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INTRODUCTION

It is beginning to be a commonplace that Edmund Husserl (1859–1938),
the founder of the phenomenological movement, was originally a math-
ematician who studied with Weierstrass and Kronecker. The roots of the
phenomenological tradition are in the nineteenth century mathematics
and logic, very much like those of the analytic tradition. As analytic
philosophy has grown to view itself as a historically conditioned tra-
dition the relationship between Husserl and other nineteenth century
logicians and mathematicians have become a focus of much research.
An early pioneer was Dagfinn Føllesdal’s classic (1958) that appeared in
English in Leila Haaparanta’s (1994) collection of essays Mind, Meaning,
and Mathematics. In it Føllesdal suggested that Frege possibly influenced
Husserl to turn away from psychologism. The paper initiated a debate
that has continued ever since (e.g., Rosado-Haddock 1973 and together
with Claire Hill 2000, J.N. Mohanty 1974 and 1982, see also Chapters
2 and 3 in the present volume).

The publication of thousands of pages of Husserl’s writings has been
another important factor shaping the research on Husserl. Indeed, of
40 Husserliana volumes that had appeared by 2005, 20 has appeared
after 1980 and 9 after 2000, the whole Dokumente series has appeared
after 1980, and the whole Materialien series has appeared after 2000.
Much of the newly published texts are about mathematics and logic.
In particular, almost all of early Husserl’s writings on mathematics are
available to the general public in Husserliana volumes 21 (1983) on arith-
metics and geometry, 22 (Aufsätze und Rezensionen), and of course 12
(Philosophy of Arithmetic). Thanks to Dallas Willard’s monumental work,
the Husserliana volumes 12 and 21 have appeared also in English as the
Collected Works 5 (1994) and 10 (2003). Likewise Husserl’s lectures on
logic from various years published in the Materialien series document the
development of Husserl’s views on logic from 1896 onwards. The vast

xix



xx introduction

amounts of new material available has deepened the scholarship consid-
erably and has been the focus of for example Hill (1991, 2000), Tieszen
(1989, 2005), Seebohm (1991), and Lohmar (1989, 2000). Arguably,
the growing amount of historical research on Husserl’s development has
paved the way for overcoming the juxtaposition between the analytic and
continental traditions.

Presumably also at least partly due to the interest in the common
roots of phenomenological and analytical traditions, a growing amount of
research has focused on the development of modern logic, mathematics
and physics in the nineteenth and the early twentieth century producing
books such as Die Philosophie und die Mathematik: Oskar Becker in der
mathematischen Grundlagendiskussion (2005) edited by Volker Peckhaus,
The Architecture of Modern Mathematics (2006) by Jeremy Gray and Jose
Ferreiros, Intuition and the Axiomatic Method (2006) edited by Emily
Carson and Renate Huber, the forthcoming edition of David Hilbert’s
lectures on the foundations of mathematics and physics 1891–1933 by
Michael Hallett and Ulrich Majer (Volume 1 has appeared when writing
this introduction), and The Development of Modern Logic (2009), edited
by Leila Haaparanta. In these works the development of mathematics
and logic during Husserl’s time is discussed and interest to Husserl’s
possible contribution to it is shown. Moreover, there are attempts to
include discussion of Husserl to the history of the late nineteenth century
logic. For example, Gabbay’s Handbook on History of Logic (2004) has an
extensive chapter on Husserl’s logic written by Richard Tieszen, not to
mention the special issue of Philosophia Mathematica on phenomenology
and mathematics that appeared in June 2002.

The above mentioned historical approaches to Husserl and math-
ematics focus particularly on Husserl’s early writings on mathematics
and logic. Another, more systematic approach comes from the attempts
to situate also later Husserl’s thoughts on mathematics in the general
Grundlagenstreit of the early twentieth century discussions on the foun-
dations of mathematics. At this time Husserl’s own writings focused on
more general questions in phenomenology and his writings on mathe-
matics and logic were rather suggestive. Moreover, Husserl’s manuscript
A I 35 that is arguably one of the most important texts on mathematics
in Husserl’s later works and is referred to several times in the present vol-
ume is only now being published. Husserlian legacy continued mainly,
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in more or less faithful way, in the work of Oskar Becker and Hermann
Weyl. Thus many studies related to the phenomenology of mathemat-
ics focus rather on these figures than on Husserl himself (e.g., Mancosu
and Ryckman 2002, 2005). The comparisons of Husserl’ s approach to
the intuitionists, Brouwer (van Atten), in particular, are closely related to
these works as well as now already rather numerous investigations dis-
cussing Gödel’s background in Husserl (Føllesdal, Van Atten, Kennedy).
Upon publication of Heinz-Dieter Ebbinghaus’s book on Ernst Zermelo
(2007), one hopes to read papers elaborating on Husserl’s relationship to
Zermelo soon too.

As becomes clear from the above, Husserl’s views in relation to his-
tory and philosophy of mathematics and logic provide us an incredibly
rich field for research. The Husserliana volumes offer enormously mate-
rial for internal studies on Husserl’s development for also those working
outside the archives. Husserl wrote at the time when modern logic and
mathematics were rapidly developing toward their current outlook. Thus
his writings can also be fruitfully compared and contrasted with both
nineteenth century figures such as Boole, Schröder and Weierstrass as
well as the twentieth century characters like Heyting, Zermelo, and
Gödel. Besides the more historical studies, both the internal ones on
Husserl alone and the external ones attempting to clarify his role in
the more general context of the developing mathematics and logic, the
field has also systematic importance. Indeed, one motivation of the
present volume is to make sense of Husserl’s transcendental idealism in
mathematics.

The volume at hand manifests all the above mentioned aspects in
which Husserl’s views on mathematics are of interest and can be stud-
ied. It gathers the contributions of the main scholars of the field into one
publication for the first time. Thus it gives an overview of the current
debates and themes in the phenomenology of mathematics. The sys-
tematic and historical approaches are intertwined in the contributions.
Ultimately, the papers chart answers to the question “What kind of phi-
losophy of mathematics is phenomenology?” In the course of answering
this question Husserl’s philosophy of mathematics is compared and con-
trasted to the constructivist as well as various kinds of Platonist views of
mathematics.
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In Chapter 1 “Mathematical Realism and Transcendental Pheno-
menological Idealism” Richard Tieszen addresses the question whether
mathematical realism is compatible with transcendental phenomeno-
logical idealism. His answer is that the views are indeed compatible
provided that neither “idealism” nor “realism” are understood in their
naïve senses. Rather they should be understood in accordance to Husserl’s
transcendental phenomenology in which a kind of Platonism is embed-
ded within transcendental idealism. Tieszen calls the view “constituted
Platonism” or “constituted realism.” Tieszen first considers the standard
simple formulations of realism and idealism (anti-realism) about mathe-
matics. Mathematical realism is the view that there are mind-independent
abstract (or “ideal”) mathematical objects or truths; the standard antire-
alist view is the negation of this view. To Tieszen Husserl’s view about
mathematical objects is Platonist rather than Aristotelian realist. Tieszen
then goes on to consider transcendental phenomenological idealism.
With phenomenological reduction we can accomplish the point of view
of reflection and focus on how objects are given to us. Now we can find
out that the ideal objects such as objects of mathematics are constituted as
transcendent objects, which explains the choice of his term “constituted
Platonism.” Tieszen then distinguishes several conceptions of how objects
can be considered mind-dependent and mind-independent or immanent
and transcendent. Naive mind-independence is metaphysical Platonism.
But within the mind-dependent sphere there is also mind-independence,
the constituted realism of Husserl. In the end Tieszen raises interesting
questions about which mathematical objects are constituted as real as well
as a question about the compatibility of Husserl’s view with Putnam’s
internal realism.

The next two chapters purport to demonstrate that Husserl was not
Brouwerian intuitionist, nor constructivist of any sort. In his “Platonism,
Phenomenology and Interderivability,” Guillermo Rosado Haddock
defends the view that Husserl is a Platonist rather than a constructivist
philosopher. Van Atten has held that this is not so obvious when Husserl’s
later texts are taken into consideration. Rosado Haddock, on basis of
Husserl’s manuscript A I 35 from the years 1912 and 1920, aligns Husserl
with Cantor and Zermelo. According to him, here, in Formale und tran-
szendentale Logik (1929) as well as in his lectures from 1906–1907 and
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of 1917–1918, Husserl propounds essentially the same Platonist philoso-
phy of mathematics as in his earlier texts. Rosado Haddock then examines
the interderivability phenomena, i.e., that equivalent mathematical state-
ments can be found in seemingly unrelated parts of mathematics, arguing
that while Husserl’s Platonism is able to tackle the issue, a construc-
tivist has difficulties in accounting for it. Rosado Haddock then discusses
Husserl’s concept of situations of affairs (Sachlage) as distinguished from
his notion of states of affairs (Sachverhalt). With this distinction Husserl
is thus able to assess the interderivability phenomena (also contrary
to Frege). The outcome is that while e.g., the Axiom of Choice and
Tychonoff’s Theorem refer to different states of affairs, their situation of
affairs remains the same.

In her “Husserl on Axiomatization and Arithmetic” Claire Ortiz Hill
complements Rosado Haddock’s chapter by a more systematic demon-
stration of the extent to which Husserl rejected Brouwer’s intuitionism.
She draws from the newly published Husserl’s logic courses from 1896
and 1902/03. She explores various aspects of the axiomatic nature of
Husserl’s logic, ultimately arguing that Husserl’s approach is much closer
to that of David Hilbert than Brouwer’s intuitionism. In so doing, she
touches upon Husserl’s view of the relationship between mathematics and
logic, arguments against psychologism, objectivity of meaning, the law of
the excluded middle, axiomatic account of number, Husserl’s account of
time, Husserl’s view of the three levels of logic and the theory of man-
ifolds, and the relationship between mathematics and phenomenology.
In all of these respects Husserl’s views differ from those of Brouwer.
She concludes her contribution raising the question about the system-
atic importance of Husserl’s views, which, she thinks, should be given
a try next, once the relationship of his ideas to Frege’s, Brouwer’s, and
Hilbert’s theories has been clarified.

Dieter Lohmar’s chapter (Chapter 4) then focuses on Husserl’s notion
of categorial intuition emphasizing the empirical side of Husserl’s
approach. Dieter Lohmar’s paper focuses on Husserl’s notion of intuition
and evidence in formal contexts. In mathematics we can gain the highest
form of evidence which is apodictic evidence. This takes place by means
of what Husserl calls Wesensschau, which is a special case of categorial
intuition. Lohmar’s aim is to explain how apodictic evidence is gained in
mathematics by means of the method of eidetic variation.
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Lohmar starts with an analysis of the sensible givenness of objects,
noting that already the sensual perception of an object exceeds what is
actually given by our senses. Intentions such as “This book is green”
are fulfilled not only with sensuality but also something more that
relates back to our thinking activity, namely “synthesis of coincidence.”
Mathematical knowledge is in most cases independent of sensuality
but nevertheless intuitive. Lohmar then goes on to discuss specifi-
cally mathematical knowledge where the syntheses of coincidence are
more easily structured and more distinct due to the lack of horizonal
intentions, which usually accompany the intending of everyday objects.
Lohmar then goes on to explain the method of seeing essences, i.e.,
Wesensschau with which a priori insight into the universal structures
of consciousness, sounds, colors, as well as, geometry, arithmetic and
other parts of mathematics can be obtained. Lohmar summarizes the
development of the method in Husserl’s texts and settles to detail it on
basis of Husserl’s final form of the method worked out in the lecture
Phenomenological Psychology. In it an element of sense that I can freely
go on with the variation is added to the process of variation idealiz-
ing it so that it can be termed an “infinite variation.” Lohmar goes on
to explain in detail various stages in the method of eidetic variation,
with which phenomenological a priori is obtained. Lohmar then dis-
cusses several examples showing how apodictic evidence can be obtained
first in material mathematical disciplines and then in formal axiomatic
contexts.

In Chapter 5 Jaakko Hintikka compares Husserl’s views to e.g., Mach,
Russell, Wittgenstein, and Gödel, and points out the importance of
Husserl’s view of the theory of theories. Hintikka starts his contribution
with a discussion of what phenomenology is and settles to the sense of the
term that derives from Mach and Hering, and, according to Hintikka, is
the sense in which Husserl himself uses it too. Accordingly Hintikka finds
Husserl’s and Mach’s approaches rather similar disregarding their views of
mathematics. While mathematics to Mach is tautological, Husserl sought
for a much richer approach to mathematics. Hintikka examines Husserl’s
notion of Anschauung, which Hintikka takes Husserl to understand in
a minimal sense as “immediate knowledge,” a counterpart to Russellian
acquaintance. Husserl developed this into Wesensschau, which provides us
with an access to what Husserl calls “formal ontology” as well as various
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“regional ontologies.” Hintikka compares Husserl’s view to Aristotle, and
then to Wittgenstein, whom Hintikka takes to be closer to Husserl than
is usually thought. Wittgenstein’s later criticism of Husserl, Hintikka
views as directed at expressibility of the testimony of Wesensschau, and
not at the possibility of a kind of Wesensschau. This is the source for
the impossibility of a genuine theory of logical forms to Wittgenstein.
Hintikka then uses Husserl’s Aristotelianism to explain why Husserl is
not a finitist or an intuitionist as Husserl held that the human mind is
able to grasp directly abstract structures. Behind this view is Husserl’s
vision of a universal “structure of all structures” or “model of all models,”
which Hintikka suggests was tacitly in the minds of many mathemati-
cians contemporary to Husserl. While the comprehensive ideas such
as the set of all sets have turned out to be difficult to implement,
Husserl’s view of logic still lives in the model theory. Hintikka concludes
his discussion with a brief remark on Gödel. The comparison between
Husserl and Gödel proves favorable for Husserl especially in philosophical
respects.

Mirja Hartimo’s contribution “Development of mathematics and the
birth of phenomenology” ties Husserl’s view to the more general devel-
opment of mathematics in the late nineteenth century. Her aim is to
connect Husserl’s discovery of categorial intuition to his investigations
into the development of mathematics in the late nineteenth century. She
focuses in particular on Husserl’s Weierstrassian heritage, which shows in
Husserl’s search for intuitively evident foundations for the basic concepts
of mathematics. Following the mainstream view of mathematics Husserl
adopts a structural, axiomatic view of mathematics by the turn of the cen-
tury. Her view of Husserl’s term Definitheit is that it means roughly the
categoricity of an axiomatic system, i.e., that the axioms define the for-
mal domain uniquely, up to isomorphism. However, contrary to Hilbert,
Husserl remains Weierstrassian in that he continues to demand intuitively
evident foundations for axiomatics. To that extent Husserl developed the
notion of categorial intuition. Hartimo then goes on to discuss the conse-
quences of the view to Husserl’s approach toward reality. She distinguishes
two senses in which Husserl can be said to be a Platonist. The other
derives from Lotze and relates to Husserl’s objectivist view of the formal
objects. The other derives originally from Weiersrass and relates to the
search for justification for the axiomatic systems.
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In his chapter “Beyond Leibniz: Husserl’s Vindication of Symbolic
Knowledge,” Jairo José da Silva gives another account of the develop-
ment of Husserl’s views of symbolic knowledge in mathematics up to
his Doppelvortrag in 1901. He focuses on how Husserl struggled with
the problem of how to explain that we can obtain knowledge by operat-
ing “blindly” with symbols according to rules, even when these symbols
do not represent anything. The imaginaries are improper representations
since they do not represent any object. Nevertheless in calculations they
are needed and they pass off as denoting something.

Da Silva follows Husserl’s development from his first discussion of the
problem in the Philosophy of Arithmetic to his Göttingen talks. In the
Philosophy of Arithmetic the problem had two variants, one concerning
justification for arithmetical computations, the other is about the symbols
0 and 1. Husserl’s solution to the former problem is that the symbolic
system and its isomorphic copy, the system of number concepts, share
a common formal structure. Husserl’s reason for accepting 0 and 1 as
numbers, according to da Silva, is that they are required as necessary
completions of arithmetical domains. Husserl’s 1891 review of Schröder’s
Lectures on the Algebra of Logic already anticipates Husserl’s mature view,
which he discusses in his Göttingen talks in 1901. In these lectures
Husserl held that the introduction of imaginary elements in a domain
is allowed provided: (1) the (formal) theory extending the (formal) the-
ory of the domain in question by means of formal axioms introducing
imaginaries in an extended language is consistent, and (2) the formal the-
ory of the domain, written in the restricted language without imaginaries,
is complete, in Husserl’s terms, definite. The solution tells that imaginary
entities can be treated like the real ones. Nonetheless, according to Logical
Investigations symbolic theories are mere forms of theories. The creation
and study of formal theories for their own sake, would amount to a “for-
malist alienation.” Hence Da Silva suggests that Husserl’s claim could be
understood to be that formal theories are only interesting if they can be
applied, thus emphasizing more instrumentalist or pragmatist aspects of
Husserl’s views. Imaginaries are useful as they enrich the structural milieu
so that the problems can be better solved.

The last two chapters elaborate specifically on the systematic value of
Husserl’s philosophy and relate it to the more general present day dis-
cussions, first in philosophy of mathematics, second in metaphysics. In
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his “Mathematical Truth Regained,” Robert Hanna seeks a fully realis-
tic and inescapably anthropocentric conception of mathematical truth
and knowledge—real mathematics for humans, as he puts it. In so doing,
he offers what he calls “a positive Kantian phenomenological solution”
to Benacerraf’s Dilemma (BD) of reconciling a “standard” (i.e., classi-
cal Platonic) semantics with a reasonable epistemology of mathematical
knowledge. Hanna’s solution is positive because it accepts Benacerraf’s
preliminary philosophical assumptions about the nature of semantics and
knowledge, as well as all the basic premises of BD, and then shows
how we can still reject the skeptical conclusion BD and adequately
explain mathematical knowledge. The solution relies on mathematical
structuralism, i.e., on a view that mathematical entities are not onto-
logically autonomous or independent objects, but instead are essentially
positions-in-a-mathematical-structure (a view not necessarily so far from
Husserl’s conception either). In particular, Hanna interprets mathemat-
ical objects with the role players of the roles determined by the system
as a whole. However, Hanna favors specifically Kantian Structuralism
which is a non-reductive and ante rem version of structuralism in con-
trast to Benacerraf’s structuralism, which is reductive and ante rem. In
Hanna’s favorite kind of structuralism time-structure is what binds arith-
metic to our world. With this view Hanna solves the BD. To Hanna,
Husserl’s views prove useful in explaining how mathematical knowl-
edge is possible. He proposes what he calls the Husserl-Wittgenstein
Theory of Logical and Mathematical Self-Evidence (the HW theory).
The HW theory is based on Husserl’s doctrine of categorial intuition
and related views in Wittgenstein’s Tractatus, according to which abstract
structures are immediately represented in our non-conceptual conscious
awareness.

The volume ends with Olav Wiegand’s “On Referring to Gestalts,”
in which he explores mereological semantics on the basis of Husserl’s
phenomenology and Gestalt psychology leaning on the work of Aron
Gurwitsch. The primary motivation of the paper is to formalize the
notion of structured whole. In his paper, Wiegand defines Gestalts as “R-
structured wholes” aiming to capture the interconnectedness of all parts
of a Gestalt. He then discusses relations from the point of view of mereo-
logical semantics. In so doing Wiegand shows the usefulness of Husserl’s
views to contemporary formal semantics and metaphysics.



CHAPTER I

MATHEMATICAL REALISM AND TRANSCENDENTAL

PHENOMENOLOGICAL IDEALISM

Richard Tieszen

Abstract. In this paper I investigate the question whether mathematical real-
ism is compatible with Husserl’s transcendental phenomenological idealism. The
investigation leads to the conclusion that a unique kind of mathematical realism
that I call “constituted realism” is compatible with and indeed entailed by tran-
scendental phenomenological idealism. Constituted realism in mathematics is the
view that the transcendental ego constitutes the meaning of being of mathematical
objects in mathematical practice in a rationally motivated and non-arbitrary man-
ner as abstract or ideal, non-causal, unchanging, non-spatial, and so on. The task
is then to investigate which kinds of mathematical objects, e.g., natural numbers,
real numbers, particular kinds of functions, transfinite sets, can be constituted in
this manner. Various types of founded acts of consciousness are conditions for the
possibility of this meaning constitution.

The main question I would like to address in this paper is this: is
mathematical realism compatible with transcendental phenomenological
idealism or not? In the discussion that follows I will use the expressions
“mathematical realism” and “mathematical platonism” interchangeably.
In a moment I will be much more specific in speaking about both math-
ematical realism and transcendental phenomenological idealism but, for
now, let me just say that I am mainly interested in forms of mathemati-
cal realism that have appeared in the recent literature in the philosophy
of mathematics, and that in speaking of transcendental phenomenologi-
cal idealism I am thinking of the philosophical view that Husserl began
to develop around 1907 or so, and that appears especially in works such
as The Idea of Phenomenology, Ideas I, Cartesian Meditations, Part II of
Formal and Transcendental Logic, and portions of the lectures on The
Phenomenology of the Consciousness of Internal Time (Husserl 1991).

The division between realism and idealism in philosophy has of course
a long history. For my purposes in this paper, it is in Kant’s transcen-
dental philosophy that we find the most important approach to the
realism/idealism debate prior to Husserl. In his Critique of Pure Reason
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Kant thought he could reconcile empirical realism with his transcendental
idealism. Kant was not what we nowadays think of as a mathematical real-
ist (platonist), and he was in fact critical of platonism in general (see Kant
1973 A4/B8-A6/B10). For Kant there would not have been a question of
trying to reconcile mathematical platonism and transcendental idealism.
By 1907 or so, however, it is quite possible to read Husserl as attempting
to do such a thing. I would say that it is thanks to Kant that we can con-
sider the possibility of reconciling realism with transcendental idealism
at all, and it is thanks to Husserl that we can consider the possibility of
reconciling mathematical realism and transcendental phenomenological
idealism.

In Husserlian phenomenology there is an old division between sup-
porters of realism and supporters of transcendental idealism, and this
division has its roots in the changes in Husserl’s thinking that, as indi-
cated above, began to take place around 1907. There has been a line of
thinking according to which realism in phenomenology is incompatible
with transcendental idealism in phenomenology. You must choose one or
the other. In my view, however, this issue of the compatibility or incom-
patibility deserves further study. In particular, the issue has not been
explored deeply enough in connection with the Kantian background.
It also has not been explored fully enough in the case of mathemat-
ics, and especially in connection with developments that occurred in
the foundations of mathematics after Husserl began to lose touch with
this area of research. Thus, what I would like to do in this paper is to
(i) characterize some recent forms of mathematical realism, (ii) present
some of the core claims of transcendental phenomenological idealism
from Ideas I and other writings, and then (iii) examine in more detail
some of the issues about the compatibility of mathematical realism and
transcendental phenomenological idealism.

The starting positions are these: either you can be a mathematical real-
ist and not a transcendental phenomenological idealist, or you can be a
transcendental phenomenological idealist and not a mathematical realist,
or you can in some sense be both. You can certainly be neither. There
are many philosophers who would embrace neither view. Husserl’s own
early work (prior to roughly 1900) arguably falls into this latter category
(see, e.g., Hua 12; Hua 21; Husserl 1994; also Tieszen 2004). I will not
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discuss this option here, however, since it puts us outside the circle of
ideas in Husserl’s later work that I want to discuss.

Let me now give a brief opening characterization of mathematical real-
ism and, on the other hand, of a standard idealism (or anti-realism) about
mathematics.

I. Standard Simple Formulations of Realism and Idealism
(Anti-Realism) About Mathematics

Mathematical Realism: There are mind-independent abstract (or “ideal”)
mathematical objects or truths. Notice that I am formulating this specif-
ically for mathematical objects or truths. By “mathematical” I just mean
the kinds of objects or truths that practicing mathematicians typically
take themselves to be thinking about. This includes geometric objects,
natural numbers, real numbers, complex or imaginary numbers, func-
tions, groups, sets, or categories, and truths about these objects. I do not
necessarily want to exclude other kinds of objects that platonists might
take to exist, such as meanings, propositions, properties, concepts, or
essences, but I do want to note that mathematicians themselves (unlike
some logicians) do not typically take themselves to be talking directly
about such things in their theories. Logicians who are platonists are more
likely to talk about such things. I do not want to make too much of
the difference at the moment but I will note that at least part of what
is involved here is that propositions, properties, concepts, essences, and
the like are usually thought of as overtly intensional objects, whereas this
is not typical in the case of standard mathematical objects in classical
mathematics. We should note, in any case, that one can be a platonist
about extensional objects, intensional objects, or both. Some platonists
who recognize both kinds of objects might also prioritize the relationship
between the two, holding that one kind of object is derivable from or
dependent on the other.

A standard formulation of idealism or anti-realism about mathematics
is now very easy to come by. Simply negate the formulation of mathemat-
ical realism: It is not the case that there are mind-independent abstract
(or “ideal”) mathematical objects or truths. Putting this as a positive
statement,
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Mathematical Idealism (Anti-Realism): Mathematical objects (which
may be “abstract” in some sense but not eternal or atemporal) are
mind-dependent.

On these formulations, mathematical realism and standard mathemat-
ical idealism (which is distinct from transcendental phenomenological
idealism) are incompatible. They are incompatible at a level of generality
that spares us the need to consider any further details.

Now if we had captured the essential features of mathematical real-
ism and transcendental phenomenological idealism in these formulations
then we would have an answer to our question and I could conclude
this paper. Needless to say, I think we have hardly scratched the surface.
Therefore, let us consider mathematical realism in somewhat more detail.

II. Mathematical Realism

The mind-independent abstract (or ideal) mathematical objects that are
thought to exist by mathematical realists are usually taken to have the
following properties. As the formulation obviously indicates, they are
mind-independent. This means several things. First, they are not them-
selves mental entities. They are not the subjective ideas or thoughts or
images of human beings. They are not immanent to human conscious-
ness but they are supposed to transcend human consciousness. They are
not internal to human consciousness but are in some sense external to
it. They are supposed to exist whether there are minds in the universe or
not. They would exist even if there were no minds or had never been any
minds. The properties of “being expressed” or “being thought of” are not
essential to mathematical objects. Mathematical objects are external to
human consciousness but not in the sense of sensory, physical or material
objects. This is what it means to say they are abstract. (Note that I’m using
the term “abstract” as it is often used in the recent literature in the phi-
losophy of mathematics, not in the sense of Husserl’s theory of parts and
wholes in which non-independent parts (“moments”) of a whole are said
to be “abstract.”) To say they are abstract is to say that they are not spatial
in nature, not involved in causal relations, as material objects presumably
are, and not the kinds of objects that can be sensed with one or more
of our five senses. “Concrete” objects, however, would have all of these
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latter properties. Not only are mathematical objects not in (physical)
space but they are also not in time. Unlike objects in physical space or
even the objects of “inner sense” (i.e., mental processes, thoughts, images,
etc.), they do not have a temporal extension. They are not, as Plato would
have said, subject to generation and decay. They are, on the contrary,
unchanging. Some platonists say they are “eternal” or “timeless.” As I will
note below, Husserl has interesting things to say about the relationship of
abstract objects to time.

Starting in 1900, in the Logical Investigations, Husserl draws a sharp
distinction between real and ideal objects. Although this distinction is not
widely used in the recent literature on mathematical realism it will be use-
ful to note its relationship to some of the current terminology. The first
thing to note is that the “ideal” in this distinction does not refer to “ideas”
in a subjective sense. It does not refer to mental entities. It is rather a pla-
tonic use of “idealism” that is operative in this case and not, in spite of the
potentially confusing language, the use involved in the realism/idealism
division. The real/ideal distinction can be drawn in terms of the tempo-
rality of objects. Real objects are objects in time. They have temporal
duration. This applies to the objects of “inner sense,” i.e., thoughts,
mental processes, and the like, but also to objects of “outer sense,” i.e.,
objects in space and in external time. Ideal objects are not in time in
the same sense. They do not come into being and pass away. Much
of what I have said about abstract objects applies directly to the ideal
objects that Husserl introduces in the Logical Investigations. Mathematical
objects, as ideal in Husserl’s sense, are not, as I indicated, abstract parts
(moments) of real objects. Non-independent parts of real objects are just
real parts even though we can speak and think of them in isolation from
the wholes of which they are parts. This does not mean, however, that
they can exist in isolation from the wholes of which they are parts. If
Husserl is to be a mathematical realist (platonist) in the sense described
above then mathematical objects, as ideal, could not depend for their
existence on underlying real wholes. They must exist independently of
real objects. Otherwise, Husserl’s view would be closer to an Aristotelian
realism. There are many remarks in the Logical Investigations, especially
Investigations II and VI, and elsewhere in Husserl’s later writings that
indicate that he is not in this sense an Aristotelian realist about mathemat-
ical objects. § 52 of Investigation VI, for example, is entitled “Universal
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objects and their self-constitution in universal intuitions.” In this section
he contrasts the kind of abstraction involved in setting into relief a non-
independent moment of a sensible object with ideational abstraction in
which an idea or universal, not a non-independent moment, is brought
to consciousness.

I briefly mention one other feature of the real/ideal distinction that
is not always salient in the distinction between the concrete and the
abstract. The real/ideal distinction embodies the difference between the
inexact and the exact, or the imperfect and the perfect. This feature of
Husserl’s distinction has a distinctively platonic pedigree that is omitted
from some modern versions of mathematical realism. Plato’s forms were
supposed to be perfect in relation to their imperfect or inexact instantia-
tions in the material world. In relation to logic and mathematics, the idea
is that logical or mathematical objects are exact and “perfect” in a way that
instantiations of, expressions for, or thoughts about such objects cannot
be. In Euclidean geometry, for example, the lines, triangles, circles, and so
on, are supposed to be perfect or exact in a way in which drawings of cir-
cles and the like, which we can perceive visually, could never be. A globe,
which we hold in our hands, could never be exact and perfect in the way
that a sphere in Euclidean space is conceived to be perfect or exact. The
instantiations can only approximate the ideal.

This will be enough for now about the general properties that math-
ematical objects are supposed to possess for the mathematical realist.
Further specifications along different lines are possible, and I would now
like to mention one such set of specifications that is, I think, quite impor-
tant. Mathematical realists could agree with everything that has been
said thus far about their realism and yet disagree about which mind-
independent abstract or ideal mathematical objects exist. Among the
types of mathematical objects about which one might be a realist are
geometric objects of different kinds, natural numbers, real numbers, com-
plex or imaginary numbers, sets of different kinds, functions of different
kinds, groups, or categories. One might be a reductionist or eliminativist
about some of the items on this list. For example, one might adopt a real-
ist view about natural numbers but not about real numbers or imaginary
numbers. One popular strategy has been to recognize the existence only
of sets and then to define some of the other objects on the list in terms of
sets.
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Modern set theory is of special interest in connection with mathemat-
ical realism for a number of reasons. One of the principal reasons is that
it compels philosophers to confront a distinctive and relatively new set of
epistemological and ontological issues about mathematical realism. These
are issues, by the way, which either emerged after Husserl’s time or to
which Husserl himself devoted very little if any attention. Modern set the-
ory forces the mind-independence issue in a striking way. Human minds
are finite and have finite capacities. Objects such as natural numbers are
finite objects. Even if the human mind cannot actually grasp or form very
large natural numbers we can idealize the notion of finite capacity to cover
the grasp or formation of each natural number, thus imagining that there
could be a complete grasp of each natural number. In modern set theory,
however, we are faced with existence statements about huge transfinite
sets. Suppose, for example, that we consider some of the existence axioms
in Zermelo-Fraenkel set theory with the axiom of choice; in particular, the
axioms of infinity, power set, and replacement. These latter three axioms
allow us to show rather quickly that very large transfinite sets exist. Not
only will denumerably infinite sets exist but also non-denumerably infi-
nite sets will exist, and then power sets of non-denumerably infinite sets,
and so on. There is a significant disanalogy with the case of natural num-
bers: we cannot idealize the finite mind or finite capacities in such a way
as to cover the grasp or formation of such transfinite objects. Transfinite
sets transcend the possibility of being known on the basis of acquaintance
with all of their members. A much more substantial idealization has to be
involved. If we return to our simple formulation of mathematical real-
ism then, in connection with set theory, we should ask whether there are
mind-independent abstract infinite objects. In particular, are there actual,
complete infinite sets?

Many additional details come into focus once the question of real-
ism about set theory emerges. There are of course the traditional worries
about the axiom of choice. Furthermore, with the replacement axiom we
also have impredicative specification of sets. Should we therefore hold as
part of our mathematical realism that impredicatively specified transfinite
sets exist or not? Should we recognize only the existence of predicatively
specified sets and hold to only a predicative set theory?

Some philosophers and mathematicians, such as Gödel in his later
work, are prepared to be realists about full impredicative set theory with
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the axiom of choice. Indeed, they might be prepared to adopt a realism
that goes beyond the existential commitments of a theory such as ZFC,
arguing for the need for new axioms to express more of what already exists
in the universe of abstract, mind-independent transfinite sets. Gödel sug-
gests that the search for new axioms depends on sharpening or clarifying
our intuition of the concepts concerning this existing realm of objects or
truths (see Gödel [1964] 1990; and Wang 1974, 189).

Now let me make some comments about transcendental phenomeno-
logical idealism.

III. Transcendental Phenomenological Idealism

What has been called transcendental phenomenological idealism emerges
in the writings of Husserl in which he introduces the phenomenologi-
cal reduction or epoché, starting around 1907. The Idea of Phenomenology
(1907) (Husserl 1964) is a particularly interesting text because Husserl
says in it that the way to solve the old, vexing philosophical problem
of how we can be related to transcendent objects is through the phe-
nomenological reduction. The only way to solve this problem is from
within the reduction. This is perhaps the reason why Gödel refers to The
Idea of Phenomenology as a “momentous lecture” (see Item 050120.1 in
the Gödel Nachlass, Firestone Library, Princeton University).

What the reduction shows us, to a first approximation, is how to
restrict ourselves in a non-naturalistic manner to the sphere of appear-
ances, to what is immanent and absolute. How does it do this? In
Ideas I the epoché is motivated by way of some comparisons with
Descartes’ method of doubt. This Cartesian approach to explicating the
phenomenological reduction can be contrasted with other paths to the
reduction in later writings, such as the path indicated in the Crisis of the
European Sciences and Transcendental Phenomenology (Crisis). In Ideas I
Husserl notes that the reduction is not the same thing as the Cartesian
method of doubt but the Cartesian method, even though it was intended
for different purposes, can get us into the neighborhood of what he
wishes to obtain. The epoché, for example, plays no role in establishing
substance dualism but is used instead to make us aware in a non-
naturalistic way of mental phenomena as phenomena. As Husserl says
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in the Cartesian Meditations, Descartes did not make the transcendental
turn (§ 10). As he says in Formal and Transcendental Logic (§ 100), Kant
did make the transcendental turn but he neglected to carry it out with
respect to the ideal objects of logic and mathematics. In the Introduction
to Formal and Transcendental Logic Husserl says that mathematics and
logic are positive sciences that require a foundation in transcendental
phenomenology. What the modern sciences lack is a true logic, i.e., a
transcendental logic that investigates the cognition behind science and
thereby makes science understandable in all its activities. This logic does
not intend to be a mere pure and formal logic, a mathesis universalis, for
while mathesis may be a science of logical idealities it is still only a “pos-
itive” science. Transcendental phenomenology should bring to light the
system of transcendental principles that gives to the sciences the possi-
ble sense of genuine science. The positive sciences are completely in the
dark about the true sense of their fundamental principles. Transcendental
phenomenology is supposed to make it understandable how the positive
sciences can bring about only a relative, one-sided rationality.

What can be accomplished with the phenomenological reduction,
which is fundamental for transcendental phenomenology, is this: as we
attempt to doubt everything we notice that in fact not everything is
doubtful (see The Idea of Phenomenology, Hua 2, 23; Ideas I, § 31). If
I think that everything is doubtful then while I am thinking that every-
thing is doubtful it is indubitable that I am so thinking. In every case of a
definite doubt it is indubitable that I am having this doubt. The same is in
fact true of every instance of cognition. If I am perceiving or judging, for
example, then whether these activities are veridical or not, whether they
have objects that exist or not, it is nonetheless clear that I am perceiving
this or that, or judging this or that. The awareness that I am perceiving or
judging implies that I have the capacity to reflect on my cognitive activ-
ities. In this reflection something is given to me that I cannot doubt. It
is given, Husserl says, “absolutely” and with certainty. In this manner we
are able to find a way to focus on what appears to us, just as it appears. If
we are conscious we cannot doubt that something or other appears to us
in our cognitive activities but of course we can very well doubt that what
appears in the appearing is actually the case. In this manner, we can affect
a “suspension” or “bracketing” of the (natural) world and everything in
it. This means that we also bracket the natural, psychophysical ego or
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self, the self that is the object of natural science. The ego that is directed
toward objects after the reduction is the “transcendental ego.”

The method is thus to restrict ourselves to what is “immanent,” to
disengage from the natural attitude in which we naively and without
reflection take ourselves to be experiencing transcendent objects. In the
phenomenological attitude, obtained by the reduction, we experience,
on the basis of reflection, the immanent. Husserl then goes on to say
that the immanent is absolute, while the transcendent is not. What is
transcendent is always relative to consciousness.

Many passages in Ideas I express the new transcendental idealism that
results from taking the epoché seriously. In § 46, for example, Husserl
argues that any physical thing that is given “in person” can be non-
existent but that no mental process which is given “in person” can be
non-existent. The non-existence of the world is conceivable but the
existence of what is immanent—the absolute being of mental processes—
would in no respect be altered thereby. In fact, there is a distinct manner,
in which mental processes would always remain presupposed in any effort
to doubt the existence of various phenomena. Consider the case, which is
certainly possible, in which a perception is corrected by a subsequent per-
ception. Now imagine that this process of correction continues to occur.
In § 49 of Ideas I Husserl says that it is conceivable, due to such conflicts,
that experience might dissolve into illusion not only in detail but glob-
ally. In this case no natural world would be constituted in our experience.
There would be no experience of a natural world but in all of this there
would still be consciousness. Consciousness would indeed be necessar-
ily modified by the “annihilation” of the world of physical things but its
own existence would not be touched. The absolute being of the mental
processes would in no way be altered thereby. Thus, in § 47 Husserl says
that “no limits check us in the process of conceiving of the destruction of
the Objectivity of something physical—as the correlate of experimental
consciousness.” Whatever things are, they are as experienceable things. It
is experience alone that prescribes their sense. We must not let ourselves
be deceived by speaking of the thing naively as something that transcends
consciousness and exists in itself, apart from any possible relation to con-
sciousness. The genuine concept of transcendence can only be derived
from the contents of our experience itself. “An object existing in itself is
never one with which consciousness or the ego pertaining to consciousness has
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nothing to do” (§ 47). In § 49 Husserl says that the whole spatiotemporal
world and each of its constituents is thus, according to its sense, a merely
intentional being. It is a being posited by consciousness in its experiences.
Each constituent of the world, of essential necessity, can be determined
and intuited only as something identical through motivated multiplici-
ties of appearances. It is something invariant for consciousness through a
manifold of appearances. Beyond that it is nothing.

This sphere of absolute consciousness that remains as a residuum after
the conceivable annihilation of the world is what provides the subject
matter for pure phenomenology. From this point of view, Husserl says, we
think of all reality as existent by virtue of a sense-bestowing consciousness
which, for its part, exists absolutely and not by virtue of another sense-
bestowal. Consciousness constitutes the sense of objectivity. Although this
is a form of idealism it is not, Husserl says, a Berkeleyan subjective ideal-
ism. Rather, it is transcendental-phenomenological idealism. It recognizes
that not everything is constituted as a mental phenomenon and it also
recognizes the role of the overlapping horizons of different egos in the
constitution of a common, objective world.

In Part II of Formal and Transcendental Logic, in the context of his
investigations of logic, Husserl says similar things. Transcendental phe-
nomenological idealism is represented in FTL as the view that it is only in
our own experience that things are “there” for us, given as what they are,
with the whole content and mode of being that experience attributes to
these things. In § 94 of this work Husserl says that “nothing exists for me
otherwise than by virtue of the actual and potential performance of my
own consciousness.” Whatever I encounter as an existing object is some-
thing that has received its whole sense of being from my intentionality.
Illusion also receives its sense from me. Experience teaches me that the
“object” could be an illusion. Objects can be thought of as intentional
poles of identity through the manifold activities of consciousness. There
is no conceivable place where the life of consciousness could be broken
through so that we might come upon a transcendent object that had any
other sense than that of an intentional unity making its appearance in the
subjectivity of consciousness. Thus, if what is experienced has the sense
of transcendent being then it is experience itself that constitutes this sense.
If an experience is “imperfect” in the sense that an object is given only
partially, then it is only experience that teaches me this.
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One of the most interesting features of this transcendental-
phenomenological idealism is that it does not deny that there is objec-
tivity or objective truth but rather it makes of objectivity a problem that
is to be grasped from what is absolutely given. It enjoins us to inves-
tigate how consciousness constitutes the sense of objectivity. We must
now engage in constitutional analysis. We must do this, furthermore, for
any kind of objectivity. It is not the case that some objects are supposed
to escape the phenomenological reduction. Thus, not only are we sup-
posed to analyze the constitution of the sense (meaning) of the being of
objects of ordinary founding acts of sensory perception but we are also
supposed to analyze the constitution of the sense of the being of objects
of founded forms of consciousness which are based on acts of abstrac-
tion of different types, acts of generalization, reflection, and idealization.
In particular, we are supposed to analyze the constitution of the sense of
being of categorial objects, of ideal objects, and of mathematical objects in
particular.

If we start with the ordinary physical objects given to us in founding
acts of sensory perception then we see that they are given to us only par-
tially and as transcendent, as objects that are in space and external (world)
time. They are not given to us as subjective or as mental entities. We do
not need to hold, as we noted, that everything is a mental phenomenon or
a subjective idea. We can recognize that physical objects transcend men-
tal phenomena (as do mathematical objects) only now we say they are
constituted by consciousness in this manner. That is, the meaning of the
being of physical objects is constituted by consciousness in such a man-
ner that physical objects are not mental entities. They are not meant as
mental entities. They are constituted as external objects, as objects that
are in space and in external time. We are led, in this sense, to a kind
of realism about physical objects. This is different, however, from a naive
realism. It is, rather, a phenomenological or “constituted” realism that has
its origins in transcendental subjectivity itself. Thus, starting with phys-
ical objects we can say that it is only naïve forms of realism about the
natural world that take physical objects to somehow exist in themselves,
totally independently of consciousness. If we are operating from the posi-
tion of transcendental-phenomenological idealism then, for the reasons
discussed above, we cannot be naïve realists. We also cannot be crude
empiricists, naïve naturalists, or positivists.
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Taking our lead from Husserl’s comments in The Idea of
Phenomenology, Ideas I, Formal and Transcendental Logic, and elsewhere,
we can say that ideal objects are also constituted as such by consciousness.
Let us apply Husserl’s words from these texts to mathematical objects
in particular: Whatever things are, mathematical objects included, they
are as experienceable things. It is experience alone that prescribes their
sense. The genuine concept of the transcendence of mathematical objects
can only be derived from the contents of mathematical experience itself.
Nothing exists for me otherwise than by the actual and potential perfor-
mance of my own consciousness. Whatever is given as an existing object
in mathematics is something that has received its whole sense of being
from my intentionality. There is no conceivable place where the life of
consciousness could be broken through so that we might come upon a
transcendent mathematical object that had any other sense than that of an
intentional unity making its appearance in the subjectivity of conscious-
ness. We need to explicitly note the new twist here: If what is experienced
has the sense of “transcendent being” then it is experience itself that con-
stitutes this sense. If what is experienced has the sense of being “ideal,”
“non-mental,” “acausal,” “unchanging,” “non-spatial,” (possibly “partially
given”) and “non-material” then it must be experience itself that, in a
non-arbitrary manner, constitutes this sense. If mathematical objects are
considered to be objects that existed before we became aware of them and
that would exist even if there were no human subjects then it must be the
case that this sense of mathematical objects is constituted in a motivated
and non-arbitrary manner.

If we consider all of the general features of mathematical realism that
we outlined at the beginning of § 2 then we can now say that mathe-
matical objects possess these features except that we must add the crucial
qualification that they are constituted non-arbitrarily in this manner in
the consciousness of the transcendental subject. One feature that we must
now modify, however, concerns the temporality of mathematical objects.
Since we are within the sphere of possible experience for transcendental
subjects we are within the sphere of temporality. This means that math-
ematical objects are also objects that must be in time, only now we will
say that they exist at all times. Thus, instead of saying that mathematical
objects are atemporal or eternal or timeless—somehow outside of time
(and all possible experience) altogether—we will now say that they are
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omnitemporal (see EU, § 64). As transcendental phenomenological ide-
alists we cannot speak about the existence of objects that are somehow
outside of all possible appearance or outside of all possible consciousness,
and hence outside of all possible time.

We thus appear to arrive at a wholly unique kind of “platonism”
about mathematics, which I will call “constituted platonism.” This is, as it
were, a platonism embedded within transcendental idealism. In a remark-
able new twist in the age-old debate about platonism, we look to the
transcendental ego as the source (origin) of platonism about logic and
mathematics, where logic and mathematics are built up non-arbitrarily
through acts of abstraction, idealization, reflection, and so on. Just as the
“realism” about physical objects is not a naïve realism, so this unique kind
of platonism about mathematical objects is not a naïve platonism.

IV. Mind-Independence and Mind-Dependence in Formulations
of Mathematical Realism

Since mathematical realism and mathematical idealism are viewpoints
expressed in terms of mind-independence or mind-dependence, I would
now like to single out these characteristics in order to arrive at an explicit
formulation of how a form of mathematical realism might be compatible
with transcendental phenomenological idealism. As I mentioned above,
Husserl says in The Idea of Phenomenology that the only way to solve the
problem of how we can be related to transcendent (or mind-independent)
objects is from within the phenomenological reduction. Once we restrict
ourselves to the sphere of appearances, to what is immanent, on the
basis of the epoché, we see that consciousness exhibits intentionality. We
find that (transcendental) subjects are directed by the contents (or noe-
mata) of their acts toward objects that transcend these very subjects. In
the language of Ideas I, we find the noetic-noematic-hyletic structure
at work in our experience of ordinary sensory objects. In the case of
the founded pure categorial or ideal objects this same structure will be
present, without the constraints of sensory hylé but not without gram-
matical, formal, meaning-theoretic, and other structural constraints. In
other words, within the sphere of the immanent and absolute that we
obtain after the reduction we can draw a new distinction between the
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immanent and transcendent, i.e., we can distinguish what appears as
immanent from what appears as transcendent. We can distinguish what
appears as mind-dependent from what appears as mind-independent. Of
course the terms “immanent” and “transcendent,” or “mind-dependent”
and “mind-independent” in this context will have a sense different from
their sense prior to the reduction. Similarly, if we view the reduction as
depending on a distinction between appearance and reality (in the naïve
sense of the natural attitude) and then restricting us to the sphere of
appearances, then we find that within the sphere of appearances we can
still distinguish appearance from “reality.” This will be true in ordinary
sensory experience but also in the case of our experience in mathematics
and logic.

How does this work? We can start with an example in sensory expe-
rience. Suppose that at a certain stage of your experience you perceive a
snake lying in a garden. At a later stage, however, you perceive that it is
not really a snake lying in a garden but a coiled garden hose. Now what
usually happens in situations such as this is that our experience settles
down so that we do not have a continuous series of misperceptions of
this sort. Instead, there is typically a more or less harmonious course of
experience involving transcendent objects. This opens up the possibil-
ity of making an appearance/reality distinction after the epoché. Looking
back on the experience, we can say that there was merely an appearance
of a snake at the earlier stage in the perception and that what we have
“in reality” is a coiled garden hose. We cannot simply say that “to be is to
be perceived” because in a case such as this subsequent experience shows
that there was no snake. It is not the case that in fact I was perceiving a
snake at the earlier stage. It only appeared that I was. What seems to be
mind-independent, given the evidence thus far, is the coiled garden hose.
The perception of the coiled garden hose, however, could itself be over-
turned in future experience. That is, there might be evidence (experience)
in the future that would show us that it is also not a coiled garden hose.
Its being a coiled garden hose is not absolute even if the coiled garden
hose is given as what is “real” and mind-independent in accordance with
all of our evidence thus far. Our evidence that the coiled garden hose is
mind-independent is in this sense presumptive.

What this shows is that from within the epoché everything is indeed
understood as appearance or phenomenon and that appearances are
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corrected or verified only by further appearances. Within the sphere
of appearance, however, we can still distinguish the “real,” the tran-
scendent, or the mind-independent from the “merely apparent,” the
immanent, or the mind-dependent, on the basis of what stabilizes or
becomes invariant in our experience. This is a key idea of transcendental
phenomenology, and it holds for both sensory experience and mathemat-
ical experience. There are illusions and corrections and refinements in
mathematical experience just as there are in sensory experience. We can-
not somehow get outside of appearances to an appearance-independent
thing-in-itself. The “real” will be that for which we have evidence across
places, times, and persons. This will not hold for the “merely appar-
ent.” Rational justification depends on evidence. Imagine a form of
experience in which nothing ever stabilizes or becomes invariant. This
would be a form of experience that is without reason. It would be expe-
rience in which there is no order and no rational connection among
the contents of consciousness. We are nonetheless not entitled to say
that what is stable or invariant is the final, absolute reality. We can-
not have a realism that recognizes an appearance-independent absolute
reality. At best, the notion of “absolute reality” might be preserved as
an infinite ideal. Thus, transcendental phenomenology recognizes an
appearance/reality distinction after the reduction that allows for a kind of
realism, only it is not naive or absolute realism. It is also not a naive ide-
alism for the same reason: it makes an appearance/reality distinction after
the epoché.

