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Preface

Science aims at the discovery of general principles of special kinds that are
applicable for the explanation and prediction of the phenomena of the world in
the form of theories and laws. When the phenomena themselves happen to be
general, the principles involved assume the form of theories; and when they are par-
ticular, they assume the form of general laws. Theories themselves are sets of laws
and definitions that apply to a common domain, which makes laws indispensable
to science. Understanding science thus depends upon understanding the nature of
theories and laws, the logical structure of explanations and predictions based upon
them, and the principles of inference and decision that apply to theories and laws.
Laws and theories can differ in their form as well as in their content. The laws
of quantum mechanics are indeterministic (or probabilistic), for example, while
those of classical mechanics are deterministic (or universal) instead. The history
of science reflects an increasing role for probabilities as properties of the world
but also as measures of evidential support and as degrees of subjective belief. Our
purpose is to clarify and illuminate the place of probability in science.

The fundamental conceptions of probability that matter to science are both
objective as properties of the world: the frequency conception, for which “prob-
abilities” stand for relative (or limiting frequencies) of outcomes (such as heads)
across sequences of trials (such as tosses of coins); and the propensity conception,
for which “probabilities” stand for the strength of the causal tendencies for spe-
cific trials (or sequences of trials) to bring about specific outcomes. The frequency
conception is a collective concept that applies to sequences of trials collectively
(as a group). There is no relative frequency (or only a derivative value) for an out-
come to occur on a single trial, although they are sometimes described that way.
By comparison, the propensity conception is a distributive concept that applies to
trials distributively (one by one). There are causal propensities for outcomes to oc-
cur on single trials, where different members of a sequence of trials can have causal
propensities that vary from one trial to another when they occur under different
conditions.

Evolutionary theory and quantum mechanics are among the most important
scientific contexts in which objective probabilities play a role. The notions of biolog-
ical fitness and of radioactive half-life, for example, both appear to be probabilistic
properties. This volume includes several chapters devoted to their clarification. And
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viii Preface

it is quite important to distinguish between subjective conceptions of probabilities
as properties as beliefs about probabilities (say, believing that the probability of
heads on the next toss with a coin equals 1/2) and as degrees of belief (say, hav-
ing a degree of belief equal to 1/2 that the next toss will be heads). Beliefs about
probabilities are true when the world has those properties; degrees of belief are true
when people do. These properties are closely related, since it is widely assumed that
beliefs about probabilities determine degrees of belief. David Lewis even calls this
relationship “the Principal Principle”. It sounds simple, but understanding how it
works is complex.

We begin with a comprehensive introduction to alternative conceptions of
objective probability and the difficulties that they confront. The first section then
follows with three studies of special problems that arise within this context and the
comparative merits of different accounts. The second section addresses the nature of
lawfulness and of relations between micro- and macro-probabilities, especially with
reference to the concept of fitness in evolution. The third section confronts some of
the difficulties confronted by causal conceptions of probability, especially within
the quantum domain. The fourth extends the discussion to principles of inference
and decision. The last chapter relates propensities and frequencies to the framework
of inference to the best explanation. It all begins with an introduction that integrates
these contributions and their interconnections, and it ends with an expression of our
gratitude to the distinguished contributors who have made this collection possible.

When I retired from the University of Minnesota Duluth in June 2006 after 35
years of college teaching and moved to Madison, my wife, Jan, and I were looking
forward to spending time with Ellery and his wife, Joanne, with whom we had
spent many enjoyable evenings together over the years. We met in 1980 while I was
visiting The University of North Carolina at Chapel Hill and Ellery was teaching at
North Carolina State. We had only just moved into our new home in Oregon, WI,
when we learned that Ellery had been hospitalized. Jan and I were able to visit him
at Meriter Hospital shortly before he died on August 10. It was an acute loss for me
and for the fields of philosophy to which he so richly contributed. Fortunately, we
had completed our work on this project, including the Introduction of which he was
the principal author. I have done my best to preserve his words throughout and offer
this work as a monument to the excellence of his intellect as well as of his life as a
husband, father, teacher and scholar.

James H. Fetzer
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Introduction

The purpose of philosophy, broadly conceived, can be described as that of
attempting to resolve heretofore unsolved conceptual and theoretical problems,
especially those that lie at the foundations of knowledge and values. There is an
intimate relationship between philosophy and language, since most philosophical
problems arise as a result of ambiguities and vagaries in the use of language re-
lated to knowledge and values, such as the meaning of “belief”, “justification”, and
“truth”, in the case of knowledge, and the meaning of “good”, “right”, and “fair”, in
the case of values. Given the central role of science in acquiring reliable knowledge,
the study of science has become of special importance within philosophy. And
within philosophy of science, in turn, no other concept possesses the centrality and
importance as does that of probability.

The crucial importance of probability within science can be illustrated in relation
to the concept of a probabilistic explanation, which plays a central role in the natural
sciences, the social sciences, and – arguably – even the humanities, at least when the
discipline of history is subsumed thereby. Few historians would claim that what we
know of history is “certain” rather than merely “probable”; and only the rash would
hazard to project future trends on the basis of present knowledge with anything more
than “probabilistic confidence”. The links that can relate the future to the past take
the form of statistical correlations, on the one hand, and laws of nature, on the other.
Mere correlations, however, are not especially reliable and can change across time.
Because laws cannot be violated and cannot be changed, they afford a more secure
foundation for systematic predictions, and laws are indispensable for explanations.

Thus, a “covering-law” schema for probabilistic explanations, where probabilis-
tic laws subsume specific cases when their conditional antecedents correspond to the
initial conditions that were present in those specific instances, assumes the following
form:

Schema S: Covering Law P(B/A) D p
Explanans

Initial Conditions Ac
D D D D [p]

Event to Explain Bc Explanandum

xv



xvi Introduction

Here, the explanatory premises (known as “the explanans”) include a covering law
of the form, “P(B/A) D p”, which asserts the probability P of B, given A, is equal
to p, and description of initial conditions by virtue of which that law applies to this
case, which in this instance is “Ac” (“c is A”), where the conclusion that is to be
explained (known as “the explanandum”) describes the relevant outcome, that is
“Bc” (“c is B”). The link between the explanans as premise and the explanandum
as conclusion is given by the double-line, which indicates an inductive relation-
ship, and “[p]”, which indicates the (probabilistic) logical strength with which the
explanans subsumes the explanandum.

Simple examples can be drawn from games of chance, such as flips of coins,
throws of dice, and draws of cards. Suppose, for example, that we assume that, on a
single throw with a cubical, six-sided die, the probability of each of its sides – ace,
deuce, trey, and so forth – coming up equals 1/6. The probability of some member
of the set coming up is equal to the sum of their values, which is 1/6 times itself
six times, equaling 1. The probability of one or another in some subset, such as an
ace or a deuce, then turns out to be equal to their sum, which is 1/6 plus 1/6, or 1/3.
And the probability of getting, say, an ace on one toss and another ace on a second
toss is equal to the product of their probabilities, which would be 1/6 times 1/6, or
1/36. Then suppose that we wanted to explain why a specific cubical, six-sided die
d of this kind D came up showing an ace A, given a throw T. Its explanation could
assume the following form as an instance of S:

Example: Covering Law P(A/D & T) D 1/6
Explanans

Initial Conditions Dd & Td
D D D D D D [1/6]

Event to Explain Ad Explanandum

Here, the outcome “Ad” of showing an ace is explained on the basis of a covering
law asserting that, for a die d of kind D that is tossed T, the probability P of an
outcome of kind A equals 1/6. Interestingly, since this outcome has only a low prob-
ability given the relevant initial conditions and probabilistic covering law, this is not
an outcome that we would be inclined to predict. On the contrary, the occurrence
of a non-ace is equal to 5/6, which means that the outcome of a non-ace has a high
probability and would be predictable. Even in the case of outcomes of low proba-
bility, arguments of this form still provide adequate explanations when they explain
them. But they raise questions as to whether their explanandum-sentences should be
called “conclusions”.

In the case of games of chance, it is tempting to suppose that we know what
we mean by the use of the term “probability” in describing situations of this kind,
because we tend to assume that their values are equal to the number of possible
outcomes (ace, deuce, trey, and so forth) divided by the number of outcomes of
interest (an ace in this case). So the probability equals 1/6. Indeed, this interpreta-
tion of the meaning of probability is known as “the classic interpretation”. But its
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tenability depends on the tacit assumption that the possible outcomes are equally
probable. What if a coin were bent (a die were loaded, a deck were stacked)? Then
those possible outcomes would not be equally probable and the classic interpreta-
tion would not apply. What should be done then? What would it mean to ascribe a
“probability” in those cases?

The most important alternatives for understanding probabilistic covering laws
are the frequency and the propensity accounts, which are discussed in most of the
chapters of this volume. The first construes probabilities as relative frequencies,
the second as causal tendencies. While that is the central problem addressed here,
many others are closely related, including the connection between the value of “p”
in covering laws and of “[p]” as the strength of the link between explanans and
explanandum. And other important ramifications are investigated here, including
the role of probabilities of either kind for drawing inferences and making decisions
as well as special problems for probabilities that arise within contexts that are as
diverse as evolutionary theory and quantum mechanics. Surveying these problems
from diverse philosophical points of view, the present studies contribute to clarifying
the place of probability in science.

Prologue

Objective Probability Theory Theory

Ellery Eells

Among the most subtle aspects of any philosophical investigation is settling upon
the criteria of adequacy that provide a standard or a measure for evaluating al-
ternative proposals and recommendations. Thus, Carl G. Hempel has suggested
that there are three primary desiderata that matter in explicating the meaning of
words, phrases, or expressions, namely: (1) that the syntax of those linguistic enti-
ties must be rendered explicit (as one-place, two-place, or more-place predicates, for
example); (2) that the semantics of those syntactic entities must be relevant to the
contexts of their usage (where concepts that fit one context may be inadequate for
another); and (3) that the combination of that semantics with that syntax succeeds in
attaining the pragmatic objective of clarifying and illuminating the meaning of that
linguistic entity within that context of usage (Hempel 1952). Here we shall refer to
these desiderata as the conditions of syntactic determinacy, semantic relevance, and
pragmatic significance.

Ellery Eells pursues these objectives in his discussion of the standards that
might be required, suggested, or urged for the adequacy of philosophical theories
of objective probability. Probabilities are “objective” when they are supposed to be
properties of the world as opposed to our beliefs about the world, which makes
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them “subjective”. As he observes, various theories or interpretations of proba-
bility – characteristically in relation to specific mathematical functions that obey
particular axioms, including principles of summation and of multiplication – appear
in the philosophical and the statistical literature. Bayesian theorists, for example,
have suggested the usefulness, in some contexts at least, of interpreting probability
subjectively or as a measure of some particular agent’s “degrees of belief”, which
may differ from person to person at the same time and even for one person at two
different times. Others, of course, have proposed various objective interpretations of
probability, including especially varieties of “frequency” and of “propensity” con-
ceptions as properties of the world.

The double occurrence of the word “theory” in the title of Eells’ paper is of
course deliberate. Like Hempel, he is concerned with the conditions of adequacy
that an adequate explication of probability must satisfy, especially if it happens
to be an explication of probability as a physical magnitude. He implements the
conditions of syntactical determinacy by adopting Wesley Salmon’s requirement of
admissibility (Salmon 1967), which Eells’ takes to entail satisfying some standard
axiomatization of mathematical probability. Standard probability axioms formal-
ize probabilities in such a manner that – except in the extreme cases of 0 and of
1 values – if there is a probability from A to B, then there must also be a proba-
bility from B to A. That this might impose an unreasonable requirement on those
conceptions of probability that incorporate causation, however, becomes apparent
from the consideration that, when A is the cause of B, it is highly unusual, not to
say impossible, for B to be the cause of A. So it may be necessary to qualify this
condition for causal propensity conceptions.

In addition to the requirement of admissibility, Eells endorses the condition that
an adequate explication must be conceptually adequate. This sounds like the merge
of Hempel’s conditions of semantic relevance and pragmatic significance, but Eells
goes farther by endorsing a requirement of independent understanding that falls be-
yond Hempel’s requirements. Eells distinguishes between two different species of
accounts of both kinds, encompassing “actual” frequency and “hypothetical” fre-
quency concepts as well as “long run” and “single case” conceptions of causal
propensities. Eells argues that, while all of these views can be formulated in such a
way that they satisfy formal conditions of admissibility and syntactical determinacy,
none of them can successfully satisfy both the conditions of conceptual adequacy
and of independent understanding, where to the extent to which they satisfy one
of these conditions, they fail to satisfy the other. He draws parallels with devel-
opments in modal logic and possible-worlds semantics to suggest that frequency
interpretations as species of correlations cannot satisfy the conditions for qualifying
as candidates for natural laws, while propensity interpretations, although plausible
candidates for natural laws, are unable to satisfy the conditions of independent un-
derstanding in relation to the semantics they imply.
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Part I: Alternative Conceptions of Probability

Probabilistic Causality and Causal Generalizations

Daniel M. Hausman

Other important questions are raised by Daniel Hausman in the context of some of
the special sciences, such as economics. He suggests that the truth of causal general-
izations, such as “Smoking causes lung cancer”, are independent of (what he calls)
“metaphysical questions” concerning the nature of probabilistic causal relations like
those described in quantum physics. Causation is a three-place relationship between
a cause C, an effect, E, and a set of causally homogeneous background conditions,
K. Even if this relationship were deterministic in the case of smoking and lung
cancer, the relevance of smoking to cancer would still depend on the background
conditions, which may in turn differ from person to person. In some people smoking
could be a deterministic cause of lung cancer, while it is irrelevant or even a pre-
ventative in others. Whether the causal relations between smoking and lung cancer
are indeterministic, in his view, is irrelevant. Not knowing the relevant factors in the
background conditions or the facts about individual, the generalization, “Smoking
causes lung cancer”, expresses an average tendency.

There are various kinds of “averages”, of course, including means, modes, and
medians, where a football team could average 200 lb per player when, in fact, no
member of the team weighs 200 lb. In some contexts this may matter more than in
others. He also draws various distinctions between “relevance” and “roles”, where in
relation to a person’s death, a poison and its antidote may both be relevant in making
a difference to their death, while their roles are opposite, since one promotes death
and the other inhibits it. Practical causal generalizations are, of course, concerned
with causal role. He also discusses the difference between “variables” and “values
of those variables”, “homogeneous” and “heterogeneous” circumstances, and the
“type/token” distinction, which he takes to be especially important in this context.
His attention is mainly focused on (what he calls) “practical causal generalizations”,
which may include ceteris paribus clauses, typified by the claim, “(Wearing) seat-
belts saves lives”, which is usually true but sometimes not.

Hausman criticizes the views of Patrick Suppes, Nancy Cartwright, Paul
Humphreys, Ellery Eells, and John Dupré, on the ground that they conflate the
problem of specifying what it is for C to be a cause of E within some causally
homogeneous background with the different problem of explicating causal general-
izations concerning heterogeneous circumstances. He criticizes Suppes, Cartwright,
Humphreys, and Eells, on the one hand, for assuming that practical causal general-
izations make claims about indeterministic causation, and he criticizes Dupré, on the
other, for making the opposite mistake of supposing that probabilistic causation is
just a matter of averaging effects across heterogeneous background circumstances.
Statistical generalizations across conditions that are not homogeneous could reflect
either the operation of multiple but different deterministic causes or the operation
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of multiple indeterministic causes – or some combination both of deterministic and
of indeterministic causes. But his analysis is meant to separate distinct problems
rather than to resolve them.

The Possibility of Infinitesimal Chances

Martin Barrett

Among the more subtle but fascinating questions that arise within this context is
the possible distinction between impossibilities and improbabilities of the value of
zero. There are different modes of modality, of course, including those of logical
possibility/impossibility/necessity, physical possibility/impossibility/necessity, and
historical possibility/impossibility/necessity, where events satisfy corresponding
conditions when their occurrence is consistent with/inconsistent with/required by
the laws of logic, the laws of nature, and the history of the world up until some
particular time, respectively. In the discussion of alternative interpretations of objec-
tive probability, where hypothetical frequencies and causal propensities are under
consideration, the idea of identifying “chance 0” with physical impossibility and
“chance 1” with physical necessity appears to be appealing. As Martin Barrett
explains, formal difficulties arise when we combine this idea with a picture of a
symmetrical space including an infinite number of outcomes and with standard
axiomatizations of probability. Which means that interpretations that incorporate
definitions of this kind are not even admissible.

One type of modern approach to these difficulties involves the notion of in-
finitesimal probabilities and nonstandard analysis in mathematics. Barrett describes
the issues, attempted “infinitesimal/non-standard analysis” resolutions and techni-
cal difficulties that seem to have been overlooked by proponents of such resolutions.
The approach follows an idea of David Lewis, who suggests that “zero chance” is
no chance and that nothing with zero chance ever happens, identifying zero chances
with physical impossibilities. He then treats “infinitesimal chance” as some chance.
The treatment of infinitesimals in this fashion, Barrett observes, would potentially
be welcomed by both classical and Bayesian statisticians, because classical statisti-
cians cannot form likelihood ratios with zero probabilities and Bayesian statisticians
cannot condition on learned propositions of probability zero. So there are positive
reasons that motivate exploring whether or not using infinitesimal probabilities can
produce a suitable probabilistic mathematics.

Application of these modern mathematical ideas to the problem in question, it
turns out, is not as straightforward as one assume. Barrett argues that, however at-
tractive the idea may appear, there are no suitable regular probability distributions
with infinitesimals. On perfectly general grounds, he offers a proof that a suitable
probabilistic mathematics requires differentiating zero probabilities from impossi-
bilities. However plausible it might appear to have every value for the probability
of a possible event in the [0,1] interval a positive, if infinitesimal, value, at least one
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such value in [0,1] must be zero. While Barrett’s paper is highly technical mathemat-
ically, many parts are “reader-friendly” and accessible, with important implications
for understanding probability in several contexts, including its role within decision
theory in particular.

Probabilistic Metaphysics

James H. Fetzer

The criteria of adequacy that Salmon (1967) proposed were: (a) admissibility, where
relations characteristic of mathematical probabilities (principles of summation, and
multiplication, for example) must be satisfied; (b) ascertainability, where it must be
possible to subject probability hypotheses to empirical evaluations using statistical
tests; and (c) applicability, where the values of probabilities must be predictively sig-
nificant for the long run, the short run, and the single case. James Fetzer argues that
the single case propensity conception, according to which physical probabilities are
probabilistic dispositions to produce (or “bring about”) specific outcomes on single
trials, can satisfy these criteria, where “long runs” and “short runs” are envisioned
as infinite and finite sequences of single cases, but not conversely. Assuming they
are equal and independent, this conception justifies classic statistical theorems, such
as the Bernoulli and the central limit theorem, relating propensities and frequencies.

Thus, relative frequencies with specific values are the expectable outcomes of
single-case propensities with similar values when they are subject to numerous
repetitions. The values of these causal tendencies are the objective properties that
can explain the occurrence of corresponding relative frequencies. And observed
relative frequencies can provide suitable empirical evidence for statistical tests of
propensity hypotheses, especially within the framework of “inference to the best
explanation”, to which we shall return. In abbreviated form, therefore: propensi-
ties can predict frequencies; propensities also explain them; and frequencies are
evidence for propensities. The single-case conception, unlike any short or long run
alternative, applies no matter whether the world’s history is short or is long. And,
unlike hypothetical frequency interpretations, it provides an ontological justifica-
tion for specific distributions over hypothetical extensions of the world’s history by
subjunctives and counterfactuals.

In collaboration with Donald Nute, Fetzer developed a possible worlds seman-
tics to capture the formal properties relating propensities and frequencies (Fetzer
and Nute 1979, 1980). Based upon the conception of permanent properties and dis-
positions, they elaborated a semantics that employed infinite sequences of infinite
sequences in order to illustrate that single case propensities no longer guarantee
that long run frequencies must occur with limits that equal their generating propen-
sities, but that such outcomes are overwhelmingly likely for the vast majority of
infinite sequences on the basis of the kinds of normal distributions that are statis-
tically to be expected. Indeed, this semantics invited Eells’ objection that, without
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some principled method for ordering the members of the infinite set of infinite se-
quences, any distribution could be produced. Fetzer’s response, in principle, is that
we do not have access to any such infinite sequences in any case, where what we
mean by propensity hypotheses has to be established by stipulations that distinguish
between them, as he does here. The semantics thus illustrates the expectable conse-
quences across infinite sequences of infinite sequences.

Part II: The Objectivity of Macro-probabilities

Chance and Necessity: From Humean Supervenience
to Humean Projection

Wolfgang Spohn

The paradigm endorsed by Wolfgang Spohn affirms the existence of deterministic
laws, where a state of affairs is physically necessary if and only if its occurrence
is completely determined by its past. These laws generalize over their instances so
that a state of affairs is also physically necessary if and only if its occurrence is
entailed by the laws and its past. A state of affairs is chancy, by contrast, when
its occurrence is only partially determined by its past “to some degree”. Objective
probabilities may be appropriately envisioned as single-case propensities, but of a
special kind, namely: as “propensities of the entire world as it has developed up to
now to realize not only this or that current state of affairs, but in effect this or that
entire future evolution.” Although this approach may exercise a certain attraction,
it appears to disregard the evident consideration that only some, but not all, of the
features of the world make a difference to specific outcomes, which means that most
of the features of the past do not exercise any causal influence upon present events.
Indeed, propensities satisfy the Markov condition where present causes bring about
present effects (Fetzer 1983).

Spohn is not alone in advancing this conception, however, which is also found
in the work of David Lewis, among others. He endorses Lewis’ Principal Principle,
which holds that, when the chance for an outcome happens to be known, then our de-
gree of belief in the occurrence of that outcome should have the same value. He thus
relates objective probabilities as single-case propensities to subjective probabilities
as degrees of belief. Relative to Schema S above, this means that, if a probabilistic
law of the form, “P .B=A/ D p”, happens to be known, then the probability of the
logical link between the explanans and the explanandum, [p], should have the same
value. Indeed, when the value of [p] equals the value of p, under the same complete
sets of initial conditions, it is appropriate to envision [p] as a logical probability,
which both denotes the relative frequency with which explanandum events of that
kind will tend to occur but also denotes the degree of entailment with which that ex-
planandum may be said to “follow from” that explanans. When there is a deviation



Introduction xxiii

between them, then the value of [p] represents a subjective probability, where the
distance between them measures the extent to which subjective beliefs depart from
objective expectations.

He raises many interesting questions and makes many valuable points in dis-
cussing the nature of Humean supervenience, which establishes an ontological
foundation for drawing inferences about the future on the basis of knowledge of
the past. His denial of the criterion of unification as the basis for identifying laws of
nature – for which the laws of nature correspond to the theorems that are derivable
from the simplest and strongest systematization – seems to be especially well-
taken. He also denies Humean supervenience, maintaining that, even given complete
knowledge of particular facts, it is “actually unfeasible to precisely detect chances”.
Without attempting to summarize the subtle and complex issues that he addresses,
it may be worth noting that the kind of minimal-change possible-world semantics
that Lewis and others endorse may not be the appropriate kind of semantics for sci-
entific conditionals as singular sentences and generalizations attributing subjunctive
and counterfactual properties and relations to objects and events in the world. When
the antecedents of nomological conditionals are required to satisfy a requirement
including the presence and the absence of complete sets of relevant conditions, in
relation to which the propensities of their outcomes are constant, maximal-change
semantics may be preferable (Fetzer and Nute 1979, 1980).

Evolutionary Theory and the Reality of Macro-Probabilities

Elliott Sober

Elliott Sober offers an extensive exploration of the philosophical consequences of
the thesis of “mereological supervenience”, according to which the precise prop-
erties that all micro-particles have at any specific time uniquely determine the
properties that all macro-objects have at that same time. It is a form of part/whole
supervenience, for which “micro determines macro”. With respect to the converse
relationship in which macro determines micro, Sober assumes that specific macro-
states are often multiply-realizable at the micro-level. Thus, the temperature of a
gas might be brought about by different distributions of its kinetic energy to its
constituent molecules. Another would be that the same beliefs might be stored as
mental dispositions in different fashions in different brains. Sober gives the problem
a “probabilistic twist” by translating it into an analysis of the relationship between
micro-probabilities and macro-probabilities.

If an event has the same probability, regardless of whether we conditional-
ize on the macro-state or the micro-state of the system, where their probabilities
agree, then it is permissible to use the macro-probabilities for rendering predictions.
If the macro- and micro-probabilities disagree, however, the micro-probabilities
ought to be preferred if the micro-description entails the macro-description. Both
principles may be regarded as based upon the epistemic requirement of total
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evidence. However, these principles might also be construed as jointly implying
that micro-probabilities have an ontic status that macro-probabilities cannot equal,
where, when they have divergent values, the macro-probabilities should not be
supposed to describe “objective matters of fact”. Sober takes his purpose to be to
demonstrate that this inference is not correct and that a more adequate ontology
vindicates the objectivity of macro-probabilities.

There are interesting questions about ontology that arise if “macro-probabilities”
are interpreted as frequencies and “micro-probabilities” as propensities, but Sober
does not pursue them here. He argues that indeterminism “percolates up”, mean-
ing that indeterminism at the micro-level entails indeterminism at the macro-level.
He also maintains that, when the macro-probabilities are fixed, they almost never
“screen off” the micro-probabilities, unless those macro-probabilities happen to be
deterministic. This outcome, Sober contends, undermines an influential argument
for reductionism advanced by Hilary Putnam. The kinds of cases that concern him
the most, however, arise within the philosophy of biology, where he argues against
the thesis that an organism’s phenotype “screens off” its genotype from the organ-
ism’s survival and reproductive success. An important dimension of his study is
his discussion of differences between explanations and predictions in relation to
macro-probabilities that matter in evolutionary contexts.

Is Evolution an Optimizing Process?

James H. Fetzer

While Sober emphasizes that evolutionary theory is “awash with probabilities”, he
does not commit himself here to one or another interpretation of probability as
an objective property of the world. Fetzer, by comparison, advances an analysis
of the hypothesis that natural selection qualifies as an optimizing process, which,
he contends, cannot be sustained on the basis of either frequency or propensity
conceptions. Thus, optimizing processes characterize systems that invariably se-
lect solutions to problems that are at least as good as any alternative solution, while
satisficing processes characterize those that select solutions that are “good enough”
but which may have alternatives that are even better. Since the values or utilities that
matter within the context of evolution are those of survival and reproduction, one
organism may have “higher fitness” than another when it has a higher probability
of offspring reproduction than does another. Since nature cannot be expected to se-
lect solutions to problems that are not available, the question at stake should be in
relation to existing gene pools and environments.

Whether or not optimizing may be realized in nature becomes much easier to
assess when the conditions that it requires are made explicit. These conditions de-
pend upon gene expression and the mechanisms of genetic change in populations.
Of particular importance are the rate at which selection can alter the genetic struc-
tures, the amount of additive genetic variance present at the start, gene flow, the rate
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at which conditions change, and the random effects that affect the process, including
genetic drift. Most optimality models presume sexual reproduction and the absence
of pleiotropic effects, where changes in single genes can affect multiple traits. More
importantly, however, the emergence of optimal traits requires infinite time and infi-
nite populations. Which means optimality models provide idealized conceptions of
what might happen “in the long run” if these conditions were ever satisfied rather
than a descriptive explanatory framework for understanding evolution. A satisficing
model, by contrast, provides a foundation for envisioning the emergence of opti-
mal adaptations as a potential “long run” product of a “short run” process operating
across finite populations and times.

The benefits of this exchange of paradigms would appear to be profound. If op-
timal adaptations only emerge as special limiting cases under idealized conditions,
then it should be apparent that the products of evolution that emerge during any
merely finite segment of the history of the world are never optimal, unless they hap-
pen to have appeared by virtue of fortuitous conditions that may have occurred by
chance or by design. If this is indeed the case, then satisficing appears to be the
strongest conception that generally applies. Fetzer argues further that envisioning
optimizing in terms of hypothetical long-run frequencies does not salvage the
situation, where the most promising approach to understanding probabilistic evo-
lutionary phenomena arises from adopting the single-case propensity conception,
which applies no matter whether the world’s history is short or is long. Correctly un-
derstanding fitness as a propensity, however, requires an appreciation that “higher
fitness” as a propensity does not guarantee a positive correlation between fitness
and reproductive success. It also affords a framework for understanding the role
of causal propensities as basic features of the world’s structure that contributes to
objectivity and realism in science.

Part III: Probabilities as Explanatory Properties

Propensity Trajectories, Preemption, and the Identity of Events

Ellery Eells

Eells elaborates and defends a propensity theory of singular causation based upon
five principles. First, it is a theory of singular causation, by which he means that
it applies to specific individual cases (say, “Harry’s smoking caused his heart at-
tack” as tokens or instances of type generalizations, such as “Smoking causes heart
attacks”). Second, events are understood very broadly as exemplifications or instan-
tiations of properties at specific places and times (which will be formalized as “Xx”,
where “x” stands for a place/time tuple; alternatively, they could be formalized as
“Xxt”, where “x” stands for a thing and “t” for a time). Third, this is a probability-
increase theory, but not in the ususal type-level sense, where only factors that bring
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about increases in the probabilities of outcomes qualify as causes. Instead, this ac-
count focuses upon the actual evolution of the probability of specific token effects
from the beginning of the instantiation of their specific token causes. A probability
trajectory, therefore, is the shape of the time/probability graph that represents these
changes across time.

The conception of probability that he embraces here makes probabilities relative
to populations of different kinds. So the incidence of heart attacks among humans
will differ from its incidence among laboratory smoking machines. Fourth, he of-
fers two qualifications, where one is intended to cope with “spurious correlations”
in which the apparent relations between events may be brought about by a common
cause; and the other is intended to define “positive”, “negative”, and “neutral” causal
factors in relation all causal background contexts and where those that occur in some
but not in others are called “causally mixed”. Fifth, he introduces terminology and
constraints to capture the token-level evolution of trajectory values. He distinguishes
between four kinds of causal significance, which he labels “because of”, “despite”,
“independently of”, and “autonomously of”, respectively. This apparatus thus al-
lows him to explore multiple applications of this conception of probability to issues
of causation and explanation.

One kind of problem Eells discusses is that of causal preemption, where there
may be more than one apparent “explanation” for an outcome and it becomes impor-
tant to differentiate between them. If two persons want to kill another as he sets forth
to cross a desert, one of them might poison his water, while the other punctures his
canteen. Although the poisoned water drains out, the lack of water causes his death.
He demonstrates that the propensity trajectory theory offers the right solution, since
it establishes that his death by dehydration was causally independent of the poison
in his canteen. Poisoning the water thus turns out to be causally irrelevant to this
death. If the man had drunk the poison before his canteen ran dry, of course, then
the poison would have made a difference and might have caused his death. Thus,
in this case, the cause of death was by dehydration despite the canteen having been
poisoned. And he demonstrates that similar appropriate results occur from the ap-
plication of this theory not only to cases of preemption but also of symmetrically
overdetermining events. His study thus provides strong conceptual support for the
propensity trajectory conception.

Miraculous Consilience of Quantum Mechanics

Malcolm R. Forster

Malcolm Forster focuses upon Occam’s Razor as a rule of thumb that maintains
that, in the search for truth, “Entities are not to be multiplied beyond necessity”.
The meaning of this principle has invited alternative interpretations, where Forster
raises several interesting questions, such as “Do probabilities qualify as entities?”
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and, if so, “Should probabilities not be multiplied beyond necessity?” He applies
Occam’s Razor to probabilities relative to double-slit experiments in quantum me-
chanics, which leads to false predictions Yet he discovers that quantum mechanics
appears to be parsimonious with respect to other kinds of entities. He also discusses
the Bell theorem, which has been widely assumed to establish there are no “hidden”
variables that affect outcomes in quantum mechanics that would turn indetermin-
istic phenomena into deterministic phenomena and has led some, such as Bas van
Fraassen, to argue that there are no causal explanations for at least some quantum
phenomena.

A student of William Whewell, Forster elaborates upon his consilience of induc-
tions, emphasizing how “good theories” not only relate themselves to the data in a
narrow domain but also “tie together” results in other domains. This occurs when
either (a) the theory accommodates one kind of data and predicts data of yet an-
other kind or (b) the theory accommodates data of two different kinds but yields
results that reveal constants or laws that tie them together. His primary objective in
this paper is to demonstrate that quantum mechanics can be viewed as achieving a
consilience of the kind Whewell had in mind. This, he argues, is a suitable “starting
point” for the development of a realist interpretation that is “more parsimonious”
than any hidden variable interpretation of the same phenomena. And he suggests
that the consilience of inductions provides a criterion for the applicability or not
of causal explanations, which leads to the conclusion that causal explanations can
be “ruled out” for at least some quantum mechanical phenomena. But of course it
depends upon the meaning of the phrase, “causal explanation”, where there may
be other kinds of probabilistic causal explanation that do apply to these quantum
phenomena.

Those who adopt the view that “God does not play with dice!”, as Einstein report-
edly observed, are inclined to construe probabilities in quantum mechanics simply
as “measures of ignorance”, where future discoveries may well reveal the deter-
ministic mechanisms that underlie our probabilistic descriptions. Bohr, by contrast,
thought that the indeterminacies reflected by the laws of radioactive decay, for ex-
ample, are permanent features and are not going to be replaced, no matter how much
more we learn about the world. In discussing the double-slit experiment and the un-
certainty principle, Forster contends that modeling in quantum mechanics is very
different from curve fitting because it relies upon operators rather than variables.
Possibly hidden variable theorists have failed to show that quantum probabilities
are measures of ignorance, not because there are no “hidden factors”, but because
those factors cannot be represented as variables. He also contends that a new geo-
metrical interpretation of quantum mechanics better explains the use of operators in
quantum theory and may eventually succeed in providing a realist interpretation of
quantum phenomena, where probabilities in quantum mechanics really are simply
measures of our ignorance.
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Probability and Objectivity in Deterministic
and Indeterministic Situations

James H. Fetzer

It appears to be rather difficult to defend a realist interpretation of quantum proba-
bilities in the absence of an exploration of the alternative possibilities for fulfilling
that role. Fetzer contends that, among the three most prominent interpretations of
probability – the frequency, the subjective, and the propensity – only the third
accommodates the possibility of providing a realist interpretation of ontic inde-
terminism. He discusses the criterion of reality introduced by Einstein, Podolsky,
Rosen, according to which, if, without disturbing a system, we can predict with
certainty the value of some physical quantity, then there is an element of physical
reality corresponding to that quantity. And he explains why this formulation appears
to be flawed by covert commitments to determinism, according to which, if we can
predict every attribute of a system S for every moment t with certainty, then (a) our
description of S is complete and (b) S is governed by strict causal laws. If determin-
ism is built into a criterion of reality, after all, indeterministic phenomena are not
going to qualify, no matter how real.

He offers an alternative formulation that creates the opportunity for at least some
of the phenomena of physics to be both indeterministic and real, by asking whether,
if, without in any way disturbing a system S, we can predict, not with certainty but
with some probability less than 1, the value of a physical quantity, can there not
still exist some element of physical reality corresponding to that physical quantity?
Einstein’s criterion as a sufficient condition for the existence of an element of reality,
after all, should not be confounded with, say, a sufficient definition as the weakest
criterion of reality, which would pose both a necessary and a sufficient condition
for existence as an element of reality. For ontic indeterminism to be theoretically
possible, it must not be logically inconsistent to suppose (a’) that our description
of S is complete even though (b’) the system S is not governed by “strict causal
laws”. Indeed, it is crucial to realize that the laws involved here can be causal even
though they are not strict, because they reflect irreducibly probabilistic causation,
not epistemic indeterminism.

Fetzer argues that, across a broad range of quantum phenomena, only one of
the three approaches can accommodate both explanatory and predictive kinds of
indeterminism. The frequency criterion of statistical relevance, for example, de-
mands that properties that make a difference to the frequency with which specific
outcomes occur have to be taken into account; but since every event happens to
be unique, rigorous application of that criterion produces only degenerate proba-
bilities of zero or of one for any outcome. It therefore cannot accommodate either
predictive or explanatory indeterminism. The subjective criterion of evidential rel-
evance, by contrast, can accommodate predictive indeterminism by virtue of an
absence of knowledge, but once the occurrence or non-occurrence of an event be-
comes known, its subjective probability necessarily becomes equal to zero or to
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one. Hence, it can accommodate predictive indeterminism but not explanatory in-
determinism. Only the propensity interpretation permits probabilistic hypotheses
assigning non-degenerate probabilities to known or unknown outcomes to be true.
The propensity approach thus qualifies as the only account that provides the foun-
dation for a realistic interpretation of fundamental quantum phenomena.

Part IV: Probabilities in Inference and Decision

How Bayesian Confirmation Theory Handles
the Paradox of the Ravens

Branden Fitelson and James Hawthorne

In addition to its role in philosophical endeavor to understand the “chanciness” of
the chancy character of the world, the concept of probability has also been impor-
tant in philosophy in relation to the endeavor to understand the nature of rational
inference and rational decision. The theory of rational inference, for example, en-
compasses the phenomena of “theory choice” and of “hypothesis confirmation” in
the philosophy of science, while the theory of rational decision also encompasses
choice between laws and theories, especially principles widely assumed required
to understand economic, social, and individual behavior. In the logic of hypothesis
confirmation, two general kinds of question arise: (1) Which of two different pieces
of evidence, call them “e” and “e”’, confirms a given hypothesis h more than the
other, and why?; and (2) Which of two hypotheses, h and h’, does given evidence e
confirm more than the other, and why? A famous problem related to the first kind of
question is Hempel’s “paradoxes of confirmation”, also known as the “raven para-
dox” and now as “Hempel’s paradox”. A famous example of the second kind of
problem is Nelson Goodman’s puzzle about the predicates “grue” and “bleen”. puz-
zle. Fitelson and Hawthorne attack the first.

Fitelson and Hawthorne advance a new “Bayesian” approach employing subjec-
tive probabilities to resolve the paradox. A natural idea for the theory of confirma-
tion of hypotheses is that a statement or hypothesis of the form, “All Fs are Gs”, is
confirmed by the observation of things that are both F and G. Another natural idea
is that, when evidence e confirms an hypothesis h and that hypothesis h is logically
equivalent to another hypothesis, h’, then e also confirms h’. Hempel noticed that
the hypothesis, “All ravens are black”, in standard extensional logic, turns out to be
equivalent to the hypothesis, “All nonblack things are nonravens”. The original for-
mulation of what is presumably the same hypothesis should therefore be confirmed
by the observation of a black raven, while the second would be confirmed by the
oberation of a nonblack non-raven, such as the space between this and the next sen-
tence of this book. But if logically equivalent hypotheses are confirmed by the same
evidence, then observing the space between these sentences should not only confirm
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the hypothesis that non-black things are non-ravens but also its logical equivalent
that all ravens are black.

Fitelson and Hawthorne pursue the application of probabilistic, Bayesian confir-
mation theory to this paradox, motivated by the belief that, while observations of
nonblack nonravens confirm the hypothesis that all ravens are black, the degree to
which they do so is minuscule in comparison to the degree to which observations of
black ravens confirm the hypothesis. While others have also taken this path, they ad-
vance a novel variation that appears to be more promising. Fitelson and Hawthorne
provide a very meticulous description of the paradox, including the assumptions,
the arguments, and the conclusions involved. While all Bayesian/probabilistic ap-
proaches to the problem identify specific sufficient conditions on probability func-
tions that support intuitively correct answers, the Fitelson–Hawthorne approach is
to “zero-in” upon less restrictive sufficient conditions, which makes their position
both technically and philosophically interesting, while offering a real advance over
other proposed probabilistic solutions.

Learning to Network

Brian Skyrms and Robin Pemantle

The theory of choice includes scientific theory choice and the theory of individual
decision in ordinary contexts in general, but also the choice of strategy when there
are multiple agents or decision makers, who may be cooperating or even competing.
In the theory of choice, the focus is upon rationality of action as a relation between a
person’s behavior and their beliefs, desires, and preferences. It is prescriptive rather
than descriptive. In a formal theory of rational choice, beliefs are typically mod-
eled by subjective probability assignments, desires by numerical utility functions
(which attach to potential outcomes of possible actions dependent upon states of
the world). Preferences between alternative outcomes and the expected utilities of
actions that might be adopted are supposed to arise as a function of personal prob-
abilities and subjective utilities. In what are called “strategic” or “game theoretic”
contexts with multiple agents or “players”, the participants may also anticipate one
other’s moves.

An important concept is that of the “Nash equilibrium”, where no player can do
any better by switching their choice as long as none of the others do so. However,
the tools of formal game theory have application outside the realm in which delib-
erate choices are made on the basis of conscious consideration of probabilities and
utilities. In their paper, for example, Brian Skyrms and Robin Pemantle investigate,
from a probabilistic, game theoretic point of view, the explanation and evolution of
actual behavior patterns of individuals (or of how one individual behaves towards
others) within a species (or more generally, within any group of individuals) on
the basis of what they take to be two basic factors, namely: (i) the history of out-
comes of specific interactions with other individuals with whom given individuals
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have interacted in the past; and (ii) the strategies adopted by the individuals under
consideration, where (i) and (ii) can change as time goes by. Of course, the history
of interactions among individuals will be different as time goes by, but the strate-
gies employed can change, for example in response to previous interactions. The
situation is therefore dynamic.

Skyrms and Pemantle employ the tools of formal game theory in their investiga-
tion. Three of the most salient features of their investigation are, first, their approach
is probabilistic rather than deterministic; second, their approach does not require the
adoption of personal probabilities as subjective “degrees of belief” but is developed
on the basis of “probabilities” and “utilities” as a game-theoretical framework for
explaining the evolution of patterns of behavior; and, third, their mathematical ap-
plication of the idea of dynamics in their analysis includes the use of computer
simulations of histories of interaction and histories of strategy choice with the aim
of investigating how these two factors interact. The result is a broad framework for
the study of the evolution of group and even species behavior, which is normative
in character but also explanatory when the assumptions on which it is based hap-
pen to be satisfied by the members of those groups and the populations of those
species.

Probabilities in Decision Rules

Paul Weirich

In “classic” Bayesian decision theory and subjective probability theory, persons who
are rational are assumed to possess “degrees of belief” that satisfy some standard
axiomatization of probability. (Degrees of belief that accommodate this condition
are often referred to as “personal probabilities” rather than merely “subjective”.)
This is clearly an idealization, however, which is seldom completely satisfied. One
standard axiom of probability, for example, maintains that the probability of any
logical truth is equal to unity (when “probability” is understood as taking proposi-
tions as objects to which it may be assigned). Interpreted subjectively as “degrees
of belief”, this means that any agent who qualifies as “rational” would have to have
the degree of belief of unity in any proposition that qualifies as a logical truth, no
matter how complicated the proposition or the language in which it is expressed.
That would encompass an infinite number of propositions of arbitrary complexity,
a requirement that humans with finite capacities cannot be expected to satisfy. It
represents an idealization.

Another standard axiom (called “additivity”) is that the probability of any dis-
junction of the form, “p or q”, is equal to the sum of the probabilities of those
disjuncts, “p” and “q”, when p and q are logically incompatible. Interpreting “prob-
ability” subjectively, this would seem to imply that rational agents must be sensitive
to all possible logical incompatibilities in order for their subjective probabilities to
satisfy this requirement. Again, of course, this is not a realistic expectation for any
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human mind, yet we would not want to consider most humans as “irrational” on
that account alone. Paul Weirich suggests that a promising way to make the theory
of subjective probability more realistic and evaluations of the rationality of deci-
sions more fair or reasonable is to envision degrees of belief as attaching not to
propositions, strictly speaking, but to each agent’s way of “grasping” them. Since
propositions are expressed by sentences, not only can two sentences be “grasped”
as expressing the same proposition but, in different contexts, the same sentence can
be used to convey different propositions.

No doubt, theories of rationality of belief as well as of rationality of action, like
those of optimality in evolution, need to accommodate more realistic conceptions
in which satisficing standards are generally applicable and maximizing the excep-
tion. Weirich investigates the idea of what might be called the “forgiveness” of even
ideally rational agents to “grasp” the same proposition in different ways, and he
suggests relativizing the rationality of decisions to an agent’s assessments of proba-
bilities of propositions in relation to the way in which they are actually grasped. He
argues that this has the effect of generalizing the way in which the principles of sub-
jective probability are to be understood, where the usual understanding is a special
case. It certainly comes closer to reflecting the conditions of real human behavior.
And he develops his own and others’ thoughts about how to make rational decision
theory and the theory of rational degrees of belief more realistic, less idealistic, for
actual human contexts.

Epilogue

Propensities and Frequencies: Inference to the Best Explanation

James H. Fetzer

Fetzer elaborates an approach toward inference to the best explanation integrating a
Popperian conception of natural laws together with a modified Hempelian account
of explanation, one the one hand, and Hacking’s law of likelihood (in its nomic
guise), on the other, which provides a highly robust abductivist model of science
that appears to overcome the obstacles encountered by its inductivist, deductivist,
and hypothetico-deductivist alternatives. This philosophy of science clarifies and
illuminates some fundamental aspects of ontology and epistemology, especially
concerning relations between frequencies and propensities. Among the most im-
portant elements of this conception is the central role filled by degrees of nomic
expectability in explanation, prediction and inference, for which this investigation
provides a theoretical defense.

Thus, when scientific conditionals are understood as logically contingent sub-
junctive conditionals that attribute “permanent properties” to things that possess
appropriate reference properties, both probabilistic and deterministic causal laws
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have the form of logically unrestricted generalizations. It is no longer a question of
what percent of the reference class possesses the attribute of interest, but a matter
of the strength of the causal tendency possessed by every member of that reference
class. Permanent properties thus both explain and justify attributions of susperve-
nience. Explanations differ from predictions insofar as explanations are adequate
only when the properties they cite are restricted to those that are causally (more
broadly, nomicly) relevant, but predictions can be adequate even when they are
based upon causally (nomicly) irrelevant properties. While satisfying the require-
ment of maximal specificity (by specifying complete sets of relevant properties) is
a necessary condition for the truth of lawlike sentences, the adequacy of explana-
tions requires satisfying the condition of “strict” maximal specificity as well (by
excluding explanatorily irrelevant properties).

These considerations have ramifications for the application of the Principal
Principle. Knowledge of laws of nature, which cannot be violated and cannot be
changed, takes predictive primacy over knowledge of relative frequencies that have
obtained in the past. When we possess knowledge of single-case propensities, there-
fore, they ought to determine the values of corresponding degrees of belief for
inference and decision. When knowledge of single-case propensities is unavailable,
however, then degrees of belief should be determined by beliefs about corresponding
relative frequencies. In cases where neither knowledge of single-case propensities
nor knowledge of relative frequencies happens to be available, however, then de-
cision making depends upon hypothetical reasoning or educated guesswork, where
rationality of action tends to be decoupled from rationality of belief. Actions taken
under conditions of this kind are not only extremely risky but are subject to the
influence of psychology and ideology.

Significantly, the permanent property relation guarantees that, if a specific thing
c of kind R has an attribute A as a permanent property by virtue of being a thing
of kind R, then every thing x of kind R must have that same permanent prop-
erty. And this implies that, in the case of permanent properties, inferences from
specific instances to universal generalizations are valid (Fetzer 1981, p. 53). The
empirical testability of lawlike hypotheses, moreover, establishes a foundation for
resolving the problem of induction. With respect to the class of presumptive laws
of nature, in particular, even if the world is as we believe it to be in these specific
respects, there remains the logical possibility that it might change in the future. But
if the world is as we believe it to be in these specific respects, it is not physically
possible that it might change in the future. Which suggests, in turn, that certain clas-
sic philosophical problems about dispositions, probability, causation, and laws may
have remained unresolved because methodological commitments to extensional lan-
guages and truth-functional logic have inhibited the adoption of more adequate but
non-standard and intensional solutions.

Ellery Eells and James H. Fetzer
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Ellery Eells (1953–2006)

Malcolm R. Forster

Professor of Philosophy, University of Wisconsin-Madison, until his untimely death
on August 10, 2006, at the age of 52. He is survived by his wife, Joanne Tillinghast,
son Justin, daughter Erika, father Thomas Eells, as well as three brothers and two
sisters.

Born and raised in Los Angeles, Ellery completed all his education in California.
First he went to Santa Barbara to study philosophy and mathematics, graduating as
Outstanding Graduating Senior in Philosophy in 1975.

After that, he moved further north to the University of California, Berkeley, to
earn a Ph.D. in philosophy in 1980. Except for a one-year visiting position at North
Carolina State University, Ellery’s entire working career was spent at the University
of Wisconsin-Madison, from 1980 to the present.

Ellery first gained major recognition in philosophy from his book, Rational
Decision and Causality (Cambridge University Press). The book was published in
1982 at the height of the uproar over Newcomb-style counterexamples to Bayesian
decision theory. In it, Ellery developed the entirely novel argument that Bayesian de-
cision theory can produce the same answers as the new causal decision theory so
long as deliberation is viewed as a dynamical process.

Besides spear-heading this new line of research in decision theory, his work
rekindled interest in old questions about the relationship between causality and
probability. The paper he published with Elliott Sober in 1983, called “Probabilistic
Causality and the Question of Transitivity” is still widely cited in this area.

Finally, this culminated in a major treatise called Probabilistic Causality in 1991.
In the meantime, he was publishing numerous papers in confirmation theory; per-
haps the best known is “Problems of Old Evidence”, which first appeared in the
Pacific Philosophical Quarterly in 1985. It has been reprinted twice since then.

Ellery won the American Philosophical Association’s Franklin J. Matchette Prize
for his book on probabilistic causality in 1995, after already receiving a John Simon
Guggenheim Memorial Foundation Fellowship, an ACLS award, and numerous
awards from the University of Wisconsin-Madison. More recently, he was elected
to the Governing Board of the Philosophy of Science Association.

He has always been tireless in his service to the philosophy of science commu-
nity, especially behind the scenes. For example, he normally wrote more than ten
reviews and referee reports per year. His life was dedicated to philosophy.

xxxvii
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To those who knew him personally, Ellery was a kind and gentle person, with a
quiet but cheerful demeanor. Academically, had an unparalleled patience for details,
which shows up very clearly in his published work. (He once told me that he had
never had a paper rejected for publication!) His patience made him popular amongst
the graduate students and colleagues who sought his expertise, and equally amongst
those who were novices in his field.

Ellery was the person with whom you’d want to share committee work; he was
hard-working and reliable, and would always have copious notes. When serving on
the admissions committee, for instance, Ellery was always able to summarize the
best points of every candidate. He was always looking for the good in everyone.

I feel privileged to have been his colleague, and his friend. A memorial session
for Ellery Eells has been organized for the Pacific APA meetings, San Francisco,
April 2007. The National Taipei University of Technology is opening a new re-
search center called the Ellery Eells Memorial Center for Philosophy of Science
and Professional Ethics.

University of Wisconsin-Madison Malcolm Forster



At the Memorial Gathering for Ellery Eells

Elliott Sober

We are here to mark a sad day, the death of Ellery Eells, by sharing with each other
the memories we have of Ellery.

My name is “Elliott Sober.” Ellery was my friend and he also was a wonderful
philosophical colleague. We read each other’s drafts of books and articles, talked
about projects, and wrote some papers together. When I think of the philosophical
work we did together, and of our time together just relaxing and enjoying each
other’s company – these are very happy memories.

Over our years working together, Ellery was a meticulous and penetrating critic
of the papers I was working on. And he was tireless. Ellery would find a problem
in an argument I was trying to develop, I would attempt to patch it up, and then he
would look at the revision. Sometimes it was the same old problem, still there; at
other times, my revision merely substituted a new problem for the old one that was
there before. Ellery would point this out with great tact and patience, and the process
would continue. When we academics get other academics to give us comments on
our work, we have to be careful not to try their patience. One read of a paper is
usually as much as we can expect. But Ellery was far more altruistic than this.

In 1987, Ellery and I travelled together to an international philosophy of science
congress in Moscow. We got to Moscow by a circuitous route, stretching out the
trip to visit some interesting places. We flew to Helsinki, then took an overnight
boat across the Baltic to St. Petersburg, and then we flew to Moscow. We spent a
week getting to Moscow and a week in Moscow, rooming together the whole time.
After we got back to Madison, Ellery and I would enjoy reminding each other of
little details from our trip. One of them involved an interpreter we had in Moscow;
he had excellent English, though he consistently confused the expression “thank
God” and “for God’s sake.” When the three of us got into a long line at a restaurant,
the interpreter said, “We have a long wait ahead of us, thank God.” And when we
finally reached the front of the line, he said “We’ll soon be having our meal, for
God’s sake.” Ellery was an excellent travelling companion. His good humor, his
noticing details, his pleasure at seeing new sights – all of these characteristics make

E. Sober (�)
Gates of Heaven, James Madison Park Madison, Wisconsin September 27, 2006

xxxix
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me smile as I remember our beat-up hotel near Red Square, our visit to a monastery
outside of Moscow, our walking around in the rain in a garden in St. Petersburg, and
our seeing Lenin’s body.

Ellery and I sailed together on Lake Mendota. Ellery learned to sail as a boy in his
father’s boat on Lake Arrowhead, near Los Angeles. I learned to sail after I started
teaching here by taking lessons at Hoofer’s, the student sailing club. When Ellery
and I were out on a sailboat, I was often struck by the difference between learning to
sail as a child and learning to sail as an adult. Ellery was relaxed while I was hyper-
alert. Ellery took his time to do things and he did them efficiently; I would rush and
bungle. Once we were out in the smallest boat that Hoofer’s has, the tech dingy, and
we were racing against another boat. Ellery and I lost because we changed course
too often. I say “we,” but maybe I should say “I,” because Ellery knew better than
to do this, but in his characteristically gentle way, he did not press the point. By
his example, not his words, Ellery impressed on me the virtues in sailing of “less
is more.” Another time, Ellery and I went out sailing with Ellery’s father. I recall
standing on the dock and losing hold of the rope. But there was no reason to panic
since Ellery’s father was in the boat and easily sailed it back to the dock. Why get
upset by such little things? Ellery did not, and he helped me learn not to do so.

Some of Ellery’s former students have sent me emails containing their thoughts
about Ellery. I’ll read these to you after others here have said what is on their minds.

Comments from Some of Ellery’s Former Students

1. Branden Fitelson (now teaching at University of California, Berkeley)

Ellery was a gentleman and a scholar. He was also one of my most cherished
mentors. I took my first course with Ellery in 1991. It was on confirmation theory.
I’m still working on that topic today, some 15 years on. That’s no coincidence. He
was pure gold. I often say to myself when preparing a lecture: “How would Ellery
explain this? There must be an easier and simpler way.” I’ll never forget his uncanny
ability to explain even the subtlest of concepts in the most simple and transparent
ways. He made his students believe that they could understand anything (and with
ease). Moreover, he never (not once in the time that I knew him) spoke in a disparag-
ing way about the views of another philosopher. On the contrary, he spent almost all
of his time in seminars reconstructing the views of others in the most charitable pos-
sible ways. Sometimes I wish he talked more about his own views. In this sense, his
influence on his students and colleagues was profound, despite his unassuming and
modest character. I think Alan Hajek summed things up beautifully in a recent email
message. I hope Alan doesn’t mind me including the following quotation here:

“When David Lewis died, I found some comfort in the fact that his work lives
on. The same will be true of Ellery. He was a model in this respect, too, as you
know. Again, his writings were right to the point – not showy or overblown, just
insightful and crystal clear. My only criticism of him, if that’s the right word, was
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that he seemed too modest to me. I wonder if he realized how good he was. One
rarely encounters that kind of purity of intellect and character. It’s something for us
to aspire to.”

I am organizing a memorial session for Ellery at the Pacific APA. I hope many
people will be there to honor his memory. Rest in peace, Ellery.

2. Will Seaman (now an engineer at Hewlett Packard in Seattle)

As a former student, I feel deeply indebted and grateful to Ellery for his limitless
patience and steady guidance through my graduate studies and dissertation. He was
open to my rather too expansive ambitions, allowing me to explore topics that I think
others might have discouraged, and he made no effort to push me in a direction or
line of thinking that was more congenial to his own. Where he was firm and resolute
was in his insistence that I not evade shortcomings in my reasoning and arguments,
forcing me to rework and rethink. Those flaws that persist in the work I did under
Ellery’s kind supervision are truly my own, duly noted by Ellery and reflecting both
his role as unrelenting advisor, but also his generosity and understanding of views
that diverged from his own. I feel so very fortunate and privileged to have had Ellery
as a teacher and advisor, and so terribly sad at the news of his death. I send my
deepest sympathy to his wife and children, to his family, and to his many friends at
this memorial gathering. We will all miss Ellery.

3. Mehmet Elgin (now teaching at Mula University in Turkey)

I am very sorry about Ellery’s death and for the loss that this represents for his
family, friends, students, and colleagues. Ellery was one of the smartest but also
one of the most modest people I have ever known. It is very sad that philosophy of
science has lost one of its most important figures. And it is doubly sad, since Ellery
could have added to the important philosophical contributions he has already made
some new and important contributions as well. As a last word, I can only say –
“Good Bye, Ellery.”

4. Kevin Brosnan (now teaching at University of California, Santa Cruz)

Ellery was one of the kindest, most gentle, and most generous people I have had
the good fortune to know. When I asked him recently to be a member of my thesis
committee, he agreed without hesitation, though he must have been feeling quite ill.
Although under no obligation to do so, he read my dissertation carefully and posed
detailed questions during my defense. Prior to this, he kindly agreed to attend a
presentation of mine in the department. He came, having read my paper, and again
raised insightful questions that helped me greatly. Over the years, no matter how
simple-minded and confused my questions, Ellery always took the time to answer
them thoroughly and thoughtfully, and without revealing how ill-conceived many of
them probably were. Ellery’s departure is a terrible loss to all of us. I will miss him
greatly.

5. Sara Chant (now teaching at University of Missouri)

I am really sad about the loss of Ellery. I spent a great deal of time with him. He
gave me a lot of encouragement and confidence about my work. And he was a really
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decent guy. He had a kind, gentle way about him, and his intellect was astounding.
He was funny too though I never really could figure out what would make him laugh.
He did laugh a great deal when I threatened to name my horse “Modus Pony”. It was
fantastic. After that, he would always ask about the animals and he would laugh as
he asked. He was a real sweetheart. I’ll miss Ellery a great deal.



Remembrances of Ellery Eells

Paul Weirich

Ellery and I entered the profession about the same time. We were both decision
theorists engrossed by Newcomb’s problem. Because we attended the same con-
ferences, we quickly met and began corresponding about our work. Ellery sent
me his dissertation. It was clear that his ideas would make a huge splash. What
a great moment when Cambridge University Press published Rational Decision and
Causation! It is a landmark publication in the vast literature on Newcomb’s problem.

Ellery was incredibly good at fielding questions after his conference presenta-
tions. He constructed detailed and precise arguments for novel ideas on the spot.
I was delighted when he volunteered to comment on an APA presentation of mine.
He made scores of insightful points and turned his excellent commentary into an
article for the Australasian Journal of Philosophy. Ellery was a steadfast source of
ideas and encouragement. He stimulated many of my thoughts about decision insta-
bility and helped me progress in the profession.

When Ellery earned tenure at the University of Wisconsin, he built a new house
there. Shortly after he and his family moved in, I remember talking with him on
the phone and pausing from time to time so that he could move the sprinklers that
were bringing newly sown grass seed to life. We shared stories about our families.
His deep attachment to his wife and children were very evident. Our long conver-
sation filled out my portrait of Ellery. It enriched my life to share that happy time
with him.

I owe a lot to Ellery as a philosopher and a friend and miss him dearly. He was a
prince.

xliii
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Objective Probability Theory Theory�

Ellery Eells

Conditions of Adequacy

Philosophical discussions on the topic of probability have mainly focused on two
kinds of issues, the first having to do with the concept of probability and the second
having to do with methodological standards which an interpretation of probability
(i.e., a philosophical theory about the nature of probability) itself must satisfy if it
is to be an adequate interpretation. As to the first kind of issue, philosophical the-
ories of probability must endorse some more or less vague intuitions about what
kind of thing probability is, and the conception of probability offered must accom-
modate the intuitions endorsed. For example, it’s generally thought that probability
must satisfy some sort of standard axiomatization, such as Kolmogorov’s; it’s of-
ten thought that physical probability must be objective in that probability values are
correct or incorrect independently of anyone’s state of knowledge or beliefs about
the correctness of the values; on the other hand, it’s also often thought that proba-
bility can only be a measure of our ignorance; it’s generally thought that probability
must have predictive significance and appropriately reflect certain causal features of
the physical world; and it’s generally thought that probability, whatever it is, must
be applicable to the “the single case”, in particular, in contexts of rational decision
making and of probabilistic explanation.

Any theory of probability which doesn’t endorse or accommodate sufficiently
many such intuitions wouldn’t constitute an interpretation of probability, but rather
of something else if anything else. Much recent philosophical work on probabil-
ity has been devoted to developing conceptions of probability that are sensitive to
certain intuitions and to arguing that one or another proposal does not adequately
accommodate some such intuitions. Now this is not to deny, of course, that there
may be several different useful interpretations of probability. And I don’t mean to

E. Eells (�)
Department of Philosophy, University of Wisconsin-Madison, Madison, WI 53706
e-mail: jfetzer@d.umn.edu
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assert that all of the above intuitions are relevant to every conception of probabil-
ity. Rather, the point is just that at least one desideratum relevant to assessing the
adequacy of a philosophical interpretation of probability is that the concept offered
must be theoretically adequate in some appropriate sense.

I shall divide the conditions which an interpretation of probability must satisfy
in order for it to be theoretically adequate into two parts. I shall call the condition
that the interpretation of probability offered must satisfy some standard axiomatiza-
tion the condition of admissibility. This follows the terminology of Salmon (1967,
pp. 62–63), except that Salmon uses the term ‘criterion’ instead of ‘condition’. The
condition that the concept offered must be otherwise theoretically adequate I shall
call the condition of conceptual adequacy. This condition roughly corresponds to
Salmon’s “criterion of applicability”, the force of which, he points out, may be suc-
cinctly summarized by Bishop Butler’s aphorism, “Probability is the very guide
of life”.

The second kind of issue in philosophical discussions of probability has to do
with philosophical methodology and general standards, or conditions of adequacy,
which a philosophical theory of probability must satisfy independently of the par-
ticular conception of probability proposed. Thus Suppes (1973, 1974) has recently
criticized Popper’s (1959) propensity interpretation on the grounds that it does not
formally characterize probability in terms of ideas understood independently of
quantitative probability, supposing that any adequate interpretation of probability
must do this regardless of the particular conception of probability offered, whether
it be subjective, Bayesian, single case propensity, hypothetical limiting frequency,
etc. And Suppes (1973), Kyburg (1974, 1978), and Giere (1976) have recently at-
tempted to develop the propensity interpretation in such a way that it satisfies what
Giere (1976) calls “Suppes’ Demand for a Formal Characterization of Propensities”.

In the second section of this paper, I will elaborate Suppes’ demand, dividing
it into two parts. The condition of formal adequacy will demand that any adequate
interpretation of probability provide us with a definition of its characteristic kind
of axiomatized structure C – one instance, S , of which will be the interpretation’s
“intended model”, as explained below – where certain features of such a structure
must be “representable” in terms of a probability functionP on an appropriate struc-
ture B, generally a part of a characteristic structure C , as explained below. It will
be seen that satisfaction of this condition is importantly related to the testability
of a theory of probability in connection with satisfaction of the condition of ad-
missibility. The condition of interpretation/idealization will take seriously the part
of Suppes’ demand – not adequately appreciated, I think, in Suppes (1973), Kyburg
(1974, 1978), and Giere (1976) – that probability be characterized in terms of things
understood independently of quantitative probability. This part of Suppes’ demand
itself has two parts: first, that the things in terms of which probability is explicated
be understood, and second, that they be understood independently of the concept
of quantitative probability. The condition of interpretation/idealization will demand
specification of the intended model S , alluded to above and explained more fully
below, and that S be a model of, an idealization of, some understood concepts,
objects or phenomena – ideally, features of the observable, empirically accessible
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world – so that those things constitute an interpretation of the constituents of S
which at least roughly obey the relevant axioms which S obeys. The “understood”
part of the second part of Suppes’ demand will be satisfied if we “understand” that
those things obey the relevant axioms, and the “independently” part of the second
part of Suppes’ demand will be satisfied if it is shown that S , the axioms character-
izing S , and the part of the world thereby modeled can be studied and characterized
without appeal to concepts of quantitative probability.

Thus, the various conditions of adequacy which I shall advance work together
to ensure that a philosophical theory of probability which satisfies them all will be
adequate. Indeed, just as satisfaction of formal adequacy will play an important role
in ensuring the testability of a theory in connection with admissibility, so satisfac-
tion of interpretation/idealization will play an important role in testing whether or
not the theory has adequately identified the intended concept of probability, a con-
cept in virtue of which conceptual adequacy may be satisfied. Also in the second
section of this paper, we shall see the connection between the condition of interpre-
tation/idealization and Salmon’s criterion of ascertainability, according to which it
must be possible, in principle, to ascertain the values of probabilities.

From third section to sixth section of this paper, I shall examine instances of what
I take to be the four main kinds of interpretations of probability according to which
probability is objective, or physical, with an eye towards the extent to which they
satisfy the conditions of adequacy elaborated in the first two sections. I shall exam-
ine the actual limiting frequency conception, attributed to Von Mises (1957, 1964)
and Reichenbach (1949), the hypothetical limiting frequency view as formulated by
Kyburg (1974, 1978), the “long run” construal of Popper’s (1957, 1959) propensity
interpretation, and Fetzer’s (1971, 1981) “single case” propensity view. All of these
views can be formulated in such a way that they satisfy the conditions of formal ad-
equacy and admissibility. What I shall argue is that none of them satisfies both the
condition of conceptual adequacy and the condition of interpretation/idealization
and that to the extent that they satisfy one of these two conditions, they fail to sat-
isfy the other. I shall argue that as far as conceptual adequacy goes, the theories rank
from better to worse roughly in the following order: single case propensity, long run
propensity, hypothetical limiting frequency, actual limiting frequency. And I shall
argue that with respect to interpretation/idealization, these theories rank roughly in
the opposite order.

It is perhaps worth noting that this general kind of tension between the satisfac-
tion of two desiderata of adequacy is, of course, not new in philosophy, nor even in
the philosophy of probability. Fetzer (1974) has noted a tension between satisfaction
of “epistemological criteria” (on which actual frequency conceptions of probability
seem to be preferable to a single case propensity account) and “systematic consid-
erations” (on which the propensity interpretation is preferable). In the philosophy
of mathematics, Benacerraf (1973) argues that no adequate account of mathemati-
cal truth has allowed for an adequate account of mathematical knowledge, and vice
versa – i.e., roughly, that reasonable theories of mathematical truth leave it unintelli-
gible how we can obtain mathematical knowledge, while reasonable epistemologies
fail to show how the suggested “truth conditions” are really conditions of truth.
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While my condition of interpretation/idealization is more methodological than epis-
temological in character, these tensions are of the same general kind as the one I
shall argue is present in the philosophy of objective probability. Perhaps closer to
the tension I shall try to characterize in objective probability theory is one that can
be found in the philosophical foundations of modal logic. While the analysis of
possible worlds as maximally consistent sets of sentences makes the conception of
possible worlds very clear, that conception is clearly also theoretically inadequate
as a result, in part, of the limited expressive power of any available language. On
the other hand, the analysis of possible worlds as, say, “ways the world could have
been”, while perhaps closer to the theoretically intended conception, would seem to
be methodologically unsound, in that it would render the usual analysis of possibility
and of counterfactuality in terms of possible worlds circular.

Actual Relative Frequencies

Although the finite relative frequency interpretation of probability, endorsed by Rus-
sell (1948) and mentioned favorably by Sklar (1970), has been forcefully criticized
by many philosophers as being conceptually inadequate in several important re-
spects, its basic features are relatively simple, and it will serve well as an example
in terms of which the conditions of interpretation/idealization and formal adequacy
(whose satisfaction is independent of satisfaction of the conceptual adequacy re-
quirement) can be explained. On this interpretation, roughly, the probability of an
attributeA in a reference classB is the relative frequency of occurrences ofAwithin
B , where A and B are the finite classes of actual occurrences of events of the rele-
vant kinds.

To be more precise about the interpretation, we may define finite relative fre-
quency structures (FRF-structures) C as follows. WhereE is any finite class and F
is the power set of E (i.e., the set of all subsets of E) and # is a function which as-
signs to any member of F its cardinality (i.e., the number of its elements), hE;F; #i
is an FRF-structure. (Alternatively,F may be any Boolean algebra of subsets ofE .)
Thus, an FRF-structure is any triple hE;F; #i that satisfies certain axioms, which
axioms will guarantee that F is 2E and that # is the cardinality function. Such a
structure is an example of a characteristic structure C , alluded to in the first section,
where FRF-structures are (part of) what finite relative frequentists might use to get
their interpretation of probability to satisfy the condition of formal adequacy.

To complete the demonstration that the finite relative frequency theory satisfies
the formal adequacy requirement, we show that certain features of an FRF-structure
can be represented by a structure hB; P i, where B is a Boolean algebra and P is
a probability function on B. For an FRF-structure hE; F; #i, simply let B be F
(alternatively, any Boolean algebra of subsets ofE) and, forA; B 2 B, let P.A/ D
#.A/=#.E/ and P.A=B/ D #.A\B/=#.B/. From the axiomatization of hE;F; #i,
it can easily be shown that P is a probability on B, i.e., that P satisfies probability
axioms, where the arguments of P are the elements of B. Thus, the characteristic



Objective Probability Theory Theory 7

kind of formal structure C for the finite relative frequency interpretation – FRF-
structures – has been characterized, and it has been shown how certain features of
an FRF-structure can be represented in terms of a probability on an appropriate
structure determined (at least in part) by the FRF-structure. And it is just these two
things – the definition of the characteristic kind of structure with the capacity to
yield probabilistic representation – that must be given for the condition of formal
adequacy to be satisfied.

Of course the specification of the characteristic kind of structure and the prob-
abilistic representation of certain features of such structures does not by itself
constitute an appropriate interpretation of probability. For these may be just ab-
stract mathematical entities, where objective probability is supposed to apply to the
physical world. In order to complete the interpretation, therefore, both the “intended
model” – an instance of the characteristic kind of structure – and the intended inter-
pretation of the intended model must be specified. For the finite relative frequency
interpretation, this may be done as follows. An FRF-structure hE;F; #i, is the in-
tended model if there is a one-to-one correspondence between E and some set of
events (or trials) in the physical world.

Of course the intended model may be relativized to “local contexts”, where there
is a one-to-one correspondence between E and the set of events of “local interest”,
e.g., the set of all throws of dice, or of a particular die, or the set of all married
American men who apply for life insurance at the age of 50. Then the sets in F
correspond to the relevant properties, e.g., role of a die coming up “6”, a person’s
dying before the age of 75, etc. The intended interpretation of the intended model
is just the one-to-one correspondence between the elements of E and the relevant
events in the world, and thus between the sets in F and corresponding properties,
where # is interpreted as the cardinality function on the interpretation of F .

Thus, the condition of interpretation/idealization is satisfied when the intended
characteristic structure (the intended model) and the theory’s interpretation of
the intended model are both given. The reason why the condition of interpreta-
tion/idealization is so-called is that it concerns specification of the intended model
of the theory and the intended relation between that structure and the world, where
(i) the relevant features of the world are an interpretation of that structure and
(ii) the (perhaps abstract) entities, relations, functions, etc., of that structure, to-
gether with the structure’s axiomatization, serve as an idealization of the relevant
part of the world.

Talk of “the intended model”, of course, is not meant to imply that there is, liter-
ally, exactly one such structure: rather, there is supposed to be (for the global context
and for each local context) just one structure modulo isomorphism, where isomor-
phic structures are identified with one another. Also, I suppose it would be possible
to collapse the two parts of interpretation/idealization – i.e., the specification of the
intended model and the establishment of an interpretation of the model – into just
one part, where, for the finite relative frequency interpretation, E is identified with
the relevant set of events or trials in the world and the sets in F are identified with
the relevant properties, construing properties extensionally as sets. But it is nev-
ertheless worthwhile to distinguish conceptually between the role of the intended
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model (a structure whose constituents may be abstract mathematical entities and
whose role is, in part, to show satisfaction of the condition of formal adequacy) and
the role of the (ideally, physical and observable) entities in the world which the com-
ponents of the intended model are interpreted as – the things to which probability
is supposed to apply. For, in the case of the finite relative frequency interpretation,
it seems that sets are indeed a rather crude idealization of properties which works
well for the purposes of that interpretation. And in the second place, for other inter-
pretations of probability (e.g., decision theoretic foundations of rational subjective
probabilities, on which see, e.g., Eells 1982), both the constituents of the intended
model and the axiomatization of the intended model are quite clearly very crude
idealizations of the real-world entities and phenomena which they are supposed to
model. The distinction in question is analogous to the distinction between two kinds
of interpretations of Euclid’s axioms for geometry: ‘point’ and ‘line’ can be inter-
preted abstractly as mathematical points (e.g., as pairs of real numbers) and abstract
mathematical lines (e.g., sets of mathematical points hx; yi that satisfy mx Cb D y

for some real numbers m and b); or they could be interpreted physically as phys-
ical points and physical lines (e.g., the possible paths of light rays). Similarly, the
probability function may be interpreted abstractly as a function on an abstract in-
tended model S , and then also physically as a function on the features of the world
modeled by S , via the connection between those features and S established by
satisfaction of the condition of interpretation/idealization.

Leaving aside for now the question of the conceptual adequacy of the finite rel-
ative frequency theory of probability (which will be discussed in the next section
along with the conceptual adequacy of the actual limiting frequency interpreta-
tion), note how satisfaction of the conditions of formal adequacy and interpreta-
tion/idealization work together to ensure satisfaction of admissibility and to effect
what Suppes (1974) calls “systematic definiteness” of the interpretation. Let A and
B be any properties – or sets of events – in whose probabilities we may be interested,
or in probabilistic relationships between which we may be interested. On the finite
relative frequency theory, we must, guided by a local or global context, construct the
intended model hE; F; #i, where there are sets, say A0 and B 0, corresponding to A
and B , such that A0; B 0 2 F . According to the rules given in the probabilistic rep-
resentation part of the satisfaction of the condition of formal adequacy, we get the
structure hB; P i; P being a probability on B, where B includes both A0 and B 0.
Then, on the finite relative frequency interpretation of probability, the probability of
A, and of A given B – in symbols, prob.A/ and prob.A=B/ – are just P.A0/ and
P.A0=B 0/. Also, we know that the interpretation satisfies the condition of admis-
sibility, since P satisfies probability axioms; this is ensured by the interpretation’s
satisfaction of formal adequacy.

