
Chapter 3
Basic Statistical Concepts

3.1 Introduction

A key scientific challenge is to better understand the functioning of the environment.
Informed analysis of observations can make a strong contribution to this goal.
The most insightful analysis requires knowledge of the relevant environmental
processes and of statistical methodologies, that can lead the analyst towards a
true understanding.

Compared to other aspects of the environment, climatology has a rich archive
of direct observations. This has created an opportunity for the application of a
wide range of statistical methods. This chapter reviews some of the basic statistical
concepts that have been applied to better understand climate processes and to repre-
sent physically based predictability in the climate system. Like many environmental
datasets, climate observations are sampling processes that evolve in space and time;
the analysis of spatial patterns in time series of fields is the core of this book.
Most reference is made to the application of special statistical techniques to study
the fluctuation of climate from year to year. An additional special challenge is given
by the size of the historical record. Typically, an analyst is faced with about 30–40
years of reliable data, which is sufficiently long to tease out some clues about the
functioning of the climate system, but sufficiently short to lend itself to considerable
imaginative interpretation. Thus, it becomes important to have a good appreciation
for the effective sample size, so as to apportion the appropriate weight to the result in
the overall investigation. When estimated properly, statistical significance allows us
to have the correct degree of surprise at the statistical outcome, and therefore allows
us to give the correct weight to this clue in our attempt to understand the big picture.

3.2 Climate Datasets

Climate observations were traditionally made at a known location. On land, this
would be a climate station; over the ocean, this would normally be a ship, such
that the exact location of the observations needed to be reported in addition to the
climate state. The raw climate datasets from satellites can take a different form,
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being samples of space–time averages across the domain covered by the satellite.
The blending of traditional and satellite datasets is therefore a critical step. In the
context of climate analysis, data usually represent distinct observations at different
times, possibly but not necessarily obtained at constant time intervals. In this case
the term time series is usually employed for the data.

Since climate evolves in a continuous field, climate observations are often in-
terpolated to a regular grid before analysis. These interpolation schemes may take
in mind the processes and scales in the physical environment, and the ability of the
data to resolve those scales. A good example are datasets of SST (monthly mean Sea
Surface Temperatures). More recently, physically based interpolation schemes have
been used to generate complete fields that are dynamically and physically consis-
tent. These datasets have become known as the reanalysis datasets. They represent
an ambitious advance in the creation of environmental datasets. In many ways, the
user of such datasets needs more than ever to be aware of the types of data that were
used in the study. Yet with careful analysis, they can provide an extremely powerful
tool to deepen the understanding of the climate system.

The family of methods that are described in the following chapters are often
applied to gridded datasets, such that the vectors derived from the analysis can be
plotted as spatial patterns. However, there is no need to restrict the analysis to the
gridded datasets. Analysis can equally be made of individual station time series.
If the network of stations is sufficiently dense, contours of the weights can again be
constructed to better communicate the meaning of the derived pattern. Alternatively,
regional indices of climate, or regional indices of other environmental indicators
can be used.

3.3 The Sample and the Population

An important concept in statistics is the relation between sample and popula-
tion. Applying this concept to the analysis of short environmental series is not
straightforward. It is assumed that the sample is taken from an infinite size pop-
ulation. The challenge is to infer characteristics of the population from the sample.
The problem for climate science is that most properties of the system are not sta-
tionary. The problems of decadal climate variability have been mentioned above.
In addition, the relationship between two variables need not be stationary. It can
depend on the background climate state that prevailed over the analysis period. In
fact, the degree of association between two variables may actually have varied dur-
ing the 30 year period itself – though the sample size will likely be too small to
deduce with any certainty that a real change took place. Let us pause to ask what
we would mean by “a real change”. Assume that we find a run of 10 years when
the correlation is lower than during the whole historical record. What we want to
know is the following: in case the interannual variability were repeatedly run with
the prevailing background climate state of those 10 years, would that low correla-
tion be maintained? or, would the 10 years of low correlation be merely due to the
inevitable sampling fluctuations that occur even when the correlation between two
variables is statistically stationary?



