As a result, we have obtained the general solution of the determining equations

(1.2.22)–(1.2.25) in the form

ξ = C1x lnx + C2x, η = −2[C1(1 + lnx) + C2x]
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with constant coefficients C1, C2. In view of the linearity of the determining equa-
tions, the general solution can be represented as a linear combination of two inde-
pendent solutions

ξ1 = x lnx, η1 = −2(1 + lnx);
ξ2 = x, η2 = −2.

This means that (1.2.21) admits two linearly independent operators

X1 = x lnx
∂

∂x
− 2(1 + lnx)

∂

∂y
, X2 = x

∂

∂x
− 2

∂

∂y
, (1.2.26)

and that the set of all admissible operators is a two-dimensional vector space with
basis (1.2.26).

1.2.6 Lie Algebras. Specific Property of Determining Equations

Definition 1.2.3 Let X and X′ be first-order linear differential operators of the form
(1.1.6):

X = ξ(x, y)
∂

∂x
+ η(x, y)

∂

∂y
, X′ = ξ ′(x, y)

∂

∂x
+ η′(x, y)

∂

∂y
· (1.2.27)

Their commutator [X,X′] is defined by [X,X′] = XX′ − X′X. It is a first-order
linear differential operator and has the form:

[X,X′] = (

X(ξ ′) − X′(ξ)
) ∂

∂x
+ (

X(η′) − X′(η)
) ∂

∂y
· (1.2.28)

Definition 1.2.4 A vector space L of operators (1.1.6) is called a Lie algebra if it is
closed under the commutator, i.e. if [X,X′] ∈ L for any X,X′ ∈ L. The Lie algebra
is denoted by the same letter L, and its dimension is the dimension of the vector
space L.

If a Lie algebra L has the dimension r < ∞ it is denoted by Lr . If the vector
space Lr is spanned by linearly independent operators X1, . . . ,Xr , then the opera-
tors X1, . . . ,Xr provide a basis of the Lie algebra Lr . The condition that [X,X′] ∈ L

for any X,X′ ∈ L is equivalent to the following:

[Xi,Xj ] = ck
ijXk, ck

ij = const. (i, j, k = 1, . . . , r). (1.2.29)

Definition 1.2.5 Let Lr be a Lie algebra spanned by X1, . . . ,Xr . A subspace
Ks (s < r) of the vector space Lr spanned by linearly independent operators
Y1, . . . , Ys ∈ Lr is called a subalgebra of Lr if

[Y,Y ′] ∈ Ks for any Y,Y ′ ∈ Ks.

This condition is equivalent to the following:

[Yi, Yj ] ∈ Ks, i, j = 1, . . . , s.
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Let us return to general properties of determining equations. As can be seen
from (1.2.20), a determining equation is a linear partial differential equation with
the unknown functions ξ and η of the variables x and y. Therefore the set of its
solutions forms a vector space, which was already noted in the previous example.
However, a specific property of determining equations is given by the following
statement due to S. Lie.

Theorem 1.2.2 The set of all solutions of any determining equation forms a Lie
algebra.

Investigation of the determining equations for symmetries of second-order ordi-
nary differential equations lead Lie to the following significant result [13] (see also
[8]).

Theorem 1.2.3 For a second-order equation (1.2.19), the symmetry Lie algebra L

has the dimension r ≤ 8. The maximal dimension r = 8 is attained if and only if
(1.2.19) either is linear or can be linearized by a change of variables.

We will discuss below two methods of integration of first-order ordinary differ-
ential equations with a known infinitesimal symmetry.

1.2.7 Integration of First-Order Equations: Lie’s Integrating
Factor

We begin with the method of Lie’s integrating factor. Consider a first-order ordinary
differential equation written in the form

Q(x,y)dx + P(x, y)dy = 0. (1.2.30)

Lie [13] showed that if (1.2.30) admits a one-parameter group with the generator
(1.1.6)

X = ξ(x, y)
∂

∂x
+ η(x, y)

∂

∂y

and if ξQ + ηP �= 0, then the function

μ = 1

ξQ + ηP
(1.2.31)

is an integrating factor for (1.2.30).

Example 1.2.1 Consider the Riccati equation (1.2.1):

y′ + y2 − 2

x2
= 0. (1.2.32)
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Its symmetry group can be readily found by considering dilations x̄ = ax, ȳ = by.
Substitution in (1.2.32) yields:

ȳ′ + ȳ2 − 2

x̄2
= b

a
y′ + b2y2 − 2

a2x2
.

The invariance of (1.2.32) requires b/a = b2 = 1/a2. Hence b = 1/a. Therefore
the equation admits a one-parameter group of dilations (which can be written in the
form x̄ = xea , ȳ = ye−a) with the generator

X = x
∂

∂x
− y

∂

∂y
. (1.2.33)

Writing (1.2.32) in the form (1.2.30),

dy + (y2 − 2/x2)dx = 0 (1.2.34)

and applying the formula (1.2.31), one obtains the integrating factor

μ = x

x2y2 − xy − 2
·

After multiplication by this factor, (1.2.34) is brought to the following form:

xdy + (xy2 − 2/x)dx

x2y2 − xy − 2
= xdy + ydx

x2y2 − xy − 2
+ dx

x
= d

(

lnx + 1

3
ln

xy − 2

xy + 1

)

= 0,

whence

xy − 2

xy + 1
= C

x3
or y = 2x3 + C

x(x3 − C)
·

1.2.8 Integration of First-Order Equations: Method of Canonical
Variables

Given a one-parameter symmetry group, one can use the canonical variables in-
troduced in Sect. 1.1.4 for integrating first-order equations. Since the property of
invariance of an equation with respect to a group is independent of the choice of
variables, introduction of canonical variables reduces the equation in question to an
equation which does not depend on one of the variables, and hence can be integrated
by quadrature. Consider examples.

Example 1.2.2 Let us solve the Riccati equation (1.2.32),

y′ + y2 − 2

x2
= 0,

by the method of canonical variables using the symmetry (1.2.33):

X = x
∂

∂x
− y

∂

∂y
·
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The partial differential equations

X(t) = x
∂t

∂x
− y

∂t

∂y
= 1, X(u) = x

∂u

∂x
− y

∂u

∂y
= 0

yield the following canonical variables:

t = ln |x|, u = xy.

Let us rewrite (1.2.32) in the canonical variables. We have:

dy

dx
= d

dx

(u

x

)

= − u

x2
+ 1

x

du

dx
= − u

x2
+ 1

x

du

dt

dt

dx
= − u

x2
+ u′

x2
·

Therefore, the left-hand side of the equation in question is written as follows:

dy

dx
+ y2 − 2

x2
= u′

x2
− u

x2
+ u2

x2
− 2

x2
= 1

x2

(

u′ + u2 − u − 2
) = 0.

Thus, the Riccati equation is rewritten in the canonical variables in the following
integrable form:

du

dt
+ u2 − u − 2 = 0.

It is integrated by separation of variables:

du

u2 − u − 2
= −dt.

Decomposing the integrand into elementary fractions:

1

u2 − u − 2
= 1

3

[
1

u − 2
− 1

u + 1

]

,

we evaluate the integral in elementary functions and obtain:

ln

(
u − 2

u + 1

)

= −3t + lnC·

Now we solve this equation with respect to u,

u = C + 2e3t

e3t − C
,

substitute t = ln |x|, u = xy and arrive at the solution of the Riccati equation (cf.
Example 1.2.1):

y = 2x3 + C

x(x3 − C)
·

Example 1.2.3 The equation

y′ = y

x
+ y2

x2
(1.2.35)
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is homogeneous, i.e. it admits the group of dilations (scaling transformations) x̄ =
xea , ȳ = yea with the generator

X = x
∂

∂x
+ y

∂

∂y
. (1.2.36)

Canonical variables for the operator (1.2.36) are

t = ln |x|, u = y

x
· (1.2.37)

In these variables, (1.2.35) is written

du

dt
= u2.

Whence, upon integration:

1

u
= C − t.

Substituting here t = ln |x| and y = xu, we obtain the solution of the original equa-
tion:

y = x

C − ln |x| .

Example 1.2.4 The equation

y′ = y

x
+ y3

x4
(1.2.38)

admits the group of projective transformations

x̄ = x

1 − ax
, ȳ = y

1 − ax
,

with the generator

X = x2 ∂

∂x
+ xy

∂

∂y
· (1.2.39)

Introducing the canonical variables

t = − 1

x
, u = y

x
, (1.2.40)

we rewrite (1.2.38) in the form

du

dt
= u3.

Integration yields

u = ± 1√
C − 2t

,

whence, substituting the expressions for t and u, we obtain the following general
solution to our equation:

y = ±x

√
x

2 + Cx
.
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Table 1.2.9.1 Structure and standard forms of L2

Type Structure of L2 Standard form of L2

I [X1,X2] = 0, ξ1η2 − η1ξ2 �= 0 X1 = ∂
∂t

, X2 = ∂
∂u

II [X1,X2] = 0, ξ1η2 − η1ξ2 = 0 X1 = ∂
∂u

, X2 = t ∂
∂u

III [X1,X2] = X1, ξ1η2 − η1ξ2 �= 0 X1 = ∂
∂u

, X2 = t ∂
∂t

+ u ∂
∂u

IV [X1,X2] = X1, ξ1η2 − η1ξ2 = 0 X1 = ∂
∂u

, X2 = u ∂
∂u

Table 1.2.9.2 Four types of second-order equations admitting L2

Type Standard form of L2 Canonical form of the equation

I X1 = ∂
∂t

, X2 = ∂
∂u

u′′ = f (u′)
II X1 = ∂

∂u
, X2 = t ∂

∂u
u′′ = f (t)

III X1 = ∂
∂u

, X2 = t ∂
∂t

+ u ∂
∂u

u′′ = 1
t
f (u′)

IV X1 = ∂
∂u

, X2 = u ∂
∂u

u′′ = f (t)u′

1.2.9 Standard Forms of Two-Dimensional Lie Algebras

Lie’s method of integration of second-order ordinary differential equations employs
canonical variables in two-dimensional Lie algebras. Introduction of canonical vari-
ables reduces any second-order differential equation admitting a two-dimensional
Lie algebra L2 into an integrable form.

Canonical variables reduce a basis of every two-dimensional Lie algebra L2 to
the simplest form and provide four standard forms of second-order equations with
two symmetries. The basic statements are as follows.