It should be clear that the conditions of formal adequacy and of interpreta-
tion/idealization must be satisfied by any satisfactory interpretation of probability.
As to formal adequacy, an interpretation of probability is, after all, supposed to be an
interpretation of the function symbol that appears in some axiomatization of prob-
ability, and it is difficult to see how it could possibly be shown that a purported
interpretation of that symbol satisfies the axioms unless some kind of formal struc-
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ture B, e.g., a Boolean algebra, is provided by the theory. And if probability is to
be some feature of the world – some kind of physical probability or even degree of
belief – then the structure B cannot come from just anywhere: it must be related
to the world in some appropriate manner. Some features of the world that are un-
derstandable, or at least capable of being studied, independently of probability must
be identified. And for these features to be systematically related to the structure B,
these features must first be idealized and abstractly represented in terms of some
structure S characteristic of the interpretation of probability in question, so that
one can demonstrably infer that B, together with a probability P on B, represents
the appropriate features of the intended model S , and thus, indirectly, the appro-
priate features of the world. The general picture is as indicated in Fig. 1, where
the concepts, objects and phenomena appropriate to some familiar interpretations of
probability other than the finite relative frequency interpretation are indicated. Note
that the brackets on the left overlap, indicating that the specification of the char-
acteristic kind of structure pertains to formal adequacy, where identification of the
intended model pertains to interpretation/idealization.

It is of some interest to compare the interpretation/idealization requirement with
Salmon’s “criterion of ascertainability”:

This criterion requires that there be some method by which, in principle at least, we can as-
certain values of probabilities. It merely expresses the fact that a concept of probability will
be useless if it is impossible in principle to find out what the probabilities are. (1967, p. 64)

The condition of interpretation/idealization is intended, in part, to capture the idea
that probabilities should be ascertainable, but in a weaker sense than Salmon’s cri-
terion seems to require. The condition is only intended to ensure that probability
statements have “empirical interpretation” – or “empirical content” – in a weaker
sense similar to the one assumed by some versions of the hypothetico-deductive
model of science. Consider Fig. 1. The entities of the top box can be thought of
as observable (or, at least “pre-theoretical”, i.e., “pre-probability-theoretical”) enti-
ties, and the laws that govern them as lawlike empirical generalizations expressed
in terms of an observational (or “pre-probability-theoretical”) vocabulary. The con-
cept of probability, as it figures in the bottom box, can be thought of as a theoretical
concept of the philosophical theory of probability in question, while the probabil-
ity axioms, together with the mathematical principles that relate the probability
concept to the intended structure S , can be thought of as the theoretical or in-
ternal principles of the philosophical theory of probability, which principles are
expressed in terms of a theoretical vocabulary. And finally, the principles of inter-
pretation/idealization, symbolized by the arrows between the top and middle box,
can be thought of as bridge principles which relate the observable (pre-theoretical)
entities of the top box to the mathematical entities of the middle box, in terms of
which the theoretical concept of probability of the bottom box is characterized via
what I have been calling “probabilistic representation”.

On the hypothetico-deductive model of science, of course, the bridge principles
are supposed to function as contextual or implicit or partial definitions of theoret-
ical terms: they need not completely specify the meanings of the theoretical terms.
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Fig. 1 Probability Models as Scientific Theories

Given this, and given that the principles of interpretation/idealization of a philosoph-
ical theory of probability are supposed to function much as the bridge principles
of the hypothetico-deductive model of science, it should not be surprising if some
interpretations of probability will not be able to specify empirical methods for ascer-
taining, even in principle, exact numerical values of all probabilities. The model of
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philosophical theories of probability presented in this section does not require that
philosophical theories of probability be ascertainable in the stronger sense which
Salmon seems to require. This would seem to be a virtue of initial neutrality between
various philosophical theories of probability, for if the stricter version of ascertain-
ability were insisted upon, it would seem that certain theories – certain propensity
and dispositional accounts as well as certain Bayesian theories1 – would be ruled
out from the outset.

In concluding this section, I would like to emphasize again some important con-
nections between the four conditions of adequacy suggested above and how they
work together to ensure that an interpretation of probability that satisfies them all
will be an adequate theory. We have seen that satisfaction of the condition of for-
mal adequacy is required to demonstrate satisfaction of admissibility. Both formal
adequacy and interpretation/idealization are required to show that the phenomena in
the world upon which a given interpretation of probability focuses are indeed proba-
bilistic phenomena in the sense that abstract probability theory applies to them. And
finally, satisfaction of interpretation/idealization is supposed to identify precisely the
intended concept and supply empirical (or, at least, “pre-probability-theoretical”)
content – cognitive significance for positivists – for the conception of probability
offered, without which it would seem that satisfaction of the condition of concep-
tual adequacy would be empty.

Finite Relative Frequencies

The actual limiting frequency view of probability is a generalization of the finite rel-
ative frequency theory which is supposed to be applicable even if the relevant classes
have infinite cardinality. My presentation of the characteristic kind of structure for
the actual limiting frequency view will roughly follow that of Suppes’ (1974), ex-
cept for notation. An ALF-structure is any triple hE; F; #i such thatE is a sequence
(by which I shall understand any function whose domain is the natural numbers,2

where I shall write ‘Ei ’ rather than ‘E.i/’, for the value of the function with ar-
gument i ), F is the power set of the range of E (i.e., the set of all subsets of the
set of possible values of E), and # is the binary function such that for any natural
number n and element A of F , # .A; n/ is the cardinality of the set fEi W i 6 n and
Ei 2 Ag. (Alternatively, F may be taken to be any Boolean algebra of subsets of
the range ofE .) Probabilistic representation proceeds as follows in terms of relative
frequencies. The relative frequency of a set A.2 F / in the first n terms of E is de-
fined to be #.A; n/=n. The limiting relative frequency of A in E is defined to be the
limit of the relative frequency of A in the first n terms of E as n approaches infinity
(if the limit exists), where the limit of a real-valued function f .n/ as n approaches
infinity, lim

n!1 f .n/, is defined to be that number r (if any) such that for every 2> 0,

there is a natural number N2 such that for all n > N2; jf .n/ � r j <2. Now let
B be any Boolean algebra of subsets of the range of E such that the limiting rela-
tive frequency of every element of B in E exists. Then the structure hB; P i is a
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probabilistic representation of the ALF-structure hE; F; #i, where for any A and B
in B,

P.A/ D lim
n!1

#.A; n/

n
;

and

P.A=B/ D lim
n!1

#.A\ B; n/
#.B; n/

D P.A \ B/

P.B/
:

An alternative approach (the one I shall have in mind in the sequel) would include
in the axiomatization of ALF-structures the stipulation that all limiting frequencies
of elements of F exist (Axiom of Convergence, or Limit Axiom), so that the set
F could not in general simply be the power set of the range of E . This has the ef-
fect that for any ALF-structure hE; F; #i, there would be a uniquely characterizable
probabilistic representation: the functionP (defined above) on F itself. For concep-
tual adequacy, one might also want to include an Axiom of Randomness (Principle
of the Excluded Gambling System), such as Von Mises’, in the axiomatization of
ALF-structures. In any case, it should be clear that the actual limiting frequency
view of probability is admissible and formally adequate.3

For satisfaction of the condition of interpretation/idealization, the actual limiting
frequency interpretation must specify an intended model, a particular ALF-structure,
for the “global” context or any given “local” context. For the global context, one
may insist on one-to-one correspondences between the natural numbers n and times,
between the range of E and the set of past, present and future (actual) events, and
between F and the relevant attributes. Then perhaps the natural number 1 could
correspond to the “first” time, an element En of the sequence would correspond to
what happens at the nth time, and so on. This assumes, of course, that the universe
is temporally finite in the pastward direction, which assumption could be gotten
around, though, by not insisting that E orders events temporally. That time is not
dense is also assumed here. More plausibly, however, the limiting frequency view is
applicable to local contexts, where the range of E is a set of events of local interest,
e.g., tosses of a particular die, or of all dice, or human births, or applications for life
insurance.

For the limiting frequency view of probability, unlike the finite relative frequency
view, probability attaches to ordered sets of events, i.e., sequences of events whose
order is given by the underlying sequence E of all events relevant to the local or
to the global context. And it is clear that a solution to the problem of interpreta-
tion/idealization must specify an intended order in which the relevant events are to
be taken. This is because, as long as there are infinitely many elements of E (or of a
set B) that are elements of a set A and also infinitely many that are not elements of
A, then the limit of the relative frequency ofA’s inE (or in B) could be any number
whatsoever between 0 and 1, inclusive, depending on the order in which the events
are taken: in this case, the order completely determines the probability. Suppos-
ing that this is a problem for the actual limiting frequency view, then would it be a
problem in connection with satisfaction of conceptual adequacy or a problem in con-
nection with satisfaction of interpretation/idealization? The answer depends on the
nature of the (perhaps more or less vague) conception of probability, whose theoret-
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ical adequacy must be certified if the theory is to satisfy the condition of conceptual
adequacy, and which must be made precise and given empirical content if the theory
is to satisfy the condition of interpretation/idealization. It is the job of interpreta-
tion/idealization to make that conception clear and precise (which, for the purposes
of this paper, I am assuming may be theoretically adequate, or not, independently of
its clarity and precision). So if the conception were vague and noncommittal with
respect to the order of the events, the problem described above would be one for
interpretation/idealization: a solution to the problem of interpretation/idealization
must then justify one order among the many possible as the intended one. But if the
conception of probability offered were clear with respect to the intended order of
events, then the actual limiting frequency theory would be conceptually adequate,
or not, in part to the extent to which the order to which the conception is commit-
ted is itself theoretically justified. Since in all of the discussions of the application
of probability construed as limiting frequency (which I have seen, at any rate) it is
clear that the intended order of events is their temporal order, I shall assume that the
conception of probability is clear about the intended order of the relevant events:
it is their temporal order. Thus, the problem under discussion is not a problem for
interpretation/idealization. Indeed, it seems that the actual limiting frequency inter-
pretation fares quite well on the condition of interpretation/idealization: all of the
relevant concepts – that of events, of temporal order, of cardinality, of sequences,
of sets, of limits, etc. – are either fairly well understood or at least such as can be
studied and understood independently of the concept of probability.

So the actual limiting frequency view (as understood for the purposes of this pa-
per) will be conceptually adequate, or not, in part to the extent to which using the
temporal order of events in calculating limiting frequencies is theoretically justified.
I can think of no reasons in favor of or against using the temporal order rather than
any other order, but the absence of reasons in either direction might itself suggest
the argument that using the temporal order is arbitrary. Also, note that one effect of
always using one order, such as the temporal order, of events is to make the proba-
bility of an attribute A – or the probability of an attribute A within a reference class
B – invariant over time, where (although I have no natural suggestions along these
lines) perhaps one way of accommodating the intuitive possibility that probabilities
might change over time would be to use different orders of the relevant events at dif-
ferent times. The fact that, intuitively, probabilities seem to change over time (e.g.,
the probability of a person living more than 60 years has, intuitively, changed over
time) – while it seems that, on limiting frequency conceptions, all probabilities are
fixed for all time – will be recognized as a version of the reference class problem,
or of the problem of the single case.

The frequentist response, of course, is that P.A=B/ – where B is the class of
incidents of human births and A is the class of incidents of a being living more than
60 years – has not changed, but that different reference classes are appropriate for
assessing probabilities with predictive significance at different times. Let C be the
class of incidents of human births where the person will enjoy the results of modern
medical advances throughout his life. Then P.A=B \ C/ is one probability and
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P.A=B \ NC/ is another, where the first is more appropriate for predictive purposes
today and the second would have been more appropriate, say, during the Dark Ages.

The problem of the single case for the actual limiting frequency theory of prob-
ability is usually formulated as follows. On the frequency view, probability attaches
to (ordered) collections of events; but we are sometimes interested in the probabil-
ity that, e.g., the next event will exemplify some attribute. The problem of the single
case, then, asks how the frequency interpretation can apply to single events. And
the general form of proposed solutions to the problem is to give a rule for choosing
an appropriate reference class to which the single event belongs and to say that the
probability of the relevant attribute within that reference class should be transferred
to the single event in question. Hence, the problem is sometimes also called ‘the
problem of the reference class’.

I do not believe that there is an adequate solution to the problem of the refer-
ence class for the actual limiting frequency view of probability. And in light of the
fact that we would ideally like an explication of physical probability to have pre-
dictive and explanatory significance for single events (which may occur irreducibly
probabilistically) and to have significance in connection with decision making in
individual decision situations, this constitutes a serious limitation to the conceptual
adequacy of the theory. Without going into much detail, let me summarize some of
the considerations that have been, or could be, brought to bear against two proposed
solutions to the problem.

Reichenbach’s (1949, p. 374) solution to the reference class problem, of course,
was to choose “the narrowest class for which reliable statistics can be compiled”.
Thus, in relation to the above example, to assess the probability that a particular
individual will live more than 60 years, it is better to use one of B \ C and B \ NC
as the reference class than just B , depending on which class the individual in ques-
tion belongs to, provided that reliable statistics – with respect to life span – can
be compiled for the two classes. It is also part of Reichenbach’s (1949, p. 374)
solution that we do not narrow a class with respect to another class when the sec-
ond class is “known to be irrelevant”; that is, if class D is known to be such that
P.A=B\C \D/ D P.A=B\C/, then we should not favor the use of the narrower
class B \C \D over use of B \ C . Note two features of this solution. First, there
is a subjectivist element in the solution, in that the choice of reference class depends
on the reliability of our knowledge of the relevant statistics. Second, as Salmon
(1971, p. 41) has pointed out, it is often the case that the more reliable the statistics,
the broader the reference class must become, and the narrower the reference class,
the less reliable the statistics become. This is in part because, for classes A, B, and
C; P.A=B \ C/ is not a function of – cannot be calculated from only – P.A=B/
and P.A=C/.

Now Reichenbach (1949, p. 375) insisted, of course, that, literally speaking,
probability applies only to sequences. And in connection with the single case,
he says,

We are dealing here with a method of technical statistics; the decision for a certain refer-
ence class will depend on balancing the importance of the prediction against the reliability
available.
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In a similar vein, Salmon suggests that, plausibly, Reichenbach

was making a distinction similar to that made by Carnap between the principles belonging
to inductive logic and methodological rules for the application of inductive logic. The re-
quirement of total evidence, it will be recalled, is a methodological rule for the application
of inductive logic. Reichenbach could be interpreted as suggesting analogously that prob-
ability theory itself is concerned only with limit statements about relative frequencies in
infinite sequences of events, whereas the principle for selection of a reference class stands
as a methodological rule for the practical application of probability statements. (1971, p. 41)

But one may nevertheless insist that an account of physical probability is concep-
tually inadequate unless, on the account, probability applies objectively to single
events, which is not implausible if one thinks, in the first place, that ideally what
one would like to know in particular decision problems is the controlling objective
probabilities, and, in the second place, that there can be correct and complete statis-
tical explanations of particular events that may occur irreducibly probabilistically.
Such an account of probability cannot let the values of probabilities depend on the
incomplete state of our knowledge, which a purely methodological account of single
case probabilities must require.

But, in light of the distinction Salmon suggests Reichenbach might have had
in mind, perhaps the actual limiting frequency view can be elaborated in such a
way as to apply objectively to the single case. To get around being forced into a
methodological context by the incompleteness of our state of knowledge, we simply
envisage, for the purpose of remaining in a nonmethodological context of explicat-
ing single case objective probabilities, a hypothetical state of complete knowledge
with respect to the relevant facts. This would seem to have the promise of elimi-
nating the subjectivity of Reichenbach’s solution, eliminating the practical conflict
between reliability of statistics and narrowness of the reference class, while preserv-
ing the frequency conception of probability. I think that part of Fetzer’s (1977; see
also his 1981, pp. 78–86) paper “Reichenbach, Reference Classes, and Single Case
‘Probabilities”’ can be viewed as following up this idea and showing that it can only
result in a trivialization of single case probabilities on the frequency view, where all
such probabilities will turn out to be either 0 or 1.

Following up Reichenbach’s (1949, pp. 375–376) general ideal that “the prob-
ability will approach a limit when the single case is enclosed in narrower and
narrower classes, to the effect that, from a certain point on, further narrowing will no
longer result in noticeable improvement”, Fetzer defines an ontically homogeneous
reference class with respect to an attribute A and a trial (single event) x (roughly)
as a class B such that x 2 B and for all B 0 � B; P.A=B/ D P.A=B 0/, and he
suggests that on Reichenbachian principles, the appropriate reference class for x
relative to A would be some ontically homogeneous reference class with respect to
A and x. But which one? Presumably, the appropriate one would be the first one
that one “reaches” in successively narrowing some initial candidate with respect to
which Fetzer calls permissible predicates (i.e., predicates which are permissible for
use in the description of a reference class): predicates which do not imply the pres-
ence or absence of the relevant attribute, which are not satisfied by at most a finite
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number of things on logical grounds alone, and which are satisfied by at least one
thing (presumably the single event in question). And it is then argued, on the basis
of the principle

If x and y are different events, then there is a permissible predicate F such that Fx and NFy,

that the set of permissible predicates satisfied by a single case x will not all be sat-
isfied by any other single case y, so that the “appropriate” reference class turns out
to be just fxg and all single case probabilities turn out to be either 0 or 1, depending
on whether the single event in question lacks or has the relevant attribute.

Note that it seems that Fetzer’s argument assumes that conjunctions of per-
missible predicates are themselves permissible. This, of course, would need some
argument, for it is obviously possible for two predicates, neither of which is satisfied
by at most a finite number of events on logical grounds alone, to have a conjunction
which is. For example, let F be the predicate “is the sinking of the Titanic or hap-
pens before the year 1900” and letG be the predicate “is the sinking of the Titanic or
happens after the year 1900”. As another example, let F specify just spatial coordi-
nates and G a time. Perhaps the intent, however, is that permissible predicates must
all be dispositional predicates of some kind, where his theory of dispositions (see
especially his 1981, pp. 160–161 and 190–192) would somehow ensure that con-
junctions of permissible predicates will be permissible. In any case, Fetzer’s main
point still holds, namely that on actual limiting frequency conceptions of proba-
bility, it is impossible to distinguish between factors that are statistically relevant
because of a “real causal” connection and those which are statistically relevant
purely by coincidence. And whether or not it is always possible to describe a given
event uniquely in terms of permissible predicates is not so much at issue.

Suppose that in fact some event x is the only event in the course of the world’s
actual history that satisfies each of the predicates F1; : : : ; Fn, each assumed to be
permissible in some correct sense of ‘permissible’. Then the actual limiting fre-
quency of the relevant attribute, say A, in the class, say B , of individuals that satisfy
each of F1; : : : ; Fn is either 0 or 1, depending on whether x lacks or has attribute A.
And it is surely possible that, for any i between 0 and n, there are many events which
satisfy each of F1; : : : ; Fi�1; FiC1; : : : ; Fn. And, where, for each such i; Bi is the
reference class of events that satisfy each of F1; : : : ; Fi�1; FiC1; : : : ; Fn, it is
clearly also possible that the P.A=Bi /’s (on the actual limiting frequency interpre-
tation) all differ from each other and fromP.A=B/ (on the actual limiting frequency
interpretation). And all this is consistent with none of theFi ’s having anything phys-
ically to do with the presence or absence of A in x: it just happens that x is the only
event in the course of the world’s actual history that satisfies each of the Fi ’s. And
the fact that it is possible that there be just one event is not so much to the point.
Suppose that in fact, in the entire course of the world’s actual history, there will
be only three instances of a well-balanced coin being fairly tossed when the moon,
Mars and Halley’s comet are in close opposition. Then the actual limiting frequency
of a given such event resulting in tails-up will be either 0; 1

3
; 2

3
, or 1, yet, intu-

itively, it is absurd to conclude that the celestial configuration described introduces
a physical bias into the trial, just because removal of any of the three factors (moon
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in opposition, Mars in opposition, Halley’s comet in opposition) yields a limiting
relative frequency of about 1

2
. Intuitively, it would seem that the probability of tails

on any of the three tosses is (about) 1
2

, though of course the actual frequency of tails
in the circumstances described is artificially limited to being one of the four values
specified above.

Relative frequentists could respond to such examples in a number of ways. They
could, for example, say that in order for an actual relative frequency to be the true
single case probability, one must use a large enough reference class for which re-
liable statistics are available. Thus, Salmon (1971) urges that, instead of using the
narrowest such reference class, we should use the broadest homogeneous such ref-
erence class to which the single case in question belongs, where a homogeneous
reference class for an attribute A is defined to be a class for which it is impossible
to effect a statistically relevant partition (with respect toA) without already knowing
which elements of the class have attribute A and which do not. This takes seriously
Reichenbach’s (1949, p. 374) idea that, “Classes that are known to be irrelevant for
the statistical result may be disregarded”. But still, it would seem that as long as we
are dealing with actual relative frequencies, such a partition could be statistically
relevant just as a matter of coincidence, as when we partition the class of tosses of
honest coins by whether or not they occur when the moon, Mars and Halley’s comet
are in close opposition. See Fetzer (1977, pp. 199–201; and 1981, pp. 91–92) for
another kind of criticism of Salmon’s approach and for further discussion.

On the other hand, one may simply insist upon the use of some infinite sequence
of events which are similar to the single event in question in all relevant (causal)
respects. But, first, this would require an explication of causal relevance prior to
an explication of probability, where this would render circular recent attempts to
explicate causality in terms of probability relations.4 And second, even if this could
be done, it is possible that there might be, say, only two or three events in the course
of the world’s actual history that are similar to the single event in question in all
relevant respects.

A frequentist may respond to this last difficulty along the following lines, as
Salmon (1979, pp. 11–12) has suggested that Reichenbach would (see his 1949,
�34). Instead of considering the three tosses discussed above as members of some
actual (and thus possibly finite) sequence, consider them as members of the se-
quence of tosses that would exist were we to toss the coin infinitely many times
under the same circumstances, and then ask what the limiting relative frequency of
tails would be in this sequence. Of course this is to abandon the idea that probability
should be explicated in terms of sequences of actual events. In the next section, we
look at the hypothetical limiting frequency interpretation, which attempts to spec-
ify appropriate principles for extending actual finite sequences (e.g., single element
sequences) to hypothetical infinite sequences.

But as to the actual limiting frequency interpretation of probability, it seems
correct to conclude that, while the theory is basically adequate as far as inter-
pretation/idealization (and formal adequacy and thus also admissibility) goes, it
is conceptually inadequate in that, although it may be argued to have appropriate
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predictive significance, it is incapable of characterizing the difference between
genuine physical connections and merely historical coincidences and is, largely for
this reason, incapable of applying appropriately to single events.

Hypothetical Relative Frequencies

In order to accommodate some of the difficulties discussed above in connection
with actual relative frequency conceptions of probability, a hypothetical limiting
frequency conception may be advanced, according to which the probability of an
attribute A – or the probability of B’s being A’s – is equal to the limiting frequency
of A in a hypothetical infinite extension of the actual (finite) sequence of events –
or a hypothetical infinite extension of the actual (finite) sequence of B’s. Thus,
P.A/ – or P.A=B/ – is supposed to be what the limiting frequency of A would
be – or what the limiting frequency of A in the sequence of B’s would be – if
the world’s history were infinite – or if the sequence of B’s were infinite. This is
the basic conception of probability on hypothetical limiting frequency views, which
conception must be given precision in a solution to the problems of formal adequacy
and of interpretation/idealization if the interpretation is to be adequate.

Kyburg (1974, 1978) formulates semantics for the hypothetical limiting fre-
quency view (which may be viewed as a solution to the problem of formal adequacy
and part of a solution to the problem of interpretation/idealization) as follows. He
begins with a first order language with identity and enough mathematical machinery
to axiomatize the three place predicate S in such a way that ‘S.A;B; r/’ is true in
a model M D hU;Ri (where R is a set of relations on U and functions on U;U 2,
etc., and U contains at least the empty set, ;) if and only if5

(i) B is an infinite sequence of sets, B1; B2; : : :, where Bi � Bj if i < j ,
(ii) A is a set.

(iii) r is a real number.
(iv) r D lim

i!1
#.A\Bi /

#.Bi /
.

The relations and functions of these models are assumed to be “compatible” in the
sense that if hU;Ri and hU 0; R0i are any two such models with U � U 0, then
(i) for every predicate symbol A of the language, R.A/ � R0.A/ (where R.A/
and R0.A/ are the relations which R and R0 assign to A) and (ii) for any k-place
function symbol f of the language, if x 2 U k , then either R.f /.x/ D R0.f /.x/
or R.f /.x/ D ;. (The reason for insisting that ; is an element of every model is
so that what would otherwise be a partial function may take ; as a value where it
would otherwise be undefined.)

The “actual world” is taken to be a particular model, M � D hU �; R�i. A future
model is any model in which every (actually) true observation sentence pertaining to
times up to the present is true. And a lawful model is any model in which all (actu-
ally) true universal (nonstatistical) physical laws are true. A model M 0 D hU 0; R0i
is an extension of a model M D hU;Ri if U � U 0 and the relations and functions
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in R are the restrictions to U of the relations and functions in R0. Finally, for a term
B interpretable as a sequence, a model M 0 is a B-maximal extension of a model M
if M 0 is an extension of M and either B is infinite in M 0 or no extension of M 0 ex-
tends B . Thus, while all lawful future worlds may have finite histories, B-maximal
extensions of such worlds may have infinite histories. Finally, truth conditions for
hypothetical limiting frequency statements, ‘P.A=B/ D r’, are given as follows:

‘P.A=B/ D r’ is true (in the actual world) just in case ‘S.A; B; r/’ is true in every (or
“almost every”) B-maximal extension of every lawful future world.

This is not exactly the same semantics for hypothetical relative frequency state-
ments as that given by Kyburg – indeed, he considers several variations – but it is
close and captures all the features of the hypothetical limiting frequency interpreta-
tion which I wish to discuss.

I shall structure the discussion of the hypothetical limiting frequency view around
the conditions of adequacy discussed in the first two sections of this paper. As to
conceptual adequacy, the rough conception of probability offered was presented
above, and all I have to say about the conceptual adequacy of the view is that it seems
clearly superior to the actual limiting frequency conception in that it deals with the
possibilities that the actual history of the world is finite (where the actual frequen-
cies may, in some cases, be ratios of small numbers that don’t faithfully represent
the relevant features of the physical world) and that it may exhibit coincidences.
It deals with the first possibility by envisioning hypothetical infinite extensions of
the actual world’s history and with the latter possibility by considering many exten-
sions of the actual world’s history, where, presumably by invoking the law of large
numbers idea, this is taken to accommodate actual world coincidences of a global
character (but see below on this). The solutions to the problems of formal adequacy
and interpretation/idealization are then supposed to clarify this rough conception.

Recall that a solution to the problem of formal adequacy is supposed to iden-
tify the characteristic kind of structure, some features of which can be given
probabilistic representation. I suggest that a characteristic structure for the hypo-
thetical limiting frequency interpretation be understood to be of the following form
(variants are possible, as discussed below): an HLF-structure is an (appropriately
axiomatized – see below) sextuple, hL ;M ;M �; F; L;Ei, where L is a first-order
language with axioms (at least for the three-place predicate S ), M is a set of models
M D hU;Ri of the kind defined above,M � 2 M ; F and L are subsets of M , and
E is a relation in L � M � M . Then truth conditions for hypothetical limiting
frequency statements could alternatively be given as follows:

‘P.A=B/ D r’ is true (relative to a given HLF-structure) if and only if for every M 2 M
such that F.M/ and L.M/, ‘S.A; B; r/’ is true in every (or almost every) M 0 2 M such
that E.B;M;M 0/.

Also, if “every (or almost every)” could be made precise in an appropriate way, it
would be possible to infer, in light of these semantics, a finitely additive probabil-
ity space from a structure characteristic of the theory, thus explicitly satisfying the
probabilistic representation part of the condition of formal adequacy as formulated
above. Of course the intended model of the hypothetical limiting frequency inter-
pretation would have M � correspond in some appropriate way to the actual world,
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whereF is the set of future worlds (as described above),L is the set of lawful worlds
(as described above), and E is the relation such that E.B;M;M 0/ is true in the in-
tended model if and only ifM 0 is aB-maximal extension ofM (as described above).
And characteristic structures would be axiomatized in such a way as to guarantee
that the purely formal relations between, e.g., worldsM and B-maximal extensions
of M would hold, e.g., the axioms should imply that if E.B;M;M 0/ is true in a
characteristic structure, then U � U 0, whereM D hU;Ri andM 0 D hU 0; R0i.

Before further investigating the formal adequacy of the hypothetical limiting
frequency theory, it is worth pointing out that HLF-structures could have been con-
strued differently. For example, L could be construed as a binary relation on M ,
where L.M;M 0/ holds in the intended HLF-structure if and only if all the universal
laws that hold in M also hold in M 0, and similarly for F . Or L could be thought of
as a function from M to subsets of L , where, in the intended model, L.M/ is the
set of universal laws true in M . Then the set of lawful-relative-to-M models could
be identified in the obvious way – and similarly for F .

As far as formal adequacy goes, it seems that the only unclarity in the hypothet-
ical limiting frequency theory is in connection with the phrase “every (or almost
every)”. Which is it? Without at least a specification of which it is, the truth condi-
tions for ‘P.A=B/ D r’ aren’t definite, and it would not be possible to construct
a finitely additive probability space from an HLF-structure in the light of the given
semantics. Consider first the possibility of reading the phrase as “every”. This would
surely give us formal adequacy of the theory, but it would render every probability
statement false in the intended model (i.e., given the intended meanings of ‘future
model’, ‘lawful model’, etc.), thus rendering the interpretation inadequate in re-
lation to interpretation/idealization. Consider, for example, statements of the form
‘The probability of tails on a “fair” toss of this coin is r’, and let us assume that this
statement form – in symbols, ‘P.A=B/ D r’ – yields a true statement (intuitively)
just when ‘ 1

2
’ is substituted for ‘r’. Given the truth conditions for statements of hy-

pothetical relative frequency stated above – and reading “every (or almost every)” as
“every” – a statement ‘P.A=B D r’ is true if and only if ‘S.A;B; r/’ is true in ev-
ery B-maximal extension of every lawful future world. But surely there is some such
world in which ‘S.A;B; 1/’ is true, i.e., in which the limiting relative frequency of
tails is 1. And, as Skyrms says,

On the hypothesis that the coin has a propensity of one-half to come up heads on a trial and
that the trials are independent, each infinite sequence of outcomes is equally possible. If we
look at all physically possible worlds, we will find them all, including the outcome sequence
composed of all heads. (1980, p. 32)

That is, there is also some B-maximal lawful future world in which ‘S.A;B; 0/’
is true. Thus, for no value of r is ‘S.A;B; r/’ true in all B-maximal extensions of
lawful future worlds. So, let us abandon the “every” reading of “every (or almost
every)” and consider now the “almost every” reading.

How are we to understand “almost every” in a precise way? We surely cannot
take it to mean “all but a finite number”, for, in the coin tossing example of the
previous paragraph, if there is one world in which ‘S.A;B; r/’ is true for some value
of r , then surely there are infinitely many such worlds. Fetzer and Nute (1979, 1980;
see also Fetzer 1981, 56ff) have suggested the following way of making Kyburg’s
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truth conditions precise on the “almost every” reading. Where M1;M2; : : :, is an
infinite sequence of B-maximal extensions of lawful future worlds,

‘P.A=B/ D r’ is true .in the actual world M �/ if and only if

lim
k!1

#fMi W i 6 k and ‘S.A; B; r/’ is true in Mig
k

D 1:

Actually, this is a slight variant of Fetzer and Nute’s suggestion, which is closer to
Kyburg’s formulation: the former assume that the worlds Mi are themselves future
and lawful, despite their having infinite sequences of B’s (more on this general idea
below).

There are several difficulties with this proposal. First, there are, presumably, at
least continuum many B-maximal extensions of any lawful future world, where,
again, ‘B’ means ‘this coin tossed’ and ‘A’ means ‘tails’: for each infinite sequence
of heads and tails, there is at least one B-maximal extension of any lawful future
world, and infinite sequences of heads and tails can be identified with functions from
the natural numbers into fheads, tailsg, of which there are continuum many. So the
natural question at this point is, “On what principles do we select the denumerably
long sequenceM1; M2; : : :, of B-maximal extensions of lawful future worlds from
the nondenumerably many such worlds?” Of course for any value of r , with 0 6
r 6 1, there are infinitely many sequences of B-maximal extensions of any lawful
future world such that, using any one of them, the truth conditions suggested will
yield the truth of ‘P.A=B/ D r’. This is because there are infinitely many infinite
sequences of heads and tails for which the limiting relative frequency of tails is r ,
for any value of r; 0 6 r 6 1.

Now part of the problem of selecting an appropriate sequence of B-maximal ex-
tensions of lawful future worlds would be solved if plausible principles governing
which B-maximal extensions of lawful future worlds should be elements of such a
sequence could be provided. Perhaps we should require that suchB-maximal exten-
sions of lawful future worlds themselves be lawful. (It seems that part of the intent
of the definition of ‘extension’ is that all extensions of future worlds will themselves
be future, for it is natural to assume that the sequences in R of a world hU;Ri are
sequences of events taken in their temporal order, so that all B-maximal extensions
of lawful future worlds will automatically be future worlds.) But it would require an
argument to establish that any B-maximal extension of any lawful future world is
lawful, ifR.B/ is supposed to be infinite in anyB-maximal extension hU;Ri of any
lawful future world: conceivably, the universal laws true of the actual world might
imply that the world will have a finite history, as some cosmological models predict.
Of course Kyburg’s definition of B-maximal extension has a clause in it to handle
the case in which there is no extension which extends a finite sequence B . But it
is not explained why there may be no such extension in some cases, e.g., whether
or not it could be a matter of physical law. And note that whether or not the actual
world’s history is finite as a matter of physical law should not, intuitively, control
whether or not some probabilities have irrational values.
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But even if plausible principles for selecting a denumerable set of B-maximal
extensions of lawful future worlds could be given, there would remain the problem
of ordering the models in this set so as to obtain the infinite sequence of models
required for the truth conditions to be applicable. As long as there are infinitely many
not-S.A; B; r/-worlds as well as infinitely many S.A; B; r/-worlds in a given set
of B-maximal extensions of lawful future worlds, the truth of ‘P.A=B/ D r’ on
the suggested truth conditions will depend on the particular order in which the set
of B-maximal extensions is taken, for any value of r , for this order will determine
whether or not the main sequence in the truth conditions converges to 1. Note also
that if there are infinitely S.A; B; r/-worlds and infinitely many S.A; B; s/-
worlds in a given set of B-maximal extensions of lawful future worlds, there will be
infinitely many orderings of the set which will yield the truth of ‘P.A=B/ D r’ and
also infinitely many that will yield the truth of ‘P.A=B/ D s’, and this conditional
statement holds for any values of r and s.

Now none of these difficulties with Fetzer and Nute’s suggestion is a deep one
for the problem of formal adequacy. Instead of taking M to be a set of mod-
els in the HFL-structures, we could insist that M be some infinite sequence of
models. For probabilistic representation, simply take some largest Boolean alge-
bra of terms (more precisely, equivalence classes of terms A, B under the relation
L ` A D B) for which Fetzer and Nute’s truth conditions give probabilities. But
that is an additional constituent of HFL-structures which has to be accommodated
in characterizing the intended model of the theory, for satisfaction of the condition
of interpretation/idealization. Note that there is no “natural” ordering of the worlds,
whereas the actual limiting frequency theory is able to take advantage of the natu-
ral temporal order of events. The difficulties elaborated above are indeed deep and
sticky problems for the hypothetical limiting frequency interpretation in connection
with the condition of interpretation/idealization.

I conclude that while the hypothetical limiting frequency interpretation is
superior to the actual limiting frequency view as far as conceptual adequacy is
concerned, it is inferior with respect to interpretation/idealization.

Long-Run Propensities

The theoretical advantage, discussed in the previous section, of the hypothetical lim-
iting frequency conception over the actual limiting frequency conception was that
the former deals with the possibilities that the history of the actual world is finite and
that it may exhibit coincidences that are not representative of the relevant physical
features of the world. Thus, the artificial restriction of the actual limiting frequency
of tails, in tosses of honest coins when the moon, Mars and Halley’s comet are in
close opposition, to the values 0; 1

3
; 2

3
, and 1 results from the finitude of the relevant

sequence; and the fact that the actual limiting frequency turned out to be, say, 1
3

,
rather than, say, 0 or 2

3
, is a coincidence that doesn’t appropriately reflect the rele-

vant physical facts, e.g., the symmetry of the coin, the physical “honesty” of the toss,
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etc. By considering a hypothetical infinite extension of the actual sequence of such
tosses, we do not artificially limit the possible values of the limiting frequency to the
values i=3, for i D 0, 1, 2, 3. And considering infinitely many such hypothetical ex-
tensions of the actual sequence of just three tosses is supposed to accommodate the
possibility that even in a lawful future world (hypothetically extended to include an
infinite sequence of tosses under the relevant circumstances) the limiting frequency
could be 0 or 1, or anything in between, however “improbable” such a value may
be – where, as we have seen, characterizing the appropriate sense of “improbable”
here is a sticky problem for hypothetical limiting frequentists in connection with
interpretation/idealization.

But perhaps (at least part of) the motivation for adopting what has come to be
called a propensity view of probability stems from difficulties that confront even hy-
pothetical relative frequency views in connection with probabilities of single events.
Let x1; x2, and x3 be the three actual tossings of a fair coin under the celestial cir-
cumstances described earlier. And suppose that the actual relative frequency of tails
in these three tosses is, in fact, 1

3
. We are interested in what the probability is that x3

results in tails. Intuitively, let us assume for now, this single case probability is 1
2

. Let
‘B’ denote, in the model M � D hU �; R�i corresponding to the actual world, the
property of being an honest coin tossed honestly under the celestial circumstances
described earlier, and ‘A’ the property of coming up tails. Should we identify the
single case probability of x3’s coming up tails with the hypothetical limiting fre-
quency theory’s construal of P.A=B/? Suppose that, on this construal, P.A=B/
were 1

2
, as we should expect (given, of course, some adequate solution to the prob-

lem of interpretation/idealization for the hypothetical limiting frequency theory).
This would be some evidence in favor of the hypothetical limiting frequency inter-
pretation’s applicability to single cases, as well as its appropriate applicability to
sequences of events. But there are reasons why P.A=B/, under the hypothetical
limiting frequency construal, may be equal to 1

2
other than each element of a hypo-

thetical infinite extension of R�.B/ having, intuitively, a single case probability of
1
2

of coming up tails. Suppose, for example, that during the first phase of any oc-
currence of the celestial configuration described – which lasts for half of the time of
any such close opposition – all physically symmetrical coins are, in fact, physically
biased roughly 2:1 for tails, while during the rest of the time of such a close opposi-
tion, all such coins are physically biased roughly 2:1 for heads, where the celestial
configuration during these times is responsible, causally, for these biases. (Perhaps
an example involving the tides would be more intuitive here.) Then P.A=B/, as a
hypothetical relative frequency, should still be expected to be about 1

2
– since about

“half” (i.e., limiting relative frequency of 1
2

) of the elements of a hypothetical in-
finite extension of R�.B/ may be expected to occur during the first phase, and the
other “half” during the second phase, of close opposition – but, intuitively, if x3 ac-
tually takes place during the second phase, the single case probability of x3’s being
a member of A should be roughly 1

3
.

Some ways to accommodate such cases as this readily suggest themselves, the
basic idea behind all of them being that the reference class must be chosen prop-
erly. In the above case, for example, the appropriate class is not an extension of
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R�.B/, but rather an extension of R�.B 0/, the class of tosses of coins during the
second phase of the celestial configuration described. But how shall the appropriate
reference class be characterized in general?

One possibility is to say that the single case – x3 in our example – should first be
characterized uniquely by some set of permissible predicates – predicates permissi-
ble for the description of a reference class. Say that F1; : : : ; Fn are all permissible
predicates and that x3 is the only event in the course of the world’s actual history
that satisfies each of these predicates. Then we might identify the probability of x3’s
being in A as the hypothetical limiting frequency of A in the class B 0 determined by
F1; : : : ; Fn. Unlike the actual limiting frequency view, it doesn’t follow for hypo-
thetical limiting frequencies that P.A=B 0/ is either 0 or 1. But this suggestion will
not do, of course. And the reason is that F1; : : : ; Fn need not have anything to do,
physically, with whether x3 results in heads or tails, in order for them uniquely to
pick out the event x3 from all other events in the course of the world’s history. If x3

were the only actual event of a coin’s being tossed under the celestial circumstances
described above, then the Fi ’s need only to describe that celestial configuration, so
that, as we have seen, the hypothetical limiting frequency ofA in B 0 may be 1

2
, even

though the correct single case probability of x3’s resulting in tails is, intuitively, 1
3

.
Two ways of accommodating this problem, consistent with a hypothetical lim-

iting frequency conception of probability, suggest themselves. They are rough
analogues for the hypothetical limiting frequency view of the two proposed solu-
tions of the reference class problem for the actual limiting frequency interpretation,
considered two sections back: (1) say that the appropriate class B 0 is the one deter-
mined by every permissible predicate actually satisfied by x3, and (2) say that the
appropriate class B 0 is the broadest ontically homogeneous reference class for x3

and A, in the sense of the third section of this paper, i.e., the broadest class such
that x3 2 B 0 and for any B 00 � B 0; P.A=B 00/ D P.A=B 0/, where P , here, is still
hypothetical limiting frequency. Thus, according to (1), an appropriate hypothetical
infinite extension of fx3g will be a “narrowest” class, while, according to suggestion
(2), such an extension will be a “broadest” class, not all elements of which satisfy
every permissible predicate which x3 satisfies.

Suggestion (1) could be criticized on the ground that causally irrelevant factors
should not be included in the description of the reference class. But Eells and Sober
(1983) argue that the values of hypothetical limiting frequencies will not be affected
by the specification of causally irrelevant factors. But there is still a difficulty with
suggestion (1), in connection with probabilistic explanation. Salmon’s (1971) well-
known counterexamples to Hempel’s requirement of maximal specificity tell against
the suggestion. I shall not rehearse these considerations here in detail. But the basic
idea is that if we must specify all permissible predicates in the reference class de-
scription, then causally and explanatorily irrelevant factors will be specified as well
as those that are relevant. But it seems that in explaining why an event exhibited
some attribute, we should assign the event to a reference class determined by only
the causally or otherwise explanatorily relevant factors, to avoid citing explanatorily
irrelevant factors in the explanation of the character of the event.
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As to suggestion (2), a simple example of Fetzer’s (1981, p. 91; also 1977,
pp. 199–200) – also in an explanatory context – tells quite conclusively, it seems
to me, against the idea. Suppose that Jones died of a brain tumor. Of course not
everyone who has a brain tumor dies of it; assume, in fact, that brain tumors of the
kind Jones had are irreducibly probabilistic causes of death. Say that P.D=R\ T /,
the hypothetical relative frequency of death among 60 year old human males – etc. –
with a brain tumor, is r , in fact the correct “single case” value for Jone’s death. But
suppose it is also true thatP.D=R\H/, the hypothetical limiting frequency of death
among 60 year old human males – etc. – with a certain serious kind of heart disease,
is also equal to r . Then R \ T is not a broadest ontically homogeneous reference
class for Jones and D. Any such reference class must have .R \ T / [ .R \ H/,
i.e., R \ .T [ H/, as a subset. Suppose that R \ .T [ H/ in fact is a broadest
ontically homogeneous reference class for Jones and D. Under the suggestion that
single case probabilities are hypothetical limiting frequencies in broadest ontically
homogeneous reference classes, the event of Jone’s death cannot be probabilistically
explained by assigning him to the class of 60 year old human males with a brain
tumor (etc.) and citing the probability, r , of death in this class, but only by assigning
him to the class of 60 year old human males (etc.) that either have a brain tumor or
have that heart disease. The rationale behind taking the broadest homogeneous class
was to avoid including causally irrelevant factors in explanation, but this formula-
tion will prohibit, in cases such as this, specification of the distinctively relevant
causally relevant factors.

Thus, suggestion (1) should be rejected because it requires specification of
causally irrelevant factors in the description of the reference class, and sugges-
tion (2) should be rejected because in some cases it will prohibit specification of
some factors that are distinctively causally relevant for some single cases. These
considerations, involving the conceptual adequacy of the hypothetical limiting fre-
quency interpretation in connection with probabilities of single events, suggest an
alternative conception of probability – a revision of the hypothetical limiting fre-
quency view – on which the appropriate reference sequence is characterized not in
terms of its subsequences and supersequences (and the relevant attribute and the
single case in question), but rather in terms of the operative causal conditions, i.e.,
the distinctively causally relevant factors, themselves, where, after all, it was the
failure of suggestions (1) and (2) to capture exactly these conditions that rendered
them inadequate. Thus, Popper endorses the following alternative to suggestions (1)
and (2):

the frequency theorist is forced to introduce a modification of his theory – apparently a very
slight one. He will now say that an admissible sequence of events (a reference sequence,
a ‘collective’) must always be a sequence of repeated experiments. Or more generally, he
will say that admissible sequences must be either virtual or actual sequences which are
characterized by a set of generating conditions – by a set of conditions whose repeated
realization produces the elements of the sequence. (1959, p. 34)

And Popper explains that, unlike frequency interpretations which take probability to
be a property of sequences, somehow appropriately identified (or not), the propen-
sity interpretation takes seriously the idea that an appropriate “sequence in its turn
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is defined by its set of generating conditions; and in such a way that probability
may now be said to be a property of the generating conditions” (1959, p. 34). And
Popper takes one more step. From the premise that actual and virtual frequencies
depend on the experimental generating conditions, he concludes that “we have to
visualize the conditions as endowed with a tendency, or disposition, or propensity,
to produce sequences whose frequencies are equal to the probabilities; which is pre-
cisely what the propensity interpretation asserts” (1959, p. 35). As to probabilities
of single events,

now we can say that the singular event a possesses a probability p.a; b/ owing to the fact
that it is an event produced, or selected, in accordance with the generating conditions b,
rather than owing to the fact that it is a member of a sequence b. (1959, p. 34)6

Thus, evidently, where B� is an “experimental arrangement”, the propensity the-
ory’s interpretation of ‘P.A=B�/ D r’ is (roughly): B� possesses a universal (or
“almost universal”) disposition to produce, if repeated often, sequencesB such that
the limiting relative frequency of A’s within B is r . (The reason for the qualification
“or ‘almost universal’ ” is the same as that encountered in the previous section, as
discussed below.) Thus, this “long run”7 propensity theory invokes just two con-
cepts not present in the hypothetical limiting frequency theory investigated in the
previous section: the idea of an experimental arrangement and the idea of a certain
kind of disposition of universal (or “almost universal”) strength with which some
experimental arrangements are endowed. Let us now consider the effect of intro-
ducing these two new ideas on the conceptual adequacy of the theory and on the
possibility of satisfying the condition of interpretation/idealization.

As to their effect on conceptual adequacy, Fetzer has compared the hypothetical
limiting frequency theory with the propensity theory in relation to the way in which
they may be invoked in accounting for certain frequency patterns that occur in the
course of the actual world’s history, in a passage worth quoting:

the difference between them is describable as follows: the dispositional interpretation pro-
vides a theoretical basis for accounting for these patterns in terms of the system’s initial
conditions, insofar as the occurrence of actual frequencies is explained by reference to the
dispositional tendencies that generate them; while [hypothetical limiting] frequency inter-
pretations, by contrast, yield an empirical basis for accounting for these patterns in terms of
the pattern’s ultimate configuration, since the occurrence of actual frequencies is explained
by reference to the hypothetical frequencies which control them. Consequently, the kind of
explanation provided by a dispositional interpretation for the occurrence of actual frequen-
cies during the course of the world’s history is broadly mechanistic in character, while the
kind of explanation afforded by these frequency constructions for those same occurrences
is broadly teleological in character. To the extent to which the progress of science has been
identified with a transition from teleological to mechanistic explanations, therefore, there
even appear to be suitable inductive grounds for preferring the dispositional to the frequency
approach. (1981, pp. 77–78)

(Actually, Fetzer is here comparing the single case propensity view – which will be
considered in the next section – with the hypothetical limiting frequency view, but
these considerations apply equally, of course, in the comparison under examination
here, as he later points out (p. 107).)
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I agree that the “mechanistic” character of the long run propensity view con-
stitutes a conceptual advantage for this view over the “teleological” hypothetical
limiting frequency view, especially in connection with the problem of assigning
probabilities to single events. For, as we have seen in the rejection of suggestions
(1) and (2), above, it seems that an appropriate reference class for a single case
probability cannot be characterized in terms just of (i) the membership of the single
event in question in the class, (ii) the relevant attribute, and (iii) how hypothetical
limiting frequencies change when the class is narrowed or broadened. The long run
propensity view, on the other hand, specifies that a single case should be referred to
the reference sequence of events which are produced by the same experimental ar-
rangement, the intent of which is to hold constant just the controlling causal factors
present in the single case in question. And this would surely seem to be an appropri-
ate sequence, for what else could be relevant to the physical probability that a single
event will exemplify a given attribute than the physical circumstances under which
the single event occurs? It seems clear that if a theory of probability that interprets
probability in terms of sequences of events (together with other ideas) is to apply
adequately to single events, then it must refer the single events to such reference
classes, where the relevant physical circumstances under which the single event in
question occurs are replicated in every element. So it seems that we should con-
clude, then, that as far as conceptual adequacy goes, the long run propensity view
is superior to the hypothetical limiting frequency theory.

But what about satisfaction of the condition of interpretation/idealization, which
is supposed to identify the conception in a precise manner and give the interpretation
empirical (or cognitive, or, at least, “pre-probability-theoretical”) significance? How
are the two ideas of dispositions of universal (or “almost universal”) strength and of
experimental arrangements to be accommodated in a formal solution to the problem
of interpretation/idealization?

I have two main points to make in connection with accommodating the idea of
dispositions of universal or “almost universal” strength. First, it should be clear
that the same sorts of considerations as those advanced in the previous section in
connection with the hypothetical limiting frequency theory show that the long run
propensity theory must also utilize some idea of “almost universal” strength of dis-
positions, rather than the idea of strictly universal strength, if the theory is to be
able to accommodate the idea that trials in a sequence of events may be, intuitively,
independent of each other. For if the trials are independent, then all sequences of re-
sults are “equipossible” and “equiprobable” (assuming that the relevant single case
probabilities are supposed to be 1

2
). And even without independence and without

the relevant single case probabilities all being equal to 1
2

, still it seems that any se-
quence of results – and hence any limiting relative frequency – should be granted to
be possible, so that it would be incorrect to explicate probability in terms of a strictly
universal disposition of an experimental arrangement to display its “characteristic”
relative frequency. But we have already seen the serious difficulties involved in one
way of trying to characterize the “almost universal” (or “almost every world”) idea,
and now it seems that these also confront the long run propensity theory in connec-
tion with the condition of interpretation/idealization.
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Second, it seems that accommodating the dispositional idea (however the “almost
universal” idea might be made clear) is closely connected with accommodating the
idea of the experimental arrangement. For, in the first place, it is experimental ar-
rangements that are supposed to be endowed with the relevant dispositions, and, in
the second place, not every “arrangement” can be said to possess a disposition of
the relevant kind, as will be presently seen. Thus, it seems natural to try to charac-
terize the relevant kind of disposition in terms of the appropriate kind of physical
arrangement.

Suppose I have a coin tossing device which has a knob on it controlling a pointer
which can be set at any position between 0 and 1, inclusively.8 If I set the pointer
at position r , then the device will toss coins with a bias, intuitively, of r W 1 � r

in favor of tails, for all r between 0 and 1, inclusively. The internal mechanics of
the device are not important. Now clearly, to say just that a coin is about to be
tossed by this machine is not enough to specify an experimental arrangement, in a
sense appropriate to the long run propensity interpretation of probability. Since such
a specification of the arrangement does not include a specification of the setting of
the control knob, the arrangement, so specified, does not possess an almost universal
disposition to produce any particular limiting frequency of tails.

But now let us change the “initial conditions”: the coin tossing device is put
together with another device which rotates the pointer slowly back and forth at a
constant speed from the 0-position to the 1-position to the 0-position, and so on.
Now if the device is constructed in such a way that it tosses coins rapidly at constant
short intervals, we can imagine that the combined device has an “almost universal”
disposition to produce sequences of tosses with a “characteristic” limiting frequency
of tails of 1

2
. But clearly again, even though the arrangement will “almost certainly”

yield a “characteristic” limiting frequency, we have not specified an experimental
arrangement in a sense appropriate for the long run propensity theory. For this theory
is supposed to apply to single events, and, intuitively, when the pointer crosses the
2
3

-position, the probability of the toss’ landing tails is 2
3

, and not the “characteristic”
limiting frequency of 1

2
produced by the device.

Thus, suppose we include in the description of the arrangement a position of
the pointer. Have we now succeeded in specifying an experimental arrangement in
a sense appropriate for the long run propensity theory? It seems unlikely, even if
this specification again yields a “characteristic” limiting frequency. For just as the
position of the pointer clearly and overtly indicates a single case or short run bias,
there will no doubt also be other factors pertaining to conditions in and around the
device which likewise introduce biases: the perhaps random movement of the air
around the coin, the humidity, the tidal conditions, small earth tremors, and so on.

Note that for the combined device, the “characteristic” limiting frequency of tails
depends on how the rate of rotation of the pointer varies as it sweeps across the dial:
in the example above, this rate was assumed to be slow and constant. But if the
pointer moved more slowly when it is in the interval

�
0; 1

2

�
than when it is in the

interval
�

1
2
; 1

�
, then the “characteristic” relative frequency of tails would be less

than 1
2

. If some proposed specification of the experimental arrangement does not
specify the position of the pointer, then we may say that the possible positions of
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the pointer are unspecified possible initial conditions, and that the “characteristic”
limiting frequency of tails depends on both the experimental arrangement, as speci-
fied, and the “distribution of initial conditions” (as Sklar (1970) expresses the idea).
In the example above, this distribution is determined by a function v.r/ D the ab-
solute rate of speed of the pointer across the point r on the dial, this assumed to be
small and constant for all sweeps across r .

So it seems that there are two options open to the long run propensitist in
connection with the nature of experimental arrangements: (i) specification of an
experimental arrangement must include a specification of the distribution of unspec-
ified initial conditions (as well as a specification of certain of the initial conditions),
and (ii) all of the initial conditions must be held fixed. As to (i), three difficult prob-
lems arise. First, how is it to be decided which of the initial conditions are to be
held fixed and which of them should be only partially specified by giving their dis-
tribution? Second, on what grounds should one distribution of the unfixed initial
conditions to be preferred to another? Sklar has urged that “what this distribution
would be [if the experiment were repeated often] is completely unconstrained by
any lawlike features of the actual world whatsoever!” (1970, p. 363). On the other
hand, Settle has reported private communication from Popper in which the latter
conjectures that (in Settle’s words) “there is a law of nature, that unless they are
constrained, initial conditions have a (‘natural’) propensity to scatter over the inter-
val left open to them by the (constraining) experimental conditions” (Settle 1975,
p. 391). Now if the initial conditions did have a propensity to scatter over some inter-
val with some characteristic distribution as a matter of law, then perhaps we would
have an important improvement over the hypothetical limiting frequency theory:
namely, a principle governing the extension of an actual sequence R�.B/ to a se-
quence R.B/ in a B-maximal extension M D hU; Ri of a lawlike future world.
The principle would state that the initial conditions must be distributed over the ele-
ments ofR.B/ according to how, as a matter of actual law, they must be distributed.
But now we must ask whether this propensity to scatter over an interval with some
“characteristic” distribution is a universal or an “almost universal” disposition, and
if it turns out to be an “almost universal” disposition, then by now familiar prob-
lems emerge again. In any case, whether the disposition must be universal or only
“almost universal” would seem to depend on a more precise formulation of the con-
jecture (e.g., are the different configurations of initial conditions independent of
each other?), and perhaps on empirical investigation.

But, perhaps more importantly, the third difficulty with (i) pertains to the desire
to make probability applicable to single events. If the exact configuration of initial
conditions in a given trial (i.e., the actually obtaining values of the “hidden” vari-
ables) makes a physical difference with respect to the result of the trial, then it would
seem inappropriate to leave any of the initial conditions unspecified.

This suggests consideration of alternative (ii). But the problem with suggestion
(ii) is that it may very well be, as a matter of fact, a matter of physical law that
in some cases, configurations of initial conditions cannot remain fixed from trial to
trial. So if we have to consider a virtual sequence R.B/ in which all of the initial
conditions remain unchanged from element to element, we may have to consider
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nonlawlike B-maximal extensions of lawlike future worlds. Also, if conditions such
as being the nth element ofR.B/ are to count as initial conditions, then there would
also be logical difficulties with the idea of replicating an experiment, holding all
of the initial conditions fixed. The single case propensity interpretation, to be con-
sidered in the next section, has, I think, a more plausible suggestion to offer along
basically the same lines. So I shall postpone consideration of the “hold everything
fixed” idea until then.

But perhaps it will be urged that we have been going about the explication of
the two new concepts of the long run propensity interpretation in the wrong direc-
tion: instead of trying to characterize the (“almost”) universal disposition idea in
terms of the experimental arrangement, we should first try to characterize the dis-
position, and then, in terms of this, characterize the relevant kind of experimental
arrangement. Of course a particular, individual experiment cannot itself be repeated,
literally speaking, so what is needed, of course, is a characterization of the relevant
kind of experiment type. And according to this new approach, two particular exper-
iments will be of the same type (of the appropriate kind of type) if they are both
endowed with the same universal or almost universal disposition (of the appropriate
kind). If this idea could be worked out satisfactorily – in connection with formal ad-
equacy and interpretation/idealization – then, again, the long run propensity theory
would have important advantages over the hypothetical limiting frequency theory as
considered in the previous section. For then, the long run propensity theory would
be in possession of a principle governing the extension of actual sequences R�.B/
to infinite virtual, or hypothetical, sequencesR.B/ inB-maximal extensions of law-
ful future worlds: we may say that an admissible such sequence for the purpose of
assessing a probability P.A=B/ would be one whose every member was endowed
with the very same disposition (of the appropriate kind) with which every mem-
ber of R�.B/ – which may consist of just one trial – is endowed. Thus, perhaps
the characteristic structures of the long run propensity interpretation would be like
those of the hypothetical limiting frequency interpretation except for having an ad-
ditional component: say a function D from pairs hM; xi into properties of events,
where, of course, we should not insist that D.M; x/ 2 R, where M D hU; Ri.
Then, in the intended model, for any world M and event x; D.M; x/ is the
universal or almost universal disposition of the relevant kind with which M.x/ is
endowed, and an admissible extension of a sequence R0.B/ consisting, say, of just
one event M 0.x/ – where M 0 D hU 0; R0i is a lawful future world – would be a
sequence R.B/ in a world M D hU; Ri, every member of which has the property
D.M; x/ D D.M 0; x/ D D.M �; x/. This, plausibly, might accommodate also
the conceptual difficulty with the hypothetical limiting frequency view that, intu-
itively, lawful future worlds, and their B-maximal extensions, may have statistical
laws differing from those that hold in the actual world, though, by the definition of
lawful worlds, the universal laws that hold of them are the same as those that hold
in the actual world.

Of course the above considerations only constitute a step in the direction of con-
ceptual and formal adequacy of the long run propensity interpretation, leaving the
problem of interpretation/idealization untouched. A solution to the latter problem
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is supposed to identify the intended model and associate independently understood
concepts, objects or phenomena with the constituents of the intended model. Of
course counterparts of the problems encountered earlier in connection with the
hypothetical limiting frequency theory for interpretation/idealization remain (e.g.,
what does “almost every world” mean?), but a new part of the problem for the long
run propensity view is to interpret the new function symbol ‘D’ – in other words, to
explicate the relevant kind of “almost” universal disposition to produce sequences
with a characteristic limiting frequency. From an antagonistic point of view, this
property may be characterized as whatever it is that every member of hypotheti-
cal infinite sequence must have in order for the limiting frequency of the relevant
attribute in that sequence to be appropriately transferable to any member of the se-
quence. From the other point of view, the postulation of the existence of this thing
has been characterized as “a new physical hypothesis (or perhaps a metaphysical
hypothesis) analogous to the hypothesis of Newtonian forces” (Popper 1959, p. 38).
And, indeed, what seems to be lacking in the long run propensity interpretation is an
explication of ‘D’ in terms of old concepts, objects or phenomena that are already
understood independently of probabilities or propensities. Below I shall consider
the question of whether propensity theories should be required to satisfy a condi-
tion of interpretation/idealization (for ‘D’), in light of the idea that such theories
may be characterized as involving, after all, a new physical hypothesis to the ef-
fect that there are propensities, of some sort, which may be of a “new metaphysical
category”. But, independently of the appropriateness of the condition, it seems ap-
propriate to conclude that, while for reasons given several pages back, the long run
propensity interpretation is superior to the hypothetical limiting frequency theory as
far as conceptual adequacy goes, it is, for lack of an appropriate interpretation of
‘D’, inferior with respect to interpretation/idealization.

Singe-Case Propensities

There is a formulation of the single case propensity theory of probability that ini-
tially seems to have the advantage over the long run approach, in connection with
interpretation/idealization, that the conception of probability offered can be ex-
plicated in terms understood independently of the ideas of universal or “almost
universal” dispositions – i.e., independently of the intended interpretation of the
function symbol ‘D’ of the intended model of the long run account, as described at
the end of the previous section. The single case theory which I shall consider below
is, essentially, that of Fetzer and Nute (1979, 1980; see also Fetzer 1981, pp. 49–73).

The basic idea is that instead of looking at relative frequencies in sequences of
repetitions of experiments in single worlds (and then perhaps at the relative fre-
quency of worlds’ exhibiting a given frequency), we look first at sequences of lawful
future worlds in which the single event in question takes place, exhibiting or not ex-
hibiting the relevant attribute. Thus, suppose we wish to give truth conditions for
the statement ‘P.A=x/ D r’, where x is the single event in question, say a toss of a
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coin, where A is the relevant attribute, say coming up tails, and where the statement
means, intuitively, that the single case probability (propensity) of that toss’ resulting
in tails up is r . LetM1; M2; : : : be an infinite sequence of lawful future worlds, i.e.,
a sequence of worlds each of which obeys all the universal laws which the actual
world M � obeys and whose histories are the same as that of M � at least up to the
time of the event x. Then we may give truth conditions as follows:

‘P.A=x/ D r’ is true in M � if and only if

lim
k!1

#fMi W i 6 k and ‘Ax’ is true in Mig
k

D r:

These truth conditions have the advantage over both the hypothetical limiting fre-
quency interpretation and the long run propensity interpretation that they avoid the
necessity of providing principles governing the extension of actual sequences of
events to longer, ideally infinite, sequences of events that occur in some possible
world. In particular, no recourse to the D-component of the long run propensity
theory is necessary. Also, of course, there is no longer the problem of the refer-
ence class or experiment type, and, envisioning x as being, in every relevant world,
numerically the very same event, we have, here, an interpretation that is truly appli-
cable to the single case.

But there are difficulties with this approach that are similar to the problems
encountered in connection with the hypothetical limiting frequency theory. Since
there are, presumably, nondenumerably many lawful future worlds relevant to the
probability statement in question (as argued in the fourth section of this paper), the
problem arises of how to select from all of these worlds an appropriate denumerable
sequence, M1; M2; : : :, in terms of which the truth conditions for ‘P.A=x/ D r’
should be given. Also, as long as Ax and NAx are both physically possible, it would
seem that there should be infinitely many lawful future Ax-worlds as well as in-
finitely many such NAx-worlds, so that, for any value of r between 0 and 1, inclusive,
there will be some sequence of worlds which, together with the suggested truth con-
ditions, will yield the truth of ‘P.A=x/ D r’. Thus again, Fetzer and Nute require
only that “almost every” sequence of lawful future worlds satisfy the above truth
conditions in order for ‘P.A=x/ D r’ to be true, where this is made precise as
follows. Let M 1; M 2; : : : be an infinite sequence of infinite sequences of lawful
future worlds, whereM j

i is the i th member of the j th sequence. Then revised truth
conditions are suggested as follows:

‘P.A=x/ D r’ is true in M � if and only if

lim
m!1

#

(

M j W j 6 m and lim
k!1

#
n
M

j

i
Wi6k and ‘Ax’ is true in M

j

i

o

k
D r

)

m
D 1:
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But the same sort of problem arises again. As noted above, if there are infinitely
many Ax-worlds that are lawful and future, as well as infinitely many such NAx-
worlds, then there is, for any value of r , some sequence of worlds which, on the
first suggested truth conditions, yields the truth of ‘P.A=x/ D r’. But if there is
even one such sequence, there are infinitely many such sequences: simply reorder
the first n terms, for each finite n, to get infinitely many such sequences. Arrange
these sequences into a sequence of them, in any order, and you get a sequence of
sequences of lawful future worlds which, together with the second suggested truth
conditions, yields the truth of ‘P.A=x/ D r’. And this can be done for any value
of r , as long as there are infinitely many lawful future Ax-worlds as well as infinitely
many such NAx-worlds. Thus, the problem is to specify principles for selecting an ap-
propriate sequence of sequences of worlds from presumably nondenumerably many
such sequences. We may take Fetzer and Nute’s idea one step further and say that
‘P.A=x/ D r’ is true if and only if “almost every” sequence of sequences of lawful
future worlds satisfies the second suggestion, where this could be made precise in
terms of an infinite sequence of infinite sequences of infinite sequences of lawful
future worlds, but it is obvious that the same sort of problem would arise again. And
so on.

Perhaps there may be another way of rigorously capturing the intuitive idea that
the proportion of Ax-worlds in a random selection from all lawful future worlds
will almost certainly be about r . Indeed, the difficulties with the above approach
may suggest a measure theoretic approach, according to which ‘P.A=x/ D r’
is supposed to be true if and only if r D P

M Probability.M/, where the sum-
mation is taken over lawful future Ax-worlds M , or, more generally, P.A=x/ DR

jAxj �.M/d�.M/, where, again, the integral is over lawful future worlds in jAxj.
But now it is natural to ask where the probability function Probability comes from,
or where the density function � on worlds comes from.

Suppes (1973) has formulated a measure theoretical approach in which a proba-
bility function Probability can be inferred from an axiomatized quaternary relation
A=B � C=D (meaning that the propensity of A’s occurring given an occurrence of
B is at least as great as the propensity of C ’s occurring given an occurrence of D).
But then the problem remains of giving a physical interpretation of the relation �, in
the sense elaborated earlier in this paper. Note that this is different from the problem
of application in particular physical contexts, whose solution may simply require an
association of kinds of physical events with A, B, etc., and the assumption of addi-
tional axioms appropriate to the particular physical context. Suppes (1973) gives an
example of this, relating to the phenomenon of radioactive decay.

Also, Giere (1976) formulates a measure theoretical kind of approach, in which
finite, countable and continuous possibility structures are defined. These involve,
basically, a set of possible worlds, a partition of this set, and (i) in the case of finite
possibility structures, an equal measure over the possible worlds, (ii) in the case
of countable possibility structures, an “equal measure” on the possible worlds ob-
tained from a one-to-one correlation between the possible worlds and the interval
[0, 1] and a uniform density on [0, 1], and (iii) in the case of continuous possibility
structures, something more complicated. In each case, a probability space on the



34 E. Eells

partition of worlds can be inferred, where this is used to give a formal definition of
a “propensity function” on the set of final states of a stochastic system, where this
set is an isomorph of the partition of worlds. In each case, the basic idea is, as Giere
puts it, that “physical probabilities are a measure of the density of possibilities open
to a system in a given initial state” (p. 338), where these possibilities correspond, in
the formal theory, to the “ ‘equipossible worlds’ ” (p. 338). But problems are: How
to characterize possible worlds in such a way that they are “equipossible” (Bertrand
paradoxes)? What does “equipossibility” mean? And how to come up with an ap-
propriate “density of possibilities” (density function) in any given case? Now again,
I do not think that all of these problems will be serious in all contexts of appli-
cation, as it is clear from the examples that Giere gives that his formulation can be
accommodated to many different kinds of stochastic phenomena, including radioac-
tive decay and Bernoullian sequences. But this just displays the formal adequacy of
the theory as applied to various kinds of phenomena, where the question under con-
sideration is: How are the entities of the abstract possibility structures to be related
to something independently understood in order that we may have an explication of
propensity via interpretation/idealization?

In connection with his formulation of the propensity theory in the case of finite
possibility structures, Giere himself states (where it is clear that these comments
apply also to the countable and continuous cases),

The individual worlds and the uniform measure need have no direct physical correlates.
That is the respect in which this semantics is merely a formal semantics. It would be an
interesting physical hypothesis that underlying every stochastic process there exists a set
of physically equipossible states. The above account of physical propensities is compatible
with this hypothesis but does not require it. In any case, I doubt it is true.

Metaphysically speaking, then, what are physical propensities? They are weights over
physically possible final states of stochastic trials – weights that generate a probability dis-
tribution over sets of states. The [uniform measure] function u provides only a formal and
rather shallow analysis of this distribution. But is it not just the task of a propensity inter-
pretation to explain what these weights are? No, because it cannot be done. We are faced
with a new metaphysical category. (1976, p. 332)

And he suggests that what he has in mind may be the same point as Popper (1959,
p. 38) expressed by saying that his propensity theory involved a “new physical
hypothesis (or perhaps metaphysical hypothesis) analogous to the hypothesis of
Newtonian forces”.

This feature of single case propensity theories is also found in Fetzer’s (1981,
p. 41) theory, and he takes the idea a step further with a dispositional ontology
according to which, for example, “individual objects are continuous sequences
of instantiations of particular arrangements of [universal and statistical] disposi-
tions” and “singular events are continuous sequences of instantiations of particular
arrangements of [universal and statistical] dispositions” (1981, p. 42). Here, dispo-
sitions are ontologically primitive, but

a dispositional predicate : : : may be informally defined as a set of ordered triples, each
of which consists of a test trial description T i , an outcome response description Oj , and
a numerical strength specification rk , i.e., fhT1; O1; r1i; hT2; O2; r2i; : : :g, where the
number of members of these sets is determined by the variety of different trial tests and
response outcomes that are ontological constituents of each specific disposition – a possibly
infinite set. (1981, p. 37)



Objective Probability Theory Theory 35

Thus it is clear that Fetzer, too, proposes the existence of propensities as “a new
physical hypothesis”, where the single case propensity semantics with which this
section began, involving infinite sequences of infinite sequences (and so on?) of
trials under identical conditions are “required to display the complex character of
propensity attributions” (private communication), but are not definitive of single
case propensities. Whatever the detailed relation is between the propensities them-
selves and the semantics proposed, it is clear that for Fetzer as well, single case
propensities are not definable in terms of independently understood concepts and
phenomena.

That single case propensities are not definable in terms of independently un-
derstood concepts and phenomena (with the exception, in some cases perhaps, of a
qualitative propensity relation) seems inevitable, if they belong to a “new metaphys-
ical category”. Nevertheless, it might be hoped that empirical significance could be
given to the concept of single case propensities by describing procedures whereby
hypotheses involving the concept may be tested, hypotheses such as, “The single
case propensity of this nucleus’ decaying before the end of 30 years is 1

2
”; and

perhaps then, in terms of procedures for testing such hypotheses, we may be in a
position to test the physical hypothesis that single case propensities obey some ax-
iomatization of probability.

But the following problem naturally arises in connection with the idea of test-
ing single case propensity statements: since, in any given single case x, the relevant
attribute, say A, either occurs or fails to occur, the difference between, for exam-
ple, P.A=x/ D 0:7 and P.A=x/ D 0:8 would seem to make no difference in
experience. (See Reichenbach (1949, pp. 370–371) for another statement of this
argument.) Despite the unrepeatability in principle of particular single events, how-
ever, a number of propensitists have suggested that single case propensity statements
may be tested by reference to certain relative frequencies. Thus Fetzer says,

although a single case probability statement surely does pertain to singular events, it is
somewhat misleading to suppose that the events involved only occur a single time. A single
case propensity statement, after all, pertains to every event of a certain kind, namely: to all
those events characterized by a particular set of conditions. Such a statement asserts of all
such events that they possess a specified propensity to generate a certain kind of outcome.
Consequently, although the interpretation itself refers to a property of conditions possessed
by single events, such statements may actually be tested by reference to the class of all such
singular occurrences – which surely is not restricted to a single such event. (1971, p. 478)

But this would seem to raise the old problem of the reference class, or of the descrip-
tion of the experimental arrangement: what is the “certain kind” of event to which
we should think of the single case in question as belonging, or what is the relevant
“particular set of conditions”? Note that here, the reference class problem (or ex-
periment type problem) arises in connection with the problem of testing probability
statements, while for the relative frequency view and (as presented above) for the
long run propensity view, this was a problem for the very explication of probability.
And I would agree that a problem of this kind need not be as serious for a theory of
probability if it arises only in connection with its theory of testing and not for the
very explication of probability. But recall that we have decided to look for a kind
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of explication of the idea of single case propensities (for empirical interpretation)
in empirical methods of testing propensity statements. So perhaps the problem is
serious, as the following considerations may further suggest.

Now Fetzer (1981, pp. 50–51) has given an answer to the question posed above
just after the quotation. He advances a requirement of maximal specificity accord-
ing to which, roughly adapted to the context of this discussion, the “particular set of
conditions” must include all “nomically relevant” factors, where a factor is nomi-
cally relevant, roughly, if its presence or absence in a given single case event would
affect the single case propensity of that event’s having the relevant attribute.9 Thus,
it would seem that in order to test a single case propensity statement by looking at
a relative frequency generated by an appropriate “particular set of conditions”, we
must either already know or have good reason to believe or also test other single
case propensity statements, namely, statements to the effect that (i) some particular
set of conditions is present in every trial and (ii) that set of conditions is appropriate
in the sense given above (all nomically relevant factors are held fixed in every trial)
so that we may know that (iii) the single case propensity for the relevant attribute is
the same in each trial. (Cf. Fetzer 1981, pp. 248–254.)