3.4 Estimating the Mean State and Variance 27

In addition, how does the situation change when we take a sample of a correlation
coefficient over 30 years? The question we are trying to answer by taking that sam-
ple is: if the same background climate state were to continually operate and generate
an infinite number of years of interannual variability, what would the correlation
between the two variables be? In other words, the population is an imaginary in-
finite set of realizations generated from a given background climate state. For the
purposes of making inferences (see statistical significance section below), we must
assume that the correlation coefficient was stationary over the 30 year period itself.

3.4 Estimating the Mean State and Variance

A critical step in climate analysis is nearly always the estimation of the background
mean state. Given the data x1; : : : ; xn, the mean, or average, is given by

Nx D 1

n

nX

iD1

xi :

The computation of the mean is crucial to allow estimation of climate anomalies,
given by the deviation from the mean, that is,

x0
i D xi � Nx:

The climate anomaly represents the departure from the assumed population mean at
a given time for a given time series. If there is a systematic bias in the estimation of
the mean from one location to another, this can introduce bias in the covariance of
anomalies between the two series; see later chapters for a more detailed discussion.
Most widely available datasets have given careful consideration to the estimation of
the mean from which anomalies are calculated.

For the background mean state for a dataset, the dataset creator will have con-
sidered such features as the period with best data coverage. If one is working
with the subsequent anomaly dataset, one still has to make a choice over which
years to run your analysis. This requires careful consideration and some experi-
mentation, because of multi-year (decadal and beyond) variability in the climate
system. Choice of period can greatly impact the amount of variance represented
by a decadal mode of variation. For example, an analysis over West Africa for
1971–2000 contains little decadal variability, whereas 1950–1980 is dominated by
a decadal fluctuation.

The sample variance of the observed data is defined as

s2 D 1

n � 1

nX

iD1

.xi � Nx/2:
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In particular, we note the multiplicative factor 1
n�1

, as opposed to the more intu-
itive factor 1

n
. The new factor allows the variance defined above to represent an

unbiased estimator of the population variance; see Clarke and Cooke (1998). To in-
tuitively explain this fact, we note that in s2 there are n � 1 degrees of freedom,
rather than n, because x1; : : : ; xn are related via the mean Nx. Therefore, roughly
speaking, the division by n � 1 takes into account the actual number of degrees of
freedom in the data.

The variance provides a measure of dispersion of data around the mean. The
larger the variance, the more spread the data. It is important to remark that the
variance is expressed in the square of the data measure unit. For this reason, its
square root s, called the standard deviation, is also referenced. Both statistics in-
troduced above are dimensional quantities. To be able to perform a meaningful
comparison among data expressed in different measure units, observational data
are usually standardized to adimensional numbers. This is achieved by using the
following transformation:

zi D xi � Nx
s

: (3.1)

The standardized variable has mean zero and standard deviation equal to one.

Exercises and Problems

1. Given the data f1:2; �1:0; 1:1; 0:8; �0:4; 0:95; �0:2g, determine their mean,
variance and standard deviation. Then, standardize the variables by means
of (3.1).
We have n D 7. Simple computation gives Nx D 0:35, s2 D 0:75583 and
s D 0:86939. Standardization using (3.1) provides the following new data (final
results rounded to the first five decimal digits),

f0:97770; �1:5528; 0:86268; 0:51761; �0:86268; 0:69014; �0:63263g;

for which we obtain Nz D 0 and s.z/ D 1.

2. Given the data f1:2; �19; 2:68; 0:8 � 3:0; 20:0; �0:2g, compute mean, variance,
standard deviation. Compare the results with those of the previous exercise.
We have n D 7. Simple computation gives Nx D 0:3542, s2 D 129:7 and s D
11:39. Although the mean is basically the same as for the previous data, the
variance and the standard deviation are much larger in this case. This shows
that these data are more spread around the mean, as it can be clearly noticed by
directly inspecting the data.
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3.5 Associations Between Time Series

The basis for applying EOF methods derives from the realization that the evolution
of climate processes in time leads to relationships between time series of differ-
ent atmospheric variables at nearby and remote locations. There are many ways to
measure the nature and extent of a relationship between two time series. One of the
most common is the Pearson correlation coefficient. This is closely related to the
concept of least squares linear regression. To illustrate this concept, we first do the
simplest thing possible to explore the relationship between two time series – we
make a scatter plot of the observation pairs .xi ; yi / (see the symbols “�” in Fig.
3.1).