Theorem 1.2.4 Any two-dimensional Lie algebra can be transformed, by a proper
choice of its basis and suitable variables t, u, called canonical variables, to one of
the four non-similar standard forms presented in Table 1.2.9.1.

Remark 1.2.1 In types III and IV, the condition [X1,X2] = X1 can be satisfied by
a proper change of the basis in L2 provided that [X1, X2] �= 0.

Let a second-order equation

y′′ = f (x, y, y′) (1.2.41)

admit two or more symmetries. Let us single out from these symmetries a two-
dimensional Lie algebra L2, determine its type according to Table 1.2.9.1, find
canonical variables t, u for L2, and rewrite (1.2.41) in the variables t, u:

u′′ = g(t, u,u′). (1.2.42)

Theorem 1.2.4 guarantees that (1.2.42) belongs to one of four integrable equations
given in Table 1.2.9.2.
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1.2.10 Lie’s Method of Integration for Second-Order Equations

The method of integration of second-order non-linear differential equations (1.2.41)
requires the following calculations. First of all, one needs to find the symmetries of
the equation in question. Let the equation have two or more symmetries. We single
out from these symmetries a two-dimensional Lie algebra L2 and determine its type
according to the Structure column of Table 1.2.9.1. Then we find canonical variables
by solving the following equations in accordance with the type:

Type I: X1(t) = 1, X2(t) = 0; X1(u) = 0, X2(u) = 1.

Type II: X1(t) = 0, X2(t) = 0; X1(u) = 1, X2(u) = t.

Type III: X1(t) = 0, X2(t) = t; X1(u) = 1, X2(u) = u.

Type IV: X1(t) = 0, X2(t) = 0; X1(u) = 1, X2(u) = u.

(1.2.43)

Now we rewrite the differential equation in the canonical variables choosing t as
a new independent variable and u as a dependent one. It will have one of the in-
tegrable forms given in Table 1.2.9.2. It remains to integrate the resulting equation
and rewrite the solution in the original variables x, y. This completes the integration
procedure.

Example 1.2.5 Let us apply the integration method to the following non-linear
second-order equation:

y′′ + e3yy′4 + y′2 = 0. (1.2.44)

First, we have to find the symmetries of (1.2.44). Here

f = −(e3yy′4 + y′2)

and the determining equation (1.2.20) is written as follows:

ηxx + (2ηxy − ξxx)y
′ + (ηyy − 2ξxy)y

′2 − y′3ξyy

+ 3e3yy′4η − (ηy − 2ξx − 3y′ξy)(e
3yy′4 + y′2)

+ [ηx + (ηy − ξx)y
′ − y′2ξy](4e3yy′3 + 2y′) = 0.

The left-hand side of this equation is a polynomial of fifth degree in y′. Since it
should vanish identically in y′, we equate to zero the coefficients of y′5, y′4, . . . and
obtain the following four independent equations:

(

y′)5: ξy = 0,

(

y′)4
: 3(ηy + η) − 2ξx = 0,

(

y′)3:ηx = 0,

(

y′)1: ξxx = 0.
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The coefficients for (y′)2 and (y′)0 vanish together with the coefficients of (y′)4

and (y′)1, respectively. The above four differential equations for two unknown func-
tions ξ(x, y) and η(x, y) are readily solved and yield:

ξ = C1 + 3C3x, η = 2C3 + C2e−y, C1,C2,C3 = const.

Hence, the general form of the operator

X = ξ(x, y)
∂

∂x
+ η(x, y)

∂

∂y

admitted by (1.2.44) is

X = C1X1 + C2X2 + C3X3,

where

X1 = ∂

∂x
, X2 = e−y ∂

∂y
, X3 = 3x

∂

∂x
+ 2

∂

∂y
. (1.2.45)

In other words, (1.2.44) admits the three-dimensional Lie algebra L3 spanned by
the operators (1.2.45).

The operators X1 and X2 span a two-dimensional subalgebra L2 ⊂ L3 and has
the type I. Canonical variables t and u are obtained by solving (1.2.43) for type I,
i.e. the following equations:

∂t

∂x
= 1, e−y ∂t

∂y
= 0; ∂u

∂x
= 0, e−y ∂u

∂y
= 1.

We take the following solutions to this system:

t = x, u = ey.

Thus, we set u = u(t) and rewrite the equation in question in the new variables to
obtain

u′′ + u′4 = 0.

The standard substitution u′ = v reduces it to the first-order equation v′ + v4 = 0,
whence

v = 1
3
√

3x + C1
.

Now we integrate the equation

du

dx
= 1

3
√

3x + C1

and obtain:

u = 1

2

[
3
√

(3x + C1)2 + C2

]

.

Substitution of the expressions for t, u yields the solution to (1.2.44):

y = ln
∣
∣
∣

3
√

(3x + C1)2 + C2

∣
∣
∣ − ln 2.
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Example 1.2.6 Integrate the non-linear equation

y′′ + 2
(

y′ − y

x

)3 = 0 (1.2.46)

which admits the algebra L2 of type II spanned by

X1 = x2 ∂

∂x
+ xy

∂

∂y
, X2 = xy

∂

∂x
+ y2 ∂

∂y
· (1.2.47)

Solution. The equations X1(t) = 0, X1(u) = 1; X2(t) = 0, X2(u) = t provide the
canonical variables

t = y

x
, u = − 1

x
· (1.2.48)

Since the variable t involves the dependent variable y, t can be a new independent
variable only if one excludes the singular solutions of (1.2.46) along which t is
identically constant. These singular solutions are the straight lines:

y = Kx, K = const.

In the variables (1.2.48) the equation (1.2.46) becomes

u′′ = 2

and yields u = t2 + C1t + C2. Substituting the expressions for t and u, we obtain:

y2 + C1xy + C2x
2 + x = 0.

Solving this equation with respect to y and introducing the new constants A =
−C1/2, B = A2 − C2, we obtain the solution to (1.2.46):

y = Kx, y = Ax ±
√

Bx2 − x. (1.2.49)

1.3 Symmetries and Invariant Solutions of Partial Differential
Equations

1.3.1 Discussion of Symmetries for Evolution Equations

Consider evolutionary partial differential equations of the second order with one
spatial variable x:

ut = F(t, x,u,ux,uxx), ∂F/∂uxx �= 0. (1.3.1)

Definition 1.3.1 A one-parameter group G of transformations (1.1.19) of the vari-
ables t, x, u:

t̄ = f (t, x,u, a), x̄ = g(t, x,u, a), ū = h(t, x,u, a) (1.3.2)

is called a group admitted by (1.3.1), or a symmetry group of (1.3.1), if (1.3.1) has
the same form in the new variables t̄ , x̄, ū:

ūt̄ = F(t̄, x̄, ū, ūx̄ , ūx̄x̄ ). (1.3.3)

The function F has the same form in both (1.3.1) and (1.3.3).
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According to this definition, the transformations (1.3.2) of the group G map ev-
ery solution u = u(t, x) of (1.3.1) into a solution ū = ū(t̄ , x̄) of (1.3.3). Since (1.3.3)
is identical with (1.3.1), the definition of an admitted group can be formulated as
follows.

Definition 1.3.2 A one-parameter group G of transformations (1.3.2) is called a
group admitted by (1.3.1) if the transformations (1.3.2) map any solution of (1.3.1)
into a solution of the same equation.

The infinitesimal transformations of the group G of transformations (1.3.2) are
written

t̄ ≈ t + aτ(t, x,u), x̄ ≈ x + aξ(t, x,u), ū ≈ u + aη(t, x,u) (1.3.4)

and provide the following generator of the group G:

X = τ(t, x,u)
∂

∂t
+ ξ(t, x,u)

∂

∂x
+ η(t, x,u)

∂

∂u
(1.3.5)

acting on any differentiable function J (t, x,u) as follows:

X(J ) = τ(t, x,u)
∂J

∂t
+ ξ(t, x,u)

∂J

∂x
+ η(t, x,u)

∂J

∂u
·

The generator (1.3.5) of a group G admitted by (1.3.1) is known as an infinitesimal
symmetry of (1.3.1).

The transformations (1.3.2) of the group with the generator (1.3.5) are found by
solving the Lie equations

dt̄

da
= τ(t̄ , x̄, ū),

dx̄

da
= ξ(t̄ , x̄, ū),

dū

da
= η(t̄, x̄, ū), (1.3.6)

with the initial conditions:

t̄
∣
∣
a=0 = t, x̄

∣
∣
a=0 = x, ū

∣
∣
a=0 = u. (1.3.7)

Let us turn now to (1.3.3). The quantities ūt̄ , ūx̄ and ūx̄x̄ involved in (1.3.3) are
obtained via the usual rule of change of derivatives by treating (1.3.2) as a change
of variables. Then, expanding the resulting expressions for ūt̄ , ūx̄ , ūx̄x̄ into Taylor
series with respect to the parameter a and keeping only the terms linear in a, one
obtains the infinitesimal form of these expressions:

ūt̄ ≈ ut + aζ0(t, x,u,ut , ux),

ūx̄ ≈ ux + aζ1(t, x,u,ut , ux), (1.3.8)

ūx̄x̄ ≈ uxx + a ζ2(t, x,u,ut , ux, utx, uxx),

where ζ0, ζ1, ζ2 are given by the following prolongation formulae:

ζ0 = Dt(η) − utDt (τ ) − uxDt (ξ),

ζ1 = Dx(η) − utDx(τ) − uxDx(ξ), (1.3.9)

ζ2 = Dx(ζ1) − utxDx(τ) − uxxDx(ξ).
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Here Dt and Dx denote the total differentiations with respect to t and x:

Dt = ∂

∂t
+ ut

∂

∂u
+ utt

∂

∂ut

+ utx

∂

∂ux

,

Dx = ∂

∂x
+ ux

∂

∂u
+ utx

∂

∂ut

+ uxx

∂

∂ux

.

Substitution of (1.3.4) and (1.3.8) in (1.3.3) yields:

ūt̄ − F(t̄, x̄, ū, ūx̄ , ūx̄x̄ )

≈ ut − F(t, x,u,ux,uxx)

+ a
(

ζ0 − ∂F

∂uxx

ζ2 − ∂F

∂ux

ζ1 − ∂F

∂u
η − ∂F

∂x
ξ − ∂F

∂t
τ
)

.