These considerations show us that there are weak and strong senses
of “appearance-independence” or “mind-independence.” There could
not be mind-independent objects in the strong or absolute sense of
lying outside of all possible experience (or appearance). We simply can-
not say anything about the possibility of such radically independent
things-in-themselves. On the other hand, there are objects that are mind-
independent in a weaker sense according to which objects are invariants
in a manifold of appearances. We could be mistaken about objects in our
experience, so that we could at some later stage come to see that we had
been under an illusion, that we had mere appearances at an earlier stage.
To say that there are weak and strong senses of “mind-independence”
or “mind-dependence” will then affect the formulations of mathemati-
cal realism and mathematical idealism. In transcendental phenomenology
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we must set aside the strong (or naïve) sense of mind-independence.
The weaker sense, however, will allow us to preserve important insights
of realism.

V. Compatibility or Incompatibility?

To summarize the discussion thus far we can say that we need to index
our conceptions of the mind-dependent and mind-independent, of the
immanent and transcendent, and of appearance and reality.

With the phenomenological reduction we turn to phenomena, to
appearances, to the immanent. So we first distinguish between appear-
ances (or the immanent), and the naïve view of appearance-independent
reality (or of the transcendent). On the one side of this distinction
we have appearances, the immanent and mind-dependent, and on the
other side of the distinction we have appearance-independent reality
or the transcendent as mind-independent. Now, restricting ourselves
to the sphere of phenomena, to the immanent and absolute, we find
that consciousness exhibits intentionality. Transcendental subjects are
directed toward objects that transcend subjects. We find the noesis-
noema-object structure, minus sensory hylé in the case of mathematical
objects. Intentionality in pure mathematics is not constrained by sen-
sory hylé but there are still grammatical, formal, meaning-theoretic,
and other structural constraints on it. One of the marks of objectiv-
ity in both sensory and mathematical experience is that we find our
awareness to be constrained in certain ways. It is not possible to will
objects or states of affairs in either sensory or mathematical experience
to be just anything we want them to be. We find all of these moments
of experience after the epoché. Within the sphere of appearances we
can then draw a distinction between the immanent and the transcen-
dent. Here we introduce a new distinction between the immanent
and transcendent, the mind-dependent and mind-independent, between
appearance and reality. Some things appear to us as immanent, some as
transcendent.

We can depict the situation in the following diagram, which I will
formulate for the mind-dependent/mind-independent distinction, since
the issue of mathematical realism is typically described in these terms:
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Mathematical objects are

mind-dependent 1 mind-independent1
� ♦

/ \
mind-dependent2 mind-independent2

� ∗
It is inconsistent to say that abstract mathematical objects are mind-

dependent1 and mind-independent1. Formulated in this way, mathemat-
ical realism and mathematical idealism are incompatible. Most of the
debate about realism and idealism, including recent debate, seems to take
place at this level. It is also inconsistent to say that abstract mathemat-
ical objects are mind-dependent2 and mind-independent2. Formulated
in this way, mathematical realism and mathematical idealism are still
incompatible. It is not inconsistent, however, to say that abstract or ideal
mathematical objects are mind-dependent1 and mind-independent2.
Indeed, mind-independence2 falls under mind-dependence1. What this
means is that mathematical realism, in this sense, is compatible with
transcendental phenomenological idealism. Mathematical realism in this
sense, which we can call “constituted mathematical realism” or “consti-
tuted platonism,” is concerned with non-arbitrarily or rationally motivated
constituted mind-independence.

What we are now to investigate is the constitution of the sense of
mind-independence from within the epoché. We need to investigate
the rationally motivated constitution of the sense of the existence of ideal
mind-independent mathematical objects.

As we look back from this viewpoint, we can say that the standard
positions of mathematical realism and mathematical idealism that we
set out in our initial formulations are too simple. They are ambigu-
ous. If we make the distinctions just indicated then the assertion that
mathematical objects are mind-independent1 is naïve (or pre-critical)
mathematical realism and is untenable. The assertion that mathematical
objects are mind-dependent1, with no further qualification, is naïve (or
pre-critical) mathematical idealism and is untenable. The third position
that we outlined combines a transcendental phenomenological idealism
and a mathematical realism in which neither the realism nor idealism is
any longer naïve. We have left naïve metaphysics behind. It also follows
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that transcendental phenomenological idealism is not compatible with
naïve mathematical realism.

Once we make these distinctions then existence claims, whether in
ordinary perception or in the case of mathematics, will have to be under-
stood accordingly. There are of course important disanalogies between
sensory objects and mathematical objects but in either case the exis-
tence of mind-independent objects will now have to be understood in the
sense of mind-independence2. If these phenomenological considerations
are correct then what other sense could we legitimately give to existence
claims?

Constituted platonism, unlike naive metaphysical platonism, does not
cut off the possibility of knowledge of mathematical objects. Knowledge
involves intentionality. Mathematical knowledge is to be spelled out in
terms of intentional directedness toward ideal or abstract objects, where
the objects are to be thought of as (founded) invariants in mathematical
experience. What we are describing here is a position about mathematical
experience. Note how different this is, for example, from a position that
starts with neuroscience and then asks how the brain could be related to
abstract objects. How could brains be causally related to abstract objects?
From my point of view, this is the wrong question. There is a reason for
wanting to suspend or bracket natural sciences of the mind such as neu-
roscience. The reason is not to avoid neuroscience in particular or natural
sciences of cognition in general. We of course need such important sci-
ences. The reason is rather to avoid a reductionistic, eliminativist, and
one-sided philosophy of mind that leaves out consciousness and inten-
tionality. Such sciences abstract away from experience. There is much
more to say about these matters but further discussion will have to wait
for another occasion (see, however, Tieszen 2005a, 2005b, 2006).

On the kind of realism described above objects can be mind-
dependent1 and mind-independent2. Before concluding this section I
would like to note that such a realism bears more than a passing resem-
blance to Hilary Putnam’s “internal realism” (see, e.g., Putnam 1981,
1987). Although it is not possible to do so here, it would be worthwhile
to compare the views in some detail. I am arguing, for example, that the
notions of mind-dependence1 and mind-independence2 can be applied
in the case of mathematical objects or states of affairs. Does Putnam apply
his internal realism to the question of mathematical realism? Does he
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have anything like the idea of constituted mathematical platonism? There
are certainly developments in the phenomenological analyses that would
not be found in Putnam’s internal realism but there might also be many
points on which the views in fact reinforce one another.

VI. Brief Interlude: Where to Place Gödel, Brouwer,
and Other Mathematical Realists and Idealists
in our Schematization?

It is of some interest to consider where various philosophers, logicians,
and mathematicians would fall within the set of distinctions I have
drawn. In terms of the diagram above, I have suggested that the later
Husserl is at the position marked by “∗,” or at least that the principles I
have discussed would lead him there, even if he did not explicitly analyze
all of the consequences of the position. Brouwer and Gödel are frequently
regarded as antipodes on the mathematical realism/mathematical ideal-
ism issue. It seems that Brouwer would be at the position marked by
“�” because he does not have the distinction between weak and strong
senses of mind-independence. The idea that mathematical objects could
be non-mental and yet not be appearance-independent does not seem
to be part of his view. There are very interesting connections between
ideas of Brouwer and Husserl but if it is not part of Brouwer’s view that
mathematical objects could be non-arbitrarily constituted by subjects as
non-mental then Brouwer would still be what we have called a naive ide-
alist. But perhaps Brouwer’s position could or should be modified. On
the other hand, there are various philosophers would who place Gödel at
the position marked by “♦.” Perhaps that is where he belongs, in which
case his position will be subject to all of the problems associated with
naive metaphysical platonism. We know, however, that Gödel was inter-
ested in aspects of Kant’s transcendental idealism and that from 1954 to
1959 he corresponded with Gotthard Günther at some length about tran-
scendental philosophy (see Gödel [1954–59] 2003). Starting in 1959,
he became an avid reader of Husserl’s philosophy, and was especially
interested in transcendental phenomenology (see, e.g., Gödel [∗1961/?]
1995). Thus, we should perhaps put him in the position marked by “∗,”
or at least regard him as groping toward such a position (see also Tieszen,
Introduction and Part II of 2005b).
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VII. A Conclusion and an Introduction

If it is therefore possible to see how a form of mathematical realism is
compatible with transcendental phenomenological idealism we can still
ask about which kind of mathematical realism can be supported from
this point of view. About which kinds of mathematical objects and states
of affairs, that is, can we be constituted realists? This is now a ques-
tion of meaning constitution. What kinds of mathematical objects, e.g.,
geometric objects, natural numbers, real numbers, complex or imaginary
numbers, functions of different types, sets of different types, and the like,
can the mind constitute?

Here things are much more complicated. This is where the real work
of constitutional analysis in the case of mathematics must begin. It could
be argued that Husserl would hold that natural numbers and the geo-
metric objects of Euclidean geometry could in principle be constituted as
particular objects. Which other (alleged) mathematical objects on our list
could be constituted? Husserl himself does not have much to say about
the constitution of such objects. He does present some ideas on the origin
and constitution of sets in Experience and Judgment and other places but,
relative to modern set theory, they do not take us very far. They leave a lot
undetermined. It is not clear that they would lead to the existence of any
sets beyond those that constructivists would be prepared to recognize.

There are many questions about the constitution of mathematical
objects and the constitution of generalities about mathematical objects
that need to be considered. To mention just one question of this type, for
example, it might be asked whether it is possible to constitute generali-
ties about mathematical objects even if we cannot constitute such objects
individually. Could there even be a kind of objectivity in mathematics
without objects? I will not try to address the many questions that could
be asked here. What I have tried to do in this paper is to show how, at a
general level, a form of mathematical realism can be compatible with tran-
scendental phenomenological idealism. One can then enter into issues
about constituted realism in the case of different kinds of mathematical
objects.1

1I would like to thank participants in the Phenomenology and Mathematics conference
at Tampere for questions and comments. Work on this paper was partially supported by
a National Endowment for the Humanities (NEH) fellowship, which support I hereby
gratefully acknowledge.
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CHAPTER II

PLATONISM, PHENOMENOLOGY, AND INTERDERIVABILITY

Guillermo E. Rosado Haddock

Abstract. In this paper I try to offer a definitive answer to the question of
the relation of Husserl’s phenomenology to mathematical Platonism and con-
structivism of the Brouwerian sort. The controversial issue of Frege’s presumed
influence on Husserl is also considered and it is briefly argued against such an
influence. In the second part of the paper Husserl’s semantics of sense and objec-
tuality (or referent) is discussed, and it is shown that it is much more adequate
for mathematics than Frege’s semantics. Finally, a possible theory of degrees of
extensionality is briefly sketched.

I. Introduction

Recently, a great interest has surged in finding links between Husserlian
phenomenology and Brouwer’s intuitionism, or maybe in trying to res-
cue the latter through a sort of foundation on the former. Although such
developments could be fruitful, it is time to set matters straight by (i)
making it clear that Husserl’s views on mathematics are very distant from
those of Brouwer, since the former never considered in print the abandon-
ment of any part of classical mathematics, (ii) that Husserl’s Platonistic
views on mathematics were complemented by especially deep seman-
tic insights and a still little known but very interesting epistemology of
mathematics, and (iii) that both Husserl’s semantics and epistemology
of mathematics can shred some light on important current philosophi-
cal debates. It would take us too far to consider here all these issues at
length. As a sort of guide to our discussion, I will use some critical obser-
vations made in a review of my and Claire O. Hill’s book Husserl or Frege?:
Meaning, Objectivity and Mathematics (2000) by Mark van Atten, one of
the more staunch propounders of the above mentioned trend (van Atten
2003).

First of all, since the myth of Frege’s influence on Husserl, and the cor-
responding prejudice concerning Husserl’s views on logic, mathematics
and related issues has not vanished, let us stress that Husserl obtained the
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distinction between sense and reference not later than 18901 with com-
plete independence of Frege, and this fact was acknowledged by Frege
himself in a letter to Husserl of May 1891 (Hua 12, 340–373). See on
this issue my paper (2000a). Moreover, as already argued in my disser-
tation (Rosado Haddock 1973) and elsewhere, Frege did not exert any
decisive influence on Husserl’s abandonment of his mild psychologism
nor on Husserl’s views on mathematics in Logische Untersuchungen. On
these two issues many of the writings of Claire O. Hill, and a paper and a
book by Mohanty (1974) are especially relevant. Thus, it has been clearly
shown that the supposed influence of Frege on Husserl’s abandonment of
psychologism, as well as his supposed influence on Husserl’s distinction
between sense and reference, are untenable. Frege’s review of Husserl’s
Philosophie der Arithmetik (1891) simply came too late,2 since the pro-
cess of abandoning his psychologistic leanings in that early work began
more or less simultaneously with its publication, and that is the prin-
cipal reason why Husserl did not publish the second volume, even if it
would have dealt with logical—not with psychological—foundations of
arithmetic. Although Frege’s Die Grundlagen der Arithmetik (1884) and
the first volume of his Grundgesetze der Arithmetik (1893 and 1903) may
have played some marginal role, there is no reason to doubt what Husserl
says, namely, that the study of Leibniz, Bolzano, Lotze and Hume played
the decisive role (1975, 36–38). Moreover, Husserl’s mature views on
logic—which date at least from 1894—have clearly more affinities with
Bolzano’s than with Frege’s, and his views on mathematics were deci-
sively influenced by Riemann—who seems to have been totally foreign to
Frege,3 and have more affinities with the Bourbaki school than with any
other views on mathematics. By the way, it is not excluded that there was
a marginal influence in the other direction, since there is a famous pas-
sage in “Der Gedanke”([1918] 1967, esp. 360)—in which Frege says that
there is something non sensorial present both in our perceptual knowl-
edge of physical entities and in that of entities belonging to the third

1See his paper “Zur Logik der Zeichen,” posthumously published as an Appendix to
Hua 12, 340-373, especially pp. 343-344.
2Frege’s review is from 1894. (See Frege 1990, 179-192.)
3In a recent paper, Jamie Tappenden (2006) has argued on behalf of a Riemannian
influence on Frege. For a brief rebbutal, see the Appendix to this paper.
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realm—, which is perfectly compatible with Husserl’s views on the role
of categorial elements in sense perception and in our purely categorial
acquaintance of formal entities and structures.

Another point that I want to set straight concerns the defense of con-
structivism made by van Atten on p. 241 of his review against my surely
not original criticism of constructivism (2000e). Van Atten says:

First, as an argument against constructivism (and intuitionism in particular), it is not
sufficient to point out that among its adherents “there has been some disagreement
concerning what should be considered mathematically sound” (p. 244); the same kind
of disagreement is found among classical mathematicians (with regard to certain large
cardinals, or the status of the continuum hypothesis). (Van Atten 2003, 242)

Van Atten’s examples of disagreements in classical mathematics are
totally dissimilar to the situation among constructivists. In the fron-
tiers of any science there usually are disagreements among researchers.
Large cardinals and the continuum hypothesis belong in this moment
to the frontier of our set-theoretical knowledge. Thus, it is clear that
there will be disagreements on such issues. As is well known, Gödel him-
self once believed in the truth of the continuum hypothesis, and even
attempted to prove it, whereas later he became convinced that it was
false. Einstein and Bohr, as well as other leading physicists, disagreed on
whether quantum mechanics, with its Heisenbergian uncertainty prin-
ciple, was a definitive theory, or just a preliminary stage until a more
deterministic physical theory of the subatomic world could be obtained.
Moreover, almost immediately after Einstein’s first presentation of his
general theory of relativity, Hilbert and Weyl argued for a sort of unified
field theory. First, Einstein rejected the idea of a unified field theory, but
later tried to develop one himself. All those disagreements, even between
views of one researcher at different times, are normal at the frontier of
science. But what I have pointed out about disagreements among con-
structivists is at the very basis of constructivism. Bishop’s or Markov’s
constructivisms are, so far as I can see, not only very different in its very
foundations from Brouwer’s,—for example, they are not based on such
metaphysical emptiness of the “empty two-ity,” which, according to van
Atten’s review (p. 243) could help explain the “deep structure” of math-
ematics alluded to at the end of my (2000e)—, but also their notions
of constructivity are stricter than Brouwer’s and also different from each



26 guillermo e. rosado haddock

other’s (and, of course, from Kant’s). Moreover, even in the intuitionis-
tic camp, there have been critiques by G. F. C. Griss, who considered
Brouwer’s notion of constructivism too wide. (See Beth 1965, 437–439.)
Thus, the disagreement among constructivists lies at the heart of their
views, namely, in the definition and understanding of their most basic
notion. A comparison with the disagreements in some areas of traditional
philosophy and the social sciences would be much more adequate than
with the disagreements at the frontier of research in set theory.

II. Phenomenology, Constructivism and Platonism

On p. 243 of his review, van Atten asserts that “. . .it is taken for granted
that phenomenology singles out one of the traditional philosophies of
mathematics as the correct one, and that this philosophy is Platonism. It
is not immediate that the latter Husserl would have agreed.” First of all, I
have never taken for granted that phenomenology singles out Platonism
as the correct philosophy of mathematics. Superficially seen, it should
be exactly the opposite. After the transcendental turn, which many fol-
lowers of Husserl considered a rapprochement to Kant, one should have
expected a radical modification of Husserl’s views on mathematics in
Logische Untersuchungen. Constructivism would seem more compatible
with transcendental phenomenology, as interpreted by official phenome-
nologists, than Platonism. This could at least partially explain Oskar
Becker’s leanings towards constructivism. Thus, Mark van Atten (2002),
Richard Tieszen (1989) and others (see also van Atten et al. 2002) are
without doubt in good company when trying to assimilate Husserl to
Brouwer’s constructivism, and their interpretation seems to fit in better
with (official) transcendental phenomenology than Platonism.

However, the fact of the matter is different. If you compare Husserl’s
views on mathematics in Logische Untersuchungen with his views after
the transcendental turn, you don’t see any essential difference. In the
posthumously published Einleitung in die Logik und Erkenntnistheorie,
which dates from 1906 to 1907, i.e., precisely from the years of the tran-
scendental turn, in Logik und allgemeine Wissenschaftstheorie, which dates
from 1917 to 1918, and in his final exposition of his views on logic
and mathematics, namely, his 1929 Formale und transzendentale Logik,
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Husserl’s views on mathematics—as well as those on logic and on their
relation—are essentially the same as before the transcendental turn: he
still propounds a Platonist philosophy of mathematics. Thus, from 1894,
when he conceived Chapter XI of his opus magnum, on, Husserl’s views
on mathematics were Platonist. This Platonism, however, was of a very
different sort than Frege’s, since Husserl was no reductionist and, in par-
ticular, no logicist, and since his Platonism was a sort of structuralist
Platonism, clearly influenced by Riemann’s notion of a manifold, and to
a lesser extent by Cantor’s views, and—as we already mentioned above—
with affinities to the views on mathematics much later propounded by the
Bourbaki school. For Husserl mathematics was nothing else than a formal
ontology, based on the concept of something whatsoever, or something
in general (Etwas überhaupt). The fundamental concepts of mathemat-
ics are, for Husserl, sorts of variations of the something whatsoever.
Those concepts, like set, relation, cardinal and ordinal number, or whole
and part, are the basis of the fundamental mathematical structures, the
mother structures in Bourbaki’s terminology, and the remaining math-
ematical structures are obtained from the fundamental ones either by
adding new axioms, by specialization or by combination of two or more
structures. Logic, on the other hand, is not a foundation of mathematics
but a non-ontological sister discipline of mathematics, which unites with
it to form Husserl’s version of the mathesis universalis, the latter being
crowned by a theory of all possible forms of theories (correlatively, of all
possible forms of manifolds).

At first sight, it would seem as if there were some tension between
Husserl’s views on mathematics and his transcendental phenomenology.
But this apparent tension is present only if we interpret the transcendental
turn, as it has been traditionally done, namely, as a rapprochement to
Kant. However, if the phenomenological reduction is seen, as I see it, and
as was also interpreted by Husserl’s secret student Rudolf Carnap 4 in Der
logische Aufbau der Welt, i.e., as a methodological device (Carnap 1928,
§64), the tension disappears. Moreover, if the official interpretation of
the transcendental turn as a rapprochement to Kant were correct, Husserl

4Although Carnap never acknowleged having been a student of Husserl, he was his
student at least during three semesters after having completed his dissertation. See on
this issue (Schuhmann 1977, 281), as well as, my recent book (Rosado Haddock 2008).
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would seem to fall under his own criticism of Kantianism and of other
sorts of specific relativism in Chapter VII of the first volume of Logische
Untersuchungen. However Husserl never felt the need to defend his later
views against such criticism. Moreover, there should be little doubt that
Brouwerian intuitionism fits, in the best of cases, under the title specific
relativism.

It should be said, however, that although Husserl’s philosophy of math-
ematics from 1894 on was Platonistic, that does not mean that he was
unaware of the paradoxes of set theory. Already on April 16, 1902,
Zermelo communicated Husserl the so-called Russell Paradox—which
Zermelo had discovered before Russell (Schuhmann 1977, 71; Husserl
1979, 399)—and they remained very near during their stay in Göttingen.
(See also Schuhmann 1977, 158.)5 Thus, Husserl seemed to have been
well-informed on the issue of the paradoxes of set theory and the crisis in
the foundations of mathematics. Moreover, in a double manuscript with
the inscription A I 35 in the Husserl Archives in Köln (still unpublished),
part (α), which dates from 1912 and part (β), which dates from 1920,
Husserl discusses the Zermelo-Russell Paradox—as it should rightly be
called. In my dissertation I interpreted both parts of the manuscript as
momentary constructivist leanings of Husserl. Although we cannot dwell
too long on this issue here,6 I now consider the part (α) perfectly com-
patible with Husserl’s epistemology of mathematics, as presented in his
6th Logical Investigation. Husserl offers there an iterative constitution—
not construction—of mathematical entities in categorial intuition, and is
very conscious of the possibility of paradoxes. Such iterative constitution
has clear affinities with Cantor’s procedures and with Zermelo’s later iter-
ative hierarchy of sets. In (2000d) I offered a reconstruction of Husserl’s
epistemology of mathematics and showed in Appendix II that neither the
Zermelo-Russell Paradox nor Cantor’s Paradox could be obtained in the
Husserlian hierarchy. Before we discuss, however, the second part of this
very extensive manuscript, I would like to mention that in part (α) (p.11)
Husserl anticipates the Lesniewski-Tarski’s hierarchy of metalanguages,

5Zermelo, who was already teaching at the university, belonged to Hilbert’s circle, with
which Husserl was in constant contact during his Göttingen years. Some years later they
were both in Freiburg.
6I have discussed the manuscript more thoroughly in the Appendix to my recent paper
“Husserl’s Philosophy of Mathematics: its Origin and Relevance.”
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used by the latter two authors to solve the semantic paradoxes, when he
asserts that we should distinguish between different levels of language.
Thus, he says: “When I say the name name, then I have a new name,
which is distinct from the name ‘name,’ a name of second level, and so
forth.”7

Part (β) dates from 1920, thus, two years after his friend and for-
mer student Hermann Weyl had published his monograph Das
Kontinuum8—by the way, still another moderate version of construc-
tivism. Husserl was perfectly aware of Weyl’s views, and it seems very
probable that this part of manuscript A I 35 bears its influence. Thus, in
part (β) Husserl asserts that the way to avoid the set-theoretical paradoxes
consists in a constructive axiomatization of set theory. Moreover, he says
that “. . .‘manifold’ here [i.e., in his doctrine of forms of possible mani-
folds] must mean a formal as constructively (definite) characterized region
of objects, or region of an upper genre concept M, which remains unde-
termined [and] whose objects are constructible by determinately formed
operations that can be iterated into infinity. The axioms must be so cho-
sen as to found a priori the constructability” (A I 35, 47–48). Later in the
manuscript, and with special reference to the Zermelo-Russell Paradox,
Husserl adds: “Mathematics must establish an existence proof of each
merely imagined totality.” Thus, in the second part of A I 35, Husserl,
by speaking of constructible manifolds, constructible axiomatization of
set theory, and even requiring an existence proof for every mathematical
totality, seems to have considered some restrictions to mathematics. At
the end of the manuscript (p. 96), he goes so far as to question the set-
theoretical foundation of mathematics of his friends Cantor and Zermelo,
and recommends a reflection on the accomplishments of that discipline
both as an area of mathematics in its own right and as a foundation for
mathematics.9

7All quotations of manuscript A I 35 are my translations into English of quotations
from the manuscript, which appear in my dissertation. See note 3.
8For Weyl’s relation to Husserl, see the excellent paper (Mancosu and Ryckman 2002,
130–202). See also Ryckman 2005.
9I have always wondered both why this important manuscript has still not been pub-
lished, as well as why scholars like van Atten and Tieszen have never, so far as I know,
made any reference to it.
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Nonetheless, the fact of the matter is that in his Formale und transzen-
dentale Logik, published nine years after Husserl wrote part (β) of A I 35,
essentially the same Platonist philosophy of mathematics is propounded
as in Logische Untersuchungen and in the lectures from 1906 to 1907 and
of 1917–1918 published in the last two decades and referred to above.
The more plausible explanation is that Husserl thought that his views
were not affected by the paradoxes, that his iterative hierarchy of math-
ematical entities constituted in categorial intuition was enough to block
the paradoxes. This possible explanation receives some support from the
fact that in the first quotation above from part (β) of A I 35 Husserl
uses Zermelo’s expression “definite” (in German: definit) as if it were
synonymous with the expression “constructible.” Moreover, Husserlian
mathematics is based not on the notion of set but on the notion of some-
thing whatsoever—of which the notion of set is just a particularization
—, and as Husserl remarks in part (α) (p. 17) of the manuscript, the
something whatsoever is not a set, i.e., such a concept does not have any
extension.

In the remainder of this paper I will consider two issues that are both
more substantial and concern more directly the present author’s research,
namely the interderivability of seemingly unrelated mathematical state-
ments and the application of the Husserlian distinction between states of
affairs and situations of affairs to the semantics of mathematics.

III. Interderivability

I suppose that all well trained mathematicians and logicians have at
least once in their life heard about the (meta)mathematical fact that the
Axiom of Choice has many different mathematically equivalent state-
ments in very different areas of mathematics. I also suppose that many
philosophers working in our area are also conscious about that fact.
The interesting issue is what philosophers of mathematics have to say
about it. As I have argued before (2000e, 2000f ), in my opinion, it
is a sine qua non of a philosophy of mathematics to try to assess the
interderivability phenomena. My argument with respect to the inter-
derivability phenomena—which I presented briefly for the first time in
a conference in Pittsburgh in 1985 and developed more thoroughly in
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a conference in Mexico in 1988—is similar to an argument of Gödel,
which appears in his Collected Works III (Gödel 1995, 304–323) and
which concerns the undecidability results, namely, that non-Platonist
philosophies of mathematics are not capable of philosophically assessing
the interderivability phenomena.

That the Axiom of Choice is mathematically equivalent to Tychonoff’s
Theorem—which says that the product of a family of compact topolog-
ical spaces is a compact topological space—, or that Tarski’s Ultrafilter
Theorem is mathematically equivalent to the restriction of Tychonoff’s
theorem to Hausdorff spaces, are (meta)mathematical facts that cannot
be explained either by referring to the formalisms, or as a result of some
conventions made by mathematicians. Not even Platonism of the Fregean
sort is capable of adequately philosophically assessing the interderivabil-
ity phenomena, due to the insufficiency of a semantics for which the
referents of statements are truth values and which, thus, obviates much
finer distinctions. The statements “2 + 2 = 4” and “Paris is the capital of
France in 2007” have the same truth value as the above mentioned four
mathematical statements, but are not interderivable with any of them or
with each other. Constructivism does not fare better.

Let us suppose for a moment that constructivism were not only homo-
geneous but also true, and let us even forget its difficulties to deal with
infinities above that of the cardinality of the natural numbers. Thus, a
constructivist mathematician constructs the relevant entities—for exam-
ple, filters—in the case of the Ultrafilter Theorem, and constructs the
mathematical fact that every filter can be extended to a maximal filter. Let
us suppose that the same or another mathematician constructs the rele-
vant entities—for example, compact Hausdorff spaces and (unrestricted)
families of them—and constructs the mathematical fact that the prod-
uct of a family of compact Hausdorff spaces is a compact Hausdorff
space. Prima facie those two mathematical facts seem to be as unre-
lated with one another as the following empirical facts: “Siberian tigers
are the biggest and strongest felines on earth at the beginning of the
twenty first century” and “The Amazon River is in South America.” Let
us even suppose that the constructivist mathematician is able to construct
a proof of the interderivability of the Ultrafilter Theorem and Tychonoff’s
Theorem restricted to Hausdorff spaces. Even after all such assumptions,



32 guillermo e. rosado haddock

the constructivist could not adequately philosophically assess the inter-
derivability of the two statements. If he were to assert that when he first
“constructed” his proof of the Ultrafilter Theorem and his constructivist
colleague “constructed” the proof of Tychonoff’s Theorem restricted to
Hausdorff spaces, they both already had in mind the proof of the inter-
derivability of the two mathematical facts, he would not be telling the
truth and could not even be taken seriously. And if they did not have the
interderivability in mind when establishing the two mathematical facts,
they would have to explain why those two seemingly unrelated math-
ematical facts are equivalent but not equivalent to other mathematical
facts “constructed” by them, for example, to “There exist infinitely many
prime numbers.” Moreover, the constructivist would have to explain
why there are so many thematically unrelated mathematical statements
in so many different areas of mathematics equivalent to the Axiom of
Choice, but also infinitely many mathematical statements, some of them
thematically related to the Axiom of Choice, which are not mathemat-
ically equivalent to it. Hence, no matter if Brouwer, Markov, Bishop or
any other constructivist was conscious or not of the importance of the
interderivability phenomena for the philosophy of mathematics, the con-
structivist can only remain in awe in front of such (meta)mathematical
facts. Moreover, the excuse that, for example, the Axiom of Choice is not
constructible is no excuse at all. Even if all statements equivalent to the
Axiom of Choice, as well as the Ultrafilter Theorem and all its equivalents
in different areas of mathematics were not constructible, the possibility of
seemingly unrelated but interderivable statements in mathematics would
remain, and the constructivists would have to be able to philosophically
assess it. However, as well as Fregean Platonism, conventionalism, formal-
ism, nominalism, or Fieldian fictionalism, constructivism does not have
the tools for dealing with the problem posed by the interderivability of
seemingly unrelated mathematical statements.

In (2000g) and in my review of Anastasio Alemán’s interesting book
Lógica, Matemáticas y Realidad I have presented another argument against
Fieldian fictionalism and conventionalism, respectively, namely that they
have consequences incompatible with a result in classical model the-
ory, namely, Robinson’s Test for Model Completeness (Rosado Haddock
2003). According to this model-theoretic classical result, for any exis-
tential statement, there is a universal statement interderivable with it.
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However, it is a consequence of Field’s views that all mathematical exis-
tential statements are true and all mathematical universal statements
vacuously false, whereas it is a consequence of mathematical convention-
alism that we are free to assign truth or falsehood to any existential or
universal mathematical statements. Both contentions are contradicted by
Robinson’s Model Completeness Test. So far as I can see, the scope of this
argument is more restricted than that of the interderivability argument,
but it is in no way less conclusive. It is unnecessary to mention here my
more specific arguments offered in (2000g) against Benacerraf’s and oth-
ers’ views. I just want to finish this part of the paper with a paraphrasis
of Hilbert, namely, that nobody should throw us away from the paradise
that Tarski and others built on the shoulders of Cantor.

IV. Situations of Affairs: Historical Preliminaries

In §§2 and 3 of his Begriffsschrift Frege (1879) introduced the notions of
conceptual content and judgeable content, respectively. As expressed in
the Preface of Grundgesetze der Arithmetik, the notion of judgeable con-
tent lies at the origin of the distinction between the sense and the referent
of statements,10 though clearly the judgeable content is much nearer to
Frege’s notion of thought than to that of truth value. On the other hand,
the conceptual content of a statement was characterized by Frege in §2
of his early work in such a way that two statements had the same con-
ceptual content if they had the same deductive power, i.e., if exactly the
same statements could be derived from each of them—the rest of the
logical resources remaining fixed throughout. This amounts essentially to
the interderivability of two statements with the same conceptual content.
The example given by Frege of two statements with the same conceptual
content is that of a statement in the active mode and its counterpart in the
passive mode. Interestingly enough, most Fregean scholars have preferred
to ignore any distinction between conceptual content and judgeable con-
tent. It should, however, be clear to all except such Fregean scholars that a

10I use the word statement as synonymous with (or an abbreviation of ) declarative
sentence; and I prefer the word “referent” to that of ”reference” as a translation of Frege’s
unusual use of the German word Bedeutung.
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mathematician and logician so conscious of the requirement of precision
and rigour in logical discussions as Frege would have never introduced
in two subsequent pages of a logical treatise, and with different charac-
terizations, two different expressions for the same notion and, moreover,
without explicitly saying that they were synonymous, or at least had the
same “content.” Thus, one can safely conclude that the two notions are
different and were intended by Frege as different.

Frege’s notion of conceptual content, which is a forerunner of Husserl’s
notion of situation of affairs, was never mentioned explicitly by that name
in Frege’s later writings. In Die Grundlagen der Arithmetik Frege used in
a somewhat unclear and ambiguous way the word “content.” However,
when he characterizes the two sides of his contextual second attempt at
defining the notion of number, namely:

(�) The number that corresponds to the concept F is the same as
the number that corresponds to the concept G if and only if the con-
cept F is equinumerous to the concept G, as having the same content,
what he means by “content” is conceptual content (Frege 1884, §§64–65).
Moreover, although in Frege’s writings after 1890 the notion of content of
a statement was seldom used, and only to mean the sense of the statement,
i.e., the thought, plus some rhetorical inessential components (Frege
[1918] 1990, 342–362, esp. 347), the old notion of conceptual content
resurfaced in some of his attempts to expound the sense of statements.
Thus, in “Der Gedanke” Frege offers as examples of statements expressing
the same thought a statement in the active mode and its counterpart in
the passive mode, as well as a similar pair of statements, in which one
was obtained from the other by replacing the verb “to give” by the verb
“to receive,” and interchanging subject and indirect object (with other
minor grammatical adjustments) (Frege [1918] 1990, 348). Moreover, in
Frege’s letters to Husserl of 1906 he states that two statements express the
same thought when they have the same deductive power, i.e., when any
statement derivable from one of the two statements is derivable from the
other (maintaining fixed the remaining logical resources) (Frege 1974,
101–106). Thus, in those two characterizations of sense, sense is basi-
cally identified with Frege’s old notion of conceptual concept. Hence, as
I have argued in “On Frege’s Two Notions of Sense” (Rosado Haddock
2000b, see also Rosado Haddock 2006, Ch 4), Frege worked with two
notions of sense, the official one of “Über Sinn und Bedeutung” (Frege
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[1892] 1967, 143–162) and Grundgesetze der Arithmetik, obtained from
his old notion of judgeable content, and an unofficial notion, which is
essentially his old notion of conceptual content. But, as I have stated
before, the fact that Frege lacked a notion of state of affairs did not
allow him to prevent the two notions from collapsing in a two-headed
notion of sense (Rosado Haddock 2000c). This ambivalence in his use of
the words “sense” and “thought” explains the inconsistencies, which are
present in Frege’s elucidation of the notorious Axiom V of Grundgesetze
der Arithmetik, namely

(�) The course of values of the function F is identical to the course of
values of the function G if and only if for all objects x, F(x) if and only if
G(x).

Thus, in “Funktion und Begriff” he says that the two sides of
that axiom have the same sense (Frege [1891] 1990, 130), whereas in
Grundgesetze der Arithmetik he says that they have the same referent (Frege
[1893] 1903, §3), hence, since both sides are statements, the same truth
value. I have argued in (2000b and 2006) that, if “sense” were to mean
official sense, both statements of Frege are untenable: the first would be
clearly false and the second too vague. What both sides of Frege’s Axiom
V have in common is once more the conceptual content. Moreover, a
similar ambivalence is present, for example, in Frege’s paper written in
1914 “Logik in der Mathematik” (Frege 1983, 219–270). In the first part
of that paper, Frege requires from definitions that the definiens and the
definiendum have the same sense. In later parts of the same paper, he states
as a requirement for definitions that the definiens and the definiendum
have the same referent (See Chapter 6 of Rosado Haddock 2006).

It was Husserl who clearly distinguished the notion of a situation of
affairs (Sachlage) both from the thought or proposition expressed by a
statement and from the state of affairs, which is for him the referent of the
statement. In Logische Untersuchungen Husserl formulates in a detailed
way the distinction between sense and referent he had obtained around
1890. The main differences with Frege were (i) that for Husserl the sense
of a predicate was a concept, whereas the extension was the referent, and
(ii) that the referent of statements was not a truth value, but a complex
objectuality, which was intended to be a state of affairs. Thus, the state-
ments “The Morning Star is a planet” and “The Evening Star is a planet”
refer not to a truth value but to the state of affairs that Venus is a planet.
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It must, however, be made clear that in the First Logical Investigation,
which dates from 1896, Husserl had still not distinguished between state
of affairs and situation of affairs, and when he mentioned there states
of affairs as a possible referent of statements and tried to offer an exam-
ple of two statements which express different senses but have the same
referent, the example was inadequate, because what the two statements
had in common was not the same state of affairs but the situation of
affairs. In the second edition he corrected the situation not by chang-
ing the example but by replacing the word “Sachverhalt”—i.e., state of
affairs—by the word “Sachlage,” that is, situation of affairs.11 However, in
any case, in the 4th Logical Investigation (Hua 19, Investigation IV, §11)
he made it clear that states of affairs are the referents of statements and
in the Sixth Logical Investigation—completed some four years later than
the first—Husserl already clearly distinguished between state of affairs
and situation of affairs (ibid., Investigation VI, §48). The distinction is
discussed in his very late Erfahrung und Urteil (Husserl [1939] 1976,
§§59f ), on which he was working with his assistant Ludwig Landgrebe
at the time of his death, and in his posthumously published Vorlesungen
über Bedeutungslehre (Hua 26, 29–30), based on a 1908 course. The sit-
uation of affairs is a sort of reference basis (or substratum) of states of
affairs.12

Hence, in comparison with Frege’s scheme, between thought and truth
value, in the Husserlian scheme there are two intermediate stages, first
the state of affairs to which the statement refers, and then the situation of
affairs. Let us give two elementary examples, an arithmetical and a non-
arithmetical one. Let us suppose that Charles is the father of Mary, and
consider the following three statements: (i) “The youngest son of Charles
is taller than the eldest son of Charles,” (ii) “The youngest brother of
Mary is taller than the eldest brother of Mary,” and (iii) “The eldest son

11(See Hua 19, Investigation I, §12.) In (Rosado Haddock 1997), I already mentioned
this confusion of Husserl .
12For Husserl specialists: In contrast to states of affairs, situations of affairs are pre-
categorial abstract objectualities, whereas states of affairs are categorial objectualities,
that is, categorially constituted objectualities, or objectualities of the understanding. On
categorial objectualities and categorial intuition, see (Rosado Haddock 2000d).



II. platonism, phenomenology, and interderivability 37

of Charles is shorter than the youngest son of Charles.” (ii) is obtained
from (i) by the same procedure by which “The Morning Star is a planet”
is obtained from “The Evening Star is a planet,” namely by the replace-
ment of an expression by another having a different sense but the same
referent. Thus, (i) and (ii)—for Husserl, as for Frege—express different
thoughts (or propositions), but refer to the same state of affairs—not to
a truth value (as for Frege). (iii), however, cannot be obtained in that
way from (i)—or from (ii). The transformation from (i) to (iii) is of a
different sort, not one consisting of a replacement of expressions with
different sense but the same referent, but a more objectual one. The same
happens with the following arithmetical example. Consider the following
three statements: (i′) “5 + 3 >7,” (ii′) “9 – 1>7,” and (iii′) “7 < 5 + 3.”
(ii′) is obtained from (i′) by the replacement of a name of the number
8 by a name having a different sense but the same referent, namely, the
number 8. (iii′), however, cannot be obtained in that way from (i′)—and,
of course, not from (ii′). The transformation from (i′) to (iii′) does not
consist of the replacement of an expression by another expression with
different sense but the same referent, but is a more objectual one.

The transformation from (i′) to (ii′) preserves the state of affairs—
and, of course the situation of affairs and the truth value—, but does
not preserve the thought. The transformation from (i′) to (iii′) does not
preserve the state of affairs or the thought, but preserves the situation
of affairs—and, of course, the truth value. Finally, the transformation
from (i′), (ii′), or (iii′) to the statement “Paris is the capital of France in
2007” preserves the truth value, but not the situation of affairs—and, of
course, not the state of affairs or the thought. I have argued that each
of these different sorts of transformations builds a group, and that the
transformation groups of statements are so related that the transformation
group which preserves thought is a proper subgroup of the transforma-
tion group that preserves states of affairs, which is a proper subgroup of
the transformation group that preserves situations of affairs, which is a
proper subgroup of the transformation group that only preserves truth
value (2000a). Using these distinctions, it is clear that Frege’s argument
to show that only the truth value is preserved when we transform a state-
ment like (i’) into one like (ii’), or a statement like (i) in a statement
like (ii) is fallacious. In (2000c) I showed that Church’s argument with
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the same purpose in the Introduction to his Introduction to Mathematical
Logic (Church 1956, 25) is also fallacious.13

By the way, it is interesting to observe that, as a consequence of
the above distinctions between groups of transformations of statements,
it becomes clear that states of affairs are extensional with respect to
thoughts—the state of affairs that Venus is a planet is not affected by
someone’s believing or not that the evening star is a planet but the morn-
ing star is not—, situations of affairs are extensional with respect to
states of affairs, and truth values are extensional with respect to situa-
tions of affairs. I consider that the coarse distinction between extensional
and non-extensional contexts, which still causes so many problems to
philosophical logicians, could be very fruitfully replaced by the degrees
of extensionality determined by each of the four transformation groups.
Thus, we would have (i) extensionalityG—also called “intensionality”—
(“G” for Gedanke, German word for “thought”), (ii) extensionalitySV
(“SV” for Sachverhalt, i.e., state of affairs), (iii) extensionalitySL (“SL” for
Sachlage, i.e., situation of affairs), and (iv) extensionalityWW (“WW” for
Wahrheitswert, i.e., truth value). Moreover, our discussion will show that
it is the degree of extensionality determined by situations of affairs, that is,
for which situations of affairs remain invariant, which is most important
for mathematics. A semantics—like Frege’s official one—which ignores
both that notion and the notion of state of affairs—is totally unsuited
for mathematics. Furthermore, not even logic is, as Frege believed, the
science of the laws of truth. What interests logic, and any other science,
is, as Husserl clearly stated (Hua 28, Ch. XI, §§62, 63), the structuration
of truths in theories, in which statements are connected by relations of
derivability, which preserve truth. And logic is concerned, among many
other things, with such relations, not simply with truths.

V. Situations of Affairs: Systematic Treatment

So far as I know, Husserl never got further in the application of his
notion of situation of affairs to mathematics than the use of examples
like (i′)–(iii′) above. However, he did consider the possibility of applying

13A much more thorough refutation of the different versions of the so-called ’“slingshot
argument’” has been recently given by the distinguished Brazilian philosopher Oswaldo
Chateaubriand in the first volume of his (Chateaubriand 2001 & 2005).
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his notion to physics. In his Vorlesungen über Bedeutungslehre he observed
that when two different so-called formalisms in physics are equivalent
in the sense of corresponding to the same physical law, the situation of
affairs in both cases is the same (Hua 26, 101–102). Thus, he would very
probably have interpreted the equivalence between Schrödinger’s wave
mechanics and Heisenberg’s matrix mechanics as identity of the situation
of affairs, though not only the thoughts expressed but the states of affairs
referred to were different.

I have tried to apply Husserlian semantics to mathematics (Rosado
Haddock 1996, 2000b, 2000f, see also 2000c). First of all, it is perfectly
clear that Fregean semantics is totally inadequate for mathematical state-
ments. Even the most simple arithmetical equations and inequalities, for
example, the pairs of statements {“2 + 3 = 5,” “6 – 1 = 5”} and {“5 + 3 >
7,” “9 – 1 > 7”}, composed of statements obtained from each other by
a transformation, which changes the sense of component expressions but
preserves the referent, require of the notion of state of affairs to be cor-
rectly interpreted. The members of each pair are clearly related by such
a transformation, but not so the members of different pairs. Of course,
the four statements have the same truth value, which is the same of, for
example, Gödel’s Completeness Theorem for first-order predicate logic
and of “Paris is the capital of France in 2007,” but the members of any of
the two pairs have much more in common between them than with any
of the remaining four statements.

Examples like those of statements (i′)–(iii′) given above show, how-
ever, that for a semantics of mathematical statements states of affairs
(and truth values) are not enough. The requirement of a notion like
that of Husserlian situation of affairs seems inevitable. Let us con-
sider now the phenomena of duality, very common in some areas of
mathematics. Dual statements, like (i′′) (Tarski’s Ultrafilter Theorem):
“Every filter can be extended to an ultrafilter” and (ii′′) (The Maximal
Ideal Theorem): “Every ideal can be extended to a maximal ideal,” are
more strictly related to each other than to other mathematical state-
ments, like “2 + 3 = 5,” but one cannot be transformed into the
other by a transformation that replaces an expression by another expres-
sion with different sense but the same referent. What can be very well
obtained from (i′′) by such a transformation is (iii′′) “Every dual ideal
can be extended to a maximal dual ideal.” (i′′) and (iii′′) refer to the
same state of affairs, but (ii′′) does not. What (ii′′) has in common
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with (i′′) and (iii′′), but not with “2 + 3 = 5,” is the situation of
affairs.

In the two mentioned papers and in “On the Semantics of
Mathematical Statements” I have extended the application of the notion
of situation of affairs to the interderivability phenomena. Thus, although
the Axiom of Choice and Tychonoff’s Theorem clearly refer to different
states of affairs, their reference basis is the same, that is, the situation of
affairs is the same, and it is different from that of the infinitely many
mathematical statements not interderivable with the Axiom of Choice.14

Moreover, when a statement S is derivable from another statement S∗, but
S∗ is not derivable from S, the situation of affairs of S is properly included
in the situation of affairs of S∗. Hence, the situation of affairs common
to the Ultrafilter Theorem, the Maximal Ideal Theorem and Tychonoff’s
Theorem restricted to Hausdorff spaces is properly included in the sit-
uation of affairs common to the Axiom of Choice, Zorn’s Lemma and
Tychonoff ’s Theorem.

In my paper “On the Semantics of Mathematical Statements” I tried
to make precise some of these ideas about situations of affairs. Following
Tarski’s intuitive motivation for his semantics15 I tried to extend Tarskian
semantics in a Husserlian fashion. Thus, I identified states of affairs with
the results of evaluations and then introduced situations of affairs as
equivalence classes of states of affairs. For such a purpose, it was necessary
to consider only many sorted languages, since it is clear that a language
for mathematics adequate to express interderivability results between
seemingly unrelated mathematical statements must be capable of dealing
simultaneously with mathematical structures of different sorts. I tried to
show, first for a first-order many sorted language and then for a more
adequate second-order many sorted language that, under such suitable
definition of situations of affairs, two statements are interderivable if

14The requirement of including states of affairs and situations of affairs in a seman-
tics adequate for mathematics is a minimum requirement. The possibility of finer
distinctions is an open possibility, but they should be made only if needed.
15See his epoch-making ”The Concept of Truth in Formalised Languages,” in (Tarski
[1956] 1983, see also Tarski [1969] 1986).
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and only if they have the same situation of affairs. The field is
open for younger or more able logicians to follow.

VI. Conclusion

I agree with the general form, although not with the specificities, of
Benacerraf’s requirement (Benacerraf 1973) that a philosophy of math-
ematics has to be bound to an acceptable semantics and to a reasonable
epistemology. Of course, I reject any rendering of reasonableness as linked
to any sort of causal theory.16 Moreover, I take as a requirement of any
philosophy of mathematics that it be capable of adequately assessing the
interderivability phenomena. Husserl’s philosophy of mathematics is, so
far as I can see, the only philosophy of mathematics which (1) is coupled
with an adequate semantics of sense and referent for mathematical state-
ments and, moreover, this semantics is perfectly compatible with Tarskian
semantics; (2) with the help of this semantics, one can adequately assess
the interderivability phenomena; and (3) it is complemented by an epis-
temology of mathematics based on the—in no way mysterious and so
often neglected—categorial intuition, expounded by Husserl in the Sixth
Logical Investigation.17 I cannot dwell on this last point here, but would
only like to say that I am convinced that Husserl’s views can offer an
alternative to Quine’s (de)naturalized epistemology in a more general
setting.