Giere (1973, p. 478) has made the same point about testing single case propensity
statements, in connection with tests of hypotheses about the half-lives of radioactive
nuclei. He describes the standard procedure, which “assumes that each nucleus in
the sample has the same half-life, whatever its value. Thus the test assumes the truth
of some propensity statements, though not of course the truth of the hypothesis being
tested”. But he goes on to argue that this feature of testing single case propensity
hypotheses is not unique in science:

Consider the concept of an individual (as opposed to total) force in classical physics. Any
attempt to determine the value of a particular force requires assumptions concerning other
forces, e.g., that there are none operating or that their influence has been taken into account.
Thus, if one regards the concept of an individual force as a legitimate empirical concept,
one cannot dismiss single-case propensities solely on the ground that empirical tests of
propensity hypotheses assume the truth of other propensity statements. (p. 479)

But it seems to me that the two cases are not parallel and that one can measure indi-
vidual forces under significantly weaker assumptions than one can measure single
case propensities. Consider the single case propensity hypothesis, “The probability
that this nucleus will decay within 30 years is 1

2
.” As Giere explains, the standard

procedure for testing such a hypothesis is to obtain a large number of nuclei of the
same kind and then count the numbers of them that decay within specified periods
of time. The single case propensity hypothesis that such a test assumes to be true
is that all the nuclei in the sample have the same half-life, whatever its value. How
does one test a hypothesis concerning an individual force, say the force exerted by
a certain spring when its length is two inches? One may first measure the total force
present in the absence of the spring (say by observing the acceleration of some ob-
ject) and then measure the total force present when the spring is introduced (say by
observing the acceleration of an object when placed at the end of the spring in its
two-inch configuration), and then calculate the difference between the two values.
Presumably, the hypothesis concerning forces that Giere would say is assumed in
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such a test is that, when the spring is introduced, all of the other individual forces
remain the same.

But note that the case of individual forces is quite different from that of single
case propensities in that the individual forces can each be separately measured by
separate tests which do not require the same assumptions in each case. In principle
at least, each individual force can be eliminated and the total remaining force can
be compared to the original force to yield a measure of that force. In each case,
of course, one assumes that all the remaining forces do not change, but since for
each individual force, the remaining individual forces will constitute a different set
of individual forces, the assumptions made in the different cases will not all be the
same. Also, the law of addition of forces can in principle be tested by determining
whether or not the sum of all the values determined for the individual forces add up
to the value determined for the total force. (In practice, of course, this can only be
done in the context of a background configuration of forces that cannot in practice
be eliminated, but of course one can obtain additional confirmation for a hypothesis
concerning an individual force by looking at the effect of introducing the relevant
conditions in many different constellations of background forces.) In the case of
the single case propensities of the individual radioactive nuclei decaying within 30
years, one cannot test each nucleus (of the same kind) separately: for each nucleus,
the test of the relevant hypothesis is the very same test. Another difference is that
in the case of individual forces, no assumption whatsoever must be made about
the value of the individual force in question, whereas in the case of single case
propensities, one must assume that the nucleus in question has the same propensity
to decay within 30 years as do all the other nuclei in the sample.

Now it may be insisted that the analogy which Giere urges still holds, for in each
case, it is still necessary to make some assumptions concerning the relevant kind of
individual thing (propensity or force). But in the case of force, the method of testing
itself makes it clear that it is an individual kind of thing that is being measured: in-
dividual forces, indirectly by measuring different pairs of different total forces and
calculating differences. But in the case of testing single case propensity hypotheses,
the method of testing does not give empirical significance to the idea that it is an
individual or single case propensity – rather than, for example, a long run propen-
sity – that is being measured. There is nothing in the general sketch of the method of
testing single case propensity hypotheses under consideration which distinguishes
the single case propensity interpretation from the long run propensity view.

Here is another aspect of this kind of difficulty in testing distinctively single case
propensity hypotheses. That single case propensities exist is a new physical hypoth-
esis. And until and unless this hypothesis is developed in more detail to the contrary,
it would seem that two objects or sets of experimental conditions may differ in no
respects whatsoever except for a certain single case propensity with which they are
endowed (and, of course, the physical consequences, e.g., pertaining to relative fre-
quencies generated, of having the different single case propensities). On single case
propensitist principles, it would seem conceivable, for example, that there is a cer-
tain “kind” of radioactive nucleus whose half-life has been tested extensively, where
the only difference between individual nuclei of this kind is that they can actually
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have different (“single case”) half-lives (“statistical hidden variables”), where the
half-lives of these nuclei (which vary considerably) are distributed among such indi-
vidual nuclei in such a way that testing random samples of them in the standard way
has always yielded the same result as would be expected if they all had the same
(“single case”) half-life (which, say, scientists have been assuming): the different
half-lives are distributed homogeneously among the nuclei of the relevant “kind”.
Then how to test the single case propensity hypotheses pertaining to the different
nuclei? And how to test whether all the nuclei have the same half-life, or different
half-lives so distributed among the nuclei that relative frequency tests give the same
results as they would if all the nuclei had the same half-life? Now these considera-
tions may only be valid in the absence of a well-developed theoretical background,
here pertaining to how the structure of a nucleus (which may determine a kind of
nucleus) is related to its half-life. But if Giere (1973, p. 478) is correct in suggesting
that “in the absence of a well-developed theoretical background, observed relative
frequencies may provide the only evidence for propensity statements”, then exam-
ples such as this one strongly suggest that the single case and long run propensity
conceptions of probability cannot be distinguished in terms of empirical methods of
testing the relevant propensity hypotheses.

At the beginning of this section, we considered a formulation of the single case
propensity theory of probability that initially seemed to be superior to the long run
propensity theory with respect to interpretation/idealization. But problems for that
formulation arose, problems of the same general kind as arose earlier for the hy-
pothetical limiting frequency interpretation and which also confront the long run
propensity theory. Recall that the long run propensity theory’s solution to the prob-
lem of actual sequence extension was – in terms of the formulation I suggested in the
fifth section of this paper – to introduce a new two-place function D, which, in the
intended model, has as its range of values a set of dispositional properties of a certain
kind. While the introduction ofD rendered the long run propensity view superior to
the hypothetical limiting frequency theory with respect to the condition of concep-
tual adequacy, it also rendered it inferior with respect to interpretation/idealization.
Now it seems that the single case propensity view must do something very similar:
it too must introduce a two-place function, say D�, whose range, in the intended
model, would be a set of dispositions, this time “single case statistical dispositions”,
rather than universal (or “almost universal”) dispositions to produce statistical dis-
plays in the form of characteristic relative frequencies. Thus, temporarily leaving
aside the question of conceptual adequacy and of the relevance of the condition of
interpretation/idealization to propensity theories, it seems that the single case inter-
pretation is at least as bad off as far as interpretation/idealization goes as is the long
run view.

Just above, a third possible way of securing interpretation/idealization was
considered – where the first two ways, of course, were via possible worlds and
sequences of various kinds and via all this plus D, or D�. The third was in terms
of empirical procedures for testing hypotheses of the relevant kind, which, if suc-
cessful, should help the theory to obtain at least empirical interpretation. But it
seems that this approach cannot distinguish between the long run and single case
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dispositional approaches: both approaches would use the available finite relative
frequencies in the very same way in tests of the relevant hypotheses. Roughly and
intuitively speaking, the two theories idealize the relevant phenomena in different
ways (one in terms ofD and the other in terms ofD�), where the objects of interpre-
tation of the two idealizations are the same: observable finite relative frequencies.
Still leaving aside the question of conceptual adequacy and of the relevance of the
condition of interpretation/idealization to propensity interpretations of probability,
we can ask which of the two theories under consideration is better off in connection
with the interpretation/idealization condition by asking: Which of the two idealiza-
tions is more fully interpreted in terms of the available relative frequencies? That
is, we ask, intuitively: Which theory commits itself to the stronger concept (ide-
alization), the concept a higher proportion of the content of which will therefore
lack interpretation in terms of the common objects of interpretation? And it seems
clear that it is the single case conception which is the stronger concept. The long
run concept is, roughly, a two-component concept: the concept of universal (or “al-
most universal”) dispositions plus the idea of limiting frequencies, where the second
component of the concept is quite well understood. The single case concept, how-
ever, is a kind of one-component “organic” union of the two components of the long
run concept: the concept of a partial or statistical disposition of a specific strength,
rather than a universal (or “almost universal” disposition to produce a statistical
display. And in this case it seems that the whole (the concept of a statistical dispo-
sition) is greater, or stronger, than the sum of its parts (the concept of a universal or
“almost universal” disposition plus the concept of a display which is of a statistical
character, i.e., a sequence with a characteristic relative frequency). The single case
propensity concept compresses the idea of a display of a statistical character into
the concept of the disposition itself.

The question for interpretation/idealization is, here, how adequate the interpre-
tation is relative to the concept, or intended idealization – that is, in this case, the
extent to which observed relative frequencies capture the features or components of
the idealization, or proposed concept. For the long run theory, what we always (or
“almost always”) observe (or, at least what we can in principle observe) is the direct
manifestation of the relevant disposition: the disposition is a disposition to produce
sequences of events with a characteristic limiting frequency, and we can, in prin-
ciple, observe a sequence with a characteristic frequency of the relevant attribute.
What we don’t actually observe, of course, is the disposition itself. Thus, what we
can in principle observe is the physical interpretation of one component of the two-
component long run concept, and this is the direct manifestation of the relevant
disposition. For the single case propensity view, on the other hand, what we actually
can observe (relative frequencies in sequences) is not the direct manifestation of the
relevant disposition, it seems. For the statistical disposition is supposed to operate
directly on the single case, and via its direct operation on single cases it controls
the observed relative frequencies in accordance with Bernoulli’s theorem. Thus, for
the single case propensity interpretation, there are two things which we do not ob-
serve when we observe relative frequencies: namely, the direct manifestation of the
disposition, as well as, of course, the disposition itself.10 Since (i) observed relative
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frequencies (that which it seems that both theories must use to secure, empirically,
interpretation/idealization) are the direct manifestations of the relevant disposition
on the long run view and also the physical interpretation of the other component of
the two-component long run concept, and since (ii) they are not the direct manifes-
tations of the single case disposition, I conclude that, in relation to the condition of
interpretation/idealization, the long run propensity view fares better than the single
case interpretation.

Let us now turn to the comparison between the single case and long run propen-
sity interpretations with respect to the condition of conceptual adequacy. We have
already seen that both theories are, as Fetzer puts it, “broadly mechanistic” in
character rather than “broadly teleological”, like actual and hypothetical limiting
frequency theories. But what of some of the other desiderata that should be brought
to bear? Consider the problem of attributing probabilities to single cases, say the
probability that event x will exemplify attribute A. Suppose that, as the long run
propensitist requires, there really is a dispositional propertyD.M �; x/; and suppose
that, as the single case propensitist requires, there really is a single case propensity
D�.M �; x/ for x itself to exhibit attribute A. (What these suppositions amount to,
as far as a detailed explication of the concepts is concerned, is a problem for inter-
pretation/idealization; here, we are interested only in the theoretical consequences
of what is intended by advancing the concepts.) Now the possession of the property
D.M �; x/ by each member of a hypothetical infinite sequence of events in a law-
like future world is supposed to guarantee (or “almost guarantee”) that the limiting
relative frequency of A in the sequence is, say, r . But, as single case propensitists
emphasize, what holds in the long run does not always matter in the single case
(Hacking 1965, p. 50; see also Fetzer 1981, pp. 110–111).

Although Hacking’s example (see the reference) pertains to rational decision
making, the following considerations are intended to show that, as far as physical
probabilities are concerned, it is also true that what matters in the single case need
not matter in the long run (on the conceptions of single case and long run propen-
sities under consideration). The possession of D.M �; x/ by every member of a
hypothetical infinite sequence of events in a lawful future world would seem to be
compatible with (at least, is not obviously incompatible with) the members’ pos-
sessing single case propensities for exhibiting A that differ from case to case, and
differ from r . If both D.M �; x/ and single case propensities exist, then all the
possession of D.M �; x/ by the members of a hypothetical infinite sequence has
to guarantee (or “almost guarantee”) in order to guarantee (or “almost guarantee”)
that the limiting relative frequency of A is r , is merely that the average of the sin-
gle case propensities for A in the sequence is r , where this idea of an “average”
can be made precise in the obvious way. And indeed, on Popper’s conception, it
would seem possible for possession of D.M �; x/ by every member of a hypotheti-
cal infinite sequence in a lawful future world to guarantee merely that the average of
the single case propensities is r , given his conjecture about configurations of initial
conditions distributing themselves over the interval left open to them as a matter of
physical law, and, hence, in lawlike future worlds (see the fifth section of this paper
above on this conjecture, and Settle 1975, p. 391). And then it would seem that
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even though different configurations of initial conditions would give rise to different
single case propensities, still the lawlike distribution of the configurations of initial
conditions over the interval left open to them would guarantee (or “almost guar-
antee”) the characteristic limiting frequency. Thus, what matters in the single case
need not matter in the long run, assuming the truth of Popper’s conjecture. Until the
concept of D.M �; x/ is refined in such a way that it can be shown that possession
ofD.M �; x/ by the relevant events cannot guarantee merely an average single case
propensity for the relevant attribute among the single events in question – where
the refinement does not make possession of D.M �; x/ conceptually equivalent to
the possession of a single case propensity – it would seem that as far as attributing
probabilities to single events is concerned, the single case theory is conceptually
superior to the long run interpretation.

Having considered the single case adequacy of the long run propensity approach,
what now about the long run adequacy of the single case approach? According to
Fetzer,

The most important benefit of the “single case” approach : : : is that it not only accounts for
the meaning of single case probabilities but also solves the problem of long run probabili-
ties; for, given the values of the relevant single case probabilities, calculations of long run
probabilities for the various combinations of outcomes over various lengths of trials may be
made on the basis of the mathematical principles [such as Bernoulli’s theorem] for statis-
tical probabilities. Thus, the fundamental advantage of the single case interpretation is that
it yields a construct which is theoretically significant for both the long run and the single
case : : :. (1981, p. 111)

Aside from whatever may be said in favor of the idea that some probabilistic phe-
nomena are not “grounded from below” in terms of probabilistic laws on the level
of individuals, but are rather “imposed from above” (see Hacking 1980, and Baird
and Otte 1982 on this), this, of course, is correct; where, however, if some proba-
bilistic phenomena actually were “imposed from above”, then perhaps in such cases
a long run approach would be more appropriate. But, aside from such worries, and
given the general promise of Poisson’s law of large numbers program of grounding
probabilities from below, and given the theoretical difficulties of the long run con-
ception in the single case, it seems appropriate to conclude that – though the long
run propensity view may be superior to the single case theory in connection with
interpretation/idealization – as far as conceptual adequacy is concerned, the single
case propensity interpretation fares better than the long run theory.

“New Metaphysical Category”

I have argued that to the extent to which philosophical theories of objective prob-
ability have offered theoretically adequate conceptions of objective probability,
in connection with such desiderata as causal and explanatory significance, appli-
cability to single cases, etc., these theories have themselves failed to satisfy the
methodological standard of interpretation/idealization, the requirement, roughly,
that the conception offered be specified with the precision appropriate for a physical
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interpretation of an abstract formal calculus, and be fully interpreted in terms of
concepts, objects or phenomena understood independently of probabilistic concepts.
This may be grounds for scepticism about objective probability. On the other hand,
perhaps we should take seriously the idea that propensity theories are, in part, pro-
posals of a new metaphysical or physical hypothesis and that, therefore, we should
not expect propensities to be explicable, in the way the condition of interpreta-
tion/idealization demands, in terms of old, or independently understood, concepts,
objects or phenomena. Perhaps, in view of the idea that propensities are supposed
to be entities of a “new metaphysical category”, it is inappropriate to foist the inter-
pretation/idealization requirement on theories of propensity, since the requirement
insists on explication of the proposed conception in terms of old ideas.

Indeed, in view of the foregoing discussion, it seems to me that the only way
in which propensity theories can secure something like interpretation/idealization
is through their conceptual adequacy, where the objects of interpretation, then, are
such things as: theoretically adequate explanations of single events, and of phys-
ical regularities; causal laws; events and objects themselves; etc. (as is implicitly
suggested by Fetzer 1981, pp. 295–296). Thus, if these things can be identified (by
which I do not mean fully understood) prior to an understanding of propensities, and
if a propensity theory of probability can characterize a role that a certain concept
(i.e., the propensity concept) plays in these things, it will thereby have established
something like “bridge principles” connecting the theoretical concept of propensity
with the independently identifiable things listed above, thereby also giving an im-
plicit or partial definition of the theoretical concept. It seems to me that it can only be
in terms of satisfaction of a weaker kind of condition of interpretation/idealization,
formulated in the light of these ideas, that the propensity concept can be identified,
where whether or not such a mode of identification would be entirely adequate is
not entirely clear.

Notes

1 On Jeffrey’s (1965) theory, only a family of pairs of probability and desirability functions is
determined by a coherent set of preference data, where neither function is uniquely determined.
On other theories, the subjective probability function is determined uniquely, but the desirability
function is not.

2 Of course this does not imply that the set of values of a sequence-function is infinite. Also note
that the idea of limiting frequency, defined below, applies in the case in which the reference
class is finite: “Notice that a limit exists even when only a finite number of elements xi belong
to [the reference class B]; the value of the frequency for the last element is then regarded as the
limit. This trivial case is included in the interpretation and does not create any difficulty in the
fulfillment of : : : the : : : axioms” (Reichenbach 1949, p. 72).

3 Limiting frequencies aren’t in general countably additive. See Van Fraassen (1979) on this and
on the idea of limiting frequencies being defined on Boolean algebras.

4 For example, in Cartwright (1979) and Skyrms (1980); for discussion of these and other such
theories, and further references, see Eells and Sober (1983).

5 My notation here differs from Kyburg’s. Also, here, as in the sequel, the terms ‘A’, ‘B’, ‘x’,
etc., are just that: terms of the relevant first order language. Sometimes, however, when it is
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clear what the relevant model M is, I shall use just ‘A’, ‘B’, ‘x’, etc., as names for what they
denote in M; at other times, I shall write ‘R.A/’, ‘R.B/’, etc., for the class or sequence which
M D hU;Ri assigns to ‘A’, ‘B’, etc., and M.x/ for what M assigns to an individual term x.

6 It seems that ‘p.a; b/’ should not be read as ‘the probability of the singular event a (happening)
: : :’, but as ‘the probability of a certain event’s having the relevant attribute : : :,.

7 Some philosophers have said that there is an ambiguity in Popper’s writings in connection with
whether his propensity theory is supposed to be a “long run” interpretation or a “single case”
interpretation. In any case, in this section, I shall be considering the long run construal; in the
sixth section of this paper, I consider a single case propensity approach.

8 I owe the idea of this machine to Harry Nieves, who invented it to make a somewhat differ-
ent point.

9 Fetzer actually states the requirement in terms of predicates (rather than of “factors”) and of
reference class descriptions (rather than of the classes themselves).

10 Of course one might say (as Fetzer has urged in private communication) that we actually do
observe direct manifestations of single case propensities in each single event: namely, the oc-
currence or nonoccurrence of the relevant attribute. But, of course, such single case displays
are inappropriate for the purpose at hand - namely, securing empirical interpretation for the sta-
tistical concept - since such single occurrences or nonoccurrences of the relevant attribute are,
separately, completely uninformative in relation to the value of the single case propensity in
question.
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Part I
Alternative Conceptions of Probability



Probabilistic Causality and Causal
Generalizations�

Daniel M. Hausman

Theorists of probabilistic causation have failed to distinguish between different
tasks. One problem is to understand generalizations such as, “Smoking causes lung
cancer,” “Seat belts save lives,” or “Just a spoon full of sugar helps the medicine
go down.” Some causal generalizations, like the examples I have just given, are im-
mediately practical. Other causal generalizations, such as those that are central in
economics may be more theoretical. Whether immediately practical or not, causal
generalizations are problematic, because the cause they purport to identify are not
invariably accompanied by their effects. They are in this way irregular.

As philosophers such as John Stuart Mill (1843) and, more recently, John Mackie
(1980) have shown, such irregularity does not rule out the possibility that the un-
derlying causal relations are deterministic. If a cause is a conjunct in a minimal
sufficient condition for its effect, then the effect may fail to accompany the cause
whenever any of the other conjuncts are absent. But why believe that there are mini-
mal sufficient conditions for lung cancer involving smoking or for demand increases
involving price drops? Why not formulate a theory of the probabilistic causality that
is expressed in causal generalizations?

The fundamentally indeterministic relations identified by contemporary physics
also seem to call for a theory of probabilistic causality. For example, the collision
of a neutron with a uranium 235 nucleus raises the probability that the nucleus
will decay, but it does not raise the probability to one. Contemporary physics tells
us that such decay probabilities cannot be explained by underlying deterministic
relations. Though some philosophers would deny that these indeterministic relations
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are causal (Papineau 1989; Woodward 1989; Hausman 1998, ch. 9), most who have
addressed the question maintain that contemporary physics reveals that there are
indeterministic causal relations.

Philosophers have hoped that a single theory of probabilistic causality would
account for both causal generalizations and the indeterministic relations identified
by contemporary physics, though they have rarely attempted to extend their account
to the causal generalizations of the special sciences such as economics. I shall argue
that the issues raised by causal generalizations are largely independent of metaphys-
ical questions concerning probabilistic causality. This argument does not suppose
that the causal relations that underlie a claim such as “Smoking causes lung cancer”
are deterministic. Whether the underlying relations are deterministic or not does not
bear on the question of whether smoking causes lung cancer. Metaphysical theo-
ries of probabilistic causation should not be expected to provide truth conditions for
causal generalizations or to guide us concerning how to make use of them.

Four Distinctions

Although this paper is mainly concerned to trace problems in theories of
probabilistic causation to the mistaken assimilation of the issues raised by causal
generalizations to those concerning indeterministic causal relations, there are other
dimensions along which the objects of theories of probabilistic causality differ.
Some of these are closely aligned with the difference between causal general-
izations and claims about indeterministic causality, while others cut across this
distinction. In particular, one should draw at least the following distinctions.

1. Relevance versus role. By the “role” or “bearing” of a causal factor, I mean
whether a causal factor is positive or negative, or in some way “mixed” for some
outcome. A poison and an antidote are both causally relevant to death, but their
roles are opposite. A factor or variable X is causally relevant to another factor
Y if it has any bearing on Y , positive, negative or mixed. Causal generaliza-
tions both in science and especially in daily life are typically concerned with
role, rather than merely relevance. (They wouldn’t be practical otherwise!) One
wants to know whether smoking increases the risk of lung cancer, not merely
whether it is somehow relevant. One wants to know whether lowering the price
of a commodity will increase the demand for it, not just whether price changes
are somehow relevant.

2. Variables versus values of variables. Consider a continuous variable Y that
measures an agent A’s income and a second continuous variable Q that mea-
sures the quantity of chocolate A demands. Y is causally relevant toQ, and over
some ranges of values, one can say that Y has a positive impact on Q in the
sense that as Y increases, so does Q. So one can speak meaningfully of both
the causal role and causal relevance of one variable for another (given values
of the other variables and within some range of values). Causal generalizations
within a science such as economics usually concern or derive from claims about
the role and relevance of variables. A claim such as the law of demand, for ex-
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ample, follows from a more general functional relation postulated between the
quantity demanded of a commodity, its price, income, and other variables. At the
same time, one can also speak – as is more common in practical causal gener-
alizations – of the causal role of the value of a variable X on some effect as a
contrast between the effect of the given value and the effect of some other value
of X that is pertinent in the context (see Hitchcock 1993, 1995, 1996). Smok-
ing one pack of cigarettes a day increases the risk of lung cancer compared to
not smoking any cigarettes, but it diminishes the risk compared to smoking two
packs a day. The first contrast is of course usually the pertinent one. Practical
causal generalizations typically concern relations among values of variables.

3. Homogeneous versus heterogeneous circumstances. Causal factors, as ordinarily
conceived, have different consequences in different circumstances. Exposure to
small pox will not cause the disease in those who have been inoculated. Suppose
one had a list of all of the variables that are relevant to whether someone contracts
lung cancer, other than S (the number of cigarettes smoked) and consequences
of S . A generalization concerns causally homogeneous circumstances, if and
only if these other variables have unchanging values. Practical causal generaliza-
tions (unlike claims concerning indeterministic causal relations within physics)
typically concern causal relations when the values of other causally relevant
variables are not unchanging. They concern causal relations in heterogeneous
circumstances – that is, across some range of causally homogeneous circum-
stances.

4. Types versus tokens. Smoking can be a “type-level” cause of lung cancer – that
is, it can tend to cause lung cancer – even when it does not actually do so. This
difference between tendency and upshot cuts across the other distinctions.1 In
this paper I am concerned only with type relations – that is, with generalizations
concerning causal tendencies. All of the other distinctions, including the distinc-
tion between causal relations in causally homogeneous circumstances and causal
relations in heterogeneous circumstances are distinctions among causal general-
izations, not distinctions between claims about actual causation and claims about
causal tendencies.

If one simplifies and supposes that questions about causal relevance always arise
with respect to variables rather than values of variables, then one can draw Table 1.

Table 1 Distinctions among causal generalizations

Causal relevance Causal role
(of variables) of variables of values of variables

Heterogeneous
contexts

Demand is a
function of
prices, incomes,
and other things

The cancer risk
increases with the
amount one smokes

Seat belts save lives

Homogeneous
contexts

In circumstances K ,
neutron
bombardment is
causally relevant
to decay

Ceteris paribus the
demand for X is a
decreasing function
of the price of X

In circumstances K ,
Pr.Y D y/=.X D x�/ >

Pr.Y D y/=X D x0/
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Clarifying these distinctions cuts through problems that have plagued theories of
probabilistic causality. Theories that address the metaphysical question of what it is
for a variable to be probabilistically causally relevant to some outcome belong in
the bottom left-hand cell, while a metaphysical theory of causal role (if there is such
a thing) belongs in bottom middle or the bottom right-hand cell. Practical causal
generalizations presuppose that there are causal relations of some sort – whether de-
terministic or indeterministic – when the circumstances are causally homogeneous.
Their job is to provide guidance when one does not know what the other causally
relevant variables are and what their values may be. They are generalizations across
homogeneous contexts. The puzzle they present is to say what sort of generaliza-
tions they are, not what causation is.

Before addressing these puzzles, let us use these distinctions to clarify the form of
the causal generalizations. For definiteness, let us focus exclusively on the top right-
hand cell – that is, on causal generalizations about the bearing of values of variables.
Since the causal role of variables depends on background circumstances, causal
generalizations should be relativized to some population P . Furthermore, claims
about causal role always contrast the effect of one value of the purported causal
variable to the effect of another value. This is trivial in the case of dichotomous
variables, but in the case of non-dichotomous variables, the contrast should be made
explicit. So I shall take the canonical form of a causal generalization to be:

In population P; X D x� as compared to X D x0 causes E:

In the case of dichotomous variables, this can be abbreviated as “In populationP; C
causes E ,” with the contrast between the effect of C and �C understood. For prac-
tical purposes, one should require that the increase in the probability of E due to
X D x� (or C ) be substantial, but I shall leave this requirement implicit.

The Irregularity of Causal Generalizations

According to warning labels on cigarettes, the Surgeon General has determined that
smoking causes lung cancer. What does this mean? Since not everyone who smokes
gets lung cancer, smoking by itself is not a deterministic cause of lung cancer. But
one need not surrender the view that causation is a deterministic relation. Similarly
the fact that causal relations among economic variables are not invariable has not
led economists to abandon a deterministic view of causation. Following Mackie
(1980, ch. 3) one might say that deterministic causes are INUS conditions for their
effects. Suppose that smoking were an INUS condition for lung cancer, and that
price changes were INUS conditions for changes in quantity demanded (Hoover
2001, ch. 2). Although not by itself sufficient, smoking would be a conjunct in one or
more minimal sufficient conditions for lung cancer. Since there are presumably also
minimal sufficient conditions for lung cancer that do not include smoking, smoking
would not be necessary for lung cancer either. If some of the relevant causal relations
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are not deterministic, then causes cannot be INUS conditions for their effects, but
they can be conjuncts in minimal sufficient conditions that fix some objective chance
of the effect occurring.

Let G be the other conjuncts in a minimal sufficient condition for lung cancer
that includes smoking, and call the disjunction of the other minimal sufficient con-
ditions for lung cancer “H .” On a deterministic view of causation, smoking makes
a difference to whether someone gets lung cancer only given the presence of G and
the absence of H . Smoking is “necessary in the circumstances” – that is, neces-
sary when none of the other minimal sufficient conditions for C are present, and
sufficient when all of the other conjuncts in one or more of the minimal sufficient
conditions including smoking are present. In the population as a whole, smoking
has no single causal role. It causes lung cancer only in those individuals in whom
just the right background conditions obtain. This account takes causation to be a
three-place relation between a cause C , its effect E , and background conditions K
in whichC is necessary and sufficient forE . In a science such as economics, a good
deal is known about the background conditions in which, for example, an increase in
the money supply is necessary and sufficient for an increase in the rate of inflation,
but the conditions cannot be completely specified.

Analyses such as these – whether deterministic or indeterministic – reveal a prob-
lem, which Wayne Davis calls “the background conditions problem” (1988, p. 133).
The problem is that the third place in the causal relation means that causes are only
causes when the conditions are “right.” One can avoid introducing a third place
in the causal relation by quantifying existentially: C causes E only if there exist
background circumstances in which C is necessary and sufficient for E (and fur-
ther conditions to insure the asymmetry of causation are met). But without saying
more and without knowing whether in the actual circumstances C is necessary or
sufficient for E , one is left with a very weak notion of causation. To say that smok-
ing causes lung cancer is surely to say more than that there are some circumstances
in which smoking is a conjunct in a minimal sufficient condition for lung cancer.
Though people can rarely specify precisely what the other conjuncts in the mini-
mal sufficient conditions including the particular cause are or what other minimal
sufficient conditions there are for the given effect, they nevertheless usually know
important facts about what background conditions must obtain for C to cause E .
For example, without knowing exactly the conditions in which striking matches is
necessary and sufficient for them to light, most people know that matches need to
be dry.

Since people do not have detailed knowledge of the background conditions, why
suppose that there are any minimal sufficient conditions for lung cancer or increases
in the rate of inflation? Why should one believe that causation really is determin-
istic? Faith that causation is deterministic seems not only unjustified, but pointless
as well, because it leaves one unable to say anything except that for some people
smoking causes lung cancer, while for others it is irrelevant, and for still others it
may prevent lung cancer. One might argue that only a dogmatic attachment to a
deterministic theory of causation lends credibility to such a vague and unhelpful ac-
count. Why not focus directly on relations that people can know something about,
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such as the non-deterministic manifest relation between smoking and lung cancer in
the actual inhomogeneous circumstances in which people live, smoke, and die?

Patrick Suppes pursues very much this line of thought.

[A] mother says, “The child is frightened because of the thunder”, or at another time, “The
child is afraid of thunder”. She does not mean that on each and every occasion that the child
hears thunder, a state of fright ensures, but rather that there is a fairly high probability of its
happening: : :.

It is easy to manufacture a large number of additional examples of ordinary causal lan-
guage, which express causal relationships that are evidently probabilistic in character. One
of the main reasons for this probabilistic character is : : : we do not explicitly state the
boundary conditions or the limitations on the interaction between the events in question and
other events that are not mentioned. : : : A complete causal analysis is far too complex and
subtle, and not to the point for which ordinary talk is designed. (1970, pp. 7–8)

Although Suppes here emphasizes the supposed conformity of probabilistic causal-
ity to ordinary language,2 rather than the avoidance of a metaphysical commitment
to determinism, he is following the line of thought sketched in the previous para-
graph. He suggests that one can avoid invoking unknown minimal sufficient condi-
tions by developing a theory of probabilistic causality.

The Surgeon General obviously means to say more than that smoking has some
probabilistic relevance to lung cancer, be it positive or negative, and monetarists are
claiming more than that the money supply has some relevance to inflation. We are
warned that smoking significantly increases the probability of lung cancer or that in-
creasing the money supply will lead to a non-trivial increase in the rate of inflation.
So Suppes attempts to formulate a theory of what I have called “causal role.”3 One
can do so without referring to some set of unknown conjuncts in minimal sufficient
conditions, by maintaining that smoking causes lung cancer only if the probability of
lung cancer conditional on smoking is larger than the probability conditional on not
smoking regardless of the circumstances. Instead of a three-place relation between
C; E and background conditions B , perhaps one can get rid of the intangible third
place in the relation and analyze causation in terms of a two-place relation of statisti-
cal relevance. With the additional stipulation that smoking precedes lung cancer, this
is basically Suppes’ definition of a prima facie cause (1970, p. 12). Theories of prob-
abilistic causation attempt in this way to dodge the background conditions problem.

Contextual Unanimity

But one cannot simply forget about the circumstances and other causal factors. It
may be that smoking is not a positive cause of lung cancer even though Pr.C=S/ >
Pr.C=�S/. As R.A. Fisher postulated, some genetic common cause of smoking and
lung cancer could explain the correlation. Neither is it necessary that Pr.C=S/ >
Pr.C=�S/. Some gene that makes people likely to smoke might impede lung cancer
so that smoking and lung cancer are not positively correlated, even though smoking
causes lung cancer. The probabilistic relations between smoking and lung cancer
may be misleading.
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The solution to these difficulties adopted by most theorists of probabilistic
causation has been to require that smoking increase the probability of lung cancer
within all cells of a partition formed by taking into account all the other causes of
lung cancer that are not themselves effects of smoking.4 The cells in such a partition
are causally homogeneous background contexts, and the proposal can be restated as
the requirement that causes increase the probability of their effects in all causally
homogeneous background contexts. John Dupré has dubbed this the requirement
of “contextual unanimity” (1984). Since theorists of probabilistic causality quan-
tify over causally homogeneous background contexts, they avoid reintroducing a
third place in the causal relation. Rather than relativizing causal claims to specific
causally homogeneous contexts, theorists of probabilistic causation maintain that
C is a positive cause of E (in some population P ) if and only if C increases the
probability ofE in every causally homogeneous background circumstance inP (and
some other condition is met that guarantees causal asymmetry, such as temporal
priority of the cause).

Eells and Cartwright take analyses such as these to constitute a metaphysical
theory of what causation is. In my view, in contrast, such theories are an amalgam of
metaphysics and methodology. They combine a metaphysical theory of probabilistic
causation within individual causally homogeneous background circumstances and a
view of how causal generalizations generalize across such circumstances. Although
the details vary, the implicit metaphysical view is that in some causally homoge-
neous circumstance, C is causally relevant to E if and only if it is probabilistically
relevant to E , and C precedes E . The causal generalization, “C causes E” is then
taken to maintain that C causes E within every causally homogeneous background
circumstance.

I thus suggest that contextual relativity has nothing to do with the metaphysics
of causation. The metaphysics in theories such as those of Suppes, Cartwright,
Humphreys (1989), and Eells consists of the claim that causation consists of sta-
tistical relevance and temporal priority of the cause, given some particular value for
each of the other causally relevant variables (that is, within individual causally ho-
mogeneous circumstances). Contextual unanimity figures instead in the attempt to
explain how causal generalizations can be true and useful. In particular, contextual
unanimity is the easiest way to avoid relativizing causation to particular contexts:
if there are any circumstances (or “subpopulations” in Eells’ terminology – 1991,
ch. 1), in which smoking does not increase the probability of lung cancer, then
smoking is not a cause of lung cancer in the population as a whole. By insisting
on contextual unanimity, one is thus able to say more than merely that smoking in-
creases the probability of lung cancer in some circumstances, though it may lower
it in others, and be irrelevant in still others.

Two additional considerations motivate the requirement of contextual unanimity
and the unwillingness to relativize causal claims to particular background cir-
cumstances. First, contextual relativity makes it easier for theorists to convince
themselves (erroneously) that their accounts of causal generalizations are part of
a metaphysical theory of probabilistic causal relations. If instead one concluded
smoking could be said to be a cause of lung cancer only with respect to some
contexts and not with respect to others, then the truth of unrelativized causal
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generalizations, such as the Surgeon General’s, would depend on there being an
implicit specification of background contexts. But such a specification of favored
background contexts has no place in a theory in a metaphysical account of what
causation is. By insisting on contextual unanimity, the difficulty vanishes: there is
no need to justify zeroing in on some contexts and ignoring others.

Second, scientists do not know what the causally homogeneous background
contexts are against which smoking may cause lung cancer, and even if these con-
texts were known, individuals do not know which cell of the partition they occupy.
The Surgeon General needs to offer advice that is applicable to people who are
not all in the same causal circumstances. If smoking had the same bearing on lung
cancer in every cell of the relevant partition of other causal factors, then the Surgeon
General could warn people about the risks of smoking without knowing anything
about their particular circumstances.

The requirement of contextual unanimity is thus an attempt to evade the irregu-
larity of causal generalizations. It only comes into play if one attempts to generalize
across different causally homogenous background circumstances. It has no rele-
vance to claims concerning the causal relevance of X to Y or the causal bearing of
a value ofX on Y within a single causally homogeneous background circumstance,
which is where all the metaphysical action, so to speak, lies.

But the irregularity of causal generalizations cannot be evaded. Since, as the
INUS analysis reveals, there is no reason to expect that a deterministic cause C of
E will have the same bearing on E in every causally homogeneous circumstance,
why should one stipulate that probabilistic causes must satisfy contextual unanim-
ity? If probabilistic causes are INUS conditions for some objective chance of their
effects occurring, one would expect them to be as sensitive to the background cir-
cumstances as deterministic causes; and there seems to be no general reason to
suppose that the objective chance of their effect occurring will be increased by the
presence of the cause in every homogenous context.

There are more specific grounds to doubt contextual unanimity. Consider a
question posed by John Dupré: Should one conclude that smoking does not cause
lung cancer if it were discovered that some people have a rare physiological condi-
tion that causes them to contract lung cancer more often if they do not smoke (1984,
p. 172)? Indeed, no hypothetical case is necessary: smoking does not in fact increase
the probability of lung cancer in every causally homogenous background situation.
For example, in some people smoking causes fatal heart attacks rapidly enough that
it tends to prevent lung cancer. Although smoking would be an undesirable way for
these people to prevent lung cancer, it would do the job.

If one requires contextual unanimity, one thus has to deny that smoking is a
positive cause of lung cancer, or one has to restrict the population to which the sur-
geon general’s causal generalization is supposed to apply (Glennan 2002, p. 124).
In just the same way, it turns out that seat belts don’t save lives. Brushing one’s
teeth doesn’t prevent tooth decay. Caffeine doesn’t wake people up. Increases in
the money supply don’t spur inflation. Aspirins don’t alleviate headaches. And,
I suspect that a spoonful of sugar does not help this bitter medicine go down. In
short just about every causal generalization turns out to be false, unless one radi-
cally restricts its scope.
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Ellery Eells is willing to bite the bullet and to conclude that smoking does not
cause lung cancer. He maintains that it is instead “causally mixed” for lung can-
cer (1991, p. 100). In some cells of the partition it increases the probability of
lung cancer and in some cells it does not. Imposing a requirement of contextual
unanimity implies that causes are in fact typically causally mixed for their pur-
ported effects. Given the contextual unanimity requirement, the only truthful causal
generalization the Surgeon General can make about the consequences of smok-
ing for Americans in general is that sometimes it causes smoking and sometimes
it doesn’t. But the Surgeon General is neither uttering this useless truth nor is he
falsely maintaining that smoking increases the probability of lung cancer in every
causally homogeneous context. In failing to capture what claims such as the Sur-
geon General’s mean, theories such as Eells’ are unable to distinguish useful and
apparently true generalizations such as “Smoking causes lung cancer” or “Seat belts
save lives” from useless and apparently false generalizations such as “Vitamin C
cures cancer.” Contextual unanimity is self-defeating in the analysis of causal gen-
eralizations and irrelevant to the metaphysics of indeterministic causation (see also
Woodward 1989, p. 374).

One can try to save the contextual unanimity requirement by hedging causal
generalizations or restricting their scope. Presumably there is some condition H
in which it is true that seat belts invariably increase the probability of surviving
crashes. But without knowing what H is or having any idea whether H will obtain
in the event of an accident that might befall me, the true restricted generalization
gives me no guidance concerning whether to wear my seat belt. To save the contex-
tual unanimity analysis of probabilistic causal generalizations in this way is to make
these generalizations useless.

So probabilistic theorists who insist on contextual unanimity are no more suc-
cessful than the deterministic theorist in analyzing claims such as “smoking causes
lung cancer.” C can be a cause of E even though its bearing on E differs in dif-
ferent causally homogeneous circumstances. To interpret the causal generalization
“C causes E in population P ” as maintaining that C increases the probability of
E in every homogeneous circumstance in this population implies that causal gener-
alizations are almost all false or else have such a narrow or unclear scope as to be
useless. Some other way to generalize across contexts is needed.

The right way to interpret causal generalizations is, I think, basically John
Dupré’s. Dupré’s idea (which is developed more precisely by Eells (1987,
pp. 108–110) and especially by Hitchcock (1998, pp. 282–290) is that one should
hold fixed the frequencies of all the other factors relevant to lung cancer (apart from
smoking and its effects) at their frequency in the actual population and see whether,
against this background, the conditional probability of lung cancer, given smoking,
is larger than the conditional probability of lung cancer, given non-smoking. Of
course, if one knew what the causally homogeneous circumstances were, the role of
the causal factor in each of those circumstances, and which circumstances individ-
uals were in, then there wouldn’t be any need to do any averaging. So one should
resist interpreting Dupré as calling for people to construct these averages from
more detailed knowledge. One can instead learn the average effect from comparing
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outcomes in treatment and control groups in randomized experiments or by infer-
ences from observed correlations. On Dupré’s construal, the Surgeon General’s
claim aims to provide just the information needed to decide whether to smoke by
people who do not know how their propensity to develop lung cancer differs from
the population average.

Although the truth of causal generalizations may depend on the relative
frequencies of different causally homogeneous contexts, Dupré is not reducing
causation to mere correlation. On Dupré’s and Hitchcock’s view – at least as I un-
derstand it – the generalization, “In population P; C is a significant cause of E”
is true if and only if in an ideal randomized experiment the frequency of E would
be appreciably larger among subjects taken from P who are exposed to C than
among subjects taken from P who are exposed to �C . Although in general one
would expect a correlation between C and E in the population, a correlation is nei-
ther necessary nor sufficient for an “average effect.” A correlation is not sufficient,
because it might reflect the fact that C and E are effects of a common cause. In
such a case the existence of the correlation would not underwrite action to bring
about C , and causal generalizations are, of course, supposed to guide action. One
cannot prevent a storm by putting a barometer in a pressure chamber and thereby
preventing its reading from falling. The existence of a correlation is not necessary,
either. It could be that C causes an increase in the chance of E at the same time as
some common cause counteracts this correlation. For example, if those who live in
rural areas where other causes of lung cancer are absent are more likely to smoke,
there might be no correlation between smoking and lung cancer, or even a negative
correlation, even though both those living in rural areas and those living in urban
areas are more likely to get lung cancer if they smoke.

Eells criticizes Dupré’s proposal because it implies that whether smoking causes
lung cancer depends on the actual frequencies of other factors. Change those fre-
quencies, and smoking may cease to be a cause of lung cancer. In Eells’ view, like
Cartwright’s, “smoking causes lung cancer” is supposed to be a causal law, which
should not depend on the actual frequency of background conditions. So Dupré’s ac-
count is “a sorry excuse for a causal concept” (Eells and Sober 1983, p. 54). Dupré
agrees that his view makes laws depend on frequencies (1984, p. 173), but argues
that this implication should be accepted. I disagree. Among other undesirable con-
sequences, Dupré’s view implies that people can change causal laws. Eells’s critique
of Dupré would be decisive, if the task were to formulate a metaphysical theory of
indeterministic causation or to develop an account of probabilistic laws.

But both Eells and Dupré treat two tasks as one. Each sees that the other’s theory
is inadequate to the task with which each is mainly concerned. Dupré’s theory is
inadequate as a theory of indeterministic causation, which is what Eells is mainly
concerned with. Eells’ theory is inadequate as a theory of causal generalizations,
which is what Dupré is mainly concerned with. The situation resembles that of two
carpenters, one of whom mainly pounds nails, while the other more often screws
things together. Both believe that a good carpenter needs only one tool. So the first
uses only a modified hammer and the second only an odd screwdriver. The first
points out how badly the screwdriver drives nails, while the second points out how
badly the hammer turns screws.
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What is at issue in theorizing about causal generalizations is causal irregularity.
The operation of causal factors, whether deterministic or indeterministic, varies
from context to context, and guidance is needed when the details concerning the
contexts are not known. Theoretical work may focus on individual contexts or ho-
mogeneous contexts, because it need not necessarily provide such guidance. But
if one hopes to offer advice to people who do not know which homogeneous con-
text they are in, one has to generalize across contexts in which the effects of causal
factors are not uniform. The point of the Surgeon General’s claim is to provide
information about the dangers of smoking to people who are in many different
circumstances and who do not know which causally homogeneous context they are
in. A generalization such as “smoking causes lung cancer” summarizes the quali-
tative “average effect,” and it consequently depends not only on the cancer-causing
propensities of smoking in causally homogeneous background contexts but also on
the actual frequencies of the contexts.

Eells takes issue with this line of thought and argues that Dupré’s account of
irregular causation leads to mistaken advice. He writes,

[T]he question of whether smoking is a population-level cause of lung cancer will turn
on the population frequency of that physiological condition, and in an unacceptable way
: : :. For example, a person contemplating becoming a smoker, and trying to assess the
health risks, should not be so concerned with the population frequency of that condition,
but whether or not he has the condition. That is, the person should be concerned with
which subpopulation he is a member of, the subpopulation of individuals with the condition
(a population in which smoking is causally negative for lung cancer) or the subpopulation
of individuals without the condition (a population in which smoking is causally positive for
lung cancer. (1991, pp. 103–104)

If, as Eells imagines, one knows the causal bearing of smoking on lung cancer in
subpopulations in which contextual unanimity holds and one can find out which
subpopulation one is in, then one should make use of the more specific information.
So, for example, if smoking raised the probability of lung cancer in men but lowered
it in women, then the Surgeon General’s claim about the effect in the population as
a whole, even if true, would be misleading. Rather than averaging across contexts
in which smoking is positive, negative, or neutral for lung cancer, we should focus
on its causal bearing in the context or subpopulation in which we find ourselves.

Dupré’s and Hitchcock’s formulations may misleadingly suggest that one begins
with knowledge of the relevant causal factors and thus with a complete partition into
causally homogeneous background contexts. One then determines the quantitative
bearing of smoking on lung cancer in each of these contexts and the frequency of
each context and thereby calculates the average effect of smoking on lung cancer. If
this were an accurate description of the problem, Eells would be right to maintain
that we should focus on the bearing of smoking on lung cancer in the contexts in
which we find ourselves rather than averaging (though if we knew the particular
context, there would be no need for generalizations across contexts and hence no
need to impose a contextual unanimity condition either).

But this is not an accurate description of the problem. Nobody knows all the
causal factors that are relevant to whether somebody contracts lung cancer. There is
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no way to calculate an average effect by summing over the effects in causally ho-
mogeneous circumstances weighted by their frequencies. Instead one can infer the
average effect by means of experiment or critical examination of observed corre-
lations. The point of the thesis that causal generalizations state average effects lies
in justifying drawing causal conclusions from experiments and observations. These
conclusions are important because agents who have no evidence about what sub-
populations they belong to or concerning how the risks of lung cancer, for example,
vary across different subpopulations can do no better than to rely on the average
effect of smoking in the population as a whole.

Most theories of probabilistic causality fail to cope with the problems of causal
generalizations, because these theories misconstrue the problems as calling for a
metaphysical theory of probabilistic causality. They wind up either with metaphysi-
cal views that are hopeless as accounts of causal generalizations or with accounts of
causal generalizations that are hopeless as metaphysical theories of causation. When
considering claims such as “Seat belts save lives,” knowing that there are subpop-
ulations in which C is a cause of E – whether deterministic or indeterministic – is
not to the point. What one wants to know is the causal significance of C forE when
it is already suspected that C is “causally mixed” for E . Causal generalizations are
supposed to help out here. Some do and some do not.

When Are Causal Generalizations True and Useful?

On the average-effect interpretation presented in the previous section, a causal
generalization such as “In population P;X D x� as compared to X D x0 causes
E 00 is true if and only if (a) in P Pr.E=X D x�/ > Pr.E=X D x0/ and (b) the
probability difference in (a) is due to the causal influence of X D x� as compared
to X D x0 in some causally homogeneous circumstance occupied by members
of population P . (a) and (b) give truth conditions for causal generalizations con-
cerning populations occupying causally heterogenous circumstances in terms of
generalizations concerning causal relations obtaining within particular causally ho-
mogeneous background circumstances. Theorizing about these latter relations is a
task for metaphysics. Since the task is to elucidate causal generalizations, rather
than to clarify the nature of causal relations, one can help oneself to whatever the-
ory of causation one prefers, provided that it preserves some link between causation
and probabilities.

On this account (in contrast to Hitchcock 2001, pp. 219–220), causal
generalizations can be true, yet useless or even seriously misleading. Suppose,
for example, that eating French fries causes heart attacks among men in some
circumstances and prevents heart attacks in women in some circumstances. At the
level of the whole population, it turns out that eating French fries consequently
increases the risk of heart attacks among men and within the population as a whole,
but eating French fries lowers the risk of heart attacks among women. If the Surgeon
General knew these facts and then announced only that eating French fries makes
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heart attacks more likely, he or she would be culpably misleading. But provided
that the correlation really is a consequence of causal relations in causally homo-
geneous circumstances between eating French fries and heart attacks, this claim
would be true.

This truth condition preserves and supports the intuition that part of the
explanation for why some causal generalizations are useful is that they are true.
But as just pointed out, a causal generalization can be true and misleading and even
harmful to a great many people. If there were a dozen significant subpopulations in
which the causal facts concerning the relationships between values of X and some
effect E differed wildly, and everybody in the population P knew the facts about
the subpopulations and knew which subpopulation he or she belonged to, then the
average effect in P would be of little interest.5

There is, I believe, a great deal to be said about when practical causal
generalizations are worth making, but little of philosophical interest. Clearly “C
causes E in population P ” is more worthwhile when Pr.E=C / � Pr.E=�C/ is
large rather than small. It is more useful whenE is more important. It is more useful
when people are better able to bring about or to prevent C . True causal generaliza-
tions will in general be more useful than false generalizations, though falsehoods
can, of course, sometimes have good consequences. For example, a mistaken causal
claim that smoking causes acne could serve teenagers well by leading them to stop
smoking and thereby to avoid heart attacks and lung cancer later in life. But the fact
that falsehoods may do good is usually a bad reason for enunciating them. Finally,
if the consequences of C for E differ appreciably over different subpopulations,
then it can be harmful to generalize over the whole population. It is usually better
to generalize concerning the narrowest populations for which the information is
available.

It is also difficult to say much of philosophical interest about how individuals
should change their behavior when they come to believe a causal generalization. One
possibility, which has been developed carefully by Christopher Hitchcock (1998,
2001) is to idealize and suppose that the agent can estimate the subjective probability
that he or she is located in each causally homogeneous background context and
that causal generalizations provide the agent with knowledge of the difference that
values of X make to the probability of E in each context. Knowing his or her own
preferences, the agent can then choose the action that maximizes expected utility.
More ordinary cases when the agent has little idea what the homogeneous contexts
are or which he or she may be in can be modeled as cases in which the agent’s
expectation of the effect of X D x� on the chance of E will coincide with the
average effect in Dupré’s and Hitchcock’s sense.6

I am skeptical about this approach because of the extreme idealizations it
requires. What I prefer to say is simpler. Suppose that an individual agent A
belongs to some population P for which it is true that C causes E , and that there
is no narrower population to which A belongs for which there is any information
concerning whether C causes E . Then A should regard actions that cause C as
increasing the probability of E (in accordance with the generalization), unless A
has some reason to believe that he or she belongs to some subpopulation of P in
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which C does not cause E . (For example, even though smoking causes lung can-
cer, those on death row in Texas probably do not have to worry about contracting
lung cancer if they smoke.) Since, by assumption, agents are seeking guidance
concerning what to do, specifically causal information is crucial. What matters to
agents are the consequences of acting and bringing C about or preventing C , not
whether Pr.E=C / > Pr.E=�C/. So what is useful to agents are specifically causal
generalizations, not claims about mere correlations.

Consider, for example, the generalization, “Seat belts save lives.” In the
population of drivers in the United States, the probability of surviving accidents if
one wears seat belts is significantly larger than the probability of surviving if one
does not wear them (though, of course, people can argue about how “significant” the
difference is). No doubt those who wear seat belts are on average more conservative
drivers, and so some of the correlation between seat belt use and survival could be
due to this common cause. But this common cause does not explain the correlation
between seat belt use and survival among those who are in particular classes of
accidents, and our knowledge of the mechanics of accidents supports the claim that
seat belts really do save lives. “Seat belts save lives” is a true causal generalization.

This generalization is, moreover, worth formulating and in general worth acting
on. This is so, even though there are certain classes of unusual accidents in which
one is more likely to die if one is wearing a seat belt. That means that in some
subpopulations the correlation is reversed, and this reversed correlation is equally
a causal matter. If agents knew in advance which class of accidents they would be
in, then the facts about the average effect of wearing seat belts in the whole popu-
lation of drivers would be irrelevant. But before accidents occur, when the decision
about whether to buckle one’s seat belt must be made, there is no basis to assign
individuals to the subpopulation of drivers who will be in those rare accidents in
which seat belts diminish the odds of survival. A great many people consequently
wear their seat belts (as they rationally should), because they believe that the causal
generalization about the whole population grounds an expectation that they will be
less likely to be injured or killed if they wear their seat belts.

Consider one more example. What should one say about the generalization,
“Entering a hospital for treatment makes people more likely to die.” Here there
is a very significant correlation. The probability of death in the near future is much
higher among hospital patients than among those who are not in the hospital. The
problem with this generalization is that the increased mortality is not an average
effect of going into the hospital. Although hospitals do kill people, the main ex-
planation for the correlation is, of course, a common cause that sends people to
the hospital for treatment and then kills them. So though there is a correlation, this
causal generalization is false and does not provide a reason not to enter a hospi-
tal. There may be subpopulations, however, in which the correlation between death
and hospital treatment is due to the dangers hospitals pose. For people with mi-
nor ailments whose local hospitals are exceptionally poor, the causal generalization,
“Among people in this area with minor ailments, entering the hospital for treatment
makes one more likely to die”, could be true and useful.
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Conclusions

To understand causal generalizations, one must understand how and why people
generalize. Metaphysical theories of indeterministic causation need not trouble
themselves with such questions. The metaphysical task is to clarify the causal
relevance of variables within homogeneous contexts. Theorists of probabilistic cau-
sation tried to accomplish this task at the same time as they undertook to provide
truth conditions for causal generalizations. They offered a probability increase and
temporal priority view of causation within causally homogeneous background con-
texts, and they imposed a contextual unanimity condition to specify when causal
generalizations are true. They then ran these two theories together into the view that
causation is statistical relevance in all causally homogeneous circumstances (plus
temporal priority of the cause). But the two theories should be pried apart. I have
offered no assessment here of the view of indeterministic causation as statistical rel-
evance plus temporal priority within a given causally homogeneous circumstance.
Whatever one thinks of it, it is separate from the contextual unanimity account of
causal generalizations, which I criticized.

The central point is that at least two theories are called for rather than one. In
attempting to address at the same time all six of the cells in Table 1, near the be-
ginning of this chapter, probabilistic theories of causation have wound up failing at
their tasks. They offer no solution to the conundrums of practical causal generaliza-
tions, because they collapse in the typical case where the causal factors are mixed in
the population as a whole, and one cannot specify in any non-trivial way subpopula-
tions or circumstances in which contextual unanimity is satisfied. At the same time,
they obfuscate and complicate indeterministic causation by focusing on problems
that have little to do with the metaphysics of indeterministic causal relevance. There
is no single relation of “probabilistic causality” manifested in quantum physics, ev-
eryday practical generalizations, and the causal claims of special sciences such as
economics. The attempt to tackle both these problems in a single theory is a mistake
and should be abandoned.

Notes

1 Christopher Hitchcock argues that the type-token distinction confounds two distinctions: the
distinction between claims about causal tendencies versus causal accomplishments (“actual cau-
sation”) and the distinction between the scope of claims of both sort (2001, pp. 219–20).

2 The claim to match ordinary usage is questionable. Notice that Suppes attributes to the mother
the claim that causes make their effects highly probable, which conflicts with his own the-
ory of causation as probability increase. In the same empiricist spirit, Wesley Salmon argues
that one should focus on statistical rather than deterministic relations, because statistical
relevance relations constitute the evidence for claims concerning irregular causal bearing (1984,
pp. 184–185).

3 One also needs at least a semi-quantitative theory to distinguish significant from unimportant
causes, but I will ignore these problems in this essay. I believe contrasts similar to those I shall
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discuss with respect to the theory of causal bearing play an essential role in providing a quanti-
tative account of causal role.

4 It is not easy to define the relevant partition precisely. For an early, influential, but flawed ac-
count, see Cartwright 1979, p. 26, and for criticisms of the details of her account, see Ray 1992,
pp. 231–240 and Hausman 1998, p. 198. Such views abandon any attempt to offer a reduc-
tive analysis of causation in terms of probabilities. An alternative proposal defended by Brian
Skyrms (1980) is to require only that causes increase the probability of their purported effects in
some cells of the partition and that they never decrease the probability. This view is subject to
the same criticisms as the requirement of contextual unanimity.

5 An anti-drinking poster on a college campus proclaims, “Drinking causes AIDS”. On the
average-effect view, this claim is probably true. Many people are inclined to judge it to be false
on the grounds that drinking does not bear the right kind of causal connection to a disease such
as AIDS. Unlike sharing needles, a shot of whiskey does not carry the virus. Although “Drink-
ing causes AIDS” misleadingly suggests a certain kind of causal connection, there is no need to
build these domain-specific details into the truth conditions.

6 Given the idealizations in this approach, this requires that the subjective probability agents assign
to their occupying any particular causally homogeneous background context match its actual
frequency and that the subjective conditional probability of the effect given the value of the
causal variable in each context match the objective probability.
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The Possibility of Infinitesimal Chances

Martin Barrett

A well-known puzzle about the relation between chance and possibility is illustrated
by the fair spinner, a perfectly sharp, nearly frictionless pointer mounted on a circu-
lar disk. Spin the pointer and eventually it comes to rest at some random point along
the circumference, which we identify with a real number in the half-open interval
Œ0; 1/.1 (Imagine a scale of numbers around the edge.)

In constructing a model for this device, physical symmetry guides our assump-
tions about chance and possibility:

(A) The chance2 that the pointer initially at position a 2 Œ0; 1/ will come to rest
somewhere in a set S � Œ0; 1/ is independent of a. Let us write X 2 S I a for
the event that the pointer initially at a comes to rest in S . (X is the random
variable representing the final position of the pointer.) Then Pr.X 2 S I a/ D
Pr.X 2 S I b/.

(B) The possibility that the pointer initially at rest at position a will come to rest
somewhere in a set S is independent of a. That is, X 2 S I a is possible if and
only if X 2 S I b is possible.

(C) The chances and possibilities are unaffected if the scale is rotated (the scale
affects no physical property of the spinner). This means that Pr.X 2 S I a/ D
Pr.X 2 S � cI a� c/. (S � c is the set S translated to the left by an amount c.)

To these symmetry conditions, we may add:

(D) At least one point outcome is possible (i.e., there is some x for which it is
possible that X 2 fxg), because in any trial the pointer must stop somewhere.

(A) and (C) together entail that the probability distribution of X does not de-
pend on the initial position (so we may write simply Pr(X 2 S )), and that the
distribution is fully translation invariant (modulo 1). It is known that the only
distribution compatible with this requirement is the uniform distribution on Œ0; 1/
also known as Lesbesgue measure on Œ0; 1/ or L. When X is uniformly distributed,
Pr(X 2 Œa; b�/ D b � a and Pr(X D a/ D Pr.X 2 fag/ D 0.

(B) and (C) entail that all point outcomes are equipossible, either all possible or
all impossible.3 (B), (C), and (D) together entail that all point outcomes are possible.
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This last conclusion poses a dilemma, for it stretches the conception of possibil-
ity. Chance zero outcomes suffer from unlimited infrequency. Fix on any particular
outcome, say X D 0:37498190502. Spin the pointer repeatedly; on the assumption
of independent trials what is the chance that X D 0:37498190502 will occur at
least once in 100 spins? In 100; 000; 000? In a googolplex (D1010100

) of lifetimes
of the universe? Answer in each case: less than 10�100, less in fact than any positive
threshold, no matter how small. While chance zero outcomes may be possible, the
possibility is utterly remote. This is why common sense and scientific practice both
tend to treat such outcomes as de facto impossible, contrary to what (B), (C), and
(D) entail.

The simplest response to the dilemma retains (D) but rejects the symmetry con-
ditions (B) and (C). It recognizes as possible the actual outcome and only the actual
outcome. This deflationary response collapses the possible onto the actual, in effect
dispensing with possibility altogether. From this point of view, the metaphysical
puzzle does not even arise.

Some philosophically inclined scientists or philosophers of science may look
favorably on this response. Although probability in one form or another is insinuated
into every branch of modern science, isn’t possibility just a metaphysical flight of
fancy? Perhaps, but possibility is a fundamental ingredient in the modern analysis
of counterfactuals, which in its turn forms the foundation of at least one highly
influential account (Lewis’s) of cause and effect. So it is worthwhile to forego this
easy response in order to see whether we can’t better characterize the relation of the
two concepts.

A second response retains (B) and (C) but rejects (D). Zaman (1987) takes the
position that all point-outcomes should be regarded as impossible. He argues that
we can consistently maintain the necessity of X 2 Œ0; 1/ (equivalently, 9x.X D x/)
while denying the possibility of each instance X D a. We can do this if our logic is
�-inconsistent4 for � D 2@0 , the power of the continuum. His strategy bears some
resemblance to supervaluationist analyses of vagueness, which explain how we can
accept A _ B as true without having to accept either that A is true or that B is true.
If I understand Zaman correctly, after a trial results in the outcomeX D a, it is still
the case that X D a is impossible, but each disjunctive outcomeX 2 .a� �; aC �/

(for � > 0) is necessary.
I am sympathetic to Zaman’s goal of providing a consistent analysis which would

hold point-outcomes to be impossible, but the logical price is high. Why should we
take our logic to be �-inconsistent? Where is the modal semantics which would
validate his modal propositions about the spinner?

The principal purpose of this article is to examine a third response to the
dilemma. This response takes Pr(X D a) to be infinitesimal rather than zero, and so
preserves the supervenience of the possibility of X D a on the chance of X D a.
This option seems to have been attractive to Lewis (Lewis 1973), who wanted to
maintain the truth of the conditional “if X D a has chance zero, then X D a will
not occur.” As he puts it:

Zero chance is no chance, and nothing with zero chance ever happens. . . . Infinitesimal
chance is still some chance.
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A terminology has arisen to describe distributions like this: a distribution of
chances is regular if it “assigns a positive probability to each outcome it consid-
ers possible” (Elga 2004). If we can find an adequate regular distribution for the fair
spinner, it would solve the metaphysical puzzle. And the use of such distributions
would benefit other aspects of probabilistic methodology as well, for both classical
and Bayesian statisticians find probability zero outcomes inconvenient. The former
cannot, for example, form likelihood ratios with zero probabilities, and the latter
cannot condition on learned propositions of probability zero. Both have devised
workarounds, but the conceptual problems remain.

But can we find an adequate regular distribution for the fair spinner? I claim that
we cannot.

The Standard Model

The description of the Fair Spinner given in the first paragraph is, of course, an
idealization. Physically, there are no perfectly sharp pointers or nearly-frictionless
mechanisms. If real spinning dials happen to exemplify genuine chance processes,
the true probability distributions are doubtless lumpy or otherwise depart from the
perfect uniformity of Lesbesgue measure. Nevertheless, even apart from instrumen-
tal considerations, there is more than one reason to take seriously the search for an
adequate probabilistic model of the idealization.

One reason derives from the way in which idealized models may arise: as a limit
of a sequence of other (perhaps more realistic) models. The fair spinner occurs as
a limit in this way. Consider the discrete distributions Dn, in which the probabil-
ity is concentrated at the points 0; 1=n; 2=n; : : : ; .n � 1/=n for n > 0. (Each point
has probability 1=n.) Dn is the appropriate model for a roulette wheel with n cells.
As n gets larger, it becomes increasingly difficult to distinguish Dn from L “with
the naked eye”. In fact, the sequence of discrete distributionsD1;D2; : : : converges
in the limit to the continuous distribution L in the technical sense called weak con-
vergence.5

But the translation invariance which so perfectly captures the rotational symme-
try of the fair spinner is not present in any of the Dn. If we considered only the Dn

and not the limit, we would miss this critical characteristic. (If we rotate the scale by
an amount 1=2n, the probability distribution becomes concentrated on a completely
disjoint set of points in [0,1).) The lack of translation invariance is an indication of
the failure of Dn to adequately represent the fair spinner.

Another reason is that according to our best current theories, at least some phys-
ical quantities are not discrete or granular (like electrical charge) but are continuous
and may take any value in an interval of real numbers. Where there are continuous
magnitudes there may be continuous chance processes. The spatial position of a par-
ticle is such a magnitude, even according to quantum mechanics, and the outcome
of a positional measurement of a particle is such a chance process. Even though
there may be no actual fair spinners, there may be (for all we presently know) some
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actual continuous chance process whose distribution is isomorphic to our model for
the fair spinner, and so what seems to be idealized in one context may turn out to be
descriptive in another.

An adequate model should be constructed in accordance with the basic principles
of probability and the symmetry principles (A) and (C). We already have one model
which is adequate, except for regularity, and that is the standard model (L).

The standard model is a countably additive probability measure on a �-algebra
of subsets of Œ0; 1/. In the setting of standard analysis, countable additivity is what
makes probability theory go; without it we wouldn’t have, for example, the Strong
Law of Large Numbers, the Central Limit Theorem, or Kolmogorov’s existence the-
orem for stochastic processes. But existing foundational accounts of probability are
not strong enough to necessitate more than finite additivity, so requiring countable
additivity of probability distributions is controversial. I shall simply require that an
adequate replacement for the standard model be defined on (at least) an algebra of
sets, and be (at least) finitely additive.

The standard model is invariant under translation (modulo 1) by any real number
in Œ0; 1/, and this is entailed by the symmetry principles (A) and (C). An adequate
replacement should meet the same standard, at least insofar as it should be transla-
tion invariant for any translation which does not alter the set of outcomes which it
considers possible.

The standard model is not regular, since it assigns probability zero to every point
outcome (technically, to every singleton fxg, for x 2 Œ0; 1/). A regular model, using
infinitesimals, cannot be an extension of the standard model, in the sense that it
retains all the existing probability values assigned by the standard model. But an
adequate model should approximate the standard model: the probability that the
pointer stops in any interval Œa; b� should be at least infinitesimally close to b � a.

A model satisfying the approximation requirement will be empirically equivalent
to the standard model, since no frequency data derived from observations can distin-
guish between chances that differ only by an infinitesimal. A constructive empiricist
might argue that no more is needed to characterize adequacy. But the constructive
empiricist has already dispensed with the need both for traditional modality (Van
Fraassen 1980, p. 197) and chance (propensity), so for him or her the puzzle which
guides this paper does not arise, as it does not for the deflationist mentioned above.

To take the metaphysical puzzle seriously is already to admit that there may be
additional desiderata for adequacy beyond the approximation requirement.

Some Nonstandard Analysis

The use of infinitesimal real numbers is the domain of Nonstandard Analysis (NSA).
Originated by Abraham Robinson in the 1960s, NSA was not the first rigorous treat-
ment of infinitesimals (Schechter 1997, pp. 247–254), but it was the first to extend
all of real analysis comprehensively, in such a way as to preserve all the first-order
properties of the standard universe.
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The literature is extensive, and there are different approaches. There is space here
to give only an elementary exposition of a model–theoretic approach preferred by
measure theorists (see Nelson 2001 for a popular axiomatic approach).

1. NSA operates with two structures, which we may call the standard universe and
the nonstandard universe. Both are built up in levels. The standard universe,
here denoted U , contains all the ordinary real numbers at level one, all sets of
real numbers at level two, all sets of entities from levels one and two at level
three, and so forth through all finite levels. U is the union of all the levels. The
level one entities are thought of as individuals; every other entity in U is a set.
Using elementary set theory we can prove that this standard universe contains all
relations of the reals, all real-valued functions of reals, all functions of functions,
etc. In fact, it contains every mathematical entity normally thought essential to
mathematical analysis and geometry.

The nonstandard universe, denoted �U , contains at level one an extension of
the set of reals which includes all the standard reals but also includes infinite
reals, and numbers infinitesimally close to standard reals. (Infinitesimals are
numbers infinitesimally close to 0.) The entities of this set are called nonstan-
dard reals or hyperreals. Higher-level entities are then built up from lower-level
entities just as in the standard universe, and �U is the union of all finite levels.

2. Every standard entity s 2 U (s may be a real number, a set, a set of sets, etc.) has
a unique counterpart �s in the nonstandard universe, but not vice versa.6 Within
the nonstandard universe, the entities which are counterparts are also sometimes
called standard entities and anything which is not a counterpart is called a non-
standard entity. The counterpart �R of the set R of standard reals is not just the
set of counterparts of standard reals. It contains all those counterparts plus addi-
tional nonstandard members (such as infinitesimals). In general, counterparts of
infinite sets contain extra nonstandard elements.

Note that despite what the notation suggests, �U is not a counterpart, because
U is not itself a standard entity; i.e., U is not a member of U .

3. We can formulate sentences about the standard and nonstandard universes in
a first-order formal language L which consists of the usual logical symbols
:;^;_;!;$; 9;8, a name s for every standard entity s, and a single two-
place relation symbol 2 denoting set membership. Formulas of L are displayed
in boldface type. Two entity names which recur frequently below are N and
R, standing for the set of natural numbers (N) and the set of real numbers
(R) respectively. The entity name s in a formula denotes the standard entity
s when the formula is interpreted in the standard universe and the counterpart
�s when it is interpreted in the nonstandard universe. So, for example, R de-
notes R in U and �R in �U . Examples of simple sentences of L are � 2 R and
8x.x 2 N ! x 2 R/. We usually write the second sentence in bounded7 form,
as .8x 2 N/.x 2 R/. Both of these sentences are true in the standard universe.

4. The crucial Transfer Principle says that every bounded sentence of L is true in
the standard universe if and only if it is true in the nonstandard universe. The
Transfer Principle is a theorem of NSA and one of the principal sources of its
power. It entails, for example, that both of the simple sentences from the previous
paragraph are true also in the nonstandard universe. By means of examples such
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as these, the properties and relations of standard entities are “transferred over”
to the nonstandard universe.

5. In the nonstandard universe, there is an important distinction between internal
sets, which are covered by applications of the Transfer Principle, and exter-
nal sets, which are not. Formally, a set S in the nonstandard universe is internal
if and only if it is a counterpart or a member of some counterpart; it is external
otherwise.

For example, let N D fx 2 Z W x > 0g and N
0 D f�x W x 2 Ng. N 2 U is the

set of ordinary natural numbers. N
0 2 �U is the set of counterparts of ordinary

natural numbers. The sentence8 of L

:.9x 2 R/.8y 2 N/.x > y/ (1)

asserts a truth about N in the standard universe, that no real number is big-
ger than every member of N . In the nonstandard universe, however this is
not true of N

0

, because any infinite positive real is bigger than every mem-
ber of N

0

. Why doesn’t this contradict the Transfer Principle? Well, Eq. 1 is
true in the nonstandard universe, but there the symbol N denotes not N

0

, but
�N D fx W x 2 �Z ^ x > 0g, the counterpart of N . �N contains not only all the
members of N

0

, but also all the nonstandard positive integers, which includes
the infinite ones.

�N is an internal set and has all the properties that can be expressed by sen-
tences of L which are about N . N

0

is an external set (this is proven in the
appendix), and the sentences of L say nothing about it.

NSA is almost exclusively about internal sets, mappings, measures, etc., be-
cause these are the entities we can “get ahold of.” In other words, they are the
entities of which we can deduce properties, using the Transfer Principle.9 In
fact, in the axiomatic approach propounded by Nelson (2001), external sets do
not even exist; their formation by abstraction is termed “illegal set formation.”

In the model–theoretic approach summarized here, we may form external sets
(mappings, measures, etc.), but we will find it difficult to say much that is useful
about them, or to apply them in any significant way in a scientific theory.

There is a useful necessary condition for internality which I apply below: a
set is internal only if all its elements are internal. This entails that a nonstandard
probability distribution is internal only if the space of outcomes, the algebra, and
the probability mapping are all internals.

6. In the world of NSA, there arises an important new notion of finiteness, called
hyperfiniteness. In ordinary (standard) mathematics, we often formulate the no-
tion of finiteness by saying that X is finite if and only if it can be indexed by an
initial segment f1; 2; : : : ; ng of the natural numbers N , so that it has n elements
which can be displayed x1; x2; : : : ; xn. The “indexing” is technically a 1–1, onto
function from f1; 2; : : : ; ng to X .

This concept transfers perfectly over to the nonstandard universe, only here
an initial segment of the natural numbers is a set f1; 2; 3; : : : ;M g, forM 2 �N.
Now M may be an infinite natural number. We say that X 2 �U is hyperfinite
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with M elements if and only if there is an internal indexing function from
f1; 2; 3; : : : ;M g to X (this forces X to be an internal set, because the domain
and range of an internal function are internal). All ordinarily finite sets fall un-
der this definition as well.

In applications of NSA, models for the nonstandard universe are always con-
structed to be what Robinson called enlargements. In an enlargement, for any
standard set S there is a hyperfinite set which contains all the counterparts of el-
ements of S . For example, (the counterparts of) all standard reals are contained
in a single hyperfinite set. Thus hyperfinite sets can manage to be both small and
large at the same time: small in the sense that any sentence ofL true of finite sets
is also true of hyperfinite sets by the Transfer Principle, and large in the sense
that they may contain (externally) large subsets, like R. Many of the important
applications of NSA have concerned analysis with hyperfinite sets.

Nonstandard Models for the Fair Spinner

I now want to examine whether NSA will yield an adequate regular model for
the fair spinner. Each candidate model I discuss is a probability distribution taking
probability values in the hyperreal interval �Œ0; 1� (so infinitesimal probabilities are
admissible.) We may suggestively think of a string (formalized as a one-dimensional
manifold in space) whose points are in 1–1 correspondence with the hyperreal in-
terval �Œ0; 1/, and which is wrapped around the circumference of the spinner as a
scale. There is a distinguished subset S of points marked on the string; these may
be thought of as the points which the model “considers possible” (in Elga’s char-
acterization of a regular probability distribution), the points at which the pointer is
“allowed” to stop. (S may be the whole interval �Œ0; 1/.) To complete the picture,
we specify the algebra of subsets of S and probabilities for each member of the
algebra such that the probability measure is finitely additive. We explicitly assume
that each single point s 2 S has some probability value (i.e., each singleton fsg is in
the algebra). This is reasonable, given that we regard the pointer as being perfectly
sharp, i.e. “one point wide.”