Therefore, by virtue of (1.3.1), the equation (1.3.3) yields

ζ0 − ∂F

∂uxx

ζ2 − ∂F

∂ux

ζ1 − ∂F

∂u
η − ∂F

∂x
ξ − ∂F

∂t
τ = 0, (1.3.10)

where ut is replaced by F(t, x,u,ux,uxx) in ζ0, ζ1, ζ2.
Equation (1.3.10) determines all infinitesimal symmetries of (1.3.1) and therefore

it is called the determining equation. Conventionally, it is written in the compact
form

X
(

ut − F(t, x,u,ux,uxx)
)∣
∣
ut=F

= 0, (1.3.11)

where the prolongation of the operator X (1.3.5) to the first and second order deriva-
tives is understood:

X = τ
∂

∂t
+ ξ

∂

∂x
+ η

∂

∂u
+ ζ0

∂

∂ut

+ ζ1
∂

∂ux

+ ζ2
∂

∂uxx

,

and the symbol |ut=F means that ut is replaced by F(t, x,u,ux,uxx).
The determining equation (1.3.10) (or its equivalent (1.3.11)) is a linear homo-

geneous partial differential equation of the second order for unknown functions
τ(t, x,u), ξ(t, x,u), η(t, x,u). In consequence, the set of all solutions to the de-
termining equation is a vector space L. Furthermore, the determining equation pos-
sesses the following significant and less evident property. The vector space L is a Lie
algebra, i.e. it is closed with respect to the commutator. In other words, L contains,
together with any operators X1,X2, their commutator [X1,X2] defined by

[X1,X2] = X1X2 − X2X1.

In particular, if L = Lr is finite-dimensional and has a basis X1, . . . ,Xr , then the
Lie algebra condition is written in the form

[Xα,Xβ ] = c
γ
αβXγ

with constant coefficients c
γ
αβ known as the structure constants of Lr .

Note that (1.3.10) should be satisfied identically with respect to all the variables
involved, the variables t, x, u,ux,uxx, utx are treated as five independent variables.
Consequently, the determining equation decomposes into a system of several equa-
tions. As a rule, this is an over-determined system since it contains more equations
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than three unknown functions τ, ξ and η. Therefore, in practical applications, the
determining equation can be readily solved. The following statement due to Lie
[12] simplifies the calculation of the symmetries of evolution equations.2

Lemma 1.3.1 The symmetry transformations (1.3.2) of (1.3.1) have the form

t̄ = f (t, a), x̄ = g(t, x,u, a), ū = h(t, x,u, a). (1.3.12)

It means that one can search the infinitesimal symmetries in the form

X = τ(t)
∂

∂t
+ ξ(t, x,u)

∂

∂x
+ η(t, x,u)

∂

∂u
· (1.3.13)

For the operators (1.3.13), the prolongation formulae (1.3.9) are written as fol-
lows:

ζ0 = Dt(η) − uxDt(ξ) − τ ′(t)ut , ζ1 = Dx(η) − uxDx(ξ),

ζ2 = Dx(ζ1) − uxxDx(ξ) = D2
x(η) − uxD

2
x(ξ) − 2uxxDx(ξ).

(1.3.14)

1.3.2 Calculation of Symmetries for Burgers’ Equation

Let us find the symmetries of the Burgers equation

ut = uxx + uux. (1.3.15)

According to Lemma 1.3.1, the infinitesimal symmetries have the form (1.3.13).
For the Burgers equation, the determining equation (1.3.10) has the form

ζ0 − ζ2 − uζ1 − ηux = 0, (1.3.16)

where ζ0, ζ1 and ζ2 are given by (1.3.14). Let us single out and annul the terms with
uxx . Bearing in mind that ut has to be replaced by uxx + uux and substituting in ζ2
the expressions

D2
x(ξ) = Dx(ξx + ξuux) = ξuuxx + ξuuu

2
x + 2ξxuux + ξxx,

D2
x(η) = Dx(ηx + ηuux) = ηuuxx + ηuuu

2
x + 2ηxuux + ηxx

(1.3.17)

we arrive at the following equation:

2ξuux + 2ξx − τ ′(t) = 0.

It splits into two equations, namely ξu = 0 and 2ξx − τ ′(t) = 0. The first equation
shows that ξ depends only on t , x, and integration of the second equation yields

ξ = 1

2
τ ′(t)x + p(t). (1.3.18)

2In [12], Sect. III, Lie proves a more general statement about contact transformations of parabolic
equations.
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It follows from (1.3.18) that D2
x(ξ) = 0. Now the determining equation (1.3.16)

reduces to the form

u2
xηuu +

[
1

2
τ ′(t)u + 1

2
τ ′′(t)x + p′(t) + 2ηxu + η

]

ux + uηx + ηxx − ηt = 0

and splits into three equations:

ηuu = 0,

1

2

(

τ ′(t)u + τ ′′(t)x
)

+ p′(t) + 2ηxu + η = 0, (1.3.19)

uηx + ηxx − ηt = 0.

The first equation (1.3.19) yields η = σ(t, x)u + μ(t, x), and the second equation
(1.3.19) becomes:

(
1

2
τ ′(t) + σ

)

u + 1

2
τ ′′(t)x + p′(t) + 2σx + μ = 0,

whence

σ = −1

2
τ ′(t), μ = −1

2
τ ′′(t)x − p′(t).

Thus, we have

η = −1

2
τ ′(t)u − 1

2
τ ′′(t)x − p′(t). (1.3.20)

Finally, substitution of (1.3.20) in the third equation (1.3.19) yields

1

2
τ ′′′(t)x + p′′(t) = 0,

whence τ ′′′(t) = 0, p′′(t) = 0, and hence

τ(t) = C1t
2 + 2C2t + C3, p(t) = C4t + C5.

Invoking (1.3.18) and (1.3.20), we ultimately arrive at the following general solution
of the determining equation (1.3.16):

τ(t) = C1t
2 + 2C2t + C3,

ξ = C1tx + C2x + C4t + C5,

η = −(C1t + C2)u − C1x − C4.

It contains five arbitrary constants Ci . Hence, the infinitesimal symmetries of the
Burgers equation (1.3.15) form the five-dimensional Lie algebra L5 spanned by the
following linearly independent operators:

X1 = ∂

∂t
, X2 = ∂

∂x
, X3 = 2t

∂

∂t
+ x

∂

∂x
− u

∂

∂u
,

X4 = t
∂

∂x
− ∂

∂u
, X5 = t2 ∂

∂t
+ tx

∂

∂x
− (x + tu)

∂

∂u
·

(1.3.21)

Let G be a group admitted by (1.3.1). Then every transformation (1.3.2) belong-
ing to the group G carries over any solution of the differential equation (1.3.1) into
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a solution of the same equation. It means that the solutions of a partial differential
equation are permuted among themselves under the action of a symmetry group.
The solutions may also be individually unaltered, then they are called invariant so-
lutions. Accordingly, group analysis provides two basic ways for construction of
exact solutions: group transformations of known solutions and construction of in-
variant solutions.

1.3.3 Invariant Solutions and Their Calculation

If a group transformation maps a solution into itself, we arrive at what is called a
self-similar or group invariant solution. According to Theorem 1.1.4 on invariant
representation of invariant manifolds, the invariant solutions under a one-parameter
group with a generator X are obtained as follows.

Let X be a given infinitesimal symmetry (1.3.5) of (1.3.1). One calculates two
independent invariants J1 = λ(t, x) and J2 = μ(t, x,u) by solving the first-order
linear partial differential equation

X(J ) ≡ τ(t, x,u)
∂J

∂t
+ ξ(t, x,u)

∂J

∂x
+ η(t, x,u)

∂J

∂u
= 0,

or its characteristic system:

dt

τ (t, x,u)
= dx

ξ(t, x,u)
= du

η(t, x,u)
. (1.3.22)

Then one designates one of the invariants as a function of the other, e.g.

μ = φ(λ), (1.3.23)

and solves (1.3.23) with respect to u. Finally, one substitutes the expression for u

in (1.3.1) and obtains an ordinary differential equation for the unknown function
φ(λ) of one variable. This procedure reduces the number of independent variables
by one.

Example 1.3.1 Let us find the solutions of the Burgers equation that are invariant
under the time translations generated by the operator X1 from (1.3.21). The invari-
ance condition leads to the stationary solutions

u = Φ(x)

for which the Burgers equation is written

Φ ′′ + ΦΦ ′ = 0. (1.3.24)

Integrating once, we obtains

Φ ′ + Φ2

2
= C1.

We integrate now this first-order equation by setting C1 = 0, C1 = ν2 > 0, and
C1 = −ω2 < 0 and obtain:
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Φ(x) = 2

x + C
,

Φ(x) = νth
(

C + ν

2
x
)

, (1.3.25)

Φ(x) = ωtg
(

C − ω

2
x
)

.

1.3.4 Group Transformations of Solutions

Let (1.3.2) be an admitted group for (1.3.1), and let a function

u = Φ(t, x)

solve (1.3.1). Since (1.3.2) is a symmetry transformation, the above solution can be
also written in the new variables:

ū = Φ(t̄, x̄).

Replacing here ū, t̄ , x̄ from (1.3.2), we get

h(t, x,u, a) = Φ
(

f (t, x,u, a), g(t, x,u, a)
)

. (1.3.26)

Solving (1.3.26) with respect to u one obtains a one-parameter family (with the
parameter a) of new solutions to (1.3.1).

Example 1.3.2 Consider the Burgers equation (1.3.15),

ut = uxx + uux,

and apply the above procedure to the admitted one-parameter group generated by
the operator X5 from (1.3.21):

X5 = t2 ∂

∂t
+ tx

∂

∂x
− (x + tu)

∂

∂u
.

The one-parameter group generated by X5 has the form

t̄ = t

1 − at
, x̄ = C2

1 − at
, ū = (1 − at)u − ax. (1.3.27)

Using the transformations (1.3.27) and applying (1.3.26) to any known solution
u = Φ(t, x) of the Burgers equation, one obtains the following one-parameter set of
new solutions:

u = ax

1 − at
+ 1

1 − at
Φ

( t

1 − at
,

x

1 − at

)

. (1.3.28)

Let us apply the transformation (1.3.28), e.g. to the first stationary solution
(1.3.25):

Φ(x) = 2

x + C
, C = const.,
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one obtains the new non-stationary solutions

u = ax

1 − at
+ 2

x + C(1 − at)

depending on the parameter a.

