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Abstract - Many learning algorithms rely on distance 
metrics to receive their input data. Research has shown that 
these metrics can improve the performance of these 
algorithms. Over the years an often popular function is the 
Euclidean function. In this paper, we investigate a number of 
different metrics proposed by different communities, 
including Mahalanobis, Euclidean, Kullback-Leibler and 
Hamming distance. Overall, the best-performing method is 
the Mahalanobis distance metric. 
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I. INTRODUCTION 
Nearest Neighbor algorithms are examples of 

instance-based learning which simply retain the entire 
training set during learning. Unlike other common 
classifiers, these algorithms do not build a classifier in 
advance. When a new sample arrives, the algorithm finds 
the neighbors nearest to the new sample from the training 
space based on a distance metric. 

Distance functions, or distance metric learning 
functions are to learn distance metrics for input data from 
a given collection of pair or similar/dissimilar points that 
preserves the distance relation among the training data. 
This paper focuses on local, supervised distance metric 
learning useful for K nearest neighbor (KNN) classifiers. 
We are interested in answering the following question: 
Which distance function should be selected to produce a 
more accurate output when applied to KNNs? We seek the 
answer from theoretical analysis and experimental results. 
Research has shown that Euclidean distance is the mostly 
widely used function in practice [14, 17, 18], although 

Cover and Hart [5] state that any function can be used. 
Choosing the correct function however, ultimately dictates 
the success or failure of any learning algorithm. 

In this paper we focus on distance metrics from two 
classes: (1) metrics which do not involve any 
normalization of the components - Euclidean, 
Mahalanobis, Manhattan (city block), Hamming and 
Minkowski, and (2) entropy based measures namely 
Kullback-Leibler, the most widely used theoretical metric 
[10]. We propose to compare the performance of these six 
distance metrics when applied to Nearest Neighbor 
Algorithms. We compute the confusion matrix from each 
function which is analyzed. We found that the expected 
performance of each is not the final result.   From 
theoretical analysis and experimental results, we found 
that there are more similarities among most of the six 
functions than differences. 

The paper is organized as follows. In Section 2, the 
six distance functions are described.   Section 3 highlights 
work already done in the area. In Section 4 the theoretical 
analysis and experimental results for the six distances are 
presented. Finally section 5 discusses the conclusion. 

II. DISTANCE 
To define a distance is equivalent to defining rules to 

assign positive numbers between pairs of objects. Let, 
therefore, a, b, and c be three vectors with j elements each. 
A distance is a function which associates to any pair of 
vectors a real positive number, denoted d(a,b), which has 
the following properties [1]:- 
 

d ( a , a )  =  0  ( 1 )  
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d ( a , b )  =  d ( b , a )  
d(a,b )  d (a ,c)+ d (c,b )                      

(1) 
 
There are many learning systems that depend upon a good 
distance function to be successful.  The following defines 
the six distance metrics used in this paper. 
 
A. Kullback-Leibler Distance 

The Kullback-Leibler distance is a natural distance 
function from a true probability distribution p to a target 
probability q. It is also known as relative or mutual entropy 
and is defined as 
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where n is the number of levels of the variables. 
 
B. Euclidean Distance 

The Euclidean distance computes the real straight line 
distance between two points, i.e. it measures the ‘as-the-
crow-flies’ distance. If p = {p1,. . ., pn} and q={q1, . ., qn} 
the Euclidean distance is defined as: 
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C. Manhattan Distance 
 The Manhattan distance is also known as the 
“absolute value” or city block distance. It computes the 
distance that would be traveled to get from one data point 
to the other if a grid-like path is followed. It is the sum of 
the differences of their corresponding components. The 
Manhattan distance is defined as: 
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D. Hamming Distance 
 Hamming distance or the symmetric difference 
distance is a set of operations which associates to two sets 
a new set made of the elements of these sets that belong to 
only one of them. Elements that belong to both sets are 
excluded. It gives the number of the elements of the 
symmetric difference set. It is defined as: 
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if p and q are vectors consisting of zeroes and ones. 
Hamming distance is equal to the number of positions 
where the bit patterns are different. 
 
