
Chapter 2
Some Thermodynamic Aspects
of Two-Phase Systems

In this chapter we briefly recall the basic features of equilibrium thermodynamics of
a two-phase system, i.e. a system consisting of two coexisting bulk phases, which
will serve as ingredients for the nucleation models discussed in this book.

2.1 Bulk Equilibrium Properties

Two phases (1 and 2) can coexist of they are in thermal and mechanical equilibrium.
The former implies that there is no heat flux and therefore T1 = T2, and the latter
implies that there is no mass flux, which yields equal pressures p1 = p2. However,
this is not sufficient. Let N be the total number of particles in the two-phase system
N = N1 + N2. The number of particles in either phase can vary while N is kept fixed.
If the whole system is at equilibrium, its total entropy S = S1 +S2 is maximized,
which means in particular that

∂S

∂ N1
= 0

Using the additivity of S , this condition can be expressed as

∂S1

∂ N1
= ∂S2

∂ N2
(2.1)

The basic thermodynamic relationship reads:

dU = T dS − pdV + μdN (2.2)

Rewriting it in the form

dS = dU

T
+ p

T
dV − μ

T
dN
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we find
∂S

∂ N
= −μ

T

From (2.1): μ1/T1 = μ2/T2 and since T1 = T2, the chemical potentials of the
coexisting phases must be equal. Hence, two phases in equilibrium at a temperature
T and pressure p must satisfy the equation

μ1(p, T ) = μ2(p, T ) (2.3)

which implicitly determines the p(T )-phase equilibrium curve. Thus, T and p cannot
be fixed independently, but have to provide for equality of the chemical potentials
of the two phases. Differentiating this equation with respect to the temperature and
bearing in mind that p = p(T ), we obtain:

∂μ1

∂T
+ ∂μ1

∂p

d p

dT
= ∂μ2

∂T
+ ∂μ2

∂p

d p

dT
(2.4)

From the Gibbs–Duhem equation (see e.g. [1])

S dT − V d p + N dμ = 0 (2.5)

we find
dμ = −s dT + v d p (2.6)

where s = S
N and v = V

N are entropy and volume per particle, implying that

(
∂μ

∂T

)
p

= −s,

(
∂μ

∂p

)
T

= v

Using (2.4), we obtain the Clapeyron equation describing the shape of the (p, T )-
equilibrium curve:

d p

dT
= s2 − s1

v2 − v1
(2.7)

In the case of vapor-liquid equilibrium this curve is called a saturation line and the
pressure of the vapor in equilibrium with its liquid is called a saturation pressure,
psat. Liquid and vapor coexist along the saturation line connecting the triple point
corresponding to three-phase coexistence (solid, liquid and vapor) and the critical
point. Below the critical temperature Tc one can discriminate between liquid and
vapor by measuring their density. At Tc the difference between them disappears. The
line of liquid-solid coexistence has no critical point and goes to infinity since the
difference between the symmetric solid phase and the asymmetric liquid phase can
not disappear.
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Most of the first-order phase transitions are characterized by absorption or release
of the latent heat. According to the first law of thermodynamics (expressing the
principle of conservation of energy), the amount of heat supplied to the system, δQ,
is equal to the change in its internal energy δU plus the amount of work performed
by the system on its surroundings pδV

δQ = δU + pδV (2.8)

In the theory of phase transitions the quantity δQ is called the latent heat L . For
processes at constant pressure the latent heat is given by the change in the enthalpy:

L ≡ δQ = δ(U + pV ) = δH(N , p,S ) = T (δS )p,N

The latent heat per molecule l = L/N is then

l = T (s2 − s1) (2.9)

Using (2.9) the Clapeyron equation at T < Tc can be written as

d p

dT
= l

T (v2 − v1)
(2.10)

For the gas–liquid transition at temperatures far from Tc the molecular volume in the
liquid phase v1 ≡ vl is much smaller than in the vapor v2 ≡ vv. Neglecting v1 and
applying the ideal gas equation for the vapor

p v2 = kBT (2.11)

we present Eq. (2.10) as
d p

dT
= lp

kBT 2 (2.12)

where
kB = 1.38 × 10−16erg/K (2.13)

is the Boltzmann constant. Considering the specific latent heat to be constant, which is
usually true for a wide range of temperatures and various substances,1 and integrating
(2.12) over the temperature, we obtain:

psat(T ) = p∞ e−β l , β = 1

kBT
(2.14)

where p∞ is a constant.