1.3.5 Optimal Systems of Subalgebras

The concept of optimal systems of subalgebras of a given Lie algebra was used
by Ovsyannikov [16] for describing essentially different invariant solutions. This
concept is useful in dealing with nonlinear mathematical models. A simple method
of construction of an optimal system is illustrated in this section by of means of the
five-dimensional Lie algebra L5 spanned by the symmetries (1.3.21) of the Burgers
equation. The result is used in the next section for describing all invariant solutions
of the Burgers equation.

The symmetry Lie algebra L5 spanned by the operators (1.3.21) allows one to
construct invariant solutions of the Burgers equation (1.3.15),

ut = uxx + uux,

by using any one-dimensional subalgebra of the algebra L5, i.e. on any operator
X ∈ L5. However, there are infinite number of one-dimensional subalgebras of L5

since an arbitrary operator from L5 is written

X = l1X1 + · · · + l5X5, (1.3.29)

and hence depends on five arbitrary constants l1, . . . , l5. Ovsyannikov [16] has no-
ticed, however, that if two subalgebras are similar, i.e. connected with each other
by a transformation of the symmetry group, then their corresponding invariant solu-
tions are connected with each other by the same transformation. Consequently, it is
sufficient to deal with an optimal system of subalgebras obtained in our case as fol-
lows. We put into one class all similar operators X ∈ L5 and select a representative
of each class. The set of the representatives of all these classes is an optimal system
of one-dimensional subalgebras.

An optimal system of one-dimensional subalgebras of the Lie algebra L5 is con-
structed as follows [11]. The transformations of the symmetry group with the Lie
algebra L5 provide the 5-parameter group of linear transformations of the operators
X ∈ L5 or, equivalently, linear transformations of the vector

l = (l1, . . . , l5), (1.3.30)

where l1, . . . , l5 are taken from (1.3.29). To find these linear transformations, we
use their generators (see, e.g. Sect. 1.4 in [6])

Eμ = cλ
μνl

ν ∂

∂lλ
, μ = 1, . . . ,5, (1.3.31)
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where cλ
μν are the structure constants of the Lie algebra L5 defined by

[Xμ,Xν] = cλ
μνXλ.

For computing the operators (1.3.31) it is convenient to use the following com-
mutator table of the operators (1.3.21):

X1 X2 X3 X4 X5

X1 0 0 2X1 X2 X3
X2 0 0 X2 0 X4
X3 −2X1 −X2 0 X4 2X5
X4 −X2 0 −X4 0 0
X5 −X3 −X4 −2X5 0 0

(1.3.32)

Let us find, e.g. the operator E1. According to (1.3.31), it is written

E1 = cλ
1ν l

ν ∂

∂lλ
,

where cλ
1ν are defined by the commutators [X1,Xν] = cλ

μνXλ, i.e. by the first raw in
table (1.3.32). Namely, the non-vanishing cλ

μν are

c1
1 3 = 2, c2

1 4 = 1, c2
1 5 = 1.

Therefore we have:

E1 = 2l3 ∂

∂l1
+ l4 ∂

∂l2
+ l5 ∂

∂l3
.

Substituting in (1.3.31) all structure constants given by table (1.3.32) we obtain:

E1 = 2l3 ∂

∂l1
+ l4 ∂

∂l2
+ l5 ∂

∂l3
, E2 = l3 ∂

∂l2
+ l5 ∂

∂l4
,

E3 = −2l1 ∂

∂l1
− l2 ∂

∂l2
+ l4 ∂

∂l4
+ 2l5 ∂

∂l5
, (1.3.33)

E4 = −l1 ∂

∂l2
− l3 ∂

∂l4
, E5 = −l1 ∂

∂l3
− l2 ∂

∂l4
− 2l3 ∂

∂l5
.

Let us find the transformations provided by the generators (1.3.33). For the gen-
erator E1, the Lie equations with the parameter a1 are written

dl̃1

da1
= 2l̃3,

dl̃2

da1
= l̃4,

dl̃3

da1
= l̃5,

dl̃4

da1
= 0,

dl̃5

da1
= 0.

Integrating these equations and using the initial condition l̃|a1=0 = l, we obtain:

E1 : l̃1 = l1 + 2a1l
3 + a2

1 l5, l̃2 = l2 + a1l
4,

l̃3 = l3 + a1l
5, l̃4 = l4, l̃5 = l5.

(1.3.34)

Taking the other operators (1.3.33) we obtain the following transformations:
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E2 : l̃1 = l1, l̃2 = l2 + a2l
3, l̃3 = l3, l̃4 = l4 + a2l

5, l̃5 = l5, (1.3.35)

E3 : l̃1 = a−2
3 l1, l2 = a−1

3 l2, l̃3 = l3, l̃4 = a3l
4, l̃5 = a2

3 l5, (1.3.36)

where a3 > 0 since the integration of the Lie equations yields, e.g.

l4 = l4eã3 = a3l
4.

E4 : l̃1 = l1, l̃2 = l2 − a4l
1, l̃3 = l3, l̃4 = l4 − a4l

3, l̃5 = l5. (1.3.37)

E5 : l̃1 = l1, l̃2 = l2, l̃3 = l3 − a5l
1,

l̃4 = l4 − a5l
2, l̃5 = l5 − 2a5l

3 + a2
5 l1.

(1.3.38)

Note that the transformations (1.3.34)–(1.3.38) map the vector X ∈ L5 given by
(1.3.29) to the vector X̃ ∈ L5 given by the following formula:

X̃ = l̃1X1 + · · · + l̃5X5. (1.3.39)

Now we can prove the following statement on an optimal system of one-
dimensional subalgebras of symmetry algebra for the Burgers equation.

Theorem 1.3.1 The following operators provide an optimal system of one-
dimensional subalgebras of the Lie algebra L5 with the basis (1.3.21):

X1, X2, X3, X4, X1 + X4, X1 − X4,

X5, X1 + X5, X2 + X5, X2 − X5,
(1.3.40)

where k is an arbitrary parameter.

Proof We first clarify if the transformations (1.3.34)–(1.3.38) have invariants
J (l1, . . . , l5). The reckoning shows that the 5 × 5 matrix ‖cλ

μνl
ν‖ of the coeffi-

cients of the operators (1.3.33) has the rank four. It means that the transformations
(1.3.34)–(1.3.38) have precisely one functionally independent invariant. The inte-
gration of the equations

Eμ(J ) = 0, μ = 1, . . . ,5,

shows that the invariant is

J = (l3)2 − l1l5. (1.3.41)

Knowledge of the invariant (1.3.41) simplifies further calculations significantly.
The last equation in (1.3.38) shows that if l1 �= 0, we get l̄5 = 0 by solving the

quadratic equation l5 − 2a5l
3 + a2

5 l1 = 0 for a5, i.e. by taking

a5 = l3 ± √
J

l1
, (1.3.42)

where J is the invariant (1.3.41). We can use (1.3.42) only if J ≥ 0.
Now we begin the construction of the optimal system. The method requires a sim-

plification of the general vector (1.3.30) by means of the transformations (1.3.34)–
(1.3.38). As a result, we will find the simplest representatives of each class of similar
vectors (1.3.30). Substituting these representatives in (1.3.29), we will obtain the op-
timal system of one-dimensional subalgebras of L5. We will divide the construction
to several cases. �
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1.3.5.1 The Case l1 = 0

I will divide this case into the following two subcases.
1°. l3 �= 0.l3 �= 0.l3 �= 0. In other words, we consider the vectors (1.3.30) of the form

(0, l2, l3, l4, l5), l3 �= 0.

First we take a5 = l5/(2l3) in (1.3.38) and reduce the above vector to the form

(0, l2, l3, l4,0).

Then we subject the latter vector to the transformation (1.3.37) with a4 = l4/l3 and
obtain the vector

(0, l2, l3,0,0).

Since the operator X is defined up to a constant factor and l3 �= 0, we divide the
above vector by l3 and transform it using (1.3.35) to the form

(0,0,1,0,0).

Substituting it in (1.3.29), we obtain the operator

X3. (1.3.43)

2°. l3 = 0.l3 = 0.l3 = 0. Thus, we consider the vectors (1.3.30) of the form

(0, l2,0, l4, l5).

2°(1). If l2 �= 0, we can assume l2 = 1 (see above), use the transformation
(1.3.38) with a5 = Al4 and get the vector

(0,1,0,0, l5).

If l5 �= 0 we can make l5 = ±1 by the transformation (1.3.36). Thus, taking into ac-
count the possibility l5 = 0, we obtain the following representatives for the optimal
system:

X2, X2 + X5, X2 − X5. (1.3.44)

2°(2). Let l2 = 0. If l5 �= 0 we can set l5 = 1. Now we apply the transformation
(1.3.35) with a2 = −l4 and obtain the vector (0,0,0,0,1). If l5 = 0 we get the
vector (0,0,0,1,0). Thus, the case l2 = 0 provides the operators

X4, X5. (1.3.45)

1.3.5.2 The Case l1 �= 0, J > 0

Now we can define a5 by (1.3.42) and annul l̄5 by the transformation (1.3.38). Thus,
we will deal with the vector

(l1, l2, l3, l4,0), l1 �= 0.
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Since J is invariant under the transformations (1.3.34)–(1.3.38), the condition J > 0
yields that in the above vector we have l3 �= 0. Therefore we can use the transfor-
mation (1.3.37) with a4 = l4/l3 and get l̄4 = 0. Then we apply the transforma-
tion (1.3.34) with a1 = −l1/(2l3) and obtain l̄1 = 0, thus arriving at the vector
(0, l2, l3,0,0), and hence at the previous operator (1.3.43). Hence, this case con-
tributes no additional subalgebras to the optimal system.

1.3.5.3 The Case l1 �= 0, J = 0

In this case (1.3.42) reduces to a5 = l3/l1.
If l3 �= 0, we use the transformation (1.3.38) with a5 = l3/l1 and obtain l̄5 = 0.

Due to the invariance of J we conclude that the equation J = 0 yields (l̄3)2 − l̄1 l̄5 =
0. Since l̄5 = 0, it follows that l̄3 = 0. Thus we can deal with the vectors of the form

(l1, l2,0, l4,0), l1 �= 0. (1.3.46)

Furthermore, if l3 = 0, we have J = −l1l5, and the equation J = 0 yields l5 = 0
since l1 �= 0. Therefore we again have the vectors of the form (1.3.46) where we
can assume l1 = 1. Subjecting the vector (1.3.46) with l1 = 1 to the transformation
(1.3.37) with a4 = l2 we obtain l̄2 = 0, and hence map the vector (1.3.46) to the
form

(1,0,0, l4,0).