E. Mahalanobis Distance 
 The Mahalanobis distance is based on the correlations 
between variables. It is defined as: 
 

         1( , ) T
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(6) 
 
where V is the covariance matrix of A1..Am and Aj is the 
vector of values for attribute j occurring in the training set 
instances 1..n. 
 
F. Minkowski Distance 
 The Minkowski distance or p-distance between two 
strings is the geometric distance between two inputs and 
uses a variable scaling factor, r.  It is widely used for 
measuring similarity between objects (e.g., images) and is 
defined as:  
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III. RELATED WORK 
 Since 1981 researchers have tried to compare different 
similarity measures. Noreault et al. [11] looked at 
evaluating the performance of measures, empirically. 
Further Jones and Furnas [9] studied several similarity 
measures in the field of information retrieval. In 
particular, they performed a geometric analysis on 
continuous measures in order to reveal important 
differences which would affect retrieval performance. 
Further comparative studies were done by Zwick et al. [19] 
focusing on Fuzzy sets. 
 A detailed study of heterogeneous distance functions 
(for data with categorical and continuous attributes) was 
carried out by Wilson and Martinez[16]. They did this for 
instance based learning. Their study was based on a 
supervised approach where each data instance had class 
information in addition to a set of categorical/continuous 
attributes. 
 The latest set of research has been done by Qian et 
al.[12] who compared the Euclidean and Cosine Angle 
distances for nearest neighbor queries in high dimensional 
data spaces and Boriah et al. [4] who looked at the 
performance of a variety of similarity measures in the 
context of a specific data mining task: outlier detection. 
 

IV. COMPARISON ANALYSIS 
A. Theoretical Analysis 

Euclidean and Mahalanobis 
The Euclidean norm of p yields the equation of a spheroid. 
This means that all components of an observation p 
contribute equally to the Euclidean distance of x from the 
center. Taking variability of that variable into account we 
get the distance between p and q in Euclidean as: 
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where 2 2( . . )i nD d i a g s s .  
 
We then take the correlation between variables into 
account. To do this the axes of ellipsoid are used to reflect 
this correlation. This is obtained by allowing the axes of 
the ellipsoid at constant distance to rotate. This yields the 
Mahalanobis distance (fig. 1). Thus if V in (6) becomes a  

 
Fig. 1. Conversion of Euclidean to Mahalanobis 

 

d x d identity matrix the Mahalanobis distance is defined 
as the Euclidean distance. If V is diagonal, then the 
resulting distance measure is called the normalized 
Euclidean distance and is defined as: 
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where 
i  is the standard deviation of the xi over the 

sample set. Mahalanobis is different from Euclidean 
because it takes into account the correlations of the data 
sets and is not dependent on the scale of measurements. It 
therefore generalizes the Euclidean function [6]. 

 

The Minkowski Relation 
 The degree r in the Minkowski distance (7) can take 
any number. When r = 1 the distance function is called the 
Manhattan distance. If the vectors, when r = 1, are binary 
numbers, the distance becomes the Hamming distance. 
When r is equal to 2, we obtain the usual Euclidean 
distance. Euclidean and Manhattan are therefore apart of 
the Minkowski family of distance metrics. 

 In this family the higher the value of r, the greater the 
importance given to large differences. Thus, when r = 1 or 
L1 there is equal importance to all differences while when r 
= 2 or L2 the distance metric takes into account only that 
component for which the difference is maximum. These 

are Manhattan and Euclidean respectively. When 
calculating Manhattan also deals with the sum of distance 
along each  

 

Fig. 2. Difference between Manhattan and Euclidean distances 

 

Fig. 3. Sample Signal Set 

 

dimension while Euclidean corresponds to the length of 
the shortest path between two points as shown in fig. 2. 