1. The Hyperfinite Spinner In this model, the string is marked at the M points in
a large hyperfinite subset of �Œ0; 1/, where M is an infinite natural number. In
the simplest such model, the M points are evenly spaced at a distance of 1=M ,
each with probability 1=M . (There is even a set like this which contains (the
counterparts of) all the rational numbers in Œ0; 1�).

More generally, the points might be unevenly spaced (though infinitesimally
close to each other), with differing probabilities. Where the points bunch up, the
probabilities would be correspondingly reduced, so that the probability assigned
to the interval Œa; b� could be infinitesimally close to b � a, as mandated by the
approximation requirement.

This is an attractive picture. To the “naked eye” (which we assume cannot
distinguish between infinitesimally close points), the marked points would seem
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to cover the whole string. The distribution is regular and all the resources of finite,
discrete probability theory are available to make calculations and predictions.10

But there are warts, for the hyperfinite spinner is full of unexplained arbitrary
features. As a description of a chance process, it has all the same deficiencies as
the ordinarily finite distributionsDn discussed above.

Why does S containM points? Why not M � 1, or M C 1, or 2M ?
No matter how large M is, S is really just a negligible subset of �Œ0; 1/, even

though it may contain all the counterparts of standard reals in Œ0; 1�. One way to
express its smallness is that by the Transfer Principle, when S containsM points,
there are more than 2M points of �Œ0; 1/ which are not in S . Why do we consider
that the pointer may not stop at any of these points?

And why does S consist of these M points rather than a different set of M
points? If we denote the smallest nonzero point of S by a (there is such a smallest
point by the Transfer Principle), and if we shift the whole hyperfinite set to the
left by a=2, then there is at least one point in the shifted set that is not in S . Why
not take S to be the shifted set instead?

The shifting by a=2 also shows that the model is not (generally) translation
invariant.

Bartha and Johns (2004) reject an epistemic model because of a similar arbi-
trariness in the choice of an infinitesimal which characterizes the model. I think
we should be inclined all the more to reject such arbitrary features in the present
metaphysical context, the context of models for chance processes.

2. The Sprinkle Spinner Here the set S contains the counterparts of standard real
numbers, and only those. The idea may be that since the standard model finds
it sufficient to represent the circumference of the spinner by the ordinary (i.e.
standard) real interval Œ0; 1/, this should suffice for a nonstandard model as well.
We may imagine (counterparts of) the standard real numbers spread out along
the string like sprinkles. Because the real numbers are dense (between any two
reals there is another real), seen from a distance they appear to cover the whole
string, just as in the hyperfinite spinner.

This idea dates back to the early days of NSA. Bernstein and Wattenberg
(1969) prove the existence of such a model which meets our approximation
requirement. They prove the existence of a hyperfinite set F which has M
points, contains the counterpart of every standard real in Œ0; 1/, and possesses
as much translation invariance as can be gotten. Then they use the counting
measure on this set to define a measure � on all subsets of Œ0; 1/: �.A/ D
.the number of points in �A

T
F /=M . This entails that the measure of each sin-

gleton is �.fxg/ D 1=M . They also prove that when A is Lebesgue-measurable,
�.A/ is infinitesimally close to L.A/.

Skyrms (1980) seems to have been the first philosopher to have noticed this
result and writes of it optimistically:

As Bernstein and Wattenberg have shown, there is a finitely additive, almost translation
invariant, regular measure defined on all subsets of Œ0; 1�. Nonempty sets of Lebesgue
measure zero, as well as [their translations], then receive infinitesimal measure. And we
can say the probability of our pointer hitting a rational in Œ0; 1=2�, given that it hits a
rational, is the ratio of the two appropriate infinitesimals and equals 1=2.
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As in the case of the hyperfinite spinner, S D f�x W x 2 Rg is a negligably
small subset of �Œ0; 1/, but here at least one might defend this choice of S on
the grounds that it is a distinguished (i.e., non-arbitrary) subset of �Œ0; 1/. How-
ever, the model is not translation invariant, as Skyrms’s “almost” lets out. It is
invariant only under translations by standard rationals, and though this restric-
tion may be by mathematical necessity, it is difficult to accept on ontological
grounds. For translations by other standard reals, Bernstein’s and Wattenberg’s
proof shows that the best we can get is that Pr.translated set/ and Pr.original set/
are infinitesimally close, not necessarily equal.

Because of this, the model does not give an adequate account of conditional
probabilities over sets of infinitesimal probability either. The conditional prob-
ability relation mentioned by Skyrms in the quotation above does not hold
generally. In the appendix is described a countable set X (which therefore has
standard Lebesgue measure zero, like the rationals in Œ0; 1=2�) such that (a)X has
an irrational translate Y which is disjoint from X and (b) Pr.X jX S

Y / ¤ 1=2.
The Bernstein and Wattenberg Theorem has served as a point of departure for a

number of results in the philosophical literature asserting the existence of regular
probability distributions, frequently in a rather abstract setting. See , for example,
Mcgee (1994) or Elga (2004), in which the authors discuss regular nonstandard
probability distributions which approximate standard ones up to an infinitesimal.

What these authors do not observe, however, is that like Bernstein’s and
Wattenberg’s distribution, these models are all external. This is because they
take an existing standard structure, like the �-algebra of subsets of Œ0; 1/, or
the �-algebra of Lebesgue-measurable subsets of Œ0; 1/, or an infinite algebra
of propositions, and map that structure (rather than its nonstandard counterpart)
to �Œ0; 1/. Such a mapping is external because its domain is external, containing
only standard elements (all infinite sets containing only standard elements are ex-
ternal; see the appendix for a proof). And as I indicated above, if the probability
mapping is external, the whole model is external.

I have no conclusive argument that a model for the fair spinner or other chance
process cannot be an external nonstandard model. But such a model represents
a big loss of instrumental virtue. In substantive applications of the theory of
chance, there will typically be found constraints on a model arising from physi-
cal properties or symmetries in the physical situation. Because we cannot apply
the Transfer Principle to an external nonstandard model, the task of showing that
an external nonstandard model conforms to these constraints may become dif-
ficult or impossible. The lack of true translation invariance in Bernstein’s and
Wattenberg’s model is an example of this.11

As an aside, the defectiveness of external models partly explains why non-
standard measure theory has developed in a direction quite different from that
suggested by the early paper of Bernstein and Wattenberg. Subsequent re-
search has focussed almost entirely on so-called Loeb measures, which are
pairs consisting of an internal nonstandard measure (usually hyperfinite) and a
standard measure (no infinitesimals) which it approximates. See Ross (1997) for
an exposition of Loeb Measures and a discussion of the history. Loeb measures
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do not provide usable models for the present purpose because the standard part
cannot be regular and the internal part is subject to the objections made to the
hyperfinite spinner or else to the considerations of the next section.

3. The Hyperreal Spinner Finally, there is the class of internal models with S D
�Œ0; 1/ (all points on the string are marked). Since they allow that the pointer
might stop at any hyperreal point, these models avoid unexplainable arbitrariness
in the selection of points of S , and since they are internal, the Transfer Principle
may be liberally applied to deduce their structure.

The obvious first choice for a model is the counterpart of Lebesgue mea-
sure itself, denoted �L. �L is defined on the counterpart of the full �-algebra of
Lebesgue-measurable sets and inherits by the Transfer Principle all the first-order
properties of L, including translation invariance by any hyperreal. Unfortunately,
the Transfer Principle also entails that for each x in �Œ0; 1/, �L.fxg/ D 0, so that
�L is not regular.

The adequacy conditions, however, do not require us to use the full �L; perhaps
another internal model may be found which is regular (with probability that is
merely finitely additive, perhaps, or with a smaller algebra of sets).

The conditions which make a set function a finitely additive probability on
an algebra of subsets of Œ0; 1/ which includes each singleton set can be written
down as a sentence of L. In the standard universe, any such set function sat-
isfies (a) Pr.fxg/ � 0, and (b) for any finite subset fx1; x2; : : : ; xng � Œ0; 1/,Pn

1 Pr.fxg/ 6 1: It is a familiar fact that no set function satisfying (a) and (b)
can be regular; the proof of this is recalled in the appendix. There we prove in
fact that any such probability must take the value zero at a dense set of points in
Œ0; 1/. This conclusion transfers directly to an internal finitely additive probabil-
ity on a (nonstandard) algebra of subsets of �Œ0; 1/. Therefore, unfortunately, no
hyperreal spinner can be regular.

The upshot of this survey of nonstandard models is that we can have a model
which is regular, but which is non-translation invariant or external or both, or we
can have an internal, translation invariant model which is not regular.

Of course, I have not considered every conceivable nonstandard model which
might be proposed as a model for the fair spinner. But the models surveyed thus far
pretty well exhaust all obvious candidates for this role. I conclude tentatively that
we will not find what we seek by using NSA.

Does Possibility Supervene on Chance?

The negative assessment of all the solutions to the dilemma examined so far might
lead us to wonder whether there is any hope of finding a theory in which possibility
supervenes on probability. Perhaps we need to take into account ‘macroscopic’
features of the chance distributions, as well as the probabilities of point outcomes?

One feature of discrete (and especially, of finite) chance distributions that seems
to distinguish them from continuous distributions is that in the former, we have
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little inclination to consider outcomes of chance zero to be possible. For example,
in the case of throwing a die, we may with perfect mathematical propriety take
the outcome space to be f0; 1; 2; 3; 4; 5; 6g. It doesn’t matter whether we do this
because, for example, we incorrectly believe that dice are seven-sided, or because
initially it is not settled whether the die comes from a defective batch with one or
another numbered side missing, or for some other reason. Later investigation may
settle that the die is in fact a normal, symmetric six-sided die. We now have (at least!)
two options: we may retain the outcome zero in the outcome space and assign the
probabilities f0; 1=6; 1=6; 1=6; 1=6; 1=6; 1=6g. Or we may excise the outcome zero
completely from the outcome space. There is no particular theoretical advantage in
pursuing either option; the gain or loss in simplicity is negligible either way.

But the dispensability of the outcome ‘zero’ in this case renders it implausible to
regard this outcome, with its probability of zero, as possible. On the other hand, in
the distribution for the fair spinner and in continuous distributions modelling other
chance setups, we seem stuck with the apparent possibility of all these outcomes of
chance zero. So perhaps the distinction between continuous and discrete distribu-
tions could serve as the basis for a theory.

Perhaps, but I doubt it. Consider a modification of the fair spinner, which we
may call the Wheel of Fortune. We simply divide the circumference into n “cells”
by inscribing lines at 0; 1=n; 2=n; : : : ; .n� 1/=n:We attach a sensor which detects
in which cell the pointer stops, and reports the midpoint of that cell as the outcome.
For example, if the pointer stops anywhere within .0; 1=n/, the sensor outputs the
value 1=2n. But if the pointer stops right on the dividing line between two cells,
the sensor, unable to choose between the two cells, simply outputs the position of
the dividing line. The sensor forms a filtering ‘front end’ to the fair spinner, which
remains unchanged.

This setup results in a discrete distribution, with outcomes f0; 1=2n, 1=n; 3=2n,
2=n; : : : ; .2n � 1/=2ng. Half the outcomes have chance 0; the other half have
chance 1=n. Are the chance 0 outcomes of the Wheel of Fortune possible? The
underlying continuous fair-spinner process, which we modified only by attaching
the noninterfering front end, would suggest that they are. But the discreteness of the
resulting distribution would suggest that they are not.

Examples such as this, together with the negative results from NSA, cast doubt
on the prospects for a theory of chance and possibility in which possibility super-
venes on chance. At the least we should not expect a tidy picture in which chance
distributions, using the usual possible-world semantics for possibility, can be de-
fined on sets of possible worlds standing in for the outcome spaces. It would seem
that neither chance nor possibility furnishes a generally reliable guide to the other.

Appendix: Amplifications and Proofs

Pseudo-Sentences of L In the sentence (Eq. 1) in the text, the symbol > is not an
official relation symbol ofL. x> y is to be regarded as a commonsense abbreviation
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for a more complicated formula of L, which says that the ordered pair hx; yi is a
member of the relation “greater-than” which is a subset of R � R. If we let the
symbol G name the greater-than relation over R and P name the set of (unordered)
pairs of elements from R, we can expand x> y into a genuine formula of L using
bounded quantifiers:

.9u 2 G/.9v 2 P/.x 2 u ^ v 2 u ^ x 2 v ^ y 2 v/

(Recall that in set theory, the ordered pair hx; yi is the set fx; fx; ygg.)
Abbreviations such as x > y are useful in order to make formal sentences in-

telligible to human readers but do not in principle add any power to L. We might
call Eq. 1 a pseudo-sentence, and all such sentences can always with some effort be
translated into actual official sentences of L.
L is actually quite a meager language, but it contains the membership symbol 2

of set theory. The reader may consult any introductory treatment of axiomatic set
theory to see how to build up pseudo-sentences that employ symbols for common-
place functions and relations of mathematics.

External Sets A set is internal if and only if it is a member of a standard set
(i.e., a counterpart.) This assures that the set may be the value of some variable in
the scope of a bounded quantifier, and thus that it may fall under instances of the
Transfer Principle.

Here are some basic results about internal sets, which can be found, for example,
in (Lindstrom 1988). Standard sets (counterparts) themselves are always internal.
The finite union, intersection, and difference of internal sets are internal. Finite sets
of internal sets are internal. A set is internal only if its elements are individuals
or internal sets. A function (treated as a set of ordered pairs) is internal only if its
domain and range are internal. The inverse of an internal function is internal, and
composition of finitely many internal functions is internal.

Countable unions of internal sets are usually not internal. For example, the set of
counterparts of finite positive integers N

0 D f�n W n 2 Ng is external, even though
each singleton f�ng is internal, and the superset �N is internal.

Theorem 1. N
0

is external.

Proof. Suppose N
0

were internal. Since any infinite positive integer M is bigger
than each member of N

0

, it is bounded above. But every internal bounded set of
real numbers has a least upper bound, by the Transfer Principle. Let B be the least
upper bound of N

0

; B must be infinite. But then B � 1 is infinite and also a bound
for N

0

, a contradiction. �

More generally, within the nonstandard universe, any infinite set composed
purely of standard entities is external. (To be internal, the set has to include non-
standard elements too.) The following Theorem holds:

Theorem 2. If A is standard and has infinitely many elements, then A
0 D

f�a W a 2 Ag is external.
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Proof. Suppose A
0

is internal. Let s D hs1; s2; : : : ; sn; : : :i be a standard infi-
nite sequence of distinct elements of A. (In other words, s is a 1–1 function
from N into A.) s has counterpart �s D u D hu1; u2; : : : ; un; : : : ; uM ; : : :i D
h�s1;

�s2; : : : ;
�sn; : : : ; uM ; : : :i, a 1–1 function from �N into �A.

For every finite positive integer n, un 2 A0

, by the Transfer Principle. I claim that
for any infinite positive integerM , uM … A0

. For if uM 2 A0

, then either uM D �sn

for some finite positive integer n, or else uM D �a for some other a 2 Awhich does
not occur among the sn. In the first case, then .9n;m 2 �N/.n ¤ m ^ un D um/ is
true in the nonstandard universe, and hence by transfer .9n;m 2 N/.n ¤ m^ sn D
sm/ is true in the standard universe, which contradicts our assumption that s is a
sequence of distinct entities. In the second case, then .9n 2 �N/.un D �a/ is
true in the nonstandard universe, and so .9n 2 N/.sn D a/ is true in the standard
universe, which contradicts our assumption that a is not among the sn.

Since uM … A0

, we can recover the set of counterparts of standard positive inte-
gers thus: N

0 D u�1.A
0

/. But the right-hand side is internal because u, u�1, and A
0

are, and that contradicts the externality of N
0

. �

The Sprinkle Spinner Is Not Translation Invariant This example, derived from
an example in Bernstein’s and Wattenberg’s article, shows that the sprinkle spin-
ner model cannot be translation invariant, even though each real point receives the
same infinitesimal measure �.x/ D 1=M , where M is the number of points in the
hyperfinite set F . In the following, all additions and multiplications are modulo 1.

Take an irrational ˛ 2 Œ0; 1/. Then the set T D f˛; 2˛; 3˛; : : :g consists of count-
ably many distinct points in Œ0; 1/. The points are distinct because if m˛ D n˛ for
m ¤ n, then .m � n/˛ D k for some integer k, contradicting the irrationality of ˛.

Also, if T
0

= T translated (shifted rightward) by an amount ˛, then T
0 � T and

in fact T D f˛g S
T

0

. So the �.T / and �.T
0

/ must differ, by an infinitesimal.
But more is true:

Theorem 3. We can find two sets X and Y , both of Lebesgue measure zero,
which are disjoint and translates of each other, such that �.X/ ¤ �.Y / and
�.X jX S

Y / ¤ 1=2.

Proof. Let T and T
0

be as above. Both are countable and therefore of Lesbesgue
measure zero. Choose another irrational ˇ such that ˇ=˛ is irrational (such a ˇ
exists, otherwise there would be only countably many irrationals). Let X D T C ˇ,
i.e. X is T shifted rightward by ˇ. Then X is a countable set and is disjoint from
T and from T

0

(if not, then for some j; k we would have j˛ C ˇ D k˛, or ˇ D
.k�j /˛, contradicting that ˇ=˛ is irrational). Since�.T / ¤ �.T

0

/, either �.X/ ¤
�.T / or �.X/ ¤ �.T

0

/, or both. Take Y D T or Y D T
0

according to which
inequality holds. �

Standard Continuous Probabilities Are Not Regular Theorem 4 is a slightly
extended version of a familiar proposition from elementary analysis.

Theorem 4. Let � be a finitely additive probability on an algebra of subsets of
Œ0; 1/ which includes the singleton fxg for each x 2 Œ0; 1/. Then � is not regular: in
every subinterval Œa; b� � Œ0; 1/, there is at least one point y with �.fyg/ D 0.
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Proof. Assume � is regular, and for each positive integer n, define a subset of Œa; b�
by Sn D fx W x 2 Œa; b� ^ �.fxg/ > 1=ng. Since � is regular, the union of all the
Sn is the whole interval Œa; b�, which contains uncountably many points, so at least
one of the Sn is infinite (a countable union of merely finite sets is still countable).

Let Sn be infinite, and pick distinct points x0; x1; : : : ; xn from Sn. Then by finite
additivity, �.fx0; x1; : : : ; xng/ � .n C 1/=n > 1, which contradicts that � is a
probability. �
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Notes

1 We could equivalently use the closed interval Œ0; 1� with the endpoints identified.
2 In this chapter, I assume that chance is part of the real furniture of the physical universe. Brown-

ian Motion, the random path in space of a small particle immersed in a fluid, may be considered
to be a paradigmatic chance process. The status of the fair spinner as a chance device is discussed
below.

3 Evidently, the sense of possibility under discussion is not absolute metaphysical or nomological
possibility. An alien from Venus might swoop in and demolish the spinner before the pointer
stops; but we do not want to recognize “spinner destroyed” as a possible outcome. “Possible”
should be construed as “relatively possible,” possible relative to fixed conditions which include
the physical laws and also initial conditions ensuring that the chance trial terminates successfully.

4 �-consistency is the generalization of Gödel’s !-consistency to cardinals other than @0 D !.
5 Presentation as a limit accounts for the overwhelming importance of the normal distribution in

statistical theories, since the Central Limit Theorem assures us that a host of different sequences
of distributions will converge weakly to the normal distribution. Two examples important in
practice are sequences of (suitably normalized) binomial and poisson distributions. The uniform
distribution also may be multiply presented in this way, as the limit of different sequences of
distributions, with different properties.

6 Here I borrow from Lewis a terminology which seems apt, but which he used for a completely
different purpose.

7 In a bounded sentence, all the quantifiers have the form 9x 2 s or 8x 2 s, where s names a
standard entity, or else 9x 2 y or 8x 2 y, where y is a variable. The effect is to restrict the
domain of discourse of a sentence to the elements of some standard entity or counterpart (or the
elements of an element, etc.).

8 This sentence is not actually in the language L, because of the use of the symbol >. This turns
out not to be a real problem; see the appendix for a discussion.

9 External sets can play a role in relating purely nonstandard results back to the standard universe.
For example, the “standard part” mapping, which maps a limited (i.e., non-infinite) hyperreal
back to the unique standard real which is infinitely close to it, is an external mapping (viewed as
a set of ordered pairs, it is an external set).

10 Finite probability theory has the instrumental virtue of being comparatively easy conceptually
and computationally. Nelson (1987) has given a readable exposition of a big part of probability
theory reconstructed with hyperfinite sets.

11 Although we cannot straightforwardly say that the lack of translation invariance is because of
the externality, the fact remains that this model is deficient in deducible properties useful for
calculation and prediction, and that it is reasonable to expect other external models to suffer
from the same problem.
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Probabilistic Metaphysics

James H. Fetzer

The demise of deterministic theories and the rise of indeterministic theories clearly
qualifies as the most striking feature of the history of science since Newton, just
as the demise of teleological explanations and the rise of mechanistic explanations
dominates the history of science before Newton’s time. In spite of the increasing
prominence of probabilistic conceptions in physics, in chemistry and in biology,
for example, the comprehensive reconciliation of mechanistic explanations with in-
deterministic theories has not gone smoothly, especially by virtue of a traditional
tendency to associate “causation” with determinism and “indeterminism” with non-
causation. From this point of view, the very idea of indeterministic causation seems
to be conceptually anomalous if not semantically inconsistent. Indeterminism, how-
ever, should not be viewed as the absence of causation but as the presence of causal
processes of non-deterministic kinds, where an absence of causation can be called
“non-causation”.

The underlying difference between causal processes of these two kinds may
be drawn relative to events of one type (radioactive decay, genic transmission,
coin tossing, and so on) as “causes” C of events of other types (beta-particle
emission, male-sex inheritance, coming-up heads, and so forth) as “effects” E .
Then if deterministic causal processes are present whenever “the same cause” C
invariably brings about “the same effect” E , then indeterministic causal processes
are similarly present whenever “the same cause” C variably brings about “different
effects” E1; E2; : : : belonging to some specific class of possible results. So long as
beta-particle emission (male-sex inheritance, coming-up heads, : : :) are invariable
“effects” of radioactive decay (of genic transmission, of coin tossing, : : :), respec-
tively, then these are “deterministic” causal processes; but if alpha-particle emission
(female-sex inheritance, coming-up tails, : : :) are also possible, under the very same
conditions, respectively, the corresponding causal processes are “indeterministic”,
instead.

A deterministic theory (or a deterministic law), therefore, characterizes every
physical system of a specified kind K as an instance of a deterministic causal
process for which “the same cause” C invariably brings about “the same effect”
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E, where indeterministic theories (and indeterministic laws) are open to parallel
definition. Thus, the world itself W is an indeterministic system if at least one
indeterministic theory describing the world is true, which will be the case if at
least one of its causal processes is indeterministic in kind. The conceptual problem
that remains, of course, is understanding how it can be possible, in principle, for
“different effects” E1; E2; : : : to be brought about by “the same cause” C , i.e.,
under the very same conditions. Recent work within this area, however, suggests
the plausibility of at least two different approaches toward understanding “indeter-
ministic causation”, namely: various attempts to analyse “causation” in terms of
probability, on the one hand, and various attempts to analyse “probability” in terms
of causation, on the other.

Since attempts to analyse “causation” in terms of probability tend to be based
upon interpretations of probabilities as actual or as hypothetical limiting frequen-
cies, moreover, while attempts to analyse “probability” in terms of causation tend
to be founded upon interpretations of probabilities as long-run or as single-case
propensities instead, let us refer to frequency-based accounts as theories of “sta-
tistical causality” and to propensity-based accounts as theories of “probabilistic
causation”. Even though there thus appear to be two different types of each of these
approaches toward this critical conceptual problem, it is not obvious that any of
these theories can satisfy the relevant desiderata. My purpose here is to review why
three out of four hold no promise in the reconciliation of mechanistic explanations
with indeterministic theories. If these reflections are well-founded, then the single-
case propensity approach alone provides an appropriate conception of the causal
structure of the world.

Relevant Desiderata: Conditions of Adequacy

The first task confronting this investigation, therefore, is the specification of suitable
desiderata for an adequate construction of indeterministic causation. Some of these
criteria are required of “probabilistic” interpretations, while others are imposed by
the element of “causality”. We may assume, as probabilistic conditions, the require-
ments of admissibility, of ascertainability, and of applicability advanced by Salmon
(1967), given the following understanding: (1) that the admissibility criterion re-
quires that relations characteristic of mathematical probabilities (such as those of
addition, of summation, and of multiplication) must be satisfied rather than some
specific formulation of the calculus of probability; (2) that the ascertainability cri-
terion requires that methods appropriate to statistical inquiries (such as statistical
hypothesis-testing techniques) are capable of subjecting probability hypotheses to
empirical tests but not that they should be verifiable; and, (3) that the applicability
criterion requires not only that probabilities have to be predictively significant for
“the long run”, but also for “the short run” and for “the single case”, i.e., for infinite,
finite and singular sequences.

These conditions are important for a variety of reasons. In the first place, if
condition (1) required that an acceptable interpretation must satisfy some specific
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formulation of the calculus of probability rather than relations characteristic of
mathematical probabilities, propensity conceptions – which cannot satisfy Bayes’
theorem, for example – would be excluded a priori. In the second place, if condition
(2) required that an acceptable interpretation must be verifiable rather than merely
empirically testable, only finite relative frequency constructions – but no limiting
frequency or any propensity conceptions – could possibly qualify as acceptable.
Thus, since condition (3) appears to impose a requirement that only single-case con-
ceptions could be expected to fulfill, further consideration should be given to its jus-
tification and to the possibility that, in principle, it ought to be weakened or revised.

In order to fulfill the function of reconciling mechanistic explanations with inde-
terministic theories, furthermore, an acceptable account of indeterministic causation
ought to generate “mechanistic explanations” that explain the present and the future
in terms of the past, rather than conversely. Indeed, this condition accords with sev-
eral features that seem to be characteristic if not invariable aspects of deterministic
causation, such as (a) that “causes” precede their “effects”, (b) that “effects” do not
bring about “causes”, and (c) that “causes” differ from their “effects”. Let us also
assume that “teleological explanations” either (i) explain the past and the present
in terms of the future (the temporal criterion) or (ii) explain “effects” by citing
motives, purposes, or goals (the intentional criterion). Thus, some “mechanistic ex-
planations”, none of which are “teleological1” in the strong temporal sense, might
still be “teleological2” in the weak intentional sense, which we exemplify when we
explain our behavior by citing motives and beliefs.

While “intentional explanations” need not explain the past and the present in
terms of the future, therefore, an acceptable account of indeterministic causation
should not generate “teleological explanations” of either kind, except with respect
to appropriate classes of instances involving the proper ascription of propositional
attitudes as they occur, for example, within psychology, sociology, and anthropol-
ogy. Ascribing motives, purposes, or goals to inanimate objects, such as gambling
devices and subatomic particles within physics or chemistry, appears to entail the
adoption of animistic hypotheses, which certainly should not be a pre-condition
for “indeterministic causation”. And, insofar as causation assumes its fundamen-
tal, albeit not exclusive, role with respect to explanation, we may also suppose, as
conditions of causation, that an adequate conception of this kind ought to possess
explanatory significance not only for “the long run” but also for “the short run”
and for “the single case”. Though these conditions jointly entail that an acceptable
conception of indeterministic causation should support probabilistic hypotheses that
are both predictively and explanatorily significant for infinite, finite and singular se-
quences, they do not dictate any particular variety of “causal explanations”, provided
they are not “teleological explanations”, necessarily.

Strictly speaking, of course, it is suggestive but inaccurate to say that teleological
explanations explain the past and the present in terms of the future, since the tem-
poral criterion hinges upon relations of “earlier than” and of “later than”. Indeed,
four more-or-less distinct species of causation may be identified by introducing
“proximate” and “distant” differentia as follows:
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(A) Distant mechanistic causation

in which spatio-temporally separated “causes” C 1; C 2; : : : bring about their “ef-
fects”E1; E2; : : : (roughly) by forward “causal leaps” within space-time – whether
these causal leaps belong to the “PAST”, the “NOW”, or the “FUTURE”;

(B) Proximate mechanistic causation

in which spatio-temporally contiguous “causes” C 1; C 2; : : : bring about their
“effects” E1; E2; : : : by (minimal) forward “causal steps” within space-time –
whether these causal steps belong to the “PAST”, the “NOW”, or the “FUTURE”;

(C) Distant teleological1 causation

in which spatio-temporally separated “causes” C 1; C 2; : : : bring about their “ef-
fects” E1; E2; : : : by backward “causal leaps” within space-time – whether these
causal leaps belong to the “PAST”, the “NOW”, or the “FUTURE”; and, finally,

(D) Proximate teleological1 causation

in which spatio-temporally contiguous “causes” C 1; C 2; : : : bring about their
“effects” E1; E2; : : : by (minimal) backward “causal steps” within space-time –
whether these causal steps belong to the “PAST”, the “NOW”, or the “FUTURE”.

While “teleological causation” (in the sense of teleology1) characteristically
requires backward (or “retro-”) causation, “distant causation” typically entails
causation-at-a-distance (within space-time), contrary to the principle of locality of
special relativity, which postulates the following requirement:
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(E) The principle of locality causal influences are transmitted by means of causal
processes as continuous sequences of events with a finite upper bound equal to
the speed of light .�186;000mps/

hence, unless special relativity is to be rejected, there are spatio-temporal restrictions
upon causal processes that render both varieties of “distant causation” unacceptable,
in principle, since “causal leaps” of either kind would entail violations of the prin-
ciple of locality. Thus, classical behaviorism, with its tendency to assume that an
individual’s past history directly determines his present behavior (as an example of
distant mechanistic causation), is no more acceptable with respect to its explanatory
type within psychology than are appeals to “manifest destiny”, with their tendency
to presume that present actions are directly determined by future events (as illustra-
tions of distant teleological1 causation), in their explanatory roles within history.

The principle of locality, of course, may be reformulated to reflect the (discrete or
continuous) character of space-time by substituting “contiguous” for “continuous”
in sentence (E), just as diagrams (A) through (D) may be employed to represent
(deterministic or indeterministic) causal processes with the utilization of contin-
uous and discontinuous “causal arrows”, respectively. Hence, indeterministic as
well as deterministic varieties of distant and proximate (teleological and mech-
anistic) causation are logical possibilities that do not necessarily also qualify as
physical possibilities. Considerations of these kinds, moreover, have very signifi-
cant consequences for alternative interpretations of indeterministic causation. For,
with respect to “the single case”, “the short run” and “the long run”, conceptions of
statistical causality based upon actual and hypothetical limiting frequencies result
in probabilistic hypotheses that either are purely descriptive and non-explanatory
or else exemplify distant teleological1 causation, while conceptions of probabilistic
causation based upon long-run propensities, by comparison, result in probabilis-
tic hypotheses that exemplify both distant mechanistic and proximate teleological2
species of causation, as the arguments that now follow are intended to display.

Statistical Causality: Actual Limiting Frequencies

Let us begin with theories of statistical causality based upon the actual limiting
frequency construction of objective probabilities, which, in turn, is built upon (a)
the mathematical definition of the limit of a relative frequency within an infinite
sequence, (b) the empirical interpretation of such limits as features of the actual
world’s own history, and (c) the logical formulation of these probabilistic properties
as conditional probabilities (cf. Salmon 1967). Thus, under this construction, the
probability of an event of a specific type, Y , such as beta-particle emission, male-sex
inheritance, etc., relative to the occurrence of an event of another specific type, X ,
such as radioactive decay, genic transmission, etc., can be characterized, in general,
along these lines:

(F) P.Y=X/ D p Ddfj lim n ! 1f n.Ym=Xn/ D .p D m=n/
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that is, the probability for (an event of kind) Y , given (an event of kind) X , has
the value p if and only if (events of kind) Y occur relative to (events of kind) X
with a limiting frequency m=n equal to p during the course of the actual history
of the world. Insofar as limiting frequencies for events of particular kinds may vary
relative to different reference classes X; X 0; X 00 and so forth, various relations of
statistical relevance can be defined, such as, for example,

(G) If P.Y=X & Z/ ¤ P.Y=X & �Z/, then the occurrence of (an event of kind)
Z is statistically relevant to the occurrence of (an event of kind) Y , relative to
the occurrence of (events of kind) X

which Salmon (1970) utilized as the foundation for a new account of statisti-
cal explanation intended to improve upon Hempel’s inductive-statistical theory
(Hempel 1962, 1965, 1968). While the mathematical definition of limiting fre-
quency is straightforward when applied within abstract domains (such as the theory
of numbers), however, its introduction within causal contexts has raised a variety of
problems, most of which are now familiar but remain important, nevertheless.

One such difficulty arises because limiting frequencies, as properties of infinite
sequences, are well-defined as features of the physical world only if the number n
of occurrences of reference events (of kind X , say) increases without bound. This
means that if there were no – or only a few, or many but finite – instances of events of
kindX , then neither the probability for (an event of kind) Y given (an event of kind)
X nor the relevance relations between (events of kinds) X, Y and Z (for events of
any other kind) would be well-defined. So unless there is no end to the number of in-
stances of genic transmission (radioactive decay, etc.) during the history of the actual
world W, there can be no corresponding limiting frequencies to satisfy the condi-
tions specified by (F) and by (G). Moreover, as long as these events themselves are
non-vanishing in their duration, such a conception also entails that either the world’s
history must go on forever or else the corresponding probabilities cannot exist. So
if the existence of limiting frequencies is required for “statistical causality”, then
neither (probabilistic) “causes” nor “effects” can exist if the world’s history is finite.

This problem has invited a number of attempted solutions, the majority of which,
following von Mises (1964), treat the infinite sequence condition as an “idealiza-
tion” concerning what the limiting frequencies would be (or would have been) if the
world’s history were (or had been) infinite. This defense itself, however, appears to
raise more questions than it answers, especially regarding the theoretical justifica-
tion for these subjunctive and counterfactual claims. An ontological warrant might
be generated from the ascription of dispositional properties to the physical world
(as an inference to the best explanation, for example), where these properties could
be invoked as a foundation for predicting and explaining the occurrence of relative
frequencies; but this, as later discussion of the hypothetical frequency and of al-
ternative propensity conceptions should make evident, would be to abandon rather
than to repair this position.

Alternatively, a psychological warrant for ascribing hypothetical properties could
be discerned in our (inevitable) “habits of mind” within the framework pioneered by
Hume; yet, even if our anticipatory tendencies were thereby accurately described,



Probabilistic Metaphysics 87

that in itself would provide no foundation for their justification. After all, that we
have such expectations does not establish that we ought to have them (although
an evolutionary argument could be made to that effect, which would presumably
bear the burden not only of separating adaptive from maladaptive expectations but
also of deriving their truth from their benefits to survival and reproduction). The
evolutionary benefits of expectations almost certainly derive from those “habits of
mind” that obtain with respect to the single case and the short run, however, whose
precise relations to the long run are not entirely clear. Moreover, while it may be
plausible to reason from the truth of an expectation to its (potential) evolutionary
benefits, to reason from its (potential) evolutionary benefits to its truth is to beg the
question.

Other difficulties arise insofar as limiting frequencies, as symmetrical properties,
violate our assumptions about causal relations. Consider, for example, that if ‘X ’
and ‘Y ’ are interpreted as “cause” and “effect”, then since

(H) P.X & Y /=P.X/DP.X=Y /P.Y /=P.X/

DP.Y & X/= P.X/DP.Y=X/P.X/=P.X/

– where common reference classes have been suppressed for convenience – when-
ever “causes” X bring about “effects” Y , those “effects” Y must likewise bring
about those “causes” X , in violation of the presumption that “effects” do not (si-
multaneously) bring about their “causes”. Moreover, if ‘X ’ and ‘Y ’ are interpreted
as singular events ‘Xat’ and ‘Yat�’, where t� > t , rather than as event types,

(I) P.Yat�=Xat/P.Xat/=P.Xat/ D P.Xat=Yat�/P.Yat�/=P.Xat/

then, whenever Xat “causes” Yat�; Yat� must also “cause” Xat, in violation of the
presumption that “causes” precede their “effects”. One avenue of escape from criti-
cisms of this kind, however, might be afforded by emphasizing the temporal aspect
of causal relations, where only conditioning events, such as Xat, that are earlier than
conditioned events, such as Yat�, can possibly qualify as “causes” in relation to “ef-
fects”. Such a maneuver entails the result that, with respect to formulae like (H) and
(I), left- and right-hand equalities in numerical value need not reflect similarities in
semantical meaning.

Difficulties such as these, of course, have not inhibited Good (1961/62), Suppes
(1970), and especially Salmon (1975, 1978, 1980) from elaborating frequency-
based accounts of “statistical causality” [although, to be sure, more recently Salmon
has endorsed a propensity approach; cf. esp. Salmon (1984)]. Not the least of
the problems confronting this program, however, are (i) that statistical relevance
relations – positive, negative or otherwise – do not need to reflect causal relevance
relations (even when temporal conditions are introduced); and, (ii) that the sys-
tematic application of frequency-based criteria of causal relevance (such as those
of Suppes and of Salmon) yields the consequence that particular attributes within
non-epistemic homogeneous partitions of reference classes invariably occur only
with degenerate probabilities equal to zero or equal to one. If statistical relevance
relations and temporal conditions were enough to define causal relevance rela-
tions, it would turn out to be logically impossible, in principle, for causation to
be indeterministic.
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As an illustration of this situation (which does not require elaborating these ar-
guments in great detail), let us consider the analysis of statistical causality advanced
by Suppes (1970), where he suggests that the basic concept is that of “prima facie
causation” whereX is a prima facie “cause” of Y when and only when (a) the event
X occurs earlier than the event Y , i.e., if Yat�, then Xat, where t� > t ; and, (b) the
conditional probability of Y given X is greater than the unconditional probability
of Y , i.e., P.Y=X/ > P.Y /. Notice that positive statistical relevance is employed
here as a measure of positive causal relevance, i.e., Suppes assumes that conditions
in relation to which Y occurs more frequently are causally relevant conditions, so
that if lung cancer occurs with a higher frequency in smoking populations than in
non-smoking populations, then smoking is a prima facie cause of lung cancer. To
complete his analysis, Suppes further defines a “genuine” cause as a prima facie
cause that is not a “spurious” cause, which requires that there be no earlier event Z
such that the conditional probability of Y given Z & X equals that of Y given X ,
i.e., P.Y=Z & X/ ¤ P.Y=X/. Accordingly, the “genuine” cause of an event Y is
the event X earliest in time relative to which the probability of Y is highest.

In other to appreciate the magnitude of the obstacles confronting Suppes’ con-
structions, keep in mind that any instance of lung cancer Y will involve a specific
person i who possesses many properties in addition to being a smoker or not, as the
case happens to be; for any such person will also be married or single, drink gin
or abstain, eat caviar or ignore it. Indeed, the frequency for lung cancer Y (or for
its absence �Y ) will vary from class to class as additional properties F 1; F 2; : : :

are taken into account until the upper bound of one has been reached; for if i is
a gin-drinking, caviar-eating, heavy-smoking married man, there must exist some
reference class, X�, to which i belongs and in relation to which Y (or �Y ) occurs
more frequently than it occurs in relation to any other reference class to which i
belongs, namely: a homogenous class X� for which every member of X� has lung
cancer Y (or has no lung cancer �Y ), as it turns out; otherwise, Suppes’ condi-
tions cannot have been satisfied. For such a reference class, however, Y (or �Y )
occurs with probability of one; hence, on Suppes’ account, “statistical causality” is
a logical impossibility.

These difficulties, of course, are not really hard to understand, insofar as (i) lim-
iting frequencies, as a species of statistical correlation, are only (at best) necessary
but not sufficient conditions for causal relations; while, (ii) as properties of the
members of reference classes collectively, limiting frequencies are not properties
of each member of these classes individually. Consequently, analyses of “statistical
causality” that are based upon actual limiting frequencies, as “long run” distribu-
tions during the world’s history, are purely descriptive and non-explanatory. Even in
conjunction with temporal conditions, they are incapable of satisfying the require-
ments for causal relations. Moreover, as properties of infinite event sequences, they
cannot even qualify as properties of singular events themselves. Indeed, although
Salmon (1975) thought that causal relevance relations might be analysed as (com-
plex) statistical relevance relations, his more recent efforts (Salmon 1978, 1980,
1984) suggest, regarding statistical causality, that an analysis in terms of statistical
relevance relations and independent causal concepts invites a regress, while an anal-
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ysis in terms of statistical relevance relations and dependent causal concepts cannot
be correct. Indeed, from premises confined to correlations, only conclusions con-
cerning correlations can be validly derived, and they exemplify neither mechanistic
nor teleological species of causation.

Statistical Causality: Hypothetical Limiting Frequencies

If these considerations are well-founded, then an analysis of statistical causality
based upon the actual limiting frequency construction offers no hope for understand-
ing indeterministic causation; thus, perhaps an account based upon the hypothetical
limiting frequency construction might fare a little better. Now the principal differ-
ence between the actual and the hypothetical frequency conceptions is not a matter
of mathematical frameworks but rather of empirical interpretation, since these lim-
its are features, not of the actual history of the world, H(W), but of hypothetical
extensions of that history, Hi .W/. As a consequence, these objective probabilities
may be identified with the limiting frequency, if any, with which Y would occur,
were the number of events of kind X that occur during the history of the world
to increase without bound (as an illustration, see van Fraassen 1980). The hypo-
thetical frequency approach thus promises to improve upon the actual frequency
approach in at least three respects, since (a) hypothetical sequences are available,
even when actual sequences are not, ensuring that relevant reference classes have
enough members; (b) systematic comparisons of statistical correlations then may be
refined for improved analyses of causal relations; and, (c) specific attributes within
nonepistemic homogeneous partitions of these reference classes perhaps might oc-
cur with non-degenerate probabilities. As appealing as this account may initially
appear, however, it confronts several rather imposing difficulties of its own.

The major difficulty arises from the hypothetical character of these “long run”
frequencies, a linguistic manifestation of which is the use of subjunctive condi-
tionals (concerning what limits would obtain if sequences were infinite) in lieu of
indicative conditionals (concerning what limits do obtain when sequences are infi-
nite). Thus, within scientific discourse, at least, there appear to be only two modes
of justification for subjunctive assertions, namely: (i) those that can be sustained on
logical grounds alone (as a function of meaning or of grammar), such as, “If John
were a bachelor, then John would be unmarried”, on the one hand, and (ii) those
that can be sustained on ontological grounds (as a function of causal or of nomic
necessity), such as, “If this were made of gold, then it would melt at 1063ıC”,
on the other. Frequentist analyses of statistical causality, however, are unable to
secure support from either direction, for limiting frequencies, whether actual or hy-
pothetical, are supposed to be logically contingent; and, as frequency distributions,
with or without limits, they are supposed to forego commitments to the existence of
non-logical necessities.

From an epistemological point of view, the actual limiting frequency construc-
tion seems to fare far better, since actual limiting frequencies, as features of the
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world’s actual history, either occur as elements of that history or they do not, while
hypothetical frequency hypotheses, as designating extensions of the world’s actual
history, are supposed to be true or false whether or not these occur as elements of that
history. From an ontological point of view, moreover, actual limiting frequencies
are purely descriptive and non-explanatory because they merely describe statisti-
cal correlations that happen to occur during the history of the world, which means
that statements describing them are extensional generalizations as truth-functions
of the truth-values of enormously numerous, purely descriptive singular sentences,
in turn. Insofar as hypothetical limiting frequencies do not merely describe statis-
tical correlations that happen to occur during the history of the world, however,
statements describing them cannot be truth-functions of the truth-values of (even)
enormously numerous, purely descriptive singular sentences, which means that, un-
der the hypothetical frequency construction, these probabilistic hypotheses have to
be non-extensional generalizations that are no longer truth-functional.

Although the hypothetical frequency approach provides prima facie support
for subjunctive conditionals (concerning what limits would obtain if sequences
were infinite, whether or not they actually are) and for counterfactual conditionals
(concerning what limits would have obtained if sequences had been infinite, when
they actually are not), therefore, the problem still remains of explaining why these
statements – characterizing what these limiting frequencies would be or would have
been if these sequences were or had been infinite – are true (cf. Fetzer 1974). In
contrast with the actual frequency approach, which does not require them, in other
words, the hypothetical frequency construction provides no theoretical principles
or structural properties which might be invoked to explain the attribution of these
hypothetical limiting frequencies to the physical world. This approach thus appears
to be incapable, in principle, of affording a theoretical justification for its own
probabilistic hypotheses – unless these limits are viewed as aspects of the world’s
“manifest destiny”.

Indeed, there are several reasons to believe that any analysis of statistical causal-
ity that is based upon the hypothetical frequency interpretation will be essentially –
and not merely incidentally – committed to distant teleological1 causation. One
such reason arises from the theoretical necessity to establish ordering relations
within these classes of hypothetical events, since limiting frequencies are subject
to variation with variations in ordering relations. An analysis based upon the ac-
tual frequency interpretation, by contrast, does not encounter this problem, because
temporal relations between actual events serve to fix their order, which is a feature
of the actual history H of the world W:

(J) Statistical causality as a function of actual frequencies

wherem=n represents the conditional probability for Y givenX as the limiting fre-
quency with which Y -events occur relative to X -events during the world’s history.
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Although a single infinite sequence is sufficient to exhibit the actual history of the
world, an infinite sequence of infinite sequences is required to exhibit the enormous
range of hypothetical extensions of the world’s history up to the present, signified
by “NOW”, where, to guarantee these limits are unique, the same limits must obtain
no matter how the world’s history might “work out”, i.e., the same attributes must
occur with the same limits in each such history:

(K) Statistical causality as a function of hypothetical frequencies

thus, no matter what the specific features of those singular histories may be, the same
attributes must occur with the same limiting frequencym=n in each of those hypo-
thetical extensions of the world’s actual history,Hi .W/. Moreover, it is not difficult
to establish that there must be an endless number of such hypothetical extensions
by a diagonal argument, since, for any specific class thereof, simply construct a new
sequence that differs from the first sequence in its first hypothetical “segment”, from
the second in its second, and so on.

If this conception guarantees that these limits are unique, it has to pay the price;
for, since the hypothetical frequency approach provides no mechanistic properties,
teleological2 or not, that might be invoked to explain the ascription of these hypo-
thetical extensions of the world’s actual history, there appears to be no alternative
explanation than to conclude that they occur as a reflection of the world’s “manifest
destiny”, i.e., as manifestations of distant teleological1 causation. Indeed, if these
limiting frequencies themselves seem to reflect distant teleological1 causation, con-
sider how much worse things are for “the short run” and for “the single case”, since
finite frequencies and singular events are only “explainable”, within the framework
of this conception, through their assimilation as individually insignificant, incidental
features of a single “grand design” whereby the future brings about the present and
the past. Even without the added weight of the symmetrical properties that accom-
pany any attempt to envision indeterministic causation as a species of conditional
probability, these are grounds enough to embrace the conclusion that hypothetical
frequency based theories of statistical causality are very unlikely to succeed.

Probabilistic Causation: Long-Run Propensities

The failure of frequency-based accounts of indeterministic causation as theories
of statistical causality, no doubt, strongly suggests that alternative accounts must
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be considered, including, in particular, propensity-based analyses of “probabilis-
tic causation”. Propensity conceptions of objective probabilities as dispositional
properties are built upon (a) the interpretation of dispositions as causal tendencies
(to bring about specific outcomes under relevant test conditions), (b) where these
causal tendencies are properties of (instantiations of) “probabilistic” experimental
arrangements (or “chance set-ups”), (c) which are subject to formalization by “prob-
abilistic” causal conditionals incorporating a primitive brings about relation (Fetzer
1981, Ch. 3). The most important difference between theories of statistical causality
and theories of probabilistic causation is that, on propensity-based theories, prob-
abilities cause frequencies, while on frequency-based theories, probabilities are
frequencies. The long-run propensity construction thus identifies probabilities with
“long-run” causal tendencies, while the single-case propensity construction identi-
fies them with “single-case” causal tendencies, for relevant “trials” to bring about
appropriate “outcomes”.

The objective probability of an event of a particular type, Y (such as beta-particle
emission, male-sex inheritance, : : :), therefore, is either identified with a disposi-
tional tendency (of universal strength) for events of kind Y to be brought about
with an invariable limiting frequency or with a dispositional tendency (of proba-
bilistic strength) for events of kind Y to be brought about with a constant single-case
propensity. The most important difference between the hypothetical frequency con-
ception and these propensity conceptions, furthermore, is that long-run and single-
case propensities, as long-run and single-case causal tendencies, qualify as mecha-
nistic properties that might be invoked to explain the ascription of hypothetical ex-
tensions of the world’s actual history, since frequencies are brought about by propen-
sities. Because these properties are formalized as asymmetrical causal tendencies for
events of kind Y to be brought about by events of kind X with propensity N ,

(L) Xat

t

N Yat�

rather than as symmetrical conditional probabilities, it is not the case that whenever
Xat “causes” Yat�; Yat� must also “cause” Xat, thereby conforming to our expecta-
tions about causal relations. In spite of these similarities, however, these propensity
conceptions are dissimilar in several crucial respects.

The long-run propensity conception identifies probabilities with what the
limiting frequencies for Y are or would be or would have been, had an appropriate
chance set-up been subject to a suitable (infinite) sequence of trials, X , which may
be characterized in relation to possible histories Hi of the world W:

(M) Probabilistic causation as a function of long-run propensities
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where, no matter what specific history the world’s actual history H might have dis-
played or might yet display, the same specific “effects” Y; �Y; : : :, are invariably
brought about with limiting frequencies N equal to their generating “long-run”
propensities, whenever those histories reflect an infinite sequence of trials of the
relevant X -kind. As a consequence, the “long-run” propensity conception ascribes
a causal tendency of universal strength to bring about outcomes of kind Y with
(invariable) limiting frequency N to every “chance set-up” possessing that dispo-
sitional property if subject to a trial of kind X , which, in the case at hand, itself
consists of an infinite class of singular X -trials.

Since the “causes” X of these limiting frequencies for their “effects” Y them-
selves turn out to be infinite classes of spatially distributed and temporally extended
singular trials, where “long run” dispositional tendencies serve as mechanistic prop-
erties, it should come as no surprise that this “long run” account exemplifies distant
mechanistic causation (in relation to these infinite classes of trials). It is even more
intriguing, therefore, to contemplate the contribution that each singular trial, Xat,
must make to the attainment of that ultimate “effect”; for, unless each of these singu-
lar trials, so to speak, is able to “keep track” of the relative frequencies for outcomes
of kind Y; �Y; : : :, it would be impossible to guarantee the same outcomes invari-
ably occur with the same limiting frequencies during every possible history of the
world. And if that, indeed, is the case, then, in effect, each singular trial member of
these infinite trial sequences must not only “keep track” of how things are going but
also “act” with the intention of insuring that things work out right, which means that
this account also exemplifies proximate teleological2 causation (in relation to each
such singular trial). But surely no analysis of indeterministic causation incorporat-
ing both distant mechanistic and proximate teleological2 species of causation could
possibly satisfy the appropriate desiderata.

Probabilistic Causation: Single-Case Propensities

If an analysis of probabilistic causation can attain the reconciliation of mechanistic
explanations with indeterministic theories, therefore, it must be based upon the
single-case propensity conception. The most important difference between “long
run” and “single case” propensities is that “single case” propensities are single-case
as opposed to long-run causal tendencies, where their “effects” are the (variable)
results (such as coming up heads or coming up tails, : : :) of singular trials (such
as a single toss of a coin, : : :) rather than any (invariable) outcomes (in the form
of limiting frequencies) of infinite sequences of trials (Fetzer 1971). Single-case
propensities, as properties of chance set-ups, also qualify as mechanistic properties
that might be invoked to explain ascriptions of hypothetical extensions of the world’s
actual history – not collectively (for infinite classes of trials), but distributively (for
each specific individual trial), where collective consequences for finite and for in-
finite sets of trials follow by probabilistic calculations. Single case propensities,
moreover, bring about specific outcomes Y; �Y; : : :, with constant (probabilistic)
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strength from trial to trial, but they generate only variable relative and limiting
frequencies over finite and infinite sequences of trials, unlike any of the other in-
terpretations we have considered before.

As we have already discovered, frequency-based constructions of statistical
causality can be employed to generate frequency-based criteria of statistical rele-
vance, such as (G), which can be utilized as the foundation for frequency-based
accounts of statistical explanation (cf. especially Salmon 1971). Analogously,
propensity-based conceptions of probabilistic causation can be employed to gener-
ate propensity-based criteria of causal relevance, such as:

(N) If Œ.Xat & Zat/

t

N Yat�� and Œ.Xat & � Zat/
t

M Yat��, where N ¤ M ,
(the property) Z is causally relevant to the occurrence of (the property) Y , in
relation to the occurrence of (the property)X

which can be employed as the foundation for propensity-based analyses of prob-
abilistic explanation (cf. Fetzer 1981, Part II). Thus, while frequency-based
criteria entail the consequence that statistically-relevant properties are therefore
explanatorily-relevant properties, propensity-based criteria entail the consequence
that statistically-relevant properties may or may not be causally-relevant or
explanatorily-relevant as well. Indeed, the most striking development in current
work within this field has been the abandonment of a frequency-based model of
statistical explanation in favor of a propensity-based model of causal explanation by
Salmon (1984). (The extent to which Salmon has carried out this crucial conceptual
exchange receives consideration in Fetzer (1987)).

The single-case propensity construction does not identify “probabilities” with
what the limiting frequencies are or would be or would have been, therefore, be-
cause, in relation to the single-case conception, arbitrary deviations between the
strength of a probabilistic “cause” and the limiting frequency of its “effects”,
even over the long run, are not merely logically possible, but nomologically ex-
pectable, where expectations of deviations are open to systematic computation.
Unlike the hypothetical frequency and the “long run” propensity conceptions, in
other words, the causal consequences of “single case” propensities now may be
accurately represented by an infinite collection of infinite sequences, in which the
same outcomes can occur with variable frequencies:

(O) Probabilistic causation as a function of single-case propensities
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where, even though the same “effects”, Y; �Y; : : :, are brought about by the same
“causes”,X , with constant propensityN from trial to trial, nevertheless, the limiting
frequencies m1=n; m2=n; : : :, with which these outcomes in turn would occur or
would have occurred, if sequences ofX -trials were or had been infinite, are not at all
invariable, where their expectations over finite and infinite sequences of trials can be
calculated on the basis of classic limit theorems available for statistical inference,
including the Borel theorem, the Bernoulli theorem and the central limit theorem
(Fetzer 1981, Ch. 5 and 9).

Because these “causes” are single-case properties and single-case trials of indi-
vidual chance set-ups, they exemplify proximate mechanistic causation, rather than
any species of teleological causation (intentional or otherwise), thereby establish-
ing an appropriate foundation for an acceptable analysis of probabilistic causation
as the desired account of “indeterministic causation”. Unlike frequency- or long-run
propensity-based accounts, this interpretation can explain how it is possible for “dif-
ferent effects” to be brought about by “the same cause”, i.e., under the very same
conditions, within a purely mechanistic framework. Indeed, this approach also ful-
fills the additional probabilistic desideratum which Skyrms (1980) and Eells (1983)
have endorsed that, insofar as there is “no end” to the variation in singular out-
comes that might be displayed during any particular sequence of singular trials,
there should also be “no end” to the variations in limiting frequencies displayed by
those sequences themselves. That this result follows from the single-case propen-
sity conception, moreover, should be viewed as very reassuring: if it were adopted
as a “condition of adequacy” for an acceptable account of indeterministic causa-
tion, this requirement alone would enforce a sufficient condition for excluding both
frequency-based and long-run propensity-based conceptions.

These reflections also bear upon the methodological desideratum that an
adequate interpretation of single-case propensities ought to analyse physical
probabilities by means of concepts that are understood independently of quantitative
explications, which Suppes introduced and Eells (1983) has pursued. Although each
of the four accounts we have considered would fulfill this condition in a different
fashion, all of them seem to depend upon a prior grasp of the independent concep-
tion of relative frequencies in finite sequences (or short runs) of trials. The frequency
theories add the notions of limiting frequencies and of hypothetical sequences, while
the propensity theories add the notions of long-run and of single-case dispositions.
The conception of a disposition, like that of a limit, however, was with us already;
so, unless this requirement improperly implies that non-extensional notions must be
given extensional definitions (a contradictory imposition), the concept of a single-
case probabilistic disposition would appear to be (at least) as acceptable as that of a
hypothetical long-run limiting frequency, relative to this condition.

In his recent discussion of Salmon’s shift from frequency-based to propensity-
based conceptions, Humphreys (1986) has objected to the idea of introducing the
single-case notion of a probability distribution “which is impossible to construe in
actualist terms”. His position here appears to be related to the thesis that Armstrong
(1983) refers to as “actualism”, namely: the view that properties and relations exist
only if they are instantiated. However, if this understanding of his position is correct,
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then it ought to be rejected: were a steel ball rolled across a smooth surface and
allowed to come to rest only finite times during its existence, it would be silly to
suppose it had no propensities (or causal tendencies) to come to rest upon any other
of its nondenumerable surface points – and similarly for other sorts of phenomena.
We typically assign truth-values to assertions concerning what would be or what
might have been in probabilistic as well as non-probabilistic contexts with respect
to actual and merely possible arrangements and contrivances. If all of these “effects”
had to be displayed in order to “exist” (to be “real”), the world would be a vastly
different – less threatening and promising – place.

Nonetheless, careful readers may discern a flaw in some of these examples, inso-
far as games of chance (such as tosses of coins) and other set-ups (such as rolls
of balls) may be inadequate illustrations of indeterministic cases. While proba-
bilistic causation appears to operate at the macro- as well as at the micro-level
of phenomena, discriminating genuinely indeterministic cases from deterministic
cases requires calibration for every property whose presence or absence makes a
difference to the occurrence under consideration, a stringent epistemic condition
that may remain unsatisfied for specific cases. Indeed, while our diagrams have
been restricted to hypothetical extensions of the world’s actual history in convey-
ing the differences between these alternative conceptions, an adequate account of
“indeterministic causation” carries with it the consequence that the history of an in-
deterministic world might be indistinguishable from the history of a deterministic
world, insofar as they might both display exactly the same relative frequencies and
constant conjunctions – where their differences were concealed “by chance” (Cf.
Fetzer 1983).

Indeterministic Causation: Concluding Reflections

Perhaps it should be clear by now why the comprehensive reconciliation of
mechanistic explanations with indeterministic theories has not gone smoothly –
perhaps even why the very idea of indeterministic causation has posed such an
enormous conceptual problem. Indeed, the difference between the long-run and
the single-case propensity conceptions is subtle enough to be invisible to the un-
aided eye, not only because neither diagram (M) nor diagram (K) incorporates its
(implicit) distant “causal arrows”, respectively, but also because diagram (M), like
diagram (O), only exhibits (explicit) proximate mechanistic “causal arrows”. But
this is as it should be, for matters are more subtle than that: proximate teleological2
causation, after all, is a species of proximate mechanistic causation! Still, this seems
reason enough to sympathize with those who have experienced great difficulty in
locating these differences (such as Levi 1977, 1979). Thus, by way of closing, it
might be worthwhile to invite attention to three of the most important lessons that
we have here to learn.

The first concerns the relationship between mathematics and the physical world;
for, although frequency- and propensity-based conceptions of causation satisfy the
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“probabilistic conditions” of admissibility, of ascertainability, and of applicability,
they do so in strikingly different ways. Frequency constructions formalize causal
relations as a variety of conditional probability, while propensity conceptions for-
malize them as a species of causal conditional instead. The difficulties generated
by symmetrical formulations reinforce the necessity to preserve the distinction be-
tween pure and applied mathematics; for if causation could be “probabilistic” only
by satisfying inverse as well as direct probability relations, there could be no ade-
quate conception of “probabilistic causation” (whether it were frequency-based or
propensity-based in kind).

The second concerns the relationship between causation and the history of the
physical world. What we have sought and what we have found is a conception of
probabilistic causation that can be applied no matter whether the history of the phys-
ical world happens to be short or happens to be long. There appear to be inherent
advantages in analysing “probabilistic causation” as a single-case conception that
might be directly applied to finite and to infinite sequences, rather than as a long-
run conception that might be applied indirectly to singular and to finite sequences
instead. For it would be foolish to suppose that causal relations can obtain only
if the world’s history is infinitely long or that singular events can “cause” singu-
lar “effects” only if specific limiting frequencies happen to obtain during (actual or
hypothetical) world histories.

The third and final (but by no means least important) concerns the relationship
between indeterministic and deterministic theories and laws; for the considerations
that have been brought to bear upon the analysis of indeterministic causation also
apply to the analysis of deterministic causation. Deterministic causation, after all, is
no more “symmetrical” than is indeterministic causation; and deterministic “causes”
should no more be defined in terms of infinite classes of singular events than should
indeterministic “causes”: both should apply no matter whether the world’s history
is short or is long! The demise of statistical causality and the rise of probabilistic
causation, therefore, should reap added dividends in analysing deterministic theories
as well, further enhancing our understanding of the causal structure of the world.

Acknowledgments I am grateful to Paul Humphreys and especially to Ellery Eells for criticism.
I have also benefitted from the stimulating comments of an anonymous referee.

References

Armstrong DM (1983) What is a law of nature? Cambridge University Press, Cambridge
Eells E (1983) Objective probability theory. Synthese 57:387–442
Fetzer JH (1971) Dispositional probabilities. In: Buck R, Cohen R (eds) PSA 1970. D Reidel,

Dordrecht, pp 473–482
Fetzer JH (1974) Statistical probabilities: single case propensities vs long run frequencies. In:

Leinfellner W, Kohler E (eds) Developments in the methodology of social science. D Reidel,
Dordrecht, pp 387–397

Fetzer JH (1981) Scientific knowledge. D Reidel, Dordrecht



98 J.H. Fetzer

Fetzer JH (1983) Transcendent laws and empirical procedures. In: Rescher N (ed) The limits of
lawfulness. University Press of America, Lanham, pp 25–32

Fetzer JH (1987) Critical notice: Wesley Salmon’s scientific explanation and the causal structure
of the world. Philos Sci 54:597–610

Good IJ (1961/62) A causal calculus I–II. Brit J Philos Sci 11:305–318 and 12:43–51
Hempel CG (1962) Deductive-nomological vs statistical explanation. In: Feigl H, Maxwell G (eds)

Minnesota studies in the philosophy of science. University of Minnesota Press, Minneapolis,
pp 98–169

Hempel CG (1965) Aspects of scientific explanation. The Free Press, New York
Hempel CG (1968) Maximal specificity and lawlikeness in probabilistic explanation. Philos Sci

35:116–133
Humphreys P (1986) Review of Wesley Salmon’s scientific explanation and the causal structure of

the world. Found Phys 16:1211–1216
Levi I (1977) Subjunctives, dispositions, and chances. Synthese 34:423–455
Levi I (1979) Inductive appraisal. In: Asquith P, Kyburg H (eds) Current research in philosophy of

science. Philosophy of Science Association, East Lansing, pp 339–351
Salmon WC (1967) The of scientific inference. University of Pittsburgh Press, Pittsburgh
Salmon WC (1970) Statistical explanations. In: Colodny R (ed) The nature and function of scien-

tific theories. University of Pittsburgh Press, Pittsburgh, pp 173–231
Salmon WC (ed) (1971) Statistical explanation and statistical relevance. University of Pittsburgh

Press, Pittsburgh
Salmon WC (1975) Theoretical explanations. In: Korner S (ed) Explanation. Basil Blackwell,

Oxford, pp 118–145
Salmon WC (1978) Why Ask, ‘Why?’ Proc Addresses Amer Philos Assoc 51: 683–705
Salmon WC (1980) Probabilistic causality. Pac Philos Quart 61:50–74
Salmon WC (1984) Scientific explanation and the causal structure of the world. Princeton

University Press, Princeton
Skyrms B (1980) Causal necessity. Yale University Press, New Haven
Suppes P (1970) A probabilistic theory of causality. North-Holland, Amsterdam
van Fraassen B (1980) The scientific image. Oxford University Press, Oxford
von Mises R (1964) Mathematical theory of probability and statistics. Geiringer H (ed) Academic,

New York



Part II
The Objectivity of Macro-Probabilities



Chance and Necessity:
From Humean Supervenience to Humean Projection

Wolfgang Spohn

Introduction

Probability abounds in the natural and social sciences. Yet, science strives for
objectivity. Scientists are not pleased when told that probability is just opinion and
there is no more sense to it. They are prone to believe in objective probabilities or
chances. This is an essay about how to understand them.

Indeed, it is my first serious attempt in English1 to come to terms with the notion
of chance or objective probability. I cannot help feeling that this is a presumptuous
enterprise. Many great minds have penetrated the topic. Each feasible position has
been ably defended. No philosophically relevant theorem remains to be discovered.
What else should there be to say? Yet, the issue is not settled. Even though all
pieces are on the table, no one missing, how to compose the jigsaw puzzle is still
not entirely clear. Philosophical uneasiness continues. Everybody has to try anew to
put the puzzle together. So, here is my attempt to do so.

Let me lay my cards on the table right away. An event, or a state of affairs, is
chancy iff it is partially determined by its past, to some specific degree; some might
call this an Aristotelian conception of chance. Chance laws, then, generalize over
such singular partial determinations. Likewise, a state of affairs is necessary (in the
sense not of metaphysical, but of natural necessity) iff it is fully determined (i.e.,
sufficiently caused) by its past.2 Deterministic laws generalize over such singular
full determinations, so that we may reversely say that a state of affairs is necessary
iff it is entailed by the laws and its past. This parallel will become important later on.

There is determination. There are deterministic laws, or so we believed at least
for ages. And there are chance laws and hence chancy events, as modern physics
tells us. Objective probabilities may thus be conceived as single-case propensities
of a radical kind: propensities of the entire world as it has developed up to now to
realize not only this or that current state of affairs, but in effect this or that entire
future evolution.3 The localization of propensities is a secondary, though, of course,
important issue. The primary and really vexed issue is how at all to understand
partial and full determination.
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Given that there is partial determination, subjectivism or eliminativism concern-
ing objective probabilities, a position associated with Bruno de Finetti and his
positivistic predilections, is out of place. (Still, the most basic truths lie in his in-
sights, and this essay will end up as hardly more than a projectivistic reinterpretation
of de Finetti’s views.)

Reductionism concerning objective probabilities seems ill-guided, too, whether
in the analytical form trying to define chances in non-probabilistic terms as, e.g. (hy-
pothetical) frequentism does or in the weaker ontological form as displayed in the
doctrine of Humean Supervenience championed by David Lewis. Indeed, the failure
of Humean Supervenience is nowhere clearer, I find, than in the case of chances.

Hence, realism without reductionism is perhaps what we should be heading for.
I am indeed attracted by the picture as sketched, e.g., by Black (1998, pp. 371f.) who
argues against Lewis that the world is more than “a vast mosaic of local matters of
particular fact” (Lewis 1986, p. ix), more, as it were, than a pattern of inert colors;
it is also a pattern of pushes, hard deterministic as well as soft chancy ones. Maybe
we should accept realism about primitive laws, dispositions, capacities, propensi-
ties, etc. (or their categorical bases), as has been vigorously defended by Armstrong
(1983, in particular Chapter 9, and 1997, Chapter 15) and in quite a different way
by Cartwright (1989).

Yet I share the widespread epistemological concerns about Australian realism
that are as old as Hume’s criticism of necessary connexion or determination. What
we need to get explained, at least, is the theoretical web within which chances get
their role to play.4 However, the explanations given by propensity theorists are gen-
erally not in good shape.5 And so I appear to be torn by my various dissatisfactions,
finding no place to rest.

No other than David Hume has suggested a position possibly comforting ev-
eryone, with his doctrine that causation is an idea of reflexion and that necessary
connexion is nothing but determination or customary transition in thought. The doc-
trine has received its most extraordinary shape in Kant’s transcendental idealism.
Nowadays, it is rather called projectivism and defended by Simon Blackburn under
the label ‘quasi-realism’ and summarized thus:

Suppose we honor the first great projectivist by calling ‘Humean Projection’ the mecha-
nism whereby what starts life as a non-descriptive psychological state ends up expressed,
thought about, and considered in propositional form. Then there is not only the interest of
knowing how far Humean Projection gets us. There is also a problem generated even if
the mechanism gets us everywhere we could want. If truth, knowledge, and the rest are a
proper upshot of Humean Projection, where is it legitimate to invoke that mechanism? Per-
haps everywhere, drawing us to idealism, or nowhere, or just somewhere, such as the theory
of value or modality. (1993, p. 5)

This ‘mechanism’, I shall argue, is operative at least in the case of chance and natural
necessity. It is thus no accident that I am referring twice to Hume within one page.
The move from Humean Supervenience to Humean Projection will be our move in
this paper. (Indeed, I find that the latter is much better anchored in Hume’s writings
than the former.)
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The crux of projectivism, though, is that it may sound attractive as a general
strategy, while remaining poor in constructive detail. Thus it is not likely to satisfy
the probability community. Indeed, if one looks at recent surveys such as Gillies
(2000), projectivism does not figure there under its own or any other name. This is
the point where I hope to add a bit to the present discussion.6

As the reader may have guessed, this paper is largely an argument with David
Lewis’ philosophy of probability. This has a personal motive. I well recall how en-
thralled I was by Lewis (1980) – and how bewildered by the continuation in Lewis
(1986, Introduction and Postscripts to 1980, and 1994). I just had to come to grips
with his work. There is also a substantial reason. Lewis’ account is peculiarly am-
biguous. He starts inquiring the epistemology of chance and ends up investigating
its ontological grounds. Thus, I find it most instructive to follow his line of thought
and to search for the point of departure for a more adequate account.

There is a third reason. The parallel between deterministic and chance laws is ob-
vious; it would be awkward to account for them in a wholly disparate manner. Lewis
expressly pursues this parallel; after apparent success in the deterministic case, his
strategy just had to carry over to chance laws, as elaborated in his (1994). There-
fore, Lewis is the natural point of contact on this score, too, and however I diverge
from Lewis’ account of chance, the divergence must work for deterministic laws
as well. In fact, I see how it will. Contrary to appearances, natural necessity or full
determination or lawlikeness is still less understood than partial determination; even
the appropriate analytical means were missing. The theory of ranking functions will
bring progress here. This remark, though, will be briefly outlined, and can be more
easily grasped, I hope, after treating the actually more familiar probabilistic case.7

The paper will proceed in the following way: We shall start in the section
Chance-Credence Principles with recapitulating the central role the Principal Prin-
ciple has, according to Lewis, for understanding chance. Lewis gives substance to
this principle by claiming admissibility, as he calls it, for historical and chance in-
formation; this will be discussed and simplified in the section The Admissibility of
Historic and Chance Information. The admissibility of chance information drives
him into a contradiction, though, with the doctrine of Humean Supervenience. Lewis
proposes to reform the Principal Principle, but I shall argue in the section The Admis-
sibility of Chance Information and Humean Supervenience that it is rather Humean
Supervenience that has to go. This provokes a closer look at that doctrine, and we
shall see in the section Humean Supervenience that it is inherently questionable. So,
this will be the point where a projectivistic reconstruction of the notion of partial
determination is likely to deliver a more coherent account. The reconstruction will
be carried out in the section Projection Turns the Principal Principle into a Special
Case of the Reflection Principle, via the observation that the Principal Principle may
be taken, in a precise way, as a special case of the Reflection principle propagated by
van Fraassen (1984); this is no deep formal insight, but of some conceptual interest.
The section Humean Projection will sum up the projectivistic doctrine and argue
that it can meet familiar objections and serve the purposes for which Lewis had
invoked Humean Supervenience. As explained, the whole line of reasoning must
somehow carry over from chance to natural necessity or from partial to full deter-
mination. The appendix will indicate how this might go.
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Chance-Credence Principles

Let us approach our topic, objective probability, via the Principal Principle, which
seems to its baptizer “to capture all we know about chance” (Lewis 1980, p. 266,
my emphasis) – a proper starting point, if this claim were true. There is in fact not
only one principle relating chance and credence; subsequent literature has discerned
a whole family of principles, which we do well to survey. So, let us start in a purely
descriptive mood; we shall become involved into debate soon enough.

The basic idea relating chance and credence is very old and familiar; it is simply
that if I know nothing about some propositionA but its chance, then my credence in
A should equal this chance. This is the Minimal Principle (as Vranas 2004 calls it):

.MP/ C.AjP.A/ D x/ D x:

Here, C stands for subjective probability or credence (the association with Carnap’s
‘confirmation’ is certainly appropriate), and P for objective probability or chance
(or propensity, if you like). The subject having the credence remains unspecified,
since (MP) is, as it were, a generic imperative; (MP), like the subsequent principles,
is a rationality postulate telling us how any credence function should reasonably
behave.

(MP) is the starting point of the sophisticated considerations in Lewis (1980).
(MP) is also called “Miller’s Principle”, because Miller (1966) had launched a
surprising early attack on it. However, (MP) is not an invention of the recent philo-
sophical debate. It is known for long also under the label “direct inference”.8 In
fact, it is implicit in each application of Bayes’ theorem to statistical hypotheses;
there the ‘inverse’ posterior probabilities of the hypotheses given some evidence
are calculated on the basis of their prior (subjective) probabilities and the ‘direct’
probabilities or likelihoods of the evidence under the hypotheses; and these ‘direct’
probabilities hide an implicit use of (MP). The merits of the recent discussion
pushed by Lewis (1980) and others are rather to scrutinize variants of (MP).

Before proceeding to them there are, however, various things to clarify. Philoso-
phy first, I propose. If Lewis is right that principles like (MP) “capture all we know
about chance”, then the philosophical interest of these principles is evident. Lewis
does not really argue for this claim. In fact, he does not make it, it only seems true to
him. Indeed, he cannot strictly believe it by himself. When, as we shall see later on,
he claims chances to Humeanly supervene on particular facts, then he clearly tran-
scends the Principal Principle. And I shall end up agreeing with Arntzenius, Hall
(2003) that there must be more we know about chance.