If l4 �= 0, we use the transformation (1.3.36) with an appropriately chosen a3 and
obtain l4 = ±1. taking into account the possibility l4 = 0, we see that this case
contributes the following operators:

X1, X1 + X4, X1 − X4. (1.3.47)

1.3.5.4 The Case l1 �= 0, J < 0

It is obvious from the condition J = (l3)2 − l1l5 < 0 that l5 �= 0. Therefore we suc-
cessively apply the transformations (1.3.38), (1.3.37) and (1.3.35) with a5 = l3/l1,
a4 = l2/l1 and a2 = −l4/l5, respectively and obtain l̄3 = l̄2 = l̄4 = 0. The compo-
nents l1 and l5 of the resulting vector

(l1,0,0,0, l5)

have the common sign since the condition J < 0 yields l1l5 > 0. Therefore using the
transformation (1.3.36) with an appropriate value of the parameter a3 and invoking
that we can multiply the vector l by any constant, we obtain l1 = l5 = 1, i.e. the
operator

X1 + X5. (1.3.48)

Finally, collecting the operators (1.3.43), (1.3.44), (1.3.45), (1.3.47) and (1.3.48),
we arrive at the optimal system (1.3.40), thus completing the proof.
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1.3.6 All Invariant Solutions of the Burgers Equation

Constructing the invariant solution for each operator from the optimal system of sub-
algebras (1.3.40), we obtain the following optimal system of invariant solutions [11].

Theorem 1.3.2 An optimal system of invariant solutions for the Burgers equation
is provided by the following solutions, where σ,γ and K are arbitrary constants.

X1: (i) u = 2

x + γ
;

(ii) u = σ
γ eσx + 1

γ eσx − 1
≡ σ̃ tanh

(

γ̃ + σ̃

2
x
)

; (1.3.49)

(iii) u = σ tan
(

γ − σ

2
x
)

.

X3: u = ϕ(λ)√
t

, λ = x√
t
,

where ϕ′ + 1

2
ϕ2 + 1

2
λϕ = K.

(1.3.50)

X4: u = K − x

t
· (1.3.51)

X1 + X4: u = ϕ(λ) − t, λ = x − t2

2
,

where ϕ′ + 1

2
ϕ2 + λ = K.

(1.3.52)

X1 − X4: u = t + ϕ(λ), λ = x + t2

2
,

where ϕ′ + 1

2
ϕ2 − λ = K.

(1.3.53)

X5: u = −λ + ϕ(λ)

t
, λ = x

t
, where

(i) ϕ(λ) = σ
γ eσλ − 1

γ eσλ + 1
, |ϕ| < σ ;

(ii) ϕ(λ) = σ
γ eσλ + 1

γ eσλ − 1
, |ϕ| > σ ;

(iii) ϕ(λ) = σ tan
(

γ − σ

2
λ
)

.

(1.3.54)

X1 + X5: u = − tx

1 + t2
+ ϕ(λ)√

1 + t2
, λ = x√

1 + t2
,

where ϕ′ + 1

2
ϕ2 + 1

2
λ2 = K.

(1.3.55)

X2 + X5: u = −x

t
− 1

t2
+ ϕ(λ)

t
, λ = x

t
+ 1

2t2
,

where ϕ′ + 1

2
ϕ2 − λ = K.

(1.3.56)
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X2 − X5: u = −x

t
+ 1

t2
+ ϕ(λ)

t
, λ = x

t
− 1

2t2
,

where ϕ′ + 1

2
ϕ2 + λ = K.

(1.3.57)

If one subjects each solution from the optimal system of invariant solutions
(1.3.49)–(1.3.57) to all transformations of the group admitted by the Burgers equa-
tion, one obtains all invariant solutions of the Burgers equation. We see that the
invariant solutions of the Burgers equation are given either by elementary functions
or by solving a Riccati equation. Furthermore, one can verify that the set of all
invariant solutions involves 76 parameters.

We see that the invariant solutions of the Burgers equation are given either by
elementary functions or by solving a Riccati equation.

Furthermore, the solutions to the Riccati equations describing the solutions
(1.3.52), (1.3.53), (1.3.56) and (1.3.57) can be represented by special functions.
Namely, setting ϕ = √

2ψ , μ = λ + K and using the substitution

ψ = d ln |z|
dμ

≡ z′

z

we reduce the Riccati equation in (1.3.53) and (1.3.56) to the Airy equation

d2z

dμ2
− μz = 0. (1.3.58)

The general solution to (1.3.58) is the linear combination

z = C1Ai(μ) + C2Bi(μ), C1,C2 = const., (1.3.59)

of the Airy functions (see, e.g. [14], [17])

Ai(μ) = 1

π

∞∫

0

cos
(

μτ + 1

3
τ 3

)

dτ,

Bi(μ) = 1

π

∞∫

0

[

exp
(

μτ − 1

3
τ 3

)

+ sin
(

μτ + 1

3
τ 3

)]

dτ.

(1.3.60)

Hence, the function ϕ(λ) in the solutions (1.3.53) and (1.3.56) is given by

ϕ(λ) = √
2

d

dλ
ln

∣
∣C1Ai(λ + K) + C2Bi(λ + K)

∣
∣. (1.3.61)

One can obtain likewise that ϕ(λ) in (1.3.52) and (1.3.57) is given by

ϕ(λ) = √
2

d

dλ
ln

∣
∣C1Ai(K − λ) + C2Bi(K − λ)

∣
∣. (1.3.62)

Finally, it is worth noting that the optimal system of subalgebras is not unique,
it depends on the choice of a representative in each class of similar operators. Con-
sequently, the form of the solutions included in an optimal system of invariant solu-
tions depends on the choice of representatives. However, this choice does not affect
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the amount of the optimal system of invariant solutions since the number of the
classes of similar operators does not depend on the choice of representatives. More-
over, this choice does not affect the final form of the 76-parameter set of all invariant
solutions obtained from an optimal system of invariant solutions by the transforma-
tions of the general group admitted by the Burgers equation.

1.4 General Definitions of Symmetry Groups

1.4.1 Differential Variables and Function

We will use the following notation. Consider the algebraically independent variables

x = {xi}, u = {uα}, u(1) = {uα
i }, u(2) = {uα

ij }, . . . , (1.4.1)

where α = 1, . . . ,m, and i, j = 1, . . . , n. The variables uα
ij , . . . are assumed to be

symmetric in subscripts, i.e. uα
ij = uα

ji . The operator

Di = ∂

∂xi
+ uα

i

∂

∂uα
+ uα

ij

∂

∂uα
j

+ · · · (i = 1, . . . , n), (1.4.2)

is called the total differentiation with respect to xi . The operator Di is a formal sum
of an infinite number of terms. However, it truncates when acting on any function
of a finite number of the variables x,u,u(1), . . . . In consequence, the total differen-
tiations Di are well defined on the set of all functions depending on a finite number
of x,u,u(1), . . . .

Though the variables (1.4.1) are assumed to be algebraically independent, they
are connected by the following differential relations:

uα
i = Di(u

α), uα
ij = Dj(u

α
i ) = DjDi(u

α). (1.4.3)

The variables xi are called independent variables, and the variables uα are known
as differential (or dependent) variables with the successive derivatives u(1), u(2),
etc. The universal space of modern group analysis is the space A of differential
functions introduced by Ibragimov [3] (see also [4], Sect. 19) as a generalization of
differential polynomials considered by J.F. Ritt in the 1950s.

Definition 1.4.1 A locally analytic function (i.e., locally expandable in a Taylor
series with respect to all arguments) of a finite number of variables (1.4.1) is called
a differential function. The highest order of derivatives appearing in the differential
function is called the order of this function. The set of all differential functions of
all finite orders is denoted by A . This set is a vector space with respect to the usual
addition of functions and becomes an associative algebra if multiplication is defined
by the usual multiplication of functions. A significant property of the space A is
that it is closed under the action of total derivatives (1.4.2).
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Definition 1.4.2 A group G of transformations of the form

x̄i = f i(x,u, a), f i |a=0 = xi, (1.4.4)

ūα = ϕα(x,u, a), ϕα|a=0 = uα, (1.4.5)

is called a group of point transformations in the space of dependent and independent
variables. The generator of the group G is

X = ξ i(x,u)
∂

∂xi
+ ηα(x,u)

∂

∂uα
, (1.4.6)

where

ξ i = ∂f i

∂a

∣
∣
∣
a=0

, ηα = ∂ϕα

∂a

∣
∣
∣
a=0

· (1.4.7)

Let Fk ∈ A be any differential functions and let p be the maximum of orders of
the differential functions Fk , k = 1, . . . , s. Consider the system of equations

Fk(x,u,u(1), . . . , u(p)) = 0, k = 1, . . . , s. (1.4.8)

If one treats the variables uα as functions of x so that

uα = uα(x), uα
i = ∂uα(x)

∂xi
, . . . ,

then one arrives at the usual concept of a system of differential equations (1.4.8) of
order p.

1.4.2 Frame and Extended Frame

Recall the definitions of the frame and extended frame of differential equations given
in [5] (see also [6], Chap. 1).

Definition 1.4.3 Let us treat x,u,u(1), . . . as functionally independent variables
connected only by the differential relations (1.4.3). Then (1.4.8) determine a sur-
face in the space of the independent variables x,u,u(1), . . . , u(p). This surface is
called the frame (or skeleton) of the system of differential equations (1.4.8).

Definition 1.4.4 Consider the frame equation (1.4.8) together with its differential
consequences,

Fk = 0, DiFk = 0, DiDjFk = 0, . . . . (1.4.9)

The totality of points (x,u,u(1), . . .) satisfying (1.4.9) is called the extended frame
of the system of differential equations (1.4.8) and is denoted by [F ].

We will assume that

rank
∥
∥
∥
∂Fk

∂xi
,
∂Fk

∂uα
,
∂Fk

∂uα
i

, . . .

∥
∥
∥ = s

on the frame of the differential equations under consideration.
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1.4.3 Definition Using Solutions

The first definition of a symmetry group of an arbitrary system of differential equa-
tions coincides with Definition 1.3.2 for a single evolution equation.