B. Experimental Analysis 
 In order to do the study effectively data was collected 
for analysis. This data, taken from different sites are of two 
types - real and artificial. All data is comprised of EEG 
data signals. The artificial data is made of six different 
data sets, each containing at least 1,000 points per vector 
(fig 3). The data sets are of two types – mixed with noise 
and independent from noise. These were taken from the 
RADICAL ICA algorithm site 
http://www.cs.umass.edu/~elm/ICA/. 
 

 Real data sets comprised EEG signals from both 
human and animals. These data have been acquired using 
the Neuroscan or Neurofax software.  The human data set 
is a collection of 32-channel data from 14 subjects (7 
males, 7 females) who performed a go-nogo categorization 
task and a go-no recognition task on natural photographs 
presented very briefly (20 ms). Each subject responded to a 
total of 2500 trials. The data is CZ referenced and is 
sampled at 1000 Hz. This data set can be found at 
http://sccn.ucsd.edu/~arno/fam2data/publicly_available_E
EG_data.html.  
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 Each data set passes through the k-nearest neighbor 
code. This produces a confusion matrix of the set and a 
classification rate (%). The confusion matrix is used to 
compute the classification accuracy and to identify 
misclassified areas. The Friedman test is then preformed 
on each resulting matrix and the results  are passed 
through a multiple comparison test. 
 

Performance on Nearest Neighbor  
Each distance metric is used to determine a resulting 

nearest neighbor matrix. Each produces such a matrix but 
at different processing times. Fig. 4 shows results of  
processing times for all six. We find that as the data sets 
increase the processing times also increase, however, the 
rate remains the same. Results also show that the 
performance rate for each of Lm distances are relatively the 
same with Euclidean distance having the largest rate. 

When the metrics are calculated it is the findings that 
the matrices that contain the vectors containing the 
distances   between each pair of observations in data 
matrices are the same for the Minkowski distance and the 
Euclidean distance metrics. The others except for the 
Hamming, which produces matrices containing bits, differ. 

The Nearest Neighbor code generates a confusion 
matrix for each distance metric calculation. If the data set 
is M x N this matrix is N x N in size showing in Table 1 
with the ‘true’ class in rows and the ‘predicted’ class in 
the columns. The diagonal elements represent correctly 
classified compounds while the cross-diagonal elements 
represent misclassified compounds. The table also shows 
the accuracy of the classifier as the percentage of correctly 
classified compounds in a given class divided by the total 
number of compounds in that class. Table 1 shows the first 
ten rows in the first column of a confusion matrix based on 
the Hamming Distance.  
 The classification rate is calculated as 

  100 /rate matC diag c x M               (10) 

where M is the number of rows and cmat is the confusion 
matrix. It was found that the rate varied and ranged from -
3.7899 in Mahalanobis to 47.9836 in Euclidean, using the 
2D mixed data set. It was also found that Kullback-Leibler 
did not produce the lowest rate; it was13.2525, one of the 
highest rates. 

TABLE 1 

FIRST 10 ROWS-CONFUSION MATRIX (2 TYPES OF DATA SET)  

2 row independent  2 row mixed 

0.0938 -0.0758 

0.5272 0.6028 

0.1873 0.2171 

0.6460 0.6357 

-0.6883 -0.6491 

0.2188 0.1521 

0.2063 0.0671 

-0.0467 -0.0509 

0.6408 0.5912 

0.0006 0.0218 
 

 The Friedman Test 
The Friedman test is frequently called a two-way 

analysis on ranks and is used to detect differences in 
treatments across multiple test attempts. It is at the same 
time a generalization of the Sign-Test and the Spearman 
Rank Correlation Test and test models the ratings of n 
(rows) judges on k (columns) "treatments". The test is used 
to test if the means of the distance functions are totally 
matched when the distribution of the underlying 
population is not specified. 