1 For example, for water in the temperature interval between 0 and 100 ◦ C, l changes by only 10 %.
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2.2 Thermodynamics of the Interface

Let us discuss the interface between the two bulk phases in equilibrium. For con-
creteness we refer to the coexistence of a liquid with its saturated vapor at the
temperature T . Equilibrium conditions are characterized by equality of temperature,
pressure, and chemical potentials in both bulk phases. The density, however, is not
constant but varies continuously along the interface between two bulk equilibrium
values ρv(T ) and ρl(T ). Note, that local fluctuations of density take place even in
homogeneous fluid, where, however, they are small and short-range. In the two-
phase system these fluctuations are macroscopic: for vapor–liquid systems at low
temperatures the bulk densities ρv and ρl can differ by 3–4 orders of magnitude.

2.2.1 Planar Interface

Consider a two-phase system contained in a volume V with a planar interface between
the vapor and the liquid. Inhomogeneity is along the z direction; z → +∞ corre-
sponds to bulk vapor, and z → −∞ to bulk liquid (see Fig. 2.1). Variations in the
density give rise to an extra contribution to the thermodynamic functions: they are
modified to include the work γ dA which has to be imposed by external forces in
order to change the interface area A by dA:

dF = −p dV − S dT + γ dA + μ dN (2.15)

dG = V d p − S dT + γ dA + μ dN (2.16)

dΩ = −p dV − S dT + γ dA − Ndμ (2.17)

(in (2.17) N is the average number of particles in the system). The coefficient γ is the
surface tension; its thermodynamic definition follows from the above expressions:

Fig. 2.1 Schematic representation of the vapor–liquid system contained in a volume V = L2 L1.
Inhomogeneity is along the z axis (Reprinted with permission from Ref. [1], copyright (2001),
Springer-Verlag.)
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γ =
(

∂F

∂ A

)
N ,V,T

(2.18)

γ =
(

∂G

∂ A

)
N ,p,T

(2.19)

γ =
(

∂Ω

∂ A

)
μ,V,T

(2.20)

Following Gibbs [2] we introduce a dividing surface, being a mathematical surface
of zero width which establishes a boundary between the bulk phases as shown in
Fig. 2.2. Although its position is arbitrary, it is convenient to locate it somewhere in
the transition zone. Once the position of a dividing surface is chosen, the volumes
of the two phases are fixed, and satisfy

V v + V l = V

The idea of Gibbs was that any extensive thermodynamic quantity M (the number
of particles, energy, entropy, etc.) can be written as a sum of bulk contributions M v

and M l and an excess contribution M exc that is assigned to the chosen dividing
surface:

M = M v + M l + M exc (2.21)

Equation (2.21) is in fact a definition of M exc; its value depends on the location of
the dividing surface, and so do the values of M v and M l (as opposed to M , which
is an actual physical property and as such can not depend on the location of the Gibbs
surface). Several important examples are

N = N v + N l + N exc (2.22)

S = S v + S l + S exc

Ω = Ωv + Ω l + Ωexc

F = F v + F l + F exc

V = V v + V l
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By definition the dividing surface has a zero width implying that V exc = 0. Since
the location of the dividing surface is arbitrary, the excess quantities accumulated on
it can be both positive or negative.

One special case that will be useful for future discussions is the equimolar surface
defined through the requirement N exc = 0. The surface density of this quantity

Γ = N exc

A
(2.23)

is called adsorption. Thus, the equimolar surface corresponds to zero adsorption. The
thermodynamic potentials, such as F , Ω, G, are homogeneous functions of the first
order with respect to their extensive variables. We can derive their expressions for
the two-phase system by integrating Eqs. (2.15)–(2.17) using Euler’s theorem for
homogeneous functions (see e.g. [1], Sect. 1.4). In particular, integration of (2.17)
results in

Ω = −p V + γ A (2.24)

whereas in each of the bulk phases Ωv = −p V v, Ω l = −p V l, where we used the
equality of pressures in the coexisting phases. Thus,

Ωexc = γ A (2.25)

irrespective of the choice of the dividing surface. Independence of Ωexc on the loca-
tion of a dividing surface gives rise to the most convenient thermodynamic route
for determination of the surface tension. Equation (2.25) is used in density func-
tional theories of fluids (discussed in Chap. 5) to determine γ from the form of the
intermolecular potential.