Appendix

On Tappenden, Frege and Fregean Mythologies
In his recent paper “The Riemannian Background to Frege’s

Philosophy” Jamie Tappenden (2006) argues on behalf of a presumed
allegiance of Frege to the Riemannian tradition. According to Tappenden,

16For my criticism of Benacerraf’s and, in general anti-Platonist dogmas and prejudices,
see (2000g).
17On this issue, see also (Rosado Haddock 2000d) for an exposition of Husserl’s
categorial intuition.
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there were two irreconcilable trends in nineteenth century German math-
ematics, the school of Weierstrass and Kronecker in Berlin and the
Riemannian school in Göttingen. Tappenden begins his discussion by
considering two presumed myths in Fregean scholarship, namely, (i) that
which he associates with Russell, according to which Frege followed
the Weierstrassian program of reducing analysis to the real number sys-
tem, which was then reduced to the arithmetic of natural numbers and
then, finally, thanks to Frege, to logic; and (ii) that which he associates
with Kitcher, Currie, Wagner, and Weiner, for which Frege’s motivations
were purely philosophical and unrelated to Weierstrass’ mathematical
concerns. Tappenden proposes a third myth, namely, that since there
were only two mathematical traditions in the German universities of
his time, and Frege studied in Göttingen, learned complex analysis in
the Riemannian tradition from Clebsch and geometry from Schering,
he must have been immersed in the Riemannian tradition all the way.
Moreover, Tappenden argues that when teaching complex analysis, Frege
did it following the footsteps of his teacher, thus, in the Riemannian
fashion. That is, however, an incredible historiographical simplification.
Firstly, it is perfectly understandable that if you are not a researcher
in a particular area of your discipline—and Frege certainly was not a
reasercher in complex analysis—, but have to teach courses in that area—
remember that the mathematics department in Jena was rather small and
that Frege was not a full professor—it is perfectly natural that you tend
to follow, possibly with some small modifications, what you learned from
your teachers in that area. Hence, it was much easier for Frege to teach
complex analysis in the way he learnt it from Clebsch than to try to
immerse himself in the Weierstrassian tradition or to try to build a version
of his own.

On the other hand, it is not uncommon of men of Frege’s stature that
in the points that interest them most they distance themselves from their
teachers. Thus, for example, Dedekind came from the Gauss-Riemann
school, was the last (official) doctoral student of Gauss and a personal
friend of Riemann, but followed the reductive path of Weierstrass and
was a logicist, as Frege was. Indeed, when Frege criticizes Dedekind at the
beginning of Grundgesetze I it is for his lack of rigour, not for having taken
a wrong reductive path. Moreover, Cantor and Husserl were students of
Weierstrass and Kronecker—as was also Minkowski—, and Husserl was
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even Weierstrass’s assistant. Nonetheless, Cantor’s set theory had little to
do with Weierstrass’s or Kronecker’s research, and, on the contrary, only
served to awaken ire in the latter, who used all his academic influence
to make life miserable to Cantor. In Husserl’s case, his mature philoso-
phy of mathematics—from 1894 until the end of his life—is based on
a sort of generalization of Riemann’s notion of a manifold, has noth-
ing in common with the Weierstrassian school, and also very little in
common with Frege’s views, except for being both Platonisms, though
different sorts of Platonism. Furthermore, Frege almost never refers to
Riemann, even in his posthumous writings. On this issue, a compar-
ison with Husserl is especially pertinent. On the other hand, in Die
Grundlagen der Arithmetik Frege propounds the view that geometrical
statements are synthetic a priori, that geometry is based on intuition,
that such an intuition is Euclidean, and that Non-Euclidean geometries
are merely objects of thought. Although Frege’s arguments differ from
those of Kant, their views on geometry are very similar. In fact, Frege’s
views on geometry were pre-Riemannian. On this specific point, Frege
and Husserl also differed, and Husserl was once more much nearer to
Riemann, but I cannot dwell on this issue here.

Concerning the different myths in Fregean scholarship, I want to make
a few comments. I consider Frege essentially a philosopher of math-
ematics, certainly not a philosopher of language and by no means an
epistemologist. His concerns with semantics are derivative, and his con-
cerns with epistemological issues are not only derivative but also restricted
to particular issues related to the nature of mathematics and logic. I
consider correct the view that sees Frege’s logicist program of reducing
arithmetic to logic as an extension of the Weierstrassian program, and
as a culmination of what Weierstrass and Dedekind had achieved, even
though Frege was, by no means, a Weierstrassian, and was very critical
of Weierstrass’s lack of rigour. But without the reduction of analysis to
the real number system and then, further, to the arithmetic of natural
numbers, Frege’s logicist program would not make much sense. That sort
of mathematical reduction to logic, however, had nothing to do with
Russell’s empiricist and nominalist tendencies, which Frege would have
clearly rejected. Frege was an avowed Platonist and a rationalist, and
would never had accepted the use of logical analysis to defend nomi-
nalism or empiricism. On the other hand, the tendency—predominant
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in Anglo-American Fregean scholarship—to interpret Frege as a sort of
Neo-Kantian philosopher and as an avowed epistemologist is certainly
unfounded. It basically originates in clear misinterpretations of Fregean
writings, usually isolating a single sentence from its whole context in
order to fit the prejudices of the so-called Fregean scholars. The papers
by Sluga, Beaney, Reck and Macbeth included in a recent book edited
by Dirk Greimann (2007) are foremost examples of such and other sorts
of misinterpretations. Finally, it should be pointed out that Frege, who
was such a revolutionary in logic and a most interesting and important
philosopher of mathematics, was usually not capable of understanding
or at least appreciating other revolutionary advances in mathematics, as
attested by his lack of understanding of Cantor exemplified at the end
of Die Grundlagen der Arithmetik, and precisely by his adherence to a
pre-Riemannian, Kantian conception of geometry.
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CHAPTER III

HUSSERL ON AXIOMATIZATION AND ARITHMETIC

Claire Ortiz Hill

Abstract. Material from Husserl’s logic courses is used to piece together a pic-
ture of his theory of axiomatization and arithmetic that can be used to lay the
groundwork for the study of its ramifications and implications for philosophy of
logic and mathematics. It is argued that this shows that Husserl’s theory is close to
Hilbert’s and belies claims of kinship with Brouwerian Intuitionism understood
as the view that the collection of natural numbers and all of pure mathematics
develops out of the self-unfolding of “the fundamental intellectual phenomenon
of the falling apart of a moment of life into qualitatively different things, of which
one is experienced as giving way to the other and yet is retained by an act of mem-
ory.” It is contended that it needs to be determined whether Husserl’s theory is a
genuine, viable alternative to other, better known theories.

I. Introduction

It is well known that efforts to provide what Gottlob Frege once called
“a more detailed analysis of the concepts of arithmetic and a deeper
foundation for its theorems” (Frege [1879] 1967, 8) played a preemi-
nent role in shaping the course of twentieth century philosophy. Frege’s
and Bertrand Russell’s efforts to do so generated Analytic philosophy;
Edmund Husserl’s dissatisfaction with his own efforts to do so by apply-
ing Franz Brentano’s techniques in the Philosophy of Arithmetic set him
on the path to writing his groundbreaking Logical Investigations and
eventually to phenomenology.

It is also well known that for a time many philosophers were inclined
to interpret the evolution of Husserl’s ideas about the foundations of
mathematics from a Fregean perspective. This view was especially asso-
ciated with Dagfinn Føllesdal’s Master’s thesis Husserl and Frege: A
Contribution to Elucidating the Origins of Phenomenological Philosophy
(Føllesdal [1958] 1994) and his article “Husserl’s Notion of Noema”
(Føllesdal 1969). Since the 1970s, it has been combated by Guillermo
Rosado Haddock, J. N. Mohanty, myself, and others (Rosado Haddock
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1973, 1982; Mohanty 1974, 1982; Hill 1979; Hill and Rosado Haddock
2000).

Then, once the belief that Husserl was a Fregean subsided, the temp-
tation arose to see links between Husserl’s ideas on the foundations of
mathematics and Brouwerian Intuitionism. This interpretation is asso-
ciated with the work of Richard Tieszen (Tieszen 1989) and Mark van
Atten (van Atten 2007). It is opposed by Jairo da Silva, Rosado Haddock,
and myself. We consider that even a cursory examination of Husserl’s
ideas about axiomatization and numbers shows that Husserl’s ideas could
not in fact be more different from those of Brouwer. However, to my
knowledge, the extent to which Husserl rejected the major tenets of
Brouwerian Intuitionism has never been systematically demonstrated.

Now, the publication of Husserl’s logic courses from 1896 and
1902/03 by the Husserl Archives in 2001 has made available the new
material necessary to piece together a satisfactory picture of the develop-
ment of Husserl’s theories about axiomatization and the foundations of
mathematics, a subject rich in interesting ramifications and implications
for the philosophy of logic and mathematics. So, here I propose to take
advantage of the raw material now available to piece together a picture of
Husserl’s ideas about axiomatization and arithmetic that can be used to
lay the basic groundwork needed for exploration of those ramifications
and implications.

In the course of my exposition of Husserl’s theories about axiomatiza-
tion and arithmetic, I draw attention to specific areas in which they are at
odds with Brouwer’s main theses. The considerations thus brought to the
fore, I argue in the concluding sections, indicate that Husserl’s theories
were closer to those of Brouwer’s opponent, David Hilbert (cf. Hintikka
1997, 2008), and belie claims of kinship with Brouwerian Intuitionism
understood, in general, as the view that not only the collection of natural
numbers, but all of pure mathematics, develops out of the self-unfolding
of “the fundamental intellectual phenomenon of the falling apart of a
moment of life into qualitatively different things, of which one is experi-
enced as giving way to the other and yet is retained by an act of memory”
that Brouwer called the Primordial Intuition of two-ity and considered
to be the basis of the whole of Intuitionism (Brouwer [1912] 1983, 80;
Brouwer [1929] 1998, 45–46; Brouwer [1930] 1998, 57). I further sug-
gest that now that we are in possession of Husserl’s theory, we need to
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give it a try in order to determine whether it is just an ingeniously worked
out take on many of the issues in the philosophy of mathematics of his
time by the father of phenomenology, or a genuine, viable alternative to
theories more familiar to philosophers of logic and mathematics.

II. Husserl’s Initial Opposition to the Axiomatization
of Arithmetic

Husserl’s position in his 1891 Philosophy of Arithmetic was resolutely anti-
axiomatic. He attacked those who fall into remote, artificial constructions
which, with the intent of building the elementary arithmetic concepts
out of their ultimate definitional properties, interpret and change their
meaning so much that totally strange, practically and scientifically use-
less conceptual formations finally result. Especially targeted was Gottlob
Frege’s ideal of the “founding of arithmetic on a sequence of formal def-
initions, out of which all the theorems of that science could be deduced
purely syllogistically” (PA, 123–126).

As soon as one comes to the ultimate, elemental concepts, Husserl rea-
soned, all defining has to come to an end. All one can then do is to
point to the concrete phenomena from or through which the concepts
are abstracted and show the nature of the abstraction process. A verbal
explanation should place us in the proper state of mind for picking out,
in inner or outer intuition, the abstract moments intended and for repro-
ducing in ourselves the mental processes required for the formation of the
concept. He said that his analyses had shown with incontestable clarity
that the concepts of multiplicity and unity rest directly upon ultimate,
elemental psychical data, and so belong among the indefinable concepts.
Since the concept of number was so closely joined to them, one could
scarcely speak of defining it either (PA, 123–126). All these points are
made on the only pages of Philosophy of Arithmetic that Husserl ever
explicitly retracted (LI, 179n.).

Four years earlier, in On the Concept of Number, Husserl had set out to
anchor arithmetical concepts in direct experience by analyzing the actual
psychological processes to which he thought the concept of number owed
its genesis. To obtain the concept of number of a concrete set of objects,
say A, A, and A, he explained, one abstracts from the particular character-
istics of the individual contents collected, only considering and retaining
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each one insofar as it is a something or a one. Regarding their collective
combination, one thus obtains the general form of the set belonging to
the set in question: one and one, etc. and. . . and one, to which a number
name is assigned (Husserl 1887, 310, 352–356; PA, 85–86).

The enthusiastic espousal of psychologism of On the Concept of
Number is not found in Philosophy of Arithmetic. Husserl later con-
fessed that doubts about basic differences between the concept of number
and the concept of collecting, which was all that could be obtained
from reflection on acts, had troubled and tormented him from the very
beginning and had eventually extended to all categorial concepts and to
concepts of objectivities of any sort whatsoever, ultimately to include
modern analysis and the theory of manifolds, and simultaneously to
mathematical logic and the entire field of logic in general. He did not
see how one could reconcile the objectivity of mathematics with psycho-
logical foundations for logic (Husserl 1975, 34–35; Husserl [1902/03a]
2001, 3–59).

III. Husserl’s VOLTE-FACE

In sharp contrast to Brouwer who denounced logic as a source of
truth (Brouwer [1948] 1983, 90–96), from the mid-1890s on, Husserl
defended the view, which he attributed to Frege’s teacher Hermann Lotze,
that pure arithmetic was basically no more than a branch of logic that had
undergone independent development. He bid students not to be “scared”
by that thought and to grow used to Lotze’s initially strange idea that
arithmetic was only a particularly highly developed piece of logic (Husserl
[1896] 2001, 241, 271; Husserl 1902/03b, 19, 34; Hua 24, §15).

Many years later, Husserl would explain in Formal and Transcendental
Logic that his “war against logical psychologism was meant to serve no
other end than the supremely important one of making the specific
province of analytic logic visible in its purity and ideal particularity, freeing
it from the psychologizing confusions and misinterpretations in which it
had remained enmeshed from the beginning” (FTL, §67). He had come
to see arithmetic truths as being analytic, as grounded in meanings inde-
pendently of matters of fact. He had come to believe that the entire
overthrowing of psychologism through phenomenology showed that his
analyses in On the Concept of Number and Philosophy of Arithmetic had to
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be considered a pure a priori analysis of essence (Husserl 1975, 42–43).
For him, pure arithmetic, pure mathematics, and pure logic were a priori
disciplines entirely grounded in conceptual essentialities, where truth was
nothing other than the analysis of essences or concepts. Pure mathematics
as pure arithmetic investigated what is grounded in the essence of num-
ber. Pure mathematical laws were laws of essence (Husserl [1905] 1994,
37; Hua 24, §13c).

He told students that it was to be stressed repeatedly and emphatically
that the ideal entities so unpleasant for empiricistic logic, and so consis-
tently disregarded by it, had not been artificially devised either by himself,
or by Bolzano, but were given beforehand by the meaning of the universal
talk of propositions and truths indispensable in all the sciences. This, he
said, was an indubitable fact that had to be the starting point of all logic
(Husserl [1908/09] 2003, 45).

All purely mathematical propositions, he taught, express something
about the essence of what is mathematical. Their denial is consequently
an absurdity. Denying a proposition of the natural sciences, a proposition
about real matters of fact, never means an absurdity, a contradiction in
terms. In denying the law of gravity, I cast experience to the wind. I violate
the evident, extremely valuable probability that experience has established
for the laws. But, I do not say anything “unthinkable,” absurd, something
that nullifies the meaning of the word as I do when I say that 2 × 2 is
not 4, but 5 (Hua 24, §13c).

Husserl taught that every judgment either is a truth or cannot be a
truth, that every presentation either accorded with a possible experience
adequately redeeming it, or was in conflict with the experience, and that
grounded in the essence of agreement was the fact that it was incom-
patible with the conflict, and grounded in the essence of conflict that it
was incompatible with agreement. For him, that meant that truth ruled
out falsehood and falsehood ruled out truth. And, likewise, existence and
non-existence, correctness and incorrectness cancelled one another out
in every sense. He believed that that became immediately apparent as
soon as one had clarified the essence of existence and truth, of correctness
and incorrectness, of Evidenz as consciousness of givenness, of being and
not-being in fully redeeming intuition.

At the same time, Husserl contended, one grasps the “ultimate mean-
ing” of the basic logical law of contradiction and of the excluded middle.
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When we state the law of validity that of any two contradictory proposi-
tions one holds and the other does not hold, when we say that for every
proposition there is a contradictory one, Husserl explained, then we are
continually speaking of the proposition in its ideal unity and not at all
about mental experiences of individuals, not even in the most general way.
With talk of truth it is always a matter of propositions in their ideal unity,
of the meaning of statements, a matter of something identical and atem-
poral. What lies in the identically-ideal meaning of one’s words, what one
cannot deny without invalidating the fixed meaning of one’s words has
nothing at all to do with experience and induction. It has only to do with
concepts (Husserl 1902/03b, 33; Hua 24, §§13a, 50a; Husserl [1908/09]
2003, 45).

In sharp contrast to this, Brouwer saw intuitionistic mathematics as
deviating from classical mathematics because the latter uses logic to gen-
erate theorems and in particular applies the principle of the excluded
middle. He believed that Intuitionism had proven that no mathemati-
cal reality corresponds to the affirmation of the principle of the excluded
middle and to conclusions derived by means of it. He reasoned that
“since logic is based on mathematics—and not vice versa—the use of the
Principle of the Excluded Middle is not permissible as part of a mathe-
matical proof” (Brouwer [1921] 1998, 23; Brouwer [1929] 1998, 51–53;
Brouwer [1948] 1983, 90; Brouwer [1928a] 1967; Brouwer [1928b]
1998).

IV. Analysis of the Concept of Number

According to Husserl, only concepts are purely logical that are not limited
to a special field of objects, that not only actually figure and can figure
in all the sciences, but are common and necessary to all sciences because
they belong to what belongs to the ideal essence of science in general. So,
all concepts relating to objects in general in the most universal ways, or
to thought forms in general in which objects are brought to theoretically
objective unity are purely logical.

In contrast to Brouwer’s idea that it is the fundamental phenomenon
of mathematical thinking, the intuition of two-oneness that in its self-
unfolding creates not only the numbers one and two, but produces
the collection of natural numbers and finally all of pure mathematics
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(Brouwer [1912] 1983, 80; Brouwer [1929] 1998, 45–46), the concept of
number stood as a paradigm of a purely logical concept in Husserl’s sense.
Each and every thing, he reasoned, can be counted as one. No science is
conceivable in which the number concepts cannot find an application.
All purely mathematical concepts like unit, multiplicity, cardinal num-
ber, order, ordinal number, and manifold are purely logical because they
clearly relate in the most universal way to numbers in general and are
only made possible out of the most universal concept of object. However,
geometry, mathematical mechanics and all mathematico-natural scien-
tific disciplines do not belong in pure logic since their concepts have real
content (Husserl 1902/03b, 31–43, 49).

In his logic courses, Husserl taught that pure number theory is a sci-
ence that unfolds the meaning of the idea number and arithmetic in a
systematic theory of the laws unfolding the meaning of cardinal num-
ber, itself the answer to the question: “How many?” He illustrated what
he meant by this “unfolding the meaning of the question ‘How many?’”
Since each and every thing can be counted as one, to conceive (konzip-
ieren) the concept of number, or any arbitrarily defined number, we only
need the concept of something in general. One is something in general.
Anything can be counted as one and out of the units all cardinal num-
bers built: one and one or two, two plus one, etc. (Husserl 1902/03b,
31–43, 49). One pear and one man, one apple and one pear, one apple
and one apple all have the form “one and one. . .” This form is the concept
“one and one” or “two.” Anything and anything, remains unchanged. It
is different from “one and one and one, etc.” (Husserl [1896] 2001, 102).

Eminent thinkers like Lotze, Husserl explained on another occasion,
correctly recognized cardinal number as a specific differentiation of the
concept multiplicity (Vielheit) and multiplicity as the most universal log-
ical concept combining objects in general. This most universal concept of
multiplicity splits into a series of different special forms and these are the
cardinal numbers. Since an apple is not a multiplicity of apples, an A not
a multiplicity of As, then an apple or an A cannot be designated by a car-
dinal number. The first number in the number series is 2 As. If from 2 As,
we use definitions to form the new number 2 As and 1 A and designate
them as 3 As, likewise 3 As and 1 A as 4 As, etc., then we obtain a series
of the so-called natural numbers, infinite in one direction. The totality of
numbers is not exhausted in so doing. For, we can also form the concept
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of the number of numbers of the natural number series, which can easily
be shown not to be identical with any number of that series itself (Husserl
[1896] 2001, 102, 241–242).

To questions as to how arithmetic came about and how the founda-
tions of arithmetic were provided, Husserl answered that people analyzed
the arithmetic propositions at first given as they were first entertained by
people. They found that certain relations were grounded in the concept
of number. For instance, any two numbers are either equal or one is larger
or smaller than the other. They further noticed that certain combinations
were grounded in the concept of number, first of all addition, then mul-
tiplication, raising to a higher power and the inverse of these operations,
subtraction, division, extracting roots, logarithms. Given with the ele-
mentary combinations were certain simple, directly intelligible laws that
careful analysis traced back to a certain minimal number of laws no longer
reducible to one another. Since these laws lie in the simple meaning of
the concepts founding them, they are a priori. They are not propositions
about matters of fact drawn from experience, but propositions about rela-
tions of ideas obtained by analysis of the universal concepts by merely
digging more deeply into their meaning (Husserl 1902/03b, 33).

The first law of arithmetic, Husserl taught, is a + b = b + a, or “For
any two numbers there is a sum a + b.” Denying its truth would be a
contradiction. Anyone who does so uses “cardinal number” in some other
way, does not know what the words mean or is abandoning its concept.
It is a matter of a truth that could not possibly be false, of an analytic
statement whose denial is self-contradictory (Husserl 1902/03b, 33, 35;
Hua 24, §13c).

Mathematicians can set down a + 1 = 1 + a in a single blow as some-
thing unconditionally valid and certain because it is part of the meaning
of number (of cardinal number in the original sense) for that to be the
case, and it would be tantamount to flying in the face of the meaning of
the words “how many” if one wanted to deny it. Likewise, it is part of the
meaning of talk of “cardinal numbers” that each number can be increased
by one. To say that a cardinal number, a how many, cannot be increased
is tantamount to not knowing what one is talking about. It is tantamount
to contravening the meaning, the identical meaning, of talk of cardinal
numbers. An elementary formula of this kind already contains infinitely
many things in it. It gives not one basic law of arithmetic, but a whole
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series. Infinitely many laws are simply produced from a primitive number
proposition like a + b = b + a by the fact that because of their universality
a + b are substitutable (Husserl [1896] 2001, 250; Husserl 1902/03b, 33,
35; Hua 24, §13c).

Each genuine axiom is a proposition that unfolds the idea of cardinal
number from some side or unfolds some of the ideas inseparably con-
nected with the idea of cardinal number. These direct arithmetical laws
develop directly in the evidence of certainty and this certitude and evi-
dence carries over to all theses in deductive substantiation. And so these
basic laws go on to serve as a basis for systematic deductions in which
ever new laws are grounded (Husserl [1896] 2001, 39, 243; Husserl
1902/03b, 33, 35, 39; Hua 24, §13c).

On the basis of its axioms, the theorems of pure arithmetic are derived
by pure deduction following systematic, simple procedures. The field
branches out into more and more theories and partial disciplines, ever
new problems surface and are finally solved by the expending the greatest
mathematical acumen and following the most rigorous methods. So it is
that all of arithmetic is grounded in the arithmetical axioms. The unend-
ing profusion of wonderful theories it develops is already fixed, enfolded
in the axioms, and theoretical-systematic deduction effects the unfolding
of them (Husserl [1896] 2001, 39, 243; Husserl 1902/03b, 33, 35, 39;
Hua 24, §13c).

Such talk of a priori concepts and ideal entities stands in sharp contrast
to Brouwer’s mockery of what he called the “foolish superstition” to treat
words as labels for “fetish-like” concepts which, along with the relations
between them, are assumed to exist independently of the causal attitude
of human beings. This was how, he thought, people came to believe that
certain relations between concepts derived from axioms with the help of
logical principles might be treated as ideal truths (Brouwer [1929] 1998,
49–50). Brouwer admitted that from certain relations among mathemat-
ical entities assumed as axioms, mathematicians deduce other relations
in accordance with fixed laws in the conviction that they are deriving
truths from truths by logical reasoning, but he maintained that this “non-
mathematical conviction of truth or legitimacy has no exactness whatever,
and is nothing but a vague sensation of delight arising from the knowl-
edge of the efficacy of the projection into nature of the relations and laws
of reasoning” (Brouwer [1912] 1983, 78).
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V. Calculating with Concepts and Propositions

Husserl’s search for answers raised by his earliest analyses of the concept of
number in “On the Concept of Number” and Philosophy of Arithmetic led
him beyond the confines of the mathematical realm to a universal theory
of formal deductive systems in general. He saw that developments in for-
malization had unmasked close relationships between number statements
and the propositions of logic and that this made it possible to develop
a genuine logical calculus for calculating with propositions in the way
mathematicians do with numbers, quantities, and the like (LI, 41–42;
Husserl 1975, 16–17, 35; Husserl 1994, 490–491; FTL, §§23–27).

By 1896, he was teaching that the formal discipline of propositions
in general and of concepts in general was a mathematical discipline that
was of precisely the same nature and used the same methods as familiar
mathematical disciplines like arithmetic and that there was nothing at
all extraordinary about the idea of calculating with concepts and proposi-
tions. Practically speaking, he enthused, arithmetic actually represents the
most marvelous tool devised by the human mind for purposes of deduc-
tion. It is the science in which the deductive relations are analyzed most
carefully (Husserl [1896] 2001, 250, 271–272).

According to Husserl, only the completely unfounded prejudice that
the essence of the mathematical lies in number and quantity could explain
rejection of the new mathematical theory of conceptual and propositional
inferences. But, what is mathematical in the procedure of arithmetic,
he protested, does not hinge upon our having to do with numbers in
them. The essence of the mathematical does not lie in being quantita-
tively determinable, but in establishing a purely apodictic foundation of
the truths of a field from apodictic principles. It is a matter of a rigorously
scientific, a priori theory that builds from the bottom up and derives the
manifold of possible inferences from the axiomatic foundations a priori
in a rigorously deductive way (Husserl [1896] 2001, 272–273; Husserl
1902/03b, 231–232, 239–249; Hua 24, 434).

To the question as to what it is that characterizes calculating in the
field of numbers, Husserl answered that the calculating obviously involves
operating with the signs, not with the concepts themselves. To solve a
problem, to derive a proposition, we must not think at all about the con-
cepts themselves, but by using procedures defined by set rules, we can
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be content to link signs to signs, replace combinations of signs by other
combinations of signs, etc. At first, the result of the calculation is again
purely a combination of signs on paper, but, the interpretation of the
results of the inference yields precisely the proposition sought (Husserl
[1896] 2001, 247).

In a similar fashion, he taught that every purely formal procedure
that proceeds strictly deductively can be presented in algebraic forms
and when this occurs scientific thinking first wins a free overview of all
possibilities of deductive reasoning and that sovereign mastery of all pos-
sible problems and ways of solving them that is the prerequisite for the
most exact and most universal solution of problems of the field concerned
(Husserl [1896] 2001, 272–273; Husserl 1902/03b, 37, 231, 239–249).

In his courses, Husserl gave the details of his theory of inference in
terms which, apart from some differences in notation, are familiar and
intelligible to us nowadays (Husserl [1896] 2001, 250, 254; Husserl
1902/03b, 239–240). Among his laws and principles figured the identity
principle, which Husserl considered to be just another way of express-
ing the principle of contradiction that was preferable for certain goals of
inference and the law of the excluded middle, A or not A, it is not true
that not not A and not A = it is not true that A and not A implies A or
not A. He considered his Principle 6, which reads:

If for every M and for every N, it is always true that M and N implies
P, then it is always true that P,

to be especially important because it grounded the mathematical pro-
cedure according to which one could manipulate arbitrary number
formulas in the calculation as if they were propositions with specifically
given numbers. Every inference yields another formula and not just an
individual proposition (Husserl [1896] 2001, 265).

VI. Three Levels of Logic

Developments in mathematics also led Husserl to detect a certain nat-
ural order in formal logic and to broaden its domain to include two
layers above traditional Aristotelian logic. He considered the detection
of these three layers of formal logic to be of the greatest importance for
the understanding of logic and philosophy.
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According to his theory, the lowest layer, traditional Aristotelian logic,
makes up but a small area of pure logic. A logic of subject and predicate
propositions and states of affairs, it deals with what is stated about objects
in general from a possible perspective. The purely logical disciplines ris-
ing above that logic of subjects and predicates still deal with individual
things, but these objects are no longer empirical or material entities. They
are removed from acts, subjects, or empirical persons of actual reality. It
is no longer a question of objects as such about which one might predi-
cate something, but of investigating what is valid for higher order objects
that are determined in purely formal terms and deal with objects in an
indeterminate, general way.

The second layer is an expanded, completely developed analytics where
one reasons deductively with concepts and propositions in a purely for-
mal manner because each concept is analytic and each procedure purely
logical. Husserl located the basic concepts of mathematics, the theory of
cardinal numbers, the theory of ordinals, set theory here. Numbers no
longer function as independent entities, but are dependent structures.
One manipulates signs for which rules having such and such a form are
valid, signs which like chess pieces acquire their meaning in the game
through the rules of the game. One may proceed mechanically and the
result will prove accurate and justified.

According to Husserl, the third layer of formal logic is that of the sci-
ence of deductive systems in general, the theory of manifolds. Manifolds
are pure forms, which, like molds, remain totally undetermined as to
their content and not bound to any possible concrete interpretation, but
to which thought must necessarily conform in order to be thought and
known in a theoretical manner. Axiom forms define a manifold of any-
thing whatsoever in an indeterminate, general way. A set of axioms of
such and such a form that are consistent, independent, and purely log-
ical in that they obey the principle of non-contradiction, yields the set
of propositions belonging to the theory of such and such a form. After
formalization, words are completely empty signs only having the purely
formal meaning laid down for them by the axiom forms. A certain some-
thing must by definition stand in a certain relationship to something else
in the defining manifold.

On the basis of the definition of the manifold, we can derive con-
clusions, construct proofs, and it is then certain a priori that anything
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obtained in this way will correspond to something in our theory. Only a
form is defined. It exists insofar as it is correctly defined, insofar as the
axiom forms are ordered in such a way as to contain no formal contra-
dictions, no violation of analytic principles. But whether axioms as truths
have existence in any objective real or ideal spheres corresponding to the
prescribed form is left open. The theory of manifolds, or science of the-
ory forms, is a field of free, creative investigation made possible once
form is emancipated from content. Once it is realized that deductions
and sequences of deductions continue to be meaningful and remain valid
when another meaning is assigned to the symbols, we are free to reason
completely on the level of pure forms where we can vary the systems in
different ways (Hua 24, §§18–19; Hua 30, Ch. 11).

VII. Manifolds and Imaginary Numbers

In Logical Investigations, Husserl called his theory of complete manifolds
the key to the only possible solution to how in the realm of numbers
impossible, non-existent, meaningless concepts might be dealt with as real
ones (LI, Prolegomena § 70). In Ideas, he wrote that his chief purpose in
developing his theory of manifolds had been to find a theoretical solution
to the problem of imaginary quantities (Ideas, §72 and note).

Husserl saw how questions regarding imaginary numbers come up in
mathematical contexts in which formalization yields constructions which
arithmetically speaking are nonsense, but can be used in calculations.
When formal reasoning is carried out mechanically as if these symbols
have meaning, if the ordinary rules are observed, and the results do not
contain any imaginary components, these symbols might be legitimately
used. And this could be empirically verified (PA, 411–413; FTL, §31;
Schuhmann and Schuhmann 2001).

In a letter to Carl Stumpf in the early 1890s, Husserl explained how,
in trying to understand how operating with contradictory concepts could
lead to correct theorems, he had found that for imaginary numbers like√

2 and
√

-1, it was not a matter of the possibility or impossibility
of concepts. Through the calculation itself and its rules, as defined for
those fictive numbers, the impossible fell away, and a genuine equation
remained. One could calculate again with the same signs, but referring to
valid concepts, and the result was again correct. Even if one mistakenly
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imagined that what was contradictory existed, or held the most absurd
theories about the content of the corresponding concepts of number,
the calculation remained correct if it followed the rules. He concluded
that this must be a result of the signs and their rules (Husserl 1994, 13,
15–16). The fact that one can generalize, produce variations of formal
arithmetic that lead outside the quantitative domain without essentially
altering formal arithmetic’s theoretical nature and calculational methods
brought Husserl to realize that there was more to the mathematical or
formal sciences, or the mathematical method of calculation than could be
captured in purely quantitative analyses (LI, 41–43; Husserl 1975, 35).

Understanding the nature of theory forms, he explained in sev-
eral texts, shows how reference to impossible objects can be justified.
According to his theory of manifolds, one could operate freely within a
manifold with imaginary concepts and be sure that what one deduced was
correct when the axiomatic system completely and unequivocally deter-
mined the body of all the configurations possible in a domain by a purely
analytical procedure (Hill and Rosado Haddock, Chapter 9).

It was the completeness of the axiomatic system that gave one the right
to operate in that free way. A domain was complete when each gram-
matically constructed proposition exclusively using the language of the
domain was determined from the outset to be true or false in virtue of
the axioms, i.e., necessarily followed from the axioms or did not. In that
case, calculating with expressions without reference could never lead to
contradictions. Complete manifolds have the “distinctive feature that a
finite number of concepts and propositions—to be drawn as occasion
requires from the essential nature of the domain under consideration—
determines completely and unambiguously on the lines of pure logical
necessity the totality of all possible formations in the domain, so that
in principle, therefore, nothing further remains open within it.” In such
complete manifolds, he stressed, “the concepts true and formal implica-
tion of the axioms are equivalent” (Ideas, §§71–72; Prolegomena, §70;
Hua 24, §§19; Hua 30, §56; FTL, §31; PA, 439).

Husserl pointed out that there may be two valid discipline forms that
stand in relation to one another in such a way that the axiom system of
one may be a formal limitation of that of the other. It is then clear that
everything deducible in the narrower axiom system is included in what
is deducible in the expanded system, he explained. In the arithmetic of
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cardinal numbers, Husserl explained, there are no negative numbers, for
the meaning of the axioms is so restrictive as to make subtracting 4 from
3 nonsense. Fractions are meaningless there. So are irrational numbers,√

–1, and so on. Yet in practice, all the calculations of the arithmetic of
cardinal numbers can be carried out as if the rules governing the oper-
ations are unrestrictedly valid and meaningful. One can disregard the
limitations imposed in a narrower domain of deduction and act as if
the axiom system were a more extended one (Hua 30, §56). We can-
not arbitrarily expand the concept of cardinal number, Husserl reasoned.
But we can abandon it and define a new, pure formal concept of posi-
tive whole number with the formal system of definitions and operations
valid for cardinal numbers. And, as set out in our definition, this formal
concept of positive numbers can be expanded by new definitions while
remaining free of contradiction. Fractions do not acquire any genuine
meaning through our holding onto the concept of cardinal number and
assuming that units are divisible, he theorized, but rather through our
abandonment of the concept of cardinal number and our reliance on a
new concept, that of divisible quantities. That leads to a system that par-
tially coincides with that of cardinal numbers, but part of which is larger,
—meaning that it includes additional basic elements and axioms. And
so in this way, with each new quantity, one also changes arithmetics. The
different arithmetics do not have parts in common. They have totally dif-
ferent domains, but an analogous structure. They have forms of operation
that are in part alike, but different concepts of operation (PA, 435–436).

Husserl concluded that formal constraints banning meaningless
expressions, meaningless imaginary concepts, reference to non-existent
and impossible objects restrict us in our theoretical, deductive work, but
that resorting to the infinity of pure forms and transformations of forms
frees us from such conditions and explains why having used imaginaries,
what is meaningless, must lead, not to meaningless, but to true results
(Hua 30, §57; Hill 2002b).

VIII. Mathematics and Phenomenology

Husserl wanted to hammer into people’s minds a sense of the proper rela-
tionship between phenomenology and mathematics. He stressed that all
fields of theoretical knowledge are particular instances of manifolds, but
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not all sciences are theoretical disciplines like mathematical physics, pure
geometry, or pure arithmetic whose systemic principles are purely analyt-
ical. Theoretical disciplines have a systemic form that belongs to formal
logic itself, that must be constructed a priori within formal logic itself and
within its supreme discipline the theory of manifolds as part of the overall
system of forms of deductive systems that are possible a priori. However,
sciences like psychology, history, the critique of reason and, notably, phe-
nomenology require one go beyond the analytico-logical model. When
they are formalized and one asks what it is that binds the propositional
forms into a single system form, one finds oneself facing nothing more
than the empty general truth that there is an infinite number of propo-
sitions connected in objective ways that are compatible with one another
in that they do not contradict each other analytically (FTL, §35a; Hua
30, §54).

We have the natural sciences of physical and mental nature, the
mathematical sciences, logic, including formal logic, the sciences of
value, ethics. None of that is phenomenology, Husserl underscored.
Transcendental phenomenology has no dealings with a priori ontology,
none with formal logic and formal mathematics, none with geometry as
a priori theory of space, none with a priori real ontology of any kind
(thing, change etc.). Transcendental phenomenology is phenomenology
of the constituting consciousness, and consequently not a single objec-
tive axiom, meaning one relating to objects that are not consciousness,
belongs in it, no a priori proposition as truth for objects, as something
belonging in the objective science of these objects, or of objects in gen-
eral in formal universality. The axioms of geometry do not belong in
phenomenology, because phenomenology is not a theory of the essences
of shapes, of spatial objects. Essence-propositions about objects do not
belong in the phenomenology of knowledge, insofar are they are objec-
tive truths and as truths have their place in a truth-system in general (Hua
24, 411, 422–423).

The special interest of transcendental phenomenology does not lie
in the theoretical concepts and laws to which the sciences are subject.
Epistemological interest, transcendental interest, does not aim at objec-
tive being and laying down truths for objective being, consequently, not
at objective science. What is objective belongs precisely to objective sci-
ence, and what objective science still lacks for completion is its affair to
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obtain and its alone. The interest of transcendental phenomenology aims
rather at consciousness as consciousness of objects (Hua 24, 425).

IX. What Numbers Could Not Be For Husserl

There is no longer any need to prove that Husserl was not a Fregean.
Husserl’s theory of arithmetic is not grounded in the unworkable theory
of identity and reference that forced Frege to introduce the extensions of
concepts and axiom of extensionality that he concluded led to Russell’s
paradox (Hill 1997). Husserl already spurned extensions in Philosophy of
Arithmetic. In Formal and Transcendental Logic, he qualified extensional
logic as naive, risky, and doubtful, and complained that it had been the
source of many a contradiction requiring every kind of artful device to
make it safe for use in mathematical reasoning. He condemned the work
of extensionalist logicians, as fundamentally misguided and unclear (FTL,
§§23b, 24, 26c; Hill and Rosado Haddock 2000). If, as Quine told us, the
notion of essence is the forerunner of the modern notion of intension or
meaning, and meaning is what essence becomes when it is divorced from
the object of reference and wedded to the word (Quine [1953] 1961,
22), then it is clear from the above that Husserl’s logic was resolutely
intensional.

So Husserl was not a Fregean, but the theory that he was a Brouwerian
still appeals to some and remains to be countered. In the course of this
exposition of Husserl’s ideas about axiomatization and arithmetic, I have
pointed to some specific areas in which Husserl’s and Brouwer’s theories
on the foundations of mathematics diverge. I wish now to reinforce what
I have said by adding the following reflections.

Husserl’s theory of the derivation of arithmetic from the unfolding
of the concept “How Many?” could not in fact be more different from
Brouwer’s theory of self-unfolding of mathematics from the mathemati-
cal primordial intuition of two-ity. According to Brouwer, mathematics,
science and language are the main functions of human activity by which
human beings dominate nature and maintain order within it. These three
functions originate in three forms of action of the individual human
being’s will to live: mathematical attention; mathematical abstraction; the
use of sounds to impose his or her will on others. Mathematical attention
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comes into being in two phases. Time awareness, the first, is the fun-
damental intellectual phenomenon of the separating of a life moment
into two qualitatively different parts that unfolds itself to create a time
sequence of arbitrary multiplicity by giving birth to temporal two-ity,
which can in turn be taken as an element of a new two-ity to create
temporal three-ity, and so on. Mathematical attention receives its jus-
tification only by the “mathematical act,” when “causal attention,” the
second phase of mathematical attention, enables people to force into
being, “indirectly and by cool calculation,” a particular event known as
the aim that appears later in the sequence of phenomena. For Brouwer,
the “causal coherence of the world is the outward-acting force of human
thought, serving a dark function of will, making the world more or less
defenseless like the snake that renders its prey powerless through its hyp-
notic stare or the inkfish through its darkening spray” (Brouwer [1929]
1998, 45–46).

In higher levels of civilization, Brouwer believed, mathematical
abstraction enters in to divest two-ity of its material content, where-
upon it becomes the empty form that is the common substrate of all
two-ities that forms the Primordial Intuition of Mathematics that in its
self-unfolding produces, “not only the numbers one and two, but also
all finite ordinal numbers, inasmuch as one of the elements of the two-
oneness may be thought of as a new two oneness, which process may be
repeated indefinitely; this gives rise still further to the smallest infinite
ordinal number ω.. . . gives rise immediately to the intuition of the lin-
ear continuum. . ..” and finally all of pure mathematics (Brouwer [1929]
1998, 45–46; Brouwer [1912] 1983, 80; Brouwer [1952] 1996, 1200).

In maintaining that temporal two-ity born from time awareness is the
basal intuition of all of mathematics Brouwer saw himself as one hold-
ing resolutely to the Kant’s apriority of time. He described intuitionistic
mathematics as “an essentially languageless activity of the mind having its
origin in the perception of a move of time” (Brouwer [1912] 1983, 80;
Brouwer [1929] 1998, 45–46; Brouwer [1952] 1996, 1200). In contrast,
Husserl taught that numbers could not concern what happens in or to real
temporal matters of fact that we call mental experiences of experiencing
individuals. He stated unequivocally that Kant had brought pure arith-
metic into an entirely inadmissible relationship to time (Hua 24, §§11,
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13b, 23). Theories of number based on intuitions of time were already
spurned in On the Concept of Number and the Philosophy of Arithmetic
(Husserl 1887, 320–329; PA, 22–35).

For Husserl, mathematics could not originate in the consciousness or
possibly be developed from any intuition whatsoever. He taught that the
laws of arithmetic just unfold what is found in the concept of number.
They make no pronouncements about acts of counting, causal rela-
tionships, experiences of number, but are just about numbers (Husserl
1902/03b, 32). He insisted that the presenting or thinking of a number
proposition must be distinguished from the number proposition itself.
Thinking 2 × 2 = 4 is a phenomenon of my consciousness, but it is
there when one turns to other objects. If one thinks again that 2 × 2 is 4,
then that mental act is new. It is not the same, but what is thought is the
same. Countless acts can objectively underlie the same thing, and in this
case this identical thing is 2 × 2 = 4 (Husserl [1896] 2001, 19).

Brouwer contended that for Intuitionism, mathematical exactness
exists in the intellect (Brouwer [1912] 1983, 78). In contrast, Husserl
insisted that mathematical truth holds whether anyone has reason or not
to believe it, or does not believe it, whether anyone sees it or does not see it
(Hua 24, §11). In Formal and Transcendental Logic, he said that the prob-
lem guiding him originally was in isolating and determining the meaning
of a pure analytic logic of non-contradiction was that the evidence of the
truths of formal mathematics and formal logic is of an entirely different
order than that of other a priori truths in that the former do not involve
any intuition of objects or states of affairs whatsoever (FTL, Introduction
and §§7–8).

Brouwer hoped to make it clear that “intuitionistic mathematics is
inner architecture, and that research in foundations of mathematics is
inner inquiry” (Brouwer [1948] 1983, 96). In contrast, Husserl’s formal
logic is a blueprint for limning the true and ultimate structure of real-
ity by engaging in pure a priori analyses of essence that know no acts,
subjects, or empirical persons, or objects belonging to actual reality. He
taught that there was not to be any radical analysis of the psychological
origins of the fundamental concepts of mathematics per se. He stressed
that pure mathematics as pure arithmetic is not concerned with souls
(Seele) (Hua 24, §§ 13c, 18; Hua 30, ch. 11).
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X. Conclusion

So, if Husserl was neither a Fregean nor a Brouwerian, nor really even a
phenomenologist when it came to mathematics, what was he? When we
find Husserl teaching that calculating in the field of numbers obviously
involves operating with signs and not with the concepts themselves, that
to solve a problem, to derive a proposition, one must not think at all
about the concepts themselves, but by using procedures defined by set
rules, link signs to signs, replace combinations of signs by other com-
binations of signs, etc. (Husserl [1896] 2001, 247), this automatically
suggests kinship with the ideas of Husserl’s colleague at the University of
Göttingen, David Hilbert.

Husserl’s teachings about axiomatization, arithmetic, completeness
and consistency, the foundations of mathematics also display kinship with
Hilbert’s ideas, kinship that Husserl himself acknowledged in Ideas I §72,
Formal and Transcendental Logic §§28–36 and Crisis §9f and note, where
he also made it clear that he considered the fact of this kinship to be sig-
nificant. In §31 of Formal and Transcendental Logic, he even went so far as
to say that the close study of his analyses would reveal that the underlying,
though inexplicit, reasons which had led Hilbert to attempt to complete a
system of axioms by adding a separate axiom of completeness were much
the same as those which had played a determinant role in Husserl’s own
independent formulation of his concept of completeness. In those texts,
Husserl explicitly refers back to his theory of complete manifolds in the
Prolegomena §§ 69–70 and to the then unpublished material from his
Göttingen period now available in appendices to the Husserliana edition
of his Philosophy of Arithmetic (Hill 1995).

However, caution also needs to be exercised in uncovering parallels
in the ideas of original thinkers. Kinship can be superficial and it is
not influence. In this case, it is important to remember that Husserl
developed his ideas independently of Hilbert. Husserl’s interest in axiom-
atization, completeness and formalist foundations for mathematics is
traceable back to his early years in Halle, before he and Hilbert were
together in Göttingen. They originally derived from problems regarding
imaginary numbers which first came up while he was trying to complete
Philosophy of Arithmetic. His 1896 teachings about the axiomatization of
arithmetic antedated Hilbert’s call to axiomatize arithmetic, which first
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went out in 1899 in “On the Concept of Number,” Hilbert’s first essay
on the foundations of arithmetic (Hilbert [1900] 1996; Hill 1995).

Although Husserl acknowledged kinship as concerns completeness, he
said that he developed his concept of completeness independently of
Hilbert’s axiom of completeness. His earliest ideas on completeness were
tied in, not only with his inquiries into the logical foundations of the real
number system, but also with a more specifically philosophical quest to
clarify the sense of the analytic a priori and develop a pure analytic logic
free of any taint of psychologism. Moreover, Husserl criticized Hilbert’s
appeal to the axiom of completeness in “On the Concept of Number.”
Husserl said that that kind of completeness can be of no use whatso-
ever, because it is not legitimate completeness, not something specifically
characteristic of axiom systems. . . because any axiom system can be made
quasi complete by appealing to an axiom of that kind (Hill 1995). As Jairo
da Silva has pointed out, there are many senses of completeness (da Silva
2000a; 2000b; 2005).

When Husserl was appointed to the University of Göttingen in
1900, he was warmly welcomed into Hilbert’s circle (Hua 21, XII).
As documents in the Niedersächsische Staats- und Universitätsbibliothek
Göttingen, Abteilung Handschriften und Seltene Drücke and in the
Geheimes Staatsarchiv Preussicher Kulturbesitz in Berlin show, Husserl’s
colleagues in the philosophy department at the University of Göttingen
did not consider him to be “a desirable addition to the faculty.” Husserl
did, though, have an ardent supporter in the person of Hilbert, who
complained that people had not seen, or had not wanted to see, how
important it was to support Husserl’s efforts. In Hilbert’s opinion,
Husserl was viewed in professional circles as one of the most prominent
and creatively most active scholars in the field of systematic, purely theo-
retical philosophy. Hilbert portrayed Husserl as an exception, as someone
who was not tainted by relativism, someone who believed in the possi-
bility of philosophical science and labored to make it a reality. He called
the Logical Investigations epoch-making. Hilbert considered it no acci-
dent that Husserl had come to the mathematical environment cultivated
there.

However, nowhere in his published writings on philosophy does
Hilbert ever acknowledge being influenced by Husserl or having exer-
cised influence upon him. Rather, in them, Hilbert affirms the abiding
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significance of what he called the most general fundamental idea of the
Kantian theory of knowledge, namely the philosophical problem of estab-
lishing the intuitive a priori attitude and, with that, of investigating the
prerequisites for the possibility of any conceptual knowledge and at the
same time of any experience. Hilbert says that this is essentially what had
happened in his own investigations into the principles of mathematics
(Hilbert [1930] 1996, 383; Hilbert [1931] 1998, 266–267).