Definition 1.4.5 The system of differential equations (1.4.8) is said to be invariant
under the group G of transformations (1.4.4), (1.4.5) if the transformations (1.4.4),
(1.4.5) convert every solution of the system (1.4.8) into a solution of the same sys-
tem. Here the solutions of differential equations are considered as classical ones,
i.e., are assumed to be smooth functions uα = uα(x). If the system of equations
(1.4.8) is invariant under the group G then G is also known as a symmetry group
for the system (1.4.8) or a group admitted by this system.

1.4.4 Definition Using the Frame

Though the first definition is conceptually simple, it depends upon knowledge of
solutions. Therefore, in practical calculation of symmetries the following second,
geometric definition is more efficient.

Definition 1.4.6 The system of differential equations (1.4.8) is said to be invariant
under the group G if the frame of the system is an invariant surface with respect
to the prolongation of the transformations (1.4.4), (1.4.5) of the group G to the
derivatives u(1), . . . , u(p).

According to this definition and the invariance test of equations given by Theo-
rem 1.1.3, one obtains the following infinitesimal test for obtaining symmetries of
differential equations.

Theorem 1.4.1 The group G with the generator X is admitted by the system of
differential equations (1.4.8) if and only if

X(p)Fk

∣
∣
(1.4.8)

= 0, k = 1, . . . , s, (1.4.10)

where X(p) is the p-th prolongation of X and |(1.4.8) means evaluated on the frame
the system of differential equations (1.4.8). Equations (1.4.10) are the determining
equations.

Let z0 = (x0, u0, . . . , u0(p)) be a point on the frame of the system (1.4.8),
i.e. Fk(x0, u0, . . . , u0(p)) = 0 (k = 1, . . . , s). The system of differential equations
(1.4.8) is said to be locally solvable at z0 if there is a solution passing through this
point, i.e., there exist a solution u = h(x) of differential equations (1.4.8) defined in
a neighborhood of the point x0 such that u0 = h(x0), . . . , u0(p) = ∂ph/∂xp(x0). The
system (1.4.8) is said to be locally solvable if it has this property at every generic
point of the frame.
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It can be shown that for locally solvable systems the first and the second defi-
nitions of the symmetry group are equivalent, i.e. that Definition 1.4.5 and Defini-
tion 1.4.6 provide exactly the same symmetry group. A discussion of this equiva-
lence is to be found in Lie [13], Chap. 6, Sect. 1, and Ovsyannikov [16], Sect. 15.1.
See also Olver [15], Sect. 2.6, for a modern treatment of this subject.

1.4.5 Definition Using the Extended Frame

If the system (1.4.8) is not locally solvable, e.g. if the system (1.4.8) is over-
determined, it may happen (see further Example 1.4.1) that Definition 1.4.6 provides
only a subgroup of the symmetry group given by Definition 1.4.5. Therefore, Ibrag-
imov proposed ([4], Sect. 17.1, see also [6], Chap. 1) the following third definition
and proved the appropriate infinitesimal test for the invariance of over-determined
systems of differential equations.

Definition 1.4.7 The system of differential equations (1.4.8) is said to be invariant
under the group G if the extended frame [F ] is invariant with respect to the infinite-
order prolongation of G.

The infinitesimal test for this invariance is written as follows (see [4], Theo-
rem 17.1).

Theorem 1.4.2 Let X be the generator of a group G. The system of differential
equations (1.4.8) are invariant under the group G in the sense of Definition 1.4.7 if
and only if the following equations are satisfied:

X(p)Fk

∣
∣[F ] = 0, k = 1, . . . , s. (1.4.11)

Equations (1.4.11) are also called determining equations.

Remark 1.4.1 According to Theorem 1.4.2, the invariance test does not involve all
the differential consequences (1.4.9) of the differential equations (1.4.8). In fact, it
can be easily shown that it suffices to consider only a finite number of the differential
consequences (1.4.9) such that they form a system in involution. It is also worth
noting that we do not need to take into account the additional equations such as
X(p)(DiFk) = 0 since they are satisfied identically due to (1.4.11).

For locally solvable systems, all three definitions of symmetry groups are equiv-
alent. For over-determined systems, the first and third definitions are equivalent,
whereas the second definition provides, in general, only a subgroup of the symme-
try group given by the third definition.

Example 1.4.1 Consider the over-determined system ([6], Sect. 1.3.10)

ut = (ux)
−4/3uxx, vt = −3(ux)

−1/3, vx = u. (1.4.12)
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This is a system of three equations for two dependent variables u and v. The maxi-
mal order of equations involved in the system is p = 2. Let us first solve the deter-
mining equations (1.4.10). The left-hand side of (1.4.10) depends upon the variables
x, t, u, v,ux,uxx, uxt , and vxx in accordance with the prolongation formulae. The
solution of the determining equations yields the 6-dimensional Lie algebra spanned
by

X1 = ∂

∂x
, X2 = ∂

∂t
, X3 = ∂

∂v
, X4 = ∂

∂u
+ x

∂

∂v
,

X5 = 4t
∂

∂t
+ 3u

∂

∂u
+ 3v

∂

∂v
, X6 = 2x

∂

∂x
− u

∂

∂u
+ v

∂

∂v
·

(1.4.13)

This is the Lie algebra of the maximal symmetry group for (1.4.12) obtained by the
second definition (Definition 1.4.6).

Consider now the determining equations (1.4.11). Differentiation of the third
equation (1.4.12) yields vxx = ux . Therefore, we replace vxx in the determining
equation by ux . Then the left-hand side of (1.4.11) involves only the variables
x, t, u, v,ux,uxx and uxt . Solving the determining equations (1.4.11), one obtains
the 7-dimensional Lie algebra spanned by the operators (1.4.13) and by

X7 = x2 ∂

∂x
+ xv

∂

∂v
+ (v − xu)

∂

∂u
· (1.4.14)

Thus, the third definition (Definition 1.4.7) provides a more general symmetry group
than the second definition.

1.5 Lie–Bäcklund Transformation Groups

This is section provides an introduction to the theory of Lie–Bäcklund transforma-
tion groups and contains the basic definitions, theorems and algorithms used for
computation of Lie–Bäcklund symmetries of differential equations. The space A
of differential functions introduced in Sect. 1.4.1 play a central role in this theory.

1.5.1 Lie–Bäcklund Operators

Geometrically, Lie–Bäcklund transformations appear in attempting to find a higher-
order generalization of the classical contact (first-order tangent) transformations
(see Bäcklund’s paper [1], its English translation is available in [9]) and are iden-
tified with infinite-order tangent transformations. A historical survey of the devel-
opment of this branch of group analysis and a detailed discussion of the modern
theory with many applications are to be found in [4] (see also [7], Chap. 1). We
will use here a shortcut to the theory of Lie–Bäcklund transformation groups by us-
ing a generalization of infinitesimal generators of point and contact transformation
groups. The generalization is known as a Lie–Bäcklund operator and is defined as
follows.
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Definition 1.5.1 Let ξ i, ηα ∈ A be differential functions depending on any finite
number of variables x,u,u(1), u(2), . . . . A differential operator

X = ξ i ∂

∂xi
+ ηα ∂

∂uα
+ ζ α

i

∂

∂uα
i

+ ζ α
i1i2

∂

∂uα
i1i2

+ · · · , (1.5.1)

where

ζ α
i = Di(η

α − ξjuα
j ) + ξjuα

ij ,

ζ α
i1i2

= Di1Di2(η
α − ξjuα

j ) + ξjuα
ji1i2

, . . .
(1.5.2)

is called a Lie–Bäcklund operator. The Lie–Bäcklund operator (1.5.1) is often writ-
ten in the abbreviated form

X = ξ i ∂

∂xi
+ ηα ∂

∂uα
+ · · · , (1.5.3)

where the prolongation given by (1.5.1)–(1.5.2) is understood.

The operator (1.5.1) is formally an infinite sum. However, it truncates when act-
ing on any differential function. Hence, the action of Lie–Bäcklund operators is well
defined on the space A .

Consider two Lie–Bäcklund operators

Xν = ξ i
ν

∂

∂xi
+ ηα

ν

∂

∂uα
+ · · · , ν = 1,2,

and define their commutator by the usual formula:

[X1,X2] = X1X2 − X2X1.

Theorem 1.5.1 The commutator [X1,X2] is identical with the Lie–Bäcklund oper-
ator given by

[X1,X2] = (

X1(ξ
i
2) − X2(ξ

i
1)

) ∂

∂xi
+ (

X1(η
α
2 ) − X2(η

α
1 )

) ∂

∂uα
+ · · · , (1.5.4)

where the terms denoted by dots are obtained by prolonging the coefficients of ∂/∂xi

and ∂/∂uα in accordance with (1.5.1) and (1.5.2).

According to Theorem 1.5.1, the set of all Lie–Bäcklund operators is an infinite
dimensional Lie algebra with respect to the commutator (1.5.4). It is called the Lie–
Bäcklund algebra and denoted by LB. The Lie–Bäcklund algebra is endowed with
the following properties (see [4]).

I. Di ∈ LB. In other words, the total differentiation (1.4.2) is a Lie–Bäcklund
operator. Furthermore,

X∗ = ξ i∗Di ∈ LB (1.5.5)

for any ξ i∗ ∈ A .
II. Let L∗ be the set of all Lie–Bäcklund operators of the form (1.5.5). Then L∗

is an ideal of LB, i.e., [X,X∗] ∈ L∗ for any X ∈ LB. Indeed,

[X,X∗] = (

X(ξ i∗) − X∗(ξ i)
)

Di ∈ L∗.
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III. In accordance with property II, two operators X1,X2 ∈ LB are said to be
equivalent (i.e., X1 ∼ X2) if X1 − X2 ∈ L∗. In particular, every operator X ∈ LB is
equivalent to an operator (1.5.1) with ξ i = 0, i = 1, . . . , n. Namely, ,X ∼ X̃ where

X̃ = X − ξ iDi = (ηα − ξ iuα
i )

∂

∂uα
+ · · · . (1.5.6)

Definition 1.5.2 The operators of the form

X = ηα ∂

∂uα
+ · · · , ηα ∈ A , (1.5.7)

are called canonical Lie–Bäcklund operators.

Using this definition, we can formulate the property III as follows.

Theorem 1.5.2 Any operator X ∈ LB is equivalent to a canonical Lie–Bäcklund
operator.

Example 1.5.1 Let us take n = m = 1 and denote u1 = ux . The generator of the
group of translations along the x-axis and its canonical Lie–Bäcklund form (1.5.6)
are written as follows:

X = ∂

∂x
∼ X̃ = ux

∂

∂u
+ · · · .