The point should rather be seen as a challenge. For, what is true is Lewis’ asser-
tion “that the Principal Principle is indeed informative, being rich in consequences
that are central to our ordinary ways of thinking about chance” (1980, p. 288), as
is amply proved in his paper. For instance, it follows that chance conforms to the
mathematical axioms of probability. The challenge then is what else there might
be to say about chance. In default of an explicit definition of chance we seek for
an implicit characterization, and it seems that we have already gone most of our
way with the extremely neat Minimal Principle (which, as we shall see, is hardly
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strengthened by the other principles still to come). The more we are captivated by
the Principal Principle, the harder the challenge.

The harder, though, also the philosophical puzzle posed by chances. It is strange
that chances that are supposed to somehow reflect objective features of the external
world should be basically related to our beliefs in a normative way. Our implicit
characterizations of other theoretical magnitudes do not look that way. And the more
weight is given to this relation, the more puzzling it is. How should we understand
the peculiar normative power of that objective magnitude to direct our beliefs? If,
indeed, the Principal Principle is all we know about chance, that power turns into
sheer miracle. Why should we be guided by something the only known function of
which is to guide us? Preachers may tell such things, but not philosophers.9 One
of Lewis’ motives for the doctrine of Humean Supervenience is, we shall see, to
solve this puzzle; indeed, he claims it to be the only solution. We need not take a
stance right now, but we must always be aware in the subsequent discussion of the
basic merits and problems of the Principal Principle. We are dealing here with high
philosophical stakes.

At the moment, though, we must be a bit more precise about (MP). First, we must
be clear about the domains of the functions involved. The chance measure P takes
propositions, I said. We should not start, though, philosophizing about propositions.
Let us simply assume that propositions are subsets of a given universal set W of
possible worlds.

Is any kind of proposition in the domain of P ? This is an open question. It is
debatable which propositions may be chancy or partially or fully determined and
which not. There may be entirely undetermined propositions and there may be
propositions for which the issue makes no sense. Let us leave the matter unde-
cided and grant, in a liberal mood, that at least all matters of particular fact, and
hence all propositions algebraically generated by these facts, have some degree of
determinateness, i.e., chance. Lewis (1994, pp. 474f.) has an elaborate view on what
particular facts are; here we may be content with an intuitive understanding.

In any case, a proposition saying that some factual proposition has some chance
is not a particular fact in turn. This does not exclude that such a chance proposition
is algebraically generated by particular facts, but neither does it entail it; it is crucial
for this paper not to presuppose from the start that chance propositions are factual
in the same way as particular facts. So, let us more specifically assume that each
w 2 W is a complete possible course of particular facts. Whether we should be
more liberal concerning the domain of chance will be an issue later on.

Credence is not only about particular facts, but also about possible chances; this
is explicit in (MP) itself. Thus, if P denotes the set of possible chance measures for
W , thenW � P is the possibility space over which the credence C spreads.

Moreover, I shall be silent about the precise algebraic structure of the set of
propositions10 and just assume that each P 2 P is defined on some algebra overW
andC on some algebra overW �P . Accordingly, I shall be silent about the measures
we are considering being finitely or ¢-additive. This sloppiness will have costs, but
rigorous formalization would have costs, too. I am just following the practice usually
found in the literature I am mostly referring to.
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For instance, one consequence of sloppiness is that (MP) does not make strict
sense, since the condition will usually have probability 0. Lewis says that we should
move then to non-standard analysis and hyperfinite probability theory where the
condition in (MP) may be assumed to have infinitesimal probability. More easily
said than done. Within standard probability theory one may circumvent the problem
by stating (MP) in the more general form:

.MPI/ C.AjP.A/ 2 I / 2 I for any open interval I:11

This issue will return, and all the principles I am going to discuss should be
restated accordingly.

There is another reason why (MP) will not do as it stands. C may not be any
credence function. If C is already well informed about A, for instance by being
based on the observation ofA or of some effects ofA, (MP) is obviously inadequate.
As Lewis (1980, pp. 267f.) explains, this concern is excluded for sure only if C is an
initial or a priori credence function, as conceived as the target of further rationality
constraints also by Carnap in his inductive logic. To indicate this, I shall denote an
a priori credence by C0 (0 being a fictitious first time).

Finally, in order to present Lewis’ ideas we must note that chance evolves in
time; this is particularly clear when chance is conceived as partial determination.
Even full determination evolves in time, unless determinism holds and everything
is fully determined at all times. Moreover, chance is world dependent; how chance
evolves in time may vary from world to world. In order to make these dependences
explicit we must replace P by Pwt, the chance in w at t. Thus we arrive at a slightly
more explicit version of the Minimal Principle:

.MP�/ C0.AjPwt .A/ D x/ D x:12

Having said all this, let us return to our descriptive path through the family of
chance-credence principles (cf. also the useful overview in Vranas 2004). A first
minor step proceeds to a conditional version of (MP) introduced by van Fraassen
(1980, pp. 106f.), the Conditional Principle:

.CP/ C0.AjB & Pwt .AjB/ D x/ D x;

saying that, if you know nothing about A but its chance conditional on B , your
conditional credence in A given B should equal this chance. (CP) is certainly as
evident as (MP). We shall soon see that (CP) is hardly stronger than (MP).

David Lewis has taken a different, apparently bigger step. After retreating to the
a priori credence C0 in (MP) that is guaranteed to contain no information over-
riding the conditional chance information, Lewis poses the natural question which
information may be added without disturbing the chance-credence relation stated
in (MP). He calls such additional information admissible, and thus arrives at what
he calls the Principal Principle:

.PP/ C0.AjE & Pwt .A/ D x/ D x for each admissible propositionE:
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But what precisely is admissible information? The answer is surprisingly uncertain;
the literature (cf. e.g., Strevens 1995 and Vranas 2004) strangely vacillates between
defining admissibility and making claims about it. I think it is best to start with a
clear definition, which is obvious, often intimated (e.g., by Vranas 2004, Footnote
5), but rarely endorsed in the literature (e.g., by Rosenthal 2004, p. 174):

.DefAd/ E is admissible wrt A given D iff C0.AjE \D/ D C0.AjD/: Specifically;

E is admissible wrt A in w at t iff E is admissible wrt A given Pwt .A/ D x:

The first general part says thatE is admissible wrtA givenD iffE does not tell any-
thing about A going beyondD according to the a priori credence C0. Admissibility
is nothing but conditional independence. The second part gives the specification
intended and used in (PP).

Obviously, the definiens states at least a necessary condition of admissibility; any
admissible E not satisfying this condition would directly falsify (PP). I propose to
consider the necessary condition to be sufficient as well. This strategy trivializes
(PP); with (DefAd), (PP) reduces to nothing more than (MP), and the issue of ad-
missibility is simply deferred. Still, I find the detour via (DefAd) helpful. It clearly
separates the meaning of admissibility from the substantial issue which propositions
E should be taken to satisfy (DefAd). This issue is our task in the next section.

One may still wonder why one should take the necessary condition for admissi-
bility to be also sufficient. We may have stronger intuitions concerning admissibility.
We may, for instance, think that two pieces of information admissible individually
should also be jointly admissible, a feature not deducible from (DefAd). Or we may
think that anyE admissible wrt A in w at t should be so for general reasons pertain-
ing to w and t and not to idiosyncratic reasons pertaining to A. And so on. However,
the theoretical tactics is always to start with the weakest notion, which is (DefAd)
in the case at hand. The substantial claims about admissibility will then also take a
weak form, but we are always free to strengthen them. The point is that we would not
have the reverse freedom when starting with a stronger notion right away.13 A fur-
ther worry may be that (DefAd) lets a priori credenceC0 decide about admissibility.
However, we should read (DefAd) the other way around; whatever the substantial
claims about admissibility, they are constraints on C0 via (DefAd).

The Admissibility of Historic and Chance Information

Lewis (1980) makes two substantial claims about admissibility. The first is that each
piece of historic information is admissible. If I know the chancePwt.A/ thatA has in
w at t , this knowledge cannot be improved by any information about what happened
in w up to t I Pwt.A/ summarizes, as it were, all there is to know in w up to t . Let us
denote the history of the world w up to time t by Hwt. Hwt D fv 2 W jHvt D Hwtg
is a proposition. Moreover, let us say that the propositionE is only abouthistory up
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to t , or t-historical, for short, iff for each world w eitherHwt \E D ¿ orHwt � E .
Then Lewis’ claim is:

.AdH/ If E is t-historical; then E is admissible wrt A in w at t:

Note that reference to A is empty; only the relation of E to t is relevant to (AdH).
This claim is almost universally accepted. Lewis (1980, p. 274) himself raises

a doubt about (AdH). Could there not be a crystal ball that foretells me for sure
whether or not A happens, even if A is chancy? I shall explain later why I am
not worried by this alleged possibility. Here, I just join (AdH). Thus, the Principal
Principle starts unfolding some strength. Let me add three remarks that deepen the
understanding of the point.

First, Lewis (1980) presents the case as if the admissibility of historical informa-
tion were specifying (PP) and thus rationally constraining credence. So it does, but
the core of the matter is thereby obscured in my view. (PP) and (AdH) immediately
entail what might be called the Determination Principle:

.DP/ Pwt .Hwt / D 1:

(This follows by replacing A as well as E in (PP) by Hwt.) (DP) simply says that
history is no longer chancy. This consequence is, of course, intended. However, it is
not about credence, but only about chance. In fact, it is an analytic truth about (par-
tial) determination: what is past is fully determined.14 Hence, it is more illuminating
to realize that only this analytic truth needs to be added to (CP) to entail (AdH).15

The matter will further simplify later in this section.
The second point is one I have not seen emphasized in the Principal Principle lit-

erature, though it deems important to me: In the prolonged efforts of understanding
objective probabilities, whether as frequencies or propensities, the so-called refer-
ence class problem stood out as central and embarrassing.16 The probability of a
particular event seemed to depend on the reference class within which it was con-
sidered. Thus, that event could be assigned an objective probability only if one could
distinguish the objectively correct reference class, apparently a dubious matter. The
general recommendation was to rely on the narrowest reference class (or on the
broadest reference class equivalent to the narrowest one); see also Hempel’s so-
called criterion of maximal specificity. This may be taken as the narrowest available
reference class; but availability imports epistemic relativity. Or one may engage into
the difficult business of Salmon (1984, pp. 60ff.) of distinguishing objectively ho-
mogeneous reference classes. If Lewis is to explain us objective probabilities, he
must respond to this problem.

He does implicitly, his response is (AdH). For the objective probabilities at t the
whole history, Hwt, is the objectively narrowest reference class; there could not be
any more specific one. Indeed, it is hardly a class; it has only one member, actually
unrepeatable and only counterfactually repeatable. Hence, this is at best a trivial and
purely conceptual solution of the reference class problem; it does not even touch the
real and deep methodological problem to specify sound and manageable reference
classes. However, this is a problem the philosopher must leave to the scientist; the
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philosopher can only say what the ultimate standard is with which to compare all
actually considered reference classes.

The third remark is related. If all the history up to t is admissible wrt some
proposition A in w at t , this means that up to t there is absolutely nothing more to
know about A than its chance. You can learn absolutely everything up to t and you
will be none the wiser concerning A. If you do not even know the chance of A, you
are even more in the dark; the chance ofA at t is the best you can know aboutA at t .
This is the core intuition about partial determination: if A is in some way partially
determined at t , there is nothing before t that would determine A in any other way.
And knowledge before t can at best equal determination at t .

This point is reflected in many accounts of probability, for instance in the old
idea that genuine random processes cannot be outfoxed by a gambling system. The
same thought is found in von Mises’ (1919) definition of a collective as a sequence
for which no place selection results in a subsequence with a deviating limit of rela-
tive frequencies and in the subsequent explications of this approach with recursion
and complexity theoretic means (cf. Church 1940; Chaitin 1966). Salmon (1984,
pp. 60ff.) realizes the same basic idea in terms of his objectively homogeneous ref-
erence classes, though in a different way. It is important to see all this connected
with (AdH).

Let us turn to the second kind of admissible information acknowledged by Lewis
(1980): information about the chances themselves, not only about the actual ones,
but also about the ones as they would have been at various times. If I know the
actual chance of A, how could information how other chances would have been tell
me more about A? It cannot, as Lewis (1980, pp. 274ff.) argues.

To state this more precisely: Let Tw be the complete theory of chance holding
at the world w, i.e., according to Lewis, the conjunction of all conditionals true at
w having the form: “if the history of w up to t 0 had been Hvt0 , then Pvt0 had been
the chances in w at t 0.” Lewis assumes Tw to be a proposition over W ; this is a
controversial assumption to be discussed later. Is it at all a proposition overW � P
(orW �PT – cf. footnote 12)? Prima facie not, since the counterfactual conditional
is not among the Boolean operations. Still, we may take Tw to be in the domain
of C0; the issue will be cleared up on the next page. Furthermore define E to be a
chance proposition iff for each world w either Tw \E D ¿ or Tw � E . Then Lewis’
second admissibility postulate is:

.AdP/ If E is a chance proposition; then E is admissible wrt A in w at t:

Note again that the reference to A and even to t is empty; all that matters is that E
is a chance proposition.

Lewis assumed that separate admissibility of historic and chance information
entails their joint admissibility. This does not follow, however, on the basis of (De-
fAd). Hence, we should better read (AdH) or (AdP) as saying for each that its kind
of information is admissible given the other kind of information; this entails its un-
conditional admissibility.17
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At this point, we can easily see that the Conditional Principle (CP) is hardly
stronger than the Minimal Principle (MP). If Pwt.A \ B/ D y is admissible wrt
B in w at t and Pwt.B/ D z is admissible wrt A \ B in w at t , then (PP) yields
C0.A \ BjPwt.A \ B/ D y & Pwt.B/ D z/ D y and C0.BjPwt.A \ B/ D
y & Pwt.B/ D z/ D z and both together yield (CP). In other words: We have to
add to (MP) only the admissibility of a tiny bit of chance information in order to
get (CP).

(PP) C (AdH) C (AdP) may finally be combined to what Lewis (1980) called
the Principal Principle reformulated and was later called the Old Principle, since it
is not yet the end of the story.

.OP/ C0.AjHwt & Tw/ D Pwt .A/:

This follows from (PP) because Hwt & Tw is admissible according to (AdH) and
(AdP), Tw contains “if Hwt, then Pwt.A/ is the chance of A in w at t”, and thusHwt

and Tw entail what Pwt.A/ is. Conversely, (OP) entails (PP) C (AdH) C (AdP). So,
(OP) is a very elegant summary of the foregoing discussion.

The story can be further simplified, though. Let us look at Tw again. It is not quite
clear why it has to take the specific complicated form, perhaps because Tw is to al-
low that some histories leave some events not even partially determined. However,
we wanted to ignore such complications and assumed that all matters of particu-
lar fact are partially determined (or almost fully determined via chance 1). Hence,
Tw claims for each possible history Hvt a full chance measure Pvt for W . Then,
however, we may condense the whole theory Tw into one big chance measure Pw

such that the time-dependent chance Pw;vt derives from Pw through conditioning by
Hvt.18 We thus simply replace the conditionals with probabilistic consequents by
conditional probabilities.19 That it is possible to so condense Tw is indeed a consis-
tency requirement for Tw, which becomes explicit also in Lewis (1980, pp. 280f.) in
his discussion of the kinematics of chance.20 Pw thus is the time-independent chance
law or scheme of partial determination as it holds in w for all propositions overW ,
and Tw simply says that Pw is as it is.21 Hence, we have arrived at the following
reduction of Lewis’ terminology:

.RED/Tw D fPwg .or rather D W � fPwg � W � P/;
and Pw;vt.A/ D Pw.AjHvt/ for all A; v; and t:

This shows at the same time that Tw is indeed a proposition over W � P (indeed
over P alone) and is thus in the domain of C0 as we have originally conceived it.

(RED) makes clear that all the considerations about time-dependent chance are
perhaps intuitively helpful and perhaps required for more general chance theories,
but merely a conceptual detour within our frame. (RED) also explains why the above
Determination Principle is analytic; (DP) follows from the definition (RED). And
(RED) reinforces the redundancy of (AdH); given (RED) and (AdP) (OP) is just



Chance and Necessity: From Humean Supervenience to Humean Projection 111

an application of the Conditional Principle (CP). However, we just saw that (CP) is
entailed by .MP�/ and (a small part of) (AdP). So, the latter two are the only basic
assumptions we need. (RED) finally helps us to express the Old Principle still more
simply:

.OP�/ C0.:jTw/ D Pw:

Indeed, .OP�/ looks like the Minimal Principle itself; the only difference is that
.MP�/ refers to the chance of a single proposition, whereas .OP�/ refers to a whole
chance measure. It is only from the restricted perspective of .MP�/ that .OP�/
appears to additionally assume the admissibility of chance information. Initially,
I suppose, intuition would have been indifferent between .MP�/ and .OP�/.

The Admissibility of Chance Information
and Humean Supervenience

So far, so good. We might be happy with .OP�/ and start discussing its philosophical
significance. Alas, the story takes a most unexpected turn, for which it is important
that we have discerned (AdP) as an additional assumption in (OP). (OP) thus be-
comes the starting point of considerable confusion. The source of the trouble is that
Lewis not only takes chance-credence principles like .MP�/ to provide the most ba-
sic understanding of chance, but also maintains the ontological doctrine of so-called
Humean Supervenience – because this is an attractive metaphysical doctrine, and
because such chance-credence principles seem to require it. The trouble is real, and
therefore we shall have to scrutinize both grounds of Humean Supervenience. But
let us first have a formal look at what the trouble is.

With respect to chance, Humean Supervenience consists in the claim:

.HS/ Tw supervenes on the totality of particular facts in w:

With our reduction (RED) of Tw and our understanding of the worlds in W as mere
totalities of particular facts, we might as well express this claim thus:

.HS�/ Pw supervenes on w:

It is not quite clear for which worlds w (HS) is to hold. Certainly for the actual world
we live in. One may think that (HS) applies to all worlds and is thus a necessary
truth. Lewis (1994) sees it only as a contingent truth; (HS) is to hold only for worlds
like ours, certainly a more modest and a more mysterious view. We do not have to
take a stance here.

Since we are a bit sloppy concerning the algebra of propositions, we may say that
(HS) amounts to the claim that Tw is identical to a proposition overW .22 (HS) thus
says there are not two possibility spaces, one for possible facts (forming the domain
of chances) and one for possible chances (jointly forming the domain of credences).
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The latter rather reduces to the former; there is only the space of possible facts.
Chance propositions are in effect factual propositions – and thus in the domain not
only of credences, but of chance measures themselves.

Now, however, we are caught in paradox. Imagine that our world w, after hav-
ing started with Hwt, continues with some possible future Fwt: Fwt should have
at least a tiny chance of coming about; so Pwt.Fwt/ > 0 and, according to (OP),
C0.FwtjHwt & Tw/ > 0. On the other hand, Fwt may be an undermining future in
the sense that Hwt \ Fwt .D fwg/ is not in the supervenience base of Tw, i.e., ac-
cording to Hwt and Fwt w would be governed by some chance law different from
Tw. Then Fwt is impossible givenHwt & Tw, i.e., C0.FwtjHwt & Tw/ D 0. To put the
case very briefly with reference to .OP�/: Consider the factual proposition T w that
Tw is false. Clearly, Pw.T w/ D C0.T wjTw/ D 0, However, if w is genuinely chancy,
we should have Pw.T w/ > 0. Somewhere, we have made a mistake.

It seems clear where. Given (HS), not all chance information can be admissible,
since information about the future may well be inadmissible and since chance in-
formation is information about the future according to (HS).23 Indeed, we should
conclude that most chance information is inadmissible, though it is hard to be more
precise because it is not so clear how supervenience exactly works, in which com-
plex of particular facts Tw exactly consists.

However, as Lewis (1994) argues, most chance information is at least nearly
admissible, and (PP) and (OP) work approximately well even under the assumption
of (AdP); the mistakes we incur are below noticeability. Still, the question is: if (OP)
is only approximately valid, what is the standard it approximates? Following Thau
(1994) Lewis (1994) proposes that this standard is provided by the New Principle:

.NP/ C0.AjHwt & Tw/ D Pwt .AjTw/;

or in our reduced form:

.NP�/ C0.:jTw/ D Pw.:jTw/:

This appears to solve our problem. The derivation of the paradox of undermining
futures is blocked when we use (NP) instead of (OP), and the approximate validity
of (OP) is explained by the fact that the difference between Pwt.A/ and Pwt.AjTw/

is mostly below noticeability.
Is this an ad hoc solution? No. As Hall (1994, p. 511) and Strevens (1995, p. 557)

observe and Hall (2004, pp. 104f.) insists, (NP) is a consequence of (CP) and (DP)
which are uncontested.24 Moreover, the admissibility of chance information that
drove (OP) into paradox is guaranteed for (NP); Tw, and hence any weaker chance
information, is trivially admissible wrt A given Tw & Pwt.AjTw/ D x. Hence,
(NP) appears to be the right way to reconcile Humean Supervenience with (PP),
the admissibility of historic information and the general inadmissibility of chance
information.
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However, Lewis (1994) is not entirely satisfied. He says:

A feature of Reality deserves the name of chance to the extent that it occupies the defini-
tive role of chance; and occupying the role means obeying the old Principle, applied as if
information about present chances, and the complete theory of chance, were perfectly ad-
missible. Because of undermining, nothing perfectly occupies the role, so nothing perfectly
deserves the name. But near enough is good enough. (p. 489)

And thus Lewis acquiesces in chances obeying (OP) not quite perfectly.
This remark provokes the final twist of the story. As Arntzenius, Hall (2003)

point out, (NP) entails that there is a magnitude occupying the definitive role of
chance perfectly, i.e. satisfying (OP) strictly. Suppose that the world w determines
the chance theory Tw; according to (HS) it does so in some particular manner. And
suppose that Tw allows for undermining futures so that (OP) does not apply. Now,
define P �

w D Pw.:jTw/ ¤ Pw and T �
w D fP �

w g. So, Tw and T �
w obviously are in-

compatible chance theories – in one sense. However, change also the supervenience
bases for chances; say for each w that it is not Pw, but rather P �

w that is deter-
mined by (the facts of) w. So, in another sense, Tw is a factual proposition over W
according to the initial way of determination, and T �

w is so, too, according to the
modified way of determination. And in this sense, they are not incompatible. On
the contrary, Tw entails T �

w , since whenever Tv D Tw according to the initial way
of determination, T �

v D T �
w according to the modified one (though not necessarily

vice versa). Moreover, T �
w cannot be threatened by undermining futures. And, this

is the upshot, if Pw; Tw satisfy .NP�/, i.e., if C0.:jTw/ D Pw.:jTw/, then P �
w ; T

�
w

satisfy .OP�/, i.e., C0

�
:jT �

w

� D P �
w .25

Hence, if the old principle is definitive of the chance role, as Lewis says, then
P �

w , rather than Pw, should be the chance law governing the world w. If we tend to
say Pw is determined by the particular facts, we should say it is rather P �

w that is
determined by those facts. Thus, we face a new paradox, at least if we think that
true chance theories must allow for undermining futures. And even if we deny this
and rather attempt to choose Pw right away so that P �

w D Pw, then Arntzenius,
Hall (2003) complete their argument by showing that chances then behave in an
unacceptable way.

Schaffer (2003) tries to escape by claiming vagueness. Chance may be given
by Pw or by P �

w , and disambiguation is of little importance, since the difference is
small, anyway. However, it is not chance that is vague, I think, only our thinking
about it is not clear enough. My conclusion is that we are in deep trouble and have
not found any stable position concerning the admissibility of chance information
and the possibility of undermining futures. What got us there? It was, of course, the
assumption of Humean Supervenience unquestioned so far. It is high time to attend
to it more closely.

(HS) assumed that the chance proposition Tw over P is supervenient upon, or,
with sloppy algebra, identical with some factual proposition over W . As a con-
sequence, we had to consider chance propositions as being in the domain of Pw

and Pwt, at least under a liberal, though not exceptional conception of this do-
main, and hence we had to consider such chances as Pw.Tw/ or whether or not
Pwt.A/ D Pwt.AjTw/. By contrast, if we give up (HS), we are free to reject such
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expressions and in particular the New Principle as meaningless. If we do so, the
admissibility of chance information is rescued from paradox and perfectly accept-
able. Indeed, at so many places philosophy ran into trouble in the past decades with
iterating (the same kind of) modality. We should have been warned.

I raised the point in my (1999, p. 170). But it is underrated in the literature. The
worst Lewis (1994) and Hall (1994) say about (NP) is that it is messy and user-
hostile. Arntzenius, Hall (2003, p. 175) only say that the non-reductionist rejecting
(HS) is free to assume Pwt.Tw/ D 1 and to thus eliminate the discrepancy between
(OP) and (NP). Hall (2004, p. 99) insists that this stipulation is harmless. Formally,
this is correct, but the non-reductionist need not even take this step. And he should
not; the harm done consists in blurring the issue. It creates the impression that the
issue between the reductionist and the non-reductionist would be whether Pwt.Tw/

is equal to or smaller than 1; it creates the delusion of there at all being a meaningful
issue. It simply makes no sense to say that there is some chance that our world is
governed by this scheme of partial determination rather than that or that this atom
has (at t) a propensity of.4 of having (at t) a propensity of.2 of decaying (within the
next hour).

Hoefer (1997, p. 328) expressly agrees by saying:

The laws are what they are because of the pattern of events in history, and not what they
are “by law”. This is just a restatement of the core idea of Humean analyses of law. For just
the same reason, the chances are not what they are “by chance”, and the quantity Ptw.Tw/

should be regarded by a Humean as an amusing bit of nonsense.

However, his argument is a different one. He doubts that all particular facts (and their
Boolean combinations) are in the domain of the chance function. Hence, even if the
chance of chancy facts supervenes on particular facts, the supervenience base will
usually not be in the domain of the chance function. NP would only be guaranteed
to make sense for the Human supervenientist, if all particular facts were chancy. By
contrast, I am granting the latter and arguing that NP still does not make sense.

Vranas (2004, p. 373) tries to save the “arguably dubious” assumption that
chance propositions are in the domain of Pwt. He notices the potentially vicious
circularity in such expressions as Pwt.Tw/, which is indeed a point of worry for the
non-reductionist, but not for the reductionist, and he proposes to make sense of such
expressions within reflexive situation theory (cf. Barwise and Etchemendy 1987)
and thus ultimately within set theory without the foundation axiom. But why at all
should the non-reductionist try to overcome his worry and take recourse to such
remote means? For the non-reductionist particular facts and Boolean combinations
thereof are chancy and what lies outside this domain is not. It is up to the reduction-
ist to give an argument for conceiving the domain more broadly, and the argument
must not presuppose (HS), as one would if one praises the apparent progress from
(OP) to (NP).
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Humean Supervenience

So, let us squarely face Humean Supervenience itself. I propose first to look at how
Lewis thinks it is feasible. Once we shall have seen the doubtfulness of Lewis’ con-
struction I can proceed with an alternative account and then with a brief discussion
of Lewis’ reasons for taking (HS) to be without good alternative.

The thesis of Humean Supervenience says, according to Lewis (1994, p. 474)

that in a world like ours, the fundamental relations are exactly the spatiotemporal rela-
tions : : : and : : : that in a world like ours, the fundamental properties are local qualities.
: : : Therefore it says that all else supervenes on the spatiotemporal arrangement of local
qualities throughout all of history, past and present and future.

Because this holds only for worlds like ours (HS) is contingent. Should alien quali-
ties in Lewis’ sense play a role – irreducible chance would be such an alien quality –,
the case may be different.

The bite of this claim emerges when we consider all the things that are extremely
thorny for philosophers: laws, counterfactuals, causation – and objective probabili-
ties. All this must be determined by the totality of particular facts, according to (HS).
How? The crucial link is constituted by what Lewis calls the best-system analysis
of law, which he takes over from F. P. Ramsey:

Take all deductive systems whose theorems are true. Some are simpler, better systematized
than others. Some are stronger, more informative, than others. These virtues compete: an
uninformative system can be very simple, an unsystematized compendium of miscellaneous
information can be very informative. The best system is one that strikes as good a balance
as truth will allow between simplicity and strength. How good a balance that is will depend
on how kind nature is. A regularity is a law iff it is a theorem of the best system. (Lewis
1994, p. 478)

So far this applies only to deterministic laws. But Lewis suggests to expand the best-
system analysis to cover chance laws as well, and he makes clear that the inclusion
of chance laws in the best system is primarily governed by relative frequency and
symmetry. Some say that Lewis’ position thereby basically reduces to frequentism,
others say that it essentially transcends frequentism. We need not decide. We may
well accept the best-system analysis for the time being. It is plausible, as far as it
goes; it is, to echo Lewis, simple, but uninformative.

There are two critical points, though. The first is that the team of the best-system
analysis and the Principal Principle introduces not only an ontological, but also an
epistemological double standard. We have already seen the ontological double stan-
dard. The best-system analysis somehow establishes Tw as the chance theory true
of w, whereas (OP) rather requires T �

w to be determined by w. In addition, we now
face an epistemological double standard. On the one hand, our beliefs aim at the
best system guided by standards of simplicity and strength and their balance. On
the other hand, one should think that all these standards are encoded in the a priori
credence function C0 that we seek to constrain by (OP) and other rationality postu-
lates. I do not see an incoherence here, but neither do I see how the two standards
go together or what results from the circular procedure of letting C0 decide about
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the best system and feeding in the decision into condition (OP) on C0. These are
unresolved frictions, to say the least.26

The second critical point is, of course, whether the best-system analysis can at
all bolster up Humean Supervenience about laws and chance. Prima facie, it can-
not. On the contrary, according to this analysis deterministic and probabilistic laws
supervene not only on the totality of particular facts, but also on the measures for
simplicity, for strength, and for the goodness of balance; and these measures are
something we add (at least as far as simplicity and balance is concerned; strength
has at least an objective partial order).

Surely, Lewis cannot be on good terms with this apparent consequence of the
best-system analysis. He shies away from any idealistic tendency like the devil from
the holy water, also in order to maintain Humean Supervenience. However, he sees
a way out: Perhaps nature is kind to us, and “if nature is kind, the best system will be
robustly best – so far ahead of its rivals that it will come out first under any standards
of simplicity and strength and balance” (Lewis 1994, p. 479 – his italics). If so, laws
and chances do not depend on our inductive standards.

Yet, can there be a system that is robustly best under any standards? I guess even
the kindest world is susceptible to transmogrification under gruesome standards.
We may refer to factual human standards, but even there we find a lot of madness.
Presumably, Lewis intends to quantify only over all reasonable inductive standards,
and perhaps nature then has a better chance to be kind. Look, though, how wide
the disagreement about reasonableness is, e.g., from the optimistic middle Carnap
who had hoped for the inductive logic to the pessimistic subjectivists who plead for
coherence and nothing more. It is quite obscure what a kind world is and how many
of them there are.

In any case, Humean Supervenience turns out doubly constrained. It is ontologi-
cally restricted to worlds like ours devoid of alien matters, and it is epistemologically
restricted to kind worlds free of indeterminateness concerning the best system. The
two restrictions appear to be independent, and together they turn Humean Superve-
nience into an uncomfortable doctrine. I think that the problems in the last section
about undermining futures constitute a telling objection. On the whole, the doctrine
seems in need of getting straightened out.

As to the second critical point concerning objectivity and independence of our
standards Lewis had envisaged another solution:

I used to think rigidification came to the rescue: in talking about what the laws would be
if we changed our thinking, we use not our hypothetical new standards of simplicity and
strength and balance, but rather our actual and present standards. (Lewis 1994, p. 479)

Yes precisely. rigidification is one salient strategy of objectification.27 Alas, Lewis
continues:

But now I think that is a cosmetic remedy only. It doesn’t make the problem go away, it
only makes it harder to state. (Lewis 1994, p. 479)

I did not understand this remark, so I requested him for clarification. Since I did not
find the point explained elsewhere in his writings, let me quote extensively from his
personal communication of February 13, 1996:



Chance and Necessity: From Humean Supervenience to Humean Projection 117

Let me answer not your question but a generalization of it. The problem is that a certain
analysis says that X (in this case, lawhood) depends on Y (in this case, our standards of
simplicity, etc.) and yet we would ordinarily think this wasn’t so. If Y were different, X
would be just the same – or so we offhand think.

A proposed answer is that ‘X’ is a rigidified designator of the actual value of something
that depends on Y , and of course it’s not true that the actual value would be different if Y
were different. That’s supposed to explain our opinion that there’s no dependence.

Well, if that’s so – I’d think that it well might be so under at least some legitimate
disambiguation – let ‘�X’ be a derigidification of the rigidified term ‘X’. Maybe there’s
some nice ordinary-language reading of the derigidifying modifier; or maybe not, but in
any case we can introduce it into our language by a suitable semantic explanation (as is
done, for instance, in Stalnaker’s paper ‘Assertion’, Syntax and Semantics 9).28 Then it
might turn out that our original opinion that X doesn’t depend on Y survives in modified
form: as the opinion that even �X doesn’t depend on Y . If so, the alleged rigidification of
X ends up making no difference. I think that’s what does happen in the case of lawhood
and our standards of simplicity etc. And that’s why the hypothesis of rigidification, even if
true, doesn’t make the problem of counter-intuitive dependence go away. It makes it harder
to state, because to state it you must first introduce the notion of derigidification.

He did not further explain, however, why the intuition that lawhood is independent
of our standards should be maintained under derigidification. Projectivism, which
I am going to recommend, does not share this intuition. The projectivist rigidifies
the result of his projection and thus legitimately claims objectivity for this result.
But he is content with so much objectivity. He would immediately grant that de-
rigidification brings the process of projection back into focus and thus displays the
dependence on the cognitive subject. However, there is no need to decide the dispute
about intuitions. The point rather is that Lewis’ idea which was not good enough for
himself helps projectivism to some arguably sufficient notion of objectivity while
allowing to admit, in another sense, the dependence of lawhood on our inductive
standards.29

Projection Turns the Principal Principle into a Special
Case of the Reflection Principle

The last remark puts the cart before the horse. We still do not know what the projec-
tivistic understanding of chances is actually supposed to be. In order to explain it,
let us follow the Lewisian track of the best-system analysis, but let us avoid, contra
Lewis, to give it an ontological turn, let us rather keep it within its epistemological
home. This will lead us onto well-trodden paths, but I said right at the beginning
that there are no new discoveries to be made.30

The best system is, first of all, based on complete experience, on complete knowl-
edge of particular observable facts. If these should be only finitely many, then all
statistical methodology tells us that they do not allow for guaranteed conclusions
with respect to objective probabilities; to force a decision, for whatever reasons,
is simply unjustified. This conclusion certainly remains true when we include the
broader inductive considerations relevant to best systems. If the set of particular



118 W. Spohn

facts should be infinite, the situation is not really different. If a die is actually cast
infinitely many times, the propensities of the throws will change, simply because
the die will physically change, and then the limit of relative frequency does not help
us to a definite conclusion concerning the propensities. This is our epistemic situa-
tion vis à vis a small die, and I do not see why it should be different with respect to
large worlds. In the strictest sense, nothing is repeatable. In saying this I flatly deny
Humean Supervenience, of course.

Hence, it is actually unfeasible to precisely detect chances, even given complete
knowledge of particular facts. The detectibility is rather merely counterfactual. Sup-
pose we could run our world over and over again, indeed infinitely many times,
suppose that all repetitions were governed by the same objective chance mechanism,
and suppose we could learn all particular facts within not only one, but all repeti-
tions. Then we would finally have established the chance law Pw of w, at least with
probabilistic certainty. The last proviso is essential. If we live in a chancy world,
we know a priori that there is a chance for misleading evidence, and we know a
priori that even counterfactually ideal evidence cannot close the gap; the difference
between probability 0 and impossibility is ineliminable.

If we want to describe this ideal detectibility of chances more formally, we ob-
viously have to consider W0 � W1, i.e., not only the original space W D W0 of
worlds of particular facts, but besides the space W1 of infinitely many possible
counterfactual runs of the actual world; each w1 2 W1 thus is an infinite se-
quence of possible worlds, each being a complete course of particular facts. (The
term “W0” is introduced only in order to distinguish that copy of W from its in-
finitely many counterfactual repetitions.) And we have to extend our probabilistic
notions to W0 �W1. If the actual world w is governed by the chance law Pw 2 P
defined for propositions over W0, then these infinite sequences are governed by the
product (or Bernoulli) measure P1

w 2 P1 which is the infinite product of Pw with
itself and which is defined for propositions over W1. According to P1

w the indi-
vidual runs are governed by the same chance law Pw, and they are stochastically
independent from one another; thus are our counterfactual suppositions for the ideal
detectibility of Pw. Finally, we have to assume an a priori credence C1

0 also de-
fined for propositions over W0 � W1: C1

0 is not concerned with chances; it only
captures our a priori expectations about all the particular facts in W0 � W 1. Of
course, it extends the factual part of C0; i.e., for each proposition A � W0 we have
C1

0 .A/ D C0.A/. I shall soon say a bit more about C1
0 .

What we just said about the counterfactual detectibility of chances then con-
denses into what I would like to call the Knowability Principle:

.KP/ C1
0 .Ajw1/ D Pw.A/ P

1
w -almost surely for all Pw and all A � W0:

The left-hand side is indeed a random variable with w1 as random argument. That
the equation holds P1

w -almost surely is to say that the set of w1 for which the
equation holds has P1

w -probability 1. The expression “C1
0 .Ajw1/” is once more

sloppy mathematics; it is short for the limit of the conditional credence of A when
the condition infinitely grows into w1.
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Instead of an ontologically conceived Humean Supervenience of chances on the
actual particular facts, we thus have (KP) asserting the counterfactual knowability
on the basis of counterfactual particular facts. We shall soon see how (KP) reduces to
still more basic rationality constraints on C1

0 . “Knowability” is perhaps too strong
a word; strictly speaking, we can never know the chances, we can only be almost
sure of them. However, (KP) captures all what (counterfactual) particular facts can
tell us about chances; even counterfactually there is no more to know; (KP) is our
best approximation to knowability.

I introduced (KP) only as our epistemological substitute for the misguided on-
tological Humean Supervenience of chances. In fact, (KP) follows from standard
principles. So far, we have not yet explicitly considered relative frequencies. This is
easily done, though. Let rf .A/.w1/ stand for the limit (if it exists) of the relative
frequency of the realization of the proposition A in the infinite random sequence
w1. Then two further principles hold, namely the (strong) Law of Large Numbers:

.LLN/ rf .A/.w1/ D Pw.A/ P
1
w -almost surely for all Pw and all A � W0;

and the so-called Reichenbach Axiom (recommended by Hilary Putnam to Carnap
in 1953; cf. Carnap 1980, p. 120):

.RA/ C1
0 .Ajw1/ D rf .A/.w1/ for all w1 and all A � W0;

which says that our beliefs should increasingly and in the limit perfectly align with
the observed relative frequencies, whatever they are. (KP), (LLN), and (RA) form
a triangle connecting credence, chance, and relative frequency. Among the three,
(LLN) and (RA) are the more basic ones. (LLN) is not a rationality postulate, but a
mathematical theorem. Moreover, given (LLN), (KP) obviously follows from (RA),
but not vice versa, because the equality of (KP) holds only almost surely.

Indeed, I find that de Finetti’s representation theorem fits perfectly to my coun-
terfactual set-up, thus providing further insight into the Reichenbach Axiom. This
is why I have emphasized at the beginning of this paper that I do hardly more than
rearrange de Finetti’s philosophy of probability. The a priori credence C1

0 should
be a symmetric measure over the product space, i.e., the event that n given proposi-
tions realize in the first n repetitions has the same credence as the event that these
propositions realize in any other n repetitions. This seems even more compelling
in our counterfactual set-up, where all repetitions are equal by fiat, than in any fac-
tual set-up. De Finetti’s representation theorem tells that all and only symmetric
measures are mixtures of product or Bernoulli measures, indeed unique mixtures.
Hence, symmetry entails the principle of non-negative instantial relevance (cf. Hum-
burg 1971, p. 228). Moreover, given symmetry, (RA) is equivalent to the assumption
that the support or carrier of the mixture is the space of all product measures. This
in turn makes clear that, given symmetry, (RA) entails the principle of positive in-
stantial relevance (cf. Humburg 1971, p. 233). This may suffice as a brief reminder
of the familiar epistemological home of the Reichenbach Axiom and thus of the
epistemological grounds of the Knowability Principle.
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My next point is that (KP) entitles us to project the credence C1
0 forW0 �W1,

i.e., for the actual world and its infinitely many counterfactual repetitions onto the
credence C0 for W0 � P , i.e., for the actual world and its chance measure. The
Projection Rule tells for each proposition A � W0 and each set Q � P of chance
measures forW that:

.PROJ/ C0.A � Q/ D C1
0 .A � fw1jC1

0 .:jw1/ 2 Qg/:

The Projection Rule thus says that a priori our credence that the true chance measure
is in Q (and that some factual propositionA holds) is the same as our credence (that
A holds and) that the counterfactual infinite evidence w1 moves us into some state
in Q.

Why is (PROJ) legitimate? (KP) says that for each possible P1
w the set of w1

making C1
0 diverge from Pw is a P1

w -null set. Due to its symmetry, however, C1
0

is a mixture of all the P1
w . Hence, the set of w1 making C1

0 diverge from all mea-
sures in Q is also a C1

0 -null set, because its C1
0 -probability is a mixture of all the

P1
w -null sets involved. Note, again, that (PROJ) is not an ontological thesis reducing

chance to counterfactual infinite sequences of factual worlds. The ontological slack
between truth and evidence is ineliminable. However, the ontological slack has not
the slightest epistemological weight and cannot surface in the epistemological rule
(PROJ); it is a genuine ‘don’t care’.

The upshot of these considerations is that the Minimal Principle is an immediate
consequence of the Projection Rule. Take Q D fPwjPw.A/ D xg. Then (PROJ)
specializes to

C0.AjPw.A/ D x/ D C1
0 .Ajfw1jC1

0 .Ajw1/ D xg/ D x:

And this is nothing but .MP�/, which we have seen is all we need together with
(RED) (and (AdP)) to duplicate Lewis’ account. Thus, the replacement of the on-
tological doctrine of Humean supervenience by the epistemological Knowability
Principle (which backed up the Projection Rule) at the same time replaces the con-
flict with .OP�/ by a confirmation of .OP�/.31

I find it illuminating to cast the point into a somewhat different form. For this
purpose, we have to introduce the final player of my scenario, van Fraassen’s so-
called Reflection Principle. It is entirely about subjective probability. There we have
static rationality postulates like Coherence or the axioms of mathematical probabil-
ity, Regularity, Symmetry, etc., and we have dynamic rationality postulates the best
known of which is, of course, the Rule of Conditionalization. About the most basic
of these dynamic postulates is the Reflection Principle32:

.RP/ Ct .AjCt 0.A/ D x/ D x:

Here, Ct is the subject’s credence or subjective probability at time t , and it is under-
stood that t 0 is later than t . In other words,Ct specifies the prior andCt 0 the posterior
probabilities of the subject. The Reflection Principle thus says: Given the condition
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that my future probability for some proposition is x, my present probability for it is
also x. In short: I trust now what I assume to be my future belief.

It is clear why (RP) is called an auto-epistemic principle; it assumes that my
future beliefs are the objects of my present beliefs (even only as a supposition).
If one accepts the richer auto-epistemic framework, then (RP) proves to be a most
general dynamic doxastic law entailing conditionalization and its generalizations; it
is even amenable to a Dutch Book justification (cf. Gaifman 1988; Hild 1998b). It
is also obvious that (RP) is a rationality postulate of restricted validity. For instance,
I should not now trust my future beliefs I will have when drunken, and when now
reading the newspaper I should believe (within limits) what I have read even given
that tomorrow I will have forgotten what I have read. Hence, I should reasonably
trust only those of my future beliefs that I have acquired in a reasonable fashion
and that I entertain from a superior point of view, which is certainly provided by
experience (and maybe in other ways as well).

The similarity between the Minimal and the Reflection Principle strikes the eye,
though they are about different subject matters. However, the similarity is easily
turned into entailment. Take (RP), replace Ct by the ‘first’ a priori credence C1

0

and Ct 0 by the ‘last’ credence C1
0 .:jw1/ counterfactually completely informed.

(RP) thus spezializes to

.RP1/ C1
0 .AjC1

0 .Ajw1/ D x/ D x:

Note that .RP1/ is in fact a theorem, not merely a rationality postulate. As above,
(PROJ) finally turns .RP1/ into .MP�/.33 To summarize, in counterfactual ‘future’
we are completely informed about the counterfactual manifestations of the propen-
sities in w of particular facts, thus completely informed we can infer the chances in
w, and hence .MP�/ turns out as a special case of (RP).

Humean Projection

What is the significance of these mathematically trivial transformations? If projec-
tivism is the doctrine that some objective traits of the world can only be understood
as objectified projections of human attitudes, how does the previous section support
projectivism concerning chances? To resume, the story is as follows: We postulate
chances, and we know that they are different from our subjective probabilities. Yet,
we also know the rational shape of our credences, we know how we change and im-
prove them, we know according to (KP) that we cannot say anything better than that
the chances are what our credences would be after that infinite counterfactual infor-
mation, not by necessity, but with probability 1, and we know according to (PROJ)
that we may identify our credences about chances with our credences about that
counterfactual information and what we learn from it. We are aware of the ontolog-
ical gap between chance and credence, but our epistemological bridge over it leaves
nothing to be desired. In this sense I take chance to be a projection from credence.
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Jeffrey (1965, Section 12.7) discusses the general idea that objective probabili-
ties are objectified subjective ones, and in (2004, p. 19) he says, referring to Hume,
that “chances are simply projections of robust features of judgmental probabilities
from our minds out into the world” (his emphasis). Maybe he had the same picture in
mind as the one developed here. However, objectification as he describes it in Jeffrey
(1965, Section 12.7) is admittedly not very objective; it just means conditioning sub-
jective probabilities wrt the true member of some partition of the possibility space
considered (or the limit of these conditionings wrt a sequence of the true members
of ever finer partitions). Of course, the result depends on the initial subjective prob-
abilities as well as on the chosen partition. Jeffrey argues that this latitude has some
advantages, but it seems clear that the general idea needs refinement.

Lewis (1980, pp. 278f.) is pleased that his account may be understood as offering
such a refinement. According to (OP), it is the history-chance partition, as he calls it,
which is the correct objectifying partition, and according to .OP�/ it is more simply
the chance partition consisting of all Tw themselves. Skyrms (1980, Section IA4)
makes, in effect, the same proposal, though he opts for more pragmatic flexibility
than Lewis and rather hides the chance nature of his conditioning partition. It is
a matter of taste whether one should call this a confirmation or a trivialization of
Jeffrey’s general idea. In any case, Jeffrey (2004, p. 20) reminds us that “on the
Humean view it is ordinary conditions, making no use of the word ‘chance,’ that
appear” in the condition of (MP) or in the conditioning partition (my emphasis).
Jeffrey insists on the point because otherwise his objectification idea has no prospect
of offering an analysis of chance, a prospect Lewis (1980, pp. 288ff.) explicitly
denies.

So, how does Jeffrey’s general idea fare with Humean Projection as construed
here? According to (PROJ) it is indeed the partition consisting of all Tw which is
invoked in objectification; it is, however, to be conceived as the partition into all
fw1jC1

0 .:jw1/ D Pwg. Hence, we have obeyed Jeffrey’s reminder; we have used
ordinary conditions making no use of the word “chance”. Still, I am not sure whether
Jeffrey would be satisfied. His examples always use partitions of the original pos-
sibility space W of particular facts, whereas I move to a partition of the possibility
space W1 of infinite counterfactual repetitions of W . Only there particular facts
can get as close to objective chances as they can get; and if this is so, then Jeffrey’s
objectification within the spaceW can at best reach pragmatically weakened forms.
The detour via W1 appears unavoidable to me.

My continuous massive invocation of counterfactuality may have raised, how-
ever, suspicions from the outset. Skyrms (1980, p. 31) has already warned that
“attempts to construe propensities as modalized relative frequencies only make
things worse in this regard” (his emphasis), the regard being the use of the law
of large numbers as an analysis of propensity. Skyrms is right. We have seen that
chances do not ontologically reduce even to propositions over the counterfactual
space W1; the slack is ineliminable. However,W1 serves here only epistemolog-
ical, not ontological purposes.

For the same reason I am not worried by Lewis (1994, p. 477), when he says
“I think that’s a blind alley”, thereby referring to “thinking of frequencies not in
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our actual world, but rather in counterfactual situations” (in order to deal with his
puzzling case of unobtainium). Within his set-up he is indeed right. There, relative
frequencies in counterfactual situations can inform us about the actual world, only if
we have ascertained beforehand that the counterfactual situation is governed by the
same chance law as the actual world. Thus, we would have to solve, according to
Lewis, the supervenience issue for the counterfactual situation in order to solve it for
the actual world; and this merely defers the issue. However, this is not our problem.
We do not have the telescope view onto counterfactual situations, to use Kripke’s
terms; it was rather part of our counterfactual stipulation that all repetitions of W
be governed by the same chance law Pw; there is no need to ascertain the chance
law of the repetitions. I do not see why this counterfactual stipulation should be
illegitimate. We always think about counterfactual situations and what we would
believe given this or that situation, and in order to get Humean Projection running
in our way, we only consider extreme cases of this kind. Specializing, or extending,
(RP) to .RP1/, in order to derive (MP), is not a misuse of the Reflection Principle;
it is an extreme, though legitimate use.

Well, it may be legitimate; still it hardly helps. Given the extreme counterfactual
evidence we may be as certain about chances as we can. Our actual evidence, how-
ever, is infinitely poorer. Indeed doubly so; we can inquire only a tiny part of our
actual world and never the counterfactual repetitions. The counterfactual construc-
tion may, and should, I think, satisfy philosophers, but it is of no use for scientists
and statisticians who cannot do better than gathering actual evidence and drawing
conclusions from this insufficient basis. This, however, is something to acknowl-
edge, not to deplore. The philosophical account provides the ideal standard, and it
then is a methodological issue how best to approximate the ideal within our fac-
tual limits. Statisticians have developed most sophisticated test methods, of which
randomization is an important part. But there are also more general preconceptions:

In principle, the scheme of partial determination governing our world may be
any chance measure whatsoever. In principle, the whole world has the propensity to
move into this or that state, and propensities may vary from here to there and from
now to then. In our counterfactual scenario we could discover any wild distribution
of chances, but in the actual world we want to understand the ‘mechanics’ of par-
tial determination. The ground rule is: equal causes, equal effects; or rather, equal
conditions, equal propensities – which gets bite only by restricting “equal”. The rel-
evant conditions should be few, not many. If we are lucky, we have kept constant all
relevant conditions during a row of some thousands throws of some die, and then
we may take the actual row as approximating the counterfactual sequence. The rel-
evant conditions should be local, or contiguous, to use Hume’s term. Non-locality
is one of the mysteries created by quantum mechanics. Crystal balls are miraculous
for the same reason. I find it incoherent to say that a given type of events is only par-
tially determined, but can be unfailingly foreseen with a certain crystal ball. Rather,
I would then take these events as fully determined – but would not understand how
determination, i.e., the crystal ball works in these cases. If we are lucky, we shall
be able to construe the chance law governing our world as a Markov process. If we
develop different ideas about space and time, we have to adapt our preconceptions
of the ‘mechanics’ of determination. And so forth.
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If we do not succeed with our preconceptions, it is unclear how we would re-
spond. In the extreme case, the idea of partial (or full) determination would dissolve.
Thus it seems obvious to me that there is more to the notion of chance than just the
Principal Principle. There are also all these preconceptions connecting chance with
space and time, simplicity, orderliness, and whatnot. It is such things mentioned by
Arntzenius, Hall (2003, pp. 177f.) when they arrive at the same conclusion. These
preconceptions are modifiable, but only within limits; beyond the notion of chance
will crumble.

Do such considerations reintroduce the epistemological double standard of which
I have accused Lewis in the section Humean Supervenience? No. With regard to
the ideal counterfactual evidence we can simply stick to de Finetti’s story of the
symmetric a priori credence satisfying the Reichenbach axiom and thus converging
almost surely to the true chance measure, whatever it may be. Here, we do not need
help from the additional considerations just mentioned. We have to rely on them
when and because we try to make sense of our very restricted evidence. Thus, the
second epistemological story that I have just indicated does not interfere with, but
rather complements, the account I have extensively presented.

Since we have sacrificed Humean Supervenience, we also have avoided the on-
tological double standard and the resulting conflict between (OP) and (NP). We can,
and do, simply stick to .OP�/ and reject .NP�/ as nonsense.

However, if we sacrifice (HS), we cannot do so without considering Lewis’ two
main reasons for it. The one consists in his ontological preferences. Without doubt,
if (HS) were true, the resulting ontological picture would be most elegant and
satisfying. Those rejecting Humean supervenience have different preferences and
acknowledge irreducible dispositions, capacities, causes, necessities, or propensi-
ties. The projectivist, in particular, has a special story to tell about these matters that
explains them ultimately with our subjective condition without diminishing their
objectivity. I do not think that this ontological dispute can be resolved with general
arguments. It is a matter of details, and there we have at least seen that Lewis had
difficulties to maintain his prima facie elegance.

His second reason, though, is more pertinent and more urgent. It is best put in
Lewis (1986, pp. xvf.):

I could admit that : : : the chances : : : do not supervene on the arrangement of qualities. : : :
Why not? I am not moved just by loyalty to my previous opinions. That answer works no
better than the others. Here again the unHumean candidate for the job turns out to be unfit
for its work. The distinctive thing about chances is their place in the ‘Principal Principle,’
which compellingly demands that we conform our credences about outcomes to our cre-
dences about chances. : : : I haven’t the faintest notion how it might be rational to conform
my credences about outcomes to my credences about some mysterious unHumean magni-
tude. Don’t try to take the mystery away by saying that this unHumean magnitude is none
other than chance! I say that I haven’t the faintest notion how an unHumean magnitude
can possibly do what it must do to deserve the name – namely, fit into the principle about
rationality of credences – so don’t just stipulate that it bears that name. Don’t say: here is
chance, now is it Humean or not? Ask: : : : Is there any way that an unHumean magnitude
could [fill the chance-role]? : : : the answer is ‘no’: : :

He repeats the point in Lewis (1994, pp. 484f.) with more confidence, having been
shown a way out of the paradox of undermining futures generated by (HS).
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His own response to this challenge is (HS). It is no mystery how particular facts
constrain credence; and if chance supervenes on particular facts, it is in principle no
mystery how chance constrains credence. And thus he sets out to remove paradox by
modifying (OP). Right at the beginning of the section Chance-Credence Principles I
indicated that this is the basic puzzle affecting the Principal Principle. The quotation
indeed suggests that Lewis thinks that (HS) is the only solution of the puzzle (even
though his challenge is directed foremost to the position of David Armstrong). How
may the projectivist respond?

For the projectivist the puzzle has a straightforward solution.34 This is clear
from his general strategy. For him, chances are not alien features cognitive ac-
cess to which is bound to be mysterious; they are of our own breeding. We need
not speak figuratively, though; we have prepared a precise answer. Lewis is right;
there is no mystery how particular facts constrain credence. However, van Fraassen
is also right; there is in principle no mystery how future credence can constrain
present credence. And we have seen that according to the projectivistic reconstrual
the Principal Principle is nothing but an extreme application of the Reflection Prin-
ciple. This was the whole point of my construction in the previous section. To be
sure, in that application a priori credence is constrained by an extremely counterfac-
tual ‘future’ credence. However, it is mostly counterfactual future credence to which
(RP) applies, and we should certainly not bother about being more or less extreme.
In this way, the projectivist is able to remove the puzzling air from the Principal
Principle. Chance, being almost surely identical to projected credence objectified,
must constrain a priori credence precisely in the way summarized in .OP�/.

Appendix on Ranking Functions and Deterministic Laws:
The Same All Over Again

The whole of this paper immediately and perfectly carries over to full determination
or natural necessity and deterministic laws. Lewis tells the same story, this story
meets the same criticism, and I have a precise projectivistic substitute story. Indeed,
all this is more or less a matter of routine; I do not have to write a twin paper. Let
me just indicate the basic points.

A very common, and also Lewis’, assumption is that laws are regularities which
in turn are mere generalizations expressed by universally quantified sentences.
However, not all regularities are laws; we have to be selective. Lewis offers his
best-system analysis of laws in order to discriminate them from mere regularities.
He thinks laws Humeanly supervene on particular facts, and he constrains the su-
pervenience of laws in the same way as that of chance. The only point missing is
that the Principal Principle and the ensuing discussion have no explicit deterministic
counterpart.

The problems remain. (HS) is again ontologically as well as epistemologically
constrained. Carroll (1994, Chapter 3) and Ward (2002, Section 3) attempt to spec-
ify examples of two worlds in which the same facts, but different laws obtain. Black
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(1998, p. 376) suggests “that laws can : : : undermine themselves, in that the laws
of the universe might allow that the laws of the universe could have been other-
wise.” Hence, it looks like we are running into the same kind of problems with
deterministic laws as we have extensively discussed here with respect to chance.
Lewis’ reasons for sticking to (HS) are also the same. Without (HS) we could
not understand the idea of necessitation. Hence, the dialectic situation is as before.
What, though, could be the constructive alternative? This is indeed much less clear
than in the probabilistic case where subjective and objective probabilities and their
delicate relation are perhaps not fully understood, but familiar for a very long time.

I think the basic mistake lies already in the common assumption that laws are
(a special kind of) regularities. In this respect, laws are much more deceptive than
chances. One immediately sees that chances are modalities; they take propositions
as arguments and somehow assign numbers to them. By contrast, laws appear to
be mere propositions, and modality is prima facie not involved. Any subsequent
mounting of modality is then bound to create mysteries. The alternative, though, is
not to start with a primitive necessitation operator, as Armstrong does in his analysis
of lawhood. This is no less mysterious. Also, it will not do to conceive of determin-
istic laws as a limiting case of chance laws, not only for the reason that a chance of
1 is not quite necessitation. This is not the place, however, to go through all the var-
ious accounts of lawhood. Let me just say that I believe that the alternative must be
somehow to tell the same kind of story as we did in the probabilistic case. But how?

The answer is: with the help of ranking functions (first presented in Spohn (1983,
1988), where I called them ordinal conditional functions). As in probability, we must
start with the subjective side, with the representation of belief. This is what a ranking
function does. A ranking function › for a given possibility space W is a function
fromW into the set of nonnegative integers such that ›.w/ D 0 for some w 2 W . The
ranking is extended to propositionsA � W by defining ›.A/ D min f›.w/jw 2 Ag.
And conditional ranks are defined by ›.BjA/ D ›.B \A/ � ›.A/.

Ranks are degrees of disbelief. ›.A/ D 0 says that A is not disbelieved at all;
›.A/ D n > 0 says that A is disbelieved to degree n. Hence, ›.A/ > 0 expresses
that A is disbelieved (to some degree) and hence that A is believed (to the same
degree). Thus, ranking functions, unlike probability measures, represent belief (ac-
ceptance, holding to be true). This is their most distinctive feature due to which
they can be related to deterministic as opposed to probabilistic laws. Unlike doxas-
tic logic, or even AGM belief revision theory, ranking functions can also account
for a full dynamics of belief; this means at the same time that they embody a full
inductive logic. Basically, this dynamics consists in conditionalization, just as in
probability theory.35 The reason why this works perfectly is that conditional ranks
as defined above behave almost exactly like conditional probabilities. Indeed, the
parallel extends much farther. Practically all virtues of Bayesian epistemology can
be carried over to ranking functions. (For a fuller explanation of these claims see
Spohn 1988, 2009.)

One thing we can now do, for instance, is to state the Reflection Principle in
ranking terms:

.RP›/ ›t .Aj›t 0.A/ D n/ D n;
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which says that given you disbelieve A tomorrow to degree n you so disbelieve
it already today. .RP›/ is indeed a strengthening of Binkley’s principle.36 All the
remarks about the probabilistic version (RP) apply here as well.

I have emphasized that ranking functions must be interpreted as representing
doxastic states. They represent what a subject takes to be true or false, but they are
not true or false themselves. However, to some extent they can be objectified so
that it makes sense to apply truth and falsity to them, just as to propositions. How
this objectification works is a somewhat tricky story elaborated in Spohn (1993).
According to this story, most ranking functions cannot be objectified. This appears
to be different with chances. Any credence measure for W could, it seems, also
serve as a chance measure for W . But maybe not. We have seen above that there
is more to chance and that one might, for instance, suggest that only probability
measures representing a Markov process can be chance measures.

Anyway, what I have proposed in Spohn (1993) is that causal laws or, in the
present terms, schemes of full determination are just such objectifiable ranking func-
tions, a view I have philosophically more thoroughly explained in Spohn (2002).
The crucial point is that the inductive behavior is thus directly built in into laws and
not subsequently imposed on something propositional. Moreover, for laws so con-
ceived we can tell de Finetti’s complete story as shown in detail in Spohn (2005): If
the ranking function › is such a scheme of full determination for W , we can again
form the infinite product space W1 and the product ranking function ›1 indepen-
dently repeating › infinitely many times. Any symmetric ranking function overW1
is then a unique mixture of such product ranking functions, which will converge to
the true law (D product ranking function) with increasing evidence. Hereby, the
role relative frequencies have in the probabilistic case is taken over by the number
of exceptions in the deterministic case.

In sum, we have here all the ingredients for telling exactly the parallel story
about necessitation or full determination as we have told about partial determination.
Deterministic laws are, in the way explained, projections of ranking functions, i.e.,
of subjective states representing beliefs and their dynamics.

Acknowledgements I am most grateful to Ludwig Fahrbach and Jacob Rosenthal for thorough-
going discussions of earlier drafts of this paper; it gained immensely thereby.

Notes

1 I have written a minor note, Spohn (1987), which foreshadows the general line of thought, and a
German paper Spohn (1999), of which the present paper is a substantial elaboration.

2 There presumably are deep connections between metaphysical and natural necessity. Still, the
two kinds of necessity must at first be kept apart. Metaphysical necessity is tied up with identity
and existence, natural necessity is not, prima facie. Here, I shall deal only with the latter without
worrying about its connection to the former.

3 Similar phrasings may be found in Popper (1990, pp. 18f.) and Miller (1995, p. 138).
4 For instance, Fetzer (2002) shares realism about propensities, but responds to such concerns

by embedding propensities into an embracive account of explanation and abductive inference.
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While I am in sympathy to his general approach, I do not want to explicitly enter the topic of
explanation. Of course, that topic is tightly interwoven with our present one, but it has its own
intricacies, in particular, when it comes to saying what ‘the best explanation’ might be. As far as
I can see, we shall be able to side-step these intricacies here without loss.

5 My reference book is Rosenthal (2004) that offers forceful criticisms of prominent variants of
the propensity interpretation.

6 Logue (1995) apparently pursues the same goal. However, he insists on having only one notion
of probability, a personalistic one, and he does not present an explicit projectivistic construal of
objective probability. The only further probability book where the idea is taken up is Rosenthal
(2004, pp. 199ff.). In fact, the challenge of understanding objective probability as it is built up
in this book in a most pressing way provoked me to elaborate my (1999) into the present paper.

7 Concerning deterministic laws, Ward (2002) also claims to give a projectivistic account which
he extends to chance in Ward (2005). However, while I agree with his critical diagnosis, our
constructive approaches widely diverge, as will become clear at the end of this paper.

8 Often, direct inference is more narrowly understood as the more contested ‘straight rule’ that
recommends credence to equal observed relative frequency.

9 The puzzle is vividly elaborated by Rosenthal (2004, Section 6.3).
10 I shall even prefer sentential over set theoretical representations of propositions.
11 This is Constraint 2 of Skyrms (1980, pp. 163–165), applied to degrees of belief and propensities.
12 Even at the risk of appearing pedantic, let me at least once note what the correct set-theoretic

representation of .MP�/ is. There, credence is not about facts and chance, but rather about facts
and evolutions of chance, i.e., about W � PT , where T is the set of points of time. (Only at the
end of the next section shall we be able to return to our initial simpler conception of credence.)
.MP�/ then says that C0.Ajf  2 PT j .t/.A/ D xg/ D x, where the condition consists of all
those evolutions of chance according to which the chance of A at t is x.

13 Hall (2004, p. 103) arrives at another definition of admissibility. However, it is clear that his
move from his (3.12) to his (3.13) offers another sufficient condition the necessity of which is
not argued for. In any case, his definiens entails mine, but not vice versa.

It is unfortunate that my paper was essentially finished before I could get aware of this paper
of Ned Hall, which covers much of the same ground as mine, though with different twists and
conclusions. Thus, my comparative remarks will be confined to some footnotes.

14 Of course, I am presupposing classical time throughout. I do not venture speculating about the
consequences of relativistic time for our topic.

15 Proof: According to (CP) we have C0.AjHwt & Pwt.AjHwt/ D x/ D x. According to (DP)
Pwt.AjHwt/ D x expresses the same proposition as Pwt.A/ D x. Hence, we also have
C0.AjHwt & Pwt.A/ D x/ D x. This just says that Hwt is admissible wrt A in w at t . Since any
t–historical E is the disjoint union of some Hwt; E is admissible, too, wrt A in w at t .

16 For a recent reinforcement of the problem see Hájek (2007).
17 This follows from the graphoid axioms for conditional probabilistic independence; cf., e.g.,

Spohn (1978, pp. 102f.).
18 Why is P now double-indexed? Because we have to say for the world w not only what the

chances are in w at t .D Pwt/, but also what the chances would have been if Hvt had been its
history up to t .D Pw;vt/.

19 This is different from the identification of probabilities of conditionals with conditional proba-
bilities, of which Lewis (1976) has warned us.

20 The satisfiability of the consistency requirement is obvious in the case of discrete time with a
first point of time. In the other cases one has to allude to convergence theorems for descending
martingales; cf., e.g., Bauer (1968, p. 281).

21 Hall (2004, p. 96) undertakes the same reduction. Pw is what he calls ur-chance.
22 If this algebra were a complete one, this translation of (HS) would indeed be correct.
23 We might, of course, strengthen (HS) to the effect that chances at t supervene on no more than

factual history up to t ; then chance information is only about the past, and the paradox cannot
arise. Lewis (1980, pp. 291f.) already mentions this option before clearly seeing the paradox.
In 1986 (p. 131) he even expresses a preference for it after recognizing the paradox. In 1994
(Section 6) he finally rejects it, rightly in my view.
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24 Proof: Take (CP), specialize B toHwt & Tw and apply (DP) for omittingHwt from the condition
of Pwt. Then you get C0.AjHwt & Tw & Pwt.AjTw/ D x/ D x, which is nothing but (NP), since
Hwt & Tw entail Pwt.AjTw/ D x.

25 Cf. Arntzenius, Hall (2003, pp. 176f.) for a fuller explanation of the point.
26 Sturgeon (1998) argues that the restrictions put on (HS) are indeed incoherent, however they

are specified. Hall (2004, pp. 108ff.) also critically discusses how the inference of chances from
facts is supposed to go.

27 Loewer (1996, pp. 114f.) also discusses the point and recommends rigidification.
28 This refers to Stalnaker (1978).
29 The point is indeed one of deep and general importance. It applies, I believe, to objecthood in

general, certainly a most fundamental matter. We cut up the world into pieces, we constitute
objects by saying which properties or kinds of properties are essential or constitutive for them.
(This allows for the case that we fix only a space of possible essential properties of an object and
leave it to the actual world to fix the actual essential properties.) Still, the objects thus constituted
are objects independent of us, their objectivity is in no way impaired by our constituting them,
in particular because we constitute objects in such a way that our constituting is not essential for
them. The point extends to properties. In two-dimensional semantics each predicate expresses a
(derigidified) concept and denotes a (rigidified) property, and while most concepts are, as I say,
a priori relational, only few properties are necessarily relational – two notions of relationality
that are particularly relevant vis à vis color predicates; cf. my (1997, pp. 367ff.). This footnote
indicates the direction into which this paper would need most to be further thought through.

30 This section elaborates the core of the predecessor paper Spohn (1999).
31 Hall (2004, pp. 108f.) envisages the same kind of argument, also with reference to de Finetti’s

representation theorem, though without actually endorsing it. He ascribes the argument to a posi-
tion he calls ‘primitivist hypothetical frequentism, which, however, is not mine. As he describes
it, this kind of frequentist equates chance with limiting hypothetical relative frequency and con-
siders it to be a brute metaphysical fact that this equation is correct. By contrast, I emphasized
the almost unnoticeable epistemological-ontological gap, and I do not see the necessity to close
it per fiat.

32 The Reflection Principle is explicitly stated in van Fraassen (1984); there its deep philosophical
relevance was fully recognized. He returns to it at length in van Fraassen (1995). Other references
are Goldstein (1983) and Spohn (1978, pp. 162f.) where I stated an equivalent principle (called
the Iteration Principle by Hild 1998a, p. 329) within an auto-epistemic or reflexive decision-
theoretic setting and under the restrictions usually accepted nowadays. Penetrating discussions
may in particular be found in Hild (1998a, b).

33 Skyrms (1980, Appendix 2) already observed that there is a common form to such principles
that is open to various interpretations. Following Gaifman (1988), the common form might be
called ‘expert principle’, since it describes trust in some kind of expert. For this unified view
see in particular Hall (2004) and Hájek (2007). However, it is only our Projection Rule which
establishes an entailment between the expert principles considered here, i.e., (RP) and (MP).

34 As mentioned in footnote 31, Hall (2004, p. 109) also envisages the solution defended here (with
some doubts concerning its general feasibility). However, he envisages it only as a possibility in
order to prove the point he is up to in his paper, viz., that the reductionist claiming (HS) need
not have an advantage over the non-reductionist vis à vis this issue. For him (cf. p. 107), a no
less acceptable response seems to be to declare the Principal Principle analytic and to reject any
further justificatory demands. As I have explained in the Section Chance-Credence Principles,
this will not do. We have a real challenge here which requires some substantial response.

35 The idea that belief is just probability 1 is not only intuitively unsatisfactory, but also theoreti-
cally defective, because conditionalization does not work for extreme probabilities and beliefs
could then only be accumulated and never revised. (Popper measures solve this problem just as
half-way as does AGM belief revision; see Spohn 1986.) This is the essential reason why it does
not work to correspondingly conceive deterministic laws as limiting cases of chance laws.

36 It says that if I believe now that I shall believe tomorrow that p, I should already now believe
that p. Binkley (1968) introduced it in relation to the surprise examination paradox.
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Evolutionary Theory and the Reality
of Macro-Probabilities

Elliott Sober

Evolutionary theory is awash with probabilities. For example, natural selection is
said to occur when there is variation in fitness, and fitness is standardly decomposed
into two components, viability and fertility, each of which is understood probabilis-
tically. With respect to viability, a fertilized egg is said to have a certain chance of
surviving to reproductive age; with respect to fertility, an adult is said to have an
expected number of offspring.1 There is more to evolutionary theory than the the-
ory of natural selection, and here too one finds probabilistic concepts aplenty. When
there is no selection, the theory of neutral evolution says that a gene’s chance of
eventually reaching fixation is 1/(2N), where N is the number of organisms in the
generation of the diploid population to which the gene belongs. The evolutionary
consequences of mutation are likewise conceptualized in terms of the probability
per unit time a gene has of changing from one state to another. The examples just
mentioned are all “forward-directed” probabilities; they describe the probability of
later events, conditional on earlier events. However, evolutionary theory also uses
“backwards probabilities” that describe the probability of a cause conditional on its
effects; for example, coalescence theory allows one to calculate the expected num-
ber of generations in the past that the genes in the present generation find their most
recent common ancestor.

If evolutionary theory is inundated with probabilities, is the same true of the
processes that evolutionary theory seeks to characterize? A straightforward real-
ist interpretation of the theory yields an affirmative answer to this question. Since
the theory truly describes what happens in nature, and since the theory describes
nature probabilistically, the probabilities it postulates are real. In spite of the sim-
plicity of this interpretation, there have been dissenters. The title of Alexander
Rosenberg’s (1994) book, Instrumental Biology or the Disunity of Science, sug-
gests where he stands on this issue. Rosenberg’s thesis is that the probabilities used
in evolutionary theory should not be interpreted realistically – they are not objec-
tive quantities – because they are mere excuses for our ignorance of detail. For
Rosenberg, “evolutionary phenomena are : : : deterministic, or at least as determin-
istic as underlying quantum indeterminism will allow (p. 82).”2 The probabilities
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of evolutionary phenomena are one thing, the probabilities that evolutionary theory
assigns to those phenomena another.3

Although Rosenberg’s thesis is about evolutionary theory, his reasons for holding
it are general enough to apply to any theory that uses probabilities. And because the
motivation for Rosenberg’s instrumentalism is so general, it is no surprise that this
position was enunciated long before evolutionary theory was mathematized in the
twentieth century. Rosenberg’s thesis traces back to Laplace.

Given for one instant an intelligence which could comprehend all the forces by which nature
is animated and the respective situation of the beings who compose it – an intelligence
sufficiently vast to submit these data to analysis – it would embrace in the same formula
the movements of the greatest bodies of the universe and those of the lightest atom; for
it, nothing would be uncertain and the future, and the past, would be present to its eyes
(Laplace 1814, p. 4).

In the Origin, Darwin (1859, p. 131) gives voice to the same thought when he ex-
plains what he means by saying that variation is “: : : due to chance. This, of course,
is a wholly incorrect expression, but it serves to acknowledge plainly our ignorance
of the cause of each particular variation.”

Laplace was thinking about Newtonian theory when he described his demon, and
he took that theory to be deterministic in form.4 Since that theory makes no use of
probabilities, the probabilities we use to describe nature are mere confessions of
ignorance. Rosenberg’s Laplacean position involves no commitment to determin-
ism. He concedes that if determinism is false, then it is a mistake to claim that the
only reason we use probabilities to describe nature is that we are ignorant of rele-
vant details. But there is a Laplacean thesis that survives the death of determinism;
this is the reductionist idea that the only objective probability an event has is the
one assigned to it by the micro-theory.5 If Newtonian theory is the true theory of
particles, then no probabilities (other than zero and one) are objective. If quantum
mechanics is the true theory of particles, then the only objective probabilities are
the ones assigned by quantum mechanics. Either way, the probabilities assigned by
evolutionary theory are not to be interpreted realistically if they differ in value from
the ones assigned by whatever the true micro-theory turns out to be.