Be that as it may, once Husserl’s theory of the axiomatization of arith-
metic has been pieced together and the relationship of his ideas to Frege’s,
Brouwer’s, and Hilbert’s theories on the foundations of mathematics has
been clarified, the really important question to be answered is whether his
theory is really tenable and viable, whether it works, or whether it is not
ultimately just an ingeniously worked out take on many of the issues in
the philosophy of mathematics of his time by the father of phenomenol-
ogy. Now that we have the material we need to piece together Husserl’s
theory, we need to give it a try. It needs to be tested to see whether it is
tenable. That is the next step that needs to be taken.

I am personally of the conviction that such testing will unearth addi-
tional arguments to prove that Husserl had a deeper understanding of
the issues that went into the investigations foundations of mathematics
that generated analytic philosophy than analytic philosophers themselves
have ever had. As the student and assistant of Karl Weierstrass, the long-
time friend and colleague of both Georg Cantor and David Hilbert,
Husserl was on the ground floor when it came to the grounding of math-
ematics. When he was teaching his logic courses, he was already in a
position to take into account the shortcomings of both Cantor’s and
Frege’s efforts. He was already perfectly lucid about those of the lat-
ter at the time he published Philosophy of Arithmetic (Hill 1991; Hill
2000a). Husserl’s theory is grounded in an analytic derivation of num-
ber from the concept of “How Many” and not in the deeply flawed
theories about identity and reference with which the mainstream philo-
sophical theories of the foundations of mathematics which have struggled
with for over a hundred years. Husserl’s theory makes no appeal to the
axiom of extensionality that still blights the axiomatizations of set theory
to which, following Cantor, Frege, Russell and Whitehead, Zermelo-
Frankel, Gödel, Quine, philosophers still appeal to ground mathematics
(Hill 1997).
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CHAPTER IV

INTUITION IN MATHEMATICS: ON THE FUNCTION

OF EIDETIC VARIATION IN MATHEMATICAL PROOFS

Dieter Lohmar

Abstract. Intuition is of central importance for the phenomenological access
as a whole and it also turns out to be decisive in the analysis of cognition in
mathematics. But sensibility can not be the source of intuition in abstract for-
mal sciences. Therefore I first delineate some basic traits of cognition in terms
of Husserl’s categorial intuition. Then I investigate in a special case of cognition,
i.e., the eidetic method of Husserl, the so-called Wesensschau. This intuition of
essences is a special case of categorial intuition and it is characterized by apodictic
evidence. Thus it may solve the question of intuitivity together with the problem
of necessary validity. My way to argue for this thesis is to analyze some intuitive
steps in simple proofs and point out some rules that enable an implicit variation.
Following the traces of the eidetic method in mathematical intuition it turns out
that not only in material mathematics like in geometry, but also in formal mathe-
matics, there is a special kind of implicit eidetic variation that serves as the source
of intuitivity in proofs.

The central line of investigation in phenomenology is dedicated to
intuition, and from the very beginning it has been not only the search
for sensible intuition, but also for intuition in knowledge, or as Husserl
calls it, of categorial intuition. Sensible perception fulfills our intentions
of simple real mundane objects, but categorial intuition is the way in
which we intuit higher order objects, such as states of affairs. Most of the
ordinary forms of knowledge can be traced back to sensibility, yet even
in the simplest forms there are also elements in acquiring intuition that
have only a peripheral connection to sensibility.

In higher forms of knowledge, especially in formal sciences, sensibil-
ity plays only an insignificant role. Nevertheless, we can gain intuition
and evidence in formal contexts. We can even gain apodictic evidence,
which is the highest form of evidence. It entails that the state of affairs
given in this evidence are true and that they can not be otherwise. In my
contribution I would like to make some detailed investigations into the
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special character of the process in which mathematics allows for apodictic
evidences.

If we try to access apodictic evidence from the point of view of
Husserlian thinking, this kind of evidence is closely related to the eidetic
method, the so-called Wesensschau. The intuition of essences is a special
case of categorial intuition and it is characterized by apodictic evidence.
This position does not change throughout the whole development of
Husserlian phenomenology. But it is not easy to understand how the
eidetic method is used in the realm of mathematical proofs and how this
evidence is reached in formal contexts.

The main interest of my investigation is, first, to delineate the abstract
framework of the phenomenological theory of knowledge and, secondly,
to provide a concrete description of the kind of intuition in mathematics
and of its special evidence.1 Therefore I am going to analyze phenomeno-
logically some intuitive steps in simple proofs. My intention in doing this
is not to remain within the higher level of the general theoretical frame-
work but to provide a detailed description of what we are really doing in
proofs. This simple descriptive work is the true strong point of Husserlian
phenomenology. Husserl once characterized it with the words: We should
not start with the big bills but with the small coins!

My presentation starts with some basic reflections about the source and
the kind of intuition in formal sciences and in mathematics. I will outline
some essential aspects of the phenomenological theory of knowledge in
general and of mathematics in particular. In the second part I will address
the question of how in phenomenological analyses of consciousness as
well as in mathematics we gain apodictic evidence, which consists of nec-
essary or apriori insights. The opinion I will try to establish is well known:
Apodictic evidence in mathematics is due to the use of the eidetic method
(Wesensschau) in mathematical proofs. The second part has three sections
dedicated to the use of eidetics in real objects, in material mathematics
and in formal axiomatic mathematics.

1Husserl’s theory of categorial intuition is developed in (Lohmar 2002, 125–145, 2006,
109–126).
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I. Some Basic Features of Husserl’s Theory of Knowledge

Let me first shortly outline the basic features of Husserl’s theory of knowl-
edge. I thereby want to clarify the principal reasons why we can have
knowledge not only of real things but also of objectivities in an axiomatic
context.

Phenomenology starts the analysis of knowledge by examining the sen-
sible givenness of objects and the activity of thinking. In perception what
is sensibly given is apperceived, i.e., through a synthetic act interpreted as
an object. In this synthetic act, the intended object is intuited as “some-
thing.” And I am able to identify this “something” as the same in further
acts of perception and knowledge.

Due to the character of apperception as a kind of interpretation,
already the sensual perception of an object exceeds the actually given
material by our senses. Sensibility gives us only a kind of material basis for
our intentional apperception (Auffassung) but it remains a kind of “raw
material” that has to be treated in the right way. An object is given in
evidence when we do not just emptily intend it without the help of sensi-
bility, but only when sensibility fulfills (makes true) what we intend. But
this fulfillment is an active, synthetic process of collection and combina-
tion of the sensual material, which results in a sensual representation of
the object.

Let us take a closer look: What fulfills my intentions in everyday
insights such as “This book is green”? Admittedly, sensuality plays a deci-
sive role in the fulfillment of such insights but, as we will see, it cannot
fulfill this intention completely. In his analyses of cognitive acts along-
side sensibility, Husserl finds another source of intuition in what he calls
“synthesis of coincidence.” To understand this better, let us consider the
example of a green book: When I see a green book, there are different
phases involved in this process. In the first phase of perception, i.e., the
general view (Gesamtwahrnehmung), the book as a whole is given. In such
a general view, all elements of sense entailed in this object are intended
implicitly—but they are not explicitly noticed. In the second phase, I turn
my attention to the particular color of the book, while still perceiving the
book as a whole. Now I perceive the book with the help of its color. And:
In the transition of these two acts, i.e., moving from the general view to
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the pointed special intending of the book’s color, there arises a synthesis of
coincidence of the intended senses of the two acts.

This means: The partial intention (Partialintention) toward the
moment of greenness, which was only implicitly intended in the general
view, coincides with the special intention to the green color that is now
explicitly attended to. We realize that both intentions intend the same,
but they differ in their character. One of these intentions is implicit,
unnoticed, and performed casually; the other is active, deliberate, and
explicitly directed toward a single sensuous element of the whole. Yet we
are still able to notice that they aim at the same. This ability of the mind
to notice similarity of sense in different modes of performance is called
by Husserl synthesis of coincidence.

Syntheses of coincidence are passively given within the activity of
consciousness, i.e., they either do or do not occur, and we cannot influ-
ence their occurrence. As in the case of the green book, the coincidence
depends more on the object sensuously given than on our activity.
Sensuality together with this synthesis of coincidence occurring in the
framework of categorial activity forms the intuitive basis of our everyday
insights. Thus even here the ground of intuition is not only sensibility,
but also something more that relates back to our thinking activity.

One might object that in the initial general view we somehow already
knew that the book was green because we intended it as green. This
implicit and hidden knowledge could only become explicit and intu-
itively present by being highlighted in the second phase of categorial
intuition. Afterwards, with the mediation of the syntheses of coin-
cidence, it is interpreted as an existing state of affairs (Sachverhalt).
Exactly this performance makes the difference between characteristics
perceptually noticed only in passing (beiläufig) and those explicitly
recognized.

Thus far I have stressed the function of the synthesis of coinci-
dence that goes beyond sensuality in everyday insights, keeping in
mind that my aim was to investigate the source of intuition in math-
ematics. Mathematical knowledge is genuine knowledge with its own
intuitive source and in most cases it is independent of sensuality. But
now we see that this is not so exceptional because we know that in
everyday knowledge we also possess forms of knowledge that are to a
great extent independent of sensuous intuition. In my view, this is true
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already of conclusions that we draw from previous cognitions in everyday
cognition.

But what about formal axiomatic mathematics? Here it is possible to
start in a context where there are only propositions presupposed as valid.
In such contexts, we never move beyond judgments that are drawn from
such presupposed propositions. But this concerns only judgments about
properties of objects. We can, however, go beyond this. For example,
consider the relations of deducibility between presupposed propositions:
Concerning the question whether a proposition is deducible from a set
of axioms, we can arrive at valid cognition, and this cognition has the
highest degree of evidence, i.e., apodictic evidence.

But before going into a more detailed investigation concerning this
special kind of evidence, let me stress the similarity of everyday and
mathematical knowledge: Both are cases of knowledge and both kinds
of knowledge are not only based on sensuality alone, because also in
everyday cognition the syntheses of coincidence between partial inten-
tions have a fulfilling function. Yet there is also an important difference
between them: In everyday knowledge, the intentions are much more
complex than in mathematics. Real things always have several different
aspects like color, form, material properties, they are framed in causal rela-
tions, they have aesthetic aspects and are framed by an objective history,
etc. In mathematics we are directed to numbers in general, operations in
general, sets in general, etc.2 They are all objects that rest on simple oper-
ations of the mind creating new objects and new kinds of evidences for
these objects. And all these objects entail only a few partial intentions (no
color, no causal relations, no objective history...). Therefore, the syntheses
of coincidence appearing in this formally defined context are also much
more easily structured and more distinct. This is due to the fact that the
clouds of horizonal intentions, which usually accompany the intending
of everyday objects, do not obscure such syntheses. As a result, evidence
in formal sciences is much clearer. Yet this difference does not assure
us that the truth in formal sciences is necessary and that its evidence is
apodictic.

2For a more detailed investigation in the different kinds of mathematical objects, cf.
(Lohmar 1989, 2006).
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II. The Method of Seeing Essences in Mathematical Proofs

1. The Eidetic Method ( Wesensschau) Used for Real Objects

Husserl’s eidetic method of seeing essences claims that its results are not
restricted to factual empirical matters-of-facts but also pertain to universal
structures and apriori, necessary laws which are valid for all factual and
all possible future cases of acts of consciousness.

Husserl’s theory of seeing essences is worked out in the framework of
his theory of knowledge, i.e., in the Sixth Logical Investigation. Seeing
essences is analyzed as a special case of gaining knowledge. In the begin-
ning it is a natural human ability to realize what is similar in different
objects like trees, humans and lemons. But this simple mental ability can
be methodically refined and in the end it becomes a basic method of the
phenomenological analysis of the human mind.

In the first line, phenomenology is striving at apriori necessary insights
into the universal structures of consciousness, i.e., structures that are inde-
pendent from matters-of-fact. With the help of the eidetic method we can
also have apriori insight into other regions of being, which Husserl names
regional ontologies, such as sounds, colors, etc., as well as geometry, arith-
metic and other parts of mathematics. The act of seeing essences is called
Wesensschau, “ideierende Abstraktion” or “Anschauung des Allgemeinen.” It
is founded on and starts with simple perception of singular objects in
a similar way like all other elementary forms of knowledge. But seeing
essences demands also active performances of the mind, first of all the
variation of the starting example.

The word “Wesensschau” (seeing essences) is, in my view, a very irritat-
ing choice in terminology. It suggests that phenomenology is a variant of
the Platonic theory of ideas. This is surely not the case because Husserl
never hypostatizes or substantializes the objects of the eidetic method:
they are definitely not objects residing in another higher “reality,” like
they are in Plato. Husserl does not regard the essences as “more real” than
objects of sensual perception.3 For Husserl, the everyday world is the only
reality. Nevertheless, mathematical objects and all other ideal objects are
objects of thought and we can gain intuition of them as well. In order

3Cf. for Husserl‘s further demarcation to Platonism (Lohmar 1993, 73–87, 2000, 187,
215 f.).
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for us to gain knowledge of these ideal objects, they must “participate” in
some way in the only reality, at least when we refer to them with the help
of (sensual) signs. Thus Husserl posits the incline in the grade of reality
in a completely opposite way from Plato: Essences are dependent on the
real world and they have no independent reality.

In the process of seeing essences we find exactly the same elements as
in the simplest cases of cognition. The intuition of the identical traits in
different objects (essences, universals) is expressed by the use of a universal
name. For example to have an intuition of “green” is only possible if we
run through a series of green objects in perception or imagination (Hua
19, 111–115, 176 ff., 225 f., 690–693). The intuitivity of my intending
of what is common in all cases, i.e., of the universal, is due to the synthesis
of coincidence that occurs in all cases.

All acts of categorial intuition have the characteristic threefold: sim-
ple perception of the object as a whole, pointed concentration on an
aspect, and categorial synthesis. Seeing essences has exactly this three-
fold structure: it begins with a general view on the starting example and
the second phase of pointed concentration on an aspect has a manifold
of different objects, all of which are variations or modifications of the
starting example. In running through these acts that result from variation
of the starting example, we are directed to the identical aspects and thus
there occurs a synthesis of coincidence. So the second phase consists in all
possible variants of the starting example and the third phase is interpret-
ing (or apperceiving) the special synthesis of coincidence as the intuitive
representative of what is invariant in all possible cases.

If we realize that in all possible variations of the object (in perception
and imagination) the same element is to be found—then we can be sure
that it will also be there in all following cases, thus this insight is necessary
and apriori in the special sense of the eidetic method.4 For example: All
extended objects necessarily have a certain color, all tones have a certain
intensity and duration, etc.

In the act of eidetic abstraction we interpret (auffassen) the special
synthesis of coincidence, which occurs in running through all possible

4Husserl points to the crucial difference of the sense of apriori in Kant and in his own
understanding in a footnote in FTL, (cf. Hua 17, 255, Anm. 1).
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variants as the intuitive givenness of the universal. By this method of
making apparent the intuitive way of givenness, the universal becomes
an object in the full sense, which is characterized by the following
possibilities: empty intention, identification and fulfilled intuition.

We will now turn our attention to the acts of variation of the starting
example. Husserl realizes the central role of variation only after the pub-
lication of the Logical Investigations (1900).5 In the acts of variation there
may and there must occur imaginative acts which in some way vary the
starting example. This necessary phase of variation enables us in princi-
ple to reach the essence of an object on the basis of one single intuitively
given object by varying this starting example. But somehow we have to
reach all possible variants—and just this seems to be difficult.

Is it really necessary to perform infinitely many acts of variation to reach
the specific generality of universals? Husserl poses and also answers this
specific question only in his late genetic theory of eidetic variation, which
can be found in the lecture on Phenomenological Psychology (1925) and in
Experience and Judgment.

Nevertheless, the function of imagination is already discussed on many
occasions in earlier writings. In the Ideas I (1913) and in Phenomenological
Psychology (1925) Husserl points out explicitly the necessity and the pri-
ority of imaginative and “free” variation. This is in opposition to the
presentation of his theory of seeing essences in the Logical Investigations,
in which the matter is left undecided whether the acts of variation are
intuitive perceptions or imaginations.6 In Ideas I he clearly states that

5It is very difficult to find out about the historical sources of Husserl’s idea of variation
in the philosophical tradition. Not only Brentano and Bolzano, but also Berkeley and
Hume might be possible sources, yet this is not my theme. We might also regard some
mathematical theories as possible sources, like Klein’s approach to characterize types of
geometries by groups of transformation that leave essential properties of the objects of
this geometry unchanged, cf. (Picker 1961, 266–355, Tieszen 2005, 153–173).
6On the function of free phantasy in eidetic variation cf. Hua 3/1, 146 ff., Hua 17, 206,
254 f., EU, 410 ff., 422 f. and (Ströker 1978, 21 ff.), Th. Seebohm proposes that there
is a kind of variation within phantasy already in the Logical Investigations, cf. (Seebohm
1990, 14 f.). On the role of variation in phantasy cf. also (Lohmar 2003, IX–XLI). We
begin variation in imagination with a vague idea of the starting object which we are
going to make all possible variations of. In the beginning our idea of the colour green is
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seeing essences is also possible on the basis of memories and imagination.7

But even in Ideas I he makes clear that free imagination is privileged in
the context of seeing essences in comparison to perception.8 Using imag-
inative variation is necessary in this context (Hua 3/1, 148). The idea
of a privileged status of imagination in this context leads Husserl to the
proposition that fiction is the most important medium of intuition in
phenomenology.9

In the lecture Phenomenological Psychology he works out the final form
of his eidetic method as eidetic variation. Following this latest version we
start the process of variation with some intuitively perceived or imagined
object as a starting object, and then vary this object in the function of a
guiding example in phantasy (Hua 9, 76). In this process there occurs a
kind of overlapping in the sense of the different variations between the
single variations.10 In this overlapping between all possible variations,
we experience a specific content that fulfills the intending of the invariant
common features of all possible variants. We perform the act of categorial
intuition, which in this case is an act of seeing essences, on the basis of this
synthesis of coincidence. This special kind of content intuitively fulfills
the intending of the invariant common feature.

But can we justify the claim for true universality by this performance?
Husserl thinks that such a justification can be found due to the special
character of the imaginative variation in the process of eidetic variation.
In all variations we have to add an important element of sense: I can freely
go on with this variation further and further.11 This is the decisive new
element in the specification of the eidetic method as an eidetic variation.

vague, but we can use it to create variations of green objects and in the further work of
the eidetic method we are able to have an intuition of the general object.
7Husserl wrote that variation can be performed: “auf Grund bloßer Vergegenwärtigung
von exemplarischen Einzelheiten” (Hua 3/1, 145 f.).
8Husserl wrote: “freie Phantasie [hat] eine Vorzugsstellung gegenüber der
Wahrnehmung” (Hua 3/1, 147).
9He says: “daß die ,Fiktion‘ das Lebenselement der Phänomenologie, wie aller eidetis-
chen Wissenschaft, ausmacht, daß Fiktion die Quelle ist, aus der die Erkenntnis der,
ewigen Wahrheiten’ ihre Nahrung zieht” (Hua 3/1, 148).
10Husserl speaks of “überschiebender Deckung” (Hua 9, 77).
11Husserl wrote: “und so weiter nach Belieben” (Hua 9, 77).
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We have to be aware that we are performing a free and in principle unlim-
ited variation at every step of the factual variation. In an idealizing view
we may interpret this as an “infinite variation” (Hua 9, 79).

Thus we find something like an idealizing step in every full act of eide-
tic intuition. And this is not only true for mathematical objects but also
for everyday objects. We cannot claim the universality even in the varia-
tion of real objects without idealizing our possibility to act: “I can go on
with this variation further and further.” Thus we can be optimistic in our
claim for universality and apriori insight in mathematics—but only if we
are able to show that there is this element of varia and also of idealized
anticipation of ever and ever new variation in mathematical proofs.

2. Eidetics in Material Mathematical Disciplines

At first glance, the method of seeing essences seems to be more appro-
priate for material regions of being, such as real objects, their relations in
space, melodies, and colors. Therefore, the first line of argument in the
analysis of intuition in mathematics leads to what Husserl calls the “mate-
rial mathematical disciplines.” More precisely, it leads to a certain way of
understanding some basic disciplines of mathematics. These disciplines
are characterized by properties of objects, such as natural numbers, lines,
points and planes.

We know that Husserl was not only a philosopher of formal-axiomatic
mathematics. His investigations also pertained to such “material mathe-
matical disciplines” in which the basic objects and basic concepts are not
completely replaced by algebraic variables. The disciplines he calls mate-
rial mathematics are, for example, elementary arithmetic and Euclidean
Geometry (Hua 17, 53, 84, 89, Hua 3/1, 150 ff.). Body, plane, line,
point, angle, ordinal number, set, order, etc., are irreducible basic objects
of geometry and elementary arithmetic.12 Viewed as a material mathe-
matical discipline, Euclidean Geometry is a science dealing with apriori
structures of space.

12We have to keep in mind that in this context Husserl already presupposes the kind of
idealization which differentiates the real drawing on the paper from the idealized object
intended by this drawing.
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The method of eidetic variation determines the specific phenomeno-
logical concept of apriori, and—most importantly—it cannot be
regarded as equivalent to Kant’s concept of apriori.13 Kant regards knowl-
edge as apriori if it can be reached independently from all experience and
if it is valid before all experience.

In contrast to this, eidetic variation starts with an object of experience,
which is then arbitrarily varied in imagination. For example, starting with
an arbitrary human person we may vary his size, his volumeness, his color,
his posture present his Gestalt in a certain way etc. But what we are able to
identify in all these different variants is the general Gestalt of his body in
a kind of upright and frontal, normalized posture. This means, we some-
how use our ability to imagine the normalized Gestalt out of distorted
perspectival presentations that appear to us.

During this process of variation, we attend to the properties that
remain identical in every possible variation, for example, the normal-
ized Gestalt. In the grasping of the identical aspects we are also oriented
towards the synthesis of coincidence that occurs among all different vari-
ants of the same object. Thus eidetic variation is a case of cognition even
if it to a great extent rests on the performance of imaginative acts. Eidetic
experience is thus dependent on reality and its special configurations.
We will only experience what is identical in all variants by means of
the actual performance of this variation. Only afterward will we know
which synthesis of coincidence occurs. Phenomenological apriori is valid
for all possible experiences, but we will know about the concrete content
of this apriori only after the actual performance of the variation and not
in advance. And this remains true also for the use of the eidetic method
in mathematics. But there is one important difference: The range of dif-
ferent properties that we find in real objects—and thus have to vary—is
very rich. In contrast to this, the range of properties that are to be varied
in mathematics is very limited. To argue for this I will discuss a very easy
example of a geometrical proof.

How can we have the apriori insight “Two lines on a plane, not running
parallel, intersect at one point”? In this case we are quite well off with the
method of variation. We have to vary all kinds of imagined lines on planes

13Cf. the important note in (Hua 17, 255, Anm. 1).
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not running parallel. And here we are able (by definition) to find in every
imagined case one direction that shows a progressive approximation of
the two lines imagined. Therefore we can be sure that there will be a point
of intersection of the two lines in every possible case. And this insight has
the apodictic evidence we are searching for. Thus it is valid apriori in the
Husserlian sense.

Another example: Every pupil has to learn the well-known method of
bisection of a line with the help of constructing two equal circles around
the ends of the line and a connection of the two intersections of theses
circles. What we are doing in this proof is a construction and in every
step we are strictly oriented to general rules. These rules are:

1. Keep the identity of each value used for construction.
2. Do not limit the possibility [scope] of the construction to a special case

or to a limited realm. Keep the full generality of the claim/proposition.
3. Choose the necessary elements of the construction in a way that it is

possible to perform it.

The first rule demands no special comment, so I will concentrate on
the last two.

Concerning 3: Even if we start the construction by adjusting the com-
pass, we may ask ourselves: Is this construction possible in every case of a
line? If we are limited to a sheet of paper of a certain size, then we will find
arbitrary limits, but this does not limit the possibility of a construction in
principle. But we might choose the value for the radius of the two circles
too small in our first attempt and, as a consequence, the circles would not
intersect. But we surely know that we may simply take the length of the
line itself to adjust the compass. Then the construction of the two circles
will result in two intersections that I can easily connect to a new line. And
by this I can easily prove that the two parts of the starting line are equal
in every possible case.

Concerning 2: In fact I did not try out every value for the radius used
in constructing the two circles. I have to start with a radius that allows
for intersections (i.e., longer than the half of the line). In fact I am using
only one special value in my construction, but this does not limit my
construction to a special case. The process of construction is directed to
objects in general, i.e., in this case lines in general, circles on the basis
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of radii as values in general resulting in intersections and new lines in
general, etc. In doing so, I have to make sure constantly and consciously
that every step of my argument about the resulting triangles remains valid
even if a different radius may have been chosen. So there is a kind of
“implicit variation” at work that concerns only the radius of the two equal
circles. It is not comparable with the broad variation of real things in all
their aspects, but it is restricted only to the extension of the radius—for
we are directed to objects that are very “poor” in regard to properties,
since a circle is completely described by its middle point and the radius
and, as we have already chosen the middle point, we can only and we have
only to vary the radius. But we do not have to do this variation explicitly;
it is enough to make sure in every step and consciously that no limitation
of the following argumentation is implied.

In many mathematical proofs we find a formula like “without lim-
itation of the generality” (ohne Beschränkung der Allgemeinheit) which
indicates the conscious intention to make sure that all neccessary deci-
sions to determine values chosen in the course of the proof will not limit
the general validity of the conclusion reached. It is still true for all n ∈ N
even if we have to make additional non trivial limitations (see also below).

Thus we have a construction on the basis of only one special radius
resulting in a singular circle but this singular circle represents the full
class of all possible variations regarding the value of the radius: a circle
in general. And this allows us to gain insight into general states of affairs
in apodictic evidence even if our concrete construction is only using a
special value for the radius of the circle.

In Berkeley’s and Hume’s theory of abstract ideas we might find some
elements of this solution that entails a certain variation, which, even
though not explicitly performed, is nonetheless somehow “in the mind.”
Both are arguing against the idea of a general triangle in Locke. Locke tries
to defend the concept that in regard to a geometrical object like a trian-
gle, we are not directed to a certain object delineated on paper that has
only one size, determined angles, etc. He proposes that the general trian-
gle has none of the possible properties triangles can have and at the same
time has all of them. This is a contradictory concept. Yet such a concept
is attractive—to us, as well as to Berkeley and Hume—because it entails
all the alternatives that have to be considered in a proof for reaching full
generality.
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The mathematician Berkeley’s argumentation in § 16 of the introduc-
tion of his Treatise Concerning the Principles of Human Knowledge (cited
by Husserl in the Second Logical Investigation) claims that the geomet-
rical proof using the idea of a triangle works well because: In spite of the
fact that we are drawing a determined triangle, we do not use its special
properties in the proof.14 By this a singular triangle serves as a repre-
sentation on an unlimited series of possible triangles, and this does not
imply contradictory properties of this triangle. This solution is exactly in
the line of his nominalism. Berkeley thought of a singular word as being
able to represent a whole class of objects that have something in common
or are similar, by this avoiding the presupposition that there are abstract
general ideas.

Hume tries to make use of Locke’s intuitions in the same way as
Berkeley. He adopts Berkeley’s version of representation in his nominal-
ism. Hume regards abstract ideas as themselves being individual, yet at
the same time as general in regard to what they represent. Due to such a
representative function, a single word calls alive a single idea, yet it also
awakens a tendency to imagine other singular ideas that are alternatives of
objects subsumed under a particular concept. For example, if we use the
word “triangle” in an attempt to prove the proposition that “all angles of a
triangle are equal,” we may well start with an equilateral triangle (Hume
1888, Book I, Part 1, Sect. 7). But then other ideas of triangles arise,
for example triangles that are neither equilateral nor rectangular, and this
leads us to the insight that the proposed proposition is false. Here the
element of implicit variation is present in a very clear version.

Berkeley and Hume mention this hidden tendency for variation only
in the case of mathematical proofs. Disregarding Husserl’s critique of the
empiricists’ theory of abstraction, there is in my view an important con-
nection between the above mentioned element of empiricist theory of
mathematical proof and the Husserlian eidetic method interpreted as a
theory of mathematical proofs.

From our considerations of implicit variation in geometry—which
may well be transferred to arithmetic—we see that there is a good sense

14“And that because neither the right angle, nor the equality, nor determinate length
of the sides are at all concerned in the demonstration” (Berkeley 1901, Introduction,
§ 16).
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in claiming apodictic evidence in material mathematics. But we can also
immediately realize the difficulty for mathematical knowledge in a purely
formal context. In formal mathematics we only refer to objects in general,
which follow formally defined rules of operations. The question is: Are
we really making use of eidetic variation in such formal contexts?

3. Eidetics in Formal-Axiomatic Contexts

In formal contexts we start with a set of elements and operations possible
with them and presuppose that they are ruled by a set of axioms. If we
consider natural numbers, then we start with Peano’s Axioms about the
natural numbers including the axiom of complete induction. In such a
way we can easily start with the proof of simple propositions.

The heuristic way to find such propositions may use our knowledge
about numbers, as we already know them from the material mathematical
realm. We can create them and have them intuitively given by counting,
and thus we know already that 22 ≥ 2, 32 ≥ 3, 42 ≥ 4, and so on. So
we might suspect that n2 ≥ n is true for all natural numbers, but if we
want to prove that such is the case, we have to make use of the method
of complete induction.

Proposition For all n ∈ N, it is true that: n2 ≥ n
Proof We start with complete induction:

(1) The proposition is true for n = 1, it is true that 12 = 1 ≥ 1
(2) Now we will make the step from n to n+1
(3) Let no ∈ N be any element of N, then I assume that no

2 ≥ no
(4) Now we investigate the value of (no+1)2 The question is: Is it true

that (no+1)2 ≥ no +1?
(5) The multiplication of the first term results in:

(no + 1)2 = no
2 + 2no + 12

(6) Because of the assumption (3), it is true that no
2 ≥ no, now (7)

follows from (5) and (3), together with the more trivial lemma (6a):

Lemma15 (6a): For all a, b, c, d ∈ N it is true that
If a = b and c ≥ d => a + c ≥ b + d

15This has to be proven on the basis of Peanos axioms, cf. (Landau 1930).
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(7) (no + 1)2 = no
2 + 2no + 12 ≥ no + 2 no +1 = 3 no +1

(We realize this by insertion of (3) in (5) and the use of (6a), the last
equation results by calculation)

(8) Now it remains to show that 3 no +1 ≥ no +1 is true
(9) To show that (8) is true in every case of a natural number, using (6a)

it is enough to show the validity of the following
Lemma16 (9a): For all n ∈ N it is true that 3 n ≥ n

(10) From (7) and (8) it follows that (no + 1)2 ≥ no +1 is true.

This is only a very simple example to characterize formal axiomatic
proofs. Perhaps this is even not the easiest or most elegant way to prove
the proposition, but we realize quite well how the single steps are con-
nected. In this proof there are different types of argumentative steps:
Some of the steps only express propositions already proven as true, or
accepted as assumptions like (3), or they give an explanation about the
next step, like (4). The conclusion (10) only declares that the proof by
complete induction has been completed. In some of the steps there are
only operations performed like in (5) or (7). Some of the steps inform us
about the Lemmata we use and which we have to prove separately (6a)
and (9a). Some steps incorporate logical conclusions following the modus
ponens, like the conclusion that leads from (3), (5) and (6a) to (7). But
not every proof is performed only by the use of logical rules. For exam-
ple, we cannot interpret the procedure of complete induction as a logical
rule.

The whole proof can be interpreted as an argumentation on the basis of
the presupposed axioms, operations, and the use of logical rules. But: On
the first view there seems to be no room left for variation. The only trace
of this basic method is the generalized supposition about the n ∈ N being
arbitrarily chosen and therefore remaining object of an implicit variation
with the following meaning: It can be taken really every n out of N. And
to assure this, we have to watch carefully and consciously that this con-
dition is not injured throughout the whole proof. This implicit variation
is not carried out explicitly, as it was in the case of real objects, which are
to be varied explicitly in various aspects of their appearance (for example,

16This can be also be proven by complete induction.
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in a person concerning their size, weight, color, shape, etc). It remains an
implicit variation like in material mathematics only indicated by the con-
stant and conscious striving for not limiting the generality of the proof.
In formal mathematics the objects have only a few properties that we
may regard as changeable, for example, in natural numbers only its value
(perhaps also further properties of the numbers, like to be prime or not,
to have common prime factors or not, etc.). We might only vary the
argumentation in the range of all possible n out of N and this is exactly
the performance of the eidetic method. The only visible expression of
this implicit variation is the rule to beware constantly and consciously of
taking up additional suppositions that will limit the generality of the n.

It may appear as if there is a conflict between rule 2 and rule 3, for
sometimes it looks like we have to introduce limitations for the sake of the
argument. But in fact this is not the case, because if we take into concern
additional suppositions in a certain proof it is of central importance to
make sure that there is no limitation of the generality, i.e., that it remains
possible to vary the values used in the full range for example n ∈ N.

Think for example of the classical proof for the incommensurability
(irrationality) of

√
2. Here we start the indirect proof by supposing com-

mensurability (rationality), i.e., that
√

2 = p/q where p, q ∈ N and p and
q have no common divisor (resp. no common factor in the prime fac-
torization of the two numbers). This last presupposition—no common
factor in p and q—seems to seriously limit the generality of the proof,
nevertheless we will see that it is not trivial and it is essential for the
proof.

Usually in mathematical literature you will find in a context like this
a hint that we are allowed to introduce this additional presupposition
“without limitation of the generality.” And this hint points to our con-
stant and conscious striving for full generality. But here we have to prove
that the presupposition will not limit the generality of the whole proof
(even if this lemma usually is not written down). Now the argument for
the lemma: We know that in Euclidean rings we have the possibility of a
full factorization of each element p (and q) in a product of prime num-
bers and we can always exclude in a next step the common prime factors
of p and q (resulting in p′ and q′ ∈ N with p/q = p′/q′). Thus the pre-
supposition is not trivial but we are allowed to make it. And: it is essential
for the argument.
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We then start by posing
√

2 = p/q (where p, q ∈ N and p and q have
no common divisor) and conclude further 2 = p2/q2 thus also 2 q2 = p2

and this implies that 2 is a divisor of p2 and thus also of p. Now we play
the trick in the other direction. For p = 2 n with n ∈ N, we can surrogate
2 q2 = (2 n)2 = 4 n2 and this implies q2 = 2 n2 and we see that 2 must
also be a divisor of q. Thus we arrive at a contradiction.

So what we gain in using value of p, q ranging over the whole of all nat-
ural numbers is a proposition, which does not depend on the arbitrarily
chosen value of p or q. Thus we may sum up: Even in formal contexts the
evidence of the proof rests on an implicit variation and gains its special
apodictic evidence from this source.
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CHAPTER V

HOW CAN A PHENOMENOLOGIST

HAVE A PHILOSOPHY OF MATHEMATICS?

Jaakko Hintikka

Abstract. Husserl’s philosophy of mathematics is interpreted as dealing with
forms not unlike Aristotle’s forms. They can be somehow immediately present
in one’s consciousness. Husserl’s ideas are compared for similarities and dissim-
ilarities with those of Aristotle, Mach, Russell and Wittgenstein. Husserl’s main
development is seen as making these forms more and more robust conceptually.
It parallels the overall development of mathematics in the last 200 years from a
study of numbers and space into a study of different structures. This development
culminates in Husserl’s unfinished project of a theory of all theories. This project
has closer connections with Hilbert’s axiomatic theorizing than with the ideas of
the intuitionists.

In the nineteenth century, a French historian published a book purport-
ing to prove that Napoleon never existed. So many different and even
contradictory things were attributed to Napoleon, the main argument
went, that they could not possibly be true of any one actual person. By
a similar argument, a future historian of ideas might perhaps maintain
that there cannot have been any single philosophical movement called
phenomenology, for too many different and even contradictory things
are said in the documents about it. There might seem to be as many
phenomenologies as there are phenomenologists.

To begin with, what is meant by phenomenology in these days is not
what this term meant for Husserl and his contemporaries in its main
use. For them, “phenomenological” was an attribute of those physical
theories that did not use unobservable variables. In our day and age
philosophers seem to ignore this meaning. At one point I discovered
that one of the most active soi-disant phenomenologists was unaware of
this original meaning of the term. But what has taken the place of this
meaning is far from clear. Not only are there different sects of phenome-
nologists, such as West Coast phenomenologists as distinguished from
East Coast phenomenologists. Their substantial grasp of their subject is
radically different. For some, phenomenology is very nearly descriptive
psychology, presuppositionless examination of one’s consciousness. Some
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philosophers even confuse phenomenology and phenomenalism. For oth-
ers, the central idea in phenomenology is intentionality, the phenomenon
of mind’s intending or being directed to an object. Phenomenology then
becomes a kind of generalized meaning theory, with emphasis on the
meaning entities like noemata that are supposed to be the vehicles of such
directness. In one recent dictionary of isms, phenomenology is defined as
the philosophical study of the ways that the mind interacts with the world
and itself. In view of such a definition, one cannot help asking what else
might there be in philosophy besides phenomenology.

I thought that I had reached the ultimate absurdity in interpretations of
phenomenology when long ago I found a respectable philosopher (Evert
W. Beth) in effect accusing Husserl of plagiarizing the entire idea of phe-
nomenology from the arch-positivist Ernst Mach. However, later I found
that there was at least one other observer who proposed to look at phe-
nomenology in the same way, albeit without any charge of plagiarism. In
this perspective, phenomenology is nothing but a further development
and radicalization of the ideas in the philosophy of science that were
defended by the likes of Mach and Hering plus analogous developments
in the philosophy of psychology represented by Brentano.

Now who on earth could have thought of phenomenology in such
weird terms? The answer is: Edmund Husserl. The words I just used are
in fact Husserl’s characterization of his phenomenology in the beginning
of his Amsterdam lectures (Hua 9, 302). Nor was his statement a casual
obiter dictum. It occurs already in Husserl’s definitive statement of his phi-
losophy in the famous Encyclopedia Britannica article, although Husserl
does not name any names there (Ibid, 277–278). Husserl even adds that
that’s where he got the term “phenomenology.” Husserl’s seriousness is
measured by his resolute rejection of Heidegger’s attempt to bowdler-
ize the Encyclopedia article by omitting this reference. (Ibid. p. 237 for
Husserl’s original statement and pp. 256–257 for Heidegger’s attempt to
put his words in Husserl’s mouth.) In spite of these explicit acknowl-
edgements, the Mach-Husserl connection has received scant attention
in the literature. (The main exception is the work of Manfred Sommer;
see Sommer 1985.) In the recent Encyclopedia of Phenomenology, we do
not even find Mach listed in the index. This neglect makes it especially
urgent to look at Husserlian phenomenology in terms of comparisons
with Mach.
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In the light of hindsight, it might be even more instructive to compare
Husserl with Bertrand Russell than with Ernst Mach. (I have tried to
do so in another essay; see Hintikka 1995.) This does not reflect on the
interest of the Mach-Husserl relation, however.

But if Husserl was a follower of Mach, how could he have any philoso-
phy of mathematics? Husserl professed agreement with Mach’s criticisms
of the excessive mathematization of the natural sciences. But for Mach all
logical and mathematical reasoning is purely analytical in the sense of tau-
tological. (See Mach 1905, 11: 299–313.) If a mathematician looks away
from everything inessential, he or she can see the conclusion of a proof
right there in the premises, according to Mach. A mathematical argument
can therefore give new information only in a psychological sense.

This view of logical and perhaps also mathematical truths as tautologies
is usually thought of as a novelty of Wittgenstein’s Tractatus, a novelty
that Russell claimed to have been shocked by. If Russell had been active
on the continent, the tautologicity thesis would not have surprised him,
for it was fairly common there. In Wittgenstein’s immediate background
it was represented among others by Mach and Schlick.

Not only does this kind of view on mathematics violate Husserl’s
canons of anti-psychologism. It can only yield a barren minimalist phi-
losophy of mathematics. Hence, Husserl must have been advocating
a philosophy of mathematics quite unlike that of his acknowledged
predecessor. What is this philosophy?

Different readers have found an embarrassment of different mathemat-
ical riches in Husserl’s writings. Or a more appropriate locution would
be a confusion of riches. For it is far from obvious what the relevance
of Husserl’s ideas is to actual mathematics or to its foundations. This
confusion is enhanced by the fact that Husserl kept on developing and
changing his ideas. A complete account of Husserl’s philosophy is there-
fore enormously laborious to give, especially if one wants to do justice to
his development. In this paper, I will accordingly restrict my attention to
a couple of main questions concerning Husserl and mathematics.

The most important such question is undoubtedly: How are Husserl’s
ideas related to and perhaps relevant to, the central development in
mathematics and its foundations? Now Husserl’s philosophy of mathe-
matics is often thought to be akin to the ideas of the intuitionists. It
is in fact the case that various intuitionists and related philosophers of
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mathematics—Hermann Weyl, Oskar Becker, etc.—found inspiration in
phenomenological ideas. However, it seems to me that this engagement
was rather superficial at both ends. It seems to me that this relationship
is at best rather remote. And one way of illustrating this judgment is to
take a clue from intuitionists’ very label and examine briefly Husserl’s
notion of intuition. A comparative examination shows why it is tempting
to think that Husserl’s ideas must have pushed him toward a finitistic and
in some sense intuitionistic position. Notwithstanding such a temptation,
I will suggest that the mature Husserl did not fall to it.

Thus one way of looking for the wellsprings of Husserl’s theory of
mathematics is to examine his notion of intuition or Anschauung and
related concepts. (Cf. here Hintikka 2003.) This notion is routinely used
by philosophers without any reflection on its meaning. This is a danger-
ous procedure, for in reality intuition is among the most elusive notions
in philosophers’ vocabulary. It is used in two essentially different senses.
Some philosophers and many laymen use the term to refer to a certain
mental faculty, perhaps a kind of inner vision or like the Peircean faculty
of “guessing well.” However, as I have pointed out elsewhere, the postu-
lation of such a capacity was in the course of history gradually deprived
of all justification. By the eighteenth century the term “intuitive knowl-
edge” could only be used in the minimal sense “immediate knowledge”
or “non-discursive knowledge.” This is by and large the basic per defini-
tionem force of Anschauung in Kant. (Cf. Hintikka 1969.) This minimal
sense (as I will call it) is in effect the force of the term among semantically
careful subsequent philosophers including (I argue) Husserl. This is the
sense in which Russell could list sense-perception as one kind of “intu-
itive knowledge.” When it comes to direct knowledge of objects rather
than facts, Russell does not speak of intuition but acquaintance.

Even several otherwise well-informed philosophers have overlooked
this strong semantical tradition and (presumably following the vulgar
usage) assumed that Husserlian intuition is some kind of mental faculty.

This minimal sense is by and large the way Husserl uses the notion
of intuition. I have suggested that in Husserl it is a near counter-
part to Russellian acquaintance (Hintikka 1995). This aligns Husserl’s
transcendental reduction with Russell’s reduction to acquaintance.

Thus Husserl, Kant and Russell are all roughly in the same semanti-
cal tradition in that intuitiveness is characterized by immediacy, direct



V. philosophy of mathematics 95

givenness. However, there are also major differences between these three
thinkers. For Kant, only particulars can be intuitively given. Furthermore,
we cannot anticipate what they are. The only nontrivial (synthetic) thing
we can know about them is that they must conform to the structures of
space and time that we humans impose on them.

According to Russell, we can be acquainted with universals and not
only with particulars. But for him the basic objects of acquaintance
are unanalyzable. They cannot be reduced any further. They are there-
fore simple, with no structure. The mere acquaintance with them does
not enable us to anticipate them or have any a priori theory about
them. They have to be given to me in experience. Even when Russell in
1912–13 construed logical forms as being among the objects of acquain-
tance, they too had to be given to me in my experience. Hence
acquaintance with general concepts cannot serve as a basis of a genuine
theory about them.

For Husserl, too, intuition can be about general concepts and even
abstract ones. But in contrast to Russell, according to Husserl we can have
direct access to complex general essences in what he calls Wesensschau. It
was in Husserl a version of what he called “categorial intuition.” We can
freely theorize about the “essences” or “forms” that Wesensschau gives us,
examine their Wesenszusammenhänge, etc. Indeed, Wesensschau provides
us with an access to what Husserl calls “formal ontology” as well as vari-
ous “regional ontologies,” which enables us to foresee what the different
general forms of future experience can be, in direct contrast to Kant’s view
according to which a priori intuition can only give the frameworks (space
and time) in which we behold particular objects.

At this point, comparisons with still other philosophers (over and
above Kant and Russell) are especially instructive. Where in the doctrines
of earlier thinkers do we find theorizing about the complex forms that
are given me directly and entirely in my experience? The obvious answer
is: in Aristotle. (See here Hintikka 2004b.) In another paper (Hintikka
2004a) I have suggested at least as a heuristic idea for ambitious historians
of philosophy to view phenomenologists as “raiders of the lost forms”—
meaning, of course, the forms in the Aristotelian sense. Now we can see
that in such a perspective some of the central Husserlian ideas find a nat-
ural niche. I do not think that Husserl’s use of such Greek terms as eidos
and hyle is mere stylistic show.
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For one thing, in the light of this comparison, we can appreciate some
of the uncertainties and controversies that surround the notion of the
object of an act. Is it the object that we intend by means of a noema
out there in the real “objective” world? Or must we take Brentano lit-
erally and say that the object “inexists” in the act? Aristotle would not
have entertained such questions. For him in thinking (intending?) X, the
form of X is fully actualized both in the external object and in the soul.
If we express ourselves in the phenomenological jargon, this shows the
sense in which the (formal) object of an act exists both in the reality and
in the act.

Perhaps there is also a partial non-elective affinity between the respec-
tive philosophical techniques of Husserl and Aristotle. Aristotle thought
we can form forms in our souls by starting from the bits and pieces
of forms given to us in sense-perception and by deconstructing and
reconstructing them build up (“form”) the required forms. Husserl, too,
envisages possible manipulations of forms in imagination, for instance in
the method of free variation, and more generally in acts of constitution.

Another, temporally closer comparison is also of interest here
(Hintikka 1990, Park 1998). Wittgenstein once admitted that “one can
say of my philosophy that it is ‘phenomenology’.” The real meaning of
this statement has not always been understood. Some commentators have
searched for similarities between phenomenology and Wittgenstein’s later
philosophy while missing the massive, obvious fact that the simple objects
of the Tractatus are phenomenological in the same sense as their older
brothers, Russell’s objects of acquaintance.

But at least in one direction the affinities between Husserl and
Wittgenstein are more detailed than those between Husserl and Russell.
There is an interesting similarity between the schauen of essences in
Husserl and the way the logical forms that Wittgenstein postulates in
the Tractatus are received by us. Wittgenstein’s logical forms are not
free-standing objects of acquaintance, as in Russell. Indeed, it is in
Wittgenstein’s early philosophy that we find the most instructive exam-
ple of what a form-based phenomenology might look like in a modern
context. They are forms of objects. They come to us as aspects of the
experiences that yield the simple objects. This is not unlike the way
Husserlian essences are extracted by means of Wesensschau from the
stream of experiences.
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Moreover, even though the Tractarian logical forms are forms of the
most individual entities that there are, viz., simple objects, they have in a
certain important sense structure, unlike Russellian unanalyzable objects
of acquaintance. And these logical forms are in a sense general, viz., in the
sense that they govern the way in which the owners of these forms can
be related to and combined with each other. Wittgenstein’s paradigmatic
example is how my perception of a colored object ipso facto tells me that it
is conceptually impossible for the same perceptual object to have another
color (at the same moment). This illustrates Wittgenstein’s puzzling idea
that a direct experience of an object can ipso facto show me all the possible
ways in which it can be combined with others into a fact.

An objection might perhaps be raised to this Husserl-Wittgenstein
comparison. Wittgenstein in fact criticized Husserl in his discussion with
Vienna Circle members. However, when we understand the precise point
Wittgenstein was making, we can see that he is not contradicting my
interpretation. What Wittgenstein criticizes is Husserl’s doctrine of syn-
thetic a priori truths. In order to employ the notion of synthetic a priori,
you must have some theory to whose truths you could apply this label.
Husserl clearly thought that he had such a theory, whether it is called
ontology or not, in the form of a theory of those essences that Wesensschau
can give us. But for Wittgenstein, logical forms were not expressible
in language because they deal with the semantical relations that con-
nect our language with reality and give it its meaning. Such relations
are strictly inexpressible for Wittgenstein. Thus according to him we
cannot put forward synthetic a priori propositions about logical forms
because we cannot put forward any propositions about them. Hence what
Wittgenstein is objecting to in Husserl is not the posssibility of a kind of
Wesensschau (which he could not criticize without criticizing himself or
at least his earlier self ) but the expressibility of the testimony of such
Wesensschau.

The inexpressibility of logical forms implies that there cannot be any
literal discursive theory about them. Simple objects and their forms are
the alpha and omega of the ontology of the Tractatus, but there cannot be
any science or theory about them. Thus Wittgensteinean forms cannot
be manipulated and experimented with in the same way as Aristotle’s
or Husserl’s forms. This is another aspect of the impossibility of there
existing a genuine theory of logical forms according to Wittgenstein.
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Hence Wittgenstein’s critical comments on Husserl do not reflect on
the deeper kinship of their ideas. Perhaps the most striking facet of
Wittgenstein’s philosophy of logic and language is that the very basis of
logic, the logical forms, are given to us phenomenologically. This is what
he means by saying that “phenomenology is grammar”—the term “gram-
mar” being the later Wittgenstein’s euphemism for logic. This is why he
gave up the idea of a sharp logic of language as soon as the phenomeno-
logically given was no longer for him expressible in language. Usually,
logic is thought of as the structure of our most general concepts and
truths. For Wittgenstein, logic deals with the form of the most particular
objects (of different logical types).