Example 1.5.2 Let x, y be the independent variables, and k, c = const. The gener-
ator of non-homogeneous dilations and its canonical Lie–Bäcklund form (1.5.6) are
written:

X = x
∂

∂x
+ ky

∂

∂y
+ cu

∂

∂u
∼ X̃ = (cu − xux − kyuy)

∂

∂u
+ · · · .

Example 1.5.3 Let t, x be the independent variables. The generator of the Galilean
boost and its canonical Lie–Bäcklund form (1.5.6) are written:

X = t
∂

∂x
+ ∂

∂u
∼ X̃ = (1 − tux)

∂

∂u
+ · · · .

The canonical operators leave invariant the independent variables xi . Therefore,
the use of the canonical form is convenient, e.g., for investigating symmetries of
integro-differential equations.

IV. The following statements describe all Lie–Bäcklund operators equivalent to
generators of Lie point and Lie contact transformation groups.

Theorem 1.5.3 The Lie–Bäcklund operator (1.5.1) is equivalent to the infinitesimal
operator of a one-parameter point transformation group if and only if its coordi-
nates assume the form

ξ i = ξ i
1(x,u) + ξ i∗, ηα = ηα

1 (x,u) + (

ξ i
2(x,u) + ξ i∗

)

uα
i ,
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where ξ i∗ ∈ A is an arbitrary differential function, and ξ i
1, ξ

i
2, η

α
1 are arbitrary func-

tions of x and u.

Theorem 1.5.4 Let m = 1. Then the operator (1.5.1) is equivalent to the infinites-
imal operator of a one-parameter contact transformation group if and only if its
coordinates assume the form

ξ i = ξ i
1(x,u,u(1)) + ξ i∗, η = η1(x,u,u(1)) + ξ i∗ui,

where ξ i∗ ∈ A is an arbitrary differential function, and ξ i
1, η1 are arbitrary first-

order differential functions, i.e. depend upon x,u and u(1).

1.5.2 Integration of Lie–Bäcklund Equations

Consider the sequence

z = (x,u,u(1), u(2), . . .) (1.5.8)

with the elements zν, ν ≥ 1, were

zi = xi,1 ≤ i ≤ n, zn+α = uα,1 ≤ α ≤ m.

Denote by [z] any finite subsequence of z. Then elements of the space A of differ-
ential functions are written as f ([z]).

Definition 1.5.3 Given an operator (1.5.1), the following infinite system is called
Lie–Bäcklund equations:

d

da
x̄i = ξ i([z̄]), d

da
ūα = ηα([z̄]),

d

da
ūα

i = ζ α
i ([z̄]), d

da
ūα

ij = ζ α
ij ([z̄]), . . . ,

(1.5.9)

where α = 1, . . . ,m and i, j, . . . = 1, . . . , n.

In the case of canonical operators (1.5.7), the infinite system of equations (1.5.9)
can be replaced by the finite system

d

da
ūα = ηα([z̄]), α = 1, . . . ,m. (1.5.10)

Indeed, upon solving the system (1.5.10), the transformations of the successive
derivatives are obtained by the total differentiation:

ūα
i = Di(ū

α), ūα
ij = DiDj (ū

α), . . . . (1.5.11)

We will use the abbreviated form (1.5.3) of Lie–Bäcklund operators and write the
system (1.5.9), together with the initial conditions, as follows:
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d

da
x̄i = ξ i([z̄]), x̄i

∣
∣
a=0 = xi,

d

da
ūα = ηα([z̄]), ūα

∣
∣
a=0 = uα, (1.5.12)

. . . . . . . . . . . . . .

The formal integrability of the infinite system (1.5.12) has been proved by Ibragi-
mov (see, e.g. [4], Sect. 15.1; it is also discussed in [6]). For the convenience of the
reader, we formulate here the existence theorem. The following notation is conve-
nient for formulating and proving the theorem.

Let f and g be formal power series in one symbol a with coefficients from the
space A , i.e. let

f (z, a) =
∞
∑

k=0

fk([z])ak, fk([z]) ∈ A , (1.5.13)

and

g(z, a) =
∞
∑

k=0

gk([z])ak, gk([z]) ∈ A .

Their linear combination λf ([z])+μg([z]) with constant coefficients λ,μ and prod-
uct f ([z]) · g([z]) are defined by

λ

∞
∑

k=0

fk([z])ak + μ

∞
∑

k=0

gk([z])ak =
∞
∑

k=0

(

λfk([z]) + μgk([z])
)

ak, (1.5.14)

and
( ∞
∑

p=0

fp([z])ap
)

·
( ∞
∑

q=0

gq([z])aq
)

=
∞
∑

k=0

( ∑

p+q=k

fp([z])gq([z])
)

ak, (1.5.15)

respectively. The space of all formal power series (1.5.13) endowed with the addi-
tion (1.5.14) and the multiplication (1.5.15) is denoted by [[A ]].

Lie point and Lie contact transformations, together with their prolongations of
all orders, are represented by elements of the space [[A ]]. Moreover, the utilization
of this space is necessary in the theory of Lie–Bäcklund transformation groups.
Therefore, [[A ]] is called the representation space of modern group analysis ([6],
Sect. 1.2).

The existence theorem is formulated as follows.

Theorem 1.5.5 The Lie–Bäcklund equations (1.4.5) have a solution in the space
[[A ]]. The solution is unique. It is given by formal power series

x̄i = xi +
∞
∑

k=0

Ai
k([z])ak, Ai

k([z]) ∈ A ,

ūα = uα +
∞
∑

k=0

Bα
k ([z])ak, Bα

k ([z]) ∈ A , (1.5.16)

. . . . . . . . . . . . . .
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and satisfies the group property.

Definition 1.5.4 The group of formal transformations (1.5.16) is called a one-
parameter Lie–Bäcklund transformation group.

Recall that a point transformation group acting in the finite dimensional space of
variables x = (x1, . . . , xn) and generated by an operator X can be represented by
the exponential map (1.1.22):

x̄i = exp(aX)(xi), i = 1, . . . , n, (1.5.17)

where

exp(aX) = 1 + aX + a2

2! X
2 + a3

3! X
3 + · · · . (1.5.18)

Likewise, the solution (1.5.16) to the Lie–Bäcklund equations (1.5.12) can be
represented by the exponential map

x̄i = exp(aX)(xi), ūα = exp(aX)(uα), ūα
i = exp(aX)(uα

i ), . . . , (1.5.19)

where X is a Lie–Bäcklund operator (1.5.1) and exp(aX) is given by (1.5.18).
If we consider canonical operators (1.5.7) then (1.5.12) reduce to the finite sys-

tem of equations (1.5.10) supplemented by the initial conditions, i.e. by the system

d

da
ūα = ηα([z̄]), ūα

∣
∣
a=0 = uα. (1.5.20)

Consequently, Lie–Bäcklund transformation groups can be constructed by virtue of
the following theorem.

Theorem 1.5.6 Given a canonical Lie–Bäcklund operator,

X = ηα ∂

∂uα
+ · · · ,

the corresponding formal one-parameter group is represented by the series

ūα = uα + aηα + a2

2! X(ηα) + · · · + an

n! X
n−1(ηα) + · · · (1.5.21)

together with its differential consequences:

ūα
i = uα

i + aDi(η
α) + a2

2! X(Di(η
α)) + · · · + an

n! X
n−1(Di(η

α)) + · · · ,

ūα
i1···is = uα

i1···is + aDi1 · · ·Dis (η
α) + · · · + an

n! X
n−1(Di1 · · ·Dis (η

α)) + · · · .

Example 1.5.4 Let

X = u1
∂

∂u
+ u2

∂

∂u1
+ · · · .

Here η = u1 and therefore

X(η) = u2, X2(η) = u3, . . . , Xn−1(η) = un.
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Hence, the transformation (1.5.21) has the form

ū = u +
∞
∑

n=1

an

n! un.

Example 1.5.5 Let

X = u2
∂

∂u
+ u3

∂

∂u1
+ u4

∂

∂u2
+ · · · .

Here, η = u2 and

X(η) = u4, X2(η) = u6, . . . , Xn−1(η) = u2n.

Hence, the transformation (1.5.21) is given by the power series

ū = u +
∞
∑

n=1

an

n! u2n.

1.5.3 Lie–Bäcklund Symmetries

Lie–Bäcklund symmetries of differential equations are given by Definition 1.4.7
from Sect. 1.4.5. Thus, we use the following definition.

Definition 1.5.5 Let G be a Lie–Bäcklund transformation group generated by a
Lie–Bäcklund operator (1.5.1),

X = ξ i ∂

∂xi
+ ηα ∂

∂uα
+ ζ α

i

∂

∂uα
i

+ ζ α
i1i2

∂

∂uα
i1i2

+ · · · . (1.5.1)

The group G is called a group of Lie–Bäcklund symmetries of a system of differen-
tial equations

Fk(x,u,u(1), . . . , u(p)) = 0, k = 1, . . . , s, (1.5.22)

if the extended frame of (1.5.22) defined by (see Definition 1.4.4)

[F ] : Fk = 0, DiFk = 0, DiDjFk = 0, . . . (1.5.23)

is invariant under G. The operator X (1.5.1) is called an infinitesimal Lie–Bäcklund
symmetry for (1.5.22).

The infinitesimal invariance criteria proved in [4] is formulated in the following
statements.

Theorem 1.5.7 The operator (1.5.1) is an infinitesimal Lie–Bäcklund symmetry for
(1.5.22) if and only if

XFk

∣
∣[F ] = 0, XDi(Fk)

∣
∣[F ] = 0, XDiDj (Fk)

∣
∣[F ] = 0, . . . (k = 1, . . . , s).
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Theorem 1.5.7 contains an infinite number of equations. However, it can be sim-
plified and reduced to a finite number of equations by means of the following result.

Lemma 1.5.1 The equations

XFk

∣
∣[F ] = 0

yield the infinite series of equations

XDi(Fk)
∣
∣[F ] = 0, XDiDj (Fk)

∣
∣[F ] = 0, . . . .

Thus, one arrives at the following finite test for calculating Lie–Bäcklund sym-
metries of differential equations.

Theorem 1.5.8 The operator (1.5.1) is an infinitesimal Lie–Bäcklund symmetry for
(1.5.22) if and only if the following equations hold:

XFk

∣
∣[F ] = 0, k = 1, . . . , s. (1.5.24)

Equations (1.5.24) are the determining equations for Lie–Bäcklund symmetries.