Making an assumption of a linear relationship, we try to draw a straight line
through the data points. We can fit the line to minimize the sum of squared errors
in the Y variable. This line captures some of the variance in the independent series.
In mathematical terms, this line yields the “best approximation” straight line, in the
least squares sense, and it is given by the equation y D b1x C b0, with

b1 WD

X

i

.xi � Nx/.yi � Ny/

X

i

.xi � Nx/2
; b0 D Ny � b1 Nx:

The fraction of variance represented, corresponds to the degree of association (cf.
Fig. 3.1). Analogously, the line x D c1y C c0 can be drawn to minimize the sum
of squared errors in the X variable. The fraction of variance explained is the same
as for the Y variable. The combination of the two coefficients b1 and c1 yields the
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Fig. 3.1 Scatter plot of observations and fitting line
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correlation coefficient r , which provides a measure of association among the two
variables, and it is defined as

r2 D b1 � c1 D

 
X

i

.xi � Nx/.yi � Ny/

!2

X

i

.yi � Ny/2
X

i

.xi � Nx/2
:

To generalize this concept to multidimensional data, assume now that a set of m � n

data x1;1; x1;2; : : : ; x1;n; : : : ; xm;n is given. Here we are considering m variables
and n observations (time series of length n for each of the m variables). Let Nxj ; Nxk

be the means associated with the time series j and k. Analogously, we define the
standard deviations sj , sk . For each pair of variables, the associated correlation
coefficient is given by

rj;k D 1

n � 1

nX

iD1

.xj;i � Nxj /.xk;i � Nxk/

sj sk

:

For the i th observation, i D 1; : : : ; n, the sum above multiplies the standardized
j th and kth variables. The coefficient associated with these two variables is small
(large) in absolute value, if both standardized variables are small (large), in all n

observations. The normalization operates such that the correlation takes values be-
tween �1 (all points would lie on a backward sloping line) and 1 (all points would
fall on a forward sloping line, cf. Fig. 3.1). Note that rj;j D 1 for all j . In case
standardization is not used, a related measure of association between deviations is
the covariance coefficient, which can be viewed as a non-normalized correlation:

sj;k D 1

n � 1

nX

iD1

.xj;i � Nxj /.xk;i � Nxk/: (3.2)

Here sj;j D s2
j is the variance of the j th variable. The matrix S D .sj;k/ of all

coefficients above is called the (cross-)covariance matrix and is symmetric, that is
the covariance between the j th and kth variables is the same as the covariance
between the kth and j th variables. The total variance of the field is then given by

T D 1

n � 1

mX

iD1

nX

j D1

.xi;j � Nxi /
2 D

mX

iD1

si i D trace.S/; (3.3)

showing that the total field variance is just the trace of the covariance matrix.
Both the above are related to the squared error departures from a linear relation.

There are other ways to measure association. An example is the rank order
Spearman correlation coefficient; see, e.g., Clarke and Cooke (1998).
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Other measures could be determined based on absolute error. For instance, the
Linear Error in Probability Space (LEPS) works on the mean absolute difference in
the ranking, or cumulative probability. Associations could be measured in terms of
the extent to which variance is explained by some specified non-linear relationship,
such as quadratic or log linear. The correlation coefficients introduced above can
be collected in one matrix, that more clearly visualizes the association of each time
series with all others.

For instance, the correlation matrix is given by

R D

0

B
BB
@

r1;1 r1;2 � � � r1;m

r2;1 r2;2 � � � r2;m

:::
: : :

: : :
:::

rm;1 rm;2 � � � rm;m

1

C
CC
A

:

As will be shown, there are special properties of correlation and covariance matri-
ces that can be uncovered by a Principal Component Analysis. Matrix properties
of other measures of association have not been as much investigated; they will be
alluded to in the following chapters.