If Wittgenstein had thought it possible to express in language the forms
of phenomenologically given objects and theorize about them, he would
have been in a position to develop a truly phenomenological theory of
logic in a wide sense of a system of conceptual necessities. In a sense,
the Tractatus is calculated to be such a phenomenological theory of lan-
guage and its logic. Alas, because of his highly restrictive commitment
to a universalist view of language-world relations, he had to relegate in
the penultimate paragraph of the Tractatus the logico-semantical theory
he had already developed to the realm he called nonsense. (Once again,
old as well as new Wittgensteineans have totally missed his point.) With
this qualification, we can say that the Tractatus is the simplest example of
what a phenomenological theory of logical (conceptual) necessity might
look like, in particular, in this way we can see in what sense Wittgenstein
could say, “phenomenology is logic.”

This way of looking at Husserl as a raider of the lost Aristotelian forms
also shows why it is tempting to overemphasize the affinity of his ideas
with finitistic and intuitionistic ones. Now conceptual knowledge can
be obtained according to Husserl by manipulating forms in intuition.
However, the deep difference is that for Husserl these forms are not
constructed by the human mind but are ultimately given in experience.
Phenomenological reduction does not lead us to acts of construction but
to what is given to me in intuition in the minimal sense.

However, it might still seem that the perspective in which I have con-
sidered possible phenomenological theories of mathematics is incoherent.
Or are those phenomenological theories themselves incoherent? On the
one hand in such aspects of his philosophy of mathematics as the theory
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of manifolds Husserl was concerned with arbitrary abstract structures of
both the theories that could specify them, obviously including the infinite
structures studied in mathematics. On the other hand, for such a theory
to be phenomenological those forms presumably must be realizable in
human consciousness, in Brentano’s phrase, be capable of inexisting in
consciousness. For how can one otherwise manipulate them in thought?
But not all forms or structures seem to be capable of so doing. Can
there be a Wesensschau, a kind of actual seeing of completely abstract
structures? Furthermore, most of the interesting mathematical struc-
tures are infinite. How can such structures possibly be present in human
mind?

This problem situation in Husserl is not new. It is connected with the
question of the content of such ideas as form and structure. For Aristotle,
thinking was operating with forms. (See here Hintikka 2004b.) And occa-
sionally he seems to have assimilated these forms with structures. “All
thinking takes place by means of images, as in seeing,” he writes. The
paradigm case is thus geometry, where Aristotle seems to say that all rea-
soning takes place by means of figures or diagrams. Hence something
like the same structures as the figures have must be actually present in
our minds. It is perhaps not unfair to suggest that his notion of form
was not abstract enough for the purposes of mathematics. For one thing
the figures needed in geometry must be arbitrarily large. How can such
structures be actually instantiated in the soul? Aristotle is worried about
this problem and proposes a solution, which I will not consider here.
(Cf. De Memoria 452a11 ff.)

In his theory of mathematics, Husserl is faced with a similar problem.
What are actually present in consciousness are finite structures. How can
they give us access to the mathematical structures or forms that are in
representative cases infinite? Cannot Husserl’s own manifolds be infinite?

It is here that we can see why phenomenology has appealed to finitistic
thinkers.

How did Husserl deal with this problem? I do not have an answer to
offer at this time, but there are clues as to what he thought. Much of
Husserl’s early struggle with psychologism and with the role of formal-
ism in transcending the limitations of what can be perceptually intuited
can be seen as a part of this struggle. Husserl’s own development led him
to the view that we can entertain even completely abstract structures in
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our consciousness. This development is usually discussed in terms of a
gradual liberation from psychologism. I suggest that the real gist of
Husserl’s development was not from one philosophical position to
another, but a growing trust in the power of the human mind to grasp
directly abstract structures. Thus we can perhaps say in Aristotelian terms
that he was able to extend the notion of form from its simple geometrical
sense to the abstract one needed in all mathematics. Those interpreters
who assimilate Husserl’s thought to intuitionism are therefore missing
the most interesting aspect of his philosophy of mathematics.

The same systematic point has further historical manifestations.
Husserl himself at one time emphasized the affinity of his ideas with
Hilbert’s axiomatic method. Now the typical models of Hilbertian axiom
system are infinite, and so are clearly many Husserlian manifolds. But if
he were a Hilbertian axiomatist, he could scarcely have been an intuition-
ist. Husserl’s notions of essence and Wesensschau are part of this aspect.
For Aristotle, form is a much more abstract notion than structure, even
though in geometry they are hard to tell apart. But precisely what is there
in Husserl’s notion of Wesensschau that can acquaint us with forms in the
sense of mathematical concepts and yet be part of our conscious experi-
ence? Wittgenstein believed that experience can give us logical forms of
objects. Could Husserl’s Wesensschau do the same thing? But then was
Wittgenstein right? Wittgenstein changed his mind about many things,
but I cannot help concluding that in an important sense he believed to
the end that “phenomenology is logic.”

Once we have overcome the temptation to find Husserl’s soulmates
among intuitionists and constructionists, we are free to see where the
greatest philosophical and historical interest of his ideas lies. This inter-
esting core idea is his project for a general theory of all structures. These
structures are sometimes referred to as manifolds.

This interpretation has the advantage of relating Husserl’s ideas to the
actual development of mathematics. The most general feature of the his-
tory of mathematics in the last 200 years is its gradual transformation
from a study of numbers (including functions of numbers to num-
bers) and of space to a study of different kinds of structures in general.
Milestones in that development include Riemann’s theory of manifolds,
Cantor’s set theory and Hilbert’s axiomatics. What is common to all these
is a more or less fully articulated idea of a general theory of different kinds
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of structures. They can for instance be different geometries, different sets
or the different models of an axiomatic system.

The ultimate manifestation of this structuralist conception of mathe-
matics would have been a vision of a universal “structure of all structures”
or “model of all models.” I believe that some such vision guided many
mathematicians’ thinking in the late nineteenth century even though
it was never fully articulated by them. For instance, on Hilbert’s early
axiomatist view of mathematical theorizing, what an axiomatic theory
does is to stake out a subspace of the space of all structures as the class
of its models. The existence of such models was implied by the consis-
tency of the axiom system. This explains not only Hilbert’s misleadingly
formulated claim that consistency implies existence. It also explains his
preoccupation with such questions as consistency and completeness.

Both Riemann’s theory of Mannigfaltigkeiten and Cantor’s theory
of sets (which at an early stage of the theory were also known as
Mannigfaltigkeiten) can be thought of as partial realizations of a theory
of all structures. Riemann’s theory was only partial, for not all possible
structures are manifolds in Riemann’s sense. Cantor’s theory was in a dif-
ferent way only partial, for in it we look away from the internal structure
of a set. Yet it is hard to understand the history of set theory without
appreciating the idea of a structure of all structures. For instance, why
should there be a temptation to assume any strong form of the axiom
of comprehension, which so easily has paradoxical consequences? If one
accepts the idea of the structure of all structures, it is not unnatural to
assume that any condition on the relevant structures (sets?) must pick
out the structure (set?) that they form together.

Also set theory seems to have been thought of as supplying the models
that an axiomatic theory needs. It was for this reason that Hilbert was so
anxious to regain Cantor’s paradise. Sometimes you can form models of
a theory in another theory, as Klein could model certain non-Euclidean
geometries in the Euclidean one. But when this fails, you have to find the
relevant structure without the help of existing theories, other than the
“model of all models” where they all come.

Without entering any details, it seems to me that the greatest inter-
est of Husserl’s philosophy of mathematics lies in his attempt to spell
out systematically this idea, which apparently was tacitly on the mind of
many of his contemporaries. (See here especially the texts at the end of
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Hua 12, and cf. Hill 2000a; 2000b.) The manifestation of this attempt
is undoubtedly Husserl’s theory of what he called manifolds. Sometimes
he thought of this vision in terms of a “system of all systems” not unlike
Hilbert’s axiomatic method. This directed his attention to some of the
same concepts that Hilbert was developing, for instance to the notion of
completeness. Indeed, for a while, Husserl professed a close kinship with
Hilbert’s axiomatic approach.

This project had two aspects. Husserl’s theory dealt with certain
abstract entities, viz. structures. But apparently Husserl thought that each
such structure had to be capable of being specified by an axiom system.
Thus this theory of “the model of all models” came to involve also a study
of a “system of all systems.” It was in this way that Husserl got involved
in the intriguing but at his time confused problems of the completeness
of logical and mathematical systems in different senses of completeness.

The main difficulty that an interpreter faces here and that in a differ-
ent way haunted Husserl was a lack of distinction between what Beth
later called formal derivability and logical consequence. This uncertainty
affects all questions of completeness, for an axiom system can be com-
plete with respect to logical (semantical) consequence relation and yet not
admit of a complete formal proof procedure. Admittedly, this difficulty
Husserl shared with all his contemporaries. Yet it makes his speculations
about completeness, elementary equivalence, categoricity and definitheit
to a considerable extent confused and confusing.

We can thus see one important direction that the philosophy of
mathematics of a phenomenologist like Husserl can take—and in fact
took.

Unfortunately, the actual development of logic and mathematics has
not been very kind to Husserl’s ideas, at least on the surface. In axiomatic
set theory, all-comprehensive notions like the set of all sets have turned
out to be difficult to implement. Likewise, Hilbert’s use of the consistency
of a system (structure) as a sufficient criterion of its existence likewise runs
into trouble, in that such consistency turned out to be hard to prove in
non-trivial cases. Further research will show whether these difficulties are
insurmountable.

Another obstacle in the development of Husserl-type ideas was sev-
eral leading logicians’ commitment to what van Heijenoort (1967) called
the idea of logic as language. (The general form of this idea has been
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called the idea of language as a universal medium.) As Martin Kusch
(1989) has impressively shown, this idea was foreign to Husserl. This
idea was understood as ruling out (among many other things) any gen-
eral theory of all models. Early attempts to develop such a theory under
the title “logical semantics” were shot down by mathematically sophisti-
cated logicians, especially Tarski. Admittedly Tarski later came to build
together with his associates what is now called model theory. However,
Tarski’s model theory was originally only a branch of the metatheory of
algebra, not a universal theory with philosophical significance and gen-
eral applicability. I suspect that it was Husserl’s implicit rejection of the
idea of language as a universal medium that made his theory logica non
grata much more important than any particular technical result, such as
Gödelian incompleteness.

On the philosophical level, Husserl nevertheless has not remained
without followers—if that is the right word. No lesser a figure than Kurt
Gödel has espoused a conception of universal theory of sets and struc-
tures, albeit without any explicit mathematical realization other than the
usual set theory. However, for all his professed admiration of Husserl’s
ideas, Gödel departed significantly from them. For instance, in one
important respect Gödel’s envisaged theory of structures is only a flat
shadow of Husserl’s and Hilbert’s ideas. Gödel was an actualist. For him,
there was only this one reality of ours. Even the possible structures figur-
ing as models of axioms must exist somewhere in this universe of ours,
which therefore must encompass an abstract Platonic higher stratum. The
truths of logic are therefore for Gödel among the truths about the actual
world, not truths obtaining in all possible worlds, as for Leibniz.1

This is a much more timid idea than the Husserl-Hilbert idea of dif-
ferent mostly unactualized possibilities concerning the real world. For
one thing, it means losing all connection with the idea of a variety of
axiomatic theories each with its models and hence all connection with
much of actual mathematical theorizing.

1Mark van Atten has challenged my attribution of actualism to Gödel. His evidence
nevertheless supports my case. It is all from Gödel’s paper on the general theory of
relativity, where the relevant sense of possibility is a physical one, not conceptual (log-
ical). Of course a philosophical actualist can speak of other physically possible worlds,
meaning simply possible systems satisfying a given physical theory.
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It also trivializes Gödel’s notion of intuition. What Gödel called intu-
ition is much more like Husserl’s Wesensschau than Husserl’s notion of
intuition. Gödel’s intuition could not be the discovery of new forms or
structures in experience that might or might not be exemplified in the
particular structure called the actual world. What it was calculated to do
was to provide us with a peek of how things stand on the Platonic upper
floor of our actual world. Gödel’s intuition is therefore primarily intu-
ition of truths, not objects. How such intuition operates as to give us any
real insights remains a mystery.

Gödel compares his notion of intuition to sense-perception. It is sup-
posed by him to be the basis of our knowledge in logic and mathematics
in the same way as sense-perception is the basis of natural science. But
this is a wrong conception of scientific method. Natural science, as dis-
tinguished from natural history, is not based on mere observation, but on
experimentation. As was observed earlier, Husserl’s notion of intuition
allows manipulation and experimentation in thought. Gödel’s does not,
wherefore it is only a pale shadow of Husserl’s ideas.

It might seem flattering to Husserl to have had admirers like Gödel.
Unfortunately, it seems to me that Gödel’s grasp of what Husserl’s phi-
losophy of mathematics amounts to was shaky and that as a philosopher
Husserl had a better judgment than Gödel.2
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CHAPTER VI

THE DEVELOPMENT OF MATHEMATICS AND THE BIRTH

OF PHENOMENOLOGY

Mirja Hartimo

Abstract. The article examines Husserl’s view of mathematics as a continua-
tion of Weierstrass’s project. While Husserl adopts the more modern axiomatic
approach to mathematics as opposed to Weierstrass’s genetic approach, he contin-
ues to be Weierstrassian in his preoccupation for foundational questions. The
latter part of the article examines in what way the outcome is Platonistic in
Husserl’s own usage of the term. By Platonism Husserl means both a belief in
immutable and unchanging ideal structures, as well as, a search for critical justi-
fication in reflection. In the latter sense of the term Husserl’s “Platonism” can be
seen as an outcome of Husserl’s Weierstrassian ethos.

In the foreword to the Prolegomena to the Logical Investigations (1900)
Husserl writes that the Logical Investigations (1900–1901) was born
from his attempts to clarify the philosophical foundations of mathemat-
ics (Hua 18, 5).1 Arguably, the most important discovery of Husserl’s

1Husserl opens the Logical Investigations with the following claim about its origin:
“Die logischen Untersuchungen, deren Veröffentlichung ich mit diesen Prolegomena
beginne, sind aus unabweisbaren Problemen erwachsen, die den Fortgang meiner
langjährigen Bemühungen um eine philosophische Klärung der reinen Mathematik
immer wieder gehemmt und schließlich unterbrochen haben. Neben den Fragen
nach dem Ursprung der mathematischen Grundbegriffe und Grundeinsichten betrafen
jene Bemühungen zumal auch die schwierigen Fragen der mathematischen Theorie
und Methode. . . .” (Hua 18, 5). Husserl goes on to explain how he had realized
that “das Quantitative gar nicht zum allgemeinsten Wesen des Mathematischen oder
‘Formalen’ und der in ihm gründenden kalkulatorischen Methode gehöre. Als ich
dann in der ‘mathematisierenden Logik’ eine in der Tat quantitätslose Mathematik
kennenlernte, und zwar als eine unanfechtbare Disziplin von mathematischer Form
und Methode, welche teils die alten Syllogismen, teils neue, der Überlieferung fremd
gebliebene Schlußformen behandelte, gestalteten sich mir die wichtigen Probleme
nach dem allgemeinen Wesen des Mathematischen überhaupt, nach den natürlichen
Zusammenhängen oder etwaigen Grenzen zwischen den Systemen der quantitativen
und nichtquantitativen Mathematik, und speziell z. B. nach dem Verhältnis zwischen
dem Formalen der Arithmetik und dem Formalen der Logik. Naturgemäß mußte ich
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Logical Investigations (1900–1901) is the notion of categorial intuition.
In this chapter I will examine how Husserl’s engagement in the prob-
lems about the foundations of mathematics led him to the discovery of
categorial intuition. Roughly, the story goes as follows: At first, follow-
ing his teacher Karl Weierstrass, Husserl held that mathematics should
be erected on the concept of number. Accordingly Husserl’s first philo-
sophical works focused on the concept of number and the elementary
arithmetic operations. During the latter half of the nineteenth century
the mainstream approach to mathematics evolved from the Weierstrassian
genetic approach into an axiomatic approach, to use terms introduced by
Hilbert in 1900 (Ewald 1996, 1092–1093). Following the mainstream
mathematicians Husserl adopted the modern axiomatic view of mathe-
matics, according to which mathematics is about abstract structures and
has little to do with numbers or counting. The development of math-
ematics thus produced new, independent, purely formal domains to be
studied. The new ideal domains helped Husserl to develop his anti-
psyhologistic point of view as well as led him to the discovery of categorial
intuition in the Logical Investigations.

In the end I will briefly address the significance of categorial intu-
ition to Husserl’s philosophy. The notion takes Husserl’s approach far
beyond Kant, aligning Husserl’s approach rather with Aristotle, as has
been hinted at by Heidegger (Heidegger 1985, 2000; Taminiaux 1985)
and emphasized by Richard Cobb-Stevens (1990, 2002, 2003, 2004),
and Jaakko Hintikka in the present volume. I will discuss the nature
of Husserl’s Aristotelianism. I will argue that while Husserl’s approach
towards reality is certainly Aristotelian rather than Kantian or Cartesian,
Aristotelian approach has difficulties in including Husserl’s abstract view
of mathematics into it. Indeed, Husserl’s view of logic has a closer ancient
counterpart in Euclid, and through Euclid, Plato. I will distinguish two
senses in which Husserl’s approach can be said to be Platonist: the first
concerns his view about unchanging, identical mathematical objects,
and the second relates to the demand for justification of the axiomatic

von hier aus weiter fortschreiten zu den fundamentaleren Fragen nach dem Wesen der
Erkenntnisform im Unterschiede von der Erkenntnismaterie und nach dem Sinn des
Unterschiedes zwischen formalen (reinen) und materialen Bestimmungen, Wahrheiten,
Gesetzen” (Ibid., 6).
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theories. However, claiming that Husserl is a Platonist is not to say that
Husserl was a metaphysical realist in a naïve sense (see Tieszen’s paper
in the present volume). Husserl’s transcendental idealist interpretation
of Plato is entirely in accordance with the non-metaphysical spirit of
phenomenology.

I. Weierstrass and Mathematics as Rigorous Science

While the mathematical technique called “calculus” was invented by
Newton, Leibniz, and others in the seventeenth century, only in 1821
Cauchy published the first systematic approach to analysis.2 The logical
structure of Euclidean geometry set the standard of rigor for Cauchy. The
result was the first rigorous definitions of limit, convergence, continuity,
and derivative. Many of Cauchy’s discoveries were simultaneously arrived
at by Bernhard Bolzano (1781––1848). But while Cauchy’s Cours was
extremely influential, Bolzano’s work was relatively unknown until the
latter half of the nineteenth century.

However, Cauchy still used expressions like “approach indefinitely,”
or “as little as one wishes” that left room for ambiguities and invoked
geometrical intuition. Ultimately the needed rigor was established in the
1860s, when Karl Weierstrass presented several results that considerably
clarified several fundamental notions of analysis. By means of ε-δ defini-
tions he could define for example the notion of limit by using only the
real numbers, addition and “smaller than” relation, instead of using vague
natural language expressions (e.g., variable “approaching” something).
Because of the overall rigor of his writings he is generally considered to
be the founder of modern analysis.

In his lectures in the 1870s and 80s Weierstrass demanded stepwise
demonstrations of the basic notions of analysis, beginning with the con-
cept of number and operations on the numbers (Dugac 1973, 64–65, 73,
78). Later, his conception of rigor matured into a demand for clarity by
means of a detailed mode of representation while attempting to manage
a chapter of science as a whole. Weierstrass’s student Gösta Mittag-Leffler

2I have discussed Husserl’s relationship to Weierstrass as well as his Philosophy of
Arithmetic (1891) in more detail in Hartimo 2006.
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has characterized Weierstrass’s ethos as a striving for an all-encompassing
theory of the domain in question: “In one of his treatises Weierstrass
expresses the conviction that the results he has attained ‘will at least
interest those mathematicians who find satisfaction, when it is possible
to bring a chapter of science to a genuine conclusion.’” (Mittag-Leffler
1897, 79)3

With these plain words Weierstrass himself characterized his whole activity and articu-
lated the goal which he strived for in all his works. The history of mathematics will also
support this, that until now no mathematician was able to reach this goal to a higher
degree and in greater extent than he, and the goal is to bring complete chapters of the
science into actual conclusion. (Mittag-Leffler 1897, 79)

Initially Weierstrass’s aim was to logically analyze the fundamental
notions of analysis. While he wanted to articulate everything presup-
posed in the theory he also wanted to describe a branch of mathematics
in its entirety. Thus Weierstrass’s ethos is characterized by an aspiration
to descriptive completeness, to capture everything there is to say about
the domain of a theory. This ethos may well have had an enormous
influence not only on Husserl and his view of Definitheit (See below
Section III, also Hartimo 2007), but also many others in his generation
of mathematicians, in particular, on Hilbert’s Completeness Axiom.

II. Husserl in Weierstrass’s Footsteps

Husserl went to Berlin to study mathematics in 1878. He attended
the full cycle of lectures given by Weierstrass including the lectures on
the theory of analytic functions (1878); the theory of elliptic functions
(1878–1879), the lectures on the calculus of variations (1879); the lec-
tures on the use of elliptic functions to solve selected geometrical and
mechanical problems (1879); lectures on the theory on Abelian func-
tions (1879–1880); again the lectures on the theory of analytic functions
(1880–1881). Husserl’s report about Weierstrass is the following:

3In einer seiner Abhandlungen spricht Weierstraß die Überzeugung aus, dass die von
ihm erhaltenen Resultate “wenigstens diejenigen Mathematiker interessieren werden,
welchen es Befriedigung gewährt, wenn es gelingt irgend ein Kapitel der Wissenschaft
zu einem wirklichen Abschlusse zu bringen.”



VI. development of mathematics 111

The great Weierstrass was the one who raised in me an interest for a radical grounding
of mathematics during my student years in his lectures on the theory of functions. I
learned to appreciate his efforts to transform analysis, which was so much a mixture of
rational thought and irrational instinct and tact into a purely rational theory. He was
after the original roots, attempting to postulate the elementary concepts and axioms to
form a basis from which the entire system of analysis could be constructed and deduced
with a completely rigorous, thoroughly insightful method. (Schuhmann 1977, 7)

Moreover, Malvine Husserl has reported that Husserl repeatedly said
that he owes his scientific ethos to Weierstrass (Schuhmann 1977, 7; See
also Becker 1970, 40).

To Husserl Weierstrass’s importance is in his demand for rigorous
foundations for mathematics. Despite of his changing view of mathemat-
ics from the more genetic approach to the more axiomatic approach, in
the sense of demanding foundations for mathematics, Husserl remained
Weierstrassian for the rest of his life.

Continuing Weierstrass’s program Husserl wrote his Habilita-
tionsschrift Über den Begriff der Zahl. Psychologische Analysen (On the
Concept of Number. Psychological Analyses) under guidance of Carl
Stumpf in 1887 (Hua 12, xxi-xxiii). In his Habilitationsschrift Husserl
explains:

Today there is a general belief that a rigorous and thoroughgoing development of higher
analysis . . ., excluding all auxiliary concepts borrowed from geometry, would have to
emanate from elementary arithmetic alone, in which analysis is grounded. But this ele-
mentary arithmetic has, as a matter of fact, its sole foundation in the concept of number;
or, more precisely put, it has it in that never-ending series of concepts which mathemati-
cians call “positive whole numbers.” . . . Therefore, it is with the analysis of the concept
of number that any philosophy of mathematics must begin. (Husserl 2003, 310–311).

Husserl explicitly takes on the task of continuing Weierstrass’s pro-
gram and providing foundations to Weierstrass’s approach. In Husserl’s
Habilitationsschrift this meant providing an analysis for the concept of
number. A similar view is also expressed in the introduction to Husserl’s
Philosophie der Arithmetik, Psychologische und logische Untersuchungen
published in 1891. There Husserl states, that “[p]erhaps I have suc-
ceeded in preparing the way, at least on some basic points, for the true
philosophy of the calculus, that desideratum of centuries” (Hua 12, 7,
Husserl 2003, 7). The aim is thus to provide foundations to calculus
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by an analysis of the concept of number. Moreover, the analysis should
render the number thoroughly intuitive.

III. Philosophy of Arithmetic as an Analysis
of the Concept of Number

Husserl’s first published work Philosophy of Arithmetic (PA) was origi-
nally supposed to appear in two volumes, but only the first one came
out. The published work consists of two parts with the first four chap-
ters of part one repeating the contents of Husserl’s Habilitationsschrift
“On the Concept of Number,” according to Husserl, almost word for
word (Hua 12, 8). The first part of the PA gives a psychological anal-
ysis of our everyday concept of number. Indeed, Husserl later claimed
that also Weierstrass started his analyses from our everyday concept of
number. Around 1930, in an unpublished manuscript, Husserl wrote
that “Weierstrass admittedly started with concepts that are already given
in the natural thinking life and the tradition. But they will not be accepted
without hesitation, but only after deliberate proof, namely as intuitive in
their meaning as clear and identifiable, like the individual 1, the oper-
ative construction of 1 + 1 etc. (addition), equality of the individuals,
etc.”(B II 23 8 a–b, my emphasis).4

A psychological analysis is to Husserl an analysis of an experience of the
presentation of a number and in particular an elucidation of its “origin.”
Since our intellect and time are limited, we can have an intuitive under-
standing of only a small part of mathematics. In order to overcome the
limitations of our intellect we make use of symbols to assist our think-
ing. This already takes place in such simple tasks as counting objects.
Indeed, we know almost all of arithmetic only indirectly through the
mediation of symbols. Accordingly the second part discusses the symbolic
representation of numbers. As the subtitle Psychologische und logische

4Weierstraß beginnt zwar mit Begriffen, die von dem natürlichen Denkleben und der
Tradition vorgegeben sind. Aber sie werden nicht unbesehen hingenommen, sondern
nach bewusster Prüfung aufgenommen, nämlich als einsichtige ihrem Sinn nach klare
und identifizierbare, wie das einzelne 1 die operative Bildung des 1 + 1 usw. (Addition),
Gleichheit von Einzelnen etc. (B II 23 8a-b)
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Untersuchungen suggests, it contains logical investigations of the concept
of number.

In the first part on the psychological investigations Husserl appropri-
ates Brentano’s descriptive psychology to the problem of number. His
aim is to describe what numbers are to us in an ordinary experience. In
so doing Husserl develops several methods central to phenomenology.
Indeed Husserl’s later, properly phenomenological writings are easy to
see as a continuation of the investigations Husserl started already in his
Habilitationsshcrift. Indeed in the Formal and Transcendental Logic (1929)
Husserl views it as a phenomenologico-constitutional investigation:

I had already acquired the definite direction with regard to the formal and a first
understanding of its sense by my Philosophy of Arithmetic (1891), which, in spite of its
immaturity as a first book, presented an initial attempt to go back to the spontaneous
activities of collecting and counting, in which collections (“sums,” “sets”) and cardinal
numbers are given in the manner characteristic of something that is being generated
originaliter, and thereby to gain clarity respecting the proper, the authentic, sense of the
concepts fundamental to the theory of sets and the theory of cardinal numbers. It was
therefore, in my later terminology, a phenomenologico-constitutional investigation; and
at the same time it was the first investigation that sought to make “categorial objectivi-
ties” of the first level and of higher levels (sets and cardinal numbers of a higher ordinal
level) understandable on the basis of the “constituting” intentional activities, as whose
productions they make their appearance originaliter, accordingly with full originality of
their sense. (FTL, §27a)

The second part offers an independent view of arithmetic, basing it
on the use of signs. In the first part Husserl had explained that we are
capable to have an authentic intuition only of numbers up to about
12. However, if we count the objects by enumerating them, we are
already relying on symbolic methods (Hua 12, 104–105, Husserl 2003,
109–110). Thus it is clear that arithmetic in general cannot be authenti-
cally given in intuition (Hua 12, 192). The question that Husserl wants
to answer in the second part of the Philosophy of Arithmetic is how the rest
of arithmetic is given to us.

Husserl’s answer to the problem lies in the complete parallelism
between the system of concepts and the system of signs. The idea is to
start from certain concepts, translate them into signs, and then to operate
on the signs in accordance to given rules. The resulting sign is in the end
interpreted as a concept. Thus Husserl’s conception of the arithmetica
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universalis is based on the notion of computation, and the belief in, in
modern terms, completeness and soundness of the two parallel systems.
In the end, the basis for arithmetica universalis is in the sense-perceptible
signs. Husserl also presupposes the existence of purely formal concepts
that correspond to the results of the computations, thus maintaining a
view that is rather independent of the first part of the Philosophie der
Arithmetik.

The published volume of the Philosophie der Arithmetik was supposed
to be followed by a second volume in which Husserl was supposed to
discuss

logical investigation of the arithmetical algorithm . . . and the justification of utilizing
in calculations the quasi-numbers originating out of the inverse operations: the nega-
tive, imaginary, fractional and irrational numbers. Critical reflections on the algorithm
repeatedly occasion a closer examination of the question whether it is the domain of
cardinal numbers, or some other conceptual domain, that general arithmetic in the
primary and original sense governs. To this fundamental question the Second Part of
Volume Two is then devoted. (Hua 12, 7; Husserl 2003, 7)

In addition he also planned to develop a new philosophical theory
of Euclidean geometry, possibly on the basis of Gauss’s work Anzeige
der Theoria residuorum biquadraticorum, Commentatio secunda. However,
the second volume never appeared. Ironically, Husserl later claimed
that the analyses of the psychological part of the PA already represent
phenomenologico-constitutional investigation, while the second part on
the logical investigations caused him problems and underwent several
changes (Husserl 1994, 490–491, Hartimo 2007).

IV. Logical Investigations and the Axiomatic Approach

For the sake of the present argument I will not discuss Husserl’s develop-
ment between the Philosophy of Arithmetic and the Logical Investigations in
detail here. But roughly what happened was that Husserl’s investigations
took him to the developing views of Mannigfaltigkeitslehre. He searched
for a general framework in which one could examine individual theo-
ries and their relationships with each other. Wanting to find an approach
to analysis free from geometrical intuition he was mostly interested in
Hermann Grassmann’s Ausdehnungslehre, coordinate-free geometrical cal-
culus. However later he claimed interest also to Riemann’s, Hamilton’s,
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Lie’s, and Cantor’s approaches. He worked in Halle as Cantor’s colleague.
The two discussed each other’s work, and for example, Schröder’s attempt
to deal with concepts of set theory by means of the algebra of logic
(Schuhmann 1977, 52; Peckhaus 2004, 593–594).5

In his investigations Husserl followed the general trend in the main-
stream mathematics. In the end of the nineteenth century mathematics
developed from the Weierstrassian approach towards more abstract the-
ories. By the 1880s Weierstrass, and with him, Berlin, lost the leading
role in the world of mathematics. Göttingen with Klein and Hilbert in
the lead assumed the role in the late 1890s. Around the turn of the cen-
tury there were several competing “logics,” i.e., different kinds of theories
of manifolds, which were different kinds of suggestions for the general
framework in which we could examine mathematical theories. The search
for rigor in the foundations of mathematics reached its point of culmina-
tion in Hilbert’s work. Incidentally, in 1901 Husserl moved from Halle
to Hilbert’s Göttingen.

Hilbert’s work was a culmination in a trend to give analysis purely
qualitative basis. To Hilbert, the ultimate rigor to analysis, as well as to
the rest of mathematics, is given by axiomatization, not through arithme-
tization. Hilbert contrasted his axiomatic method to the genetic method,
in which the number domain is generated from a number one. Instead,
in the axiomatic method, the existence of the elements of the domain
is presupposed, while the relationships between the elements are deter-
mined by means of the axioms. The axiomatic method then requires
proving the completeness and coherence of the system. In 1900 Hilbert
added the Completeness axiom to his axiomatization of the Euclidean
geometry. With it he posited its categoricity, i.e., roughly that all of its
interpretations are isomorphic to each other. A complete axiomatization
has formally only one interpretation, and thus one could as well talk
about tables, chairs, and beer mugs as points, lines, and planes. In such
an axiomatization the elements of the theory are considered from a purely
formal point of view and their material realization is entirely irrelevant.

Soon after having moved to Göttingen in 1901, Husserl gave a so-
called Doppelvortrag in Göttinger Mathematische Gesellschaft. In it Husserl
explained his view of a definite axiomatic system that justifies the usage

5About Husserl’s development in more detail see (Hartimo 2007, 2008).
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of the imaginary numbers. Definiteness to Husserl captures the formal
domain in the manner of Hilbert’s complete axiomatic system. I have
discussed Husserl’s view of definiteness elsewhere hence I will here only
summarize the main point of Husserl’s lectures. For Husserl a definite
system is, like Hilbert’s complete axiomatization, a categorical theory that
has only one purely formal model (Hartimo 2007). The definite axiom
system is Husserl’s ideal of a pure logic. It is the basis for Husserl’s argu-
ments against psychologism as it shows an undeniable existence of an
objective and purely formal theory. To Husserl, the problem with the psy-
chological logicians is that they cannot account for something like that
and hence to Husserl their views lead to relativism and skepticism.

Perhaps even more importantly, to Husserl the idea of pure logic is
a source of a new philosophical problem: how is this newly found for-
mal domain given to us? “So erwächst die große Aufgabe, die logischen
Ideen, die Begriffe und Gesetze, zu erkenntnistheoretischer Klarheit und
Deutlichkeit zu bringen. Und hier setzt die phänomenologische Analyse
ein” (Hua19/1, 9). Instead of the givenness of numbers and sets, Husserl’s
problem is now the givenness of the theoretical structures. The idea of
pure logic is purely formal, thus there can be no sensuous intuition of it.
The task is now to give a descriptive analysis of the constitution of the ide-
ality of the abstract domains rather than that of the givenness of different
sizes of collections of objects.

It is worth emphasis that Husserl’s problem is the givenness of the theo-
retical structures; Husserl does not postulate them, but he sees his task to
be to describe what is handed to him by the mathematicians. His attitude
towards the existence of mathematical objects and structures is largely
neutral: he does not question them nor does he postulate them. He sim-
ply describes what the sciences, in the present case mathematics, have
found there to be. In terms of ontological questions Husserl’s approach is
thus rather naturalist. But, unlike a typical naturalist, in order to under-
stand the givenness of what there is, Husserl turns to a transcendental
description of how the given is constituted.

V. Categorial Intuition

Categorial intuition is Husserl’s initial answer to the givenness of the pure
logic. Intuition of something according to Husserl means direct givenness
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of that something. Sensuous intuition means givenness of simple objects.
Categorial intuition, on the contrary, means givenness of categorial for-
mations, such as states of affairs, logical connectives, and essences. When
we see that paper is white, we do not only see paper and whiteness but
also that the paper is white. For Husserl this shows that what is directly
given to us in our experiences is not restricted to sense data. The world
appears to us as meaningful and structured. In addition to simple objects
we intuit certain “surplus,” which makes the world garbed with meaning.

As Heidegger points out, in formulating the notion of categorial
intuition Husserl moves far beyond Kant. Heidegger only hints at
Husserl’s Aristotelianism, but some later phenomenologists have empha-
sized Husserl’s close resemblance to Aristotle. (See in particular Cobb-
Stevens 1990, 2002, 2003, 2004.) After the publication of the Logical
Investigations, Husserl’s interest in categorial intuition grows into all-
encompassing analyses of the constitution of the given. In 1907, Husserl
introduced the term Wesensschau for what in the Logische Untersuchungen
he called idealizing abstraction. Wesensschau is a special case of catego-
rial intuition, and it refers to our capability to “see” identical essences.
Jaakko Hintikka bases his view of Husserl as an Aristotelian philosopher
especially on Husserl’s notion of Wesensschau.

VI. Aristotle or Plato (and Which Plato)?

In a very general sense Husserl’s attitude towards the reality indeed is
Aristotelian rather than Cartesian or Kantian. We intuit categories, which
would be an oxymoron for Kant. Moreover, what we intuit is out there
in the world. Intuition is not introspection.

But if we take into account the role of abstract structural mathematics
to Husserl, some reservations are in order. The problem is that the role of
Aristotle’s syllogistic as well as his writings in mathematics, was to offer
an organon for empirical sciences. Aristotle did not thematize axiomatiza-
tions of geometry or arithmetics in themselves. Consequently Aristotle’s
syllogistics is not abstract enough to be able to include Husserl’s view
of abstract structures. Aristotle’s, or at least his students’, approach to
logic was guided by a practical interest, and it was not founded by pure
logic. The main point of Husserl’s Prolegomena is that logic as a practical
discipline has to be justified by logic as a theory.
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The Euclidean axiomatization rather than Aristotelian syllogistics has
set the theoretical ideal for mathematicians ever since the ancient times.
In this respect, Husserl follows the mathematicians: the Euclidean ideal
sets the standard of pure logic to him, too. To Husserl Euclid system-
atized the axiomatic ideal presented in Plato’s Republic (Hua 7, 34–35).
Indeed, in 1918 in a letter to Julius Stenzel Husserl called himself a “phe-
nomenological Platonist” (Briefwechsel 6, 427–428), and in the 1920s he
repeatedly mentioned Plato as the most important philosopher in the his-
tory of philosophy. He also claims that instead of Aristotle, Plato is the
one who establishes the ideal of rationality and logic (Hua 7, 34).

VII. Platonism of the Eternal, Self-Identical, Unchanging
Objectivities

When Husserl’s Platonism is discussed in the secondary literature, it
usually refers to a view about abstract objects or mathematical objects.
Indeed Husserl writes: “In fact, one cannot describe the given phenom-
ena like the natural number series or the species of the tone series if
one regards them as objectivities in any other words than with which
Plato described his ideas: as eternal, self-identical, untemporal, unspatial,
unchanging, immutable” (Hua 30, 34). Husserl’s view about the abstract
objects derives from Lotze and especially Lotze’s reading of Plato’s ideas
(Hua 20/I, 297, Briefwechsel 6, 460, for a detailed discussion of Husserl’s
indebtedness to Lotze, see Hauser 2003). To Lotze Plato’s ideas are self-
same and eternal concepts that are objective. They are valid (within a web
of logical theory) but they do not have the reality of Sein (Lotze 1928).
Accordingly Husserl explains his plan to have been to take Lotze’s view of
the ideal domain and place all the mathematical and a good part of the
traditional logic into it. Husserl’s way of avoiding Lotze’s occasional psy-
chologism was to use the “new mathematical logic” of the late eighteenth
century. In particular, in a categorical theory mathematical objects have
an objective existence independently of our activities of judging. They
exist unter dem Blick der Theorie, as Jocelyn Benoist (2003) has put it.
This is a kind of Platonism, but Platonism without hypostatising, ohne
topos ouranios (Hua 19/1, 106), and hence not naïve Platonism discussed
by Tieszen nor the kind of Platonism Dieter Lohmar objects to in his
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contribution, but a kind that is consistent with Husserl’s transcendental
idealism. Moreover, Husserl’s Platonism is metaphysically neutral in the
sense that it only describes the way in which mathematicians relate to
their subject matter. A definite, i.e., a categorical theory defines abstract
objects uniquely, and the philosophers’ task is to describe the givenness of
these objects. Thus Husserl does not postulate the realm of abstract enti-
ties. Rather he describes what mathematicians show us there to be. And
they show us structures.

VIII. Platonism as an Aspiration for Reflected Foundations

But there is more to Husserl’s “Platonism” than the above described view
of the objectivity of the concepts. Indeed, Husserl refers to Plato in a
much deeper sense when he opens his Formal and Transcendental Logic
(1929) saying that “Science in a new sense arises in the first instance from
Plato’s establishing of logic.” Husserl goes on to explain that we inherit
from Plato the attempt to gain genuine knowledge that is fully justified
by reflection. This sense of Platonism however is also a part of Husserl’s
Weierstrassian inheritance and has motivated Husserl’s work from the
beginning as the search for intuitively evident foundations for mathemat-
ics. It is only later that Husserl found the justification for exact sciences
to be thematized also in Plato’s dialogues, in particular, the Republic. This
sense of Platonism shows also as a striving to a complete theory about a
subject matter in question. Early Husserl claimed that he owed his scien-
tific ethos to his teacher Karl Weierstrass (Schuhmann 1977, 7). Above we
mentioned how Weierstrass’s close student Gösta Mittag-Leffler has char-
acterized Weierstrass’s ethos as a striving for an all-encompassing theory of
the domain in question (Mittag-Leffler 1897, 79). In Husserl’s writings
Weierstrassian/Platonist ethos turns into aspiration for theoretical comple-
tion, but the completeness in question is not that of any kind of a fixed
system, but rather that of a research project. Because of it the investigation
of evidences has to be included into the domain of logic. Thus Husserl’s
quest for completeness takes him to a never-ending project of estimating
the telos of logic and the transcendental examination of the way various
layers of logic are given to us. The description of various evidences is
to provide logic with Socratic self-examination. It is an investigation of
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sense, the outcome of which is increased understanding, and to quote
Husserl who quotes Socrates in Plato’s dialogues, “a life truly worth living,
a life of ‘happiness,’ contentment, well-being, or the like. . .” (FTL, 5).
Thus Husserl’s call for a “foundation” or a “justification” for sciences
should not be understood only in an epistemological sense but also in
the sense of Socratic-Platonic examination. Thus the view of philosophy
as a justifying reflection of the sciences ultimately relates to what Husserl
sees the task of phenomenology to be in general. This is the sense in
which Bernet, Kern, and Marbach relate Husserl’s idea of philosophy to
the Socratic-Platonic examination of the absolute knowledge in relation-
ship to the self-knowledge (1989, 4). This aspiration to “know thyself ”
is, in Husserl’s view, an infinite historical task.

IX. Conclusion

Plato emphasizes time and again the role of mathematics. To him the
way into philosophy goes through mathematics. In this paper I have dis-
cussed how a similar road took Husserl from Weierstrass’s lectures via the
abstract structural mathematics in the end of the nineteenth century, to
the knowledge theoretical problem of the givenness and justification of
the abstract structures. All along Husserl remains Weierstrassian in his
aspiration to ground mathematics by means of insight. However, the
developing mathematics uncovered the purely formal structures, which
gives Husserl the pure ideality. Husserl’s phenomenology is an answer to
the problem of combining these two tenets, and in both of these respects
Husserl found echoes in Plato.
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CHAPTER VII

BEYOND LEIBNIZ: HUSSERL’S VINDICATION

OF SYMBOLIC KNOWLEDGE

Jairo José da Silva

Abstract. For the entire span of his philosophical career, Husserl struggled with
the epistemological problem posed by imaginary elements, that is, improper or
objectless representations that are nonetheless treated as if denoting something.
How can it be explained that we can obtain knowledge (symbolic knowledge), as is
paradigmatically the case of mathematics, by operating with symbols according to
rules – even when these symbols do not represent anything ? This problem presented
itself very early in Husserl’s philosophical life and was a dominant factor in the
development of his thought. From the first to the last work he published the task
of clarifying the sense and delimitating the scope of symbolization and formal-
ization in science and mathematics was one of Husserl’s major concerns. In this
paper I want to show how Husserl dealt with the problem of symbolic knowledge
in mathematics, and the central role it played in his philosophical development.

I. Introduction

Since the writing of Philosophy of Arithmetic (PA, expanded version of
the Habilitationsschrift of 1887, published in 1891), at latest, until the
completion of the Prolegomena to Pure Logic (1896, first part of Logical
Investigations—LI—published in 1900), or maybe until later, when he
developed the ideas he presented in Göttingen in 1901, Husserl struggled
with the problem of imaginary elements in mathematics. As he himself
tells us, this problem forced him to broaden his philosophical horizons,
opening up new perspectives on the role of symbolization in thinking and
knowing processes and presenting new questions on the sense and scope
of formal logic. In his own words:

Above all it was its [i.e., arithmetic’s] purely symbolic procedural techniques, in which
the genuine, original insightful sense seemed to be interrupted and made absurd under
the label of the transition through the “imaginary,” that directed my thoughts to the sig-
nificance and to the purely linguistic aspects of the thinking—and knowing—processes
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and from that point on forced me to general “investigations” which concerned universal
clarification of the sense, the proper delimitation, and the unique accomplishment of
formal logic. (Draft Introduction to Logical Investigations, Hua 20/1: 272–329, 294, n.3.
Apud Moran 2005, 90)

Imaginaries are improper representations, i.e., representations with-
out object that nonetheless pass off as denoting something. Despite this
apparent absurdity, imaginaries are in general harmless and often use-
ful in mathematics. How can we explain that we can obtain knowledge
by operating “blindly”1 with symbols according to rules, even when
these symbols do not represent anything? This epistemological problem
presented itself very early in Husserl’s philosophical career and was a
dominant factor in the development of his thought. From the first to
the last work he published the task of clarifying the sense and delimitat-
ing the scope of symbolization and formalization in science was one of
Husserl’s major concerns. Correlated problems, such as the interplay of
representations without object and intuitions in the dynamics of knowl-
edge, among others, were also prominent in his agenda. In this paper I
want to show how Husserl dealt with the problem of imaginary elements
and symbolic knowledge in mathematics and the central role it played in
his philosophical development.2

1Cognitio caeca is one of the terms Leibniz—the man who brought this issue into
philosophy—used for symbolic knowledge.
2We are talking, basically, of Husserl’s philosophical development during, roughly, the
last decade of the nineteenth century. The relevant textual sources are the Philosophy
of Arithmetic (PA, 1891), the Logical Investigations (LI, 1900–01) and minor texts of
that period published in Husserliana 12, 21 and 22. In this paper I will concentrate on
those where Husserl’s treatment of the many (basically three) versions of the problem of
symbolic knowledge (concerning, respectively, symbolisms with and without interpreta-
tion, the role of imaginary elements in symbolisms with interpretation) comes out more
clearly; namely, PA, LI, “Semiotic” (Hua 12, 340–373), the review of Schröder’s book
Lectures on the Algebra of Logic (Hua 22, 3–43), and the draft for the Göttingen lec-
tures (“The Imaginary in Mathematics,” Hua 12, 430–451). Other texts, such as “The
Concept of General Arithmetic” (Hua 12, 375–379), “Arithmetic as an A Priori Science”
(Hua 12, 380–384), a letter to Carl Stumpf (Hua 21, 244–251), “On Set Theory” (Hua
12, 385–407), and “Formal and Contentual Arithmetic” (Hua 21, 21–23), to mention
a few, are either much shorter or not directly concerned with the problems discussed
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II. Symbolic Knowledge

It is unquestionable that Husserl took for granted the epistemological
relevance of symbolic representation. Consider the following quote of
1890:

Without the possibility of symbolic representations substituting more abstract proper
representations, difficult to distinguish and handle, or even representations that are not
proper [my emphasis], there wouldn’t exist a higher spiritual life, and even less science.
(“Semiotic,” Hua12, 349)

It is that simple: no symbolic reasoning, no science, in particular,
no mathematics. Husserl accorded vital importance to well-designed
symbolic systems—of calculation as well as derivation, that is, logical
systems—even if they do not have a proper representational function, as is
paradigmatically the case of imaginary mathematical entities and purely
symbolic logical systems (formal theories). However, he did not think
that operating with the symbols of a system according to prescribed rules,
by and in itself, constituted knowledge. A calculus, he thought, although
a useful technique, does not necessarily produce science. According to
Husserl’s review of Schröder’s Lectures on the Algebra of Logic,3 where this
distinction is introduced, a language is a vehicle for thought, whereas a
calculus may not be, if it is not logically justified. A logical justification
must show that the calculus in question leads to knowledge not only as a
matter of fact, but as a matter of right. Husserl says that:

All the artificial operations on signs are in a way at the service of knowledge, but in fact
they do not all lead to knowledge in the true and authentic sense of logical compre-
hension [Einsicht]. It is only if the process is itself a logical process, if we have logical
comprehension that it must lead to truth, as it is, and because it is so, that its results
are not only simply de facto true, but the knowledge of truth. (“Semiotic,” Hua 12,
368–369)

here; they will be taken mostly as subsidiary sources of information, not as loci classici of
Husserl’s treatment of the problem of symbolic knowledge.
3Published originally in Göttinger Gelehrte Anzeigen, 1891, no 7, 243–278; republished
in Hua 22, 3–43.



