
Chapter 5
Generalizations: Rotated, Complex, Extended
and Combined EOF

5.1 Introduction

We have seen in the last section that the difficulty in identifying real physical pat-
terns from EOF stems from their orthogonal nature. Orthogonality translates into
the fact that typical patterns appear in secondary (higher order) EOF. Very often the
first EOF has little structure, the second has a positive and a negative center, the
third more centers and so on, in a way so as to maintain orthogonality.

In fact, the overall structure of the EOF is often determined by the geometrical
shape of the domain chosen and different data on the same domain, with different
covariance relations, may actually result in similar EOF. Moreover, in the preceding
chapter we have seen the issue of sensitivity to partitioning the analysis domain
into subdomains and we can interpret it as a case of the overall sensitivity to the
domain shape. Another point is that EOF are obtained by trying to maximize the
amount of total variance explained by a single mode. It is possible that the resulting
optimized modes are difficult to interpret physically, either because the real relation
is localized and the EOF are spreading it, creating artificial nonlocal relations, or
because the EOF are so close in terms of eigenvalue separation, that the numerical
techniques cannot really distinguish between them.

The risk of creating misleading or illusory representations of relations within the
data is particularly troubling. The most common situation in which these malfunc-
tioning can arise is when data represent localized variances. In this case the EOF
will try to fit globally the domain under consideration, with as few modes as possi-
ble, generating first EOF (low order modes) with very large structures. For instance,
it is possible that the first mode indicates anomalies all of the same sign, whereas the
data do not indicate that there is ever a time when all stations were reporting such a
one-sign pattern. This may be a fiction created by the EOF trying to maximize the
variance explained. This is another way of realizing that the EOF have no way to
guess the physical relations within the data.
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5.2 Rotated EOF

The problems mentioned in the previous section do not mean that the EOFs must
be ditched. They simply indicate that much care must be taken in producing and
interpreting EOF and it is not simply a matter of using some canned routines out of
a package.

Unfortunately we cannot produce a recipe for the intelligent use of EOF, but some
techniques have been devised to make a misuse of EOF less probable. Rotation is
one of them.

Simply put, we need to transform the EOF to another system of coordinates,
exploiting the freedom to choose a different basis in the data space. We have seen
from (4.3) that the EOF can be seen as the eigenfunctions of the covariance or
correlation matrix, that is

S D U†2U�: (5.1)

The basic indeterminacy in the EOF can be seen if we consider a similarity trans-
formation that changes the matrix S into a different matrix. More precisely, let T be
an n � n nonsingular matrix. Then we can write

G D TST�1; that is S D T�1GT:

Substituting in (5.1) we obtain T�1GT D U†2U�, and the eigenvalue decomposi-
tion of the non-Hermitian matrix G is

G D .TU/†2.U�T�1/: (5.2)

The similarity of G and †2 (cf. Sect. 2.7) implies that the transformed matrix G
has the same eigenvalues as S. However, the eigenfunctions have been transformed
according to

UT D TU: (5.3)

Owing to the non-orthogonality of T, the columns of the new matrix UT are corre-
lated. In the derivation above, the aim is to exploit the freedom of choosing T so as
to add some constraints to the EOF. The purpose is to alleviate some of the problems
discussed earlier, especially the problem of the generation of patterns that cannot be
reconciled with the expected physical relations in the data.

Whenever T is non-orthogonal, the transformed EOF represent an oblique co-
ordinate system for the given data. Therefore, in this case, they are called oblique
EOF, and each of them has a nonzero projection (correlation) on each other. On the
other hand, if T is an orthogonal matrix, we can refer to it as a rotation matrix, Q,
and we write

UQ D QU:

The choice of rotation is arbitrary, although we may want to require that some
“nice” pattern feature be emphasized after rotation. In the most popular case, we
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Fig. 5.1 Simple structure. The plots are scatterplot of the value of the EOF for each spatial points
by pairs of modes, in this case EOF1 and EOF2. The standard EOF yield a situation in which there
are several points where both modes have nonzero values (top left panel, bottom right quadrant).
Rotated EOFs reduce such an effect, aligning the point values along the axis (top right panel), the
maximum effect is obtained by relaxing the constraint of orthogonality with the oblique modes of
PROMAX (bottom panels)