Exercises and Problems

1. Given the data x D f�1:1; 0:8; 1:2g and y D f0:6; 0:9; 2:4g, determine the co-
variance and correlation matrices.
We have m D 2 variables, and n D 3 observations. Therefore, Nx D 0:3,
Ny D 1:3, s.x/ D 1:2288 and s.y/ D 0:9643, so that the standardized variables
are z.x/ D f�1:1393; 0:40689; 0:73241g and z.y/ D f�0:72587; �0:41478;

1:1406g. The correlation coefficient is given by r1;2 D 1=2.z.x/1z.y/1 C
z.x/2z.y/2 C z.x/3z.y/3/ D 0:74 (note that the computation of r1;2 is actu-
ally done with full accuracy and only the first 2 decimals are reported). Hence,
the corresponding matrix is

R D
�

1 0:74

0:74 1

�
:

The value of r1;2 shows a significant positive correlation between the two vari-
ables. Analogously, the covariance is given by s1;2 D 0:885.

2. Given the data x D f�1:1; 0:8; 1:2g, y D f0:6; 0:9; 2:4g and z D f4:2; �1:1;

6:8g, determine the covariance and correlation matrices.
We have m D 3 variables, and n D 3 observations. The first two sets are as in the
previous example. We have, z D 3:3, s.z/ D 4:0262, so that the new standardized
variable is z.x/ D f0:22354; �1:0929; 0:86931g. We obtain r1;3 D �0:00313

and r2;3 D �0:64. The correlation between the y and z variables is significant,
whereas that between x and z is negligible. Analogously, we obtain s3;3 D 16:21,
s1;3 D �0:155 and s2;3 D 2:49.
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3. Given the data x D f�1:1; 0:8; 1:2g, y D f0:6; 0:9; 2:4g and z D f104:2;

�100:1; 126:8g, determine the covariance coefficients. Comment on the role of
dimensionality.
Only the third variable has changed. We have s3;3 D 1562:2, s1;3 D �40:90 and
s2;3 D 53:29. Note that the larger variability is due to the significantly different
unit of z, which is also reflected in the covariance coefficients.

3.6 Hypothesis Testing

In an attempt to infer conclusions on an unobservable population, we can set about
estimating the extent to which our available sample can tell us something about
that population. Let us consider the simple example of testing whether the popula-
tion mean is zero. Statistical significance is estimated by formally expressing two
possibilities that we need to choose between. Here, the first one is that the popu-
lation mean is zero. As an alternative possibility, we can say that the population
mean is not zero (other options may be more significant in some cases, such as
“mean greater than zero”). Formally, the original hypothesis is termed the null hy-
pothesis (H0), whereas the second one is called the alternative hypothesis (H1), and
these are written as

H0 W � D 0; H1 W � ¤ 0:

We want to distinguish between these two possibilities in a way that allows us to
know the likelihood that our choice is in fact wrong (i.e. how surprised we should
be if our decision turns out to be the wrong one). We start out by assuming that H0

is true. If H0 is true, then the sample should obey certain statistical properties. If the
sample does not reflect these properties, then we start to doubt H0. For example, we
can define a test statistic whose distribution we know under the assumption that H0

is true and we explore to what extent our sample obeys this distribution.
A particularly popular distribution is the normal distribution, as it represents an

effective model for data stemming from a variety of applications. Data following
a normal distribution distribute around their mean with a probability that decreases
significantly as data move away from the mean. The set of normally distributed vari-
ables with mean � and variance �2 is usually denoted by N.�; �2/. The probability
of normal data distributes along a bell-shaped curve, as described in the plots of
Fig. 3.2 for various values of � and � . In other words, the probability that a sample
taken from an N.�; �2/ normal population has mean in the interval Œ� � d; � C d�

equals the area of the region below the bell-shaped curve, with extremes on the
ascissa at � � d and � C d . A normally distributed variable x with mean � and
variance �2 can be transformed into a standardized normally distributed variable
in N.0; 1/ by means of the change of variable z D .x � �/=� . Reference values
for a variable z in N.0; 1/ are tabulated and can be used for hypothesis tests. Most
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Fig. 3.2 Normal distributions for various values of � and �

statistical computer software provides a pretty accurate evaluation of the probability
and other quantities associated with the normal distribution.