126 jairo josé da silva

Or still:

A truly fecund formal logic is constituted first of all as a logic of signs, which, when
sufficiently developed, will form one of the most important parts of logic in general (as
the art of knowledge). The task of logic is here the same as anywhere: to become master
of the natural procedures of the spirit that judges, to examine them, to understand the
value they have for knowledge in order to assess with exactitude their limits, extent and
range, and establish general rules concerning all this. (“Semiotic,” Hua 12, 373)

So, this much is clear: as early as 1890 Husserl was already con-
cerned with the task of justifying logically the purely symbolic aspects
of mathematics. As a trained mathematician Husserl could not ignore the
evidence that most of the practice and the theory of arithmetic rely on
algorithms (for calculations) and formal systems (for theoretical develop-
ment, particularly in the case of more general concepts of number, i.e.,
general arithmetic) and that maybe the most interesting new mathemat-
ical theories of the nineteenth century (Riemann’s theory of manifolds,
Hamilton’s theory of quaternions, Lie’s theory of transformation groups,
Boole’s logical calculus,4 etc.) were purely formal. Since he was not willing

4Boole, whose logical calculus could be interpreted either as a calculus of classes or a cal-
culus of propositions, was aware of the way winds were blowing in mathematics: “They,
who are acquainted with the present state of the theory of Symbolical Algebra, are aware
that the validity of the processes of analysis does not depend upon the interpretation
of the symbols which are employed, but solely upon the laws of their combination.
Every system of interpretation which does not affect the truth of the relations sup-
posed is equally admissible, and it is thus that the same process may, under one scheme
of interpretation, represent the solution of a question on the property of numbers,
under another, that of a geometrical problem, and under a third, that of a problem
of dynamics of optics” (Boole, in Bochenski 1970, §38.17). Although Brentano was an
influence to be reckoned with, I believe Husserl’s realization that purely symbolic reason-
ing has an essential role in knowledge is mainly due to his mathematical training and the
awareness of the logical relevance of symbolization that came from reading Boole and
Schröder, among other formal logicians of the time—it is clear, in Husserl’s long review
of Schröder’s book, that he knew well Boole’s calculus, maybe as “beautifully explained
by Venn” (Schröder’s review, p. 40). Of course, it was Leibniz (who was also well aware
of the fact that some symbolic systems admit different interpretations, and that in this
resides their main interest) the first to bring to philosophical attention the fact (and
the problem) of symbolic knowledge; Boole, Schröder and Frege were Leibniz’s natural
heirs. I believe, however (hence the title of this paper) that Husserl took this problem a
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to discredit these theories as mere playing with symbols or sterile formal
exercises (as Kantians considered the non-Euclidian geometries)—quite
the opposite—, Husserl, as the philosopher he had become, could not
avoid taking the burden of giving mathematical symbolic knowledge,
particularly if imaginaries were involved, a proper logical justification.

III. Meaningful Symbols in PA

Husserl’s first extensive treatment of the logical problems posed by sym-
bolic knowledge appeared in PA. There are in fact two variants of this
problem there, one concerning the justification of the usual algorithms
for carrying arithmetical computations, the other with treating the sym-
bols 0 and 1 as numerical symbols proper alongside the numerals 2, 3,
etc. One has to do with “blind” manipulations of meaningful symbols;
the other with the use of meaningless symbols as if they had a meaning.
Husserl treated these problems differently.

The algorithmic manipulation of numerals in the usual arithmeti-
cal operations is certainly not presided by accompanying intuitions;
nonetheless, the numerical symbols involved (excluding 0 and 1) have a
denotation and, moreover, the symbolic system constituted by numerals
and symbolic operations is an isomorphic copy of the system of num-
ber concepts and conceptual operations (in Husserl’s terminology they
are equiform5). In fact, as Husserl showed in the second part of PA,
the existence of such an isomorphism is the reason why purely sym-
bolic manipulations can produce true statements, thus justifying these
operations logically.

A closer inspection of the situation, however, reveals an important fact
that Husserl did not emphasize, but that is central for a satisfactory expla-
nation of the usefulness of imaginaries in mathematics: we can obtain
information about a domain by handling an isomorphic copy of it only
because all we want to be informed about the domain of interest has to do

step further by considering purely formal, non-interpreted systems; not only interpreted
ones, as many of his antecessors, including Leibniz, did.
5It is worth noticing that the notion of isomorphism, as we have it today, had not
yet by then come out clearly and distinctively in mathematics, although it was already
operational, as the work of Dedekind, for instance, testifies.
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with what this domain and its isomorphic copy have in common, which
is formal structure. We can obtain arithmetical knowledge by playing with
proper (i.e., denoting) arithmetical symbols algorithmically only because
arithmetical truths are formal, i.e., they do not concern numbers strictly,
but relations among and properties of whatever objects behave like num-
bers. Being formal, arithmetical truths can be obtained by investigating
no matter which domain formally identical with the domain of numbers,
the system of numerals and purely symbolic operations with numerals in
particular.

Nonetheless, for Husserl, the system of arithmetical truths, despite
their being formal is articulated internally by a unifying concept—the
concept of number as a collection of units upon which we can oper-
ate (by inserting or removing units). Although formal, Husserl thought,
arithmetical truths referred to numbers, not arbitrary number-like enti-
ties. According to Husserl, the fact that a system of formal truths—an
articulated body of formal knowledge, as I call it—must refer ultimately to
a possible system of objects unified under a concept whose formal proper-
ties the system of truths expresses, has to do with his persistent concern
that symbolic systems must be safeguarded from degenerating into dead
and dry formalism alien to knowledge, i.e., mere technicalities alienated
from our living experiences (Erlebniβen) and the Life-World (Lebenswelt),
as he would say later.6 In PA and elsewhere, for him, arithmetic was the
science of numbers as particularizations of the concept of quantity; a science
whose internal unity is provided by the concept of number.7 The unity
of a formal domain (i.e., the form of an objectual domain ruled by a the-
ory of a certain form) simply conceived by an act of formal imagination,
as we might say, on the other hand, Husserl thinks, is only the external
unity of a system whose elements hang together only in virtue of extrinsic
formal relations.

6His critique of technization in Crisis spares symbolic mathematics for, as André de
Muralt says: “[a]lthough mathematics is a symbolic knowledge, it can nevertheless be
applied and is therefore not technized on its own account. Its original sense is therefore
a logical sense” (1974, 183).
7Even though, let us keep this in mind, the insights we obtain by inquiring this concept
cannot distinguish between numbers proper and anything that just look like numbers,
that is, any domain equiform with (isomorphic to) the domain of numbers.
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IV. Meaningless Symbols in PA

This leads us to 0 and 1, which, according to Husserl, belong to arith-
metic only on the basis of their external or purely formal relations to
numbers proper. According to Husserl, the symbols 0 and 1 do not
denote numbers as he understood them, but merely intentional number-
like entities, to use a later terminology. But the inclusion of these entities
in the numerical domain was not adequately justified in PA, and this
problem became dramatically serious when Husserl took upon him
the task of providing logical foundation for more general systems of
arithmetic (for the never published second volume of PA).

This is how Husserl handled the problem of justifying treating 0 and
1 as numbers. Firstly, he acknowledged the obvious fact: we need 0 and
1. He says: “We would be quickly led into embarrassing complications
and even serious inconveniences in the theory of numbers if we wanted
to keep 0 and 1 apart from numbers proper and renounce to give these
two kinds a common denomination” (PA, Hua 12, 145).

Secondly, Husserl noticed that 0 and 1 are common products of the
computation with numbers proper—we meet them often enough in our
numerical calculations. But if we were to dismiss these results as non-
sense, the algorithms would become worthless. He says: “If we consider
that a uniform operational activity according to rules is not possible
unless all imaginable results of an operation can be treated formally in
the same way, it becomes clear why this enlargement of the domain of
calculation [via the introduction of 0 and 1 and all other number con-
cepts, negative, rational, irrational and complex—my note] was indeed
an important progress towards the establishment of arithmetic” (ibid.,
146–147).

In short, our usual numerical algorithms cannot do without 0 and 1;
these imaginaries are, so to speak, engendered by the algorithms, which
cannot work without them (a fact already appreciated by sixteenth cen-
tury algebraists with respect to negative and complex numbers). The
introduction of 0 and 1 in arithmetic on a par with the other numbers
“makes it possible an arithmetical algorithm, i.e., a system of formal rules
by means of which we can operate in a purely mechanical way in order to
solve numerical problems, that is, to find unknown numbers from known
numbers and relations among them” (ibid. p. 145).
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The only reasons Husserl gives for accepting 0 and 1 as numbers
(namely: (1) arithmetical operations among numbers proper produce
them naturally—it is as if they were required as necessary completions of
the arithmetical domain—and (2), the algorithms for solving numerical
problems are worthless without them) are clearly not satisfactory answers
from the perspective of a logical justification; obviously, Husserl could
not accept this lame justification as the final word on the matter—after
all, in strictly analogous way all number-like entities that Husserl called
imaginaries could also be justified. So, what I call the problem of symbolic
knowledge8 had already stuck out his head in PA, but it remained unsolved
therein, at least as far as imaginary elements were concerned. The prob-
lem only got worse when a logical justification for general arithmetic was
required.

V. Logical Systems

Husserl’s treatment of interpreted systems of derivation is similar to his
approach to interpreted systems of calculation. The requirements for a
logical justification of interpreted axiomatic theories, i.e., theories whose
axioms are true by virtue of some sort of intuition into what gives the the-
ory its internal unity are clearly stated in Semiotic. According to Husserl,
logically sound symbolic reasoning within interpreted systems must ful-
fill two conditions: (1) “the systematic forms of junction of words [i.e.,
the symbolic expressions] must reflect exactly those of thinking [i.e., the
meaningful judgments], otherwise the former could never become habit-
ual substitutes for the latter” and (2) “the first part of the system, which
contains the premises [. . .], must manifestly determine in a purely for-
mal manner, univocally, the part that contains the conclusion [. . .] the
set of premises determine univocally the conclusion.” In short, logical
languages (not simply calculi) must represent thinking proper, that is,
the formal expressions must stand for meaningful judgments and the

8How can we know anything by simply “playing” with symbols according to prefixed
rules?
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formal machinery for drawing conclusions must produce logically sound
inferences.9

The logical justification of computational algorithms involving inter-
preted symbols depends also on the existence of a representational relation
based on strict formal identity, as is the case of arithmetical algorithms.
Consider the following quote from another text of 1891 (“On the
Concept of Operation,” Hua 12, 408–429):

Any algorithm first establishes a rigorous parallel correspondence between fundamental
concepts, fundamental judgments and fundamental chains of reasoning and algorithmic
elements. In fact, the objects of the domain, which are represented in an indeterminate
manner, are replaced by simple signs; composites of objects, by composites of signs,
established by means of signs of operation that correspond to the different concepts of
operation; the relations, by signs of relation. Moreover, the fundamental propositions
[are replaced] by symbolic conventions telling which are the permitted symbolic mod-
ifications (to the extent that they correspond to true judgments) and which are not.
Concomitantly, conventional meanings are given to the symbols; hence, algorithmic
concepts are one-to-one coordinated with the original concepts. (Hua 12, 418)

But a proper logical justification for non-interpreted symbolic axiomatic
systems and non-denoting symbols cannot follow along similar lines. For
in such cases, of course, we cannot speak of a parallelism between repre-
sentations and represented, since non-denoting symbols do not represent.
In other texts of the same and later periods, Husserl made it clear how
he thought purely symbolic systems of calculation and derivation could
be justified. In few words: as far as determinate objectual domains were
concerned (for instance, the domain of numbers as answers to the ques-
tion “how many?”), purely symbolic reasoning was acceptable, if useful,
provided it were essentially unnecessary. This, for instance, was the justi-
fication for the use of imaginaries he presented in the Göttingen lectures
of 1901. The problem with this approach, however (and in this resides

9It is already clearly discernible in this passage the tasks that Husserl will in later
works impose upon formal logic, to elaborate a logical grammar so as to guarantee that
the formulas of a logical language be meaningful—and consequently denote sates-of-
affairs—and a theory of deduction so as to guarantee that formal derivations preserve
truth. In fact, according to D. Willard (Husserl 1994, XIV) “Semiotic” was “appar-
ently Husserl’s first systematic effort towards a ‘logic,’ in his special sense, for symbolic
calculation.”
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my criticism of Husserl’s handling of the problem of imaginaries) is that
it falls short of Husserl’s own requirements for a logical justification of
symbolic mathematics, since it does not explain why imaginaries are use-
ful (why their manipulation leads to truth); it only tells us how they can
be rendered harmless.

VI. Imaginary Elements: Earlier Treatment

In his 1891 review of Schröder’s Lectures on the Algebra of Logic we can
already see a hint of the mature treatment of imaginaries presented in
Göttingen ten year later. Schröder, in the tradition of Boole, presented in
this book a calculus that can be interpreted either as a logic of deduction,
if the symbols are interpreted as denoting extensions of concepts, or a
calculus of classes, if the symbols are interpreted as arbitrary collections
of objects.10 For Husserl, however, Schröder’s algebra of logic is nothing
but a calculus, not logic properly speaking; a “technique of the conse-
quence,” as he says, rather than the science of deduction. Interestingly, he
compares Schröder’s calculus with the arithmetica universalis, the theory
of the most general concept of number whose logical justification was
by then an important focus of interest for him and points out that nei-
ther is yet logically justified. As a logical calculus of extensions, Husserl
thinks, Schröder’s calculus cannot qualify as a pure theory of deduc-
tion, for deductions involve concepts, and extensions of concepts cannot
determine their concepts, a task that only their contents, or contents of
concepts that are materially equivalent to them, can accomplish. So, says
Husserl, “[. . .] the ideal of a ‘logic of extension’, i.e., a logic that considers
by principle only the extension of concepts is without value because it is
without object” (Hua 22, 16).

Husserl thinks that in order to be logically justified, as we have already
seen, a calculus needs to be adequately correlated with reasoning proper
so as to be able to serve as a substitute for it. He says:

[. . .] the proper task of a calculus is to be, for an entire domain of knowledge, a method
of symbolic deduction of consequences; hence, an art for substituting, by means of an

10Husserl observes correctly (Hua 22, 42–43) that Schröder’s calculus has little value
interpreted as a logic of deduction, for the domain of deduction it formalizes is very
restrict, whereas, as a calculus of classes, it can have many applications in mathematics.
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appropriate designation of ideas, a calculus for effective deductions, that is, a conversion
and a substitution according to rules of signs by signs and then, by virtue of the cor-
respondence between signs and ideas, for obtaining from the final formulas the desired
judgments. (ibid, 21)

The symbols and symbolic transformations of what Schröder presents
as a logical calculus, Husserl thinks, cannot be adequately correlated with
concepts and thinking proper; so, it cannot be a logically justified logical
calculus (although it could be a logically justified calculus of classes). This
is the same strategy of justification that Husserl employed for arithmetical
algorithms in PA. But there are some novelties with respect to 0 and 1.

Schröder introduces 0 and 1 in a purely formal way: 0 as the class that
can be subsumed under any class, 1 as the class that subsumes any other
class. Husserl cannot, however, accept these purely formal definitions,
for besides avoiding contradiction (Widerspruch), he says, a calculus must
also avoid conflict (Widerstreit). That is, it must avoid opening the doors
to imaginary entities, i.e., objects that do not exist but are treated, even
in deductions, as if they did.11 This is paradigmatically the case of 0.
Husserl just cannot conceive of an empty extension; the idea of a class
that is contained in any other class, he thinks, is absurd, for there are,
after all, disjoint classes; 0 does not denote anything, which puts it on an
equal footing with

√
–1 in general arithmetic.

There are, Husserl says, only two ways of accepting the symbol 0 as
introduced by Schröder: (1) in the logical calculus, i.e., the calculus of
classes as extensions of concepts, by giving it a meaning as the exten-
sion of the concept of non-existence, (2) in the calculus of identity, i.e.,
Schröder’s calculus of classes in general, not only extensions of concepts,
by treating it as a meaningless, perhaps useful, but essentially eliminable
symbol (just like

√
–1). He says:

[. . .] this “creative” definition of 0 does not give it yet the right to exist in the system
of the calculus [. . .]—however, is there anything that can give it such a right? Of such
a thing I cannot find the shadow of a proof. The 0 of the calculus of identity presents the
same problem of

√
–1 in the arithmetical calculus [my emphasis]. In one as in the other

11“A geometry is still geometry if after having defined square circles it uses them in
deductions?” (Hua 22, 31) A conflict is an incongruity between a symbolic system and
its intended objectual domain.
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case, we can only give the correspondent proof by considering the corresponding algo-
rithmic technique. Here, it would be necessary to show that any relation deduced with
the help of 0, which involves moreover only symbols that are real [i.e., meaningful, deno-
tative symbol—my note], must be a valid relation according exclusively to the meaning
of these symbols and the laws that concern them. Creative definitions do not contribute
with anything, even if they preserve the internal consistency of the calculus. The question is
not whether the calculus remains consistent, but whether it remains a calculus of classes [my
emphasis]. (Hua 22, 33)

Husserl insists on this, if a calculus is logically justified, it then “stands
for” something (even if it can stand for different things), its basic prin-
ciples and transformation rules are founded on the meaning of what it
stands for, and the introduction of meaningless symbols in it can only be
justified if these symbols—no matter how useful they are from a purely
algorithmic perspective—are in the end unnecessary as far as the applica-
tion of the calculus to its intended domain is concerned, despite the fact
that their incorporation does not generate formal inconsistencies.

It is clear that by the time Husserl published Philosophy of Arithmetic
and wrote the review of Schröder’s book he did not see a calculus as
a free creation; calculi had only a surrogatory function and could not
stand by themselves. It is curious that essentially the same arguments
appeared in Husserl’s conferences of 1901 in Göttingen about imaginary
entities in mathematics, when he was already in possession of much more
sophisticated views concerning the epistemological value of purely formal
symbolic systems per se. (According to these views, as we will see below,
such systems provide us with formal knowledge, i.e., knowledge of formal
manifolds or structures regardless of their eventual material fillings.)

In the review of Schröder as in the Göttingen talks, however, Husserl
is not dealing with purely formal symbolic systems for their own sake, but
with systems that have (in the case of symbolic arithmetic) or are pre-
sented as having (Schröder’s calculus) intended interpretations. In such
cases, Husserl thinks, the systems cannot conflict with their intended
domains,12 admitting by purely formal means the adjunction of entities
that just cannot belong to these domains.

12I will take this opportunity to say that one of my main criticisms of Husserl’s philos-
ophy of mathematics is that it does not take into consideration the fact that a formal
system, even when built on the intuitive apprehension of truths about a determinate
objective domain, or the concept of which this domain is the extension, is never only
a theory of this domain, even if it is categorical (for categoricity guarantees only the
uniqueness of the structure of the domain, not its material content).
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VII. Imaginary Elements: Later Treatment

I have already discussed in details Husserl’s treatment of imaginaries in
the Göttingen talks in other papers (and I do not have any reason to
change my views);13 so, I will be brief. Basically, he said to his audience
in Göttingen in 1901 that the introduction of imaginary elements in a
domain is allowed provided: (1) the (formal) theory extending the (for-
mal) theory of the domain in question (obtained by formal abstraction
from the contentual theory of this domain, i.e., the theory of which the
domain is the intended model) by means of formal axioms introducing
imaginaries in an extended language is consistent, and (2) the formal the-
ory of the domain, written in the restrict language without imaginaries,
is complete (Husserl’s term is “definite”).

If we compare this solution with the then ten-year old solution
presented in the review of Schröder, one, and only one difference is
noticeable. Whereas in the Schröder review Husserl says what amounts
to saying that the extended theory must be conservative with respect to
the narrower theory (a fact he confesses to be unable to prove), in the
Göttingen talks he required the narrower theory to be complete—this, of
course, implies the conservativeness of the extended theory, provided it is
a consistent extension—(a fact that now he thinks to know how to prove,
as far as arithmetic is concerned). Indeed, Husserl claimed in the talks
that the arithmetic of the real numbers was complete and the sketches of
what he took to be a proof of the completeness of different systems of
arithmetic can be found in his notes for the talk (Hua 12, 442–443).14

In 1901 Husserl had already written the Prolegomena, so, we must com-
pare the solution for the problem of imaginaries given in Göttingen with
the views on the nature and role of formal mathematics presented in that
work.

13See da Silva 2000a, 2000b and 2000c.
14He reasons thus: numerical equalities and inequalities are decidable on the basis of
the axioms; algebraic equalities and inequalities and general assertions are decidable
because their numerical instances are decidable (needless to remark that what Husserl
understands by “decidable” has nothing to do with our notion of syntactic—or even
semantic—decidability).
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VIII. Formal Ontology

The scientific usefulness of symbolic reasoning is still fully appreciated in
LI. According to Husserl:

The solution of problems raised within a theoretical discipline, or one of its theories, can
at times derive the most effective methodological help from recourse to the categorial
type or (what is the same) to the form of the theory, and perhaps also by going over to
a more comprehensive form or class of forms and to its laws. (Prolegomena, § 70)

That is, problems raised within a theoretical science—structured as
an interpreted symbolic theory—can be solved by resorting to its formal
abstractum (the formal theory obtained by divesting the original theory
of any intended reference) or even to formal extensions of it. This obvi-
ously includes problems like, say, finding adequate formal procedures for
solving arithmetical problems. As Husserl knew very well, the adequate
solution of this problem required the extension of the formal manifold
determined by the arithmetic of numbers seen as specifications of the
notion of quantity to the manifold of complex numbers.15 Again, for-
mal mathematics can provide useful techniques. But can symbolic formal
theories, even if not given any interpretations, lead to knowledge?

Clearly, in LI Husserl thought they could. Formal mathematics, he
thought, is a province of formal logic, being pre-occupied with (logi-
cal) forms independently of their eventual material fulfillments. Formal
mathematics studies formal manifolds, which are domains of objects
determined only with respect to form, regardless of the particular nature
of the objects they may contain, the properties these objects may
have or the relations they may entertain among themselves (in short,
mathematical structures in the sense of modern or abstract algebra; to use

15Another example may be this: the famous problems of ancient Greek geometry, the
squaring of the circle, the trisection of the angle and the duplication of the cube could
only be adequately dealt with—if not solved, at least shown to be unsolvable as stated—
by going through an elaborate algebraic, i.e., formal analysis of geometrical constructions
with straight edge and compass and what they can accomplish. This analysis interprets
geometrical constructions formally in terms of algebraic field extensions.
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a metaphor Berkeley made famous in another context, a formal manifold
is the ghost of a departed objectual domain).16

It is an aspect of the pure theory of manifolds to study the interrelations
of formal theories (or, equivalently, the manifolds they determine).17 The
key to understand why, say, complex numbers are useful for the theory of
real numbers (for instance, in the theory of algebraic equations over the
field of real numbers) lies in the formal relations between the forms of
both real and complex number fields. Husserl seems to be suggesting this
in the following quote:

Not less important than [. . .] going back to pure form is the closely related ranging of
each [. . .] form in more comprehensive forms or classes of forms. That we have here a
central item in the wonderful, methodological art of mathematics, becomes plain if we
look [. . .] at the first, simplest case of this sort, the extension of the field of real numbers
(i.e., of the corresponding form of theory, the “formal theory of real numbers”) into the
formal, two dimensional field of ordinary complex numbers. In this concept we indeed
have the key to the only possible solution of the problem that has not yet been cleared up: how,
e.g., in the field of numbers impossible (essenceless) concepts can be methodologically treated
like real ones [my emphasis]. This is not, however, the place to discuss this more closely.
(Prolegomena, § 70)

Since the Göttingen talks of 1901 were given after Husserl had writ-
ten and published the Prolegomena, it is safe to assume that the solution
of the problem of imaginaries he presented there is the solution he

16Similar ideas were voiced in the sketches for the Göttingen talks: “[M]athematics
in the highest and most general sense is the science of theoretical systems in general,
abstracting the objects of theoretical interest of the given theories of different sciences;
in no matter which given theory, in no matter which given deductive system, we abstract
its subject matter, the particular types of objects it tried to theoretically master, and if
we substitute the representations of objects materially determinate by simple formulas,
that is, the representation of objects in general that is mastered by such a theory, by a
theory of this form, we have then accomplished a generalization that considers the given
theories as particular cases of a class of theories, or rather of a form of theory that we
consider in a unifying manner and in virtue of which we can say that all these particular
scientific domains have, as form is concerned, the same theory” (Hua 12, 430–431).
“Mathematics is then, according to its highest ideal, a doctrine of theories, the most
general science of deductive systems that are possible in general” (Hua 12, 432).
17Husserl was very consistent in his characterization of the doctrine of multiplici-
ties: it is a science of forms of theories. See, for instance, Einleitung in die Logik und
Erkenntnistheorie (Hua 24, §19, p.79), a work written 10 years after the Prolegomena.
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alludes to in the quote above. According to the talks, imaginaries can be
“methodologically treated” as real numbers because methodologically both
can be treated as symbols subjected only to formal relations. But a good
method is not yet a logically justified method.

In the talks Husserl is clearly making the logical justification of imag-
inaries rest on a proof of their dispensability by means of a proof of the
completeness of the system to which they are added (since this narrower
system has an intended model that must be completely mastered by the
intuitive apprehension of its fundamental concept). As long as we con-
sider the arithmetic of the real numbers as a theory in the pregnant
sense, i.e., as founded on the concept of real number as, say, Cauchy
sequences of rational numbers or Dedekind cuts, and its intuitive truths,
then complex numbers had to be rendered dispensable by a proof of the
conservativeness of the formal theory of complex numbers with respect
to the formal theory of real numbers (in fact, Husserl says we have to
prove the completeness of the narrower theory, but this would imply the
conservativeness of any consistent extension of it, expressed in a language
extending that of the narrower theory). I think this was the sort of task
Husserl envisaged for the metatheory of formal systems that he located in
the third level of apophantic formal logic.

The solution presented in the Göttingen talks for the problem of imag-
inaries tells that, from a formal perspective, imaginary entities can be
treated like real ones, and establishes the logical conditions under which
treating them so can be allowed, if useful, considering conceptual knowl-
edge exclusively. Husserl insists that as long as we are interested in knowing
the properties (even only the formal properties) of the concept that founds
a theory (for instance, the properties of numbers as numbers strictu sensu),
the use of imaginaries cannot be an essential one.

Although, as Husserl says in LI, purely symbolic theories are per se
a form of knowledge, structural or formal knowledge precisely—they
provide knowledge of formal manifolds independently of their interpre-
tations, thus belonging to formal ontology—, they must be teleologically
oriented towards objectual domains.18 According to Husserl, formal

18A sign of this orientation is that Husserl sees even formal theories as referring to
objects, formal objects precisely, indeterminate as to content, but determinate as to form
by their theory.
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theories are mere forms of theories, not theories in a pregnant sense (the
chosen terminology is revealing, a “pregnant” theory is obviously a non-
sterile theory); formal theories are like wandering spirits in search of a
body to snatch to. For him, the creation and study of formal theories for
their own sake, independently of intended applications, amounts to toy-
ing with what we can call “formalist alienation” (he will later attribute to
its excessive technization—of which its mathematization is an aspect—
the “crisis” of European science). As formal theories of objectual domains,
on the other hand, formal theories can be enlarged to serve methodological
purposes (whose logical justification depends on the completeness of the
restrict theory).

If we admitted that a consistent formal theory always describes the for-
mal aspects of an existing objectual manifold, as is the case of elementary,
that is, first-order theories, Husserl’s cautions would seem vacuous. But if
we assumed that he did not take for granted that all consistent formal the-
ories have models, his considerations would acquire some relevance, for
what would be the point of investigating abstract formal manifolds that
could not be given any objectual content, the only support that could
subtract them from the world of fantasy in which they live?

But it may be the case that Husserl is saying something more prosaic,
that formal theories are only interesting if they can be applied, or, in
other words, that formal mathematics must keep its pragmatic sensibil-
ity alert so as to avoid indulging in sterile investigations. At first sight,
this seems an honest and well-intended scruple. But the history of math-
ematics shows that hardly any formal mathematical device or theory has
been created that did not prove its usefulness, the impossible and absurd
numbers of the Italian algebraists of the Renaissance, the points at the
infinite of Kepler, all the variants of the old Greek geometry, infinitesi-
mals, quaternions, non-commutative algebras, etc. What makes Husserl’s
scruple undesirable is that we do not and can not know a priori when
a mathematical purely “fictional” creation will prove its applicability, in
mathematics itself, physics or any other field of knowledge. So, the best
strategy is tolerance; to grant mathematicians their freedom and wait for
the survival of the fittest (the probable reason we do not know many
pure game-like formal theories is because the mathematical community
do not take them seriously and they just vanish from sight—the com-
munity in the end takes care that mathematicians do not indulge in
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formalism for its own sake, alienated from our fundamental cognitive
interests).

Being trained as a mathematician at the end of the nineteenth cen-
tury made Husserl naturally suspicious of the possible excesses of the
formalistic turn this science was undergoing (the proximity and influ-
ence of Kronecker may also have played a role). But he also saw the
immense possibilities of purely formal mathematics; so, he endorsed it
and gave it epistemological dignity (formal mathematics is a chapter of
formal ontology), but with a note of caution (formal theories must be
applicable).

Objectual domains of mathematics are in general infinite, so we cannot
expect to have an intuitive access to its objects directly, or by inductive
means, but only through a concept which unifies this domain as the
extension of this concept.19 In this case, we can intuitively access the
infinite domain by intuitively accessing its concept. It may be the case
that the formal theory of such a domain is already at our disposal (being
previously or independently developed in the realms of formal ontology),
in which case the formal theory finds its raison-d’être (for instance, the
formal theory of complex numbers as the theory of the two-dimensional
domain of displacements and their operations).

But consider that we have an objectual domain given from the start
as the extension of a concept, such as, for instance, the domain of car-
dinal numbers as answers to “how many?” Do we have the right to use
formal extensions of its formal theory, which may have completely unre-
lated models, in order to obtain knowledge, even of a formal nature, of
such a domain, whose truths must be exclusively derived from the intu-
ition of its ruling concept? Husserl thought that we have not, and that

19Husserl believed that any a priori contentual axiomatic theory is necessarily a con-
ceptual theory, that is, the theory of a concept under which the objects of the relevant
domain were assembled. In a text of 1891 (“Arithmetic as an A Priori Science,” Hua 12,
380–384), inquiring on the nature of arithmetic as an a priori science, Husserl says that
a science of such a nature “does not begin with single facts for then to obtain possibly
true generalities by induction, but immediately by certain generalities that are apodic-
tically certain and immediately evident, which it acquires by simply presenting to itself
certain ‘fundamental concepts’ that give, by means of mediate evidence and certitude,
all the sequence of theorems of this science.”
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the interference of formal manipulations could only be tolerated under
the presupposition that conceptual intuition was in principle capable of
providing the contentual theory of the domain with a complete set of basic
principles and laws.

This was the solution Husserl presented in Göttingen for the problem
of imaginary elements in mathematics. It is worth noticing that if indeed
Husserl believed that even consistent formal theories may not have mod-
els (or, at least, interesting models), the attribution of a pragmatic role
for formal theories in general would vindicate even those that cannot be
given any (interesting) objectual domain, thus safeguarding mathemat-
ical methodology (of inventing vacuous symbols for solving problems)
from falling into sheer nonsense (or formalist alienation). It is obvious
that Husserl did not want to give up even the riskier formal procedures
of mathematics, but it is also obvious that he was not willing to let the
formalistic approach to mathematics be interpreted in a way that would
alienate mathematics from a firm compromise with knowledge.

IX. Critical Considerations

I would like to conclude with some final comments on the correctness of
Husserl’s vindication of symbolic knowledge, in particular his treatment
of imaginaries, and the role these questions played in the development
of his philosophy. With respect to Husserl’s cautious treatment of purely
symbolic knowledge, I have already expressed my reserves above. We must
let mathematicians do their work; no matter how inapplicable a formal
theory may be, if it is consistent, it is the theory of a mathematical struc-
ture and time will decide if it is sufficiently interesting to survive. With
respect to imaginaries, I have more serious concerns. I believe that Husserl
was so worried about securing mathematics against a possible infection
with imaginaries that he put more efforts into developing a protective
vaccine than explaining why imaginaries are useful when they are. The
vaccine, of course, was completeness, inoculated via conceptual intuition.
Husserl believed that a priori mathematical contentual theories are in
general conceptual theories and that imaginaries cannot substitute proper
relevant intuition and be essentially involved in the business of proving
theorems.
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But the fact is that, contentual or purely formal, mathematical the-
ories are invariably theories of forms, not definite and singular objectual
domains, even when these are categorical theories.20 No matter how
clearly we intuit the concept of a non-negative integer, for instance, all
we get in the process are formal or structural properties of ω-sequences.
The intuitively apprehended fundamental facts about numbers, which
constitute the axiomatic basis of arithmetic, are also true of no matter
which domain of objects that is structured as an ω-sequence, regardless
of the nature of these objects. So, there is not much difference between
contentual or conceptual, on the one hand, and purely symbolic mathe-
matical theories, on the other; theories of both types are in a sense formal,
since their objects are only and invariably forms or structures.

The fact that even contentual mathematics is a formal science reduces
Husserl’s distinction between theories and mere forms of theories to,
respectively, conceptual or eidetic formal theories (such as arithmetic and
physical geometry) and hypothetical formal theories (such as Riemannian
n-dimensional geometries). The reason Husserl insisted on keeping both
types apart has to do with epistemological relevance: the former are
already theories of something, the latter only describe possible hypo-
thetical forms waiting for objectual domains to appear that can be
in-formed by them. But this seems to me excessive caution, since hypo-
thetical formal theories, far from mere symbolic games, also provide
knowledge—formal knowledge, as Husserl himself acknowledged.

And it is precisely because of this that imaginaries can be useful. Despite
the fact, for instance, that complex numbers do not measure quantity,
introducing them in the domain of numbers and extending the arith-
metic of non-negative integers to the arithmetic of complex numbers
amounts to imbedding the original structure of arithmetic into a richer
structural milieu in which problems originally posed for the restrict
numerical domain can be adequately handled—for they may very well

20In a letter to Frege, summarized and commented by Husserl (Hua 12, 447–451)
Hilbert says something relevant in this context: “Any theory can be applied to an infinite
number of systems of fundamental elements. It suffices to apply a one to one reversible
transformation and stipulate that the corresponding axioms for the thing thus trans-
formed are the same (this is the case, for instance, with the principle of duality and my
proofs of independence)” (Hua 12, 450).
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be problems about non-negative integers as complex numbers, i.e., prob-
lems that demand the larger structure in order to be adequately stated
and treated.

It is because arithmetic, even though founded on a conceptual intu-
ition, is in a sense a formal theory—i.e., it does not tell us more about
numbers proper than the formal theory abstracted from it tells us about
number-like entities—that imaginaries can be added to its domain and
be useful in solving numerical problems: imaginaries are after all number-
like entities. The process of formal abstraction then amounts to no more
than just forgetting we have an intended domain for a theory, since we
cannot fix this domain as the only single model of the theory anyway. If
we let the theory “talk” about structural aspects of any system of objects
that satisfies its axioms, we can approach the phenomenon of imaginaries
from the perspective of the interrelations between a given structure and
structures extending it.21

Let us insist a bit more on this matter. If you look at a painting from
the Romanic or Gothic periods the elements of the picture do not really
fall together in the same space. The perspective invented by Brunelleschi
solved this problem by introducing in the canvas an imaginary point that
is not really there, but that organizes the whole into an articulated unity;
a formal substitute of the eye in function of which all space relations are
determined. The point at the infinite is not a point of the visual space,
but helps to organize it. Imaginary elements work in analogous manner.

Pictorial perspective influenced some mathematical developments.
The geometries of Kepler and Desargues were great improvements over
Greek geometry—whose finitist sensibility could not conceive of points
at the infinite—because they knew how to take advantage of the increased
formal possibilities of an enlarged space which was not only potentially
infinite, but actually had points at the infinite. In particular this made
possible a treatment of conics much more elegant than Apollonius’.

The answer to the riddle posed by imaginary elements lies on this
observation: like the points at the infinite of Kepler and Desargues, imag-
inary elements increase formal possibilities. Or still, they enrich structure.

21It is interesting to notice that the interplay of formal domains is, according to Husserl,
a topic of study of formal ontology.
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But if this is all they do, their utility can only be explained if the domains
to which they are added interested us only insofar as their structure was
concerned, which would not suffer from the substitution of the elements
of the domain by others of a totally different nature. Otherwise the utility
of imaginary elements would remain a mystery.

Imaginary elements such as
√

–1, introduced against good sense as
bona fide numbers by the Italian algebraists of the sixteenth century were
useful because they added necessary structure to the original domain of
numbers to which they were added. Arbitrary algebraic operations on the
system of proper numerical symbols quickly lead outside this domain;
imaginary elements added necessary extra room to it so as to allow a big-
ger range of transformations. Analogously, if we tried to transform a right
hand glove into a left hand glove using only rotations and translations we
would necessarily fail, but if we were allowed to use inversions, we would
easily succeeded. By so doing we increase the formal possibilities at our
disposal. Since the original problem was essentially formal, it benefited
from this enrichment. It is always thus with imaginary elements, they
work because they enrich structure, and the problems they help to solve
are structural problems.

The problem of finding algorithmic procedures for solving numerical
problems is analogous to the problem of transforming a right-hand into
a left-hand glove, as long as we allow only operations that are confined
to the realm of positive integers (addition, multiplication and exponen-
tiation) it is often difficult and in general impossible. But as long as we
admit inversions of operations (subtraction, division and root extraction)
we immediately escape that confined space and consequently allow imagi-
naries to come in. But this solves the problem, which was after all a purely
formal one, at first unnecessarily restricted to a domain where it could not
be adequately handled.

X. The Problem of Symbolic Knowledge in the Development
of Husserl’s Philosophy

As we have seen, the problem of imaginaries was fundamental in making
Husserl consider questions such as the role of representations with-
out object in the general scheme of knowledge; the interplay between
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conceptual theories (those that are based on intuition) and purely for-
mal theories (whose objects are purely intentional) and, consequently,
the interplay between empty intentions and intuitions in the dynamics
of human knowledge; the need to enlarge well beyond Kantian limits
the field of intuition in order to account for a priori mathematical con-
tentual theories; the logical relevance of studying formal theories, their
properties—such as consistency and completeness, in particular—and
their mutual relations, and, consequently, the need for an enlargement of
the field of formal logic vis-à-vis the tradition; the need for an adequate
study of logical grammar and the theory of deduction so as to guarantee
epistemological relevance for manipulation of signs within logical sym-
bolic systems; and many other along the same lines. It is clear now why,
in trying to come up with a philosophical account of general arithmetic
he wrote the Logical Investigations instead of only the second volume of
the Philosophy of Arithmetic.
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CHAPTER VIII

MATHEMATICAL TRUTH REGAINED

Robert Hanna

Abstract. Benacerraf’s Dilemma (BD), as formulated by Paul Benacerraf in
“Mathematical Truth,” is about the apparent impossibility of reconciling a “stan-
dard” (i.e., classical Platonic) semantics of mathematics with a “reasonable” (i.e.,
causal, spatiotemporal) epistemology of cognizing true statements. In this paper
I spell out a new solution to BD. I call this new solution a positive Kantian phe-
nomenological solution for three reasons: (1) It accepts Benacerraf’s preliminary
philosophical assumptions about the nature of semantics and knowledge, as well
as all the basic steps of BD, and then shows how we can, consistently with those
very assumptions and premises, still reject the skeptical conclusion of BD and also
adequately explain mathematical knowledge. (2) The standard semantics of math-
ematically necessary truth that I offer is based on Kant’s philosophy of arithmetic,
as interpreted by Charles Parsons and by me. (3) The reasonable epistemology
of mathematical knowledge that I offer is based on the phenomenology of logical
and mathematical self-evidence developed by early Husserl in Logical Investigations
and by early Wittgenstein in Tractatus Logico-Philosophicus.

I who erewhile the happy garden sung,
By one man’s disobedience lost, now sing
Recovered Paradise to all mankind,
By one man’s firm obedience fully tried
Through all temptation, and the Tempter foiled
In all his wiles, defeated and repulsed,
And Eden raised in the waste wilderness.

–J. Milton1

Pure intuition as Kant understood it was evidently supposed somehow to get us across
the divide between the fuzzy Lebenswelt with its everyday objects and the sharp, precise
realm of the mathematical, in terms of which mathematical conceptions of the physical
world are developed.

–C. Parsons2

1(Milton, 1953b, 495, book I, lines 1–7)
2(Parsons 2008, 166)
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The epistemologically pregnant sense of self-evidence (Evidenz) . . . gives to an inten-
tion, e.g., the intention of judgment, the absolute fullness of content, the fullness of the
object itself. The object is not merely meant, but in the strictest sense given, and given
as it is meant, and made one with our meaning-reference. . .. It is said of every percept
that it grasps its object directly, or grasps this object itself. But this direct grasping has a
different sense and character according as we are concerned with a percept in the nar-
rower or wider sense, or according as the directly grasped object is sensible or categorial.
Or otherwise put, according as it is a real or ideal object.

–E. Husserl3

Self-evidence (die Einleuchten), of which Russell has said so much, can only be discarded
in logic by language itself preventing every logical mistake. That logic is a priori consists
in the fact that we cannot think illogically.

–L. Wittgenstein4

I. Introduction

Benacerraf’s Dilemma, or BD, as originally formulated by Paul Benacerraf
in 1973 (Benacerraf 1973, 672–673), is about the apparent impossi-
bility of reconciling a standard, uniform semantics of natural language
with a reasonable epistemology of cognizing true statements, when the
relevant kind of true statement to be semantically explained is mathe-
matical truth and the relevant kind of cognition to be epistemologically
explained is mathematical knowledge. A “standard, uniform” seman-
tics in Benacerraf’s terminology is a Tarskian satisfaction-theoretic and
model-theoretic semantics applying across natural language as a whole.
This semantics, together with some natural assumptions about standard
mathematical linguistic practices, very plausibly, smoothly, and jointly
yield classical Platonism about mathematics. And a “reasonable” episte-
mology is an epistemology that ties a human linguistic knower causally
to the known objects themselves. This epistemology very plausibly and
smoothly yields the denial of classical Platonism about mathematics.
Hence BD.

3(LI, pp. 765 and 787, texts combined)
4(Wittgenstein, 1981, prop. 5.4731, p. 129)
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In this paper I will spell out a new solution to BD. I call this new
solution a positive Kantian phenomenological solution for three reasons:

(1) It accepts Benacerraf’s preliminary philosophical assumptions about
the nature of semantics and knowledge, as well as all the basic steps
of BD, and then shows how we can, consistently with those very
assumptions and premises, still reject the skeptical conclusion of BD
and also adequately explain mathematical knowledge.

(2) The standard semantics of mathematically necessary truth that I
offer is based on Kant’s philosophy of arithmetic, as interpreted by
Charles Parsons and by me. (See Parsons 1983; Hanna 2002, 2006a,
Chapter 6.)

(3) The reasonable epistemology of mathematical knowledge that I offer
is based on the phenomenology of logical and mathematical self-
evidence developed by early Husserl in Logical Investigations and by
early Wittgenstein in Tractatus Logico-Philosophicus.

More precisely, however, what I will argue is that we can solve BD in
three stages:

First, I accept Benacerraf’s preliminary philosophical intuitions about
the nature of semantics and knowledge, as well as all the basic premises
of BD.

Second, I hold that mathematical truth is adequately explained by
accepting the following three claims:

(1) that the natural numbers are essentially positions or roles in the math-
ematical natural number structure provided by Peano arithmetic,

(2) that the mathematical natural number structure provided by Peano
arithmetic is abstract only in the sense that it is transcendentally ideal,
which is to say that this structure is identical to the formal structure
of time insofar as we consciously represent it in sense perception,
together with all the formal concepts and other logical constructions,
including specific logical inference patterns such as mathematical
induction, needed for an adequate rational human understanding of
Peano arithmetic, and

(3) that in our actual world, the unique, intended model of the natu-
ral number structure provided by Peano arithmetic is just the set of
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manifestly real directly perceivable spatiotemporal material objects—
the natural inhabitants of Parsons’s “fuzzy Lebenswelt with its
everyday objects”—insofar as they are the role players of the Peano-
arithmetic-specified natural number roles in the abstract formal struc-
ture of time as we consciously represent it in sense perception,
together with all the formal concepts and other logical constructions,
including specific logical inference patterns such as mathematical
induction, needed for an adequate rational human understanding of
Peano arithmetic.

Third, I hold that mathematical knowledge is grounded on

(1) a rational human agent’s mental-model-manipulating abilities, which
are innately specified in the agent’s mind and also inherently
present, as necessary ingredients, in human sense perception, and
which entail her self-conscious cognition of phenomenologically self-
evident formal non-conceptual structures of human sense perception,
together with

(2) a rational human agent’s logic-and-language-constructing abilities,
which are innately specified in the agent’s mind and also inherently
present, as necessary ingredients, in human empirical conceptualizing
and perceptual judgment, and which entail her self-conscious cogni-
tion of phenomenologically self-evident formal conceptual contents
and specific patterns of logical inference in classical or non-classical
logics.

The second and third stages of this argument respectively invoke what I
call Kantian Structuralism about the nature of numbers and mathematical
truth, and also what I call the Husserl-Wittgenstein Theory of Logical and
Mathematical Phenomenological Self-Evidence, or the HW Theory, about
the nature of logical and mathematical a priori knowledge. As the labels
clearly indicate, this part of the argument has historical foundations in the
work of Kant, early Husserl, and early Wittgenstein. At the same time,
however, Kantian Structuralism and the HW Theory are intended to be
fully rationally defensible on their own merits.

Now Milton’s Paradise Lost and Paradise Regained, as I read them,
are about the necessary transition from the impossibly super-human
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conception of moral virtue embodied in pre-lapsarian Adam and Eve,
and our consequent tragic Fall and expulsion from the Garden of Eden,
towards a fully realistic knowledge of our own moral limits and of
our inescapably finite, mortal role on this desperately imperfect Earth.
Correspondingly, the philosophical story I am telling in this paper is
about the necessary philosophical transition from the impossibly super-
human conception of mathematical truth and knowledge offered by
classical Platonism, and our consequent tragic Fall and collapse into BD,
towards a fully realistic and also inescapably anthropocentric conception
of mathematical truth and knowledge, but without either finitism or
nominalism—real mathematics for humans. So if my argument is sound,
then the result will be, in effect, a semantic and epistemic Paradise
Regained—with Kantian, Husserlian, and Wittgensteinian bells on.

II. Benacerraf’s Dilemma and Some Negative
or Skeptical Solutions

Here is Benacerraf’s own formulation of BD:

As an account of our knowledge about medium-sized objects, in the present, this is
along the right lines. [A reasonable epistemology] will involve, causally, some direct ref-
erence to the facts known, and, through that, reference to those objects themselves. . ..
[C]ombining this view of knowledge with the “standard” view of mathematical truth
makes it difficult to see how mathematical knowledge is possible. If, for example, num-
bers are the kinds of entities they are normally taken to be, then the connection between
the truth conditions for the statements of number theory and any relevant events con-
nected with the people who are supposed to have knowledge cannot be made out.
(Benacerraf 1973, 672–673)

And here is my rational reconstruction of that argument:

(1) Natural language requires a standard, uniform semantics. (Prelimi-
nary assumption I.)

(2) A reasonable epistemology of cognizing true statements should be
modeled on sense perception. (Preliminary assumption II.)

(3) Mathematical knowledge in a classical sense (i.e., as a priori knowl-
edge) exists as a feature of standard mathematical linguistic practices,
so mathematical truth in a classical sense (i.e., as necessary truth) also
exists as a feature of those standard practices.
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(4) Given (1) and (3), our standard, uniform semantics of natural
language, as applied to mathematical truths, commits us to a truth-
making ontology of abstract mathematical objects and also to the
non-empirical knowability of true mathematical statements.

(5) On the one hand, given (2), that fact that a reasonable epistemology
of cognizing true statements should be modeled on sense perception
entails that knowledge involves causally efficacious, contact-involving
or efficient, directly referential, non-inferential, and spatiotemporal
relations between human linguistic knowers and the known objects
themselves.

(6) But on the other hand, given (4), and since all abstract objects
are causally isolated and inert, it then follows that all abstract
mathematical objects are causally isolated and inert.

(7) So if we accept all of (1)–(6), then mathematical knowledge in the
classical sense is both possible and impossible, which is absurd.

I will say that any proposed solution to BD is negative or skeptical
if it rejects either of Benacerraf’s preliminary philosophical assumptions
about a standard uniform semantics and a reasonable epistemology or else
rejects one or more of steps (3) to (6). Then there are at least six differ-
ent categories of possible negative or skeptical solutions to BD. The first
two categories I will call pre-emptive negative or skeptical solutions, since
they consist in pre-emptively rejecting at least one of the two preliminary
assumptions.

1. Pre-emptive Negative or Skeptical Solutions

(1) Reject the preliminary assumption (I) that natural language requires a
standard, uniform semantics.

This in turn entails either

(1.1) rejecting Tarskian semantics or
(1.2) accepting a multiform semantics of natural language.

(2) Reject the preliminary assumption (II) that a reasonable epistemology
of cognizing true statements should be modeled on sense perception.
(See, e.g., Katz 1995)
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This in turn entails either

(2.1) modelling the epistemology of cognizing true statements on
conceptual reasoning or concept-possession (see, e.g., Hale and
Wright 2002),

(2.2) modelling the epistemology of cognizing true statements on
self-consciousness,5 or

(2.3) modelling the epistemology of cognizing true statements on
the imagination.6

The other four categories I will call concessive negative or skeptical solu-
tions, since they involve conceding both of the preliminary assumptions
I and II, and then rejecting at least one of the other steps leading to the
unacceptable conclusion.