require that the spatial variance be concentrated in as few points as possible, to
obtain simpler patterns. The definition of what simple is, is far from being straight-
forward. The issue has been discussed at length in the specialized literature, but a
rigorous definition of “simple” is elusive. A set of empirical principles to describe
the properties of simple structures has been proposed, but the overall philosophy of
the existing school of thought essentially reduces to trying to concentrate the co-
efficients of the EOF in few modes, in such a way that for each variable, i.e. for
each spatial point in our examples, only a very small number of EOF is needed to
explain the variance. This is easily checked by producing scatter plots of the EOF
modes two at a time. Figure 5.1 shows an example of such a plot, shown here for
the case of the marine SST in our test dataset. The EOF are not well separated in
the sense that there are several points for which both EOF1 and EOF2 have nonzero
elements, as it can be seen by the alignment of the points along the diagonal of the
third quadrant in the top left panel of Fig. 5.1. These points are positions where both
EOF1 and EOF2 are needed to describe the variance in that point. Ideally, we would
like to separate as much as possible the variance in such a way that distinct EOF
describe most of the variance at separate points. This means that different EOF have
to reach large values in different places, so that if EOF1 has large values in certain
points then the higher modes must have small values in those same points. The top
left panel of Fig. 5.1 shows that the EOF do not guarantee this property: there is a
whole class of points where both EOF1 and EOF2 have important amplitudes.
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Orthogonal Rotations

We can exploit the arbitrariness in the coordinate system definition to try to trans-
form the original EOF to another coordinate system that yields a better separation of
the EOF for each spatial points, i.e. simple structure. In principle the transformation
is quite unrestricted, but orthogonality is a desirable quantity if we want to separate
the variance of the field under examination.

The following panel (top right) shows a popular method to introduce some simple
structure and maintain orthogonality. This result can be achieved by requiring that Q
is such that the new pattern minimizes a functional, sometimes called the simplicity
functional, that provides a distribution measure of spatial variance. The choice of
the functional is very important and there are no rules to prescribe it, but a very
popular choice is the VARIMAX method, where the functionals are chosen so that
the rotated patterns maximize the functional
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where the pik are the grid-point values of the kth EOF patterns (uk) that we are
trying to rotate, the hi are the point-by-point standard deviations (communalities)
of the r patterns we are rotating; see, e.g., Harman (1976). Both forms aim at max-
imizing the spatial variance of the EOF modes by concentrating the point values
toward zero or one: the first example is known as the raw VARIMAX and the second
one as the normal VARIMAX. Below is a possible simple Matlab implementation of
the normal VARIMAX procedure, closely following Harman (1976).

function [coef,u,varrotated]=eofrot(z,ind,index)
%
% Algorithm for eof rotation with the varimax method
% Inputs:
% z Data Matrix
% ind Index for domain
% index indeces of EOFs to be rotated
% Outputs:
% coef Cofficient for the rotated EOFs
% u Rotated Eof in ascending order
% varrotated Variance explained by rotated EOFs

[npoints,ntime]=size(z); % Time and space points
[uneof,ss,vneof]=svd(z,0); % Unrotated EOF for variance
totvar = sum(diag(ss.ˆ2)); % calculation
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lding = uneof(:,index);
sl = diag(ss(index,index).ˆ2);
varexpl = sum(sl)/totvar; % Relative variance explained

% by the unrotated modes
[n,nf]=size(lding);
b=lding;
hl=lding*(diag(sl));

hjsq=diag(hl*hl’);
hj=sqrt(hjsq); % Normalize by the communalities
bh=lding./(hj*ones(1,nf));

Vtemp=n*sum(sum(bh.ˆ4))-sum(sum(bh.ˆ2).ˆ2); % VARIMAX functional
% to be minimized

V0=Vtemp;
for it=1:10; % Number of iterations
for i=1:nf-1; % Program cycles through 2 factors

for j=i+1:nf;
xj=lding(:,i)./hj; % notation here closely
yj=lding(:,j)./hj; % follows harman
uj=xj.*xj-yj.*yj;
vj=2*xj.*yj;
A=sum(uj); B=sum(vj); C=uj’*uj-vj’*vj; D=2*uj’*vj;
num=D-2*A*B/n; den=C-(Aˆ2-Bˆ2)/n;
tan4p=num/den; phi=atan2(num,den)/4; angle=phi*180/pi;
if abs(phi)> eps;
Xj=cos(phi)*xj+sin(phi)*yj; Yj=-sin(phi)*xj+cos(phi)*yj;
bj1=Xj.*hj; bj2=Yj.*hj;
b(:,i)=bj1; b(:,j)=bj2;
lding(:,i)=b(:,i); lding(:,j)=b(:,j);
end

end
end;
lding=b; bh=lding./(hj*ones(1,nf));
Vtemp=n*sum(sum(bh.ˆ4))-sum(sum(bh.ˆ2).ˆ2);% Update functional
V=Vtemp;
if abs(V-V0)<.0001;break;else V0=V;end;

end;