By definition
Ωexc = Ω − Ωv − Ω l (2.26)

For each of the bulk phases

dΩv = −p dV v − S v dT − N vdμ (2.27)

dΩ l = −p dV l − S l dT − N ldμ (2.28)

Differentiating (2.26) using (2.17) and (2.27)–(2.28) yields

dΩexc = −S exc dT + γ dA − N exc dμ

On the other hand, from (2.25)

dΩexc = γ dA + A dγ

http://dx.doi.org/10.1007/978-90-481-3643-8_1
http://dx.doi.org/10.1007/978-90-481-3643-8_5
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Comparison of these two equalities leads to the Gibbs adsorption equation

A dγ + S exc dT + N exc dμ = 0 (2.29)

describing the change of the surface tension resulting from the changes in T and μ.
An important consequence of (2.29) is the expression for adsorption:

Γ = −
(

∂γ

∂μ

)
T

(2.30)

where the surface tension refers to a particular dividing surface.

2.2.2 Curved Interface

Gibbs’ notion of a dividing surface is a useful concept for thermodynamic description
of an interface. At the same time, as we saw in Sect. 2.2.1, the planar surface tension
is not affected by a particular location of a dividing surface since the surface area A
remains constant at any position of the latter. The situation drastically changes when
we discuss a curved interface. Here the position of the dividing surface determines
not only the volumes of the two bulk phases but also the interfacial area. An arbitrary
curved surface is characterized by two radii of curvature. Consider a liquid droplet
inside a fixed total volume V of the two-phase system containing in total N molecules
at the temperature T . The “radius” of the droplet is smeared out on the microscopic
level since it can be defined to within the width of the interfacial zone, which is of
the order of the correlation length. Let us choose a spherical dividing surface with a
radius R. The sizes of the two phases and the surface area are fully determined by
a set of four variables for which it is convenient to use R, A, V l and V v [3], where
V l and V v are the bulk liquid and vapor volumes and A is the surface area:

V l = 4π

3
R3, V v = V − 4π

3
R3, A = 4π R2

A sketch of a spherical interface is shown in Fig. 2.3. The change of the Helmholtz
free energy F of the two-phase system “droplet + vapor” when its variables change
at isothermal conditions is given by [3]:

(dF )T = −pl(dV l)T − pv(dV v)T +μ(dN )T +γ (dA)T + A

[
dγ

dR

]
(dR)T (2.31)

Here by a differential in square brackets we denote a virtual change of a thermody-
namic parameter, corresponding to a change in R. The pressure pl inside the liquid
phase refers to the bulk liquid held at the same chemical potential as the surrounding
vapor with the pressure pv: μv(pv) = μl(pl). The surface tension γ (R) refers to the
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Fig. 2.3 Sketch of a spherical interface. The z axis is perpendicular to the interface pointing away
from the center of curvature. Re and Rs ≡ Rt denote, respectively, the location of the equimolar
surface and the surface of tension (see the text). The width of the transition zone between bulk vapor
and bulk liquid is of the order of the correlation length ξ (Reprinted with permission from Ref. [1],
copyright (2001), Springer-Verlag.)

dividing surface of the radius R; the term in the square brackets gives the change of
γ with respect to a mathematical displacement of the dividing surface. It is impor-
tant to stress that the physical quantities F , pv, pl, μ, N , V , do not depend on the
location of a dividing surface. So they remain unchanged when only R is changed
and from (2.31)

0 = [dF ] = −Δp 4π R2 [dR] + 8π R γ [dR] + 4π R2
[

dγ

dR

]
[dR]

where Δp = pl − pv. Dividing by 4π R2 [dR] we obtain the generalized Laplace
equation:

Δp = 2γ [R]
R

+
[

dγ

dR

]
(2.32)

It is clear that since Δp, as a physical property of the system, is independent of R, the
surface tension must depend on the choice of dividing surface. A particular choice
R = Rt , such that [

dγ

dR

]
R=Rt

= 0, (2.33)

corresponds to the so-called surface of tension; it converts (2.32) into the standard
Laplace equation

Δp = 2γt

Rt
(2.34)
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where γt = γ [Rt]. One can relate the surface tension taken at an arbitrary dividing
surface of a radius R to γt . To this end let us write (2.32) in the form

Δp R2 =
[

d

dR

]
R2γ [R]

and integrate it from Rt to R. Using (2.34) for Δp we obtain the Ono-Kondo equation
[4]

γ [R] = γt fok

(
R

Rt

)
, with fok = 1

3

1

x2 + 2

3
x (2.35)

Elementary analysis shows that fok has a minimum at x = 1 corresponding to
R = Rt . Thus, γt is the minimum surface tension among all possible choices of the
dividing surface:

γ [R] = γt

[
1 + O

(
R − Rt

Rt

)2
]

(2.36)

When R differs from Rt by a small value, γ [R] remains constant to within terms of
order 1/R2

t .

Among various dividing surfaces we distinguished two special cases—the equimolar
surface Re and the surface of tension Rt—which are related to the certain physi-
cal properties of the system. Let us introduce a quantity describing the separation
between them

δ = Re − Rt

The limiting value of δ at the planar limit

δT = lim
Rt→∞ δ = ze − zt (2.37)

is called the Tolman length. Its sign can be both positive and negative depending on
the relative location of the two dividing surfaces. By definition δT does not depend
on either radius Rt , or Re (whereas δ does) but can depend on the temperature. Both
dividing surfaces lie in the interfacial zone implying that δT is of the order of the
correlation length. Let Γt be the adsorption at the surface of tension. From the Gibbs
adsorption equation

Γt = −
(

∂γt

∂μ

)
T

Using the thermodynamic relationship (2.6) in both phases we rewrite this result as

dγt = −Γt dμ = −Γt
d pv

ρv = −Γt
d pl

ρl
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From the second and the third equations of this chain

d pl = d pv ρl

ρv

resulting in
d(Δp) = Δρ dμ

Substituting Δp from the Laplace equation (2.34) we obtain

dγt = − Γt

Δρ
d

(
2γt

Rt

)
(2.38)

For a curved surface Tolman [5] showed (see also [3]) that

Γt

Δρ
= δT

(
1 + δT

Rt
+ 1

3

δT
2

R2
t

)
(2.39)

but the terms in (δT/Rt) and (δT/Rt)
2 can be omitted to the order of accuracy we

need. This means that in all derivations below we need to keep only the linear terms
in δT . With this in mind Eqs. (2.38) and (2.39) give

dγt = −δT d

(
2γt

Rt

)

which after simple algebra yields

d ln γt = 2δT

Rt(Rt + 2δT )
dRt =

[
1

Rt
− 1

Rt + 2δT

]
dRt

Integrating from the planar limit (Rt → ∞) to Rt we obtain:

γt

γ∞
= Rt

Rt + 2δT
(2.40)

where γ∞ is the planar surface tension discussed in Sect. 2.2.1. Keeping the linear
term in δT we finally obtain the Tolman equation

γt = γ∞
(

1 − 2δT

Rt
+ . . .

)
(2.41)

It is important to emphasize that the second order term in the δT can not be obtained
from (2.40) since this equation is derived to within the linear accuracy in the Tolman
length.
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Equation (2.41) represents the expansion of the surface tension of a curved interface
(droplet) in powers of the curvature. Its looses its validity when the radius of the
droplet becomes of the order of molecular sizes. The concept of a curvature dependent
surface tension frequently emerges in nucleation studies. It is therefore important
to estimate the minimal size of the droplet for which the Tolman equation holds.
For simple fluids (characterized by the Lennard-Jones and Yukawa intermolecular
potentials) near their triple points the density functional calculations [6] reveal that
the Tolman equation is valid for droplets containing more than 106 molecules.
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