2. Concessive Negative or Skeptical Solutions

(3) Reject the classical necessity or apriority of mathematical truth.

This entails accepting either

(3.1) the contingency of mathematical truth, or
(3.2) the aposteriority of mathematical truth.

5In (Hanna, 2006a Chapters 6 and 7), I work out Kant’s idea that mathematical
knowledge is grounded on reflective self-consciousness together with the imagination.
6One way of doing this would be via “plenitudinous platonism”: For every consistently
imaginable mathematical statement, there is a corresponding mathematical object.
(See, e.g., Balaguer, 1998.) This construes imaginability as conceivability. But there
are other ways of thinking about the imagination, e.g., Kant’s conception of the pro-
ductive imagination as a “schematizing” (i.e., mental modeling) capacity (Kant 1997,
A84–147/B116–187, and esp. A120 n.). In (Hanna, 2006b, Chapter 6), I extend BD
to logical knowledge, and then develop a strategy for solving the extended BD that
starts with the thesis that a reasonable epistemology should be modeled on the imagina-
tion, not on perception. So by the classification scheme described here, strictly speaking,
that earlier solution counts as a pre-emptive negative or skeptical solution. But to the
extent that the present solution postulates the innate presence of mental modeling
abilities in sense perception, it also postulates the innate presence of the capacity for
imagination within the capacity for sense perception. So in that sense, the present pos-
itive or anti-skeptical solution is really only an extension and refinement of the earlier
solution.
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(4) Reject the truth-making ontology of abstract mathematical objects. (See,
e.g., Shapiro 2000, Chapters 6, 7, and 9.)

This in turn entails accepting either

(4.1) empirical or phenomenal idealism (whether communal or
solipsist),

(4.2) intuitionism,
(4.3) formalism,
(4.4) conventionalism,
(4.5) fictionalism or some other form of nominalism, or
(4.6) non-cognitivist anti-realism.

(5) Reject the thesis that sense perception involves causally efficacious, contact-
involving or efficient, referentially direct, non-inferential, and spatiotem-
poral relations between human cognizers and the cognized objects.

This in turn entails accepting either

(5.1) the replacement of causal efficacy by causal relevance,
(5.2) the counterfactual theory of causation,
(5.3) the probability-raising theory of causation,
(5.4) a non-causal theory of perception,
(5.5) an indirect causal theory of perception (whereby a percep-

tual subject S can sense perceive a universal U or type T just
by standing in a direct causal sense perceptual relation to an
instance of U or a token of T ),

(5.6) referential descriptivism, or
(5.7) cognitive inferentialism.

(6) Reject the thesis that abstract objects are causally isolated and inert.

This in turn entails accepting either

(6.1) the causal relevance of abstract objects, or
(6.2) the causal efficacy of abstract objects.

Obviously, some of these negative or skeptical solutions logically entail
or logically exclude others. But at the same time many of the negative
or skeptical solutions are also consistent with others, which gives rise to a
large number of distinct possible combined negative or skeptical solutions.
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This in turn makes the strategy of proving the rational superiority of one
or another of the given negative or skeptical solutions by attacking all the
other possible negative or skeptical solutions somewhat strenuous, and
possibly even unfeasible, given the usual limits on human time, energy,
and patience.

In what follows in this paper, I will attempt to work out a positive or
anti-skeptical solution to BD, but not explicitly to criticize or defeat the
possible negative or skeptical solutions, which would require a separate
book-length treatment on its own. As I said already, I call my solution to
BD a “positive” or anti-skeptical one because it accepts Benacerraf’s pre-
liminary philosophical assumptions about the nature of semantics and
knowledge, as well as all the basic premises of BD—captured in steps (1)
to (6)—and then shows how we can, consistently with those very assump-
tions and premises, still reject the skeptical conclusion of BD—captured
in step (7)—and also adequately explain mathematical knowledge. On
the face of it, any positive or anti-skeptical solution should have a distinct
rational edge over any negative or skeptical solution because only a pos-
itive or anti-skeptical solution will adequately preserve the rational force
of all the original philosophical intuitions that generated the dilemma in
the first place. If any of these intuitions did not have rational force, then
BD would not be a genuine dilemma. So the fact that we do take BD
seriously clearly entails that if there really is a positive or anti-skeptical
solution, then prima facie it will trump any of the negative or skeptical
solutions.

III. Benacerraf’s Dilemma and Kantian Structuralism

Number . . . is a representation that summarizes the successive addition of one homoge-
nous unit to another. Number is therefore nothing other than the unity of the synthesis
of the manifold of a homogeneous intuition in general, because I generate time itself in
the apprehension of the intuition.

–I. Kant (Kant 1997, A142–143/B182)

Time provides a universal source of models for the numbers. . .. What would give time a
special role in our concept of number which it does not have in general is not its necessity,
since time is in some way necessary for all concepts, nor an explicit reference to time
in numerical statements, which does not exist, but its sufficiency, because the temporal
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order provides a representative of the number which is present to our consciousness if
any is present at all.

–C. Parsons (Parsons 1983, 140)

The key to achieving a positive or anti-skeptical solution to BD, I
think, is precisely how one interprets step (4) in my reconstruction, which
says:

(4) Given (1) and (3), our standard, uniform semantics of natural
language, as applied to true mathematical statements, commits us to a
truth-making ontology of abstract mathematical objects and also to the
non-empirical knowability of these statements.

It is very natural, and all-too-easy, to interpret the notion of “a
truth-making ontology of abstract mathematical objects” in terms of
classical Platonism. Classical Platonism about mathematics says that
mathematical objects, which are the truth-makers of mathematical state-
ments, have a mind-independent, substantial existence in a separate
non-spatiotemporal realm, and that their nature is strictly determined
by intrinsic non-relational properties of those objects. In short, classi-
cal Platonism interprets mathematical objects as what Kant would have
called things-in-themselves. (See Hanna 2006a, esp. Chapters 1, 2, 3, 4,
and 6.) This classical Platonist interpretation of the truth-making ontol-
ogy of abstract mathematical objects postulated in step (4), I think, is
precisely the snake in the Garden of Eden, by which I mean that I think that
this interpretation is precisely the false and vitiating assumption which
leads inevitably to Benacerraf’s Dilemma and to skepticism, and I hereby
reject it.

Granting that rejection as a starting point, my positive or anti-skeptical
Kantian phenomenological solution to Benacerraf’s Dilemma—as I pre-
viewed it in section I—then has two parts:

(1) Kantian Structuralism, which says

(1.1) that the natural numbers are essentially positions or roles in
the mathematical natural number structure provided by Peano
arithmetic,

(1.2) that the mathematical natural number structure provided
by Peano arithmetic is abstract only in the sense that it is
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transcendentally ideal, which is to say that this structure is
identical to the formal structure of time insofar as we con-
sciously represent it in sense perception, together with all
the formal concepts and other logical constructions, including
specific logical inference patterns such as mathematical induc-
tion, needed for an adequate rational human understanding of
Peano arithmetic, and

(1.3) that in our actual world, the unique, intended model of the
natural number structure provided by Peano arithmetic is
just the set of manifestly real directly perceivable spatiotem-
poral material objects—the natural inhabitants of Parsons’s
“fuzzy Lebenswelt with its everyday objects”—insofar as they
are the role players of the Peano-arithmetic-specified natural
number roles in the abstract formal structure of time as we
consciously represent it in sense perception, together with all
the formal concepts and other logical constructions, including
specific logical inference patterns such as mathematical induc-
tion, needed for an adequate rational human understanding of
Peano arithmetic.

(2) The Husserl-Wittgenstein Theory of Logical and Mathematical Self-
Evidence (the HW Theory), which holds that a priori knowledge in
logic and mathematics is the joint product of two rational human
abilities operating in tandem:

(2.1) a rational human agent’s mental-model-manipulating abilities,
which are innately specified in the agent’s mind and also
inherently present, as necessary ingredients, in ordinary sense
perception, and which entail her conscious cognition of phe-
nomenologically self-evident formal non-conceptual structures
of human sense perception, together with

(2.2) that rational human agent’s logic-and-language-constructing
abilities, which are innately specified in the agent’s mind
and also inherently present, as necessary ingredients, in ordi-
nary empirical conceptualizing and perceptual judgment, and
which entail her conscious cognition of phenomenologically
self-evident formal conceptual contents and specific patterns
of logical inference in classical or non-classical logics.
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In the rest of this section I want to unpack and rationally motivate
the basic features of Kantian Structuralism. Then I will come back to the
HW Theory in section IV.

Mathematical Structuralism, as an explanatory metaphysical thesis in
the philosophy of mathematics—defended for example by Benacerraf
himself, and in a different way by Stewart Shapiro (see, e.g., Benacerraf
1965; Shapiro 1997, 2000, Chapter 10), and most recently in another
different way by Charles Parsons (Parsons 2008, esp. Chapters 3, 5, 6 and
9)—says that mathematical entities (e.g., numbers or sets) are not onto-
logically autonomous or substantially independent objects, but instead
are, essentially, positions or roles in a mathematical structure, where a
mathematical structure is a complete set of formal relations and opera-
tions that defines a mathematical system. What counts as an individual
object of the system is thereby uniquely determined by the system as a
whole—that is, any such individual object is identical to whatever pos-
sesses a specific set of intrinsic structural system-dependent properties. So
every individual object of the system is essentially a role in the relevant
mathematical system, and thus strongly metaphysically dependent on the
whole system.

The significant philosophical payoffs of mathematical Structuralism
are twofold. First, Structuralism gets between Platonism and
Nominalism, because according to Structuralism mathematical objects
are metaphysically absorbed into mathematical structures, hence they
lack independent existence (contra Platonism), and yet it is also not true
that there are no mathematical objects (contra Nominalism) since the
objects continue to exist in a theoretically transformed way as roles in the
structure. Second, because according to Structuralism the mathematical
objects, as embedded in the relevant mathematical structure, continue
to have whatever metaphysical status the relevant embedding structure
has, then there is no longer any serious metaphysical “identity problem”
of precisely which objects should be identified with the natural numbers,
since we look to the embedding structures and not to the objects for any
relevant metaphysical identity conditions.

In a way that is highly analogous to Functionalism in the philoso-
phy of mind (see Block 1980b; Kim 2006, Chapters 5 and 6), there are
at least two distinct ways we can interpret mathematical Structuralism.
On the one hand, we can identify mathematical objects with the roles
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determined by the mathematical system as a whole. Or on the other hand,
we can identify mathematical objects with the role players of the mathe-
matical roles determined by the system as a whole. Which interpretation
of mathematical Structuralism should we accept?

In the analogous case of Functionalism in the philosophy of mind, I
think that there is good reason to take the Role-Player interpretation seri-
ously because we think that it is intuitively plausible to identify a mind
with whatever it is that actually does all the things that cognitive sys-
tems are supposed to do, and not merely to identify it with the set of
causally relevant abstract patterns or rules that actual cognitive systems
follow. If a mind were merely identical with a set of causal-functional
roles, then it would be open to the classical inverted qualia argument,
Searle’s Chinese Room argument, and Block’s Chinese Nation argument
(a.k.a. “the absent qualia argument”) (see ibid., and also Block 1980a;
Searle 1984), not to mention the deeper worry that causal relevance
does not entail causal efficacy (see, e.g., Jackson 1996), which yields the
unhappy result that even the representational mind would be epiphenom-
enal if the Roles interpretation were true. Correspondingly, and to use
an everyday non-philosophical analogy now, it seems intuitively right to
say that a hockey player is a person who actually and in a causally effi-
cacious way does all the things that hockey players are supposed to do,
according to the rules of hockey—and obviously, a real hockey player is
not merely the same as a set of causally relevant abstract rules that hockey
players follow. So if we want minds to be real causal players, as it were,
in physical nature, not to mention being really capable of qualitative con-
scious experience in addition to mental representation, then I think that
we should defend a dual Roles interpretation and Role-Player interpre-
tation of Functionalism, as opposed to a Roles interpretation alone or
a Role-Player interpretation alone. We should say that for some rational
purposes, the mind should be identified with functional roles, and also
that for other rational purposes, the mind should be identified with the
role-players of the roles.

By analogy, then, and for essentially the same basic reasons, I will
adopt a dual Roles interpretation and Role-Player interpretation of
mathematical Structuralism, as opposed to a Roles interpretation alone
or a Role-Player interpretation alone. We want the natural numbers
to be identified for many rational purposes with their roles in the
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mathematical structure of Peano arithmetic. But for other rational pur-
poses we also want the unique, intended model of Peano arithmetic to
be consciously knowable according to a reasonable epistemology, which is the
direct analogue of the problem of qualitative conscious experience for the
Roles interpretation of Functionalism. And we also want natural num-
bers and true statements about natural numbers to be applicable to the
actual spacetime world, which is the direct analogue of the problem of
epiphenomenalism for the Roles interpretation of Functionalism

So as I see it, mathematical Structuralism should hold that mathemat-
ical objects are essentially the same, for some rational purposes, as the
roles in a given mathematical structure, and also essentially the same,
for some other purposes, as the role players of the specific mathematical
roles in a given mathematical structure, and not reducible either to those
roles themselves or to the role-players themselves. The roles tell us pre-
cisely what will count as the unique intended model of that mathematical
structure, but they neither exhaust the total nature of the mathematical
objects nor do they eliminate the objects altogether. The mathematical
objects are strongly superveniently determined by the structure as regards
the precise roles they play, but they are also something over and above the
structure as regards their role-player status. Different objects can play the
same mathematical roles; the same objects can play different mathemati-
cal roles; and as a consequence, there is no intelligible worry whether the
natural number 12 is the same as or different from the real number 12.
This metaphysical dependency relation between mathematical structure
and mathematical object in Structuralism thereby provides a precise ana-
logue of natural or nomological strong supervenience, as opposed to logical
or reductive strong supervenience, in the philosophy of mind.

Now BD clearly and distinctly shows us that we do not want the num-
bers to be the kinds of abstract entities that are also unknowable things in
themselves and inapplicable to the actual spacetime world, lest we ren-
der mathematical truth and knowledge impossible. Or otherwise put,
BD clearly shows us that the abstractness of the numbers must somehow
correlate directly with what is consciously knowable according to a rea-
sonable epistemology. This is possible, I think, if (and perhaps also only
if ) the abstractness of the numbers is not the abstractness of independent
objects in a causally inert non-spatiotemporal realm, but instead just the
abstractness of the roles in a non-empirical or a priori consciously-accessible
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cognitive structure. On this philosophical picture, the natural numbers
are abstract because they are essentially roles in a transcendentally ideal
structure.

In other words, I am proposing a broadly Kantian version of what
Parsons calls “non-eliminative structuralism” (Parsons 2008, 100–116).
More specifically, however, I think that the natural numbers are essen-
tially the same, for some rational purposes, as roles in the abstract
structure provided by Peano arithmetic, when this is interpreted as cer-
tain kind of non-empirical or a priori consciously-accessible cognitive
structure, and also that the numbers are essentially the same, for other
rational purposes, as the role players of the natural number roles in
the real spacetime world, i.e., the natural numbers are just the set of
manifestly real directly perceivable material objects intrinsically embed-
ded in actual spacetime, insofar as they fall under the elementary or
Peano arithmetic of the natural numbers. I will come back to this thesis
again shortly.

Even if we have decided to adopt a dual Roles interpretation and Role-
Players interpretation of structuralism, there are also several further basic
distinctions between different kinds of Mathematical Structuralism that
need to be made more explicit. The two main divisions are these:

(a) Reductive Structuralism vs. (b) Non-Reductive Structuralism,
(c) In Rebus Structuralism vs. (d) Ante Rem Structuralism.

Reductive Structuralism, as I am interpreting it, says that the objects of
the mathematical system are either strictly identical with various elements
and relations of the system or logically supervenient on the whole system
and thus nothing over and above the whole system. By contrast, Non-
Reductive Structuralism says that the objects of the system are strongly
supervenient on the whole system but still something over and above the
whole system, hence neither strictly identical to various elements and
relations of the system nor logically supervenient on the whole system.
In other words, the Reductive vs. Non-Reductive distinction applies to
the objects of mathematical structural systems. Correspondingly, the Role-
Players interpretation, on its own, entails Non-Reductive Structuralism,
and the Roles interpretation, on its own, is consistent with both Non-
Reductive Structuralism and Reductive Structuralism.
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In Rebus Structuralism, as I am interpreting it, says that both the exis-
tence and specific character of the mathematical system are necessarily
dependent on and determined by material things in the natural world,
and that the systemic structures are not only literally proper parts of
those material things but also ontologically non-detachable and epistem-
ically non-abstractible from them. By contrast, Ante Rem Structuralism
says that the existence and specific character of the system are neither
necessarily dependent on nor determined by the existence of material
things, and that the systematic structures are both ontologically detach-
able and also epistemically abstractible from those material things, even
if they are also literally proper parts of them. In other words, the In
Rebus vs. Ante Rem distinction applies not to the objects of mathemat-
ical structural systems, but instead to the structural systems themselves.
For example, In Rebus Structuralism would be defended by a mathemat-
ical structuralist who is both a reductive or scientific naturalist and also
an empiricist/nominalist, like Hartry Field (see e.g., Field 1980, 1989),
whereas Ante Rem Structuralism would be defended by a mathemati-
cal structuralist who is both a platonist and also a rationalist/realist, like
Shapiro.

Significantly, and perhaps because of the example set by Field,
Shapiro identifies Reductive Structuralism with In Rebus Structuralism,
and Parsons identifies both Reductive Structuralism and In Rebus
Structuralism alike with what he calls “eliminative structuralism” (Parsons
2008, 80–100). But strictly speaking, at least in principle, one could
consistently defend both In Rebus Structuralism and Non-Reductive
(a.k.a. “non-eliminative”) Structuralism. Consider, e.g., a specifically
Wittgensteinian mathematical Structuralism (Wittgenstein 1983), in
which numbers are identified with the entities that play the roles spec-
ified by mathematical linguistic practices, and not identified with the
practice-specified roles, and in which those living mathematical linguistic
practices themselves, conceived as rule-systems, are the enframing mathe-
matical structural systems in which mathematical objects are embedded
as the role-players of the roles in the structures. This Wittgensteinian
Structuralism would be both in rebus and non-reductive. I myself am
not going to defend such a Structuralism. But the very possibility of it
does have a relevant bearing on the HW theory of mathematical apri-
ori knowledge that I will defend in section IV, because I do think that
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mathematical knowledge is partially determined by living mathematical
linguistic practices, even if mathematical truth is not so determined.

The brand of Structuralism I favor, Kantian Structuralism, is a non-
reductive and ante rem version of mathematical Structuralism, doubly
based on the abstract formal structures of space and time insofar as we
consciously represent them in sense perception, together with formal
concepts and the ramified abstract formal structures of classical logic
and conservative extensions of it, insofar as rational human agents are
capable of understanding those, that intends to take the necessity and
apriority of mathematical truths at face value and then metaphysically
explain those semantic features in terms of transcendentally ideal spa-
tiotemporal structures, conceptual structures, and logical structures. By
sharp contrast to Kantian Structuralism, however, Field’s Structuralism
is both reductive and in rebus because it says that numbers are noth-
ing over and above their being positions in modal structures and that
mathematical truth is reducible to fundamental physical facts about the
physical world. And by another sharp contrast to Kantian Structuralism,
Shapiro’s Structuralism is both reductive and ante rem because it says that
numbers are nothing over and above their being positions in non-modal
structures and that mathematical truth is reducible to non-physical facts
about non-spatiotemporal classically platonic structures.

But more precisely, and with respect to the elementary arithmetic
of the natural numbers, i.e., Peano arithmetic, in particular, Kantian
Structuralism says the following:

(1) that the natural numbers are essentially roles in the mathematical
natural number structure provided by Peano arithmetic,

(2) that the mathematical natural number structure provided by Peano
arithmetic is abstract only in the sense that it is transcendentally ideal,
which is to say that this structure is identical to the formal structure
of time insofar as we consciously represent it in sense perception,
together with all the formal concepts and other logical constructions,
including specific logical inference patterns such as mathematical
induction, needed for an adequate rational human understanding of
Peano arithmetic, and

(3) that in our actual world, the unique, intended model of the natu-
ral number structure provided by Peano arithmetic is just the set of
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manifestly real directly perceivable spatiotemporal material objects—
the natural inhabitants of Parsons’s “fuzzy Lebenswelt with its
everyday objects”—insofar as they are the role players of the Peano-
arithmetic-specified natural number roles in the abstract formal struc-
ture of time as we consciously represent it in sense perception,
together with all the formal concepts and other logical constructions,
including specific logical inference patterns such as mathematical
induction, needed for an adequate rational human understanding of
Peano arithmetic.

In this way, Kantian Structuralism adequately explains why some-
thing that is abstract, ideal, and necessary like the elementary arithmetic
of the natural numbers, i.e., Peano arithmetic, can really and truly
apply to the hurly-burly concrete, manifestly real, and contingent world
of rational human animals and other natural things and processes, and
thereby really and truly apply to all the manifestly real directly perceiv-
able material spatiotemporal objects in our actual world. According to
Kantian Structuralism, since the formal structure of time as we con-
sciously represent it in sense perception is intrinsic to all manifestly real
directly perceivable material spatiotemporal objects, and since the for-
mal structure of time as we consciously represent it in sense perception
together with anything isomorphic to the formal structure of time as
we consciously represent it in sense perception, is the unique, intended
model of Peano arithmetic, it follows as a matter of synthetic a priori
necessity that Peano arithmetic applies to all manifestly real, directly
perceivable, material spatiotemporal objects. The abstractness, ideality,
and necessity of Peano arithmetic is captured by the number roles in
the composite structure of time and Peano arithmetic and its conser-
vative extensions, insofar as it can be understood by rational human
agents. Correspondingly, the concreteness, reality, and contingency of the
things and people to which arithmetic applies is captured by the num-
ber role players in the composite structure of humanly cognizable time
and humanly cognizable Peano arithmetic and its conservative exten-
sions. Thus consciously-representable time-structure is the metaphysical
glue that ineluctably binds Peano arithmetic to our manifestly real nat-
ural world; or to re-use Parsons’s apt phrase, consciously-represented
time-structure is precisely what



VIII. mathematical truth regained 165

get[s] us across the divide between the fuzzy Lebenswelt with its everyday objects and the
sharp, precise realm of the mathematical, in terms of which mathematical conceptions
of the physical world are developed.

Otherwise put, Kantian Structuralism clearly solves the classical appli-
cation problem for the philosophy of arithmetic. (See Potter 2000.)

So I am now in a position to solve BD by using Kantian Structuralism.
I will begin by supposing that the two preliminary assumptions of BD are
true. That obviously satisfies steps (1) and (2) of BD. Then I will further
suppose that Kantian Structuralism is true, and that it adequately explains
the apriority and necessity of mathematical truth. This satisfies step (3)
of BD. This in turn allows me to re-interpret the truth-making ontology
of abstract objects described in step (4) of BD as the transcendentally
ideal abstract formal structure of time, and of anything isomorphic to
time, insofar as we consciously represent it in sense perception, together
with the transcendentally ideal abstract formal structure of any classical
logical system rich enough to capture Peano arithmetic and conservative
extensions of it, insofar as it can be understood by rational human agents.
This dual abstract structure is itself of course causally isolated and inert,
which satisfies step (6) of BD. But this dual abstract structure is also
intrinsically temporal, and in our actual world it uniquely determines the
unique intended model of the natural number structure, which then just
is the directly perceivable manifestly real material world of spatiotemporal
objects insofar as they are the role players of the Peano-arithmetic-
specified natural number roles in the abstract structure of time. So the
dual abstract structure consisting of the consciously-representable abstract
formal structure of time together with Peano arithmetic and its rationally
understandable conservative extensions is causally relevant, even though
it is not causally efficacious. Therefore in our actual world the unique
intended model of the natural number structure is identical to the world
of causally efficacious manifestly real, directly perceivable material spa-
tiotemporal objects, which obviously solves the application problem for
Peano arithmetic, and mathematical knowledge is thereby possible on the
assumption that a reasonable epistemology of cognizing true statements
is modeled on a theory of sense perception which includes

causally efficacious, contact-involving or efficient, directly referential, non-inferential,
and spatiotemporal relations between human linguistic knowers and the known objects
themselves,
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understood by me to be some or another version of direct or naïve
perceptual realism (see, e.g., Martin 2006; Haddock and F. McPherson
2008; Byrne and Logue 2009), which satisfies premise (5) of BD. Hence
if Kantian Structuralism is true, then all of (1)–(6) are true, but the
unacceptably skeptical conclusion of BD—step (7)—is avoided, and
mathematical knowledge is still possible.

Considered for a moment apart from its ability to help us achieve a
positive solution to BD, and also to solve the classical application problem
for arithmetic, what other reasons could we have for defending Kantian
Structuralism? I think that there are at least four other very good reasons.

First, Kantian Structuralism offers a clean-and-simple solution to
another important problem pointed up by Benacerraf, which is that
many different models satisfy the abstract structure of any logical sys-
tem rich enough to express Peano arithmetic, so the second-order logic of
Peano arithmetic underdetermines the natural numbers.7 Otherwise put,
Benacerraf’s other problem is that there seems to be in principle no way
of determining or identifying just which of the many distinct models that
satisfy the logic of Peano arithmetic is really the natural numbers. This is
what Parsons calls the “multiple reduction” problem (Parsons 2008, 48),
and what others, following Frege, have called the “Caesar” problem or the
“identification” problem. According to Kantian Structuralism, however,
the abstract formal structure of the asymmetric successively synthesized
series of moments (or simple events) in time insofar as we consciously
represent it in sense perception is the unique, intended model of Peano
arithmetic. On this picture, a “standard” model of Peano arithmetic is any
possible world in which either time as we consciously represent it in sense
perception exists, or else something isomorphic to the time-structure
exists. (See, e.g., Parsons 2008, 272–293.)

But then the part of the model that satisfies a particular natural
number-role in the abstract system of Peano arithmetic just is anything in
our actual world that occurs in time as we consciously represent it in sense
perception insofar as it intrinsically instantiates the thermodynamically
asymmetric successive serial structure of time insofar as we consciously

7(See Benacerraf, 1965). This problem, in turn, is closely connected to Frege’s “Caesar”
problem. (See Frege, 1953, p. 68.)
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represent it in sense perception, and thereby plays at least some of the
Peano-arithmetic-specified natural number roles. The natural numbers
themselves exist in non-actual possible worlds as the Peano-arithmetic-
specified and temporally-specified natural number roles, and in our actual
world as the unique intended model of Peano arithmetic, namely the
totality of real-world Peano-arithmetic-specified and temporally-specified nat-
ural number role-players. Now the actual inhabitants of time insofar as
we consciously represent it in sense perception are directly perceivable,
manifestly real material spatiotemporal objects that contain spatiotem-
poral intrinsic structural properties. So in our actual world, the unique
intended model of the natural number structure is identical to the total-
ity of directly perceivable, manifestly real material spatiotemporal objects
insofar as they are the role players of the Peano-arithmetic-specified nat-
ural number roles in the abstract formal structure of time insofar as we
consciously represent it in sense perception.

Second, if Kantian Structuralism can offer a unified solution to BD
and Benacerraf’s other problem, then that seems to be another impor-
tant point in its favor. For as Benacerraf himself has argued, BD and
Benacerraf’s other problem are essentially interdependent. So an adequate
solution to BD must also solve Benacerraf’s other problem (Benacerraf
1996).

Third, Kantian Structuralism crisply explains why classical Logicism
failed, and why it seems that the arithmetic of the natural numbers is not
reducible to second-order logic plus the Peano axioms alone. According
to Kantian Structuralism, the elementary or Peano arithmetic of the nat-
ural numbers can be determined only by the ramified logical formal
structure of Peano arithmetic and its conservative extensions insofar as
it can be understood by rational human agents, together with any for-
mal structure that is isomorphic to the structure of time insofar as we
consciously represent it in sense perception. To be sure, contemporary
neo-Logicists have shown that adding Hume’s Principle (which says that
the number of Fs = the number of Gs if and only if there are as many
Fs as Gs) to second-order logic plus the Peano axioms logically entails the
elementary arithmetic of the natural numbers. (See Wright, 1983; Hale
1987; Hale and Wright 2001.) But it seems to be intelligibly arguable
that Hume’s Principle is not an analytic truth precisely because it presup-
poses the formal structure of time insofar as we consciously represent it in
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sense perception, and also whatever is isomorphic to the formal structure
of time insofar as we consciously represent it in sense perception. If so,
then ironically enough the actual success of neo-Logicism is metaphysi-
cally best explained by Kantian Structuralism, and not by postulating the
analyticity of Hume’s Principle, as the neo-Logicists have done.

Fourth, if that is true, then Kantian Structuralism would also crisply
explain why, contrary to both classical Logicism and neo-Logicism, math-
ematical truths seem not to be analytically necessary truths, but instead
synthetic a priori truths. One good reason for thinking that mathematical
truths are not true in every logically possible world, hence not analytic, is
the clear and distinct conceivability and hence logical possibility, of either

(1) worlds with nothing whatsoever in them—which would of course
entail the non-existence of numbers in those worlds, and thus the
non-truth of many sentences of Peano arithmetic in those worlds
(Parsons 1983, 131; Shapiro 1998, 604), or

(2) worlds with non-standard arithmetics of the natural numbers in them,
e.g., a world in which “plus” is replaced by Kripke’s “quus”—which
would of course directly entail the non-truth of many sentences of
Peano arithmetic in those worlds. (See Kripke 1982)

If mathematical truths are necessarily true but not analytically neces-
sary, then according to Kantian Structuralism the explanation for this
striking fact is that the truth and meaningfulness of mathematical propo-
sitions presuppose the abstract formal structure of time insofar as we
consciously represent it in sense perception, which is not itself a purely
logical or conceptual fact that attaches to every logically possible world.
On the contrary, the presence either of the abstract formal structure of
time insofar as we consciously represent it in sense perception, or of some
other abstract structure isomorphic to the abstract formal structure of
time insofar as we consciously represent it in sense perception, in a given
possible world, is a special metaphysical fact that attaches to only a restricted
class of logically possible worlds, i.e., all and only the logically possible
worlds in which the very same spacetime structure, causal-dynamic struc-
ture, and mathematical structure as that of our actual world, also exist.
This is also the special class of possible worlds in which consciousness like
ours is really possible (see Hanna and Maiese 2009, esp. Chapters 1, 2
and 6, 7 and 8).
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On this view, possible worlds without denumerable objects in them are
all time-structureless worlds, and all time-structureless worlds are possible
worlds without denumerable objects in them. So if Kantian Structuralism
is true, then the metaphysical explanation for Modal Dualism—which is
the classical Kantian thesis that there are two essentially different kinds of
necessary truth, namely

(1) analytic necessary truth, i.e., truth about the kind of necessity which
flows from the nature of logic and concepts, which thereby includes
logical truth and conceptual truth, and

(2) synthetic necessary truth, i.e., truth about the kind of necessity which
flows from the nature of things in the world, which thereby includes
mathematical truth (Hanna 2001, Chapters 3, 4 and 5)

—comes along for free.

Now if Kantian Structuralism is true, then it fully explains how the
elementary arithmetic of the natural numbers, i.e., Peano arithmetic, is
true. What about the rest of mathematics? The clean-and-simple answer
provided by Kantian Structuralism is that all of the rest of mathe-
matics, including its most abstruse and ontologically rich parts—e.g.,
iterative set theory—can be built up from Peano arithmetic and the
abstract formal structure of time insofar as we consciously represent it
in sense perception, together with all the formal concepts, classical log-
ical constructions, and specific patterns of logical inference required by
those other parts of mathematics, encoded in standard mathematical lin-
guistic practices, insofar as mathematical language can be understood
by rational human agents. Leopold Kronecker famously said that God
made the integers and everything else was done by humans. (See, e.g.,
Struik 1967, 160.) Kantian Structuralism is even more radically anthro-
pocentric. According to Kantian Structuralism, the formal constitution of
rational human nature made the natural numbers, and logico-conceptual
construction by rational human agents, together with their innate capacity
for linguistic understanding did all the rest.

Now of course the Kantian structuralist still needs to explain more
precisely how mathematical a priori knowledge is possible. And that is
where the HW Theory comes in.
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IV. The HW Theory

As we have seen, the Husserl-Wittgenstein Theory of Logical and
Mathematical Phenomenological Self-Evidence holds that a priori knowl-
edge in logic and mathematics is the joint product of two rational human
abilities operating in tandem:

(1) a rational human agent’s mental-model-manipulating abilities, which
are innately specified in the agent’s mind and also inherently
present, as necessary ingredients, in ordinary sense perception, and
which entail her conscious cognition of phenomenologically self-
evident formal non-conceptual structures of human sense perception,
together with

(2) that rational human agent’s logic-and-language-constructing abilities,
which are innately specified in the agent’s mind and also inherently
present, as necessary ingredients, in ordinary empirical conceptualiz-
ing and perceptual judgment, and which entail her conscious cogni-
tion of phenomenologically self-evident formal conceptual contents
and specific patterns of logical inference in classical or non-classical
logics.

And as its name clearly indicates, there are two historical provenances
for the HW Theory: Husserl’s specifically phenomenological approach
to the epistemology of necessary truth in Logical Investigations, and
Wittgenstein’s specifically linguistic approach to the epistemology of nec-
essary truth in the Tractatus. The historico-philosophical task of correctly
interpreting each of these books is both highly strenuous and highly
tricky, and, especially in the case of the Tractatus, currently quite con-
troversial. In this context, I want to bracket those hard interpretive
questions, and just state what I take to be the deep epistemological
ideas lying behind Husserl’s doctrine of “categorial intuition” and also
behind Wittgenstein’s doctrine that “language itself prevent[s] every
logical mistake” by virtue of the fact that “we cannot think illogically.”

For our purposes here, Husserl’s deep epistemological idea is that
the abstract formal structures characteristic of logic or mathematics
are immediately represented in our inherently non-conceptual,
pre-reflectively conscious awareness of the logico- syntactic and
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sortal-semantic structures of the meaningful sentences we use to frame
true logical or mathematical judgments, and that the truth of those
judgments is directly verified in direct perceptual experience of the man-
ifestly real and intrinsically spatiotemporal natural world. This direct
verification, in turn, is phenomenological self-evidence.

To understand the notion of phenomenological self-evidence properly,
we need to sketch the basic concepts of Husserl’s early phenomenology.
Phenomenology, as Husserl understood it in 1900 in the first edition
of the Logical Investigations, is an elaboration of “descriptive psychology”
in Brentano’s sense. More precisely, phenomenology is the first-person,
introspective, non-reductive philosophical psychology of consciousness
and intentionality, as opposed to the natural science of empirical psychol-
ogy (LI 5, §7). As a specifically philosophical psychology, its basic claims,
if true, are non-logically or synthetically necessarily true and a priori.

As Husserl points out in Investigation 5, consciousness (Bewusstsein)
is a subject’s capacity for “lived experience” or Erlebnis, i.e., phenomenal
awareness, together with her capacity for intentionality. Intentionality, in
turn, is essentially the same as what Kant would have called “directed
experience” or Erfahrung. So more comprehensively, as I will put it,
consciousness is subjective experience.

Now all subjective experience, insofar as it is “directed experience,”
or intentionality, is either dispositionally or occurrently directed towards
targets of various kinds—objects (of all sorts), events (including inten-
tional actions), and subjects (including oneself or others). Conversely,
all “directed experience” or intentionality is either dispositionally or
occurrently conscious in the sense of phenomenal awareness or “lived
experience.” In turn, every conscious intentional mental state M has four
individually necessary and jointly individuating features:

(1) M is a mental act (psychischer Akt) with its own “immanent con-
tent” or “act-matter” and its own specific character (i.e., phenomenal
character) (LI 5, §§11, 14, 20),

(2) M’s mental act falls under a specific intentional act-type or “act-
quality,” e.g., perceiving, imagining, remembering, asserting, doubt-
ing, etc. (LI 5, §20),

(3) M’s mental has an intentional target, which at the very least has ontic
status or “being” (Sein) and perhaps also actual existence or “reality”
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(Wirklichkeit), although this target need not necessarily have reality—
hence intentional targets can include fictional objects, impossible
objects, abstract objects, ideal objects, etc. (LI 5, §§11, 17, 20), and

(4) M has an intentional meaning content or “semantic essence” (bedeu-
tungsmässige Wesen), which presents its target in a certain specific way,
where this meaning content is either propositional or referential (LI 5,
§§21, 31–36).

It is crucial to note that this general phenomenological analysis holds
both for the intentionality of judgment and belief, which presupposes
pure formal logic and necessarily requires the existence of natural lan-
guage and the intentional subject’s linguistic competence, and also for
the intentionality of perception and other modes of sensory cognition
such as imagination and memory, which do not presuppose pure formal
logic or necessarily require the existence of natural language or linguistic
competence.

In Investigation 6, Husserl argues that truth (Wahrheit) is the structural
and semantic conformity of a judgment to the very fact that satis-
fies its propositional content, and that authentic knowing (Erkennen)
or “self-evidence” (Evidenz)—whether authentic a priori knowledge or
authentic a posteriori knowledge—is the sufficiently justified conscious
intentional recognition of truth (LI 6, §§6–12, 20, 28, 36–39). Moreover,
self-evidence has its own characteristic phenomenology. The essential
structure of the phenomenology of self-evidence is the advance from
“empty” intentions to “filled” intentions, where

(1) empty intentions are logico-linguistically structured propositional
contents insofar as they are conceptually understood by an intentional
subject to specify the very facts that could or would satisfy those
contents and thereby make those propositions true, and

(2) filled intentions are logico-linguistically structured propositional con-
tents insofar as the very facts that could or would satisfy them are also
non-conceptually intuited by an intentional subject as actually satisfying
those contents and thereby making those propositions true.

In other words, and now formulated in an explicitly Kantian way, for
early Husserl the phenomenological profile of authentic knowledge or
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self-evidence is a systematic advance from conceptual “understanding”
(Verstand) to non-conceptual “intuition” (Anschauung), and this holds
whether the authentic knowledge is a priori or a posteriori, and whether
the truth-making fact that is intuitively experienced in intentional fulfill-
ment as satisfying the relevant propositional content is a non-empirical
or ideal (necessary or possible) abstract fact, or an empirical or real
(contingent) concrete fact.

In the case of non-empirical or ideal facts, then the non-conceptual
intuition by which the fact is self-evidently known is a categorial intuition
(LI 6, §§40–58). Categorial intuitions are intentional states containing
phenomenal characters that specifically pick out the formal and structural
elements of the very facts that are known via intentional fulfillment, either
by means of formal elements of perceptual consciousness, or by means
of formal elements of logico-linguistic consciousness. The two paradig-
matic examples of this special sort of a priori intuition would be the way
in which aggregates of directly perceived objects (say, beer bottles) are
non-conceptually and pre-reflectively “subitized” into finite groups (say,
groups of 5 or 7), and the way in which a state-of-affairs as described by
a statement or judgment (say, “The twelve beer bottles are all lined up in
the shelf on the wall”) appears to have the very same grammatical form
as the sentence used to describe it.

What this all means, again for our purposes here, is that when we use
very simple arithmetic sentences like “7 + 5 = 12” in making statements
like “7 + 5 = 12,” we are non-conceptually and pre-reflectively con-
sciously aware of a temporal flow of mental images associated with our
visual or auditory cognition of those inscriptions or utterances. Indeed,
recent empirical research on memory strongly indicates that the non-
conceptual, pre-reflectively conscious phenomenal look and sound of
language is processed separately from the propositional cognition of lin-
guistic meaning (see Schacter 1990). For example, I can vividly recognize
and remember the look or sound of German sentences and words—Die
Welt is alles, was der Fall ist or Wovon man nicht sprechen kann, darüber
muss man schweigen (as, perhaps, screeched by the brilliant Finnish absur-
dist composer and singer M.A. Numminen8)—without recognizing or
remembering what they mean. Thus the mathematical propositions that

8See (and hear) (Numminen, 2009).
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we express by means of the self-conscious intentional conceptual acts of
cognizing the linguistic meanings of arithmetic sentences is directly com-
bined with a non-conceptual, pre-reflectively conscious grasp of the formal
structure of experiential or lived time.

And in turn, whenever we directly perceive a configuration of man-
ifestly real material objects in the natural world that partially confirms
the arithmetic propositions we express—say, we see seven bottles of
beer on the wall sitting alongside five more bottles of beer on the wall,
yielding the look of twelve bottles of beer on the wall—then the non-
conceptual, pre-reflectively conscious direct sense perceptions of those
manifestly real material objects supplemented by the self-conscious epis-
temic perceptions based on those direct perceptions, taken together with
their perceptual, imaginational, and memory-based synthesis in time
as we explicitly or implicitly count them up, collectively immediately
deliver to us a phenomenological formal structure that is also isomor-
phic to the addition operation over the natural numbers 7 and 5 in
the system of Peano arithmetic. That non-conceptual, pre-reflectively
conscious visual experience is a categorial intuition in Husserl’s sense
that necessarily impresses itself upon us as mathematically self-evident,
where “self-evident” also means “inherently compelling,” and as thereby
conferring a defeasible epistemic certainty (Giaquinto 2007): As a ratio-
nal human conscious intentional subject, you cannot help believing the
propositional content associated with precisely that non-conceptual, pre-
reflectively conscious subjective visual experience, or categorial intuition,
precisely because it is inherently compelling. But correspondingly, the
statement “7 + 5 = 12” is true if and only if there really is an appropriate
mathematical truth-maker in the actual world that makes it true. This
Husserlian doctrine, I think, provides a robustly realistic phenomenolog-
ical interpretation of the classical Cartesian idea of “clear and distinct
intuition.”

Correspondingly, as I see it, the Tractarian Wittgenstein’s equally deep
epistemological idea is that to have logical or mathematical a priori
knowledge is just

(a) to be a conscious rational human agent who possesses an innate con-
ceptual cognitive capacity for non-conceptually and pre-reflectively
consciously constructing, understanding, and using natural lan-
guages:



VIII. mathematical truth regained 175

Human beings possess the capacity of constructing languages, in which every
sense can be expressed, without having an idea of how and what each word
means—just as one speaks without knowing how the single sounds are produced.
Ordinary language is a part of the human organism and is not less complicated
than it. (Wittgenstein 1981, prop 4.002, 61–63. Translation slightly modified)

and
(b) then actually applying the meaningful logical and mathematical sen-

tences of those natural languages—e.g., “7 + 5 = 12”—according
to the implicit normative rules of logic and natural languages, to a
world of directly perceivable manifestly real material objects whose
configurations inherently satisfy those sentences.

So if, plausibly, we take early Wittgenstein’s remarks about cognizing
language to be anticipations of a broadly Chomskyan theory of language
(e.g., Chomsky 1986), then non-conceptually, non-self-consciously, and
thus “tacitly” consciously knowing the logical and mathematical parts
of natural languages is just a sub-species of non-conceptually, non-self-
consciously, and thus “tacitly” consciously knowing a natural language
more generally. This is a priori knowledge in the mode of knowing exactly
but also only non-conceptually and pre-reflectively consciously how to con-
struct and use the language according to categorically normative rules of
human rationality (Hanna 2006c, esp. Chapters 4, 5, 6 and 7), and not
a priori knowledge in the mode of self-consciously knowing exactly what
one is doing or that one is doing it, whenever one actually does it. Or in
other words, Wittgenstein is adumbrating the notion of a conceptually-
driven but also non-conceptually and pre-reflectively conscious a priori logical
and mathematical linguistic competence.

According to the HW Theory then, our knowing mathematical truths
by means of mathematical judgments involves the very same sorts of
non-conceptual, pre-reflectively conscious but also conceptually-driven
cognitive activities as knowing factual truths by means of ordinary
linguistic perceptual judgments, in accordance with direct or naïve
perceptual realism. In this way, our innate conceptual capacity for con-
structing, understanding, and using the logical and mathematical parts of
natural language, together with our innate non-conceptual capacity for
direct sense perception and pre-reflective consciousness, when conjointly
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triggered appropriately by the world of directly perceivable manifestly real
material spatiotemporal objects, and when correctly conjointly imple-
mented by us, just is mathematical a priori knowledge in the classical
sense. That is, and more briefly: You know some mathematical truths
a priori when you are both non-conceptually and pre-reflectively con-
sciously and also conceptually and self-consciously thinking or talking
about mathematics correctly, and furthermore the manifestly real natu-
ral world also uniquely satisfies the mathematical statements generated in
your language of thought or in your outer speech.

It is plausible to think, for reasons supplied by classical Constructivist
theories of arithmetic, that the precise class of arithmetic statements that
would be satisfied under phenomenologically self-evident mathematical
a priori knowledge is primitive recursive arithmetic, or PRA, which is a
fundamental fragment of elementary or Peano arithmetic containing the
quantifier-free theory of the natural numbers and the primitive recur-
sive functions. (See Skolem 1967; Troelstra and Dalen 1998, 120–126;
Hanna 2006a, Sec 6.2.) More precisely, it is plausible to think that our
directly perceivable and linguistic access to the unique intended model of
Peano arithmetic will not permit us to verify all of Peano arithmetic with
phenomenological self-evidence. Peano arithmetic is of course defined by
the following five axioms:

(1) 0 is a number.
(2) The successor of any number is a number.
(3) No two numbers have the same successor.
(4) 0 is not the successor of any number.
(5) Any property which belongs to 0, and also to the successor of every

number which has the property, belongs to all numbers,

together with the primitive recursive functions (basic calculations) over
the natural numbers—the successor function, addition, multiplication,
exponentiation, etc. But axiom (5) is not verifiable in an inherently non-
conceptual way, and on the contrary requires the inherently conceptual
ability to grasp quantifications over all the numbers. Nevertheless, given
our grasp of all the arithmetic statements covered by the first four axioms,
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together with a grasp of the primitive recursive functions, and thus for
PRA, there is no need whatsoever for a further theory of sufficient jus-
tification by epistemic reasons, nor for any sort of reply to skepticism.
Therefore PRA is phenomenologically self-evident in the Husserlian and
Wittgensteinian sense, precisely because the cognitive abilities required to
grasp it are inherently non-conceptual and pre-reflectively conscious, and
fall within the scope of categorial intuition.

Presumably there are also humanly-graspable, categorially-intuitable
structural analogues of PRA in elementary geometry, elementary set the-
ory, and elementary logic—e.g., Euclidean geometry, basic set theory (see,
e.g., Potter 1990, Chapter 3), and monadic logic. If so, then Euclidean
geometry, basic set theory, and monadic logic are all phenomenologically
self-evident too, along with PRA.

It is crucial to note that a priori knowledge in mathematics and
logic far exceeds the scope of phenomenological self-evidence and cat-
egorial intuition. Non-self-evident a priori mathematical and logical
knowledge—e.g., a priori knowledge in non-Euclidean geometry and
topology, Zermelo-Fraenkel set theory, and classical first-order polyadic
logic—is inferential, conceptual, and of course also defeasible. But non-
self-evident mathematical and logical a priori knowledge presupposes
the phenomenologically self-evident and categorially intuitable parts of
mathematics and logic, and constantly draws upon them as it carefully
advances from the less defeasible, virtually uncontested, and more epis-
temically secure domains, towards the more defeasible, more contested,
and less epistemically secure domains. This epistemic advance from the
self-evident a priori to the non-self-evident a priori is beautifully symbol-
ically mirrored in the situation of Adam and Eve as they leave Paradise
at the end of Paradise Lost, with a hard-won awareness of what is and
what is not really possible for creatures like us, in our rational human
condition:

They looking back, all the eastern side beheld
Of Paradise, so late their happy seat,
Waved over by that flaming brand, the gate
With dreadful faces thronged a fiery arms.
Some natural tears they dropped, but wiped them soon;
The world was all before them, where to choose
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Their place of rest, and Providence their guide.
They hand in hand with wandering steps and slow,
Through Eden took their solitary way.9

We can now see that the HW Theory is breathtakingly elegant. It
also coheres perfectly with Kantian Structuralism and direct perceptual
realism. For if Kantian Structuralism and direct perceptual realism are
both true, then the HW Theory makes perfect sense, precisely because our
actual world of directly perceivable manifestly real material spatiotem-
poral objects intrinsically carries with it the abstract formal structures of
the system of Peano arithmetic and its conservative extensions, and thus
directly perceptually presents the system of natural numbers, i.e., the
intended model of Peano arithmetic, via the self-evidence of primitive
recursive arithmetic or PRA, to any rational human conscious inten-
tional subject who is also competent in the mathematical parts of her
own natural language.

V. Conclusion: Benacerraf’s Dilemma Again and “Recovered
Paradise”

If Kantian Structuralism, direct perceptual realism, and the Husserl-
Wittgenstein Theory of logical and mathematical self-evidence are all
true, then both of Benacerraf’s preliminary philosophical assumptions
about a “standard, uniform” semantics of natural language and a “reason-
able” epistemology of cognizing true statements are true, and the other
four steps of Benacerraf’s Dilemma are also true, but the unacceptably
skeptical conclusion does not follow. Mathematical a priori knowledge in
at least the classical, Kantian sense still is possible. Kantian Structuralism
together with direct perceptual realism also together solve the classical
application problem for mathematics; they solve Benacerraf’s other prob-
lem about what the numbers could not be; they explain why classical
Logicism failed; and they account for the synthetic necessity of mathe-
matical truth. All of these very important individual theoretical virtues
then seem to me to add up very naturally to one great big sufficient

9(Milton, 1953a, p. 487, book XII, lines 641–649).
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reason for accepting Kantian Structuralism, direct perceptual realism, and
the HW Theory as a single package.