The hypothesis being tested is that all the methods 
have equal mean total matches, and the alternative 
hypothesis is that all methods do not have equal mean total 
matches. It is our findings that of the six functions 
Manhattan and Kullback-Leibler produced slightly higher 
means in each data set (fig. 5). It also shows that as the 
data sets increase in the number of vectors the error in 
each increased, however it showed that it increased more 
in Euclidean, Manhattan and Hamming as the dimensions 
increased (fig. 4). 

It was also seen that the results changed when the data 
set types changed.  Figure 7 shows the Friedman Test table 
of a independent data set while figure 6 shows a simpler 
set that was mixed with noise. It can be seen that the 
probability of having a Chi-square and the error calculated 
on the mean increase when an independent dataset is used 

 

 Multiple Comparison Test 
 Once the Friedman test is completed the resulting 
statistics are used in the Multiple Comparison Test. This 
test is done using the Tukey-Kramer Method. This method 
is chosen over Scheffé, Bonferoni and Sidák because it 
produces smaller critical values and it controls the 
experiment wise error rate at approximation  very well 
[7].  
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Fig. 4. Performance Rate of The Six Functions 

 
Fig. 5. Mean Values for 2D mixed data set 

 

The hypothesis being tested is based on the results 
from the Friedman Test. We wish to prove that since there 
are differences in the mean for the Friedman Test it will be 
the same behavior in the Comparison Test. 

 In this test the minimum significant difference (MSD) 
is calculated for each pair of means. If the observed 
difference between a pair of means is greater than the 
MSD, the pair  of means is significantly different. It was 
found that for all distance function, except Euclidean, all 
the mean column ranks were significantly different. For 
Euclidean there were only significant difference in a few 
columns. 
 When the error rates are examined the Kullback-
Leibler is considered to have the worst. It is found that the 
following is the order:- Mahalanobis < Minkowski family 
< Kullback-Leibler. Mahalanobis has the best since the 
error rate is controlled.  
 
 Discussion 
 Most nearest neighbor algorithms are based on the 
Euclidean distance function. In this paper, we examine six 
known distance metrics. Is it really necessary to use the 
Euclidean function? Our results indicate that Euclidean 
does not have the fastest performance rate or the best error 

rate. Overall Mahalanobis metric has the best performance 
when applied to nearest neighbor.  It has (1) a low 
performance rate; (2) performs well when data is 
controlled; (3) has a low classification rate; and, (4) its 
mean value is one which has a low increase rate as the 
number of 
 

 
Fig. 6. Friedman Test on a Kullback-Leibler mixed data set 

 

Fig. 7. Friedman Test on a Kullback-Leibler independent data set 

vectors increases. Research has also shown that based on 
Maximum Likelihood criteria Euclidean and Manhattan 
are proven to be optimal distances for Gaussian and 
Exponential data, respectively [9]. Mahalanobis on the 
other hand, is useful for both Gaussian and non-Gaussian 
data. It is also scale-invariant, i.e. not dependent on the 
scale of measurements which makes it approximate for 
applications with different types of measurements. 
 

V. CONCLUSION 
 Over the years Euclidean has been the distance metric 
of choice by most researchers, however we have observed 
from our experiments that Mahalanobis has the best 
performance of the six metrics studied. The Minkowski 
family of distances is not suitable for all applications. So 
why is Euclidean the distance of choice? This maybe 
because of (1) the ease of implementing the Euclidean 
distance and (2) researchers tend to assume data to be 
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Gaussian in distribution. Although Mahalanobis is the best 
of the six researchers may choose their distance metric 
based on their personal choice and the size and type of the 
datasets been used. For example if one does not have any 
prior knowledge the Euclidean function is usually 
recommended. If there is the need to capitalize on 
statistical regularities in data that maybe estimated from a 
large training set then Mahalanobis is best. 
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