It is interesting that Laplace says that his demon would find nothing uncertain;
this goes beyond the more modest claim that the demon would have no uncertainty
about the mass, velocity, acceleration, and other properties described by Newtonian
theory. Laplace’s stronger claim suggests the thought that the properties discussed
in Newtonian theory provide a synchronic supervenience base for all the other
properties that macro-objects might have. And this thought, in turn, can be gen-
eralized further, so that there is no reliance on Newtonian theory or on the truth of
determinism:

(MS) A complete specification of the properties that all particles have at
a given time uniquely determines all the properties that all macro-
objects have at that same time.
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Fig. 1 Laplace’s demon in a
deterministic Universe

Time t1 Time t2

Macro-state 

Micro-state

[p] Y 

A B

X →

This is the idea of mereological (part/whole) supervenience. If two objects and the
environments they occupy are particle-for-particle physical copies of each other,
they will also be identical in terms of their psychological and biological properties.6

The principle of mereological supervenience (MS) says that micro determines
macro. It is silent on the converse question of whether macro determines micro.
I will assume in what follows that it does not; that is, I’ll assume that a given macro-
state is multiply realizable at the micro-level. The relation of micro to macro is
many-to-one. For example, an ideal chamber of gas can have a given temperature
(its mean kinetic energy) by many different assignments of kinetic energy values to
its constituent molecules.

The Laplacean picture of a deterministic universe is represented in Fig. 1. The
MS principle says that a system’s micro-state at one time fixes its macro-state at
that time; A at t1 makes it the case that X at t1, and B at t2 makes it the case
that Y at t2. This is the meaning of the vertical arrows in Fig. 1. The micro-state
evolves by deterministic Newtonian rules (represented by the arrow from A to B),
so the (complete) micro-state at one time fixes the micro-state at all later times.
Since diachronic determination and synchronic supervenience are both necessitation
relations, A at time t1 insures that Y at t2, by transitivity. If we use probabilities to
describe whether macro-state Y will occur at time t2, given the fact that the system
was in macro-state X at t1, we do so only because of our ignorance. The demon has
no need of these probabilities. When the demon predicts the macro-state Y at t2 from
the micro-state A at t1, it presumably first predicts the micro-state B at t2 and then
figures out that B suffices for the macro-state Y. Laplace’s idea thus requires that the
demon’s knowledge extend beyond Newtonian matters; the demon also needs to be
savvy about how Newtonian facts connect to facts described in the vocabularies of
other sciences – for example, biology and psychology.

Given this Newtonian description of Laplace’s demon, what would the corre-
sponding picture be for a Laplacean who accepts indeterminism as a fact about
the physical micro-level?7 The situation is depicted in Fig. 2. If the micro-theory
in question is indeterministic, the system’s micro-state at t1 confers probabilities on
the different micro-states that might obtain at t2. Some of these possible micro-states
will be supervenience bases for the macro-property Y; others will not be. Suppose
there are n disjoint micro-states .B1;B2; : : : ;Bn/ that are possible supervenience
bases for the macro-state Y and that Pr.Bi at t2jA at t1/ D qi. We mere mortals, who
are aware only of the macro-state X that obtains at time t1, must predict whether Y
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Fig. 2 Laplace’s Demon in
an Indeterministic Universe Time t1 Time t2
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will obtain at t2 by computing the value of p D Pr.Y at t2j X at t1/. I will call this a
macro-probability because the conditioning proposition describes the macro-state X
that the system occupies at t1. The demon, who can instantly see which micro-state
obtains at t1, will compute Pr.Y at t2jA at t1/, which I term a micro-probability.
Presumably the demon does this first by computing q D q1 C q2 C 	 	 	 C qn D
Pr.B1 or B2 or; : : : ; or Bn at t2jA at t1/ and then taking into account the fact that
the disjunction .B1 or B2 or; : : : ; or Bn/ is equivalent to Y. The point is that the
value of q D Pr.Y at t2jA at t1/may differ from the value of p D Pr.Y at t2jX at t1/.
Although a Laplacean demon in an indeterministic universe will need to use proba-
bilities to predict what will happen, it will use probabilities that may differ in value
from the ones that we less-informed human beings are forced to employ. Were it not
for our ignorance, we should do what the demon does, or so the Laplacean claims.8

The Laplacean position, then, does not depend on whether determinism is true.
The first part of the position is a thesis about prediction:

.L1/ Suppose you know the system’s macro-state (X) at t1 and also know
the system’s micro-state (A) at t1, and you want to predict whether
the system will be in state Y at time t2. If you know the values of both
the macro-probability Pr.Y at t2jX at t1/ and the micro-probability
Pr.Y at t2jA at t1/, and their values are different, then the micro-
probability Pr.Y at t2jA at t1/ is the one you should use to make your
prediction.

Read contrapositively, this means that

If you are entitled to use the macro-probability Pr.Y at t2jX at t1/ in predicting whether Y
will occur at t2, this is because Pr.Y at t2jX at t1/ D Pr.Y at t2j A at t1/ or you don’t know
the value of Pr.Y at t2jA at t1/, or you don’t know that A is the micro-state of the system
at t1.

This contrapositive brings out the fact that the Laplacean thinks that there are two
possible justifications for using a macro-probability in making a prediction. One
involves lack of knowledge; the other is the truth of a probabilistic equality.

The Laplacean principle .L1/ describes the probabilities you should use in
making predictions, but does not connect that issue with the question of which
probabilities are objective. This further element in the Laplacean position can be
formulated as follows:
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.L2/ If the only justification you have (or could have) for using the
macro-probability Pr.Y at t2jX at t1/ to predict whether Y will be
true at t2 is that you don’t know the value of the micro-probability
Pr.Y at t2jA at t1/ or you don’t know that A is the micro-state of the
system at t1, then the macro-probability Pr.Y at t2jX at t1/ is not ob-
jective.

Whereas .L1/ says that there are two possible reasons for using a macro-probability
to make a prediction, .L2/ says that one of those reasons (lack of knowledge) should
lead you to attach a subjective interpretation to the macro-probability. Together,
these two principles entail the Laplacean thesis that the only way the macro-
probability Pr.Y at t2j X at t1/ can be objective is for it to have the same value as
the micro-probability Pr.Y at t2jA at t1/. If these two probabilities have different
values, the macro-probability should not be taken to describe an objective matter of
fact.9

In what follows, I’ll describe what I think is wrong with .L2/I .L1/, as I’ll ex-
plain, follows from two principles that I’ll assume without argument are correct.
After criticizing .L2/, I’ll try to answer the following two questions: Why should we
think that a given macro-probability is objective? And where do objective macro-
probabilities come from? My goal is to provide a non-Laplacean account of the
epistemology and metaphysics of objective macro-probabilities.

The Principle of Total Evidence and Mereological Supervenience

What could motivate the two-part Laplacean position (L1 and L2)? It might seem to
be an instance of the prejudice that Wilson (2004) calls smallism – the idea that it is
better to conceptualize the world in terms of parts than in terms of wholes. In fact,
the first conjunct in this two-part position .L1/ can be justified in terms of principles
that many philosophers find compelling. L1 follows from the principle of total ev-
idence and the principle of synchronic mereological supervenience, both of which
I’ll assume are true for the rest of this paper. The principle of total evidence has
nothing explicitly to say about micro and macro; rather, it bids you conditionalize
on all of the information at your disposal when you try to figure out what the prob-
ability is of a future event Y. In particular, if you know bothˆ and ‰, and ˆ entails
‰, then using Pr.Yj‰/ will be a mistake if Pr.Yjˆ/ ¤ Pr.Yj‰/. Applied to the
problem at hand, the principle of total evidence says that if your micro-description
A of the state of the system at time t1 entails your macro-description X of the system
at that same time, and the two descriptions confer different probabilities on the sys-
tem’s occupying state Y at time t2, then you should use the former.10;11 The (MS)
principle completes the argument by affirming the antecedent; it asserts that A at t1
entails X at t1, if A is a complete description of the system’s micro-state at t1. No-
tice that this justification of .L1/ does not assert that every true micro-description is
preferable to every true macro-description. If the micro-description is incomplete, it
may or may not entail the macro-description in question.
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Must (In)Determinism Percolate Up?

The thesis of synchronic mereological supervenience (MS) places a constraint on
how determinism or indeterminism at one level is relevant to the same distinction at
another:

If Micro entails Macro and Pr.Y at t2j Macro at t1/ D 1 .or 0/;

then Pr.Y at t2 j Micro at t1/ D 1 .or 0/:

The reason this principle is true is that the probabilities 1 and 0 are sticky. If
Pr.Ej‰/ D 1 (or 0), then strengthening the conditioning proposition (by substi-
tuting ˆ for ‰, where ˆ entails ‰) cannot budge that value.12 The principle holds
regardless of whether the description of the micro-state is complete. Once again, the
contrapositive is interesting:

(P) If Micro entails Macro and Pr.Y at t2j Micro at t1/¤ 1 (or 0), then
Pr.Y at t2j Macro at t1/ ¤ 1 (or 0).

Proposition (P) is one way to express the idea that indeterminism must percolate up.
This percolation principle is a consequence of the axioms of probability; it is not a
consequence of those axioms that determinism must percolate up.

Notice that the percolation principle (P) has the micro- and the macro-
descriptions probabilifying the same proposition, namely Y at t2. If quantum
mechanics says that your going to the movies tonight has a probability that is
strictly between 0 and 1, then belief/desire psychology cannot assign that event
a probability of 0 or 1, if your psychological state supervenes on your quantum
mechanical state. Proposition (P) does not assert that if quantum mechanics assigns
to micro-events probabilities that are strictly between 0 and 1, then psychology must
assign intermediate probabilities to the macro-events it describes. That would be to
make the following false claim (where, as before A and Bi are micro-properties and
X and Y are macro):

If Pr.Bi at t2jA at t1/ ¤ 1 .or 0/; for each i D 1; 2; : : : ; n;

then Pr.Y at t2jX at t1/ ¤ 1 .or 0/:

Even if A says that each Bi has an intermediate probability, it may still be true that A
says that the disjunction .B1 or B2 or; : : : ; or Bn/ has a probability of unity. This is
how micro-indeterminism about the relationship of A to each Bi can be compatible
with macro-determinism concerning the relation of X and Y. In this sense, micro-
indeterminism need not percolate up.

If the axioms of probability are a priori, as I will assume, then so is (P). The truth
of this percolation principle does not depend on anything empirical – for example,
on the fact that radiation sometimes causes mutations that change the evolutionary
trajectories of populations. Discussion in philosophy of biology of whether micro-
indeterminism must percolate up into evolutionary processes has often focused on
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Fig. 3 Two questions about percolation: (i) If A at t1 entails X at t1 and Pr.Y at t2jA at t1/ is in-
termediate, must Pr.Y at t2jX at t1/ also be intermediate? (ii) Can Q at t0 affect Y at t2 by affecting
X at t1? Question (i) can be answered a priori; (ii) cannot

empirical questions of this sort; see, for example, Brandon and Carson (1996),
Glymour (2001), and Stamos (2001). To grasp the difference between these two
questions about percolation, consider Fig. 3. My question concerns how the relation-
ship of A at t1 to Y at t2 constrains the relationship of X at t1 to Y at t2, assuming
that X supervenes on A. The other question focuses on is whether Q can affect Y by
affecting X.

Although I have interpreted proposition (P) as saying that indeterminism must
percolate up, the proposition also asserts that determinism must filter down. If we
had a true deterministic macro-theory, that would entail that there must be a true
deterministic micro-theory. It is interesting that philosophers usually think of micro-
theories as constraining macro-theories, but not vice versa. Can this asymmetry be
justified by pointing to the fact that quantum mechanics provides various no-hidden-
variable proofs, whereas there are no deterministic theories in macro-sciences that
we are prepared to say are true? This is a question that merits further exploration.

Does Macro Screen-Off Micro?

If a macro-probability is to pass the Laplacean test for objectivity, the macro-
description of the system at t1 must capture all of the information in the micro-
description at t1 that is relevant to predicting the system’s macro-state at t2. Where
X is a macro-property at t1 and A is a micro-property at that same time, we can
express this idea by using Reichenbach’s (1956) concept of screening-off:

.Macro SO Micro/ Pr.Y at t2jX at t1/ D Pr.Y at t2jX at t1 & A at t1/:
13

If the micro-state at one time entails the macro-state at that time, as the principle of
mereological supervenience (MS) asserts, then the micro-state at t1 screens off the
macro-state at t1 from the macro-state at t2:

.Micro SO Macro/ Pr.Y at t2jA at t1/ D Pr.Y at t2jX at t1 & A at t1/:
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Fig. 4 When is (Macro SO Micro) true?

These two screening-off principles are compatible.14 Together they entail that:

Pr.Y at t2jA at t1/ D Pr.Y at t2jX at t1/:

This last equality asserts that if you want to predict the system’s state at t2 based on
information about its state at t1, it doesn’t matter whether you use the micro- or the
macro-description. The two descriptions deliver the same probability.

To see when, if ever, (Macro SO Micro) is true, there are four cases to consider,
which are shown in Fig. 4. The macro-theory, which relates X at t1 to Y at t2, will
either be deterministic or indeterministic. I previously have discussed the micro-
theory as relating A at t1 to B at t2. For purposes of the present discussion, I’m going
to understand it as relating A at t1 to Y at t2. This theory is “micro” in the sense that
it uses the micro-property A to predict whether Y will obtain. The micro-theory, like
the macro-theory, will be either deterministic or indeterministic. I assume that A at
t1 suffices for X at t1; the micro-property is a supervenience base for the macro-
property.

Suppose the macro-theory is deterministic (the first column in Fig. 4). If so, the
micro-theory must be deterministic as well, owing to the stickiness of 1’s and 0’s;
the lower-left hand box in Fig. 4 is ruled out. When both theories are deterministic,
(Macro SO Micro) is correct. As an example, consider Putnam’s (1975) well-known
example of the peg and the board. Putnam describes a board that contains two holes;
one is round and is 1 in. in diameter; the other is square, and is a little more than
1 in. on each side. The peg he describes is square and is 1 in. on a side. The peg
fits through the square hole, but not the round one. Why? Putnam contends that the
correct explanation is given by the macro-dimensions just cited. He further claims
that a micro-description of the configuration of the molecules in the peg and board
is either not an explanation, or is a terrible explanation. Putnam concludes from this
that reductionism is false – a macro-story explains something that no micro-story
can explain (or explain as well). I prefer a more pluralistic view of explanation,
according to which micro- and macro-stories are both explanatory (Sober 1999a);
Jackson and Pettit (1992) do too. However, the present point is that, in Putnam’s
example, the macro-facts about the peg and board screen-off the micro-facts from
the fact to be explained. This is because the peg will necessarily pass through one
hole but not the other, given the macro-dimensions (and the initial condition that the
peg is pushed in the right way).
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Fig. 5 The (probabilistic) second law of thermodynamics says that macro-state A goes, with high
probability, to B, and B, with high probability, to C. If A is realized by a, B by b, and C by c, this
transition must occur, but if A is realized by r(a), B by r(b), and C by r(c), it cannot

What happens when the macro-theory is probabilistic (the second column in
Fig. 4)? If the micro-theory is deterministic, the (Macro SO Micro) principle is
false. Clearly, if the micro-probability Pr.Y at t2jA at t1/ D 1 (or 0), and the macro-
probability Pr.Y at t2jX at t1/ has an intermediate value, then Pr.Y at t2jX at t1/ ¤
Pr.Y at t2jX at t1 and A at t1).15 A situation of this type arises when the second
law of thermodynamics is formulated probabilistically (saying that the entropy of a
closed system at t2 is, with high probability, no less than the entropy at t1) and the
underlying Newtonian micro-theory is taken to be deterministic. Figure 5 depicts
an example described by Albert (2000, pp. 71–73), which he uses to explain ideas
due to Zermelo and Loschmidt. A system moves from macro-state A at t1 to B at
t2 and then to C at t3, increasing in entropy at every step. A might be an isolated
warm room that contains a block of ice, B the same room with a half-melted block
of ice and a puddle, and C the room with no ice but a bigger puddle. Suppose that
macro-state A happens to be realized by micro-state a, B by b, and C by c, and that
the Newtonian laws of motion entail that a necessitates b and b necessitates c. Albert
observes that the time-reverse of a, r(a), is a possible realizer of A (he uses the word
“compatible”), r(b) a possible realizer of B, and r(c) of C, and that the laws of mo-
tion say that a state beginning in r(c) will necessarily move to r(b) and then to r(a).
Given this, the macro-state B at t2 does not screen off its micro-realization b from
the macro-state C at t3. Pr.C at t3jB at t2/ is intermediate, but Pr.C at t3jb at t2/ D 1

while Pr.C at t3jr.b/ at t2/ D 0.
The last case to consider is the one in which both the micro- and the macro-

theories are indeterministic. In this case, I doubt that there can be a general argument
to show that (Macro SO Micro) must always be false. However, with one type of ex-
ception, I know of no macro-descriptions that screen-off in the way that (Macro SO
Micro) requires. The following two examples exemplify very general circumstances
in which (Macro SO Micro) is false.

First, consider the macro-statement that Pr(lung cancer at t2j smoking before
t1/ D x, where “smoking” means smoking 10,000 cigarettes. Suppose there is a sin-
gle carcinogenic micro-ingredient A in cigarette smoke and that different cigarettes
contain different amounts of that micro-ingredient. This means that smoking 10,000
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cigarettes entails inhaling somewhere between g and gCh grams of the carcinogenic
ingredient. Given this, the macro-probability Pr(lung cancer at t2j smoking be-
fore t1) is a weighted average over the different probabilities of cancer that different
levels of exposure to the micro-constituent A induce:

Pr.lung cancer at t2jsmoking before t1/ D
Z nD.gCh/

nDg

Pr.lung cancer at t2jinhaling n grams of A before t1/

.Pr inhaling n grams of A before t1jsmoking before t1/.dn/:

If the risk of cancer is an increasing function of the number of grams of A that you
inhale, then the macro-probability will have a different value from all, or all but one,
of the micro-probabilities:

Pr.lung cancer at t2jsmoking before t1/ ¤
Pr.lung cancer at t2jsmoking before t1&

inhaling n grams of A before t1/ for all, or all but one, value of n:

The point is really very simple: if all the children in a classroom have different
heights, at most one of them will have a height that is identical with the average
height.16;17

The one kind of case I know of in which (Macro SO Micro) is true where the
macro-theory is not deterministic involves a macro-description of the system at
t1 that is defined so as to confer a certain probability on a macro-state at t2. As
mentioned earlier, the viability component of an organism’s fitness is defined as its
probability of surviving from egg (at t1) to adult (at t2). This means that

Pr.O is alive at t2jO is alive at t1 and has a viability D x/ D
Pr.O is alive at t2jO is alive at t1 and has a viability D x & O

at t1 has genotype G/ D x:18;19

I take it that the genotypic description is a “micro-description,” as compared to the
fitness description, which is more macro, since the latter attaches to the whole or-
ganism without mentioning its parts. Perhaps a radioactive atom’s half-life provides
a similar example; it is defined so that the screening-off relation holds.

Natural selection might seem to provide the perfect setting for (Macro SO Micro)
to be true. It is often claimed that natural selection “cares” only about an organism’s
phenotype, and not about its genotype; in this vein, Mayr (1963, p. 184), Gould
(1980, p. 90), and Brandon (1990) have emphasized the idea that natural selection
acts “directly” on phenotypes, and only indirectly on genotypes. Perhaps their point
should be formulated in the way that (Macro SO Micro) suggests:

Pr.O is alive at t2jO has phenotype P at t1/ D Pr.O is alive at t2jO
has phenotype P at t1 and genotype G at t1/:
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Fig. 6 A Failure of Screening-Off. Phenotype at t1 does not screen off genotype at t1 from being
alive at t2

In fact, the temporal gap between t1 and t2 provides room for this relationship to be
falsified, as Fig. 6 illustrates. Consider two individuals (Y and Z) who have different
genotypes (G1 and G2); they have the same total phenotype .P1/ at t1 but different
chances of surviving until t2. The reason this is possible is that Y’s genotype causes
it to develop phenotype P2 at a time after t1 but before t2, while Z’s genotype causes
it to develop phenotype P3.P2 ¤ P3/ at that intermediate time. An organism’s entire
suite of phenotypic traits up until t2 affects its chance of surviving until t2. Although
this entire suite may screen-off genotype from survival (this is a better way to put the
Mayr/Gould/Brandon point), the phenotypic traits that an organism has at a single
time during its development often will not.

The arrows in Fig. 6 all represent causal relations. I assume that an organism’s
genome is completely stable throughout its lifetime, though this isn’t essential for
my point; allowing for mutation would mean that an organism’s genome at one time
exerts a probabilistic (not a deterministic) influence on its genome later. I also as-
sume that cause must precede effect; this is why no arrow connects the genotype at
t1 to the phenotype at t1. However, the argument against (Macro SO Micro) does
not depend on ruling out simultaneous causation. It also does not matter whether
genotype at t0 causally determines phenotype at t1; this means that even if geno-
type at t1 provided a supervenience base for phenotype at t1, there still would be a
counterexample to (Macro SO Micro).

Figure 6 depicts a general circumstance in which (Macro SO Micro) fails. The
reason the macro-state at t1 does not screen-off the micro-state at t1 from the macro-
state at t2 is that there are two causal pathways from the micro-state at t0 to the
macro-state at t2. The macro-state at t1 occurs on just one of them.20 A predictor,
demonic or human, who wants to say whether an organism will be alive at t2 by
using information about the organism’s state at t1 may do better by using the organ-
ism’s genotype at t1, rather than the organism’s phenotype at t1, as the basis for the
prediction.21

A similar argument undermines the claim that phenotype screens-off genotype
from reproductive success when an organism’s reproductive success is defined as its
expected number of viable offspring:

E(number of viable offspring that O hasjO has phenotype P/ D
E(number of viable offspring that O hasjO has phenotype P & O has genotype G/:
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For a counterexample, consider a dominant gene A; AA and Aa individuals both
have phenotype P, which differs from the phenotype Q that aa individuals possess.
Suppose individuals with P have higher viability than individuals with Q. If so, AA
individuals will have a greater expectation of viable offspring than do Aa individ-
uals, even though they are phenotypically identical. This is because Aa individuals
sometimes have aa offspring, but AA individuals never do (Sober 1992). The two-
pathway pattern is present here as well. An individual’s genotype influences its own
phenotype as well as the genotype its offspring have. This is why screening-off
fails.22

It is important to bear in mind that my pessimistic evaluation of (Macro SO
Micro) is predicated on the assumption that the principle of mereological superve-
nience (MS) is true. If this assumption is dropped, all four cells in Fig. 4 must be
reconsidered; for example, indeterministic micro-theories can be consistent with de-
terministic macro-theories, since the stickiness argument no longer applies. Forster
and Kryukov (2003) point out that investigations of the relation of micro- to macro-
theories in physics often conceptualize macro-states as probabilistic expectations
over possible micro-states; this means that the system’s (actual) macro-state at a
time is not determined by its (actual) micro-state at that time in any obvious way.
Quantum mechanics has forced philosophers to take seriously the possibility that
the diachronic thesis of determinism may be false. Perhaps the synchronic determi-
nation thesis (MS) should be re-evaluated as well (Crane and Mellor 1990; Sober
1999b).

Micro- and Macro-Causation

In the previous section I argued that the micro-state of a system at t1 is often corre-
lated with its macro-state at t2, even after you control for the system’s macro-state
at t1. This is what it means for the (Macro SO Micro) principle to fail. I now want
to argue that this relationship between the micro-state at t1 and the macro-state at t2
often isn’t a mere correlation; the micro-state at t1 often is a cause of the macro-state
at t2.

To defend this claim, I want to exploit the suggestive ideas about causation pre-
sented by Woodward (2003), who draws on the frameworks developed by Spirtes
et al. (2000) and Pearl (2000). When two events X and Y are correlated, how are we
to discriminate among the following three possibilities: (i) X causes Y; (ii) Y causes
X; and (iii) X and Y are joint effects of a common cause C?23 The intuitive idea
is that if X causes Y, then intervening on X will be associated with a change in Y;
this won’t be true if Y causes X, or if X and Y are effects of a common cause C. To
make this suggestion precise, one has to define the concept of an intervention very
carefully, which Woodward does. An intervention on X with respect to Y causes
the state of X to take on a particular value; it therefore cancels the other causal in-
fluences that would otherwise impinge on X. In addition, an intervention must be
delicate, not ham-fisted; if X and Y are joint effects of a common cause C, then an
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intervention on X with respect to Y must fix the state of X without simultaneously
modifying the state of C. Woodward points out that “intervention” is a causal con-
cept, so the account of causation he gives is not reductive. However, the account is
not circular, in that the intervention criterion for when X causes Y does not require
that you already know whether X causes Y. Even so, it is a consequence of Wood-
ward’s theory that you must have lots of other causal knowledge if you are to figure
out whether X causes Y.

In the first example discussed in this section smoking and lung cancer are
the macro-variables, and the number of grams inhaled of the carcinogenic micro-
ingredient A is the micro-variable. It seems clear here that intervening on the
micro-variable while holding fixed the fact that someone smokes will change the
person’s probability of getting lung cancer. This tells you that the micro-state at t1
causally contributes to the macro-state at t2. The same pattern obtains in the exam-
ple depicted in Fig. 5 in which phenotype at t1 and being alive at t2 are the two
macro-variables, and genotype at t1 is the micro-variable. If we change someone’s
genotype (from G1 to G2, or vice versa), while leaving the phenotype unchanged,
the chance of surviving until t2 will change.

These remarks in favor of the micro-state at t1’s being causally efficacious do not
rule out the possibility that the macro-state at t1 is also causally efficacious (Sober
1999b). An intervention that shifted someone from 10,000 cigarettes smoked to,
say, 25, would be associated with a reduction in that person’s chance of getting lung
cancer. Of course, this drastic reduction in number of cigarettes smoked will entail
a drastic reduction in how many A particles are inhaled. And it may also be true that
smoking causes cancer only because cigarette smoke contains A particles. But none
of this should be taken to refute the claim that smoking causes cancer. There is no
conflict between the claim that smoking causes cancer and the claim that inhaling
A particles causes cancer.24;25

The Principle of Total Evidence and Explanation

Suppose we use the macro-probability Pr.Y at t2jX at t1/ to predict whether Y at t2
because we know that X is the system’s macro-state at t1 and we don’t know the
value of the micro-probability Pr.Y at t2jA at t1/ and also don’t know the system’s
micro-state at t1. The Laplacean concludes from this that we should give a subjective
interpretation to the macro-probability Pr.Y at t2jX at t1/. We now need to evaluate
this piece of advice, embodied in the principle L2. After all, the Laplacean principle
L1 has to do with which probabilities we should use to make predictions. If we use
probabilities for other purposes – for example, to construct explanations – perhaps
this different venue can provide a reason for thinking that macro-probabilities are
objective (Sober 1984).

Does our interest in constructing good explanations justify our citing X at t1 as an
explanation of Y at t2, rather than citing A at t1 instead, when Pr.Y at t2jX at t1/ ¤
Pr.Y at t2jA at t1/? To endorse this suggestion, we need not agree with Putnam’s
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claim that the micro-details are explanatorily irrelevant. As argued in the previous
section, it is often true that both the micro- and the macro-properties of a system
at a given time are causally efficacious. If explanation means causal explanation,
then causal explanations can be constructed in terms of micro-properties and also
in terms of macro-properties. Is there a sense in which the macro-explanations are
objectively better?

Putnam, following Garfinkel (1981), holds that a good explanation will be gen-
eral, and that more general explanations are objectively better than less general ones.
If the micro-property A entails the macro-property X, but not conversely, then X will
be true of at least as many systems as A is. This is what Garfinkel and Putnam mean
by generality. With respect to Putnam’s peg and board, there will be more systems
that have the macro-dimensions he describes than have the exact molecular config-
uration that the micro-description specifies.

My reply is that generality is just one virtue an explanation might have, and
that we want different explanations to exhibit different virtues, or different mixes of
them. Sometimes we want greater generality; at others we want more causal detail.
For example, suppose we are evaluating two explanations of an event; one candidate
cites just one of its causes while the other cites two; the second of these will be
less general than the first, but will be more detailed. The desiderata of breadth and
depth of explanation conflict (Jackson and Pettit 1992; Sober 1999a) and there is
no objective criterion concerning which matters more or that determines what the
optimal trade-off between them is.

Even when we focus just on generality, it isn’t automatic that macro-explanations
trump micro-explanations. First, the Garfinkel–Putnam definition of generality en-
tails that the macro-description of a system at a given will be more general than
a micro-description of the system at that time, when the latter entails the former.
The principle of mereological supervenience (MS) assures us that the two descrip-
tions will be related in this way when the micro-description is complete. However,
this leaves unsettled which description is more general when the micro-description
of the system’s state is not complete. Garfinkel and Putnam have not shown that a
macro-explanation of E is more general than any micro-explanation of E, but only
that the macro-explanation is more general than a complete micro-explanation. Their
argument against reductionism therefore fails, even if we accept their definition of
generality. The second problem has to do with Garfinkel and Putnam’s decision
about how generality should be defined. Consider the causal relationships depicted
in Fig. 7. The distal cause D causes each of P1; P2; : : : ; Pn, and each of these prox-
imate causes has its own effect E1; E2; : : : ; En. Let’s suppose that D suffices, but is
not necessary, for P2. The Garfinkel–Putnam definition of generality will then say
that P2 is a more general explanation of E2 than D is. Their definition of generality
focuses on the explanandum E2 and asks how many systems that have this target
property have D and how many have P2. However, there is another definition of
generality, one which focuses on how many phenomena a given explanans explains.
D explains all of the Pi, and all of the Ei as well, whereas P2 explains only E2. In this
sense, D is more general than P2 (Tsai 2004). There is no conflict here, of course; P2

is a more general explanation than D is of a single explanandum (namely E2), but D
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Fig. 7 P2 may be a more
general explanation of E2
than D is, but D explains
more phenomena than
P2 does
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applies to more explananda than P2 does. The problem is that the Garfinkel–Putnam
argument depends on using one definition of generality and ignoring the other.26

The Laplacean principle L1 is correct as a claim about prediction, assuming as I
do that the principle of mereological supervenience (MS) and the principle of total
evidence are both correct. However, the objectivity of macro-probabilities is not to
be secured by pointing out that one of our goals in constructing explanations is that
they be general. Sometimes we want our explanations to be more general; at other
times we want them to be more detailed. But in both cases, we want the facts we
cite to be facts – we want them to be objectively correct. To echo the Euthyphro,
our citing a macro-probability when we give an explanation is not what makes that
probability objective; rather, its objectivity is a requirement we impose on the items
we choose to include in our explanations. So even if generality of explanation were
a categorical imperative, that would not show that macro-probabilities are objective.
And, in any event, generality is just one explanatory virtue among several.

The Principle of Total Evidence, Objectivity, and the Smart
Martian Problem

The Laplacean argument against the objectivity of macro-probabilities resembles
an argument that Nozick constructed (described in Dennett 1987) concerning the
reality of beliefs and desires. Nozick pointed out that smart Martians will be able to
predict our behavior without needing to attribute beliefs and desires to us. They can
grasp at a glance the properties of the elementary particles that make up our bodies
and use that description as an input to a dynamical physical model to predict how our
bodies will comport themselves in the future. Nozick took this to raise the question
of why we should think that people really do have beliefs and desires, a question
that Dennett (1987) answered, following the Garfkinkel–Putnam line, by citing our
penchant for constructing general explanations. The assumption behind Nozick’s
puzzle is that the only reason there could be for thinking that individuals have beliefs
and desires is that we need to postulate those states to predict behavior.27 We mere
mortals need to attribute beliefs and desires if we wish to predict a person’s behavior,
but smart Martians do not. This seems to rob the existence of beliefs and desires of
their objectivity.

The main thing wrong with this argument is its ad hominem quality. If you want
to know whether something exists, you should ask to see the relevant evidence.
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Whether you or anyone else needs to believe that the thing exists for purposes of
prediction (or explanation) is not separately relevant. Nozick’s demon won’t need to
say that bowling balls exist, but that hardly shows that there are none (Sober 1999b).
The same holds for the existence of beliefs and desires, and also for objective macro-
probabilities.28

The comparison that Nozick invites us to make is between two hypotheses, one
ascribing a set of beliefs and desires to someone, the other ascribing some complex
micro-physical state to that person. According to Nozick’s story, the Martian knows
that the second of these hypotheses is true, and so he has no need to consider the
first. This fact is supposed to raise the question of why we should think that people
really have beliefs and desires. Why shouldn’t we treat this posit instrumentally, as
a fiction that we find useful? However, if the question is whether a person really has
some set of beliefs and desires, the appropriate alternative hypothesis to consider is
not that they occupy some complex micro-physical state. These are not competing
hypotheses – both could well be true. To treat them as competitors would be like
wondering whether someone has smoked cigarettes, and then taking the alternative
to be that he has inhaled carcinogenic A particles.

If the Laplacean argument against the reality of macro-probabilities were sound,
it would be possible to strengthen it. Consider a hypothetical being that has perfect
precognition. Unlike Laplace’s demon, it doesn’t need to observe the present state
of the universe and then compute its future; this being knows the whole history –
past present, and future – directly. This super-demon would not need to use any
dynamical law – micro or macro, deterministic or indeterministic – to predict the
future. But surely this does not show that dynamical laws (e.g., those of quantum
mechanics) are never objectively true – that they are just useful fictions. Here again,
what a hypothetical demon needs does not settle what is objectively true.

The mistaken idea that the Laplacean criterion .L2/ is a good test for whether
a probability is objective may seem to receive support from the equally mistaken
assumption that a proposition has just one true probability. This second mistake
leads to the pseudo-problem of trying to figure out what that one true probability is.
The grip of this misconception can be broken by taking conditional probabil-
ity, rather than unconditional probability, as one’s fundamental concept (Hajek
2003).29 The proposition that Y occurs at t2 has a different probability, depend-
ing on which conditioning proposition is chosen. To ask whether Pr.Y at t2j X at t1/
or Pr.Y at t2j A at t1/ is the true probability of Y at t2 is like asking what the true
distance is to Madison, the distance from Baltimore to Madison or the distance from
Boston to Madison.30

The Epistemology and Metaphysics of Objective
Macro-probabilities

If the needs of demons are not relevant to finding out whether a probability is objec-
tive, where should we look? We may begin by asking what it means to say that the
macro-probability Pr.Y at t2j X at t1/ or the micro-probability Pr.Y at t2j A at t1/
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describes objective features of the world. Under the heading of “objective inter-
pretations of probability,” there is a now-familiar list – actual relative frequency,
hypothetical relative frequency, and propensity, each with variations on those broad
themes (Eells 1981). If any of these interpretations is correct for any statement that
assigns a value to a macro-probability, the objectivity of that statement is vouch-
safed. For example, if Pr(this coin lands heads j this coin is tossed) is taken to
describe the actual frequency of heads in a run of tosses, there is nothing subjective
about a statement that assigns this probability a value. It is perfectly possible for the
statement to be objectively true.31

Unfortunately, this does not suffice to show that macro-probabilities are objec-
tive, since none of these interpretations is adequate as a general account of objective
probability. The objections I have in mind are familiar. With respect to the actual
frequency interpretation, the fact is that we often conceptualize probabilities in such
a way that they can have values that differ from actual frequencies; for example, a
fair coin can be tossed an odd number of times and then destroyed. The other ob-
jective interpretations fare no better. If propensities are causal tendencies – that is,
if Pr.Y at t2j X at t1/ represents the causal tendency of X at t1 to produce Y at t2 –
then the propensity interpretation cannot make sense of the “backwards probabili-
ties” mentioned at the start of this paper that have the form Pr.X at t1j Y at t2/, at
least not if cause must precede effect (this objection is due to Paul Humphreys; see
Salmon 1984, p. 205).32 On the other hand, if the concept of propensity is stripped
of this causal meaning, it isn’t clear how the propensity interpretation helps clar-
ify the concept of objective probability. As for the hypothetical relative frequency
interpretation, it overstates the relation of probability to what would happen in the
infinite long run. It is possible for a fair coin to land heads each time in an infinite
run of tosses (though this, like all the other exact sequences that can occur, has a
probability of 0). The coin’s probability of landing heads is probabilistically (not
deductively) linked to what would happen in the long run, finite or infinite (Skyrms
1980); the hypothetical relative frequency interpretation therefore does not provide
a reductive definition of objective probability.

In view of the failures of these interpretations, my preference is to adopt a
no-theory theory of probability, which asserts that objective probability is not
reducible to anything else. Frequencies provide evidence about the values of prob-
abilities, and probabilities make (probabilistic) predictions about frequencies, but
probabilities don’t reduce to frequencies (Levi and Morgenbesser 1964; Levi 1967;
Sober 1993b, 2003b). Instead, we should view objective probabilities as theoreti-
cal quantities. With the demise of logical positivism, philosophers abandoned the
idea that theoretical magnitudes such as mass and charge can be reduced to obser-
vational concepts that are theory-neutral. We should take the same view of objective
probabilities.

If we reject the need for a reductive interpretation of objective probability, what
does it mean to say that a probability is objective? Taking our lead from other theo-
retical concepts, we can ask what it means to say that mass is an objective property.
The idea here is that mass is a mind-independent property; what mass an object has
does not depend on anyone’s beliefs or state of mind.33 The type of independence
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involved here is conceptual, not causal – it is not ruled out that an object have the
mass it does because of someone’s beliefs and desires. The next question we need
to ask is epistemological – what justifies us in thinking that mass is an objective
property? If different measurement procedures, independently put to work by dif-
ferent individuals, all lead to the same estimate of an object’s mass, that is evidence
that mass is an objective property. The matching of the estimates is evidence that
they trace back to a common cause that is “in” the object; since the estimates do not
vary, differences among the procedures used, and among the psychological states
of the investigators, evidently made no difference in the results obtained. Of course,
this sort of convergence does not prove that there is an objective quantity that the
observers are separately measuring.34 It is possible that the observers have some
psychological property in common, and it is this subjective commonality that causes
their estimates to agree, there being no mind-independent reality that they are bump-
ing up against at all.35

A perfect matching of the estimates that different investigators obtain is not nec-
essary for the common-cause argument I am describing to go forward. Suppose the
different estimates differ, but only a little. That too would support an argument for
there being an objective quantity that the different investigators are measuring. Put
formally, this amounts to endorsing a model that says that there exists a true value
of the mass of the object in question, and that the observers obtain their estimates
by processes that are characterized by a set of error probabilities. Endorsement of
this model should be understood as a comparative claim, not an absolute claim – we
are judging that this model is better than one or more alternatives. The alternative
of interest here is a model that says that each investigator is measuring a separate
property of his or her state of mind. This more complex model can be made to fit
the data, but its greater complexity counts against it. In this way, the question of
whether mass is objective can be turned into a problem of model selection.36

How can we use the example of mass to guide our thinking about the objectivity
of macro-probabilities? To begin with, we must take account of a difference between
mass and probability.

Mass is a non-relational, intrinsic property of an object, but, as mentioned ear-
lier, I want to regard conditional probability, not unconditional probability, as the
fundamental notion, and conditional probability is a relation between pairs of propo-
sitions. The case for the objectivity of macro-probabilities is not defeated by the
fact that you and I will give different probabilities for a coin’s landing heads if we
conditionalize on different information about the system’s initial conditions. It is ob-
vious that Pr.YjX/ and Pr.YjA/ can have different values. Our question is whether
Pr.YjX/ and Pr.YjA/ can both be objective quantities.

It may seem that focusing on conditional probabilities does not change matters.
If you have background knowledge U and I have background knowledge M, then
you will evaluate Pr.YjX/ by computing Pr.YjX&U/, while I’ll evaluate Pr.YjX/
by computing Pr.YjX&M/. If Pr.YjX&U/ ¤ Pr.YjX&M/, you and I will assign
different values to Pr.YjX/. This suggests that Pr.YjX/ does not represent an objec-
tive relation that connects the propositions Y and X; rather, there is a third relatum
that is not explicitly mentioned, and this is the set of beliefs that some agent or
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other possesses. However, if this is the right take on Pr.YjX/, what should we say
about Pr.YjX&U/ and Pr.YjX&M/? Do they have unique values, or are their values
again relative to the background beliefs of some agent? If the values aren’t unique,
how did you and I manage to assign values to Pr.YjX/ by consulting our back-
ground knowledge U and M and then deciding what the values are for Pr.YjX&U/
and Pr.YjX&M/? In fact, what gets added to X and Y when U and M are taken
into account is not anyone’s psychological state, but certain further propositions. It
isn’t your believing U that matters, but simply the proposition U that you believe;
this is what gets included as one of the conditioning propositions in Pr.YjX&U/.
These considerations suggest the following thesis: some conditional probabilities
have unique values, which are not relative to anyone’s background beliefs. This
claim is of course compatible with the concession that many conditional probabil-
ities do not have this status.37 Statisticians have a term for probabilities of the first
sort – these are the probabilities that figure in “simple” (as opposed to “composite”)
statistical hypotheses.

To develop my argument for the reality of (some) macro-probabilities, I want
to consider a Newtonian model of coin tossing due to Keller (1986) and Diaconis
(1998). The initial conditions for a toss determine whether the coin will land heads
or tails. The reason a coin exhibits some mixture of heads and tails in a series of
tosses is that the initial conditions vary from toss to toss. To simplify matters, we
assume that there is no air resistance, that the coin spins around a line through its
plane, and that the coin lands without bouncing (perhaps in sand). The relevant
initial conditions are then fixed by specifying the values of V (the upward velocity
of the toss) and ¨ (the angular velocity, given in revolutions per second). If V is
very low, the coin doesn’t go up much; if ¨ is very low, the coin, as Diaconis puts
it, “rises like a pizza without turning over.” Depending on the values of V and¨, the
coin will turn 0, 1, 2, 3, : : : times before it lands. Suppose the coin we are considering
starts each tossing session by being heads up in the tosser’s hand. Then, if the coin
turns over 0 or an even number of times, it lands heads, and if it turns over an odd
number of times, it lands tails. These different possibilities correspond to the regions
of parameter space depicted in Fig. 8. Starting at the origin and moving Northeast,
the different stripes correspond to 0 turns, 1 turn, 2 turns, etc. For the purposes of
investigating how macro-probabilities can be objective in a deterministic universe,
I’m going to assume that the Keller/Diaconis model is true.38 Laplace’s demon,
since it knows the exact values of V and ¨ that characterize a given toss, will be
able to predict whether the coin will land heads or tails without needing to use
the concept of probability. We who are less well informed about the toss’s values
for V and ¨ need to use the language of probability to make our prediction. This
much is uncontroversial. The question is how a macro-probability, which does not
conditionalize on point values for V and ¨, can be objective.39

I want to argue, not just that the objectivity of macro-probabilities is compatible
with Keller and Diaconis’s deterministic model, but that this deterministic micro-
model helps justify the claim that the macro-probabilities are objective. Consider
the followingrepresentation of the relation between macro-and micro-dynamical
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Fig. 8 Newtonian coin
tossing (From Diaconis 1998)

theories. Suppose there are n micro-states .A1; A2; : : : ; An/ the system might be
in at t1. As before, X and Y are macro-properties.

.D/ Pr.Y at t2jX at t1/ D
X

i

Pr.Y at t2jAi at t1/ Pr.Ai at t1jX at t1/:

As noted earlier, the macro-probability Pr.Y at t2jX at t1/ is a weighted average
over various micro-probabilities of the form Pr.Y at t2jAi at t1/. The Laplacean
grants that the first term on the right-hand side, Pr.Y at t2jAi at t1/, is objective.
So the question of whether the macro-probability Pr.Y at t2jX at t1/ is objective
reduces to a question about the second term on the right – is the distribution of
Pr.Ai at t1jX at t1/ over i D 1; 2; : : : ; n objective? That is, the diachronic macro-
probability Pr.Y at t2jX at t1/ is objective if a set of synchronic probabilities is
too.40 This point holds regardless of whether the micro-theory is deterministic –
i.e., independently of whether all the probabilities of the form Pr.Y at t2jAi at t1/
have extreme values. Those with Laplacean sympathies may think that macro-
probabilities can’t be objective if the dynamic micro-laws are deterministic. But
examining the decomposition (D) shows that this reaction involves looking in the
wrong place. Even if the micro-level dynamics are deterministic, what matters is
the initial conditions – the question is whether the distribution Pr.Ai at t1jX at t1/ is
itself objective.

If we apply the decomposition (D) to the case of coin tossing, and take account
of the fact that V and ¨ are continuous quantities, we obtain the following double
integral:

Pr.heads at t2jtossed at t1/ D
“

a;b

Pr .heads at t2jV D a and ¨ D b at t1/

Pr.V D a and ¨ D b at t1jtossed at t1/.da/.db/:
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The question is whether the second product term on the right – the distribution of
initial conditions – is objective. If it is, so is the macro-probability on the left. The
Keller/Diaconis model helps simplify our question. Figure 8 shows that all we need
to worry about is

Pr.heads at t2jtossed at t1/ D Pr.heads at t2jV and ¨ are in a black region at t1/

Pr.V and ¨ are in a black region at t1jtossed at t1/;

which simplifies to

Pr.heads at t2jtossed at t1/ D Pr.V and ¨ are in a black region at t1jtossed at t1/:

Let me emphasize once more that the diachronic macro-probability on the left is
objective if the synchronic probability on the right is.

Why should we think that Pr(V and ¨ are in a black region at t1jtossed at t1) is
an objective quantity? Suppose that a large number of observers each toss the coin
one or more times. The number of tosses may vary from observer to observer and
the observers may obtain somewhat different frequencies of heads in their different
runs. Suppose that experimenters who toss the coin 1,000 times or more obtain
frequencies of heads that are tightly clustered around 51%, while those who toss
the coin a much smaller number of times obtain frequencies that are more widely
dispersed. The similarity of the actual frequencies obtained by different observers
should be explained by postulating a common cause. There is something about the
process generating initial conditions on a toss that leads 51% of the tosses to be
located in the black region of parameter space. This commonality is captured by
the claim that Pr(V and ¨ are in a black region at t1j tossed at t1/ D 0:51. This
probability claim applies not only to the runs of tosses that have been performed to
date; it additionally makes a prediction about future runs of tosses, a prediction in
which we are entitled to have some confidence.41

The common cause argument just presented is epistemic – the point is to show
that the kind of evidence we have concerning the objectivity of mass as a prop-
erty also helps establish the objectivity of synchronic probabilities of the form
Pr.A at t1jX at t1/. This point about evidence, however, does not answer a more
metaphysical question. Where do macro-probabilities come from? What account
can be given of how they arise?

The idea of common causes provides an answer to this metaphysical question as
well, one that is depicted in Fig. 9. As before, let X be a macro-property at time t1
and A a micro-property at that same time, but now consider C, which is a micro-
variable at the earlier time t0. C is a common cause of X and A, and C comes
in n states .C1; C2; : : : ; Cn/. We are interested in the question of how the macro-
probability Pr.A at t1jX at t1/ arises. The answer42 is that it arises from the common
cause C:

Pr.AjX/ D Pr.A&X/=Pr.X/ D
X

i

Pr.A&XjCi/Pr.Ci/
. X

i

Pr.XjCi/Pr.Ci/:
43
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Fig. 9 How a synchronic
macro-probability can arise
from a micro common cause

Time t0 Time t1

Macro 

Micro

X

C A

Notice that all the probabilities on the right of the second equality sign are condi-
tional micro-probabilities or unconditional probabilities of the micro-properties Ci.
A Laplacean who believes in the reality of micro-probabilities can see from this
how synchronic macro-probabilities of the form Pr.A at t1jX at t1/ arise. And
once these are in place, the reality of diachronic macro-probabilities of the form
Pr.Y at t2jX at t1/ is vouchsafed. We thus have in hand both a metaphysical and an
epistemological answer to our question about the reality of macro-probabilities.

Concluding Comments

The Laplacean position (L1 and L2) allows that there is one circumstance in which
the macro-probability Pr.Y at t2jX at t1/ represents an objective matter of fact. This
occurs when the macro-probability Pr.Y at t2jX at t1/ and the micro-probability
Pr.Y at t2jA at t1/ have the same value. If A at t1 suffices for X at t1, in accor-
dance with the principle of mereological supervenience, this equality holds precisely
when (Macro SO Micro) – that is, when Pr.Y at t2jX at t1/ D Pr.Y at t2jX at t1 and
A at t1/. I have argued that this equality will rarely if ever be true. If we had true
deterministic macro-theories, (Macro SO Micro) would automatically be correct.
But we do not. And when both the macro- and the micro-theories are probabilistic,
I know of no cases in which (Macro SO Micro) is correct; what is more, there seem
to be very general reasons why this principle should fail. Facts about the micro-level
seem constantly to provide predictively relevant information – information that is
relevant above and beyond that provided by more coarse-grained macro-facts.

If (Macro SO Micro) were true, that principle would provide macro-probabilities
and the theories in which they figure with a degree of autonomy. Predicting whether
Y at t2 would require just the macro-information that X at t1; adding micro-details
about what is true at t1 would not be relevant. Anti-reductionists who yearn for this
type of autonomy need to face up to the fact that it is not to be had. The autonomy
of macro-level theories, if it exists, must be found elsewhere.

Laplaceans reason that if (Macro SO Micro) is false, then the macro-probability
Pr.Y at t2jX at t1/ fails to describe anything objective. If we want to resist this
conclusion, what are our options? One is to appeal to the usefulness of macro-
probabilities in constructing explanations. I have offered two reasons for rejecting
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this suggestion. First, it is unclear why explanations constructed by using macro-
probabilities are objectively better than explanations constructed on the basis of
micro-probabilities. And second, it is a mistake to think that macro-probabilities
are objective because they figure in our explanations. Rather, the situation is the
reverse – if we want our explanations to be objectively correct, we can cite macro-
probabilities only if we have some assurance that they are objective.

The line I prefer to take against the Laplacean focuses on the decompo-
sition (D). If we assume, as the Laplacean does, that the micro-probabilities
Pr.Y at t2jAi at t1/ .i D 1; 2; : : : ; n/ are objective, it turns out that the macro-
probability Pr.Y at t2jX at t1/ is objective precisely when the synchronic proba-
bilities Pr.Ai at t1jX at t1/.i D 1; 2; : : : ; n/ are too. Even if the micro-dynamical
laws are deterministic, it is irrelevant to harp on that fact. The crux of the matter
concerns the synchronic distribution of initial conditions – in Keller and Diaconis’s
coin tossing model, whether Pr(V and ¨ are in the black region at t1j the coin is
tossed at t1) is objective. I have argued that data can support the claim that such
probabilities have objective values in just the way that data can support the claim
that mass values are objective. What is more, the value of this synchronic macro-
probability can be viewed as the upshot of an earlier micro-variable C. Laplaceans
thus find themselves in an untenable position – if micro-probabilities are objective,
so too must macro-probabilities be objective.
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Notes

1 With finite population size, fitness should not be defined as the mathematical expectation; see
Sober (2001a) for discussion.

2 Horan (1994) defends a similar position.
3 Rosenberg (2001, p. 541) has more recently taken a different position: “: : : the way in which

the principle of natural selection invokes the notion of probability cannot be understood either
epistemically or in terms of probabilistic propensities of the sort quantum mechanics trades in.
The notion of probability that the principle of natural selection invokes can only be understood
as the kind of probability to which thermodynamics adverts [namely] : : : long run relative fre-
quencies.” My focus here will be on Rosenberg’s earlier position, though I will have a little to
say about both thermodynamics and the long run frequency interpretation of probability.

4 In fact, there are reasons to think that Newtonian mechanics is not deterministic; see Earman
(1986, 2004) and Butterfield (1998) for discussion.

5 This is the view embraced by the theory of single-case propensities developed by Giere (1973).
6 (MS) can be modified to accommodate the idea that some macro-properties supervene on his-

torical facts, so that the supervenience base for macro-properties at time t is the state of particles
in some temporal interval leading up to t.

7 The following remark from Earman (2005) is a useful cautionary reminder to those who think
that indeterminism is a settled matter in modern physics: “One might have hoped that this survey
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[referring to his own paper] would provide an answer to the question: If we believe modern
physics, is the world deterministic or not? But there is no simple and clean answer. The theories
of modern physics paint many different and seemingly incommensurable pictures of the world;
not only is there no unified theory of physics, there is not even agreement on the best route
to getting one. And even within a particular theory – say, Quantum Mechanics or the General
Theory of Relativity – there is no clear verdict. This is a reflection of the fact that determinism
is bound up with some of the most important unresolved problems for these theories.”

8 Why does Figure 1 have an arrow going from B at t2 to Y at t2, while Figure 2 has a double
arrow between .B1 or B2 or : : : or Bn/ at t2 and Y at t2? The reason I drew Figure 2 in this way
is that I wanted the demon to be able to derive a point value for Pr.Y at t2jA at t1/ from the fact
that Pr.B1 or B2 or : : : or Bn at t2jA at t1/ D q. If the disjunction of the Bi at t2 simply sufficed
for Y at t2, what would follow is just that Pr.Y at t2jA at t1/ � q.

9 These two principles, L1 and L2, bear slightly different relationships to the question of which
interpretation of probability you should use. Whether you are talking about subjective credences
or objective chances, you still need advice about which conditional probabilities to use in making
predictions. In this sense, L1 is not wedded to any one interpretation of probability.

L2, however, gives advice about which interpretation of probability you should impose on a
given conditional probability.

10 I am construing the principle of total evidence as saying, not just that you should use all of the
evidence you have, but that using more of the evidence is better than using less.

11 Why accept the principle of total evidence? Good (1967) constructs a decision-theoretic jus-
tification. He says that his argument applies to logical and subjective probabilities, but not to
frequencies. I take the argument to apply to objective probabilities as well.

12 The thesis that 1’s and 0’s are sticky asserts that
If Pr.AjB/ D 1, then Pr.AjB&C/ D 1 (assuming that Pr(B), Pr.B&C/ > 0).

Proof. If Pr.AjB/ D 1, then Pr.AjB&C/Pr.CjB/ C Pr.AjB&-C/Pr.-CjB/ D 1 as well. If
Pr.CjB/ > 0, then Pr.AjB&C/ D 1. And Pr.CjB/ > 0, since Pr.B&C/ > 0; Pr.B/ > 0.

13 Strevens (2003) views (Macro SO Micro) as the key to understanding how there can be simple,
stable, and objective probabilistic macro-laws; he calls this principle the probabilistic super-
condition. Strevens is interested in cases in which it is exactly satisfied as well as in cases in
which it is satisfied only approximately.

14 Note that screening-off, as I define it, is not asymmetric; Micro’s screening-off Macro from Y
does not preclude Macro’s screening-off Micro from Y. Screening-off is often defined as an
asymmetric relation. Since my purpose in what follows is to argue that (Macro SO Micro) is
rarely, if ever, true, my arguments, which are formulated in terms of the weaker notion, also
count against the principle when the stronger interpretation is used.

15 Although the equality asserted by (Macro SO Micro) can’t be exactly correct when the macro-
theory is probabilistic and the micro-theory is deterministic, it can be approximately true. Here’s
a simple case in which this is so. Suppose that the effect term Y at t2 involves a statistic con-
cerning outcomes over many trials. For example, what is the probability that a fair coin will land
between 40% and 60% heads when tossed 1000 times? The probability is nearly one. The deter-
ministic micro-details (supposing there are such) confer on that outcome a value that is equal to
1. So (Micro SO Macro) is approximately true.

16 The monotonic increase of cancer risk with increase in the number of A particles inhaled is not
essential for this argument. For each item in a set to have the same value as the set’s average
value, the items must all have the same value.

17 Spirtes and Scheines (2003) discuss a similar example – Pr.heart attackjcholesterol level D ’/

will be an average, since there are different mixtures of high and low density lipids that instan-
tiate the same cholesterol level, and different mixtures confer different probabilities on having a
heart attack.

18 The use of descriptors of the population’s state at t1 that are defined so that they entail a prob-
ability distribution for the system’s state at t2 is what leads mathematical models in population
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biology to have the status of a priori mathematical truths (Sober 1984) and to be time-
translationally invariant (Sober 1993c).

19 It might be better to express this screening-off claim by absorbing the facts about viabilities
at t1 into the probability function, thus yielding the equality Prv(O is alive at t2jO is alive at
t1/ D Prv(O is alive at t2jO is alive at t1 & O has genotype G at t1). That way, the conditional
probabilities don’t conditionalize on probability statements.

20 The (Macro SO Micro) principle would not be rescued by allowing the times t0; t1; t2 to be
intervals rather than instants. As long as there is a temporal gap between t1 and t2, the kind of
counterexample contemplated here can arise. Thus, even if the macro-state at t1 supervenes on
“historical” facts at the micro-level that extend back in time from t1, the counterexample stands.
And allowing the phenotype at t1 to influence the phenotype that arises later won’t save (Macro
SO Micro), either.

21 I say “may” because the question of whether G1 at t1 or P1 at t1 is a better predictor of whether
Y is alive at t2 depends on the quantitative relationships that obtain among the path coefficients
we might associate with the arrows in the left-hand diagram in Figure 6.

22 Although I have argued that (Macro SO Micro) is rarely if ever true when both the macro- and
the micro-theories are probabilistic, there may be circumstances in which it is approximately
correct. One of the main theses of Strevens (2003) is that (Macro SO Micro) is approximately
true when the system is “macro-periodic” and approximately “micro-constant.” The former says,
roughly, that the probability distribution over initial conditions is smooth; the latter concerns how
a given macro-state is realized by various micro-states. It suffices for micro-constancy if all the
micro-state realizers of a given macro-state have the same probability of occurring, conditional
on the occurrence of that macro-state.

23 Woodward accepts the so-called causal Markov principle, which asserts that one of these three
possibilities must be true; I do not (Sober 1988, 2001b). Woodward’s ideas about intervention
are interesting independent of this question.

24 Kim (1989) argues that behavior cannot have both psychological and neurophysiological causes,
since this would imply that behavior is over-determined, a consequence that Kim finds objec-
tionable. However, this is not a case of overdetermination if overdetermination requires only that
the two causes each be sufficient for the effect and independent (Kim 2000). When Holmes and
Watson each shoot Moriarty through the heart at the same time, each cause could occur without
the other. But if neurophysiological states (or those states plus relevant facts about the physical
environment) provide supervenience bases for psychological states, the two will not be indepen-
dent. A further objection to Kim’s argument is relevant when the causal relation is probabilistic –
there is no over determination if there is no determination at all.

25 These brief remarks do not address the question of whether the micro supervenience base should
be held fixed when the causal role of a macro-property is tested, or whether the macro-property
should be held fixed when the causal role of its supervenience base is assessed; see Sober (1999b)
for discussion.

26 It may be objected that D and P2 do not compete with each other as explanations of E2 and that
the desideratum of generality is relevant only when the task is to sort out competing explanations.
If competing explanations must be incompatible, then I agree that “D occurs” and “P2 occurs”
are not competitors (and the same holds for “D causes E2” and “P2 causes E2”); but then it
follows that the micro- and macro-stories that Putnam describes in the peg-and-board example
are compatible, so they are not competitors, either. On the other hand, if competition does not
require incompatibility, I am unsure how this objection should be interpreted.

27 This part of Nozick’s argument derives from the indispensability arguments used by Quine
(1953) and Putnam (1971) concerning the reality of mathematical entities. For a critique of
these indispensability arguments, see Sober (1993a, 2000).

28 I am not arguing that the existence of beliefs and desires (and of bowling balls, for that matter)
is beyond dispute. Perhaps Patricia and Paul Churchland are right that beliefs and desires don’t
belong in a scientific psychology. My point is that this eliminativist conclusion is not supported
by the fact that a hypothetical demon wouldn’t need to postulate such things in order to make
predictions.
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29 Here are two reasons for thinking that conditional probability should not be defined in terms
of unconditional probabilities. First, there are cases in which it is perfectly clear that Pr.YjX/
has a value even though Pr.X/ D 0. Second, one sometimes knows perfectly well the value of
Pr.OjH/ and that this is an objective quantity, even though it seems perfectly clear that Pr(H)
has no objective value at all; this situation often arises when H is a large-scale scientific theory
(e.g., relativity theory), and O is some observational claim upon which the theory confers a
probability. These points do not undercut the fact that Pr.YjX/ D Pr.Y&X/=Pr.X/ when the
two unconditional probabilities are well-defined.

30 As further evidence against the claim that a proposition has one true probability, it is worth
noting that, in an indeterministic process, the probability of Y at t will evolve (Sober 1984). For
example, it is perfectly possible that Pr.Y at t2jA at t1/ ¤ Pr.Y at t2jB at t0/.

31 This point about the actual relative frequency interpretation reveals a confusion in the Laplacean
position. The fact that we shouldn’t use Pr.Y at t2jX at t1/ to predict whether Y at t2 if we can
use Pr.Y at t2jA at t1/ instead doesn’t show that the former has no objective interpretation. That
conflates a question about pragmatics (which probabilities we should use to perform which tasks)
with a question about semantics (Sober 2003a).

32 In addition, Pr.Y at t2jX at t1/ will fail to represent the propensity of X at t1 to cause Y at t2
when Y at t2 and X at t1 are effects of a common cause at t0. And even when X at t1 has a causal
impact on Y at t2, the measure of this impact is not to be found in the value of Pr.Y at t2jX at t1/;
the effect of X at t1 on Y at t2 is to be found by making some sort of comparison – e.g., between
Pr.Y at t2jX at t1/ and Pr.Y at t2jnotX at t1/ when one controls for the other causally relevant
properties of the situation at t1. Causes are difference makers, so a single conditional probability
does not represent a causal propensity.

33 This definition of objectivity has the consequence that statements about someone’s psycholog-
ical state cannot be objectively true. To handle this type of case, it would be better to define
objectivity by saying that believing the statement does not make it true (though puzzle cases
would still remain, such as the proposition “I believe something”). These niceties won’t matter
for what follows.

34 There is a difference between showing that our beliefs about mass are caused by something in
the object and showing that the property of the object that does the causing is the object’s mass.
Because of space limitations, I’ll glide over this distinction.

35 Here I am adapting the common cause argument for realism that Salmon (1984) and Hacking
(1985) defend. I do not claim that the anti-realist has no reply; rather, my point is that macro-
probabilities are in the same boat as other theoretical quantities, like mass. This should be enough
to show that there is no special objection to thinking that macro-probabilities are objective.

36 AIC and other criteria of model selection impose penalties on a model for its complexity; see
Burnham and Anderson (1998) for discussion. Model selection criteria permit one to answer
the question of how much variation in the estimates made by different observers is consistent
with regarding the common-cause model as better than the alternative model that postulates
separate causes, one for each observer. The common-cause argument given here does not require
a commitment concerning which model-selection criterion is best.

37 A parallel claim is plausible concerning the objectivity of counterfactuals. Quine and others have
noted that there are counterfactuals whose truth values are indeterminate (compare “If Verdi
and Bizet were compatriots, they would be French” and “If Verdi and Bizet were compatriots,
they would be Italian”). Some conclude from this that counterfactuals never describe objective
matters of fact. I think this dismissal is too sweeping. For example, detailed counterfactuals that
describe what would happen if you were to intervene in a causal system can be objectively true
(Woodward 2003). For both conditional probabilities and counterfactuals, speakers often fail to
be completely explicit, relying on shared information and context to supply relevant details.

38 The Keller/Diaconis model does not assign probabilities to the initial conditions of a toss (its
values for V and ¨). It is not logically inevitable that the ratio of areas in the figure is the same
as the ratio of probabilities.

39 I treat the values of V and ¨ as “micro-descriptions” of a toss even though they apply to
the whole coin toss apparatus without mentioning its parts. This is not objectionable since
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the problem concerning the reality of macro-probabilities arises from the fact that they are
“coarse-grained” – i.e., their conditioning propositions are less contentful than (complete) micro-
descriptions would be.

40 Here I am relying on the assumption that if n quantities are each objective, so is any quantity
that is a function of their values; “mind-independence” evidently has this compositional charac-
teristic.

41 I argued in Section 5 that our desire for general explanations should not be taken to show that
macro-probabilities are objective. In the present section, I have argued that we can have evidence
that a macro-probability is objective when it provides a common cause explanation of various
observations. This may seem inconsistent (eschewing explanation in one place, espousing it in
another), but I think it is not. Philosophers have examined the concept of explanation from two
angles. The problem that Hempel and his successors addressed is to decide which of various true
propositions belong in an explanation of some target proposition. The problem addressed under
the heading of inference to the best explanation is to say which of various candidate hypotheses
one should regard as true. I don’t regard the requirement of generality as having an objective
status in Hempel’s problem, but I do think there is an objective reason, in many cases, to view
unified explanations as better supported than disunified explanations. See Sober (2003b) for
discussion.

42 Or rather, this is an answer, one constructed to appeal to Laplaceans. I don’t rule out the pos-
sibility that Pr.A at t1jX at t1/ has the value it does because of a macro common cause, thus
providing an instance of “downward causation.”

43 Notice that the decomposition of Pr.AjX/ described here does not require that the common cause
render the two effects conditionally independent of each other. In fact, it will not, if each Ai either
entails X or entails not-X. Whereas the epistemic argument is naturally understood in terms
of effects being unconditionally dependent though conditionally independent, the metaphysical
argument should not be understood in this way.
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Is Evolution An Optimizing Process?

James H. Fetzer

The thought that evolution invariably brings about progress deserves consideration,
especially in light of the use of optimizing models of its operation. An extremely
interesting collection of papers on evolution and optimality affords a suitable point
of departure. In The Latest on the Best (1987), for example, some who believe that
evolution should be viewed as an optimizing process join issues with others who do
not. As the editor observes,

A number of the contributors from the earlier parts of the anthology : : : argue forcefully for
the difficulties with any general assumption that evolution generates optimal adaptation. On
the other hand, a number of the contributors involved in applications of optimality analysis
are extremely enthusiastic about the potential benefits of this approach (Dupre 1987, p. 22).

Indeed, as he also observes, even within biology itself there appears to be more
enthusiasm for applications of optimality theory than there is for the conclusion that
evolution itself is an optimizing process (Dupre 1987, p. 22).

It may be useful here to approach this issue by exploring the differences between
optimizing and satisficing approaches toward understanding evolution. In the pro-
cess, it will be important to deal with the claim that satisficing has no clear meaning
in evolutionary theory. By focusing upon the probabilistic character of fitness, how-
ever, it ought to be possible to shed light upon these difficult problems, since neither
the frequency interpretation nor the propensity interpretation of fitness supports
the conception of evolution as an optimizing process. The general conception that
emerges from these reflections is that selection takes place relative to adaptations
that are “good enough” to sustain survival and reproduction. While optimizing the-
ory can play a valuable heuristic function in suggesting hypotheses about the design
of organisms, satisficing theory clearly affords a more adequate framework for un-
derstanding the broadest and deepest features of evolution as a process.
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The Tautology Problem

The issues encountered within this domain are closely related, if not identical, to
those that revolve about the suitability of the phrase, “the survival of the fittest”, as
a general depiction of the evolutionary process. As Ernst Mayr observes, Charles
Darwin borrowed the phrase from Herbert Spencer (Mayr 1982, secs. 386 and 519,
for example). After all, if those who survive are the fittest, then the process of natural
selection would appear to produce increasingly fit organisms across time, where
there can be no basis for doubting whether the latest must be the best. If biological
evolution is a process that invariably induces the survival of the best, then it must be
impossible for the lastest not to be the best.

Although May is concerned that the phrase, “the survival of the fittest”, may be
merely tautological as a claim that cannot be false by virtue of its meaning, when
properly understood, it not only appears to be no tautology but may even be empiri-
cally false. The problem is to separate the meaning of “fitness” from the meaning of
“those who survive”, which may be accomplished by viewing “fitness” as a prob-
abilistic tendency to survive and reproduce. (A closely related view is proposed by
Sober (1984, Ch. 2).) When the exact character of this probabilistic tendency is ren-
dered more precise, however, it then becomes evident that “high fitness” may or
may not be associated with increased frequency for survival and reproduction.

Optimizing Versus Satisficing I

Although we shall pursue more exact characterizations in the following, it may
be worthwhile to provide a general sketch of the differences which tend to dis-
tinguish “optimizing” from “satisficing”. These notions are derived from decision
theory, where optimizing models characterize systems that always select solutions
to problems that are at least as “good” as any other solution; satisficing models, by
comparison, characterize systems that select solutions to problems that are “good
enough” but which may yet have alternatives that are even better. Judgments of
goodness (good, better, and best), of course, are relative to some presupposed set
of values or utilities. (Michalos (1973) provides an illuminating introduction to the
alternatives.)

When these ideas are applied within the context of evolutionary theory, however,
an important distinction must be drawn. Decision theory is normative and prescribes
how people should act, whereas evolutionary theory is explanatory and describes
how nature does work. While normative theories do not have to be abandoned or re-
paired when they do not describe the way things are, explanatory theories in science
have to be abandoned or repaired when they do not describe the way things are.
If nature does not operate in conformity with optimizing models, therefore, then
that counts against their standing as scientific theories, although optimizing models
for decision making are not thereby disqualified, even if no one acts in conformity
with them.



Is Evolution An Optimizing Process? 165

Evolutionary Values or Utilities

The values or utilities that are commonly assumed to possess evolutionary
significance, of course, are those of survival and reproduction, especially offspring
production equal to or greater than replacement level. Relative to this measure of
utility, organism x may be supposed to have “higher fitness” than organism y, with
respect to a specific environment, for example, when x has greater probability of
offspring production than y, with respect to that environment. As Elliott Sober has
observed, there are good reasons to resist the temptation of identifying “fitness” in
this sense with actual reproductive success, since the property appears to be best
envisioned as a disposition toward reproduction in lieu of its actual obtainment
(Sober 1984, pp. 43–44).

Since nature cannot be expected to select solutions to problems that are unavail-
able, whether or not evolution should be viewed as an optimizing or as a satisficing
process must be relative to the available gene pool and the available environment
rather than relative to every possible gene pool and every possible environment. If
these stronger conceptions are taken to describe kinds of “global optimality”, then
only weaker conceptions of “local optimality” deserve consideration here. Evolution
would appear to qualify as an optimizing process in the appropriate sense, there-
fore, so long as selection produces organisms with fitness values that are equal to or
greater than those of parent generations across time, but otherwise as satisficing.

Selection Is Not “Single-Step”

To ascertain whether or not evolution should be understood as an optimizing or
as a satisficing process, therefore, it is essential to secure the right kind of non-
tautological connection between “fitness” and “those who survive” and then to de-
termine if the resulting process is optimizing, satisficing, or something else instead.
If the less fit sometimes survive and reproduce while the more fit do not, for exam-
ple, then surely that is something that evolutionary theory ought to be able to ex-
plain. Ultimately, I believe, evolution needs to be understood by means of the repet-
itive operation of “single case” tendencies for particular traits to be selected under
specific (possibly unique) conditions utilizing the idea of single-case propensities.

This conception, however, should not be confused with the notion of “single-step”
selection in the sense that Richard Dawkins has introduced (Dawkins 1986;
reprinted in Ruse 1989, pp. 67–68). Single-case tendencies are compatible with
cumulative selection operating across time, but single-step selection is not. Indeed,
as Dawkins himself has observed,

There is a big difference : : : between cumulative selection (in which each improvement,
however slight, is used as a basis for future building), and single-step selection (in which
each new “try” is a fresh one).

If evolution had to rely on single-step selection, it would never have got anywhere
(Dawkins 1986 as reprinted in Ruse 1989, p. 68).
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The application of the single-case propensity interpretation to the problem at
hand, therefore, should not be rejected on the ground that evolution is a cumulative
rather than a single-step process. That would be unjustifiable.

The Nature of Optimality

In their valuable paper on optimality theory in evolutionary biology, G. A. Parker
and J. Maynard Smith, both noted for their contributions to this domain, consider the
question, “Can natural selection optimize?” In their view, optimization by natural
selection requires special conditions:

The ability of natural selection to optimize depends on gene expression and on the mech-
anism of genetic change in populations. Of particular importance are the rate at which
selection can alter the genetic structure, the amount of additive genetic variance present
at the start of selection, gene flow (for example, that arising from immigration), the rate at
which conditions change, and random effects such as genetic drift. Most optimality models
assume that strategies reproduce asexually, or if the model is Mendelian, that the optimal
prototype can breed true. Pleiotropy (genes affecting multiple traits) is assume not to oper-
ate and strategies are allowed to replicate independently of each other. Obviously selection
cannot produce an optimum if there is no way of achieving it genetically, but for some mod-
els, it is clear that selection will get as close to the optimum as the genetic mechanism will
allow (Parker and Maynard Smith 1990, pp. 30–31).

When natural selection occurs in asexually reproducing or true breeding populations
within stable environments that endure unchanged for periods of time which are
sufficient for optimal traits to emerge, optimizing models of evolution may be appro-
priate in the absence of pheiotropic effects. In situations of the kind that characterize
most natural as opposed to artificial environments, however, conditions like these are
not realized.

Indeed, even Parker and Maynard Smith themselves observe that the emergence
of optimal traits is not easily arranged: “infinite time and infinite populations would
be needed to achieve the [evolutionary] peak itself” (Parker and Maynard Smith
1990, p. 31). But this means that optimality theory provides an idealized conception
of what might happen in the limit as a special case rather than a descriptive explana-
tory framework for understanding evolution under normal conditions. A satisficing
model, by comparison, provides a foundation for viewing the emergence of optimal
adaptations as a possible “long run” product of what has to be understood as a “short
run” process that applies to finite populations and finite times.

An Alternative Framework

The tendency in evolutionary theory to fixate on the long run rather than on the
short run or on the single case has a parallel in the theory of probability itself,
where long-run frequency conceptions have prevailed until recently. The emergence
of the single-case propensity conception within this context thus promises to shed
light on natural selection. Indeed, from the perspective afforded by the single-case
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propensity conception, appeals to the ultimate outcome of long-run processes ap-
pears to have the general character of teleological causation, whereas appeals to the
proximate outcomes of single-case processes appears to have the general character
of mechanistic causation instead (e.g., Fetzer 1988).

If optimal adaptations only emerge as a special limiting case under quite idealized
conditions, moreover, it should be evident that the products of evolution that emerge
during any merely finite segment of the world’s history are never optimal, unless
allowance is made for their production as a consequence of fortuitous conditions
(or by chance). But if this is indeed the case, then satisficing appears to be the
strongest theory that generally applies. While Parker and Maynard Smith consider
“the comparative method” and “quantitative genetics”, they do not consider sat-
isficing approaches at all. Once the properties of satisficing models are properly
understood, however, their appeal should become obvious.