for i = 1:nf % Reflect vectors with negative sums
if sum(lding(:,i)) < 0

lding(:,i) = -lding(:,i);
end

end
Arot=lding ; % rotated eof
coef=z’*Arot(:,1:nf); % time series for rotated eof

for i=1:nf
varex(i) = sum(var(coef(:,i)*Arot(:,i)’)*(ntime-1));

end

varexplrot = sum(varex)/totvar; zvar=sum(var(z’)*(ntime-1));
[varex,I]=sort(varex); % Sort in decreasing order of variance
Arot=Arot(:,I); Arot = fliplr(Arot); varex = flipud(varex’);
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varunrotated = sl/totvar; varrotated = varex/totvar;
u=zeros([96*48 nf]);
u(ind,1:nf) = Arot(:,1:nf); % Rotated EOF in mapping formats

end

The previous function performs a rotation using orthogonal rotations; the sis-
ter function eofpromax uses oblique rotations to maximize the spatial variance
and can be found in the book Website. The Matlab Statistics Toolbox ((matlab7))
includes a few routines to compute the EOFs (Principal components) and the rotated
factors; see Exercise 1 below.

The pictures in Figs. 5.2 and 5.3 show the difference between unrotated and
rotated EOF, in this case after a normal VARIMAX rotation has been used. The
rotation has been applied to the first ten modes. We can see how the rotation tends
to separate the original EOF in a spatial sense. The first unrotated mode (top panel,
Fig. 5.2), for instance, is composed of centers of activity, i.e. relative maxima and
minima for the patterns of the EOF, that are distributed across the North American
continent and the North Atlantic extending well into the European continent.

The rotated equivalent (top panel, Fig. 5.3) shows the emergence of a pattern
that is more confined to the North American sector, with small or no amplitude
elsewhere. The variation over Europe and Asia is picked up by the higher modes,
represented here by modes 3 and 10, that instead tend to accumulate amplitude
over the regions where there is little or no amplitude for mode 1. The separation is
not perfect, as it can be noticed that mode 3 still has some amplitude in the central
Pacific, in correspondence of the centers of mode 1. The effect is larger on the higher
modes, and the rotated mode 10 is now more concentrated over Asia, showing a
clear pattern from India to the Mediterranean. It is not possible to give a general
rule on when rotation is necessary. It is found that when the EOF modes are very
close together, i.e. the separation in the eigenvalues is not great, then rotation can
disentangle the modes in the previous case between the Pacific and Atlantic modes.

The rotated modes can still be used to decompose the variance, in the sense that
each of them explains a certain portion of the variance that can be attributed only
to that mode, since the rotated EOF are still mutually orthogonal. The rotated EOF
can then be ranked in order of percentage of explained variance.

The issue of rotation is still not widely accepted. Some investigators think that
rotation should become the standard and therefore recommend to rotate all modes
before attempting an interpretation, others are less convinced especially because of
the ad hoc choices of the simplicity functional. In general, rotated EOF are more
stable than the conventional vectors since they introduce another constraint that can
be used to distinguish between eigenvectors. The well separated rotated EOF are
therefore more resilient and then show less sensitivity to the errors that we have
discussed in the previous chapters.
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Fig. 5.2 Conventional EOF for the test data sets Z500
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Fig. 5.3 Rotated EOF according to the normal VARIMAX method for the test data sets Z500.
Also shown is the variance explained by the rotated mode
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Exercises and Problems

1. Given the set of data

X D

0

B
BB
B
B
B
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B
B
B
@

1 1 0 1 0

1 0 �1 0 �1

�1 1 0 1 0

1 0 1 �1 1

�1 1 0 1 1

0 0 �1 0 �1

�1 1 1 1 1
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C
C
C
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C
C
C
A

;

compute the first two EOF and the rotated EOF with VARIMAX (use the MAT-
LAB functions princomp and rotatefactors).

The command L = princomp(X); yields

L D

0

B
B
B
BB
B
@

�0:6756 �0:4171 0:6047 �0:0192 0:0600

0:2740 0:1259 0:4752 0:0060 �0:8266

0:3931 �0:5676 0:0620 0:7157 0:0847
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1

C
C
C
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A

;

and the subsequent command [L1,T]=rotatefactors(L(:,1:2));
gives

L1 D

0

B
B
BB
B
B
@

�0:7908 0:0714

0:2948 �0:0636

�0:0259 �0:6900

0:5335 0:1728

0:0500 �0:6964

1

C
C
CC
C
C
A

:

After rotation, it is possible to better decompose the data variance among the two
principal components: the first data column and also somehow the forth column,
are well represented by the first component. On the other hand, the third and fifth
data columns are well represented by the second (rotated) principal component.