The trick in hypothesis testing is to define powerful test statistics, such as the
standardized statistic

z D x � �

se
;

where se is the standard error of x, given by

se D �p
n

;

� is the population standard deviation and n is the sample size. The standard error
represents the standard deviation of the sample mean distribution. In other words,
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imagine estimating the mean of the population ten times, each time taking a sample
of n individuals from the population. The ten resulting sample means will all be
slightly different. The expected standard deviation of the sampled means is what
we refer to as the standard error of the estimated mean.

Assume that H0 is true. If the sample is sufficiently large, namely if n is suffi-
ciently large, then z approximately behaves as if it were normally distributed with
mean 0 and standard deviation 1.

Now, if the distribution of z departs substantially from 0, then we may start to
doubt H0. If the variable z were exactly normally distributed with zero mean and
unit variance, then only on 2:5% of occasions z would take a value of C1:96 or
higher. Likewise, on a further 2:5% of occasions, z would take a value not greater
than �1:96 (cf. Fig. 3.3). That is, there is a 5% chance of the absolute value of z be-
ing greater than 1.96. So, if z takes an absolute value greater than 1.96, such a result
is certainly quite surprising if in fact, the true mean is zero (surprising because we
only expect it to happen on 5% of occasions when we sample a population mean
with mean 0). Note that we can never be certain that H0 is wrong. For statistical
significance, we may decide that something that would only happen by chance on
5% of occasions is just too surprising, and that the wisest choice to make in this
situation is to conclude that the available evidence does not support H0. That is, at
the 5% level of significance, we reject H0 and accept the alternative hypothesis H1,
that the mean is not equal to zero. However, in terms of acquiring clues about the
overall functioning of the environment, we may prefer not to work in the discrete
terms of rejection or acceptance of H0. Rather, acknowledging that using statis-
tics alone, we can never distinguish between the two hypotheses with certainty, we
may prefer to note the likelihood that H0 can be rejected based on statistics alone,
and absorb this information into broader evidence based on physical theories and
physically based models.

The above approach estimates the probability of rejecting H0 by starting with
the assumption that H0 is actually true. This is the usual way to frame a statistical

−1.96 1.96

Fig. 3.3 Normal distribution. The area of the region below the curve and absissas in Œ�1:96; 1:96�

is equal to 0.95
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significance test, on the premise that the analyst is usually interested in whether H0

can be rejected, such as with whether a correlation coefficient is non-zero. Here, if
we choose to reject the idea that the true correlation is zero, what is the probability
that we are wrong (and in fact, there is a linear association between the two vari-
ables). This probability of wrongly rejecting H0 is often termed the probability of
making a Type I error, and is the statistical significance probability, alpha. However,
there is another error type that can be made, usually referred to as Type II error,
that of accepting H0 when in fact H0 should be rejected. This probability can also
be estimated assuming the distribution of test statistics. However, it is generally not
considered as useful as the Type I error probability, that focuses on whether we can
reject H0.

The distribution of the reference statistic z is easy to derive and work with. In
many instances the test statistic is more complex. A typical complication appears
when the standard deviation of the population is not known (of course, this is usually
the situation we find ourselves in). In this situation, we can use the Student statistics,
or t-statistic, in which the population standard deviation is replaced by the sample
standard deviation, that is

t0 D x � �

Ns
p

n (3.4)

The new variable t0 depends on n, more precisely on n � 1, and for each value of n,
t0 follows a specific distribution. Is it important to stress that to be able to employ
the Student distribution as test statistic, we need to assume that the given sample
comes from a normal distribution.