Remark 1.5.1 Every operator of the form (1.5.5), i.e. X∗ = ξ i∗Di ∈ LB is an in-
finitesimal Lie–Bäcklund symmetry for any system of differential equations. Fur-
thermore all operators (1.5.1) satisfying the conditions

ξ i
∣
∣[F ] = 0, ηα

∣
∣[F ] = 0 (1.5.25)

solve the determining equations (1.5.24). All operators X∗ ∈ LB and the operators
obeying the conditions (1.5.25) are termed trivial Lie–Bäcklund symmetries ([7],
Sect. 1.3.2).

Example 1.5.6 The equations of motion of a planet (Kepler’s problem):

m
d2xk

dt2
= μ

xk

r3
, k = 1,2,3,

have the following three nontrivial infinitesimal Lie–Bäcklund symmetries different
from Lie point and contact symmetries (see [4]):

Xi =
(

2xivk − xkvi − (x · v)δk
i

) ∂

∂xk
, i = 1,2,3.

Here the independent variable is time t , the dependent variables are the coordinates
of the position vector x = (x1, x2, x3) of the planet. The vector v = (v1, v2, v3) is
the velocity of the planet, i.e. v = dx/dt .

1.6 Approximate Transformation Groups

A detailed discussion of the material presented here as well as of the theory of
multi-parameter approximate groups can be found in [2].
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1.6.1 Approximate Transformations and Generators

In what follows, functions f (x, ε) of n variables x = (x1, . . . , xn) and a parameter
ε are considered locally in a neighborhood of ε = 0. These functions are continuous
in the x’s and ε, as are also their derivatives to as high an order as enters in the
subsequent discussion.

If a function f (x, ε) satisfies the condition

lim
ε→0

f (x, ε)

εp
= 0,

it is written f (x, ε) = o(εp) and f is said to be of order less than εp . If

f (x, ε) − g(x, ε) = o(εp),

the functions f and g are said to be approximately equal (with an error o(εp)) and
written

f (x, ε) = g(x, ε) + o(εp),

or, briefly f ≈ g when there is no ambiguity.
The approximate equality defines an equivalence relation, and we join functions

into equivalence classes by letting f (x, ε) and g(x, ε) to be members of the same
class if and only if f ≈ g.

Given a function f (x, ε), let

f0(x) + εf1(x) + · · · + εpfp(x)

be the approximating polynomial of degree p in ε obtained via the Taylor series
expansion of f (x, ε) in powers of ε about ε = 0. Then any function g ≈ f (in
particular, the function f itself) has the form

g(x, ε) ≈ f0(x) + εf1(x) + · · · + εpfp(x) + o(εp).

Consequently the function

f0(x) + εf1(x) + · · · + εpfp(x)

is called a canonical representative of the equivalence class of functions contain-
ing f .

Thus, the equivalence class of functions g(x, ε) ≈ f (x, ε) is determined by the
ordered set of p + 1 functions

f0(x), f1(x), . . . , fp(x).

In the theory of approximate transformation groups, one considers ordered sets of
smooth vector-functions depending on x’s and a group parameter a:

f0(x, a), f1(x, a), . . . , fp(x, a)

with coordinates

f i
0 (x, a), f i

1 (x, a), . . . , f i
p(x, a), i = 1, . . . , n.



1.6 Approximate Transformation Groups 51

Let us define the one-parameter family G of approximate transformations

x̄i ≈ f i
0 (x, a) + εf i

1 (x, a) + · · · + εpf i
p(x, a), i = 1, . . . , n, (1.6.1)

of points x = (x1, . . . , xn) ∈ Rn into points x̄ = (x̄1, . . . , x̄n) ∈ Rn as the class of
invertible transformations

x̄ = f (x, a, ε) (1.6.2)

with vector-functions f = (f 1, . . . , f n) such that

f i(x, a, ε) ≈ f i
0 (x, a) + εf i

1 (x, a) + · · · + εpf i
p(x, a).

Here a is a real parameter, and the following condition is imposed:

f (x,0, ε) ≈ x.

Furthermore, it is assumed that the transformation (1.3.2) is defined for any value of
a from a small neighborhood of a = 0, and that, in this neighborhood, the equation
f (x, a, ε) ≈ x yields a = 0.

Definition 1.6.1 The set of transformations (1.6.1) is called a one-parameter ap-
proximate transformation group if

f (f (x, a, ε), b, ε) ≈ f (x, a + b, ε)

for all transformations (1.6.2).

Remark 1.6.1 Here, unlike the classical Lie group theory, f does not necessarily
denote the same function at each occurrence. It can be replaced by any function
g ≈ f (see the next example).

Example 1.6.1 Let us take n = 1 and consider the functions

f (x, a, ε) = x + a

(

1 + εx + 1

2
εa

)

and

g(x, a, ε) = x + a(1 + εx)

(

1 + 1

2
εa

)

.

They are equal in the first order of precision, namely:

g(x, a, ε) = f (x, a, ε) + ε2ϕ(x, a), ϕ(x, a) = 1

2
a2x,

and satisfy the approximate group property. Indeed,

f (g(x, a, ε), b, ε) = f (x, a + b, ε) + ε2φ(x, a, b, ε),

where

φ(x, a, b, ε) = 1

2
a(ax + ab + 2bx + εabx).
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The generator of an approximate transformation group G given by (1.6.2) is the
class of first-order linear differential operators

X = ξ i(x, ε)
∂

∂xi
(1.6.3)

such that

ξ i(x, ε) ≈ ξ i
0(x) + εξ i

1(x) + · · · + εpξ i
p(x),

where the vector fields ξ0, ξ1, . . . , ξp are given by

ξ i
ν(x) = ∂f i

ν (x, a)

∂a

∣
∣
∣
∣
a=0

, ν = 0, . . . , p; i = 1, . . . , n.

In what follows, an approximate group generator

X ≈ (

ξ i
0(x) + εξ i

1(x) + · · · + εpξ i
p(x)

) ∂

∂xi

is written simply

X = (

ξ i
0(x) + εξ i

1(x) + · · · + εpξ i
p(x)

) ∂

∂xi
· (1.6.4)

In theoretical discussions, approximate equalities are considered with an error
o(εp) of an arbitrary order p ≥ 1. However, in the most of applications the theory
is simplified by letting p = 1.

1.6.2 Approximate Lie Equations

Consider one-parameter approximate transformation groups in the first order of pre-
cision. Let

X = X0 + εX1 (1.6.5)

be a given approximate operator, where

X0 = ξ i
0(x)

∂

∂xi
, X1 = ξ i

1(x)
∂

∂xi
.

The corresponding approximate transformation group of points x into points x̄ =
x̄0 + εx̄1 with the coordinates

x̄i = x̄i
0 + εx̄i

1 (1.6.6)

is determined by the following equations:

dx̄i
0

da
= ξ i

0(x̄0), x̄i
0

∣
∣
a=0 = xi, i = 1, . . . , n, (1.6.7)

dx̄i
1

da
=

n
∑

k=1

∂ξ i
0(x)

∂xk

∣
∣
∣
∣
∣
x=x̄0

x̄k
1 + ξ i

1(x̄0), x̄i
1

∣
∣
a=0 = 0. (1.6.8)

The equations (1.6.7)–(1.6.8) are called the approximate Lie equations.
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Example 1.6.2 Let n = 1 and let

X = (1 + εx)
∂

∂x
.

Here ξ0(x) = 1, ξ1(x) = x, and equations (1.6.7)–(1.6.8) are written:

dx̄0

da
= 1, x̄0

∣
∣
a=0 = x,

dx̄1

da
= x̄0, x̄1

∣
∣
a=0 = 0.

Its solution has the form

x̄0 = x + a, x̄1 = ax + a2

2
.

Hence, the approximate transformation group is given by

x̄ ≈ x + a + ε
(

ax + a2

2

)

.

Example 1.6.3 Let n = 2 and let

X = (1 + εx2)
∂

∂x
+ εxy

∂

∂y
·

Here ξ0(x, y) = (1,0), ξ1(x, y) = (x2, xy), and (1.6.7)–(1.6.8) are written:

dx̄0

da
= 1,

dȳ0

da
= 0, x̄0

∣
∣
a=0 = x, ȳ0

∣
∣
a=0 = y,

dx̄1

da
= (x̄0)

2,
dȳ1

da
= x̄0ȳ0, x̄1

∣
∣
a=0 = 0, ȳ1

∣
∣
a=0 = 0.

The integration gives the following approximate transformation group:

x̄ ≈ x + a + ε

(

ax2 + a2x + a3

3

)

, ȳ ≈ y + ε

(

axy + a2

2
y

)

.

1.6.3 Approximate Symmetries

Let G be a one-parameter approximate transformation group given by

z̄i ≈ f (z, a, ε) ≡ f i
0 (z, a) + εf i

1 (z, a), i = 1, . . . ,N. (1.6.9)

An approximate equation

F(z, ε) ≡ F0(z) + εF1(z) ≈ 0 (1.6.10)

is said to be approximately invariant with respect to G if

F(z̄, ε) ≈ (F (f (z, a, ε), ε) = o(ε)

whenever z = (z1, . . . , zN) satisfies (1.6.10).
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If z = (x,u,u(1), . . . , u(k)), then (1.6.10) becomes an approximate differential
equation of order k, and G is an approximate symmetry group of this differential
equation.

For example, the second-order equation

y′′ − x − εy2 = 0 (1.6.11)

has no exact point symmetries if ε �= 0 is regarded as a constant coefficient, and
hence cannot be integrated by the Lie method. Moreover, this equation cannot be in-
tegrated by quadrature. However, it possesses approximate symmetries if ε is treated
as a small parameter, e.g.

X1 = ∂

∂y
+ ε

3

[

2x3 ∂

∂x
+

(

3yx2 + 11

20
x5

) ∂

∂y

]

,

X2 = x
∂

∂y
+ ε

6

[

x4 ∂

∂x
+

(

2yx3 + 7

30
x6

) ∂

∂y

]

.

(1.6.12)

The operators (1.6.12) span a two-dimensional approximate Lie algebra and can be
used for consecutive integration of (1.6.11) (see [8], Sect. 12.4).

For a detailed discussion of approximate symmetries of differential equations
with a small parameter as well as numerous examples we refer the reader to [7],
Chaps. 2 and 9, and to the references therein.
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