Non-orthogonal Rotations

The main conceptual difficulty with rotations is the fact that again we are forcing a
condition on the data that we do not know whether it is reasonable to enforce. On
the other hand the freedom of changing coordinate system includes transformations
of type (5.3) that are not orthogonal, therefore we can ask whether it is possible to
use a modal decomposition that does not require orthogonality from the start. By
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removing the orthogonality constraint, we are left with a large selection of possible
transformations.

The method aims at identifying a transformation of a preliminary standard EOF
pattern to achieve simpler structure. The transformation matrix is obtained by solv-
ing an oblique Procrustes problem. This mathematical problem can be stated as
follows: Given matrices A and B of size n � m with A having full column rank, find
a matrix T satisfying

B D AT C E

such that the Frobenius norm of the error matrix E,

kEk2
F D trace..B � AT/�.B � AT//; (5.4)

is minimized. B is often called the target matrix. The matrix T can be found as the
only critical point of the function to be minimized, that is, as the solution of

@

@T
.kEk2

F / D �2A�B C 2A�AT D 0:

Solving for T yields
T D .A�A/�1A�B:

The interpretation of the problem is relatively simple. The successful solution of
the Procrustes problem is the identification of a linear relation between two sets of
data. In case A is not full column rank, A�A is singular and T cannot be deter-
mined as outlined above. However, a (non-unique) minimizing solution can always
be obtained by recurring to the pseudoinverse of A�A (cf. end of Sect. 2.8).

The PROMAX method uses the Procrustes problem to obtain a simple structure
solution. The basic idea is to create a “simple” target matrix and then use a Pro-
crustes transformation to obtain an oblique set of modes that have a more insightful
structure than the original modes. The observation that orthogonally rotated modes,
such as those obtained by VARIMAX, are usually a good deal simple themselves
suggests that the VARIMAX modes can be used as starting point. Therefore, each
element of the target matrix B can be defined as

bij D jvij jk
vij

; (5.5)

where vij are the VARIMAX pattern values in each spatial point, previously normal-
ized. The Procrustes problem is then formulated with B as target matrix and with V
the VARIMAX pattern matrix as the data matrix

B D VT C E;

with solution
T D .V�V/�1V�B:
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The oblique patterns are then given by

Vpromax D VTD;

where the matrix D scales the oblique modes to unit length, namely

D2 D diag.T�T/�1:

The definition of the target matrix as a power of the original pattern (cf. the exponent
k in (5.5)) is an attempt to emphasize the differences between maxima and minima,
to obtain a simpler structure in which intermediate values are unfavored. The value
of the parameter k is arbitrary, but there is a difference in the sensitivity of the
modes according to the shape of the sought after real pattern. If we expect a strong
pattern with large variations between its extreme values, then k should be set to a
low number. In practice, k D 2 or k D 4 are often used.

The comparison between the standard and rotated modes is shown in Fig. 5.4
for the first mode in the test data set for Z500. The orthogonal VARIMAX rota-
tion results in an intense pattern, better localized, as we have seen in the preceding
pictures. The PROMAX solution (lower panels) obtains patterns even more local-
ized on North America, but we can notice one of the problems with PROMAX,
especially if a large value of k is selected (bottom panel is for k D 12). The con-
struction of these modes tends to polarize the spatial variability, concentrating the
variance in smaller regions. The modes have fewer peaks, but of larger amplitude.
We can see that for k D 12 the centers are more intense, even in regions where the
EOF or the VARIMAX showed little amplitude. This example emphasizes that sim-
ple structure in principle that does not necessarily imply more meaningful modes.
Figure 5.1 shows that from the point of view of simple structure, i.e. the polariza-
tion and separation of the pattern values in space, we are getting better every time.
The concept of simple structure is therefore a very useful concept, but it cannot be
considered as the only guiding principle.

Oblique modes have not found a widespread usage in data analysis, perhaps be-
cause of the parametric freedom, but also because they cannot be used to separate
the variance.

5.3 Complex EOF

We have seen how conventional and rotated EOF can be employed to identify pat-
terns that optimize the explanation of the variance. EOF identify the dominant
pattern, but the information on the time evolution is only implicitly included into
the evolution of the coefficients. Data that contain oscillations in time or in space
and time as a propagating signal, are very common in applications. In Sect. 4.5.1
we have seen an example in which the standard EOF have been applied to an ideal
example of a propagating wave. The signature of the propagation is visible in the
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Fig. 5.4 Conventional, rotated and PROMAX (oblique) EOF for the test data sets Z500
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EOF, but it requires some indirect interpretation. The presence of propagation is in-
dicated by two modes whose patterns are in quadrature, namely the relative maxima
and minima of one pattern correspond to the zero lines of the other and the two EOF
explain a similar amount of variance (see Fig. 4.13).