Moreover, the conjunction of Kantian Structuralism, direct percep-
tual realism, and the HW Theory yields a phenomenologically-enriched
Kantian logico-linguistic constructivism as a serious alternative to classical
Platonism about mathematics on the one hand, and also to all the more or
less skeptical recent and contemporary theories of mathematics—i.e., the
full range of pre-emptive or concessive negative solutions to Benacerraf’s
Dilemma—on the other. This, in turn, suggests a fundamental Kantian,
Husserlian, and Wittgensteinian insight into the nature of a priori knowl-
edge. Given this phenomenologically-enriched Kantian logico-linguistic
constructivism, what is required for mathematical knowledge is just a
linguistically competent, healthy, developmentally normal, and relatively
mature rational human conscious intentional subject, who can grasp both
the non-conceptual content of perception and also the conceptual and
propositional content of statements or judgment, who has also learned
the basics of PRA, and who is thus primed and ready for speaking
her own natural language, and for non-conceptually and pre-reflectively
consciously but also conceptually and self-consciously intaking her man-
ifestly real world through direct sense perception. And that is all that
is required. Mathematics, just like logic—as I have argued elsewhere (see
Hanna 2006b), is an exact science and yet also inherently a human or moral
science. In this way, by equally rejecting both classical Platonism and post-
Benacerrafian skepticism about mathematical truth and knowledge, we
find

Eden raised in the waste wilderness.

So let us go forth and multiply. And of course also add, subtract, divide,
and correctly perform the other primitive recursive functions over the
natural numbers too.10

10I am very grateful to the organizers (especially Mirja Hartimo, Leila Haaparanta,
Juliette Kennedy, and Sara Heinämaa) of and also the participants in (especially William
Tait), the Phenomenology and Mathematics conference at the University of Tampere,
Finland in May 07, where I presented an earlier version of this paper, for all their
help—critical, editorial, philosophical, and otherwise.
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CHAPTER IX

ON REFERRING TO GESTALTS

Olav K. Wiegand

The time has come to enrich formal logic by adding to it some other
fundamental notions.

Stan Ulam1

Abstract. This paper discusses a fresh approach to formal semantics based
on mereology and Gestalt Theory. While Wiegand (2007, Spacial Cognition &
Computation, Mahwah, NJ: Erlbaum) unfolds the technical details of this new
approach, the following paper aims to discuss the philosophical motivation an
implications of what I have called mereological semantics. Particular attention will
be given to an ongoing debate on the nature of relations.

I. Introduction

In what follows I will be confronting two tasks: (a) I will sketch the philo-
sophical motivation for what I have called mereological semantics (MS).2

This motivation consists of ingredients from Gestalt psychology and phe-
nomenology, and will explicate a certain conception of structured objects
of reference that underlies MS. (b) I will then—from the point of view of
this background philosophy—comment on some philosophical aspects of
an ongoing debate on the nature of relations.

MS interprets a more or less complex formal language of mereology (into
which portions of natural language may be translated) with respect to a
modularly structured domain of quantification. Various sorts of objects
may be axiomatically defined and then included in the domain, so that
it may encompass various sorts of aggregate wholes and sorts of structured
wholes at the same time. The concept of structured whole is a generaliza-
tion of the concept of Gestalt which was originally developed as a means

1This motto is a remark made by Stan Ulam in a conversation with Gian-Carlo Rota.
The conversation is summarized in Rota (1985), see also Barwise’s epilogue to his
Situation in Logic, entitled “Toward a Mathematical Theory of Meaning.”
2See Wiegand (2007). Mereology is the theory of Parts and Wholes.
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for interpreting empirical findings within the psychology of perception.
However, gestaltists themselves soon transgressed these limits and applied
the concept to all sorts of cognitive activity (perceptive or predicative),
and have even argued for analogies between the physical concept of field
and the concept of Gestalt. In what follows we will employ the concept of
structured whole as opposed to the notion of aggregate whole, whereby
the latter does not imply the interdependence of all parts of the common
whole, a feature that is characteristic of the concept of Gestalt when we
take the following definition as a starting point:

A Gestalt is an ensemble of items which mutually support and determine one another.
Thus they realize a total structure which governs them and assigns to each of them (as
a part of the whole) a function or a role to be performed as well as a determinate place
in that whole. Each detail exists only at the place at which it plays the role assigned to it
by the whole of which it is a part. (Gurwitsch 1936, 25)

Various attempts to formalize the notion of Gestalt were put forward
(see e.g., Rescher 1955, Rescher and Oppenheim 1955; Simons 1987).
The following constructions will be based on mereological concepts, since
the idiom of “wholes” and “parts” has been characteristic for gestaltists’
analyses since the very beginning. The modelling offered within the
framework of MS wants to satisfy two main intuitions concerning
Gestalts and their modifications:

(i) We need to reflect the interconnectedness of all parts of a Gestalt: no
part of a Gestalt can undergo a change without affecting all the other
parts of the common Gestalt contexture.3

(ii) From a gestaltist point of view courses of reasoning (formally) show
themselves as sequences of gestalt-modifications like breaking up,
inverting, differentiating, rearranging, widening or narrowing the
Gestalt contexture. Whether these modifications are brought about
as an effect of a change in the subject’s focus of attention or whether
they “just emerge,” we need the means to model courses of reasoning
as sequences of Gestalt modifications (which has, of course, nothing
to do with explaining reasoning itself ).

3See Rock and Palmer (1990), Rock (1985), Kellman (2000) for a more detailed
description of the notion of Gestalt.
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In her book Parts and Wholes in Semantics Moltmann defined the
concept of R-integrated Whole4 that may be viewed as another formal-
ization of the notion of Gestalt, particularly attempting to capture intu-
ition (a) for use within linguistics. Although we will build upon some
definitions that she used for her construction of R-integrated Wholes,
the concept of an R-structured whole will deviate from her concept of
an integrated whole. As regards intuition (b) Wiegand (2007) provides a
definition of “courses of reasoning” as sequences of Gestalt-modifications.
We will, however, not deal with that topic within the framework of this
essay.

The primary intention for developing MS was to provide a formaliza-
tion of the notion of structured whole for use within formal semantics
(and as such to supplement the informal analyses of cognitive semantics).5

In what follows the motivation for MS—more precisely: the motivation
for viewing reference as reference to structured wholes—will be unfolded
from a phenomenological point of view that leans heavily on the work
of Aron Gurwitsch, and his conception of intentionality as the objec-
tivating function of consciousness. Gurwitsch combined the tenets of
Gestalt theory with that of phenomenology, and conceived of objects as
structured wholes. He also interpreted basic cognitive operations (that he
referred to as attentional modifications) in terms of Gestalt operations.
Gurwitsch has also criticised Husserl’s conception of mereology from a
gestalt theoretical point of view.6

II. R-Structured Wholes

Let us first go step by step through the construction of what we will call
an R-structured whole. To that end we will at the outset recall a couple of
basic notions from the theory of relations, and partial orders in particular.

1. Preliminaries

Let A and B be arbitrary sets, not necessarily distinct. Then any subset R
of A × B is called a binary relation from A to B (or simply a relation from A

4See also Simons (1987) on that concept.
5See Lakoff (1977, 1986), Talmy (2000), Langacker (1987, 1991) et al.
6See Gurwitsch (1929), 364 ff, see Wiegand (2001).



186 olav k. wiegand

to B). If A = B = M , i.e., if R ⊆ M × M , R is called a relation on M. For
the pair (a,b) ∈ R, we write R (a,b) or aRb. The set

{
x: ∃y

(
x,y

) ∈ R
}

is usually referred to as the domain Dm(R), the set
{
y: ∃x

(
x,y

) ∈ R
}

is
called the range Rn(R) and we will refer to Dm (R)∪ Rn (R) as the field of
R, written Fd (R).

Now suppose P be a set. An order (or partial order) on P is a binary
relation �on P such that, for all x, y, z ∈ P,

(Reflexivity) x � x,
(Anti-symmetry) x � y and y � x imply x = y,
(Transitivity) x � y and y � z imply. x � z.

A set P equipped with an order relation � is said to be an ordered set
(or partially ordered set or simply po-set), written 〈P; �〉. We usually just
say “P is a po-set.” Instead of x � y we may also write y � x. We write
x ‖ y if x �/y and y �/x.

Let P be a po-set:

(1) P is a chain if, for all x,y ∈ P, either x � y or y � x. P is an anti-chain
if x � y in P only if x = y. A chain P is finite if its cardinality |P| is a
natural number.

(2) Let Q be an arbitrary subset of P, and x ∈ P. Q is a down-set if,
whenever x ∈ Q , y ∈ P and y � x, we have y ∈ Q . We define:

(i) ↓Q = {y ∈ P:(∃x ∈ Q)y � x};
(ii) ↓x = {y ∈ P:y � x};
to be read “down Q” and “down x.” Q is a down set iff Q =↓Q , and
↓{x} =↓x.

2. The Part-of Relation

We will now consider a special partial order written � which is the part-of
relation. For what follows let G be a non-empty, at most countable set,
and � a partial order on G.

(3) Suppose x,y ∈ G. We will call x a part of y if x � y. x is a proper part
of y, written x ≺ y, if x � y and x �= y. In case that x = y one says
that x is an improper part of y.
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a = b = c a

b = c

a b

c

(a) (b) (c)

Fig. IX.1

(4) a,b not being necessarily distinct elements of G, we will say that a
and b overlap, written aO�b, if ∃z(z � a ∧ z � b).

(5) x,y ∈ G, we will say that x is an immediate part of y, and write x � y
or y � x if x ≺ y and x � z ≺ y implies z = x.

We will use Hasse-Diagrams7 to depict configurations of parts and
wholes. In all of the following examples a and b overlap because they
have a part c in common Fig. IX.1.

Having the usual sentential connectives in mind, we can verify that a
statement like “c � a ∧ c � b” is true with respect to figure (c).

In his 3rd Logical Investigation the phenomenologist Edmund Husserl
divides objects into simple and complex. The latter are defined such that
they contain at least two “disjoined parts,” that is parts that have no
common parts. This intuition leads to the formulation of the principle
of complex objects (PCO):

(6) ∀x∀y(x ≺ y → (∃z z ≺ y ∧ ¬zO�x)).8

In Fig. IX.2 the po-sets9 (d), (e) and (f ) do not meet condition (PCO),
the po-set depicted in diagram (g), however, does.

Suppose 〈G; �〉 be a po-set that meets condition (PCO), and a ∈ G.
A set Pa ⊆ G will be called the part-expansion of a in G if:

7See Davey and Priestley (2002).
8PCO is a modified version of SA3 in Simons (1987), 28. We subscribe to his view
that the chain-models (d) and (e) are counter-intuitive in that they imply the idea of a
whole containing merely a single part. (f ) would have to be understood as a whole, all
of whose parts overlap each other. It seems, however, counter-intuitive to assume such
objects. See the discussion of SA3 in Simons (1987).
9As regards the notion of partially ordered set (po-set for short) see Section I.I above.



188 olav k. wiegand

(d)

(e)

(g)

(f )

Fig. IX.2

(7) Pa =↓a,
(8) (∃x ∈ G) x ≺ a,
(9) All chains in Pa are finite.10

Given an element a of G, and Pa its part-expansion in G, Pa\ {a} will
be referred to as the proper part-expansion Pa of a in G. The elements of
the part-expansion of a will be called the parts of a in G, the elements
of Pa the proper parts of a in G, and the minimal elements of Pa will be
called the atomic parts of a in G (or simply the atoms of a in G ).

Part-expansions are defined as finite sets. This is an immediate implica-
tion of the strictly epistemological orientation we have chosen to assume.
Wiegand (2007) provides a means to differentiate part-expansions grad-
ually and incrementally, which is important for any logic wishing to
model courses of reasoning. Taking up a famous Husserlian example,
if we observe a shop window from a distance, we may not be able to

10See definition (1) above.
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decide whether there is a display dummy or a real person behind the
glass. In his Experience and Judgement (see §21b) Husserl speaks of two
perceptual situations, each possessing its respective power and gradual-
ity, that overlap each other and thus alternatively win the upper hand for
a brief duration. If we walk closer to the shop window we may eventu-
ally see more and more details (parts of the whole) so that a new cognitive
situation emerges in which it eventually becomes clear whether the object
is a person or a dummy. It will, however, never be the case that a subject
apprehends an object qua an infinite totality of parts.

3. One Sort of Structured Wholes: R-Structured Wholes

We will now comment on the definition of R-structured wholes. For that
end we will start with an intuitive understanding of the Hasse-diagram
of Fig. IX.3, The Diagram depicts a complex R-structured whole h. The
nodes a, . . ., g symbolize proper parts of h. These are grouped by dotted
rectangles that indicate fields of relations Rx that, in turn, are meant to
capture the notion of immediate gestalt-contexture of object x. The gestalt-
contextures of the objects h, f and g taken together represent the internal
structure of the given whole h (as it shows itself within a certain cognitive
situation). Informally we may speak of wholes and subwholes in the sense
of Wertheimer:

Proceeding from above, from the structure of the whole and descending from there
to the subwhole and to the parts, the parts are not mere pieces in additional rela-
tion together, but parts of the whole; these parts are in hierarchical relation together
(Wertheimer 1922).

Rh

Rg

h

f

Rf

g

edcba

Fig. IX.3
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We may now, for reasons of illustration, assume that h is a musical duet,
and that f and g are the musicians: both are part of the R-structured whole
h, they belong to the immediate gestalt-contexture of h, and therefore
they make up the field of the relation R h. That both musicians belong to
the gestalt-contexture of h means that g only “makes sense” in connection
with f, and vice versa. If g leaves the room, then f is no longer part of a
musical duet. (If we are still inclined to call g or f “member of a duet”,
then this is in a more abstract sense.) We note that f and g belong to the
gestalt-contexture of the duet, but certain parts of h, for example c, . . ., e
do not belong to the immediate gestalt-contexture of h, these belong to
the immediate gestalt-contexture of g.

In his 3rd Logical Investigation Husserl distinguishes pieces from
dependent parts (i.e., moments) in various ways. For our present concern
one definition advanced in the Third Investigation is important. There
he defines the concept of piece (and, indirectly, of moment) by means of
the absence of those functional dependencies to which dependent parts,
along with other parts of a given perceived whole, are subject:

The head of a horse can be presented “on its own” or “cut off,” i.e., we can hold it in our
imagination, while we allow the other parts of the horse, and its whole intuited setting,
to alter and vanish at will. . . .the content of such a “phenomenon” does not in the least
involve anything entailing a self-evident, necessary, functional dependence of its changes
on those of coexistent phenomena. (LI, 234/439)11

This definition is, however, somewhat problematic (see Gurwitch
1929, Wiegand 2001) because the notion of Gestalt contexture implies
that no part of the whole is (functionally) independent of the other parts
of the gestalt contexture. We may, however, speak of parts that are capa-
ble of being singled out (namely pieces), and parts that are not capable of
being singled out (namely, moments).

In our example of Fig. IX.3, h,f, and g are pieces (which is indicated by
drawing those nodes as o): g can leave the room, she can be “singled out”
from the contexture that is created by their playing together in the form
of a duet within a certain time frame. Parts a to e on the other hand are
“moments,” i.e., they are parts that cannot be singled out. If one wishes to

11See Wiegand (2001) for an explication of the notion of being singled out.
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interpret these parts then they could be materialized as e.g., the height of
one of the musicians, her shape, certain “Gestalt qualities” of her move-
ments or personality, etc. Husserl’s example from the 3rd Investigation
for mutually dependent parts is the coloring of a particular object, and
the extension covered by that color. However if a part like c is inter-
preted, in the drawing of Fig. IX.3 it does not play a role for the first-level
gestalt-contexture of the duet that is modelled by the field of Rh.

We will now further explicate the role played by the relation R.
Definitions (10) to (12) are used in Moltmann (1998, Section 1.5.2) to
prepare the definition of the concept of integrated whole.

(10) For a non-empty set X and a two-place relation R, X is closed under
R (Cl (R, X )) iff ∀x∀y

(
x ∈ X ∧ (

xRy ∨ yRx
)) → y ∈ X .

(11) For a non-empty set X and a two-place relation R, X is connected
under R (Con (R, X )) iff ∀x∀y

(
x ∈ X ∧ y ∈ X

) → (
xRy ∨ yRx

)
.

(12) R trthe transitive closure of R, i.e., xR try iff there are objects x1,. . .,xn
such that xR trx1∧. . .∧xnR try.

Let us now consider a non-empty, at most countable po-set G, and
let us, furthermore, distinguish a subset W ⊆ G that encompasses all
and only the pieces in G (i.e., the elements of W are those and only those
objects in G that we depict as o). What we have in mind is, of course,
that G is a universe of only structured wholes and their parts. We have
called these auxiliary objects mereological ground-structures:

(13) A triple G = 〈G;W , �〉 will be called a mereological ground-structure
if:

(i) 〈G; <〉 meets condition (PCO),
(ii) W is a non-empty subset of G such that for every object x ∈ W

there is a part-expansion Px of x in G, and G = ⋃

x ∈ W
Px.

The drawings of diagram (h) could be seen as depicting the finite
mereological ground-structure G = 〈{

a,b,c,d ,e,f ,g,h,i,j
}

;
{
c,g,i,j

}
, �〉

.
Let now S = 〈M ;S, �〉 be a mereological ground-structure, a ∈ S,

and Pa be a’s proper part-expansion in M.
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Fig. IX.4

(14) Let Aa be the set of all chains B = {x1 , . . . , xn} ⊂ Pa such that:

(i) x1 is a maximal element of Pa,
(ii) for n ∈ N:x1 � . . . � xn is a sequence, and xn is either an atom

or n is the smallest number such that xn ∈ S.
A set Ca = ⋃

B∈Aa

B will be called an immediate gestalt-contexture

in S.

The sense of definition (14) is to collect all the parts that belong to
the immediate Gestalt-contexture of a given piece a. In order to do so we
check all the chains beginning with an immediate part x1 � a until we
reach an element xn that is either a minimal element of ↓x1 or a piece in
the set ↓x1, such that there is no other independent part xk for 1 < k < n.

Applied to the drawing of Fig. IX.3 above we may, for example,
collect those and only those parts that belong to the immediate Gestalt-
contexture of h. When this is done we collect those that belong to the
immediate Gestalt-contextures of f and g respectively. The proper part
expansion Ph is the set

〈{
a, . . . , g

}
, �〉

. From that set we may start with
elements f and g in order to construct chains that meet conditions (i) and
(ii) of (14). The immediate gestalt-contexture Ch will therefore simply be
{f } ∪ {g}.

Let us now return to the role of R for the constitution of R-structured
wholes.

(15) a is called an R-structured whole in S (written R-Stc-WhS(a)) if there
is a non-trivial12 two-place relation Ra defined on M such that

12“The specification ‘nontrivial’ is required in order to exclude integrated wholes being
defined on the basis of relations such as difference or identity” (Moltmann 1997).
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Cl
(
Rtr

a ,Ca
)

and Con
(
Rtr

a ,Ca
)
. The relation Ra will be called the

R-foundation relation of a in S.
(16) Suppose there is given an R-structured whole a in S. For each

y ∈ Ca, the field of the R-Foundation Relation Ra is called the
immediate gestalt-contexture for y in S.

The notion of immediate gestalt-contexture helps to formalize com-
plex objects (“configurations”), i.e., objects that encompass more then
one structured whole. It tries to capture Wertheimer’s terminology of
“wholes and subwholes.” The notion of immediate gestalt-contexture also
adds to the philosophical discussion centered around the question of the
transitivity of the part-whole relation. Within classical mereology this
problem has been addressed as the question as to whether the part-of-
relation is transitive or not (see, e.g., Johansson 2004, Varzi 2006, Talmy
2006): Jim’s nose is part of Jim, and Jim is part of the Berlin Symphony
Orchestra, but is Jim’s nose part of the Berlin Symphony Orchestra? The
intuitive answer is no. Moltmann (1997) has justly pointed out that tran-
sitivity is somehow blocked by the bounds of a Gestalt (the bounds of
Jim qua Gestalt block transitivity). So should one relinquish the tran-
sitivity of the parthood-relation? Within the framework of the present
approach we have chosen to tackle the problem as follows: clauses (i) and
(ii) of (14) provide instructions of how to select those and just those parts
that belong to the immediate gestalt contexture of a particular structured
whole x. Other objects in the universe may then be part of elements of
the field of Rx but they may not belong to the Gestalt contexture of x. This
allows us to understand the part-of-relation as a partial order, which is a
solid technical framework. Our approach also sheds light on the intuitive
problems with transitivity enumerated, e.g., in Johansson 2004. To say
that “Jim’s nose is not part of’ the Berlin Symphony Orchestra” should
be reformulated as “Jim’s nose does not belong to the gestalt-contexture
of the BSO”—it may be part of one of its subwholes, but Jim’s nose does
not belong to the material context of a symphony orchestra. It may be
an extraordinary snub nose, so that it came to my attention while I was
listening to a performance of the orchestra. In this sense a node must be
dedicated to Jim’s nose when I were about to model what I perceived. As
I have (inevitably) perceived the scene as structured in a certain way, and
if I wanted to capture that structure, the modelling would have to place
the snub nose as part of one subwhole. Had I executed other cognitive
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activity (like dividing the orchestra into blondes and non-blondes) the
modelling would have to capture this.

We are now left with the question of how to address the total gestalt-
contexture, the gestalt at large. This is the question of how to view a
configuration (i.e., a whole that encompasses more than one structured
whole) as an organic totality. If one were to provide a formal definition,
then such a definition should conceive of the whole as a special arrange-
ment of R-relations, pieces and moments. Such an arrangement obeys an
important gestalt theoretical principle, namely the primacy of the whole,
which says that it is not possible to remove or add parts without mod-
ifying a Gestalt contexture as such. Removing a part or supplementing
the whole with additional parts results in a different cognitive situation.
We will therefore have to include considerations as to how to define
identity.

4. Questions of Identify

From the point of view of ordinary language it seems absurd to speak of
two things being the same thing. But it is not nearly as absurd to claim
that, in order to be distinct, they must be discernibly distinct in the sense
of there being one property not common to both of them.13 The latter
seems to be the rationale behind defining identity in terms of

Leibniz-Identity: x = y: = ∀P(Px ≡ Py).

Let now A be an ordered set, and denote the family of all down-sets14

of A by O(A) (it being in itself an ordered set, under the inclusion order).
An analog to classical Leibniz-Identity for R-structured wholes x, y could
then be formulated as

abstract identity of wholes: x Idabstract y: = O(x) = O(y)

We are speaking of abstract identity because we abstract from the
R-relations that may be present. Abstract identity in that sense may not
be given because:

13See Barcan-Marcus (1962).
14See (2) of Section I.I.
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(i) there is at least one part that x and y do not have in common or
(ii) x and y may have all properties in common, but in a different

arrangement.

For the previous and all of the following definitions we presume that
objects x and y are given within the framework of one cognitive situation
(like within the unity of one perception).15

However, the question of the identity of structured wholes is much
more complicated. We might briefly examine just one other aspect of
it, namely that of configuration-dependent changes as is the case in the
following famous examples:

When we examine e.g., the Ebbinghaus case, then the circle c in
the middle looks larger in the right configuration (although from an
abstract point of view they are equal in size and shape). This accords
with the gestalt theoretical tenet of the primacy of the whole, namely the
supremacy of the whole over its parts. Configurations like these were used
by gestaltists to demonstrate the impact of contextuality: it is not possi-
ble to isolate a part, take it out of a given configuration (for example the
left central circle of the Ebbinghaus case) and insert it into another con-
figuration in such a manner that the part remains the same—like taking
c out of the left configuration of the Ebbinghaus and insert it into the
right one.

We could informally examine two options here:

(a) One possibility is to depict the central circle as an immediate part
of the configuration, on a par with the other circles that surround

15See Wiegand 2007, and Moltmann’s concept of reference-situation.
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left
right

right

Fig. IX.5

it. They make up one organic whole. Parts a, . . ., e (the circles that
surround the central one) are not further differentiated (we assume
that the perceiver does not perceive any particular details of one of
those parts)Fig. IX.5.

The visual difference between the central circle as part of the left and
the right configuration of the Ebbinghaus respectively may correspond
to the difference of the contexts (i.e.,Rconfigleft

�= Rconfigright
), in spite of

the fact that the central circles have a part structure that makes them as
equal as Leibniz’ two drops of water (which are equal with the exception
of their position in space).

(b) Another possibility is to say that the central circle in the middle is
perceived as a figure, whereas the other circles around it are perceived
as a background. In this case, the modelling needs to be altered as
follows Fig. IX.6.

Here the configurational contexts of which the figure is part is equal
in both configurations (i.e., Rconfigleft

= Rconfigright
). The fact that not

(background Idabstract background´) accounts for the visual difference.
Therefore it seems as if contextual identity could be sketched as fol-

lows: xIdcontextual y iff there are wholes x′, y′, and foundation relations

left

left left

8 ´

´

right

Fig. IX.6
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Rx′ , Ry′ such that x ∈ Field (Rx′), y ∈ Field (Ry′), and for all objects ν ∈
Field (Rx′), there is an object w ∈ Field (Rx′) if and only if O(v) = O(w).
It is obvious that contextual identity is not given in our example, which
in other words means that the (general) gestalt-contextures of configleft
and configright are different.

Again we point out that our modelling is based on empirical psychol-
ogy. We are not attempting to provide smooth mathematical properties.
It is also important to see that we have not attempted to explain why
the circles in the middle of the Ebbinghaus look different. We have
attempted to model the gestalt-structures of the respective configurations,
and obviously the gestalt-structures show perceptual differences.

III. On Relations

Determining a relation is an important part of productive thought. From
a phenomenological point of view we will now comment on a philosophi-
cal discussion of the ontology of relations that has persisted over a number
of years. As a starting point I will take up a critique of von Wachter on
Mulligan (1998).

There Mulligan distinguishes between what he calls “external relations”
on the one hand and “internal relations” on the other. In order to expli-
cate the use of the notion “external relation,” let us assume that a given
stone a has mass-trope α and a certain other stone b has mass-trope β.
The view that is rejected by Mulligan is the view that the statement “This
stone a is heavier than b” is made true by a relational trope ρ(a,b) that
exists in addition to mass-tropes α and β. This external relation between
a and b is a relation between things. It is supposed to be an entity that is
borne by a as well as by b. Mulligan and von Wachter both wish to reject
those theories that hold that ρ(a,b) is the truthmaker of the statement
“This stone a is heavier than b.”

Mulligan suggests reducing “thick relations” to “thin relations” as
their truth-makers. Besides similarity thin relations are also identity,
greater/smaller/less than, distance, dependence, implication/causality,
justification and exemplification. Mulligan characterizes thin relations
as topic-neutral, formal and internal. A relation that is topic-neutral says
nothing materially about the relata it connects. It connects relata without
having material content itself. In particular similarity (a thin relation)
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does not express any content; it is neutral, it receives its meaning through
its relata. A relation is internal if it necessarily follows from the existence of
its relata. Whether Adam and Eve love each other is contingent (i.e., love
is an external relation, also expressing content by itself ) whereas the red-
ness of their cheeks is necessarily similar. “Resemblance, too, is an internal
relation if it is a relation between tropes. If two things, a and b, resemble
one another this is because there are tropes of the one which stand in
an internal relation of similarity to tropes of the other” (Mulligan 1998,
345). Calling a relation formal comes close to emptying it from material
content with regard to its relata. Similarity cannot be seen qua similar-
ity between two objects—there are just two things that are similar. Love
on the other hand has a meaning in itself and can—so the theory—in a
certain sense be seen in isolation from its relata.

Mulligan suggests that a relation between things (i.e., an external rela-
tion) obtains because a certain internal relation between properties of
these things obtains. So the relation of being heavier that obtains between
a and b is made true by an internal relation between the mass tropes α

and β. The needed internal relation, Mulligan suggests, may be the rela-
tion of being greater than which, in turn, may be constructed from the
relation of resemblance. I do not wish to repeat details of the discussion
of resemblance. It does, however, make use of the notion of the order of
masses which—from the point of view of genetic phenomenology—is a
highly abstract notion. Eventually views differ between Mulligan and von
Wachter: While Mulligan holds that internal relations between tropes
are “irreducibly relational entities,” von Wachter holds that one can do
without relations at all, they are—eventually—just a façon de parler. The
point he makes seems reasonable (though merely as regards the result): all
relations have to be seen as entities in addition to the individuals related.

Before we come to the point of how relations could be conceived
of from the point of view of MS, the framework within which the
argumentation makes sense should be addressed. This framework is the
genetic phenomenology of Edmund Husserl as unfolded in Experience
and Judgement (EJ ) or Analyses of Passive Synthesis (APS ). From that point
of view the discussion about the ontological status of relations is flawed
by its abstractness. For genetic phenomenology, whose orientation is epis-
temological, objectivities like “mass-tropes” are the result of objectivating
acts at a very high layer within the stratified conception of consciousness.
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In this sense the notion of “mass-trope” has certainly nothing to do with
Husserl’s notion of a “quality moment” qua ingredient of the “noematic
sense.” This means that a child would not be able to speak about masses
or mass-tropes until it is capable of performing formalizing abstraction,
idealization or generalizing abstraction.

The method of genetic phenomenology traces abstract concepts back
to “proto-objects” on the prelinguistic level of perception. Wiegand
(1998) aims to show that—from the point of view of genetic
phenomenology—the concept of individual as used in formal languages
of modal logic is usually too abstract to model the unsharp and fuzzy
notion of individuality dominating natural language and perception
(see also Wiegand 2000, 2001 and the literature mentioned there).
When a phenomenologist reads statements like “I assume that relations
between things always obtain because the things in question have certain
(monadic) properties” (Von Wachter 1998, 356), then expressions like
“monadic properties,” “relations,” or the use of the expression “because”
are understood as being located on a relatively high level of abstraction,
well above perceptual (proto-)objects.

Intentionality is the objectivating function of consciousness. The phe-
nomenological theory of intentionality is the phenomenological theory
of objectivity (and its structure and forms).16 Intentionality is defined
as a correlation of subjective (noetic) and extra-subjective (noematic)
factors—two strata that, by themselves, make up a structured whole.
Aron Gurwitsch associates this conception of intentionality with equa-
tion (ii), and points out the difference to a conception that could be
associated with (i):17

(i) P = f (xe) + f (xi)
(ii) P = f (xe, xi).

If one thinks of the variables xe and xi resp. as ranging over external and
internal factors, then the difference between the two competing concep-
tions of perception (P) is analogue to the difference between equations
(i) and (ii). As regards equation (ii) we might vary xe as well as xi and

16See Gurwitsch (1959)
17Cf. Gurwitsch (1936), Kap. III.
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the value P will, in both cases, vary accordingly. However, whether one
parameter is held constant or is ignored (as would be the case with xe in
equation (i) when xi is varied), makes a significant difference.

It is quite clear that putting emphasis on cognitive activity does not
have anything to do with idealism. A phenomenological point of view
that is oriented towards gestalt psychology might be accused of psychol-
ogism,18 but this challenge seems preferable to a position of “ultimate
grounding” or speculative ontological thought. The epistemological ori-
entation of genetic phenomenology and gestalt psychology (at least in the
sense of the “Berliner Schule”) concerns meaning. ‘There are’ external fac-
tors but there would simply not be a dream of sense in the world if there
was no subjectivity for which flowers, theories or tropes made sense. This
“making sense for a subjectivity” needs a theory of stratification of con-
sciousness and (noematic) sense as is provided by genetic phenomenology,
and “making sense” begins at a rather low level:

In Köhler (1971) we are informed about how anthropoid apes deal
with “relations.” The information stems from his well-known work on
chimp cognition carried through on his Primate Research Centre in
Tenerife. There he investigated in particular the chimp’s use of tools to
obtain food. In one of his experiments a chimp needed to stack boxes
in order to reach the famous banana. While an obviously bright chimp
called Sultan never hesitated to move boxes in an appropriate way, and
stacked them to reach a banana that was suspended out of reach, one
other chimp Rana came into serious trouble. Köhler vividly describes
Rana’s failed effort to imitate Sultan. In one attempt, for example, Rana
moved a box (not below the banana, though) climbed onto it, and then—
obviously highly concentrated—ran below the banana and jumped high,
just as Sultan did. The difference, however, was that Sultan had moved
the box right under the banana so that only a jump was needed to gain
the food. Rana was obviously not able to merely imitate what the other
ape had demonstrated. Köhler says:19

A chimp, however, who is particularly unintelligent, may be fully unable to repeat some-
thing simply because certain relations that were essential to the other’s demonstration

18See Seebohm (1991)
19Quotes from Köhler (1971), my italics. See also Köhler [1925], 1999.
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eluded him (p. 117) ... Already when Sultan begins to move the box, he moves it in
the direction of the bananas. For the simple-minded Rana, however, there is no com-
pelling reason to set the beginning of the movement in relation to the location where
the box may then serve to diminish the distance between the ground and the fruit.
To Rana the beginning of the movement may perhaps appear as a simple form of game.
In fact chimps often simply shove boxes around when they play. Or Rana may regard
the beginning of the movement as a movement away from the original location of the
box, which would be a further relation, but again not the one demanded. Furthermore
the movement could be regarded as a movement parallel to one of the walls or the like
(p. 119).

There are infinitely many possibilities for moving a box around. What
about the infinitely may internal relations whose relata already “exist” in
the cage? Following the analyses of EJ the concept of a relatum, even
that of a relatum qua individual object in the perceptual field is located
on a rather high level of cognition, at proto-relations. These emerge
out of what Husserl calls the “outer horizon” of a (proto-)object (EJ
Section III; see also Wiegand 1998, Chapter VI.3). This horizon changes
when the nucleus of the horizon is inserted into another context, when
it becomes part of another structured whole or when the part struc-
ture of the nucleus has changed (the parts may be rearranged, the whole
may be ruptured, etc.). Depending on these changes the outer horizon
changes and certain relations become possible while others simply disap-
pear. Which relation is eventually picked out by the attention of the subject
(see EJ, §§ 17 ff.) depends on the higher primate’s (proto-) goals, drives,
and past experiences. The nuclei and their outer horizons are seen respec-
tively in different lights, are associated with different drives and goals, and
therefore, just make sense in relation to particular relata, and do not make
sense in relation to others.

The abstraction that characterizes ontological reasoning does not only
guarantee the identifiability, and therewith the objectivity of the enti-
ties under discussion (see Wiegand 2000, Section 4; 2001, §4; see also
Hume 1739, 199 ff ). It seems as if this abstract reasoning also leads
authors to a certain preference for a particular type of relations, namely
those that are to be located within the quantifiable or measurable realm.
Contrary to love, relations like greater / smaller / less than, distance,
dependence (when suitably formalized), etc. are all formal in the sense of
the phenomenology of mathematical objects (see Wiegand 1998, 2000).
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Hochberg (1992) groups relational tropes (we recall that tropes are usu-
ally understood as coming close to Husserl’s qualitative moments) into
similarity classes. He tries to provide a solution to the problem of how
“greater than” could represent a trope similiarity class. From the point
of view of genetic phenomenology, it is a commonplace that the objects
he discusses are eo ipso devoid of all content; they are the result of what
Husserl called a “process of algebraization” by which he meant a pro-
cess of abstraction that characterizes (modern) mathematics (see FTL
Part I; Wiegand 2000). But already on the level of natural language
(not to speak about the prelinguistic level) the well-known mathematical
relational properties like “transitivity,” etc. are not generally present.

There is good cause to dwell on this important point for a while. In
order to clarify the issue, I will summarize the gist of Leonard Talmy’s
analyses on the general conceptualization of figure and ground in natural
language. The examples are all taken from Talmy 2000, Vol. I, Chapter 5.
There he defines the figure as a moving or conceptually movable entity
whose path, site, or orientation is conceived as a variable, the particular
value of which is the relevant issue. The ground on the other hand is a
reference entity, one that has a stationary setting relative to a reference
frame, with respect to which the figure’s path, site, or orientation is char-
acterized. What is figure and what is ground can be identified by applying
the method of reversing the nominals in a sentence:

(1) a. The bike (F) is near the house (G).
b. ? The house (F) is near the bike (G).

(2) a. John (F) is near Harry (G).
b. Harry (F) is near John (G).

The method of reversing the nominals in a sentence to highlight the
existence of figure and ground roles in a locative event can use the other-
wise symmetric relation “near.” It can also use an asymmetric relation if
we consider the relation and its inverse, like “above / below”:

(3) a. The TV antenna (F) was above the house (G).
b. ? The house (F) was below the TV antenna (G).
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The figure / ground functions extend to (some) nonphysical situa-
tions. The relation of resemblance, we recall, was classified as an internal
relation according to Mulligan, and should therefore be conceived of
as symmetric and devoid of content. The following examples from
natural language show that resemblance has nevertheless some content,
since otherwise symmetry could not occasionally fail on the level of
natural language. Furthermore we are confronted with the question of
deciding when resemblance is a relation between objects or between
tropes. Example (4) may be viewed as a relation between tropes (“unique
appearances”). As regards example (5) it is obviously a relation between
things (it may, however, be reducible to a resemblance between tropes):

(4) a. She resembles him.
b. She is similar in appearance.
c. ? He resembles her.

(5) a. My sister (F) resembles Madonna (G).
b. ? Madonna (F) resembles my sister (G)

The reference of figure and ground to the relative location of objects
in space can be generalized to the relative location of events in time:

(6) He exploded after he touched the button.

This statement seems to assign a ground interpretation to the button-
touching event (setting it up as a fixed, known reference point), while the
next example has a different meaning:

(7) He touched the button before he exploded.

Now, what in fact are relations from the point of view of MS? Let
us at first point out that Wiegand (2007) offers a simple language of
mereology that contains symbols for relational predicates that are to be
interpreted in the vain of traditional logic (i.e., as sets of ordered pairs,
triples etc.). There are no variables that range over relations. In this sense
the above mentioned discussion of the ontological aspects of relations
does not immediately apply to MS in its present shape.
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If, however, one insists on asking how relations should be conceived
of from the point of view of the background-philosophy of MS, then it
needs to be repeated that this point of view is actually that of genetic
phenomenology. As such it heavily leans on the phenomenological
analyses of the genesis of relational structures in the prepredicative field
(see EJ Section III; see also Wiegand 1998, Chapter VI.3). Modelling
proto-relations on a level where they are still gestalthaft (the interesting
case) seems hardly possible since proto-relations do not generally come
along with certain relational properties. Relations on that level are marked
by a certain plasticity that does not generally allow for distinctions like
that between symmetric and non-symmetric relations etc.

However, the formal language of mereology (into which portions of
natural language may be translated) that is provided in Wiegand (2007)
is kept rather simple. More complex languages may be developed that
allow for other sorts of structured wholes in the domain of quantification
(here we agree with Moltmann 1997, when, with regard to the notion
of R-integrated whole, she says that other sorts of integrated wholes are
conceivable). It was stressed that MS is a technical framework in the first
place. A modularly structured domain of quantification may encompass
various sorts of suitably defined objects. Including structured wholes into
the universe was suggested by the author under the premise that this
notion may be found to be a handy formalization of principles of the
notion of Gestalt.

In order to sketch how relational objects could be incorporated into
the framework of MS let us contemplate the following types of objects
(Figs. IX.7 and IX.8):20

Informally speaking (j) shows a simple structured whole. We have tried
to unfold the raison d’être for that type of objects in section one above.
If we understand tropes in the sense of Husserl’s qualitative moments, an
element like d (e.g., a color) could be called a trope, having, in turn, two
moments (like extension and a certain hue) as parts. If, in addition, one
wishes to speak about universals, one would have to define objects (possi-
bly equipped with some suitably defined foundation-relation) that can be
part of more than one structured whole at the same time. These objects

20See also Johansson (2006)
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an individual whale
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an individual dog
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α β

R(α,β)
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Fig. IX.8

should then look like the schema (k) where an uncompleted Hasse-
Diagram (together with dotted rectangulars for foundation-relations) is
indicated. A third sort of structured objects would now be necessary to
model relations as Gestalts. Objects of that sort should also be charac-
terized by the functional interdependence of the parts (the “relata”) of
the whole and the principle of the primacy of the whole. Schema (l) indi-
cates how—in the simple case of a relation between two objects—such
a relational whole could look like. The drawing may be interpreted as
indicating a formalization of “objects a and b bear a relation because of
tropes α and β, resp.” Changing the part-structure of a or b would have
an effect on the field of the foundation relation R(α,β). The definition of
R(α,β) may include relational properties.

Abstraction is the prize of formalisation. On the level of the Lebenswelt
relations like a loves b are characterized by a certain Gestalthaftigkeit. If b
dies, then a is no longer the lover she used to be. If b doesn’t love a then
the relation lacks the symmetry that—to a certain degree—characterizes
lovers. Perceiving a couple in love has the form of perceiving a figure
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(the couple) before a background of hastily moving people or on the
background of a certain landscape, etc. Love can—to use a Husserlian
technical term—be nominalized, i.e., it can be objectified (EJ, §58). This
means that we have a name that does in a rather fuzzy way apply to
the various expressions, emotions and to the behavior of lovers (all that
depends, of course, on the “relata” involved). As long as we remain on the
life-world level love has certain (unsharp and fuzzy) properties that vanish
when we speak about relations from an abstract (mathematical or formal
ontological) point of view. In the latter case all relations (love or greater
than) loose their plasticity and become defined formal objects. MS was
designed to provide formal techniques for use in cognitive semantics, i.e.,
for use in the analyses of natural language reference in the life-world.

IV. Mereological Semantics: Logig As Philosophy?

In this paper we have tried to sketch the philosophical motivation for
what I have called mereological semantics (MS) (see the introduction
above). The formalism of mereological semantics has been unfolded in
a more detailed fashion in Wiegand 2007. Within the present paper we
have in the first place tried to explicate how details of the concept of
Gestalt have led to particular details of the formalism of MS. A crucial
part in the formalization of the concept of Gestalt is played by the formal
foundation-relation R. The relational character of Gestalts has also been
pointed out by Moltman 1997, Rota 1985 and 1989, as well as Rescher
and Oppenheim 1955. As a first application of the theory we have thus
critically commented on a still ongoing discussion within ontology on the
nature of relations. From the point of view of the background philosophy
of MS we have taken a strictly constructive stance. Let us now dwell for
a while on the connection between MS and phenomenology in general.
We may do that in two steps.

At first we have to recall what Edmund Husserl notes in his Third
Logical Investigation with regard to his mereological analyses: “A true
realisation of the pure theory, in the sense we are developing it, would
have to define all of its concepts with mathematical exactitude and define
its theorems by means of argumenta in forma, that is through mathemat-
ical deduction” (Hua 19/1, 294). In Chapter 2 of the Third LI Husserl
makes several proposals for such precise definitions, however he calls
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them “mere suggestions” (Hua 19/1,294). But he never did develop these
initial suggestions in his later works. Husserl also points out that his the-
ory is “of greatest importance for all phenomenological investigations”
(introduction to Third LI). However, the layers of consciousness (from
the level of passive synthesis up to the level of formalizing abstraction),
the poles of intentionality (defined as noetic-noematic correlation),21

concepts like (identity and temporality),22 and even formal logic and
mathematics as parts of what Husserl calls mathesis universalis23 can cer-
tainly not be viewed as parts of an aggregate but should rather be
seen as parts (respectively, poles) of structured wholes. One important
application of mereology, namely to the phenomenological study of
natural language, has been suggested by Husserl in his Fourth Logical
Investigation.24 In Wiegand 2007 we have made a suggestion what a
formal mereological semantics—into which portions of natural language
may be translated—could look like. Our idea of how elementary linguis-
tic predication could be interpreted with respect to a universe of parts was
inspired by Husserl’s dictum: “Every non-relative ‘real’ [reale] predicate
therefore points to a part of the object which is the predicate’s subject:
‘red’ and ‘round,’ e.g., do so, but not ‘existent’ or ‘something’” (Hua
19/1,231).

Gestalt theory enters the scene when one adopts the convincing
criticism of Aron Gurwitsch on Husserl’s mereology (see Wiegand
2001) according to which both Stumpf and Husserl were holding
positions close to associationist psychology,25 and thus do not stick to a

21See Gurwitsch (1982) or Gurwitsch (1940).
22See Gurwitsch (1940).
23See Wiegand (2000).
24Cf. the introduction to the Fourth Logical Investigation. See also Appendix I of FTL.
25Associationist psychology is opposed to the Gestalt approach. Basically, the former
kind of psychology understands conscious acts merely as the results of the compo-
sition and modification of sensual contents. The psychological laws in accordance
with which those compositions and modifications work are called “laws of associa-
tion”. Associationism can be traced back to British empiricism, but Joseph Priestley,
James Mill, and Johann F. Herbart are also eminent figures in that tradition. From the
viewpoint of Gurwitschian phenomenology, the psychological atomism and the “psy-
chophysics” of Gustav Theodor Fechner and Hermann von Helmholtz must also be
regarded as a physicalistic branch of associationism. The main reason why Gurwitsch
has severely criticized associationist psychology is that physical stimuli or psychological
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consistently descriptive point of view. MS claims to provide a formaliza-
tion that (a) meets Husserl’s postulate of a formalization and (b) captures
Gurwitsch’s phenomenological tenets of a consistently descriptive theory
of parts, wholes and foundation. But MS may even claim more.

In the second step MS claims to provide the means for an analy-
sis of intentionality. In §§ 30–32 of EJ Husserl shows how his analyses
of the constitution of objects may be reformulated in terms of parts
and wholes. Taking our starting point from that possibility we formu-
lated the basic tenet of MS, namely that reference is reference to structured
wholes. Intentionality, defined as the objectifying function of consciousness
(Gurwitsch 1940) may now be analyzed in a twofold way: (a) in the
sense of a subjective logic of truth. This subjective logic of truth, has—
by Seebohm and others—been developed as a phenomenological semantics
(see Wiegand 2000). (b) Intentionality may also be analyzed in terms
of formal logic. Focusing on especially this latter formal logical aspect
Hintikka has said in his 1969 book that “... possible–worlds semantics
is the logic of intentionality, and intentional is what calls for possible–
worlds semantics” (p. 195). The formalism of MS (as unfolded in
Wiegand 2007) is abstract in nature, but is motivated by phenomenolog-
ical semantics, and a phenomenological mereology that has incorporated
Gurwitsch’s critique from the point of view of Gestalt-theory. MS claims
to be a logic of intentionality—rough and abstract, but modelling the basic
structures of our reference to extralinguistic structured wholes as unfolded
in informal descriptive analysis.

Max Wertheimer has defined productive thought as a process
that (ideally) leads from an initial state of approximate chaos to

laws of association—they need not be the Humean laws—assume the role of causes.
In this sense causal explanation is the main methodological tool of associationist psy-
chology, whereas Gestalt psychology—like phenomenological method—descriptive in
nature. Gestalt psychology does not distinguish between the stimuli and the laws of asso-
ciation that cause a certain unity among an in-itself scattered and unstructured manifold
of sense data. Gurwitsch formulates the main tenet of a strictly descriptive approach to
the psychological as follows: “for intentional analysis the ultimate fact and datum is the
sense or meaning itself as a structured whole” (“Phenomenology of Thematics and of
the Pure Ego,” 257). For a summary of Gurwitsch’s critique of associationism (where he
also mentions Hobbes, Locke, and Herbart) see “The Place of Psychology in the System
of Sciences,” in Studies in Phenomenology and Psychology, 56–68.
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an organized totality of parts. The process is described in terms of
Gestalt-transformations that are goal-directed.26 Instead of Gestalt-
transformations Aron Gurwitsch speaks of “attentional modifications.”27

In MS we speak about “intentional situations” which may—informally
speaking—be understood as the cornerstones of productive thought.
These situations are connected by modification relations that model
“attentional modifications” (see (ii) in the introduction above). This class
of relations is meant to model those laws of cognitive psychology (Gestalt
theory) that rule over the modification of objects, and so it obtains
between cognitive situations. The stream of (intelligent) cognitive activ-
ity is characterized by constantly inverting, synthesizing, extending, or
otherwise modifying cognitive situations qua structured wholes. In this
sense transformation relations are of empirical origin and are to be con-
sidered “general” to the extent that the basic laws of Gestalt theory are
“general.” Transformation relations may be seen as analogous to what is
called an “accessibility relation” in the context of “possible worlds seman-
tics.” Since transformation relations lead from one cognitive situation to
the next, they serve to model “courses of reasoning.”

In the sense of what has been said within this chapter it may have
become plausible that MS claims to be a logic of intentionality, and is
therefore to be seen in the tradition of a vein of thought that has been ini-
tiated by Hintikka, Seebohm, Mohanty and many others who have tried
to combine the descriptive study of intentionality with formal logical
techniques.

Acknowledgement I wish to thank Mirja Hartimo for helping me to bring this paper into shape. I am
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