The Probabilistic Connection

Evolution appears to be an inherently probabilistic process, at least to the extent to
which sexual selection, sexual reproduction, genetic drift and the like involve prob-
abilistic elements. Two interpretations of probability might apply here, the long-run
frequency interpretation, which identifies probabilities with limiting frequencies in
infinite sequences, and the single-case propensity conception, which identifies them
with the strengths of causal tendencies to bring about particular outcomes on indi-
vidual trials. While we have already discovered that optimal adaptations as a result
of natural selection only occur (other than by chance) over the long run, perhaps
evolution can still be viewed as a probabilistically-optimizing process.

Suppose we define “fitness” in terms of probability of survival and re-production
at a level equal to or greater than replacement level R within the specific environ-
ment E. Thus, when P.Ri=Ei & i D x/ > P.Ri=Ei & i D y/, x is more fit than
y with respect to R in E. Then it might be plausible to hold that less fit traits will
decrease in frequency across time or that less fit traits will eventually no longer be
“good enough” to sustain survival and reproduction. But when such claims are sub-
jected to close scrutiny in relation to the frequency and the propensity alternatives,
it becomes clear that they cannot be sustained. Even when claims about what will
probably occur displace claims about what will occur, these probabilistic alterna-
tives do not support the idea of evolution as an optimizing process.

The Frequency Interpretation

On the frequency interpretation of probability, for example, the probability for B in
relation to A equals p – that is, P(B/A) D p – if and only if the limiting frequency for
B in an infinite sequence of A trials equals p. The relative frequency for B in finite
segments of A trials can arbitrarily vary from p. Whenever P(B/A) D p, of course,
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P.�B=A/ D 1� p. Even if p is high and 1� p is low, therefore, outcomes with low
probability can occur, even with high relative frequency, across any finite segment
of the world’s history. While the frequency interpretation guarantees convergence
between probabilities and frequencies over the long run, it does not guarantee con-
vergence of probabilities and frequencies in the short run.

If we identify outcomes of kind B with offspring production at equal to or greater
than replacement level relative to environments of kind A, then it should be apparent
that, even when that outcome has high probability, the result of offspring production
at less than replacement level may still occur, over the short run, in relation to the
frequency approach. Moreover, if we identify outcomes of kind B instead with the
production of offspring whose own fitness values are equal to or greater than those
of their parents, then it should still be apparent that, even when that outcome has
high probability, the result of the production of offspring whose own fitness values
are less than those of their parents may likewise occur.

The Propensity Interpretation

On the propensity interpretation of probability, matters are even worse, since, as a
property of each single trial of those conditions, even infinitely many repetitions
of those conditions cannot guarantee that an outcome will occur with a limiting
frequency that equals its generating propensity. This interpretation maintains that
the probability for B in relation to A equals p if and only if there is a causal ten-
dency of strength p for conditions A to produce (or “bring about”) an outcome of
kind B on any single trial of that kind. The conditions that specify a trial of kind
A can be broadly construed to include conceptions and gestations that endure over
intervals of time so long as every property that matters to survival and reproduction
is considered.

The ontological difference between the frequency and the propensity interpreta-
tions is that one makes probabilities properties of infinite sequences while the other
makes them properties of singular trials. The advantage of the propensity approach,
from this point of view, is that, if the world’s history is merely finite, the existence of
probabilities as propensities remains secure, while the existence of probabilities as
frequencies is problematical. The logical connection that obtains between probabil-
ities and frequencies on the frequency approach, however, is completely severed by
the propensity approach, because, even over an infinite sequence of trials, the limit-
ing frequency for outcome B might deviate arbitrarily from the propensity for B.

Reviewing the Argument

Three possible foundations for the conception of evolution as an optimizing process
have been considered, none of which provides suitable support. The first came
from Parker and Maynard Smith’s discussion of the conditions that are required for
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natural selection to produce optimal adaptations. When natural selection occurs in
asexually reproducing or true breeding populations within stable environments that
endure unchanged for periods of time that are sufficient for optimal traits to emerge,
optimizing models of evolution can be applied in the absence of pheiotropic effects.
Most natural situations do not satisfy the conditions, however, and optimal adapta-
tions require infinite populations and time.

This means that optimality theory provides an idealized conception of what might
happen in the limit as a special case under fixed conditions rather than a descrip-
tive explanatory framework for understanding evolution under ordinary conditions.
Moreover, appealing to probabilistic properties does not appear to salvage the sit-
uation. Under the frequency interpretation, higher fitness yields higher frequencies
of survival and reproduction (or higher fitness in offspring generations) only by
assuming infinite sequences of trials. Under the propensity interpretation, higher
fitness affords no guarantee of higher frequencies of survival and reproduction (or
higher fitness in offspring generations) even if infinite sequences are assumed.

Random and Accidental Factors

Probabilistic factors are an extremely important source of difficulty for the
conception of evolution as an optimizing process, especially in relation to the mech-
anism of natural selection, but they are not the only source of difficulties. Others
include different ways in which various environments can be subject to change,
which shall be referred to here (somewhat arbitrarily) as “random happenings” and
as “accidental occurrences” as follows:

(i) Random happenings (such as stray bullets, terrorist bombs, and the AIDS virus)
are micro properties which vary within macro environments. None of us has
greater fitness in coping with them as a rule, but only some of us actually en-
counter them. Organisms with high fitness within macro environments may not
survive and reproduce due to their influence, while organisms with low fitness
within those macro environments may instead.

(ii) Accidental occurrences (including large asteroids hitting the Earth) are events
that bring about major alterations in the macro environment, which we other-
wise tend to treat as a “closed system”. Once again, organisms with high fitness
within macro environments may not survive to reproduce due to their influence,
as may have happened with the dinosaurs. Other organisms of lower fitness,
however, might nonetheless survive, etc.

Optimizing Versus Satisficing II

The point of introducing these concepts is not to suggest that evolutionary theoreti-
cians have been oblivious to the role of random factors or of accidental occurrences
as they have been defined above (which Arnold and Fristrup 1982, among others,
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have acknowledged), but rather that these are other elements that further complicate
the conditions that must obtain for optimizing models to obtain. If the conditions
under which natural selection operates are constantly changing due to the influence
of random factors and of accidental occurrences, then reliance upon models that
presuppose infinite populations across infinite times relative to unchanging environ-
ments cannot possibly provide an adequate foundation for describing or explaining
the actual course of the evolutionary process.

Perhaps the most important difference between optimizing and satisficing theory,
from this perspective, is that optimizing theory implies that, over the long run,
if not the short, organisms become increasingly more and more fit as a result
of an inevitable “winnowing process” that takes place within constant environ-
ments. Satisficing theory, however, carries no such implication, accepting instead
that sometimes higher fitness may not increase in relative frequency across time,
while lower fitness does. The satisficing approach, nevertheless, provides a foun-
dation for viewing the emergence of optimal adaptations as a possible “long run”
product of what has to be understood as a “short run” process that applies to finite
populations and finite times, under certain highly fortuitous conditions.

Fitness as a Propensity

Other authors have proposed that the propensity interpretation of probability might
provide an appropriate foundation for understanding the nature of fitness, especially
Susan Mills and John Beatty (1979). Their conception, however, does not prop-
erly represent either the context-dependence of propensities or their character as
single-case causal tendencies. Consequently, they encounter difficulty in developing
an adequate account of fitness as a propensity, which leads them to reconsider the
adequacy of this approach (Beatty and Feinsen 1989). The difficulties they consider,
however, appear to be problems with the notion of fitness rather than problems with
the notion of propensities, when that conception is properly understood (cf. Fetzer
1986).

Some of the most important reservations that have been raised concerning
propensities, moreover, concern their formal properties. Beatty and Feinsen (1989),
for example, assume that propensities are properly formalized as conditional prob-
abilities and that there must be a positive correlation between high fitness and
reproductive success. These assumptions, which others, including Alexander Rosen-
berg and Robert Brandon, have endorsed, provide a misleading characterization of
the propensity interpretation and generate problems that are more apparent than real
(cf. Fetzer 1981 and Niiniluoto 1988). Other objections are also defeated by the
failure to appreciate that any statistical measures constructed on the basis of the
propensity interpretation qualify as propensity concepts.
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Permanent and Transient Properties

Since fitness is relative to environments and, on probabilistic interpretations,
characterizes the strength of tendencies to survive and reproduce in those envi-
ronments by organisms that differ in their properties, it can be tempting to attempt
to reduce fitness to those properties. In Adaptation and Environment (1990), for
example, Robert Brandon identifies dispositions with their underlying physical
bases. To be water soluble “just means” to have a certain molecular structure; to
have a specific probability of coming up heads on a toss “just means” having a
certain physical structure; and so forth. This promotes the identification of fitness
as a disposition with specific phenotypes, where the specific behavior organisms
display that matters to selection tends to be ignored.

This approach, however, overlooks that the same dispositions might be possessed
by different kinds of things and that dispositions tend to have multiple manifesta-
tions. Water has the same molecular structure, even when it is found in solid, liquid,
and gaseous states, where the behavioral abilities of water molecules in those differ-
ent states differ significantly. Coins of different sizes and shapes can still be “fair”,
even though they have different physical structures. A distinction has to be drawn
between reference properties of things like water molecules and coins and the dis-
positions they have that are permanent – which they cannot be without, even though
they are non-definitional – and transient – which they can be without, while remain-
ing things of the same kind. It is wrong to reduce dispositions to reference properties
(Fetzer 1981, 1986).

Laws and Levels

The distinction has multiple ramifications. A slot machine that could be loaded with
a deterministic random-number generator or an indeterministic causal mechanism
could yield the same results “by chance”, yet the outcomes of the first would be
predictable without exception, where those of the second were only probabilisti-
cally expectable. Since these are components that are exchangeable, the kind of
outcome behavior the system displays is a transient rather than a permanent prop-
erty. Whenever the description of the machine includes the number random-number
generator or the indeterministic mechanism, however, then that mode of behavior
would be permanent rather than transient, not by definition but because those kinds
of response outcomes are themselves permanent properties of mechanisms of those
different kinds, respectively.

Similarly, it wrong to reduce the response outcomes of species to their pheno-
types, even though, for the lower species, every member of that species may have the
same behavioral dispositions among its permanent properties. Once we recognize
that, for the higher species, different behavior responses can occur as a consequence
of learning (in the form of classical conditioning, operant conditioning, and imitative
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learning, for example, not to mention the role of thinking and of reasoning in af-
fecting behavior), at least some of which are indeterministic, even under the same
external conditions, it should be clear that, even if genes are the units of selection,
the level of selection is not that of the phenotype but of behavior, which succeeds or
fails (Fetzer 2005).

A Fourth Argument

While I would like to think I have already provided sufficient evidence that evolu-
tion is not an optimizing process, I want to advance at least one additional argument
that is meant to make it very obvious that there are evolutionary phenomena that
cannot be appropriately understood on the basis of an optimizing model but which
make good sense from the point of view of a satisficing model. This case has been
offered by David S. Wilson (1980), who suggests that there is nothing about evolu-
tionary theory that precludes the possibility that selection might “routinely” occur
under conditions whereby an organism x decreases its own fitness but nevertheless
is selected because it has decreased the fitness of competing conspecifics y even
more (Sloan 1980 as reprinted in Brandon and Burian 1984, p. 275).

An appropriate illustration would appear to be American political campaigns,
where negative advertising is normally judged successful as long as it wins more
votes than it loses. There is an instructive lesson for evolutionary theory here, more-
over, since cases of this kind emphasize that selection tends to be a matter of relative
rather than of absolute fitness, insofar as those traits that confer a competitive advan-
tage with respect to survival and reproduction can be “good enough” even if better
solutions are available. If organisms can benefit from diminishing their fitness in
order to increase their relative advantage over others, then it is difficult to see how
the idea of evolution as an optimizing process can be justified.

The Role of Optimizing Theory

It could be maintained that, even if natural selection (or evolution, which is not
confined to the mechanisms of natural selection) is not an optimizing process, op-
timality theory remains a useful heuristic device for generating hypotheses about
phenotypic design, even if “not about the process of evolution that produced that
design” (Smith 1990b). In suggesting this alternative, Eric Smith admits that there
may be significant philosophical questions that can be raised about using optimality
theory to study something, such as phenotypic design, that is the result of a non-
optimizing process, but he cites the publication of thousands of research articles in
which optimality theory fulfills precisely such a role.

In advancing this position, Smith would seem to echo the findings of John Dupre,
when he reports that within biology itself there appears to be more enthusiasm for
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applications of optimality theory than exists for the conclusion that evolution itself is
an optimizing process (Dupre 1987, p. 22). And, indeed, the potential for optimal-
ity theory to fulfill a role in generating hypotheses about degrees of adaptiveness
of phenotypes relative to specific environments does not contradict or undermine
the view that fitness should be properly understood as a single-case dispositional
property, where a clear distinction is drawn between fitness values and reproductive
success. Optimality theory can be useful in a heuristic role.

Instrumentalism Versus Realism

The question of whether evolution is an optimizing process, therefore, has to be
distinguished from the question of whether optimality analysis can be useful in gen-
erating fitness hypotheses. Treating natures “as if” it were an optimizing process
may be beneficial as a heuristic technique, but that does not mean that evolution
itself is an optimizing process. The issue here is closely related to the distinction
between realism and instrumentalism as it arises in theorizing generally. Instrumen-
talism views theories as instruments of prediction that are not meant to describe
entities or properties in the world, while realism views theories as descriptions of
the world. It seems evident that optimality theory can be useful instrumentalistically.

Thousands of published handbooks of navigation being with a sentence to the
effect, “For present purposes, we will assume that the Earth is a small stationary
sphere whose center coincides with that of a much larger rotating stellar sphere”,
as Thomas Kuhn has observed (Kuhn 1957). The wide-spread utility of adopting a
certain model for a special purpose, however, in no way alters the limitations of that
model for understanding the world itself. If evolution is not an optimizing process,
then it makes no difference that, for certain special purposes, we can treat it “as if”
it were. As long as our purpose is to understand the nature of evolution, therefore,
optimizing theory is not enough. Its value appears to be exclusively heuristic in kind.

Is Natural Selection Optimizing?

Smith has also endorsed the fall-back position that, even if evolution is not an
optimizing process, natural selection may still remain as an optimizing component
of a complex process. When consideration is given to the many kinds of factors that
contribute to the evolutionary process, including genetic mutation, sexual reproduc-
tion, genetic drift, natural selection, sexual selection, group selection, and artificial
selection, it appears difficult to believe that the complex interaction of these factors
ought to produce increased fitness in offspring reproduction across time. And the
idea that natural selection as such might still qualify as an optimizing component of
this complex evolutionary process does not seem to fare better.

The phrase, “natural selection”, of course, can be taken as synonymous with the
evolutionary process as a process of selection by nature, or it can be viewed as one
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component of a more complex process. Either way, however, every argument that
we have considered here still applies. If actual environments are subject to change
(due to the influence of random happenings and of accidental occurrences, for exam-
ple) and do not involve infinite populations and infinite time, then natural selection
cannot produce optimal adaptations except under fortuitous conditions, as explained
above. Probabilistic variations do not make matters any better, moreover, where the
most promising account makes optimal adaptations a possible outcome of the short-
run operation of what must be viewed as a single-case process.

Is Evolution an Optimizing Process?

The strongest arguments supporting the conception of evolution as an optimizing
process thus appear to be indefensible. The classic model advanced by Parker and
Maynard Smith depends on special conditions that are seldom, if ever, satisfied dur-
ing the history of world, including, for example, infinite populations and infinite
times. Two probabilistic models are available on the basis of the frequency and the
propensity interpretations. The frequency-based model, however, can only guaran-
tee that higher fitness will produce higher reproductive success over the infinite long
run. The propensity-based model does not even guarantee the convergence of fitness
and success over the infinite long run.

These considerations suggest that evolution should not be viewed as an optimiz-
ing process. Sometimes higher fitness occurs with higher frequency across time, but
sometimes not. The role of random factors and accidental happenings reinforces the
variability of environments, which by itself undermines the applicability of opti-
mality models. Nevertheless, optimality theory does appear to be applicable in the
heuristic role of suggesting hypotheses about the adaptiveness of phenotypic de-
sign in generating fitness hypotheses. Taken altogether, therefore, the question of
whether evolution should be viewed as an optimizing process seems to have a defi-
nite answer, which deepens our understanding of nature.

Is Evolution a Satisficing Process?

Whether or not evolution should be viewed as an optimizing process, as a satisficing
process or as something else instead, as suggested above, depends upon the mech-
anisms that bring evolution about. If optimizing models characterize systems or
processes that always select solutions to problems that are at least as “good” as any
other solution, while satisficing models characterize systems or processes that select
solutions to problems that are “good enough” but can still have alternatives that are
even better, then even if evolution is clearly not an optimizing process, it might not
be a satisficing process, either. Perhaps evolution is something else entirely.

Indeed, there is something to this objection. If those who survive are not
necessarily the fittest, the process of natural selection might or might not produce
increasingly fit organisms across time. Since biological evolution is not a process
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that invariably induces the survival of the best, it remains entirely possible that the
latest are not the best. But insofar as natural selection and biological evolution do
occur even in the absence of optimal strategies and optimal adaptations, it appears
as though nature is content with genetic combinations and selection processes that
are simply “good enough”. Selection and evolution operate relative to available
genes and available environments that satisfy their own non-optimal conditions.

Evolution as a Gamble with Life

To avoid any misunderstanding of the nature of my argument, bear in mind that
evolution has several distinct dimensions. It can be viewed as a causal process in-
volving interaction between organisms with different degrees of fitness and their
environments. Since more fit organisms, by hypothesis, have higher probabilities
of survival and reproduction, given a probabilistic conception of fitness, it would
be mistaken to suppose that I am denying something that cannot be false. More fit
organisms definitely do have high probabilities of survival and reproduction, even
if, as we have found, there is no guarantee that the traits of organisms with higher
fitness will invariably increase in their relative frequencies across time.

The actual course of evolution that emerges across time depends upon an
interaction between organisms and their environment, where the environment is
almost constantly changing and selection is a function of the behavior that they dis-
play (Fetzer 2005, 2007). Indeed, there are at least three reasons why environmental
variations tend to defeat the emergence of optimal adaptations. Because actual
environments only remain constant over finite intervals, not for infinite durations;
because random happenings and accidental occurrences are exerting their influence
on the course of evolution; and because those who survive and reproduce may be
merely the lucky rather than the fit, the process of evolution across time appears
to be but a gamble with life where players shift from game to game without any
advanced warning.

Mechanism Versus Teleology

Ultimately, I believe, appeals to optimizing theory within evolutionary biology
ought to be recognized as lingering remnants of a teleological metaphysics that a
more thoroughgoing mechanistic conception can do without. There is no need to
remain fixated on infinite populations and times or on interpretations of probability
which guarantee some long-run convergence between probabilities and frequencies.
What is required is a conception of probability as a single-case propensity that can
be applied no matter whether the world’s history is short or is long and without
regard for either the size of the available population or the duration of the process
of evolution.
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The reasons for preferring the satisficing conception to the optimizing conception
seem to be essentially the same as those for preferring a mechanistic to a teleolog-
ical worldview. The history of science tends to reflect shifts from a teleological
worldview (associated with Aristotle) to a mechanistic worldview (associated with
Newton), on the one hand, and from a deterministic worldview (associated with
classical mechanics) to an indeterministic worldview (associate with quantum me-
chanics), on the other. Abandoning the last vestiges of teleology in biology may
appear to be a threat to a familiar worldview. But it can be replaced by another
world-view that integrates evolution within an even more scientific framework.
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Part III
Probabilities as Explanatory Properties



Propensity Trajectories, Preemption,
and the Identity of Events

Ellery Eells

Introduction

The problem of preemption for theories of causation is well known. In its original
and basic form, it is a problem for theories of causation that take a cause to be some
sort of a necessary condition for its effects (e.g., an INUS condition as in Mackie
(1974), or an event upon which an effect counterfactually depends as in Lewis and
David (1973, 1986). The problem is that an event c may very well be a cause of an
event e even though, had c not occurred, a “backup” event c0 which also occurred
would have caused e instead; in this case, c is not necessary for e, and c “preempted”
c0 in causing e. A clear and simple example of this is described by Lewis (2000) and
Hall (2004). Suzy and Billy both want to break a bottle with a rock; they are both
experts at this; they both pick up rocks and throw, accurately; Suzy’s rock reaches
the bottle first, breaking the bottle; by the time Billy’s rock arrives the bottle is
already shattered and his rock hits no glass at all. In this case it is clear that it was
Suzy’s throw .c/ that caused the bottle to break .e/, but Billy’s throw .c0/ would
have caused the bottle to break had Suzy not thrown her rock. In this case, Suzy’s
throw was not, under the circumstances, necessary for the bottle to break; her throw
preempted Billy’s throw in the breaking of the bottle.1

Recently, the problem of preemption has been applied to probabilistic theories
of causation, on which a cause need not be necessary for its effects, but only raise
the probability of its effects. Menzies (1996) has applied the problem to counter-
factual theories of probabilistic causation, and Ehring (1994, 1997) has applied
the problem to a “probability (or propensity) trajectory” approach to probabilis-
tic causation that I have earlier urged (1991). In this paper, I will be concerned
with applying this trajectory approach to cope with the problem of (what I will
call) probabilistic preemption. I begin in Section 1 with a summary of the trajec-
tory theory. In Section 2, I elaborate, in the context of the trajectory theory, an
approach to the problem of preemption that I favor and that has been previously
suggested in the context of counterfactual theories of causation but whose versa-
tility I think has not been fully appreciated. This will involve a certain conception
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of events and a substantive thesis concerning events so conceived. In Section 3,
I discuss the possibility that thesis might be false, and also discuss the more gen-
eral phenomenon of overdetermination (or redundancy, of which preemption, or
asymmetric overdetermination, is a species).

Trajectories

In this section I briefly summarize the probability (or propensity) trajectory theory
of singular probabilistic causation.2 This will be done by noting just five features
of the theory. First, it is a theory of singular causation. Thus, it seeks to understand
such “token level” claims as “Harry’s smoking caused his heart attack” or “Suzy’s
throwing the rock (at that time and place) caused that bottle to break”, rather than
such “type level” claims as “Smoking is a positive causal factor for heart attacks”
or “Throwing rocks at bottles causes bottles to break”. The relata of singular causal
relations are events that actually occur (understood in a certain way, see below)
rather than properties (such as being a smoker or breaking) that can stand in stand
in general causal relations. The second point is how events are understood. For the
purposes of the theory, they are understood simply as the exemplification of some
property or properties at some specified place and time (or interval). Thus, for our
purposes, if x stands for a time/place pair (call it htx; sxi) and X stands for a prop-
erty (which may be complex, consisting of conjuncts X1; X2; : : :), then an event is
specifiable by saying that X is exemplified at x; this will be symbolized as “Xx” in
what follows. An event is understood simply as the exemplification of a property or
properties at such and such a time and place.

Third, the probability trajectory theory is a “probability-increase” theory of
singular causation (causes raise the probability of their effects), but not in the ususal
sense in which probability increase is understood. In the usual sense, “C increases
the probability of E” is understood in terms of conditional probability comparison:
Pr.E=C / > Pr.E=�C/ (or, equivalently, Pr.C=E/ > Pr.E/). With suitable qual-
ifications (see below), I think this understanding of probability increase is suitable
for understanding probabilistic causation at the type level, that is for understand-
ing claims of the form, for example, “(property) C is a positive causal factor for
(property)E”. For the token level (for singular causation), however, the probability
trajectory theory focuses on the actual evolution of the probability of the token ef-
fect from around the time of a candidate token cause event to the time of the token
effect event. A probability trajectory is the shape of the time/probability graph that
represents such an evolution.

At this point, it will be useful to point out that probabilistic claims must be
understood as relative to a population, P , understood to be of a certain kind, Q –
where it is the kind Q that really controls, so reference to P will be suppressed in
what follows and I will refer simply to “populationsQ”.3 For example, certainly the
probabilistic (as well as the type level causal) relations between smoking and heart
attacks are different in the human .Q/ population from what they are in a population
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of smoking machines .Q0/ in a laboratory. Thus, type level causal claims should be
taken to be of the form “C has such and such a kind (positive, negative, etc., see be-
low) of causal significance forE in populationQ” (where the relevant probabilities
are understood as relative to Q). At the token level, causal claims will be formu-
lated as “Xx has such and such a kind of token causal significance for Yy”, where
the relevant population is the unit set fhx; yig whose kind can often be taken to be
understood by context (as in type level claims) in a request for causal information
(in a question of the form “What was the causal role of Xx for Yy?”). Then, with
X, x, and y left implicit, I let “Prt .Y /” symbolize the probability, at time t , that the
second member, y, of hx; yi in the singleton population fhx; yig exhibits (or will
exhibit) property Y (the role of X and x in this will be explained shortly). Prt .Y /

can be thought of as a conditional probability, Pr.Y=Kt/, where Kt is the conjunc-
tion of relevant (to Y ) factors that have fallen into place by time t – but there are
two further important features of Prt .Y /, to which I now turn.

The fourth point about the probability trajectory theory I need to mention is
two qualifications analogous to those alluded to above in connection with the type
level probabilistic theory of causality. In the type level theory, it will not do sim-
ply to say that C is a positive causal factor for E in population Q if and only
if Pr.E=C / > Pr.E=�C/, for there is the possibility of “spurious correlation”.
E can be positively probabilistically correlated with C even when C is not a cause
of E , for example if there is a common cause of C and E (for example, rain is
positively correlated with falling barometers not because the latter causes the for-
mer, or vice versa, but because the two have a common cause, an approaching cold
front, or falling barometric pressure). The standard solution to this problem of spu-
rious correlation is to “hold fixed” (conditionalize on) the appropriate factors when
making the relevant probability comparisons. Without going into detail, I simply
describe the adjustment (for the type level theory, preliminary to the token level
theory) to the “basic probability increase idea” (causation goes by correlation) in
three steps.4 First, let F1; F2; : : : ; Fn be those factors that need to be “held fixed”
(what they are is given in the third step below), and let K1; : : : ; Km be the maximal
conjunctions of the Fi ’s and their negations that have positive probability both in
conjunction with C and in conjunction with �C (there arem < 2nKj ’s). TheKj ’s
are called causal background contexts. Second, C is called a “positive”, “negative”,
or “neutral causal factor” for E if and only if, for all j; Pr.E=Kj&C/ >;<, or
D Pr.E=Kj &�C/. The feature of this according to which the inequality or equal-
ity must hold across all causal background contexts is called “context unanimity”.
In case unanimity fails, C is called “causally mixed” for E . And third, we must say
what factors should be included among the Fi ’s. These are all factors that are both
(i) causally independent of C (C is causally neutral for them) and also (ii) either
(iia) causally relevant (positive, negative, or mixed) for Y or (iib) interactive for Y
with respect to X . A factor F is interactive for Y with respect to X if the compar-
ison (greater than, less than, equal to) between Pr.E=F&C/ and Pr.E=F&�C/
is different from what it is between Pr.E=�F&C/ and Pr.E=�F&�C/ (i.e., the
comparison between Pr(E=C ) and Pr.E=�C/ is different in the presence ofF from
what it is in the absence of F ).5
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As to (i) just above, we should not hold fixed factors causally intermediate
between C and E in evaluating the causal role of C for E; otherwise, we “rob”
C of the probabilistic impact on E that it should have in virtue of its causal impact,
if any, on E . (iia) and (iib) just above are the two qualifications alluded to above
for the type level theory. (iia) is intended to handle the usual kinds of spurious cau-
sation, and (iib) is intended to get the theory to give the right answer of “mixed”
causal factorhood when this is the truth.

For our purposes here, the important point (this fourth point about the trajectory
theory for probabilistic causation on the token level) is that qualifications analogous
to (iia) and (iib) – subject still to (i) – apply also at the token level. That is, in
assessing the token causal significance of an event Xx for an event Yy, we must
control for events that occur causally independently of Xx and that bear possibly
confounding casual relations (relative to Xx) for Yy. The best way to implement
these requirements, I think, is to hold fixed (positively or negatively, depending
on how things actually happen) factors Z such that Zz (for the relevant time and
place z) actually occurs token causally independently of Xx and the factorZ is either
(again) either (iia) a positive, negative or mixed cause of Y at the type level or (iib)
interactive for Y with respect to X at the type level. Of course, at the token level,
there is just one relevant causal background context, call it Ka, which corresponds
to features of the way things actually are in the actual situation in question. Then
the relevant probability trajectory traces the evolution of Pr.Y=Ka&Kt / as t varies
from around the time of Xx to the time of Yy). As in the type level theory, the
background context is a very important feature of the token level theory, and the
relevant qualifications on the basic probability increase idea are natural given their
analogs in the type level theory.6

Fifth, and finally, the taxonomy of kinds of causal significance is somewhat
different at the token level, according to the trajectory theory, from the way it is
in the type level theory. This is because of the different conception of probabil-
ity change used at the token level. At the type level, there are, qualitatively, four
kinds of probabilistic impact that C can have on E: unanimously positive, unan-
imously negative, unanimously neutral, or nonunanimous (for positive, negative,
neutral, and mixed casual factor-hood, respectively, and of course there are several
ways in which C can be nonunanimous for E , both probabilistically and causally).
These are different kinds of conditional probability comparisons across contexts.
The token level theory, on the other hand, pays attention to the way the probability
of a later event Yy actually evolves from around the time of an earlier event Xx to
the time of Yy. And qualitatively speaking, there are four basic shapes such a proba-
bility trajectory can assume: (1) it can be higher just after the time of Xx than it was
just before that time and stay higher all the way until the time of Yy, (2) it can be
lower just after the time of Xx than it was just before that time, (3) it can be the same
just after the time of Xx as it was just before that time, and (4) it can be higher just
after the time of Xx than it was just before that time but not remain higher than that
previous value all the way until the time of Yy. At the time t of Yy, the probability
of Y becomes 1 .Pr.Y=Ka&Kt / D 1 when t is the time of Yy or after that time).
Note also that value of the probability of Y at the time of Xx does not enter into the
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theory; this I take to be equal to Pr.Y=Ka&Kt/, where t is the time of Xx, and Kt

includes X but does not register the (perhaps improbable) actual consequences of
the occurrence of X at that time. I have called (just to pick some suggestive termi-
nology) the four kinds of causal significance corresponding to (1)–(4) above Yy’s
happening because of, despite, independently of, and autonomously of Xx, respec-
tively. These kinds of causal significance can come in degrees, but I will not enter
into that here except to say that the degrees can be measured, basically, by the mag-
nitudes of absolute probability differences for the candidate effect event across the
time of the candidate cause event.7

I should point out that the explications given above of the various token and type
level causal concepts are not intended to be definitions – as such they would be
circular, of course. Rather, they should be understood as constraints on the relation-
ships among probabilistic and causal relationships. And finally, I point out that the
probability trajectory theory is supposed to apply only in cases of nondeterministic
causation – for deterministic causation, the probability trajectories would be trivial
and the differences between the four kinds of token causal significance described
above could not show up.

Probabilistic Causal Preemption

For a long time, the phenomenon of preemption, described above, has provided test
cases for theories of causation. Mackie (1974, pp. 44–45) describes several exam-
ples, and gives references dating back to the 1920’s. And, as mentioned above, the
problem of preemption has been used recently to challenge the probability trajectory
theory just outlined. I believe that the probability trajectory idea has the resources to
deal with the phenomenon – to give the right, indeed the intuitively right, answers
about what causes what, when the questions and answers are properly formulated
and understood. I begin by giving three examples described by Mackie, and then
turn to a couple of more recent examples. The numbering below follows Mackie
(1974, p. 44).8

(iii) ‘: : : conditions (perhaps unusual excitement plus constitutional inadequacies) [are]
present at 4.0 p.m. that guarantee a stroke at 4:55 p.m. and consequent death at 5.0
p.m.; but an entirely unrelated heart attack at 4.50 p.m. is still correctly called the
cause of death, which, as it happens, does occur at 5.0 p.m.’

(iv) Smith and Jones commit a crime, but if they had not done so the head of the criminal
organization would have sent other members to perform it in their stead, and so it
would have been committed anyway.

(v) A man sets out on a trip across the desert. He has two enemies. One of them pours
a deadly poison in his reserve can of drinking water. The other (not knowing this)
makes a hole in the bottom of the can. The poisoned water all leaks out before the
traveller needs to resort to this reserve can; the traveller dies of thirst.

Let us focus on case (v) for now. In this case it is supposed to be clear that it is
the puncturing of the can, not the poisoning of the water in it, that caused the death,
though either alone (or as in the example both together) would have sufficed. Let us
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see what the probability trajectory theory has to say about this. And for this purpose
let us assume that all the causal relations involved are probabilistic and that all the
relevant probabilities are nonextreme (not 0 or 1) – that is, until the time of an event,
at which time its probability assumes the value 1. First, the theory correctly rules
that the poisoning of the water in the can did not cause the death. This is because the
puncturing of the can is a cause of death that is causally independent of (not an effect
of) the poisoning (the second enemy didn’t even know about the poisoning). In fact,
all of the relevant effects of puncturing the can, including the presence of terminal
dehydration, are causally independent of the poisoning and also causally relevant
to the death. Thus, all these factors (including the puncturing and the dehydration)
have to be held fixed (conditionalized on) when assessing the probability-trajectory
probabilities relevant to assessing the causal role of the poisoning for the death. And
given the presence of all these factors, the poisoning does not change the probability
of death across the time of the poisoning. So the theory correctly rules that the death
is causally independent of the poisoning of the water in the can.

What about the token causal role of the puncturing of the can for death, according
to the probability trajectory theory? In this case, we have to hold fixed the poisoning
of the water in the can, for this is causally relevant to death and causally independent
of (not caused by) the puncturing. There are two things to say here. First, focusing
on the causal role of the puncturing for the factor of death, if the poisoning does
not necessitate death, then there is still room for the puncturing to increase (or to
decrease, see below) the probability of death, even conditional on the poisoning;
but if the poisoning is highly efficacious in producing death (at the type level), then
any increase in the probability of death across the time of the puncturing would be
very small, but the theory would still rule that the death is because of the punc-
turing, but only to a small degree. Further, however, there is the possibility that, if
the poison is more efficacious in producing death than the puncturing of the can is,
then the probability of death could actually decrease across the time of the punc-
turing (since then the man becomes no longer vulnerable to the poison but only
to the less efficacious cause of death, the puncturing of the can). In that version
of the example, the trajectory theory would rule that the death is despite (to some
small degree I suppose) the puncturing. And if the poisoning and puncturing are
equally efficacious for death, then the probability of death could remain the same
across the time of the puncturing and the theory will say that the death is causally
independent of the puncturing. I think all this (the verdicts of the trajectory theory
in the various versions of the example) is correct, when we focus simply on the
factor of death as what was exemplified by the man at the relevant later time and
place. But second, if this seems unintuitive (that the degree of causal significance
of the puncturing should be called “small” in the example, or that the death should
be called even a little “despite”, or even “causally independent of”, the punctur-
ing), then I think it does so only because it leaves out the rest of the causal story
as seen from the point of view of the probability trajectory theory. There are of
course many factors that are exemplified at the relevant time and place, including
not only death but also the factor of death-accompanied-by-dehydration.9 And of
course, even holding fixed the factor of poisoning, we should expect the probability
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of death-accompanied-by-dehydration to rise considerably across the time of the
puncturing, so that the probability trajectory theory will give the correct answer that
the death-by-dehydration was, to a significant degree, “because of” the puncturing.

Thus, in example (v), the trajectory theory gives the clearly correct answer about
the casual role of the poisoning for death, and when the relevant factors are isolated
and the relevant questions asked, the theory gives the correct answers about the
causal role of the puncturing for death, and for death-accompanied-by-dehydration.
Examples (iii) and (iv) can be handled in analogous ways, when understood to in-
volve nondeterministic causation and nonextreme probabilities. In (iii), the death
is, intuitively and according to the theory, casually independent of those conditions
that were right for a stroke (hold fixed the “entirely unrelated” heart attack and the
resulting lack of blood circulation that eventually and more proximately led to the
death); and the death is, to some small degree, either because of or despite (or even
independent of, depending on the details of the example) the heart attack (depending
on the relative efficacies of the heart attack and the pre-stroke conditions for death);
but death-accompanied-by-lack-of-blood-circulation is, to a high degree, because of
the heart attack (hold fixed, of course, the pre-stroke conditions). In (iv), the crime
is, intuitively and according to the theory, causally independent of the backup plans
of the head of the criminal organization (hold fixed Smith and Jones’ intentions and
the successes in the various steps along the way that culminated eventually in the
crime); and the mere fact of the crime is, to some small degree, either because of
or despite (or even independent of, depending on details of the example) Smith and
Jones’ forming the intention to commit it (depending on the relative skills of Smith
and Jones compared to the backup crew); but the crime, in the exact way it was
committed by Smith and Jones, is, to a high degree, because of Smith and Jones’
forming the intention to commit it (hold fixed, of course, the backup plans of the
head of the crime organization). (If however, the plans of the head of the criminal
organization in some way contributed to Smith and Jones’ making their plans, then
the story would be different and we would not hold fixed Smith and Jones’ plans
in assessing the causal role of boss’ plan for the crime, and we would get the right
answer that the crime was because of the boss’ plans.)

Note that there are three question/answer pairs addressed in the above analysis
of the three examples: (1) What is the causal role of the (preempted) event X 0x0
(poisoning, conditions being right for a stroke, the boss’ plans) for effect Yy (death,
death, crime) (2) What is the causal role of the (preempting) event Xx (puncturing,
heart attack, Smith and Jones’ plans) for the effect Yy, and (3) What is the causal
role of (preempting) event Xx for the effect event Y 0y considered in a more precisely
specified way (death accompanied by dehydration, death accompanied by lack of
blood circulation, crime in the specific way committed by Smith and Jones). The
application of the trajectory theory to questions (1) went the smoothest (by holding
fixed the preempting cause and its effects intermediate between it and the final ef-
fect). The application to questions (2) was fairly straightforward as well, except that
it initially seemed that the trajectory theory was not giving the preempting cause Xx
its due, in not assigning it a strong enough causal role in the production of the effect
event Yy. However, answers to questions (3) were supposed to fix this seeming lack
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of match with intuitions by pointing to a more detailed, or different, specification
of the way things were at time/place y for which Xx really was strongly causally
responsible: the idea is that in fact Xx was not strongly causally responsible for y’s
being Y but was strongly causally responsible for y’s being Y 0. Applications of the
theory to questions/answers (1) had to do with verifying that the theory does not
say that the preempted cause is a cause; and applications of the theory to ques-
tions/answers (2) and (3) had to do with verifying that the theory does say that the
preempting cause is a cause (of the effect event appropriately understood).

While issue (1) seems to be handled just fine by the theory, and the same for
(2) given the assumed probabilistic nature of the examples, the application of the
theory to issue (3) relies on a substantive assumption, which may be construed either
metaphysically or empirically, depending on how one wants to construe the theory.
That assumption may be formulated like this:

Trace Assumption In cases in which Xx preempts X 0x0 in the production of Yy,
there is some feature Y 0 of what happens at y that physically traces back to Xx and
not to X 0x0 and would not have been present at y had Xx not occurred and X 0x0
caused Yy instead.

This formulation involves the ideas of “physically tracing back” and “counterfac-
tual dependence”; these ideas are not ingredients in the trajectory theory, but rather
this formulation is simply intended to use some (somewhat vague) ideas that are
ingredients in other theories of causation and in our ordinary concept of causation
and in terms of which we can test the implications of the trajectory theory. In the
can of water example, (v), Y 0 was death specifically accompanied by dehydration;
in the patient example, (iii), Y 0 was death specifically accompanied by lack of blood
(ordinarily supplied where and in the manner the heart supplies it); and in the crime
example, (iv), Y 0 had to do with some supposed specific way in which Smith and
Jones committed the crime that differs from the way it would have been committed
if the backup plan had had to be implemented.

There are three points I would like to make in clarifying and defending this
assumption. First, that factor Y 0 is not intended to involve a possible difference in
time or place in which Yy did occur as a result of Xx and that would have been differ-
ent had Xx not occurred andX 0x0 been the cause of some Y 00y0 instead. Throughout,
I am assuming that we are concerned with the causal significance of what happened
at one specific time/place, x, for what happened at another, y. And in fact, if, in the
examples, the difference between Xx and X 0x0’s being the cause did make a differ-
ence in the time at which an effect in question occurred, then I think the probability
trajectory analysis would have an even easier time dealing with the relevant exam-
ples. As explained above, I am working with a conception of events on which they
are individuated by a specification of a time/place (point or interval) and a set of
factors exemplified at that time/place (like a trope): if either the time/place differed
or the set of properties differed (even in one’s being a subset of another) in two spec-
ifications, then we have specifications of two different events.10 So if, for example,
in the crime case, (iv) above, “the” crime would have been committed at a later time
than Smith and Jones’ crime had Smith and Jones failed and the backup plan been
used, then there would be this temporal feature of the actual crime that traced back
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to Smith and Jones’ plan but not to the boss’ backup plan,11 and surely that there
even was a crime at the time/place y of the actual crime is a feature of y that traces
back to Smith and Jones’ intentions and that would not have been present at y were
it not for their plans.

Second, it might be objected that in many cases of preemption there are traces of
the preempted event that are present in the effect event that would not be there had
the preempted event not occurred, so that my application of the trace assumption
does not distinguish the preempted from the preempting event. So, for example,
in the patient case, (iii) above, there may be features Y 00 present in the patient at
the time of his death that physically trace back to the (preempted) conditions-just-
right-for-a-stroke-at-4:55-p.m.-and-death-at-5:00-p.m. present at 4:00 p.m., where
Y 00 would not have been present at y had these 4:00 p.m. conditions not been
present. This seems natural enough, of course. And it is also natural enough to say
that Y 00y is because of X 0x0 but not because of Xx, while Y 0y (Y 0 again D death
with lack of blood in the places where the heart ordinarily supplies it in the way it
ordinarily does) is because of Xx but not because of X 0x0, which is just what the
probability trajectory theory yields.

And third, we may wonder whether the trace assumption is always true, whether
there really could not be cases in which everything that happens at y is just the way
it would have been had Xx not occurred andX 0x0 had been the cause of y’s being Y
and y’s having all the other features Y 0 it actually has. I know of four examples that
have been described recently with this issue specifically in mind. I will consider two
of these here.12

Paul (2000) describes an example involving two cats and a fly:

C. Louise crouches aiming for [a] fly. Possum also crouches, aiming for the same fly.
C. Louise jumps. Possum, who has been practicing, jumps a moment later, but his (newly
acquired) agility makes him able to catch the fly at the same time as C. Louise. Unfortu-
nately for Possum, there is a little known law that states that flies, when pounced upon by
multiple cats, are captured by the cat who jumps first. Since C. Louise jumps before Pos-
sum, she gets the fly. If C. Louise had not jumped, Possum would have captured the fly in
the very same way and at the very same time. C. Louise’s pounce, albeit through no intrinsic
feline merit, trumps Possum’s. (Paul 2000, p. 247)

But surely there are features of the actual fly-catching that trace back to C. Louise’s
pounce and not to Possum’s and that would not have been present had C. Louise
not pounced and Possum had caught the fly. For example, it was C. Louise’s paw
(or teeth, or however the cat did it) that actually made contact with the fly; this
clearly traces back to C. Louise’s pounce, not Possum’s, and would not have been
present had C. Louise not pounced and Possum had caught the fly instead.13

Ned Hall (2004) says, “it’s easy enough to construct cases in which c is clearly
a cause of e but in which neither c nor any event causally intermediate between it
and e make the slightest difference to the way e occurs”, and he attributes to Steve
Yablo the following modification of the story of Billy and Suzy (described at the
beginning of this paper):

This time Billy throws a Smart Rock, equipped with an on-board computer, exquisitely
designed sensors, a lightning-fast propulsion system – and instructions to make sure that the
bottle shatters in exactly the way it does, at exactly the time it does. In fact, the Smart Rock
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doesn’t need to intervene, since Suzy’s throw is just right. But had it been any different –
indeed, had her rock’s trajectory differed in the slightest, at any point – the Smart Rock
would have swooped in to make sure the job was done properly. (Hall 2004)

But again, I think that when we think carefully about what happened at y (the time
and place of the bottle’s shattering) we will find there features that trace back to
Xx (Suzy’s throwing her rock) that would not have been present had she not thrown
her rock, or if for some other reason the Smart Rock had done the job instead.
For example, Suzy’s rock is in front of the Smart Rock – closer to the bottle than
the Smart Rock is just before the shattering, and in contact with the bottle, while the
Smart Rock is not, at the time of the initial rock-bottle contact. And just after the
initial rock-bottle contact, surely the configuration of Suzy’s rock, the Smart Rock,
and the shards of glass is different from the way it would have been had Suzy not
thrown her rock, or if for some other reason the Smart Rock had done the job instead.
So, realistically and carefully understood, it seems that there are features Y 0 just
before, at the time of, and just after the shattering that trace back to Suzy’s throw
and that would not have been present had Suzy not thrown her rock, or if for some
other reason the Smart Rock had done the job instead. And the probability of these
features Y 0 of y would seem to increase across the time at which Suzy actually
succeeds in letting her rock fly. In Section 3, however, I will discuss the theoretical
possibility of examples in which there are no such factors Y 0, that trace back to Xx
and that would not have been present were Xx not to have occurred.

The discussion here may remind readers of David Lewis’ discussion of fragility
of events (1986, p. 196ff.). An event is “fragile if, or to the extent that, it could not
have occurred at a different time, or in a different manner. A fragile event has a rich
essence; it has stringent conditions of occurrence” (p. 196). The idea I think is that
what happens at a time and place y can be considered in a more or less detailed
way, Y , so that at that same time and place both more and less fragile events occur.
(“Don’t say: here we have the events – how fragile are they. : : : Properly posed,
the question need not have a fully determinate answer, settled once and for all. Our
standards of fragility might be both vague and shifty (pp. 196–197)). And Lewis
considers a strategy like the one above involving our trace assumption, and asks,
“Wouldn’t we still have residual cases of redundancy [of which preemption is one
kind], in which it makes absolutely no difference to the effect whether both of the
redundant causes occur or only one?”, and answers, “Maybe so; but probably those
residual cases would be mere possibilities, far-fetched and contrary to the ways
of this world” (p. 197, Lewis’ italics). The trace assumption is that such far-fetched
cases just do not happen (but, again, I will consider such theoretically possible cases
in Section 3). But Lewis goes on to say that the strategy makes for more trouble than
it cures anyway, and he considers two examples intended to illustrate this, to which
I now briefly turn.

In the first example, one gentle soldier in an eight-soldier firing squad did
not shoot. If the victim’s death is considered to be a very fragile event, then a
seven-bullets-through-the-heart death is a different event from an eight-bullets-
through-the-heart death. “So the gentle soldier caused the death by not shooting,
quite as much as you caused it by shooting! This is a reductio” (p. 198). In the other



Propensity Trajectories, Preemption, and the Identity of Events 191

example, Boddie eats first a large dinner and then poisoned chocolates. Boddie then
dies from the poison, but the large dinner slowed the absorption of the poison in the
chocolates and the death occurred somewhat later and in a slightly different manner
than it would have without the large dinner. “If the death is extremely fragile, then
one of its causes is the eating of the dinner. Not so” (p. 198). Leaving aside the fac-
tor of time (as before), the number of bullets through the heart and the exact manner
of Boddie’s death are factors Y 0 that trace back to the gentle soldier’s not shooting
and the eating the large dinner, respectively, and which would not have been exem-
plified at y (times/places of the deaths) had the failure to shoot or the eating of the
large dinner not occurred.

In these two examples, as in the other examples considered above, there are
various things going on in, or features of, the spatio-temporal region y of the ef-
fect events, Yy; Y 0y, and so on, as well as various things going on in, or features
of, the spatio-temporal region x of the cause events, Xx; X 0x, and so on. And dif-
ferent features X of the earlier time/place x have different causal significances for
different features Y of the later time/place y. While it does indeed sound unusual to
say that the gentle soldier’s not shooting caused the victim’s death, or that Boddie’s
large dinner caused Boddie’s death, I suggest that this is only because the itali-
cized phrases here single out or bring to mind a feature of the later events – namely
Y D death – for which the earlier event was not causally responsible. But, as in
the previous examples, there are also features – Y 0 D death-with-exactly-seven-
bullets-through-a-heart and Y 0 D death-by-poison-mixed-with-that-large-dinner –
for which the cause events Xx were responsible. I find it completely natural to say
that the gentle soldier’s omission was responsible for there being only seven bullets
penetrating the victim’s heart and that Boddie’s large dinner caused his death in the
way that the death in fact occurred – all under the circumstances (the other seven
soldiers’ shooting and Boddie about to eat the poisoned chocolate). I agree that
fragility is often a matter of vagueness or shiftiness, but when the relevant features
of a cause event and an effect event are settled either by context (and the relevant
features can shift from context to context) or by asking a precise question (of the
form “What was the causal significance of x’s being X for y’s being Y ?” ), then a
precise answer (which specifies each of x, X, y, and Y ) should not, I think, sound
unnatural at all.14

Before leaving the topic of ordinary preemption (or cases in which it seems, to
me at least, that a plausible candidate for a Y 0 of y tracing back specifically to Xx
can be found), I consider two recent examples specifically addressed to probabilistic
causation and with the trajectory theory in mind. Christopher Hitchcock describes
the following scenario (similar to the Billy and Suzy example described above but
not exactly a case of preemption):

Suppose that two gunmen are shooting at a Ming vase. Each one has a fifty percent chance
of hitting the vase, and each one shoots independently, so the probability that the vase
shatters is 0.75. (For simplicity, we will ignore the possibility that the vase might survive
a bullet hit.) As it happens, the first gunman’s shot hits the vase, but the second gunman
misses. (2004)

In this case, in evaluating the causal role of either gunman’s shooting for the
shattering of the vase, we must hold fixed, for one thing, the other gunman’s
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shooting, for the latter is causally independent of the former and causally relevant
to the vase’s shattering. This gives the right answer for the first gunman’s shoot-
ing: the probability of the vase’s shooting increases from 0.5 to 0.75 across the time
of his shooting (and I suppose doesn’t decrease between that time and the time of
the vase’s shattering). But at first it may seem that the same is true for the second
gunman’s shooting, and that the trajectory theory would give the wrong answer that
the vase’s shattering was because of this shooting. (As before, I ignore the time el-
ement, assuming that the time of the shattering would be the same no matter which
gunman’s bullet hit the vase.)

However, there are two ways in which the trajectory theory blocks this
conclusion. First, it is after all the first gunman’s bullet that hits the vase; this
is a feature of what happens at the place/time y of the shattering that traces back
to the first gunman’s shooting and that would not have been present at y had the
first gunman not shot, and whose presence at y the theory says is because of first
gunman’s shooting, and of course not because of the second’s. This is similar to
what I said about the version of the story of Billy and Suzy with Billy’s Smart Rock.
And second, recall that we must hold fixed all factors whose exemplifications are
token causally independent of a candidate cause and which are causally relevant
to the relevant factor exemplified at the later time. In this case, the first gunman’s
bullet entering or being just about to enter the vase (just before the vase actually
shatters) is such a factor. And conditional on this factor, the second gunman’s
shooting does not affect the probability of the vase’s shattering across the time of
his shooting, which makes the theory give the correct answer that the shattering
was token causally independent of the second’s gunman’s shooting.15 In addition,
presumably at some time after the two shots, the bullet from the second gunman
is off course; this should be held fixed in evaluating the causal role of the first
gunman’s shooting for the shattering, in which case the probability of the shattering
increases from 0 to 0.5 at the time of the first gunman’s shooting. This would seem
to be the correct way to apply the theory to the question of the casual significance of
the first gunman’s shooting for the vase’s shattering, in which case again the theory
says that the shattering was because of the first gunman’s shooting.

Douglas Ehring (1994, 1997) describes a somewhat more complicated example.
A very sick patient in a hospital is connected to a mechanism that can deliver drugs
to the patient. The mechanism is connected to two sources of drugs, a source of
drug A and a source of drug B. If the patient receives neither of these drugs, then
the chances of survival are very low; but if the patient gets either or both of the
drugs, then the chances of survival are 0.5; and there is a law of biology according to
which, given the patient’s condition, the chances of survival cannot possibly exceed
0.5 at this time. It is improbable that both drugs would flow to the mechanism that
is connected to the patient. And if both drugs are released from their sources, then
there is a chance that the drug that reaches the mechanism first will set off a device
that blocks the flow of the other drug to the patient. The release of either drug from
its source is causally independent of whether the other drug is released from its
source. And assume finally that if at least one of the drugs is released from its
source then the probability is 1 that the patient will receive one of the two drugs
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through the mechanism (drug A if only A is released from its source, B if only B is
released from its source, and at least one of the two if both are released from their
sources). Here is what happens. First, a valve is opened that starts the flow of drug B
to the mechanism; then (improbably) a valve is opened that starts the flow of drug
A to the mechanism. But drug A reaches the mechanism first and this (improbably)
blocks drug B from flowing through the mechanism to the patient; drug A reaches
the patient and the patient survives. Ehring says (correctly, in a way) that the release
of drug A is what actually saved the patient. However, at the time of A’s release, the
probability that the patient would survive was already at its maximum value of 0.5,
since drug B was already on its way to the mechanism, guaranteeing that at least
one of the two drugs would reach the patient. Thus, the release of drug A did not, at
the time of its occurrence, alter the probability that the patient would survive. This
is supposed to be a counterexample to the probability trajectory theory since the
release of drug A caused the survival but the probability trajectory theory says that
survival was causally independent of the release of A.

However, I think the right way to view this example is this: the release of drug
A did not cause (exactly) the survival, but it did cause the mechanism to deliver the
drug it did (A) to the patient, it did cause the mechanism to start delivering the drug
it did at the time it did (just before drug B reached the mechanism), it did cause
the mechanism to block the flow of drug B, and it did cause the patient to survive
with drug A in his veins. Even though the probability of survival cannot be increased
above the stipulated biological limit of 0.5 by the release of drug A, the probabilities
of these other factors can be increased by this from what their values were before
the release of drug A, but of course not of the last other factor to above 0.5. Again, if
we pay attention to the fact that many properties are exemplified at the relevant later
time/place y (in this example, the spatio-temporal region within which the patient
recovered), then, when we tell the whole story, the probability trajectory theory will
deliver the correct answers, in the light of which some initially perhaps misleading
answers (in this example, that the release of drug A did not in the circumstances
cause, exactly, the patient to survive) are no longer misleading. (I leave it to the
reader to ponder the application of the probability trajectory theory to the causal role
of the release of drug B for the exemplifications of the various factors exemplified
around the patient’s recovery.)

I conclude that in cases in which the trace assumption holds, and when causal
questions and answers are formulated precisely (including an x, an X , a y, and
a Y ), the trajectory theory gives the correct answers – indeed the intuitively correct
answers in light of answers to other questions, that is, in light of the “whole story”.16

Failure of Tracing, and Symmetric Overdetermination

In this section I discuss two matters that were alluded to above but postponed,
namely the theoretical possibility of failure of the trace assumption and the phe-
nomenon of symmetric overdetermination.
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Theoretical Possibility of Failure of the Trace Assumption Suppose that, somehow,
an effect e would have occurred in exactly the same way if, instead of the pre-
empting cause c causing e, the preempted cause c0 had caused e. Expressed in terms
of the notation introduced above, the situation is this: for all factors Y present at
time/place y, y would still have exemplified Y hadX 0x0 not been pre-empted and Xx
was not causally responsible for what went on at y. As suggested in the discussion
of examples above, I think this would be extremely rare in a case of (at least late)
preemption,17 so I will turn to a different kind of case, an example basically the
same as one I discussed briefly in my (1991, pp. 384–386) that I think will serve our
purposes here but which I am not sure should be counted as a case of preemption.18

Suppose a golf ball is rolling straight toward the cup with a 95% chance of falling
in. A squirrel kicks the ball away, but improbably enough the ball comes off the
squirrel’s foot with the same 95% chance of falling into the cup, but along a different
path (made possible by the contour of the golf course). Suppose further that this new
95% chance is for the ball’s landing in the cup in exactly the same way (“locally”)
as it had a 95% chance for before the kick (i.e., crossing the same point on the rim
of the cup, from the same direction, with the same speed, at the same time, etc.).
The ball falls in the cup.19 In one sense, we want to say that the squirrel kick caused
the birdie, but on the other hand it is part of the example that the actual effect of the
kick is to leave the probability of the birdie’s occurring, in exactly the same way as
it probably otherwise would have, unchanged. Even though the birdie’s happening
exactly the way it did traces back to the squirrel kick, the net actual effect of the
kick is to leave the probability of this happening unchanged. Because of the latter,
the trajectory theory says the birdie occurred (exactly as it did) “token causally
independently” of the kick. This seems to be a correct verdict of the trajectory theory
in one sense of cause: the probability of things being the way they actually turned
out to be at the time of the birdie was left unchanged by the squirrel kick, given the
way the ball was moving after the squirrel kick. But there is still the tracing-back
intuition according to which the squirrel kick is relevant to the birdie, even though
there is no feature of the effect that traces back to the squirrel kick and that would
(with the same probability as conferred by the ball’s original motion) not have been
present had the squirrel not kicked the ball.

My intuition here is that, as far as causation strictly speaking in concerned, the
squirrel kick is irrelevant to the birdie’s happening, in the exact way that it did –
that being, again, because the kick left the probability of the ball’s falling into the
cup, in exactly the way it did, unchanged. On the other hand, there is the “tracing-
back” intuition that the squirrel kick is somehow relevant to the birdie, for the kick
was responsible for the ball’s taking the path it actually did take into the cup. If
we want to explain just how or why the ball fell into the cup, we would surely
want to include the fact of the kick and the fact of the path the ball actually took
in moving to the cup. The way I have just expressed the way in which I think the
kick is relevant to the birdie suggests my diagnosis of the case: we should separate
the concepts of causation and explanation here. It would be a project in itself to
develop this suggestion in detail. I suggest that we should separate question of the
explanatory contribution of the kick for the birdie (in the exact way that it happened,
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in this unusual case) from the question of causal impact of the kick on the birdie (the
kick’s having no actual effect on the probability of the birdie in the exact way that
it happened, in this unusual case).

I think this intuition and suggestion applies also to the theoretically possible kind
of preemption in which the trace assumption fails. In such cases (if there are any),
y’s being Y (for all relevant Y ’s exemplified by y) traces back to and is partially
explained by Xx, even though, due to the presence of the backup event X 0x;Xx did
not, in these circumstances, positively causally contribute to y’s being Y . I think
that this tracing back, explanatory kind of significance of an earlier event for a later
event can be captured by a trajectory-style analysis. It is not clear to me exactly
how this should be carried out, but it seems that the basic idea should be to point
to chains or networks of trajectory-style connections between an earlier event and
a later event. For example, while the birdie was not exactly because of the squirrel
kick, there are intermediate events that were because of the kick and that the birdie
was because of (thus, “because of” is not in general transitive).20 But again, this is
a topic for a separate project.

Symmetric Overdetermination I turn now to the second kind of example of overde-
termination, exemplified in examples (i) and (ii) in Mackie’s list of five examples,
(iii)–(v) of which were discussed above.

(i) A man is shot dead by a firing squad, at least two bullets entering his heart at once,
either of which would have been immediately fatal.

(ii) Lightning strikes a barn in which straw is stored, and a tramp throws a burning
cigarette butt into the straw at the same place and at the same time: the straw catches
fire. (Mackie 1974, p. 44)

Mackie says, “In these cases even a detailed causal story fails to discriminate
between the rival candidates for the role of cause. We cannot say that one rather
than the other was necessary in the circumstances even for the effect as it occurs”
(p. 47, Mackie’s italics). Of course the concern in this paper is with probabilistic
causation, so let us understand the examples as probabilistic (what the members of
the firing squad did makes the victim’s death very probable and the lightning and the
tramp’s cigarette but each make the fire very probable), so that the necessity referred
to in the quote from Mackie is not exactly to the point in the way we will under-
stand the examples. The salient point about these examples is indicated by Mackie’s
italicized phrase. Unlike Mackie’s other examples (where we can say that the effect
event was a heart-attack-death and not a stroke-death, the effect was a Smith-and-
Jones-crime and not a back-up-crew-crime, and the effect was a dehydration-death
and not a poison-death), examples (i) and (ii) are supposed to be cases in which the
effect cannot be traced back to one of the two candidate causes and not the other.

I think the same considerations applied above to cases of preemption, or asym-
metric overdetermination, can be applied also to examples like (i) and (ii), and that
the probability trajectory theory, properly applied, yields intuitively correct ver-
dicts. First, although it is not specified in the examples, it seems natural to think
that, understanding the examples probabilistically, the combination of two causes
makes for a higher probability of the effect than one of the two alone does (of
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course it is natural for this unspecified possible feature of the examples not be spec-
ified by Mackie, since he was operating with a necessity/sufficiency conception of
causation). Also, in evaluating the causal role of one of the earlier events for the
later one we should hold fixed the other earlier event (since it is at least implic-
itly assumed in the examples that the two earlier events are causally independent
of each other). In this case, we should say that all of the earlier events were causes
of the respective later events in their examples. And the probability trajectory the-
ory applied to these examples says that the victim’s death was because of each of
the bullets’ entering the heart (each raised the probability of death over what it is
conditional only on the other) and the fire was because of the lightning and also
because of the cigarette butt (each raised the probability of the fire over what it is
conditional only on the other). However, the examples could be understood in a way
that, given that one of the earlier events occurs, the other cannot further increase the
probability of the relevant later event (as in Ehring’s example in which there is no
possibility of raising the probability of the patient’s survival above 0.5). Also, as in
previous examples, one could naturally complain that this approach does not assign
an intuitively high enough causal significance to the causes for the effect.

But second, we could try applying the trace assumption to these examples.
Mackie says that the two candidates for a cause cannot be discriminated between
even by considering the effect “as it occurs”, by which I take him to mean, “paying
attention to all of the features of the later event”. Of course it is worth pondering
this theoretical possibility, but again I find it hard to imagine that the effect event
would be exactly the same, in all its details, if either one of the two candidate causes
occurred without the other. Surely there is some feature Y 0 of the firing squad’s
victim’s death that would have been different had only one bullet pierced his heart
(e.g., a difference in the change of momentum undergone by a part of the victim’s
body) and that traces back to a second bullet. And in the fire example, surely the
presence of the lit end of the cigarette butt (or of the lightning) made for a differ-
ence Y 0 in what things were like at the time and place y of the fire’s ignition that
would not have been present if only the lightning (or lit end of the cigarette butt)
had been there to start the fire, and which traces back to the presence of the cigarette
butt (the lightning strike). And these differences Y 0 can be expected to reverberate
into the exact future of the victim’s body and into the exact ensuing course of the
fire. In this case, we can naturally say – and the probability trajectory theory applied
to the examples yields these verdicts – that the feature Y , the firing squad’s victim’s
being dead, of the time and place of what happened to the victim is token causally
independent of each of the bullet’s entering the heart (under the circumstances of the
other bullet’s entering the heart), while the feature Y 0, above, of this time and place
was because of a given bullet’s entering the heart, and similarly for the fire example.

But third, we should not ignore the theoretical possibility of failure of the trace
assumption in examples like this. In this case, I would again, as above, appeal to
a distinction between a purely causal concept and an explanatory concept. If it is
really true that neither of the “candidates for the role of cause” made any difference
at all in the effect event (under these circumstances of the presence of the other
candidate) then it seems, at least to me, reasonable to say that neither was a cause
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(under the circumstances), though a full explanation of just how and why the victim
died or of how and why the fire was started would include both “candidates”.

Conclusion

The propensity trajectory theory of singular causation provides a natural framework
which supports intuitive judgments concerning causal roles of preempting, pre-
empted, and symmetrically overdetermining evens. (And the phenomenon of
preemption poses no special problem for the propensity trajectory theory of sin-
gular probabilistic causation.) Some of the conclusions above depend on the trace
assumption, and given the theoretical possibility of failure of the trace assumption,
on a suggested way of separating purely causal from otherwise explanatory roles of
events for events.
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Notes

1 I note here, for reference in a later note, that preemption in a case like this is sometimes called
“late preemption”, in contrast to cases of “early preemption” in which a causal chain from the
preempted event is “cut” by some effect of the preempting event at some time intermediate
between the times of the preempted event and the effect, where had this “cutting” not occurred
the preempted event would have succeeded in causing the effect in question. (See Lewis (1986),
and also Lewis (2000) where he prefers the terminology “early and late cutting”.) In the Billy
and Suzy example, Suzy’s rock did not interfere (at least “relevantly much” we might say) with
the trajectory of Billy’s rock.

2 For details, see Eells (1991), chapter 6.
3 For details, see Eells (1991), chapter 1.
4 For details, and defense of the requirements, see Eells (1991), chapters 2 and 3.
5 A more general idea of interaction is that the pairs hPr.E=F&C/; Pr.E=F&�C/i and

hPr.E=�F&C/; Pr.E=�F&�C/i are different. More general still would be to define inter-
action in terms of partitions of factors F .

6 See Eells (1991) for examples, specifically at the token level, that demonstrate the need for
holding fixed independent causes and interactive factors.

7 This will do for present purposes. Again, for details, see Eells (1991), chapter 6.
8 Quoted from Mackie (1974, p. 44). These examples (iii)–(v) are what today we call “preemp-

tion”, or “asymmetric overdetermination”, where it is clear which of two earlier events is the
cause of the later event. His examples (i) and (ii), to be considered in Section 3, are cases of
what we now call “symmetric overdetermination”, where we are supposed to have no definite
intuitions about which of the earlier events is the cause. This terminology is due to Lewis (1986).
Mackie quotes example (iii) from Scriven (1964), (iv) is from Marc-Wogau (1962), and exam-
ple (v) is based on a modification by Hart and Honor (1959) of an example of McLaughlin
(1925–1926).

9 Mackie (1976, p. 46) makes much the same point when he distinguishes between the “facts”,
“[that] he died, and that he died of thirst”.
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10 Compare Kim (e.g., 1973), though he individuates events by triples consisting of an individual
(or individuals), a property (or properties), and a time.

11 See Paul (1998, 2000) for an application of this feature of at least some cases of preemption to
the counterfactual analysis of causation.

12 The other two, by Schaffer (2000), involve either an admittedly unrealistic but logically possible
situation involving magic and action at a distance or a possible world with a physics different
from actual physics. While it is interesting to apply our concept of cause to such conceptually
possible scenarios, I will restrict my attention here to what seem to be attempts to describe more
realistic such situations. The first example to be described would seem to be a more realistic
example of the kind that Schaffer has in mind and is intended to illustrate the possibility of
“trumping”, as Schaffer calls it.

13 Paul points out that this example involves action at a distance and suggests that a different analy-
sis is necessary for such causation than for causation that needs chains of events. In a note below,
I will describe a version of the C. Louise/Possum case in which I think the trace assumption fails
and there is no action at a distance (but which is not a case of late preemption).

14 Compare Eells (1991, pp. 286–289).
15 Hitchcock in fact makes this point for what he calls “ebb and flow in the probability pool”

approaches to singular probabilistic causation, of which the probability trajectory theory is an
instance.

16 I note also the uniformity of this treatment of preemption across cases of “early” and “late” pre-
emption. The versions of the Billy and Suzy story discussed are clear cases of late preemption,
the case of the thirsty traveller and Ehring’s patient example are clearly cases of early preemp-
tion, and in some of the other examples discussed, different verdicts concerning classification
into late or early preemption may depend on different understandings or specifications of the
details of the examples.

17 But consider this modification of the C. Louise/Possum case of Paul’s described above. Suppose
C. Louise sees Possum on the way to the fly and pushes Possum away and is able then to acceler-
ate so that the time of the effect would be the same no matter which cat got the fly. Further, more
saliently, suppose the effect is not exactly the catching of the fly but rather the fly being crushed
inside of a box by a mechanism that is activated outside the box by a button, where the exact
way the fly is crushed is not affected by who or how the button is pushed. Of course this is not a
case of late preemption (which was Paul’s topic) but it would seem to be a case of failure of the
trace assumption (and in which there is no action at a distance). So I do not deny the possibility
of failure of the trace assumption in cases of (at least early) preemption.

18 I will note below why I think it is unclear that this should be counted as a case of preemption.
19 Why isn’t this clearly a case of preemption, of the golfer’s swing or of the motion of the ball just

before the squirrel’s kick, by the squirrel kick? Each of these candidates for the preempted cause
seems clearly part of the actual cause of the birdie: on a natural understanding of the example,
had the golfer not swung, or the ball not been moving in the way it was just before the kick, the
action of the squirrel would not have resulted in a birdie. So the influences of these candidates
for a preempted cause are clearly not totally preempted by the action of the squirrel.

20 Hall (2004) distinguishes between two concepts of cause which he calls “dependence” (which
is just counterfactual dependence) and “production” (which is a tracing-back idea). He gives
(deterministic) examples of dependence without production; the example just discussed can be
thought of as a (probabilistic) case of production without dependence.

References

Eells E (1991) Probabilistic causality. Cambridge University Press, Cambridge
Ehring D (1994) Preemption and Eells on token causation. Philos Stud 74:39–50
Ehring D (1997) Causation and persistence: a theory of causation. Oxford University Press,

New York and Oxford



Propensity Trajectories, Preemption, and the Identity of Events 199

Hall N (2004) Two concepts of causation. In: Collins J, Hall N, Paul L (eds) Causation and coun-
terfactuals. MIT, Cambridge, MA and London 225–276

Hart HLA, Honor AM (1959) Causation in the law. Oxford University Press, Oxford
Hitchcock C (2004) Do all and only causes raise the probabilities of effects. In: Collins J, Hall N,

Paul L (eds) Causation and counterfactuals. MIT, Cambridge, Massachusetts and London,
England 403–418

Kim J (1973) Causation, nomic subsumption, and the concept of event. J Philos LXX(8):217–236
Lewis D (1973) Causation. Reprinted in his: Philosophical papers, vol II, 1986. Oxford University

Press, New York and Oxford
Lewis D (1986) Postscripts to “causation”. In his: Philosophical papers, vol II. Oxford University

Press, New York and Oxford
Lewis D (2000) Causation as influence. J Philos XCVII(4):82–197
Mackie JL (1974) The cement of the Universe: a study of causation. Oxford University Press,

Oxford
Marc-Wogau K (1962) On historical explanation. Theoria xxviii:213–233
Menzies P (1996) Probabilistic causation and the pre-emption problem. Mind 105(5):85–117
McLaughlin JA (1925–1926) Proximate cause. Harvard Law Rev xxxix, 149ff
Paul LA (1998) Keeping track of time: emending the counterfactual analysis of causation. Analysis

LVIII(3):191–198
Paul LA (2000) Aspect causation. J Philos XCVII(4):235–256
Schaffer J (2000) Trumping preemption. J Philos XCVII(4):165–181
Scriven M (1964) Review of the structure of Science (ed: Nagel’ E). Rev Metaphys xviii, 403–424



Miraculous Consilience of Quantum Mechanics�

Malcolm R. Forster

Baby Epistemology

Think back to a time when mirrors were a new experience to us as children. How did
we learn that the world we saw in the mirror was not a different world from ours, but
a reflection of the world we already knew? How did we acquire the parsimonious
view that reflections provided independent views of the same objects?1 Presumably,
it has something to do with the way that mirror images are correlated with our more
direct perception of the objects.

Reichenbach (1938) put forward a similar idea when he imagined an observer
enclosed in the corner of a cubical world, where objects in the external world cast
shadows on the walls of the enclosure (Fig. 1). It seems plausible that much more
information about external world would be available if external objects cast shad-
ows on two walls of the enclosure, rather than a single shadow, or even copies of
a single shadow. It seems that the inferential engine inside our heads tends to favor
the judgment that they are the shadows of a single object, rather than shadows of
different objects.

There is no good formal theory of how such inferences work, although they seem
to conform to informal principles such as the principle of parsimony, or Occam’s
razor, which is usually taken to state that “Entities are not to be multiplied beyond
necessity.”2 The rule is vague in crucial ways. For example, what counts as an entity?
And under what conditions does it become necessary to multiply an entity?

Consider the first question more carefully. Do probabilities count as entities?
Is there, in other words, a principle that says that probabilities are not to be mul-
tiplied beyond necessity? In Section on Consilience in Probabilistic Examples,
I argue that such a principle is useful in causal modeling for it provides an ac-
count of the time asymmetry of cause and effect that does not rely on the concept of
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Fig. 1 Reichenbach’s cubical
world in which an object in
the external world casts two
shadows observed by the
observer

Observer

Object

manipulation or intervention. On the other hand, there are well known circumstances
in which causal modeling fails. In Section on A Failed Consilience in the Double-
Slit Experiment, I argue that the application of Occam’s razor to probabilities
leads to false predictions in the famous double-slit experiment. The question then
arises: Does Occam’s razor apply to quantum mechanical probabilities? Or is quan-
tum mechanics (QM) parsimonious with respect to other kinds of entities? This is
a question that I attempt to answer affirmatively in sections on Spin Measurements
on a Single Electron, The Bell Theorem as Proving a Failed Consilience, and the
Consilience of Quantum Mechanics, at least in the context of a concrete example.

The concrete example is interesting because it is similar to the example used by
Bell (1964, 1971) to challenge local hidden variable interpretations of QM. I provide
a more recent version of Bell’s derivation of a false prediction in the section on
The Bell Theorem as Proving a Failed Consilience, while in the section on The
Consilience of Quantum Mechanics, I show that it is actually very close to the way
that QM makes the correct prediction (just replace variables with operators).

Bell’s theorem can be viewed as an argument that at least some quantum
mechanical phenomena have no causal explanation (van Fraassen 1982), which
agrees with the two theses argued in Sections on Consilience in Probabilistic Exam-
ples and A Failed Consilience in the Double-Slit Experiment: (1) The constancy, or
invariance, of probabilities is an essential component of causal modeling, and (2) the
invariance of probabilities leads to false predictions in the double-slit experiment.
The most obvious conclusion is that there is no causal explanation of the double slit
phenomena, and Bell’s argument is important because it is harder to wriggle out of
the conclusion. But does QM therefore fail to conform to Occam’s razor? Does it
fail to describe the world behind the shadows in a unified way? The main goal of
this essay is to argue, in at least one concrete example, that it is an exemplary kind
cubical world inference, which does conform to Occam’s razor.

I have not provided a formal account cubical world inference because there is no
such thing in my view. Causal modeling is one kind of cubical world inference, and
QM modeling is another, and two are formally quite different. But this is not to say
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that there is no overarching epistemological theory that covers both cases. In fact, a
good informal description of what might be viewed as cubical world inference was
published by William Whewell in 1858!