The variations of the coefficients in time (top panel of Fig. 5.5) show a periodic
behavior in time. There is a shift in time corresponding to a quarter of a wavelength
between EOF1 and EOF2. A quarter wavelength shift in time is the phase lag typical
of a harmonic wave of the form

V.x; t/ D <ŒU.x/e�i!t � D <ŒU.x/.cos.!t/ C { sin.!t//�: (5.6)

Therefore, the variation in time of the EOF coefficient seems to identify a kind
of variability that can be expressed as a harmonic wave with real part EOF1 and
imaginary part EOF2. The EOF analysis has been able to find couples of modes that
are strongly linked, in fact they may be part of the same physical system.

Waves are a pervasive physical phenomenon so it is not surprising that the EOF’s
feature of detecting propagating modes has raised considerable interest. On the other
hand, it is also true that this capability is a sort of byproduct of the general property
of EOF to maximize variance. Would it be possible to sharpen the EOF definition
so as to go after propagating modes?
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Fig. 5.5 EOF coefficients of the example in Sect. 4.5. Top panel: a propagating wave. Bottom
panel: a stationary wave
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We have seen that the quarter wavelength shift is a peculiar phase relation that
indicates propagation. Can we find a way to enhance the modes that are in that
particular phase relation? One possibility is to change the available data to stress
the phase relation we are looking for; in our case we can expand the data by adding
a new data set obtained by shifting all data by one quarter wavelength. This is a
mathematical procedure that can be performed by Hilbert transform. The analytical
definition of the transform is

Of D HŒf .x; t/� D 1

�

Z 1

�1
s.�/

t � �
d�

where the integral is to be understood to be a Cauchy principal value to avoid the
singularities at infinity and at t D � . In practice, the transform of discrete signal is
performed using a discrete Fourier transform (Hahn 1996)

Of D HŒf .x; t/� D
X

!

fH .x; !/e�2�{!t ; fH .x; !/ D
8
<

:

ig.x; !/ for ! > 0

0 for ! D 0

�ig.x; !/ for ! < 0:

where g.!/ is the discrete Fourier transform of f . The Hilbert transform shifts the
data series a quarter period to obtain a new, augmented, data series of complex data,

XC D X C iH.X/;

where the real part contains the original data and the imaginary data the quarter
period shifted data. Let us assume that XC has been detrended, so that its mean is
zero. The variance is thus given by the sum of the diagonal elements of the following
matrix

XC X�
C D XX� C H.X/�H.X/ C i.X .H.X//� � H.X/X�/: (5.7)

Therefore, the variance of the new data set XC is twice the variance of the origi-
nal data series, as the imaginary term does not contribute to the variance. However,
the balance in the imaginary term is rather delicate and it often happens that in real
cases affected by noise, the variance is only approximately twice the original vari-
ance of the data. Complex EOF defined through Hilbert transforms will therefore
try to optimize variance using patterns that are complex and whose real and imagi-
nary parts are shifted by a quarter period. Below is a Matlab implementation of this
procedure, that was used to generate later plots.

function [u,lam,v,proj]=ceof(z,indf,nmode,nproj)
%
% Compute complex EOF of z and expand it for nmode modes
%
% Inputs:
% z Data Matrix
% indf Index for the data
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% nmode Number of EOF to return
% nproj Number of EOF to generate projections
% Outputs:
% u EOF arrays (nspace x nmode)
% lam variance explained (ntime)
% v Unnormalized EOF coefficients
% proj Projection on the nmode EOF
%
resol = [96 48];
zh=hilbert(z);
[uu,ss,v]=svd(zh,0);

lam = diag(ss).ˆ2/sum(diag(ss).ˆ2); % Explained variances

u=zeros([resol(1)*resol(2) nmode]); % Keep Only first modes
u(indf,1:nmode)=uu(indf,1:nmode);
proj=zh’*uu(:,1:nproj); % Compute projections

return

Figure 5.6 shows the first complex EOF (CEOF 1) for the case of the analytical
wave of Sect. 4.5.1. The top panels show the real and imaginary parts of the first
mode and they display the familiar shape in quadrature one with the other. The real
and imaginary parts of the coefficient are also shifted one quarter wavelength. We
can see that the CEOF has recovered the propagating wave hidden in the noise.