As n grows, the Student distribution increasingly resembles the normal distri-
bution. The likelihood of t0 exceeding a reference value is tabulated, for different
values of n � 1, called the degrees of freedom, Df; which is related to the size
of the available sample. The degrees of freedom is a complicated issue for many
climate analyses. The above holds if each term in the sample is independent. How-
ever, in many climate time series, adjacent observations are correlated in time, and
this reduces the effective degrees of freedom (and can complicate the distribution
of the test statistic). This is particularly a challenge for estimating the significance
of the relationship between two variables. The correlation coefficient significance is
very difficult to estimate because of this effect; see von Storch and Zwiers (1999).
This problem transfers into the estimation of significance for EOFs, since they them-
selves are summaries of the cross-correlations/covariances in datasets.

Exercises and Problems

1. Assume that a sample of 100 units is taken from a population which was in
the past known to have mean � D 12:3 and standard deviation � D 15. The
computed sample mean is x D 14:2. Carry out a hypothesis test with 5% level
of significance, to analyze whether the population mean has changed.
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We set H0: � D 12:3 and H1 W � ¤ 12:3. We have z D .x � �/=� D 0:12.
The critical region for 5% level of significance would be jzj > 1:96, therefore
the new variable z is well away from the critical region. We do not reject the null
hypothesis.

2. What would happen in the example above if the standard deviation were � D
0:9? What if the significance level were 1%?
With the same framework as before, we have z D .x � �/=� D 2:11, hence
this variable falls within the critical region jzj > 1:96. We have to reject the null
hypothesis in favor of the alternative hypothesis H1 for a 5% level of signifi-
cance. For a significance level equal to 1%, the corresponding critical region is
jzj > 2:57, so that the null hypothesis would not be rejected.

The inherent difficulty associated with the effective number of degrees of freedom
in the Student statistics is one of the reasons why alternatives such as Monte Carlo
estimates of significance are attractive. To illustrate the concept, consider that we
have two time series of length 30 years. Each time series has serial correlation and
can be represented by an autoregressive process:

xt D axt�1 C zt : (3.5)

We can use random number generators in combination with the above model to
simulate 500 pairs of time series with the same serial correlation properties as the
original two series. The distribution of the 500 correlations between each randomly
generated pair of series is now constructed empirically. We expect the mean of the
correlations calculated to be zero, but the spread will depend on the degree of au-
tocorrelation in the two series. If the pair of series are highly auto-correlated, the
location of the correlation magnitude that occurs on 5% of occasions will be much
higher than if the pair of series were uncorrelated. Now we are using the correlation
itself as the test statistic, knowing the distribution of the sample correlations under
the assumption that the true population correlation is 0. The correlation magnitude
corresponding to the 5% significance level can be found by identifying the thresh-
old above which were found only 5% of the sample correlations. The temporal d.f.
problem is also present for methods devised to estimate the statistical significance of
EOFs. Higher percentage of variance explained are expected by chance, when time
series used in the EOF analysis contain serial correlation. Thus caution is needed
not to place excessive weight on significance estimates of EOFs when series have
serial correlation.

3.7 Missing Data

Dealing with missing data is an important aspect for application of EOF methods.
In some datasets, the fields will have been made complete for the analyst, in which
case the analyst should investigate carefully the way the data were interpolated and
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possible consequences for EOF analysis as discussed below. The EOF methods
are applied to correlation and covariance matrices. It is tempting to calculate
correlations using the available data for each pair of series, assuming that this gives
the best estimate of the correlation between each series, even if some correlations
are based on a smaller sample than others. However, this approach can lead to prob-
lems with the inversion of the correlation/covariance matrices to derive the EOF
solutions. It is usually best to make all series complete in some way over the analy-
sis period.

Usually, the analyst decides on a fixed analysis period (say, 1961–1990) and de-
cides on the maximum number of missing values that is acceptable for a series to be
included (say, at least 25 out of 30 values must have data). A simple and quite robust
solution to missing data is to set all missing values in a series equal to the mean of
the available data for that series. This will ensure the missing values are all zero
anomalies when the correlation/covariance matrices are calculated. Zero anomalies
have least impact on the correlation/covariances. While it can reduce some genuine
cross correlations between time series and this can distort the EOF solutions, it is
nonetheless a cautious conservative approach and as such, is an attractive solution.
Application of more sophisticated interpolation methods requires care for any in-
crease in correlations/covariances that it may introduce into the datasets.
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