Being focused on extracting the signals that are shifted one quarter wavelength,
the CEOF are very efficient at doing that, but at the same time the Complex EOF
do not comparably perform if the oscillatory signal has a structure with a different
phase relation. For instance, if the signal is stationary, namely it changes in time
without a change of phase in space, like an oscillating beam, CEOF run into trouble.
Propagation and stationarity are identified clearly in our ideal experiment by simple
EOF (Fig. 5.5) because the stationary signal (bottom panel) shows no clear phase
relation between the time series of the coefficient. Application of the CEOF to a
stationary signal (Fig. 5.7) produces a spatial pattern that bears indication of the
signal stationary nature. Only the real or imaginary component is now needed to
give the spatial structure of a stationary signal, in this case the real part, whereas the
other component is usually noise, without a clear pattern. It would appear that CEOF
have successfully identified the signal, however if one looks at the time coefficient
(bottom panel) it is possible to see that both time coefficients oscillate, pretty much
in the same way as in the preceding propagating case. CEOF can only distinguish
between spatial propagation and lack of it, implying the absence of spatial phase
relations; in general, however, the inspection of the time coefficient alone is not
sufficient to distinguish between them. As an example, in Fig. 5.6 it is possible
to see that the variation of the spatial phase (the arrows in the panel) is organized
and smooth, corresponding to the organized propagation. In contrast, in Fig. 5.7
the phase variation is disorganized and dominated by noise. This investigation can
be somewhat difficult to perform with real data, where spatial phase relations are
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Fig. 5.6 First complex EOF of the analytical example. Top panels: spatial patterns of the real and
imaginary parts, then the amplitude and phases of the mode. In the title, the explained variance is
recorded. Bottom panel: time evolution of the coefficient
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Fig. 5.7 As in Fig. 5.6 but for the case of a stationary wave
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difficult to identify. In practice Complex EOF cannot be used to distinguish between
propagating and non-propagating (i.e. stationary) oscillations.

A complex analysis of the test data set for SST yields the result shown in Fig. 5.8.
This picture displays the second mode represented in its real and imaginary compo-
nents. The top panel is the real part, showing a mode of variability concentrated in
the equatorial area, the middle panel is the imaginary component of the mode. The
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Fig. 5.8 Second complex EOF of the marine temperatures in the Pacific. Top panel: real compo-
nent, middle panel: imaginary component, lower panel: amplitude and phase
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Fig. 5.9 Time series of the coefficient of the second Complex EOF shown in the previous picture.
The top panel shows the amplitude of the complex coefficient, whereas the bottom panel shows
the evolution of the unwrapped phase angle. The phase velocity is obtained as the derivative of the
phase, showing an acceleration after 1980

bottom panel is the representation in amplitude and phase. The amplitude is con-
centrated in the east equatorial Pacific, the rotation of the phase indicates a phase
velocity towards the west. Here the convention used is that the phase arrows point
to the east if the real part is positive and the imaginary part is zero.

The time evolution of the mode coefficient is displayed in Fig. 5.9, indicating the
periods of time in which such a mode is more or less energetic. The “unwrapped”
phase, that is the phase of the time coefficient reduced to a single-value function by
adding a factor 2� every time it crosses the zero line, also shows different phase
speed from a period to the next.

Figure 5.10 shows the modal actual evolution, cycling through the real and imagi-
nary parts with alternate signs. The reported field is only based on the reconstruction
of the second mode, starting from 1980 onward. The picture shows that the CEOF
indicates an oscillatory behavior that can also be aperiodic in time. There are pe-
riods in which oscillations are clearly visible, and periods where oscillations are
quiescent and there is very little appearance of the mode. This is a good example of
the capability of the CEOF to capture irregular oscillations.

5.4 Extended EOF

Complex EOF are based on the analysis of variance by taking into account the data
time behavior. This is done by creating a new data set that includes the original data
series and a new series that is shifted by a quarter wavelength. The Hilbert transform
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COMPLEX EOF 51%

Fig. 5.10 Time evolution of the second for SST from Winter 1980 (top left panel) for each con-
secutive season. Time is increasing downwards and from left to right. The 1982–1983 El Niño
event is visible in the first and second column on the left

makes the procedure very rigorous. However, it is sometimes desirable to use a less
rigorous approach and to gain some flexibility in the process. Complex EOF change
the state vectors in a way that the basic data are not the data at a given time, but the
combination data at a single time plus data shifted one quarter wavelength in time.
A possible alternative is to introduce a derivative EOF analysis that crudely realizes
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this fact. This new method, often called the Extended EOF (EEOF), simply consists
in extending the data set with repetitions of the time series suitably lagged. For the
test cases we are using here it will mean to extend the data by adding several copies
of the time series with proper time shifts, i.e.

XE D
2

4
x1 x2 � � � xm�2

x2 x3 � � � xm�1

x3 x4 � � � xm

3

5 :

The basic observation vector at time n is given by

yE .n/ D
2

4
xn

xnC1

xnC2

3

5 :

It is formed by k C 1 fields, each showing the dominant mode of variations over
the k lags. A single mode is then formed by several components each representing
the spatial pattern for that phase of the lags. The trick is to include the lags that
are important for reproducing possible oscillatory patterns. It is advisable to inves-
tigate the autocorrelation function to gather some indications of the number of lags
that need to be included. The method is very flexible, the lags do not need to be
consecutive. Instead of using three consecutive months like in the previous exam-
ple, we could have chosen some three months in three months. In principle they do
not even need to be equally distributed; arbitrary lags could be defined, but results
would be extremely difficult to interpret. In practice it is advisable to use regularly
spaced lags. The variance of the augmented series is a multiple of the variance of
the original series and it is approximately k C 1 times the original variance, so the
amount of variance explained must be assessed against this augmented variance.

A simple Matlab implementation of the Extended EOFs approach follows.

function [u,lam,v,proj]=eeof(z,indf,nmode,nproj)
%
%Compute Extended EOFs of matrix z and expand it for nmode modes
% Use 3 lags
% Inputs:
% z Data Matrix
% indf Index for the data (from the reading routine)
% nmode Number of EOF to return
% nproj Number of EOF to generate projections
% Outputs:
% u EOF arrays (nspace x nmode)
% lam variance explained (ntime)
% v Unnormalized EOF coefficients
% proj Projection on the nmode EOF
%
resol = [96 48];
[np,nt]=size(z);
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lags=3; nmode=2;
zh=ones((lags+1)*np,nt-lags);
zh(1:np,:) = z(:,1:nt-lags);
zh(np+1:2*np,:) = z(:,2:nt-lags+1);
zh(2*np+1:3*np,:) = z(:,3:nt-lags+2);
zh(3*np+1:4*np,:) = z(:,4:nt-lags+3);
[uu,ss,v]=svd(zh,0);

lam = diag(ss).ˆ2/sum(diag(ss).ˆ2); % Explained variances

u=zeros([resol(1)*resol(2) 4]); % Only first mode
uc=zeros(np,4);
for i=1:4

uc(:,i) = uu((i-1)*np+1:i*np,nmode);
end
u(indf,1:4)=uc(:,1:4);

proj=zh*uu(:,1:nproj); % Compute projections

return

The example reported in Fig. 5.11 shows the result of applying an EEOF analysis
to the tropical SST. The lags have been defined to the seasonal means of the SST
and three seasonal lags have been used. It is possible to see how the main pattern of
variations are captured.

Exercises and Problems

1. Show that the diagonal terms of the imaginary term in (5.7) do not contribute to
the variance of the field.

2. Show that the total variance of the EEOF time series is approximately k C 1

times the original one, and that the approximation gets better as the number of
time observations increases.

3. Construct the time evolution for the first mode for the EEOF technique.

5.5 Many Field Problems: Combined EOF

The extension of the EOF analysis to the time domain shows that the concept is
more general than we may have thought. The logical path that we have followed
to go into the time domain has exploited the freedom to change the rules of com-
positions of the data fields. We have generated other ways to analyze variance by
arranging/transforming the data differently. The extension we have made in the pre-
vious section was mainly in the time variable, but we can use the freedom to change
the definition of the data vectors to explore the variation of combined fields. We can,
for instance decide to define a new data set by putting together the height and SST
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Fig. 5.11 First EEOF mode for the SST data set. The analysis has been performed by season,
using three lags of one season each. The picture depicts the evolution of the mode through four
consecutive seasons. The amount of variance explained by the mode is referred to the total variance
of the augmented series
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data. The data matrix can then be written as

Yn D
�

z1 � � � zn

s1 � � � sn

�
;

where the data are arranged in such a way to keep the time correspondence between
the different fields, so that fields at the same time are put in the same column. We can
also use the data matrix for the fields Z D Œz1; z2; : : : ; zm� and S D Œs1; s2; : : : ; sm�

so that the new combined data matrix Y becomes

Y D
�

Z
S

�
:

Assuming zero mean, we can compute the covariance matrix for the combined field
as

YY� D
�

Z
S

�
ŒZ�; S�� D

�
ZZ� ZS�
SZ� SS�

�
; (5.8)

showing that the total variance of the combined field is the sum of the variance of
the composing fields.

The two data sets can have different geographic extensions, though they must
have the same number of time levels. There is also no limitation in the number
of fields that are patched together in this way. We can put in the same data space
three or four different fields, in principle there is no limit. This a very useful and
rather unique feature of the combined EOF. There are several situations when this
may be convenient. For instance, when treating tropical air-sea phenomena it is
often useful to look for combined modes of variations of wind stress, SST, Outgoing
Lonwave Radiation (OLR), precipitation, clouds, etc. The combined EOF is the only
method that allows a simultaneous considerations of the possible modes of variation
of different variables.

The combination of fields in this way requires some care to handle different units
and quantities. Different data have widely different numerical values corresponding
to the different units that are used to measure them. These differences could generate
systematic deviations in the resulting patterns that do not correspond to real variabil-
ity patterns. The problem can be overcome by transforming the data to values of the
same order of magnitude by using suitable scales, making the data adimensional.
The simplest way is to divide the data by constants that represent typical value for
that variable. For instance, in our case we could use a temperature scale of 300 K,
and a geopotential height scale of 5000 m, that would change all the data values
to order one. Another possibility is to normalize them by the point-by-point stan-
dard deviation, in a similar way to what was done in Sect. 4.4.1. In the first case
the scaling is simply equivalent to a multiplication by a constant and the covariance
structure is not modified, so we get the Combined Covariance EOS, in the latter case
the covariance structure is modified and we get Combined Correlation EOF.
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Each mode is now a combination of the fields that have been used to create the
combined data set. The mode describes the principal mode of variations of the com-
bined data and it is not different from the EOF that we have described in the previous
chapter. However, the various fields can be identified in the mode by reconstructing
the different components with the corresponding order in the data field. In this sense,
the combined EOF is a straight generalization of the EOF that can be considered as
a one-parameter Combined EOF. A typical implementation is as follows

function [u,lam,v,proj]=combeof(zz,inds,indz,nmode,nproj)
%
% Compute combined EOF of matrix zz. The matrix zz contains
% the ordered fields to be combined, in this case Z and S.
% Inputs:
% zz Combined Data Matrix
% inds Index for the S data (ocean)
% indz Index for the Z data (atmosphere)
% nmode Number of EOF to return
% nproj Number of EOF to generate projections
% Outputs:
% u EOF arrays (nspace x nmode)
% lam variance explained (ntime)
% v Unnormalized EOF coefficients
% proj Projection on the nmode EOF

resol = [96 48]; ss=resol(1)*resol(2);
[uu,ss,vv]=svd(zz,0);
lam = diag(ss).ˆ2/sum(diag(ss).ˆ2); % Explained variances

ls=length(inds); lz=length(indz);
u=zeros([ss nmode]); v=zeros([ss nmode]);
for i=1:nmode

u(indz,i)=uu(1:lz,i);
v(inds,i)=uu(lz+1:lz+ls,i);

end

proj=zz*uu(:,1:nproj); % Compute projections

return

We have used the standard deviation normalization to produce Combined Corre-
lation EOF of the height and SST fields showed in Figs. 5.12 and 5.13. The mode
resembles very much the EOF obtained by performing the analysis of the SST or
the height field alone. The pattern can be superposed almost exactly. It is possible
to understand this effect by inspecting the structure of the combined data covari-
ance matrix in (5.8). The structure is essentially given by a block matrix structure
where the blocks are the covariance matrix of the component fields along the di-
agonal and the cross-covariance matrices of the fields in the off diagonal positions.
Therefore, the diagonal terms express the internal variability of the fields, whereas
the off-diagonal terms express the variance of one field that is related to the other
field.
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Fig. 5.12 The first three combined EOF modes for the Height-SST data set. Here is shown the
SST component in descending order of explained total combined variance

The combined EOF will obtain the same EOF as the individual fields if the off-
diagonal terms are small compared to the diagonal ones. This happens if the data
fields are independent of each other and therefore the cross-covariance components
are small; in this case, the structure of the combined covariance matrix is essentially
dominated by the individual covariance of the fields. The combined EOF will be
dominated by the autocovariance of each field if the internal variability of the fields
less larger than the cross-covariance.
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Fig. 5.13 The first three combined EOF modes for the Height-SST data set. Here is shown the
Z component in descending order of explained total combined variance
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This observation leads to the main weakness of the combined EOF: by mix-
ing the autocovariance of each field and the cross-covariance of one field with the
other, combined EOF cannot separate the patterns for the different kind of variabil-
ity and one cannot tell the respective amount due to the autocovariance or to the
cross-covariance. The Combined EOF mode will bear the imprint of both sectors of
variability of a particular variable. It is a pity, because the cross-covariance could
be extremely useful when one has to study coupled problems, like the air-sea inter-
action in the tropics. The Combined EOF cannot give a suitable help on this issue,
but we will see in the following chapter that we can work out specific methods to
address this exciting issue.
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