A Whewellian Criterion of Reality

Long before the invention of quantum mechanics, William Whewell (1858) claimed
that scientific induction proceeds in three steps: (1) the Selection of the Idea, (2) the
Construction of the Conception, and (3) the Determination of the Magnitudes (see
Butts 1989, pp. 223–237). In curve-fitting, for example, the selection of the idea
is the selection of the independent variable .x/ from which we hope to predict the
dependent variable .y/. The construction of the conception is determined by the
choice of the formula connecting the two variables (family of curves). And the de-
termination of magnitudes is what statisticians now refer to as the estimation of the
adjustable parameters. Whewell then makes an insightful claim about curve-fitting.
If we have a data point .x0; y0/ and a curve in the x-y plane representing a
hypothesis, then the y-value on the curve corresponding to x D x0 is hypothesized
to be due to the “signal”, while the difference between the y-value on the curve and
the observed y-value is the error, or the “noise”. But we cannot tell which part is
due to the signal and which part is noise by looking at that datum. Rather, we fit a
curve through many data points, for then the decomposition into signal and noise
that applies to each data point is informed by all the data.

The philosopher’s business is to compare his hypotheses with facts [data], as we have often
said. But if we make the comparison with separate special facts [data points], we are liable
to be perplexed or misled, to an unknown amount, by the errours of observation; which may
cause the hypothetical and the observed result to agree, or to disagree, when otherwise they
would not do so. If we thus take the whole mass of the facts, and remove the errours of
actual observation, by making the curve which expresses the supposed observation regular
and smooth, we have the separate facts corrected by their general tendency. We are put in
possession, as we have said, of something more true than any fact by itself is. (Whewell,
quoted from Butts 1989, p. 227.)

The idea is that the signal is more real than the noise in the sense that it is more
permanent and predictable. In fact, when we use the fitted curve to predict new data,
we use the curve to make the prediction because the noise is, by definition, random
and unpredictable. It’s not that noise is unreal. But when it comes to knowledge of
the world, it is knowledge of what can be generalized to new cases that is prized.
And hypotheses have the ability to generalize to new cases only to the extent that
they impose the right conception on the data.

The particular facts are not merely brought together, but there is a New Element added to the
combination by the very act of thought by which they are combined. There is a Conception
of mind introduced in the general proposition, which did not exist in any of the observed
facts.: : : The pearls are there, but they will not hang together until some one provides the
string. (Whewell, quoted from Butts 1989, pp. 140, 141.)
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In the case of curve-fitting, the conceptual string is the curve, but Whewell also
insists that the same picture applies to every colligation of facts (which is Whewell’s
name for ‘induction’).

Each colligation is confirmed by the prediction of new instances, but the
hypothesis is still conjectural, at least with regard to the appropriateness of the
conceptions it introduces. If each hypothesis is viewed as a “fact” and if these facts
are successfully colligated by successive generalizations, to use Whewell’s term,
then the resulting hypothesis is “more true” than any of the individual hypotheses
from which it is derived. To use Whewell’s example, Newton’s inverse square law is
“more true” than Kepler’s laws and Galileo’s law of terrestrial motion from which
it was induced. Thus, the best theories in the history of science strive towards what
he calls the consilience of inductions (note the plural). The mark of a good theory
lies not in the relationship between the theory and its data in a single narrow appli-
cation, but in the way it succeeds in ‘tying together’ separate inductions. A good
theory is like a tree that puts out runners that grow into new trees, until there is a
huge forest of mutually sustaining plants. The ‘tying together’ can be achieved in
either of two ways: (a) The theory accommodates one set of data, and then predicts
data of a different kind. (b) The theory accommodates two kinds of data separately,
and then finds that the magnitudes in the separate inductions agree, or that the laws
that hold in each case ‘jump together’. When the magnitudes agree, then we have
what is more commonly referred to as an agreement of independent measurements.3

The difference lies only in the historical order in which events take place. In either
case, a consilience of inductions has taken place, and this leads to a theory that
provides a more unified and parsimonious description of the world.4

Whewell’s defense of the objectivity of knowledge is very different from the log-
ical empiricism that superseded it in the twentieth century. On these views, error is
minimized by applying error-free canons of inductive reasoning to error-free data.
Whewell’s idea is that the colligation of facts is inherently concept-laden, because
the facts are combined by a new conception of mind. We need to distinguish be-
tween signal and noise, tentatively at first. But subsequently, there is a process of
objectification in which the inductive hypotheses are colligated at a higher level
of generalization. More importantly, the criterion by which we judge the reality of
postulated quantities is empirical if it involves the agreement of independent mea-
surements of postulated quantities. A careful examination of other examples in the
history of science, such as Newton’s argument for universal gravitation (Forster
1988; Harper 2002), shows that this empirical element has played a fundamental
role in triggering a revolutionary change in the way we view the world. If it has
happened before, it can happen again.

The purpose of this essay is to examine the consilience of colligations in quan-
tum mechanics. In this respect, I argue, the new physics is the same as the old.
The difference is that the resulting picture of reality does not conform to our usual
common sense picture of the world. The reason is that consilience cuts both ways.
The right kind of consilience can support a common sense view of the world. But
when consilience fails to occur, we must seek out new explanations that do achieve
consilience.
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Consilience in Probabilistic Examples

Quantum mechanics is essentially a probabilistic theory. So to understand how the
notions of colligations and consilience apply to it, we should first look at classical
examples of probabilistic modeling.

Consider a very simple example – the jackpot machine. The machine has two in-
put states: Either one euro coin is placed in the machine, or two euro coins are placed
in the machine, then a handle is pulled. The output state is either ‘win’ or ‘lose’. For
the sake of concreteness, suppose ‘win’ refers to the event that machine delivers 10d
as a ‘jackpot’, and a loss leads to a zero payout. In this example, the input states do
not determine unique output states. The ‘mechanism’ built into the machine is best
described in terms of the constancy or invariance of probabilities.

To make this point, introduce two variables,X and Y . Upper case letters are used
in statistics to denote variables that have probabilities associated with their possible
values. Such variables are called random variables. X represents the input state of
the machine in some particular trial of the experiment, while Y represents the output
state in the same trial. The possible states of the machine can be represented by
assigning arbitrary numerical values to these variables. Let X D 1 denote the event
that only 1d is placed in the machine before the handle is pulled, while X D 2

denotes the event that 2d are placed in the machine. Y D 0 denotes the event that
there is no payout, while Y D 0 denotes the event that the jackpot (of 10d) is
paid out.

The standard ‘forward’ causal model says:

P.winj1d/ D ˛; and P.winj2d/ D ˇ; for all trials i:

That is, different trials have something in common; namely, that the values of the
forward conditional probabilities are the same in each case. Note that the model
postulates constant values for all forward probabilities because

P.lossj1d/ D 1� ˛; and P.lossj2d/ D 1 � ˇ; for all trials i:

These four probabilities are postulated by the model. They count as theoretically
‘entities’. Their measurement, or estimation, is determined from the available data
in the same way that any theoretical quantity is measured. Consider a typical set
of data. Suppose that Alice plays the machine 200 times, and we record the input
and output state on each trial. The data consist in a sequence of data ‘points’, which
come in four kinds: (1,0), (1,1), (2,0), or (2,1). Because the model says that the
temporal order of the trials does not matter, the data are adequately recorded in the
table of the observed frequencies.

(Alice) Loss Win

1d 90 10
2d 80 20
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Notice that Alice plays the machine with 1d half the time and with 2d half the time
(100 trials each). Out of all the times she plays the 1d version of the game, she wins
the jackpot ten times, thus earning 100d, which is the same amount that she paid to
play. Out of all the times she pays 2d to play, she wins twice as often, and earns a
total of 200d (twice as much). But she paid twice as much to play, so she still earned
the same as what she paid to play. On the basis of the data, the machine appears to
be fair.

Whewell’s three steps in the colligation of facts apply to this example in the
following way. Step 1 consists in the selection of X and Y as the relevant quantities
to be considered. Step 2 introduces the formula, which in this case is probabilistic
in nature. It introduces a family of probability distributions parameterized by the
adjustable parameters˛ and ˇ. These determine the Conception. In this example, the
conception is probabilistic in nature. Step 3 is the determination of the magnitudes
˛ and ˇ from the data. In contemporary statistical theory, this is achieved by the
method of maximum likelihood estimation (MLE).

To understand how MLE works, first note that each pair of values assigned to ˛
and ˇ picks out a particular probabilistic hypothesis in the model. The fit of each
hypothesis with the data is defined by its likelihood, which, by definition, is the
probability of the data given the hypothesis (this should not be confused with the
probability of the hypothesis given the data, which is a distinctly Bayesian concept).
The greater the likelihood of a hypothesis (the more probable it makes the data) the
better the hypothesis fits the data. The hypothesis that fits best is, by definition, the
maximum likelihood hypothesis. For arbitrary values of ˛ and ˇ, the likelihood is:

Likelihood .˛; ˇ/ D .1 � ˛/90˛10.1 � ˇ/80ˇ20:

The probabilities are multiplied together because each trial is probabilistically
independent of all the others (according to the model) in the same way that coin
tosses are independent. Mathematically speaking, maximizing the likelihood is the
same as maximizing the log-likelihood.

log-Likelihood .˛; ˇ/ D Œ90 log.1�˛/C 10 log.˛/�C Œ80 log.1�ˇ/C 20 log.ˇ/�:

Again, the terms in the square brackets can be maximized separately by differentiat-
ing with respect to ˛ and ˇ and putting the resulting expressions equal to zero. (You
need to know that d logx=dx D 1=x.) After multiplying by the factors ˛.1 � ˛/

and ˇ.1� ˇ/, respectively, the equations simplify to:

�90˛ C 10.1� ˛/ D 0 and � 80ˇ C 20.1� ˇ/ D 0:

These equations yield the estimates: Ǫ D 0:1 and Ǒ D 0:2. Accordingly, the theo-
retically postulated probabilities are estimated by the natural relative frequencies in
the data, just as one would naı̈vely expect.

The question is whether the ‘forward’ model, which is the standard model, has
evidence in its favor that the ‘backward’ model does not. The backward model seeks
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to predict values of X from values of Y (in the same probabilistic sense of ‘predic-
tion’). In other words, it postulates backward probabilities as follows:

P.2djloss/ D 
; andP.2djwin/ D ı; for all trials i:

Using the same methods as before, the parameters of the backward model are
estimated by the corresponding relative frequencies in the data. The estimated values
are: O
 D 0:47 and Oı D 0:67. There is nothing that points to any empirical difference
between the models. In fact, they cannot be compared with regard to their fit to the
data because they tackle very different prediction tasks. The fit of the forward model
is measured in terms of Y -values, while the fit of the backward model is measured
in terms of X -values. In a sense, the two models are incommensurable.

So, why don’t the two models happily co-exist? There is a sense in which they
do co-exist, for the forward model is capable of making backward predictions if
it is provided with information about the relative frequency of 1d versus 2d trials.
With this information, together with the estimated forward probabilities, the forward
model can calculate the backward probabilities, and gets the same answer as back-
ward model. This is because both models accommodate the same table of data. But
this only serves to deepen the puzzle. If both models can be seen as predictively
equivalent, why interpret one as causal and not the other?

This is the familiar puzzle about cause and correlation: The evidence for
causation cannot be exhausted by the correlations in the data, for correlations are
symmetric, while causation is not. Either there is no additional empirical evidence,
in which case causal inference is based on non-empirical criteria (or psychological
habit!), or else there is other evidence that breaks the symmetry.

One solution is to look at how the models predict data of a different kind. Suppose
that Bob plays the jackpot machine, and he happens to play with 2d twice as often
as with 1d. Given that the forward model is true, the frequency that Bob wins will
conform to the same forward probabilities, modulo a fluctuation in the data due to
sampling errors. The sampling fluctuations are not relevant to this discussion, so
imagine that there are no sampling errors. Then data from Bob’s trials are described
by the natural frequencies in the table.

(Bob) Loss Win

1d 90 10
2d 160 40

Given the way that the example was set up, it is hardly surprising that the inde-
pendent measurements of ˛ and ˇ agree. The key question is whether the same is
true for the backward model. If it is not, then the symmetry between the models is
broken.

A simple calculation shows that the Bob’s estimates of the parameters of the
backward model are O
 D 0:64 and Oı D 0:80, which are quite different from the pre-
vious values, which were O
 D 0:47 and Oı D 0:67. Therefore, the backward model
fails the test of consilience, and the symmetry between the forward and backward
model is broken on empirical grounds (Forster 1984; Sober 1994; Arntzenius 1997).
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The symmetry between the models is restored if Alice’s and Bob’s data are
pooled – in fact, the models are always symmetric with respect to any single data
set, as was already shown by considering Alice’s data. The evidence is relational;
and the consilience of inductions is a relation between different colligations of facts.

A Failed Consilience in the Double-Slit Experiment

The postulation of hidden variables is a way of interpreting the probabilities of
quantum mechanics as ‘measures of ignorance’. Einstein, for example, believed that
a future physics would reveal the existence of such hidden variables, and the decay
of radioactive particles, for example, could be predicted exactly. Bohr, on the hand,
thought that quantum physics was complete in the sense that quantum probabilities
are here to stay.

At the time of the debate, a common example was the double-slit experiment.
Consider a particle of light (photon) that leaves the light source and travels through
either slit A or slit B (and not both). We may represent this event in terms of a ran-
dom variable X , which can have one of two values, xA and xB .5 For our purposes,
it doesn’t matter what numerical values we use. Now introduce a second random
variable Y such that Y D 1 if the particle is detected in some region C , and 0 oth-
erwise. In a more natural shorthand notation, let A stand for the event X D 1; B of
for the event X D �1, and C is the event Y D 1. The probability of C given A is
written P.C jA/. Similarly, P.C jB/ is the probability that it arrives at C given that
it is passes through slit B . P.A/ is the probability that the particle passes through
slit A given that it passes through any slit. Then the probability of C (given that it
arrives somewhere on the screen) is, according the axioms of probability:

P.C / D P.A/P.C jA/C P.B/P.C jB/:

C Not-C

A 40 10
Not-A 20 30

It is worthwhile working through the proof of this theorem, because it introduces
some elementary concepts of probability theory that are controversial in QM. Let’s
suppose that the particle passes through slitA orB , but not both. ThenB is logically
equivalent to the event not-A. Suppose that 50 particles pass through slit A and 50
particles pass through slit B . Of the 50 particles that pass through slit A, 40 arrive
at C . Of the 50 particles that pass through slit B , 20 arrive at C . Therefore, a total of
60 out of 100 particles arrive atC . In symbols,P.A/ D 50=100, P.C jA/ D 40=50,
P.B/ D 50=100. P.C jB/ D 20=50. Therefore,

P.A/P.C jA/C P.B/P.C jB/ D 50

100

40

50
C 50

100

20

50
D 60

100
D P.C /
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P.A&C/ is the probability that the particle passes through slit A and arrives at C .
According to the table, this joint probability is 40=100. The argument assumes that
joint probabilities, such as P.A&C/, exist.

So far, there is no problem. But now postulate that the probabilities P.C jA/
and P.C jB/ do not depend on whether the other slit is open or closed. This is
often called a locality assumption because it assumes that what happens to a particle
passing through one slit is unaffected by what is happening non-locally (at the other
slit in this case). It is also an invariance assumption – it is an attempt to unify the
phenomena of the single-slit and double-slit experiments. It is might be viewed as
an application of the principle that “Probabilities are not to be multiplied beyond
necessity.”

Unification is important because it increases predictive content. But in this case
it leads to the false prediction that the double-slit pattern is the average of the two
single slit patterns. If the slits are a certain distance apart, then the double-slit pattern
has its brightest spot at C (see Fig. 2), whereas any average of the single slit patterns
has the brightest spots directly in front of the two slits. The invariance of the proba-
bilities provides a potential consilience of inductions, but when the consilience fails,
the assumptions on which it is based are called into question.

There are ways of resisting this conclusion. The first response is that different
photons are interacting with each other after they pass through the slits. This possi-
bility is highly implausible in light of the fact that the interference pattern is exactly
the same if the intensity of the light is so low that only one photon passes through
the slit at a time.

Another possibility is that there is some kind of continuously emitted pilot wave
that guides the particles to their appropriate destinations. The pilot wave is affected
by whether the second slit is open or closed. This hypothesis is ad hoc if there is no
way of independently detecting the existence of the pilot wave. But it doesn’t lead
to any false predictions. To that extent it solves the problem. But, ultimately, it is
unsuccessful if it does not lead to any new consilience.

The argument that probabilities should be invariant across the single-slit and
double-slit experiments is based on the assumption that the particles pass through
one slit or the other in every instance. It is an important prediction of quantum
mechanics that if a precise trajectory is experimentally determined, then the classical

Fig. 2 In the double-slit
experiment, the assumption
that individual photon travel
through either slit A or slit B
leads to the false prediction
that double-slit pattern is the
sum of two single-slit patterns

Light 
source

A

B

C
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prediction is correct – that is, in this case the pattern on the screen will be the sum
of the two single-slit patterns. For example, electrons can be detected going through
a particular slit by the electric current they induce when they pass through a wire
loop. So if we place wire loops behind the two slits, then the sum of the two single
slit patterns will be observed.

The problem with the causal explanation is that it sometimes makes false predic-
tions. So, how does the quantum mechanical formalism succeed where the causal
account fails? The causal model unified the phenomena by assuming that the prob-
ability distributions in the two single slit experiments add together to produce the
probability distribution in double slit experiment. Quantum mechanics replaces the
additivity of probabilities with the additivity of wave functions. Let’s introduce a
random variable Y , where y denotes an arbitrary value of Y , to represent the pos-
sible points on the screen at which the particle may be detected. Now consider the
single slit experiment in which slit B is closed. Suppose a quantum mechanical
model entails a wave function that does not depend on time, and has a complex num-
ber A.y/ associated with each point on the screen. Then the model implies that the
probability that a particle is detected near the point y is proportional to j A.y/j2.
Note that the square of the magnitude of complex number is a non-negative real
number. Similarly, the probability of a particle landing near y is j B .y/j2 in the
other single slit experiment. Then the probability of a particle landing near the same
point in the double slit experiment is:

j 1p
2
 A.y/C 1p

2
 B .y/j2 D 1

2
j A.y/j2 C 1

2
j B .y/j2 C interference terms:

If the interference terms are zero, then the prediction is that same as the hidden
variable prediction. QM allows for the additivity of probabilities, but the additivity,
or superposition, of wave functions is more fundamental. The QM model succeeds
in unifying a wide range of disparate phenomena. It leads to a consilience within a
vast network of inductions.

In summary: QM modeling is very different from causal modeling because it
uses operators in place of variables, and uses wave functions (state vectors) rather
than probabilities to represent the constancies of nature. Nevertheless the conceptual
novelties of QM produce an impressive consilience of a variety of inductions, which
is the strongest kind of evidence that any scientific theory can have.

Spin Measurements on a Single Electron

In the quantum mechanical model of electron spin, there is a QM spin observable
corresponding to spin in every direction in three-dimensional space. We should not
try to read too much into the word ‘spin’ in quantum mechanics. For us, it is just a
name of a new kind of QM property.

There are really only two facts that you need to understand about quantum me-
chanical spin. The first is that if an electron passes through a non-linear magnetic
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Fig. 3 Sequential spin
measurements on a single
election that lead to four
possible outcomes
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field produced by a Stern–Gerlach magnet, then the exiting electron will be detected
in one of two possible paths, the ‘up’ path or the ‘down’ path, provided that detectors
are placed there. We shall always assume that the electron is always traveling in the
z direction and all Stern–Gerlach magnets are oriented in a direction perpendicular
to z (for example, x or y).

In a sequential measurement a single election is first ‘prepared’ by passing it
through one magnetic field, after which it is directed through a second Stern–
Gerlach device. We need three devices in all, and there are four possible exit paths,
and the particle is detected in exactly one path by the detectors placed there (see
Fig. 3). When a particle is detected, it is destroyed, so that it cannot be subjected to
further measurement.

If the particle is detected by the Geiger counter placed in the ‘down path of the
magnet placed in the ‘up’ path of the first magnet, then we say that the outcome
of the experiment is ‘up–down’, or C�. In a classical framework, we infer from
this outcome that if detectors had been placed in the exits paths of the first magnet,
it would have been detected in the ‘up’ path. We may represent this conclusion
by assigning a number to a variable. Counterfactual assumptions of this kind are
controversial in QM, but it does provide a way of assigning numbers to variables on
the basis of observed experimental outcomes. The legitimacy of the interpretation
remains an open question.

Assume that the first magnet is oriented in the x-direction, and introduceX0 D 1

to mean that if the detectors had been placed directly in the exit paths, without any
intervening device, then it would have been detected in the ‘up’ path. Now consider
the fact that the outcome was ‘up–down’ rather than ‘up–up’. By convention, the
statement Y1 D �1 means that the electron would be detected in the ‘down’ path
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after passing through a device oriented in the y-direction. Further suppose that the
second device was actually oriented in the y-direction. Then we infer that Y1 D �1.
Therefore, from the experimental outcome, we infer that X0 D 1 and Y1 D �1.
There are four possible conclusions drawn from four possible outcomes.

From repeated trials of this experiment we discover that each of the four out-
comes occurs equally often. This statistical fact is represented in terms of the
probabilistic statements

P.X0 D 1/ D 1
2

andP.Y1 D 1jX0 D 1/ D 1
2

D P.Y1 D 1jX0 D �1/;

which state that the two variables are probabilistically uncorrelated. Various other
facts emerge as well, such as the fact that the statistics are insensitive to the distance
separating the second magnet from the first or how far the detectors are placed from
the second magnet. By varying the orientations of the magnets, we also discover
that the correlation between the variables depends only on the angle between them.
When the magnets are oriented in the same direction we say that the electron is sub-
jected to a repeated measurement. In that case, the variables are perfectly correlated.
That is, X1 D 1 if and only if X0 D 1, or in probabilistic terms,

P.X1 D 1jX0 D 1/ D 1 andP.X1 D 1jX0 D �1/ D 0:

This hidden variable representation of the observational facts can be extended to
an arbitrary number of sequential measurements. For example, if we ‘measure’ the
values of X0; Y1 and X2, then we discover that the statistical relationship between
X0 and Y1 is the same as before. It is not changed by the third measurement. More-
over, the statistical relationship between the last two variables is independent of the
inferred value of the first variable. In symbols,

P.X2 D 1jY1 D 1;X0 D 1/ D P.X2 D 1jY1 D 1;X0 D �1/ D 1
2
;

and so forth. This is a kind of Markov condition, according to which proximal
causes “screen off” distal causes. But the relationship between the first and the
third variables is changed by the second measurement. In particular, we find that
P.X2 D 1jX0 D 1/ D 1

2
and P.X2 D 1jX0 D �1/ D 1

2
, which is different

from the relationship betweenX0 and X1. X0 and X2 are uncorrelated, whereasX0

andX1 were correlated. In fact, the relationship betweenX0 andX2 depends on the
existence of an intermediate device and its orientation. For example, if the interme-
diate measurement were in the x-direction, then the values of X0 and X2 would be
the same (perfect positive correlation). All this implies that the probability distri-
butions depend on features of the total measurement setup. Once this caution is in
place, there are no false predictions that are automatically derived from the hidden
variable representation of sequential spin measurements. The false predictions rely
on assumptions about how the probabilities in different experimental contexts relate
to each other.
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The experimental facts concerning sequential spin 1=2 measurements might be
summarized in the following way. Suppose that a measurement in the u-direction is
followed immediately by a measurement in the v-direction, with associated variables
U and V . Let � be the angle between u and v. Then

P.V D 1jU D 1/ D cos2.�=2/ andP.V D 1jU D �1/ D sin2.�=2/:

Notice that these forward probabilities are invariant, as required of the very best
causal models. In fact, this quantum phenomenon would be ideal for building a jack-
pot machine because the probabilities are precisely controlled by the orientations of
the magnets and nothing else. However, is the underlying mechanism really causal?
Any model must be subjected to ever broadening standards of consilience. If some
new-fangled QM model preserves the consilience of sequential spin phenomena and
extends its predictions to a broader domain, then it trumps the causal model.

This is exactly what happens. Hidden variable models that make further assump-
tions about the irrelevance of what happens non-locally in space and time make
predictions that contradict the predictions of QM, as Bell (1964) first proved. More-
over, there is now a fairly broad consensus that the predictions of local hidden
variable theories are false. Therefore, local hidden variable models are false. Since
a local causal model entails the probabilistic assertions of the local hidden variable
model, those causal models are also false. Since the locality assumption is an at-
tempted consilience of inductions, this another example of a failed consilience. At
least, this is the way I will present the example.

The Bell Theorem as Proving a Failed Consilience

Since Bell’s argument was originally presented as a proof against the soundness of
the Einstein Podolsky and Rosen (1935) argument for the incompleteness of QM,
I will summarize that argument. In the original EPR thought experiment, two parti-
cles are prepared in a QM state, and they fly apart to opposite ends of the universe.
The EPR argument is summarized as follows.

1. EPR criterion of reality: If, without in any way disturbing a system, we can pre-
dict with certainty (i.e. with probability equal to unity) the value of a quantity,
then there is an element of reality corresponding to that quantity.

2. EPR example: There is a QM system consisting of particles I and II, where that
P and Q are incompatible observables pertaining to system II, such that P can
be predicted with certainty if quantityA on particle I is measured and thatQ can
be predicted with certainty if quantity B on particle I is measured.

3. Locality: The measurements of A or B on particle I do not disturb the state of
particle II or affect the choice of measurement on particle II in any way.

4. Particle II has property P (or NP ), since we could measure A and predict P (or
NP ), and infer that P (or NP ) corresponds to an element of reality. Therefore,
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Particle II has property P (or NP ) whether or not A is actually measured. Sim-
ilarly, Particle II has property Q (or NQ) whether or not B is measured. This
conclusion cannot be reached without the locality assumption.

5. Therefore there exists elements of reality corresponding to P and to Q, at the
same time.

6. P andQ are incompatible properties in QM, which means that QM never assigns
them precise values (i.e., values predicted with probability 1) at the same.

7. Therefore QM is incomplete. That is, there exist elements of reality not repre-
sented in QM. These elements of reality are represented by hidden variables,
which have to be added to the usual formalism of QM. Finally, it follows from
the locality assumption that these hidden variables are local.

The shocking fact is that the EPR argument is provably unsound, as was originally
shown by Bell in 1964. This section presents a perspicuous version of the proof
(Greenberger et al. 1989; Mermin 1990), which helps provide some insights into
the physics of the example and will provide an excellent illustration of how the QM
formalism succeeds where hidden variables fail (the topic of the next section).

Bell’s argument takes the form of a reductio ad absurdum proof: It assumes that
the local hidden variable theory is true, then allows it to accommodate one set of
experimental facts, and then shows that it makes a false prediction in another set of
experimental facts. Therefore, the hidden variable theory is false.

Here is a dry run. Suppose that couples are interviewed in a psychology exper-
iment. Each partner is taken from the waiting room to two sound proof interview
rooms, and each is asked one of two questions according to separate coin toss. No-
body knows in advance which question will be asked, although everyone knows that
it will be questionX or question Y . Suppose that the value of X determines the an-
swer to the question “Are you a Democrat?” and Y determines the answer to the
question “Are the Greenbay Packers your favorite football team?”. The C1 means
YES and �1 means NO. Suppose that the experimental facts show that when both
partners are asked the same questions, they answer either yes–yes or no–no.

That leaves open whether they would give the same answers if they were asked
different questions. But it is not completely open. It is not possible to get a per-
fect agreement when partner 1 is asked X and partner 2 is asked Y , but a perfect
disagreement when the questions are switched. To prove this, let’s introduce X1 to
be the variable whose value determines the answer given when partner 1 is asked
question X . Similar meanings are assigned to Y1; X2 and Y2. Recall, to get the
first set of facts right, the instructions must satisfy the constraints X1 D X2 and
Y1 D Y2. That is, the same answers are given when the same questions are asked.
What this implies is that we only need to specify the values of X1 and Y1 in order to
determine the full instruction set for both partners. But now suppose that when X is
asked of partner 1 and Y is asked of partner 2, then the answers are also the same.
Then X1 D Y2. But since Y1 D Y2, this implies that X1 D Y1. Now there are only
two possible instructions sets: Either all answers to all questions are YES or all the
answers to all questions are NO. This predicts that when Y is asked of partner 1 and
X is asked of partner 2, then the answers must also be the same.
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But suppose that experimenters find that this prediction is false! It is possible
that the couples are playing a prank? To succeed, partner 1 is instructed to answer
YES to both questions, and partner 2 knows this. Now, suppose partner 2 is asked
X . The problem is that answer she gives must depend on the question that her
partner is asked. If her partner is asked X she must answer YES. If her partner
is asked Y , she must answer NO. She can’t get this right (all the time) unless she
knows what question her partner has been asked. But she doesn’t know what ques-
tion her partner is being asked. That is the locality assumption. The standard causal
story stands refuted.

Here is the QM version of the same argument. Three electrons fly apart towards
three widely separated Stern–Gerlach magnets, labeled 1, 2, and 3 (Fig. 4). Each
magnet is aligned in one of two directions (x or y) orthogonal to the path of the
incoming electron, and each device contains two particle detectors, one placed in
the ‘up’ path and one in the ‘down’ path exiting the magnet, such that if the electron
is detected in the ‘up’ path, the light bulb attached to the device flashes red and if
it is detected in the ‘down’ path, the same light bulb flashes green. So, each bulb
flashes either red or green. We may say that the outcome is spin in the direction at
which the magnet is oriented is ‘up’ if the light is red and ‘spin-down’ if the light
is green.

Consider the first set of experimental facts: When any two of the measurement
devices are set to y and the third is set to x (that is, for settings y–y–x; y–x–y,
or x–y–y) there is always an odd number of red lights flashing in every trial of the
experiment – that is, either all three lights flash red or one light flashes red and the
other two flash green.

A local hidden variable model can accommodate these experimental facts in the
following way: Suppose that each particle, after separation from the others, carries
with it a set of properties that determine which light bulb will flash for every possible

Fig. 4 The GHZ version of
Bell’s experiment
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settings of the device it enters. Let’s represent the property that particle 1 would
cause the red bulb to flash if the device 1 were set to position x by X1 D C1,
and the property that the green bulb would flash were device 1 set to position x
by X1 D �1. According to the hidden variable story, the particle has the property
X1 D C1 or the propertyX1 D �1, but not both.

Note that while the value of the variable determines the experimental out-
come, the variable is not being used to represent the observable outcome. The
existence of these variables is postulated by the theory to ‘explain’ the observed
outcome. The theory assumes that the hidden variables have values even when they
are not measured.

Similarly, let Y1 D C1 and Y1 D �1 represent the two properties that deter-
mine the outcome when the measuring device 1 is set at y. Then, a particle heading
towards device 1 will have exactly one of four possible sets of properties, which
Mermin (1990) refers to as “instruction sets”: Either fX1 D C1; Y1 D C1g,
fX1 D C1; Y1 D �1g; fX1 D �1; Y1 D C1g, or fX1 D �1; Y1 D �1g.
Similar hidden variable states are assigned to particles 2 and 3. There are therefore
six hidden variables that collectively play the role of a common cause, and these
may adjusted in whatever way is needed to accommodate the facts.

Note that in a single run of the experiment, a measurement device cannot be
oriented in two directions simultaneously, so we cannot determine all the hidden
variable values by direct measurement. For instance, if we see the bulb flash red
when device 1 is set to y, then we would only know that the instruction set was
either fX1 D C1; Y1 D C1g or fX1 D �1; Y1 D C1g. Some of the variables are
always hidden. But their existence still has empirical consequences. What needs to
be accommodated is that fact that the outcome for the third particle must be R if
and only if first two outcomes are either R�R or G–G. The constraints that are
necessary and sufficient to accommodate all three regularities are:

X1Y2Y3 D 1; Y1X2Y3 D 1; and Y1Y2X3 D 1: (1)

For example, if the setting is y–x–y, then the second equation tells us that if the
outcome for particles 1 and 3 is R–R, then Y1 D 1 D X2, and therefore Y3 D 1,
and so the outcome for particle 3 will be R.

If the theoretical laws in (1) are assumed to apply in all experimental situations,
then the following deductive consequence of the laws holds in all situations. Multi-
ply the three equations in (1) together, and simplify using Y 2

1 D Y 2
2 D Y 2

3 D 1, to
obtain

1 D .X1Y2Y3/.Y1X2Y3/.Y1Y2X3/ D X1X2X3:

The equation, X1X2X3 D 1, implies that there will also be an odd number of red
flashes when all three devices are set to x-x-x. This prediction is dramatically dif-
ferent from the prediction made by QM, which predicts that there must be an even
number of red flashes in this experiment! QM is right and the hidden variable pre-
diction is wrong!6
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The Consilience of Quantum Mechanics

QM models not only make the correct predictions about entangled states, but they
do so on the basis of what is known about sequential measurements. As Whewell
might have put it, the QM induction of sequential data explains and predicts facts
of a different kind, and it does so by superimposing a new conception on the facts.
The remainder of section is designed to deepen our understanding of the colligation
facts in QM.

Consider the ‘empirical fact’ P.X1 D �1jX0 D 1/ D 0. QM introduces vectors
xC and x� to represent the states X0 D 1 and X1 D �1, respectively, and then
derives the probability P.x�jxC/ D 0 from the mathematical properties of vectors.
The probability is 0 because the projection of the vector xC onto the vector x�
is 0, which is to say that xC and x� are orthogonal vectors. The same argument
applies to the two states associated with an arbitrary direction of measurement vC
and v�, where the physical angle between the two directions is � . The question is
whether there exists a QM model in which all four vectors are in the same complex
2-dimensional quantum mechanical state space? If there exists such a unified model,
then the four vectors would appear as drawn in Fig. 5, for some angle �. In that
case, any vector in the space can be written as a linear combination of xC and x�.
That is, all states would be superpositions of the states xC and x�. Superposition is
therefore a unifying conception in QM.

The crucial question is whether it is possible to adjust � so that the ‘cross’ prob-
abilities, P.vCjxC/ and P.vCjx�/, are related in the right way to the physical
angle � . To answer this question, we need to understand more about how proba-
bilities are calculated in QM.

Clearly, we want to calculate probabilities in such a way that P.vCjxC/ C
P.v�jxC/ D 1, since any electron prepared in the xC state will go ‘up’ or ‘down’
after exiting a Stern–Gerlach magnet oriented in any direction. A trivial instance
of this is P.xCjxC/C P.x�jxC/ D 1. The vector space formalism attributes this
probability to the geometric fact that projecting xC onto xC leaves xC unchanged.
But how do we extract the number 1 from this geometric fact? QM says in general
that P.vCjxC/ is the dot product of the vector xC and the projection of xC onto vC.
Don’t ask why this works – nobody really knows, or at least, nobody agrees on the
answer. In the special case in which vC D xC, this is the dot product of xC times

Fig. 5 In QM, the transition
probabilities between states
can be generated from the
geometrical relationship
between vectors
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xC, which is just the square magnitude of the vector xC. Clearly, this 1 if and only
if xC is a unit vector, so all state vectors in QM are unit vectors.

Now reconsider P.vCjxC/. Since all vectors are unit vectors, the dot product of
xC and the projection of xC onto vC is equal to .cos�/ vC. The dot product of this
with xC is �

cos� vC� 	 xC D cos� .vC 	 xC/ D cos2 �:

Clearly, we will match the empirically known probabilities if and only if � D �=2.
Incidentally, this is why it’s called spin 1=2 in QM.

In place of arithmetic variables, QM makes use of geometric objects. What’s
remarkable is that these geometric objects have properties that not only colligate
one kind of phenomena, but extend also to disparate classes of facts.

Vectors may be represented as column matrices or as row matrices; we need a no-
tation that reflects the difference. Instead of xC, we shall write

ˇ
ˇxC˛

for the column
vector, while

˝
xCˇ

ˇ stands for the corresponding row vector. The dot product of row
vectors Œu1 u2� and Œv1 v2� is equal to u1v1 C u2v2, which is the result of multi-
plying a row vector with a column vector. That is why the dot product of uC and vC
is written

˝
uC ˇ

ˇ vC˛
. The dot product of a vector with itself is just the squared magni-

tude of the vector; in symbols,
˝
xC ˇ

ˇ xC˛ D ˇ
ˇ
ˇ
ˇxC˛ˇˇ2

. In Dirac’s notation,
˝
xC ˇ

ˇ xC˛

is a bracket (bra-ket) and hence
˝
xCˇ

ˇ is called a bra-vector and
ˇ
ˇxC˛

a ket-vector.
Since the vector space is 2-dimensional,

ˇ
ˇxC˛

and jx�i form a complete set of
mutually orthogonal unit vectors, called an orthonormal basis. That is, every column
vector can be expressed as a linear combination (superposition) of the vectors

ˇ̌
xC˛

and jx�i. Similarly, the bra- vectors
˝
xCˇ

ˇ and hx�j form an orthonormal basis of
the dual space of row vectors. In this basis,

ˇ̌
xC˛ D

�
1

0

�
and jx�i D

�
0

1

�
;

and an arbitrary vector can be expressed as the superposition jvi D cos�
ˇ
ˇxC˛ C

sin � jx�i, which is a unit vector because cos2 � C sin2 � D 1. But what is the
operator, denoted by Pv that projects other vectors onto jvi? Any projection operator
must have the following properties:

Pv jvi D jvi ; hvj Pv D hvj ; and Pv

ˇ
ˇv?˛ D j0i ; ˝

v?ˇ
ˇPv D h0j ;

if
ˇ
ˇv?˛

is orthogonal to jvi. Also, it is easy to see that

Pv D jvi hvj

has the required properties, because jvi hv j vi D jvi, and so on. So, if v D
Œcos� sin ��, then associated the matrix that projects any vector onto v is

Pv D
�

cos�
sin �

� �
cos� sin�

� D
�

cos2 � cos� sin�
cos� sin � sin2 �

�
:
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In particular,

PxC D
�
1 0

0 0

�
;Px� D

�
0 0

0 1

�
; and PyC D

"
1
2

1
2

1
2

1
2

#

; Py� D
"

1
2

� 1
2

� 1
2

1
2

#

;

where we have used the fact that � D �=2 D =4 and cos=4 D sin=4 D
1=

p
2.

All QM observables are definable in terms of the projection operators. To find the
observable corresponding to ‘spin’ in the x-direction, we construct an operator that
has the right mean value in every state. If spin ‘up’ is associated with the number C1
and spin ‘down’ associated with �1, then the expected value of the spin observable
�x in state v is

.C1/P.xCjv/C .�1/P.x�jv/ D hvj PxC jvi � hvj Px� jvi D hvj PxC � Px� jvi :

This proves that the operator that has the correct mean value is

�x D PxC � Px� D
�
1 0

0 �1
�
:

This is one of the three Pauli spin matrices (modulo a constant factor). The second
Pauli matrix is

�y D PyC � Py� D
�
0 1

1 0

�
:

It is now trivial to prove that anti-commutation of �x and �y ;

�x�y D ��y�x :

This is property of spin observables that leads to the correct predictions in the three-
particle experiment described in the next section.

The important lesson of this section is that anti-commutation relation follows
necessarily from a simple QM model that introduces just one adjustable parameter,
the angle � between vectors, which fits a huge variety of facts when we set � D �=2.

I will now derive the correct prediction in the GHZ example from quantum me-
chanical principles. Instead of using variables, quantum mechanics associates spin
observables to each particle for every possible orientation of the Stern–Gerlach
magnet. So, for example, the observable �x

1 replaces the hidden variable X1, and
the observable �y

3 replaces the hidden variable Y3, and so on.
There is another technical point that will prove useful here. Let us define an

observable to be dispersion-free in state  if and only if the probability of all out-
comes is zero except one, which has probability one. In classical physics, a variable
is dispersion-free if and only if its variance is zero. Similarly, a QM observable OA
is dispersion-free in state  if and only if its variance is zero, where the variance
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is defined as the expected value of
� OA� a

	2

, where a is the mean value of the

observable in state  .7 It is relatively easy to prove that OA is dispersion-free if and
only if OA j i D a j i for some real number a. In words, OA is dispersion-free in
state  if and only if  is an eigenstate of OA. A proof is found in Khinchin (1960,
pp. 54–55).

For example, if the system were in a C1 eigenstate of the observable �x
1, then

we would predict with probability 1 that device 1 will flash red. If the system is in
the �1 eigenstate of the same observable, then the green light will flash, and so on.
If the system is not in an eigenstate of �x

1, then the probability that device 1 flashes
red is still inferred from the mean value of �x

1.
There are six spin observables involved in our story: �x

1; �y
1; �x

2; �y
2;

�x
3; �y

3. The new feature of this example (called the GHZ example) is that we
can also construct new observables by considering products and sums of these six
observables.

It is an important fact in QM that the product of two observables is itself an
observable if and only if the two observables commute.8 It is therefore important
to note that operators pertaining to different particles always commute. For exam-
ple, �x

1 commutes with �y
2, and the product observable �y

1�x
2 commutes with

�y
3, and so on. By using these facts alone, it follows that every product such as

�y
1�x

2�y
3 is a QM observable. The product observables that correspond the three

random variable products that appear in (1) are
�
�x

1�y
2�y

3
�
;

�
�y

1�x
2�y

3
�
, and�

�y
1�y

2�x
3
�
. Each observable has well defined mean values and variances in every

quantum state.
It is interesting to note that these observables are mutually incompatible in

the sense that one and only one can be measured. For example,
�
�x

1�y
2�y

3
�

is
measured if and only if the devices are in the x-y-y setting. Yet, a simple calcu-
lation shows that any two of these products commute because we end up applying
the anti-commutation relation twice. Therefore, there exists a quantum state that is
an eigenstate of all three observables simultaneously. If the system is in this state,
then the outcome of each product observable can be predicted with certainty. But
none of the individual observables can be predicted with certainty. In fact, individ-
ual spin outcomes have probability 1=2 in this state (see Appendix). So there are
examples in QM in which correlations are predicted with certainty, but the correlata
are completely random.

The quantum mechanical story begins with the assumption that all the electron
triples are prepared in the same quantum state, j i. The fact that there is always
an odd number of red flashes in the settings y-y-x; y-x-y, and x-y-y tells us that
the product observables are dispersion-free in the state j i, which implies that j i
is an eigenstate of the three product observables. In other words, the first set of ex-
perimental facts is accommodated by the supposition that j i is in a C1 eigenstate
of all of the observables

�
�x

1�y
2�y

3
�
;

�
�y

1�x
2�y

3
�
, and

�
�y

1�y
2�x

3
�
. Therefore

(1) is replaced by the laws:

�1
x�

2
y�

3
y j i D j i ; �1

y�
2
x�

3
y j i D j i ; and �1

y�
2
y�

3
x j i : (2)
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What predictions can be made from these quantum mechanical constraints? The fact
that any spin operator times itself is equal to the identity operator (as can be verified
directly by squaring the matrices derived earlier in this section) and the fact that
operators pertaining to different particles commute, proves that

.�x
1�y

2�y
3/.�y

1�x
2�y

3/.�y
1�y

2�x
3/ D .�x

1�y
2�y

3/.�y
3�x

2�y
1/.�y

1�y
2�x

3/

D �x
1�y

2�x
2�y

2�x
3:

Furthermore, the anti-commutation property of the spin operators proves that

�x
1�y

2�x
2�y

2�x
3 D �x

1.��x
2�y

2/�y
2�x

3 D ��x
1�x

2.�y
2�y

2/�x
3 D ��x

1�x
2�x

3;

where the minus sign arises from the anti-commutation of �x
2 and �y

2. Recall
that the anti-commutation law is required in order to accommodate the facts about
sequential measurements (Section on Spin Measurements on a Single Electron).

Finally, from (2), it is also true that

.�x
1�y

2�y
3/.�y

1�x
2�y

3/.�y
1�y

2�x
3/ j i D j i ; (3)

and therefore,
�x

1�x
2�x

3 j i D � j i : (4)

This proves what I promised: The only way for the quantum model to accommodate
the first set of experimental facts is to assume that (2) is true, which implies (4),
which then implies that there will always be an even number of red flashes when
the magnets are set to x-x-x. This is the prediction that the hidden variable theory
got wrong.

It is interesting to compare the hidden variable prediction with the QM prediction
in this example. The hidden variable deduction proceeds in a completely analogous
way up to the step where the anti-commutation relation is used. That step is replaced
by the commutation relation Y2X2 D X2Y2, which then leads to a plus sign instead
of the minus sign. All variables commute, while operators may or may not. In this
respect, QM is more versatile. But don’t mistake flexibility for weakness; for the
flexibility allows us to embed all the spin 1=2 states in a single 2-dimensional vector
space, and the tightness of the colligation leads to precise predictions about a variety
of phenomena.

It is equally interesting to note the similarities. The predictive power of both
theories relies on the idea that the variables or observables have values even when
they are not measured. In the hidden variable prediction, this assumption comes
into play when we assume that Y1

2 D Y2
2 D Y3

2 D 1. For this to make sense, we
assume that each variable has a value, and then argue that the square is 1 no matter
which value it has. In the QM derivation, we assume that �1

y�
1
y D �2

y�
2
y D �3

y�
3
y D

I , where I is the unit operator. Every state is an eigenstate of the unit operator, so
this observable has the value 1 in every state. We are not assuming that �1

y ; �
2
y ,

and �3
y have values in the sense of having dispersion-free probability distributions.

But we are assuming that �1
y ; �

2
y , and �3

y apply to situations in which they are not
measured.
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In fact, spin observables are extraordinarily projectible. For the state j i is
uniquely determined by the equations (2) alone (modulo a complex phase factor,
which makes no difference to any prediction). This unique state j i then deter-
mines the full probability distributions for any measurement settings whatsoever,
including cases in which the three magnets are aligned in directions different from
x and y. This is worth proving in detail because it illustrates the predictive power of
the quantum mechanical colligation (see the Appendix). In particular, it is surpris-
ing to see that the unified QM model requires that each individual event is random
(has probability 1=2). QM isn’t forced to explain why two people meet at the market
by explaining why each will be there at that time. In comparison, the local hidden
variable theory has very little predictive power; and to add insult to injury, the one
prediction that it does make turns out to be false!

It is not my purpose to disparage hidden variable theories in general. After all, the
unknown microstate of a thermodynamic system plays the role of a hidden variable
in statistical mechanics. Rather, the point is that the hidden variable model does not
compete with the unity of the QM model. The existence of hidden variables does not
lead to very much predictive power, even though many philosophers consider them
to be highly explanatory. And at the same time, QM is considered to be mysterious
and un-explanatory despite the fact that it is predictively very powerful. So much
the worse for explanation. Unification is a far better criterion of success.

After working through an example like this, after seeing how tightly quantum
mechanics ties the phenomena together, wouldn’t it be miraculous if this huge body
of data were to fit the predictions of quantum mechanics without there being some
way of explaining this fact in terms of a reality behind the observed phenomena?
Indeed, the argument for a realist view of the QM properties of spin looks similar to
the argument for the existence of Newtonian mass. In both cases, there is an empir-
ical overdetermination of the values and properties of the postulated entities. There
are many voices, and the theory predicts that they will sing in harmony. Hidden vari-
able theory doesn’t hear these voices, and what it does hear is not very harmonious.

Are Quantum Phenomena Explainable?

There is a wrong way and a right way of thinking about Reichenbach’s cubical
world. The wrong way is to view it in terms of Reichenbach’s principle of common
cause, which may be made more precise in the following way. For any two physi-
cal quantities X and Y that exhibit a statistical correlation, such that the correlation
does not arise from X directly causing Y or Y directly causing X . Then, the only
alternative appears to be that the correlation is explained by a common cause vari-
able Z, such that Z causes X and Z causes Y .9 This very powerful idea is severely
challenged by QM examples.

A slight modification of the GHZ example brings the challenge into focus. Sup-
pose that one measurement device is placed in Alice’s laboratory, while the other
two are placed in Bob’s laboratory. The magnets are all aligned in the x-direction, so
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there is always an even number of red flashes. Bob hooks up a master light bulb that
flashes red if and only one of his devices flashes red and the other flashes green. This
means that Alice’s light flashes red if and only if Bob’s master light flashes red.
There is a perfect positive correlation between what Bob sees and what Alice sees.
Moreover, if we imagine that Alice and Bob measurements are performed simulta-
neously (in their common inertial frame of reference), then the theory of relativity
appears to rule out the existence of any direct causal interaction between the events.
The causal explanation recommended by Reichenbach’s principle of common cause
is ruled out by the Bell argument (Section on The Bell Theorem as Proving a Failed
Consilience).

The Bell argument only rules out local hidden variable explanations and there-
fore only local causal models. Bell’s argument is not a proof that QM is complete;
it only proves that the EPR argument for the incompleteness of QM is unsound. If
we allow some kind of action-at-a-distance, or backwards causation, then it is pos-
sible to avoid the false predictions. But avoiding false predictions is not the same
as making the correct predictions. A causal model must replicate the predictions of
QM and then make predictions that QM is presently unable to make. While there is
no proof that it can’t be done, there is no indication at the present time that this is a
fruitful research strategy.

There are two desiderata that should be met if some kind of causal model is to
explain the QM phenomena. The first fact to be explained is the remarkable con-
nection between spin statistics in QM and facts about the geometry of space and
time. In Chapter 6 of Feynman et al. (1965), Feynman takes the argument one step
further. Instead of merely showing how the properties of entangled pairs and triplets
of particles follow from the properties of spin required to accommodate the statis-
tics exhibited in single electron experiments, he shows how the single electron spin
statistics follow from the isotropy of space. Recall from the section on Spin Mea-
surements on a Single Electron that the probability of getting spin up in direction
v given that the electron in spin up in direction u is equal to cos2.�=2/, where � is
the angle between u and v. The fact that the conditional probabilities are a function
of � only shows that they are same if the whole apparatus is rotated in space. The
directions u and v will change, but the angle between them will be the same. This
shows that the QM probabilities are invariant under space rotations, as required. But
there are many ways of satisfying this requirement. In fact, so long as the condi-
tional probabilities are some function of � , the isotropy of space is preserved. What
Feynman proves is that the particular function cos2.�=2/ follows uniquely from
the isotropy of space plus the basic principles of QM. Those basic principles state
merely that spin 1=2 states are represented vectors in a 2-dimensional complex vector
space (a Hilbert space) with the usual connection states and probabilities (the Born
rule). This shows that there is a broader consilience between QM and the geometry
of space, and such consiliences must be maintained by any superseding theory.

The second desideratum is that there should be some explanation of why QM
uses operators in place of variables. One difference is that variables always have
definite values, whereas operators only have definite values (dispersion free values)
when the particle is in an eigenstate of the operator. In all other cases, the theory



224 M.R. Forster

assigns only a probability distribution. The assertion that the observable has a value
if and only if it is an eigenstate of the corresponding operator is commonly called
the eigenstate–eigenvalue link; it is taken seriously in some interpretations of QM
(the only-if part is denied by hidden variable theories). A dramatic example of what
it means to take the eigenstate–eigenvalue link seriously occurs in the case of the po-
sition observable. If a wave function is not in a extremely spiked Dirac delta state,
then it’s not in an eigenstate of position, and therefore has no position. Therefore,
any particle with that is “spread” over an extended region of space is not in space.
So, whatever causal stories are told about quantum particles, they should allow that
causal processes take place outside of space, and possibly outside of time.

Measurements on this view are also more complicated kinds of causal processes.
If a system has no precise value of an observable before it is measured, and the
system ends up with a definite value (the measured value), then the measurement
must have disturbed the state of the system. This is a collapse theory of QM mea-
surement. It is contrasted with the view that measurements merely allow particles
in some states to pass through the device and block others, without changing the
states of the particles selected – this is a hidden variable view because it assumes
that the particles have properties to be filtered. But as Bell has shown, even this view
is committed to some kind of measurement disturbance by which non-local events
sometimes change the states of distant particles. It is hard to escape the conclusion
that QM measurement is more complicated than is assumed in classical physics.

A fundamental requirement is that any theory that supersedes current theories
in physics should preserve the consilience of inductions already achieved by QM.
Without that condition, the new theory falls short. It’s not enough to merely avoid
false predictions. A new theory must reproduce the predictions of the old theories,
at least to the degree to which they have proved to be accurate. The “old” theories
of physics include the quantum theory and the theory of relativity, and quantum
field theory. It is a problem that requires considerable invention and innovation. A
metaphysics of causal processes involving “events” that take place outside of space
and time is not easy and obvious.

One approach has been developed by Alexey Kryukov (2003, 2004, 2005, 2006,
2007). The idea is that the ordinary three-dimensional space of space of our every-
day experience is actually a three-dimensional sub-manifold of points in a larger
infinite-dimensional space, which is defined quantum mechanically. Space is not
postulated as a pre-existing structure over which wave functions are defined. Rather,
on this quantum geometrical view, the metric properties of space are derived from
the metric properties of the infinite-dimensional space in which it is embedded.
Causal processes and ‘events’ are located in the enveloping “hyperspace”. Kryukov
(2008) has extended this theory to the Minkowski spacetime of special relativity
and Kryukov (forthcoming) proves that the curved spacetime of general relativity
can also be derived from QM structures. It is a severe constraint to require that the
metric structure of spacetime be determined from the metric structure of a QM state
space. In this case, it requires that the QM state space is suitably modified so that
“squared distances” can be negative or positive, or zero. If a very severe constraint
is able to reproduce the consiliences of older theories in a unified way, then it also
has the potential to lead to new consiliences and novel predictions. Time will tell.
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To sum up: The right way of thinking about Reichenbach’s cubical world is in
terms of the consilience of inductions. There is no categorical imperative that we
must represent the external world in terms of variables as opposed to the more ge-
ometrical concepts used in QM. If we go by the consilience of inductions, then
local hidden variable theories do not succeed and non-local hidden variable theo-
ries currently fail to compete with QM. The miraculous consilience of QM not only
explains the growing consensus in favor of QM, but it also explains why cubical
world inference is so hard to characterize in general terms. For the inference that
is ultimately convincing most often depends on the explication of new theoretical
concepts and new mathematical constructions.

The good news is that there do appear to be methodological principles that ap-
ply equally validly to the old and the new physics. As in science itself, successful
predictions in philosophy are convincing evidence in favor of a theory. In 1858,
Whewell’s concluded that the consilience of inductions is the best indicator of good
science. The theories have changed, but Whewell’s prediction appears to be right.

Appendix

The purpose of this appendix is to prove that the quantum mechanical accommoda-
tion of the first three experimental facts in the GHZ experiment leads to far stronger
predictions than those provided by the hidden variable theory.

Because there are eight possible outcomes, the state vector j i is a vector in
an eight-dimensional Hilbert space. This space is constructed out of the three two-
dimensional vector spaces used to represent the states of electrons separately. Let
us choose the basis vectors for the first Hilbert space to be

ˇ
ˇzC˛

1
and jz�i1, etc.,

where the subscripts keep track of the vector space in question. It is now possible
to prove that the eight vector products,

ˇ
ˇz˙˛

1

ˇ
ˇz˙˛

2

ˇ
ˇz˙˛

3
, form a natural basis for

the eight-dimensional (complex) vector space. It is convenient to denote these eight
basis vectors by j˙ ˙ ˙i.

From the section The Consilience of Quantum Mechanics, �x has the property

�x

ˇ
ˇzC˛ D

�
0 1

1 0

� �
1

0

�
D

�
0

1

�
D jz�i :

Similarly, �x jz�i D ˇ
ˇzC˛

. In the context of the three-electron system, a spin operator
like �x

3 operates on the third part of the vector product, so for example,

�3
x jC C Ci D jC C �i :

Also,

�y

ˇ
ˇzC˛ D

�
0 �i
i 0

� �
1

0

�
D i

�
0

1

�
D i jz�i :
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Similarly, �y jz�i D �i ˇ̌
zC˛

. We now have everything in place that we need to
apply the defining GHZ equations (2) to an arbitrary state vector

j i D
X

j;k;l

cjkl jjkli;

where j, k, and l , range over the values C1 and �1. Calculating the constraints on the
coefficients cjkl implied by (2) is tedious, but it involves nothing more than algebra.
The key point is that an operator, such as �1

x�
2
x�

3
x induces a one-to-one map from ba-

sis states to basis states. Thus, for example, �1
x�

2
x�

3
x jC C Ci D j� � �i. So from

�1
x�

2
x�

3
x j i D � j i, it follows that �1

x�
2
x�

3
xcCCC jC C Ci D cCCC j� � �i D

�c��� j� � �i, and so on, for each of the eight components. Therefore, cCCC D
�c���, and more generally, cjkl D �c�j �k�l , or c˙˙˙ D �c���. The require-
ment that �1

x�
2
y�

3
y j i D j i is going to agree with the equation just derived

because �1
x�

2
y�

3
yc˙CC j˙ C Ci D i2c˙CC j
 � �i D c��� j
 � �i, but in the

other cases, �1
x�

2
y�

3
yc˙�C j˙ � Ci D �i2c˙�C j
 C �i D c�C� j
 C �i, it dis-

agrees in the sign, thereby implying that c˙�C D c�C�. Since we have already
shown that c˙�C D �c�C�, the only solution is that c˙�C D c�C� D 0. The
rule is that if the two signs for the y values disagree (one is C and the other is
�), then the coefficient is 0. By applying the same rule to the other two equations,
�1

y�
2
x�

3
y j i D j i, and �1

y�
2
y�

3
x j i D j i, we find that the only no-zero coeffi-

cients are cCCC and c���, and cCCC D �c���. Therefore, the unique GHZ state
is, modulo an arbitrary phase factor ei� ,

j i D 1p
2

jC C Ci � 1p
2

j� � �i :

It is especially important to notice that any three of the equations is sufficient to
determine a unique state vector and predict the remaining equation.

Notes

1 This mirror example is used in Hung (1997).
2 The principle is attributed to William of Ockham .�1280–1347AD/, although it has since taken

on a life of its own.
3 It is no coincidence that Newton scholars, such as Harper (2002), emphasize the importance of

the agreement of independent measurements in Newton’s argument for universal gravitation. For
Whewell was also primarily concerned with the explication of Newton’s methodology. See also
Myrvold and William (2002) for an argument that this kind of evidence is not properly taken
into account in standard statistical methods of model selection.

4 My purpose is not to argue for some particular historical or exegetical thesis about Whewell’s
notion of consilience, but to use (and adapt) Whewell’s idea for the purpose of explaining how
probabilistic theories work in general, and how quantum mechanics works in particular.

5 Recall that a random variable is, by definition, any variable that has a probability distribution
associated with it.
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6 As far as I’m aware, this exact experiment has not been performed. My confidence in making
this claim is based on the proven consilience of QM (next section).

7 In the general case in which observables involve complex numbers, only Hermitian operators
count as observables, because only they have expected values that are real numbers in every state.

8 This is because the product of two Hermitian operators is Hermitian if and only they commute.
9 There are a number of other scenarios that need to be ruled out as well. Arntzenius (1993) pro-

vides a concise list of these. Also see Sober (1984), Cartwright (1989), Eells (1991), Hausman
(1998), and Woodward (2003) for extensive discussions of causal inference and explanation, and
related philosophical issues.
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Probability and Objectivity in Deterministic
and Indeterministic Situations�

James H. Fetzer

The subject I would like to address, namely, probability and objectivity in
deterministic and indeterministic situations, could be formulated by means of the
question, “To what extent does the propensity approach to probability contribute to
plausible solutions to various anomalies which occur in quantum physics?” In order
to pursue this problem, I shall, first, sketch several of these anomalous conditions,
second, clarify the difference between deterministic and indeterministic situations,
and, third, consider three alternative interpretations of probability as they apply to
these problems, with particular reference to Einstein’s criterion of physical reality.
The position I shall defend is that of these three interpretations – the frequency,
the subjective, and the propensity – only the third accommodates the possibility,
in principle, of providing a realistic interpretation of ontic indeterminism. If these
considerations are correct, therefore, they lend support to Popper’s contention that
the propensity interpretation tends to remove (at least some of) the mystery from
quantum phenomena (Popper 1957, 1967, 1982).
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would be remarkable if quantum mechanics could be true only if relativity were false. If situations
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then propensities are involved. If they are both indeterministic and action at a distance cannot be
avoided (by appealing to non-causal, but not therefore non-lawful, relations, for example), which
I doubt, then indeterministic causal concepts as well as deterministic causal concepts will almost
certainly require revision. In any case, while the propensity approach can contribute to the res-
olution of some of the anomalies arising within the quantum domain, others – some involving
questions of completeness – no doubt remain.
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The Dimensions of the Problem

To offer some background for the sorts of issues that seem to be involved here,
the sources of anomaly that occur in quantum physics arise from at least three
apparently different types of situations. The first are characterizable by means of
Heisenberg’s Uncertainty Principle, according to which the measure of certainty
or of precision with which the position p and the momentum q of a sub-atomic
particle may be specified are inversely related, such that the more precisely its mo-
mentum can be measured, the less precisely its position, where there is a limit with
respect to simultaneous measurements of position and of momentum reflected by
the Uncertainty Principle itself, namely:

(1) �p�q � h

where the product of �p and of �q as measures of uncertainty of position and of
momentum, respectively, can never violate the limiting value of h, understood as
Planck’s constant, a very small unit of energy.

Now this notion of uncertainty is amenable to at least two kinds of interpretation.
One interpretation is an “ontic” interpretation, which would have us understand that
sub-atomic particles simply do not have simultaneous position and momentum, i.e.,
that we ought to read formula (1) as a property of the physical world, independently
of our knowledge or belief or awareness thereof. The other is an “epistemic” inter-
pretation, which instead asserts that the uncertainty relations are properly regarded
as representing limitations upon how much we can know about the simultaneous
position and momentum of sub-atomic particles. Popper has suggested that the on-
tic interpretation is farfetched, especially since determinations of momentum are
usually made by means of position measurements at different times, say, t1 and t2,
rather than by means of a simultaneous determination (Popper 1967). An arrange-
ment consisting of two photographic plates separated by a fixed distance, say, d ,
could be employed to measure the location of a particle at time t1 and later at time
t2, so that by comparing the results we can compute not only where a particle was
at time t1 but also where it was going.

The determination of momentum by this means, however, is subject to certain
qualifications; for the magnitude obtained by dividing the distance, d , by the time,
t2 � t1, may represent a mean (or “average”) value – unless there are grounds to
assume that particles always travel with constant momentum, a doubtful contention.
Moreover, if the distance, d , were made less and less, it might still remain the case
that there is a limit on the precision attainable as a function of natural law, such that
formula (1) reflects an irreducible ontic feature of the physical world, after all. Still,
I am inclined to agree with Popper that the denial that particles have simultaneous
position and momentum is indeed far-fetched, even if the Uncertainty Principle does
reflect a limitation, in principle, upon what we can know, i.e., as a function of natural
law. But it would be valuable to discover an adequate explanation for this perplexing
situation – perhaps, for example, by arriving at a theoretical understanding of the
second source of anomaly which I would like to consider, the phenomenon known
as “wave-particle duality”.
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Wave-particle duality may be illustrated by (what are usually described as) “one
slit” experiments, in which a source of electrons, A, let us say, is directed through a
single aperture toward an apparatus, such as a photographic plate, once again, which
is capable of detecting their arrival. What has been discovered is that the behavior
of electrons is such that, when this experiment is subject to replication, it is not
the case that they always wind up at just one place or location or area; instead, we
obtain something like a distribution of impact, such that, if various areas of impact
were labeled “B”, “C ”, and so on, then with a certain probability, represented by the
absolute value of the appropriate psi-function squared, j‰B j2; j‰C j2, and so forth,
an electron will end up in one area, say, B , rather than another, C . The principal
problem that arises here is what we are supposed to understand by the term “proba-
bility” as it is employed within this context. But notice that, even if we assume that
particles always have both position and momentum during every moment of their
history, nevertheless, the distribution of their impact – together with the interfer-
ence patterns displayed during other, “two slit”, experiments – represents wave-like
behavior by particle-like entities, which appears to be very difficult to comprehend.

The third source of anomaly I want to mention concerns the point of view known
as “complementarity”, which was originally introduced by Bohr to designate the
necessity to depend upon two (seemingly inconsistent) conceptions of physical re-
ality, i.e., the wave picture and the particle picture, without assuming any prospects
for their theoretical reconciliation. “Complementarity”, of course, has come to mean
many things to many people, not least of whom are those allied with the Copenhagen
Interpretation of quantum physics, according to which the human mind performs an
essential role in understanding the physical world, not only in the acquisition of in-
formation about the world but in bringing about the existence of properties of the
world by means of causal interaction through the process of measurement. Thus,
Einstein tended to differ with Bohr with respect to the possible existence of unmea-
sured properties, rather than following Bohr in maintaining that,

a quantity is not real just because it can be measured, it is also necessary that it is measured.
Or rather, reality cannot be attributed to the quantity itself in any case, but only to the
measurement of the quantity. (Brush 1979, p.93; for alternative interpretations, see Folse
1977)

While it seems quite plausible to suppose that measurements arise as a result of a
causal interaction between a measuring instrument, i.e., a device capable of making
measurements, and a measureable property, i.e., a property which is capable of be-
ing measured, it does appear anomalous to suppose that properties themselves only
exist so long as they are being subjected to measurement.

This situation is further complicated, of course, by the introduction of probabilis-
tic properties, whose measurement involves problems not encountered within other
contexts. An example sometimes offered to illustrate the difficulties confronting the
Copenhagen Construction is that of Schrödinger’s “Cat Paradox”, which envisions
an arrangement consisting of a living feline placed inside an opaque chamber that
is connected to an electrical device activated by a radioactive source linked to a
geiger counter. If decay occurs and registers – with a probability, let us assume,
equal to 1/2 – then an impulse is activated which electrocutes the cat. From the



232 J.H. Fetzer

Copenhagen Perspective, it seems, until the chamber has been opened and a live
kitty or a dead corpse has been observed, the cat itself is presumed to be neither
dead nor alive but rather somewhere in between, which is represented by a super-
position of psi-functions for both of these events prior to this measurement being
made. The procedure of taking a look and discovering, say, that the cat is dead
thus effectuates (what is usually referred to as) “the reduction of the wave packet”,
whereby, in effect, the result of being dead or of being alive is brought about. All of
this is anomalous, indeed, because we are inclined to believe that the cat, after all, is
either dead or alive during each moment of its history, whether we happen to notice
or not. So if there is some way around problems such as these, then it would appear
very desirable to pursue, where much of what follows is intended to suggest that
the Copenhagen Interpretation is not only an implausible approach toward quantum
physics but also an avoidable one.

Interpreting “Indeterminism”

In order to answer the question, “Can there be a realistic interpretation of ontic
indeterminism?”, it is indispensable to clarify the special character of ontic indeter-
minism, on the one hand, and of realistic interpretations, on the other. What I want
to do is to consider the criterion of reality advanced by Einstein in the famous paper
he co-authored with Podolsky and Rosen – where they attempt to define conditions
under which the existence of an element of physical reality should be inferred –
to ascertain, in part, whether different conceptions of probability can make a dif-
ference to our understanding of what ontic indeterminism itself entails. But before
going that far, let us observe that three different types of situations appear to require
differentiation as follows, namely:

(2)

Three situation Ontic Epistemic
are possible: determinism determinism

a. Classical Mechanics
(CM):

Yes Yes

b. Statistical Mechanics
(SM):

Yes No

c. Quantum Mechanics
(QM):

No No

With respect to each of these areas of inquiry, the issue arises, “Does the domain
in question – classical, statistical, and quantum phenomena, respectively – repre-
sent ontic determinism/indeterminism or does it instead reflect merely epistemic
determinism/indeterminism?” Indeed, these distinctions apply to theories as well as
to phenomena in each of these domains. Classical mechanics, for example, seems to
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represent ontically deterministic phenomena where, if only the relevant parameters
(or “initial conditions”) are specified with sufficient precision, then it is possible,
in principle, to predict the outcome that will occur in every single case without
exception, assuming, of course, some such theory happens to be true. Loosely –
intuitively – let us suppose that this conception affords an appropriate foundation for
understanding ontic determinism, i.e., that the same outcomes are always brought
about under the same initial conditions, where exact predictions, in principle, are
always possible, relative to true theories for those domains.

In classical mechanics, moreover, we are also in a situation where quite often
these initial conditions are ascertainable, in practice, which makes it possible to
successfully predict. Thus, under these conditions, epistemic as well as ontic deter-
minism obtains. In the case of statistical mechanics, however, the situation appears
to be somewhat different, not with respect to ontic determinism but rather with
respect to epistemic determinism. For, here we seem to be dealing with circum-
stances – as in the case of gas laws – involving enormous numbers of very small
things, where, even if we take for granted that, in principle, these enormous numbers
of very small things behave in the small exactly the way billiard balls, for example,
behave in the large, nevertheless, they are so many and so small that, as a practical
matter, it is virtually impossible for us to possess the kind of knowledge about their
initial conditions that would be required for us to be successful in predicting their
behavior – even though we take it to be the case that statistical mechanistic phe-
nomena are ultimately ontically deterministic, i.e., such that, if only we could have
sufficiently precise measurements of these initial conditions, the appropriate laws of
statistical mechanics could be applied and would yield an exact prediction of what
would occur in every single case – without exception! Nevertheless, characteristi-
cally we are not in such a position, but rather in one of epistemic indeterminism,
which can be viewed in several different ways where the phenomena are complex,
where we have a lack of knowledge, and where statistical predictions are relied upon
as a function of our ignorance.

In the case of quantum mechanics, by contrast, we seem to be in a rather differ-
ent situation. Here it at least appears to be the case that we are possessed of enough
knowledge about initial conditions that it is implausible to suppose that the situation
is merely one of epistemic indeterminism. In fact, no matter how hard we look, how
much we try, how many guesses we explore, it is very difficult to come up with any
additional factors which make a difference, for example, to an electron’s probability
of landing in areaB , or areaC , and so on, upon its emission from the source,A. This
seems to be an irreducibly probabilistic or ontically indeterministic phenomenon,
where different outcomes are sometimes brought about under the same initial con-
ditions and exact predictions, in principle, are by no means always possible. To more
adequately clarify the situation encountered, let us consider the following set of five
alternative hypotheses which might be thought to be applicable here:

(3) Possible alternative hypotheses:

h1: the deterministic hypothesis
h2: the random-walk hypothesis
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h3: the free-will hypothesis
h4: the probabilistic hypothesis
h5: the hidden-variable hypothesis

Thus, according to h1, the deterministic hypothesis, the relation between an
electron’s emission from source A and its impacting in area B , for example, is
one of ontic determinism, where in every single case the same outcome occurs
under the same initial conditions and exact predictions are always possible. How-
ever, if all of the known factors are a complete set of factors, then the deterministic
hypothesis is just not true, since the available relevant evidence overwhelmingly
supports the conclusion that the situation is not one of ontic determinism. So let us
assume not-h1.

According to h2, the random-walk hypothesis, the way in which a particle gets
somewhere from wherever it may be is in a wholly random way, because the particle,
roughly speaking, has an equal probability (or a “classical” tendency) for travelling
in every direction. The types of distributions obtained for impacts within specified
areas such as B, C, and so forth, after emission from a sourceA, however, are not the
types that would lend support to a random-walk hypothesis. So let us also assume
not-h2. According to h3, the free-will hypothesis, of course, each electron simply
“makes up its own mind” with regard to its own destination, as though electrons had
minds to “make up”. In the case of the free-will hypothesis, we in effect abandon
predictability, because free-will, in this sense, really entails that such a phenomenon
is not governed by natural laws but instead either lies beyond their scope or occurs
in violation thereof. The adoption of this hypothesis would thus reflect the belief
that quantum phenomena lie beyond the pale of science, which seems to be a logi-
cal possibility without adequate evidential warrant. For electrons do not behave as if
they were “making up their own minds” but rather conform to probabilistic expec-
tations, where these expectations appear to vary with variations in initial conditions.
While we cannot predict where each single electron is going to impact, we can make
statistical predictions of patterns of impact that will tend to be displayed by the im-
pact of many electrons as a function of those initial conditions, which undermines a
free-will hypothesis. So let us further assume not-h3.

We seem to be left with two alternatives. According to h4, the probabilistic
hypothesis, the situation confronted here really is one of irreducible ontic indeter-
minism, where one or another of various different outcomes will be brought about
under the same initial conditions, where exact predictions, as opposed to probabilis-
tic expectations, are, in principle, not possible. This, of course, is a very tempting
hypothesis, given the available evidence. Yet it is still not our only option, since ac-
cording to h5, the hidden-variable hypothesis, there may remain other factors, say,
F 1; F 2, and so on, such that if these factors are included in a specification of initial
conditions along with A, for example, then it might turn out to be the case after all
that the relation between an electron’s emission from a source, A, and its impacting
in area B really is one of ontic determinism, relative to a complete specification of
initial conditionsA 	F 1; A 	F 2, and so forth. Remember that the original determin-
istic hypothesis, h1, was predicated on the assumption that all of the known factors
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were all of the relevant factors in relation to this class of outcome phenomena, an
assumption which the hidden-variable hypothesis, h5, thus denies.

We have already discovered that the relevant evidence tends to falsify the deter-
ministic hypothesis, h1, but the hidden-variable hypothesis, h5, is somewhat more
subtle, insofar as it is based upon the following observation: even if we have looked
very long and very hard and have not found any additional relevant factors, this in
itself does not establish that they do not exist; it shows, on the contrary, that either
they do not exist or else we have not yet looked in the right places to find them!
Thus, someone who is very strongly committed to a deterministic thesis about the
world could still preserve their commitment to determinism in the face of recalci-
trant quantum phenomena by holding out for the existence of hidden variables, as
hypothesis h5 proposes, the discovery of which will eventually disclose the deter-
ministic character thereof. Until very recently, moreover, it was very difficult to see
how the hidden-variable hypothesis could be disconfirmed as well as confirmed; but
the derivation of (what is known as) “Bell’s inequality” has dramatically altered this
situation, where Bell’s inequality represents a set of relations which must be satis-
fied if hidden-variable hypotheses are true. When subjected to experiments (which
are continuing today), the evidence has tended to falsify Bell’s inequality – and with
it the hidden-variable hypothesis, h5. So let us tentatively assume not-h5 as well.

Einstein’s Reality Criterion

These considerations, if correct, suggest that ontic indeterminism may be theoreti-
cally unavoidable, especially if the probabilistic hypothesis h4 happens to be true;
but it sheds no light on whether or not a realistic interpretation of ontic indetermin-
ism, in principle, might be possible at all. In order to pursue this issue, therefore, let
us consider the criterion of reality advanced by Einstein in the context of his paper
with Podolsky and Rosen, as follows:

(4) If, without in any way disturbing a system, we can predict with certainty (i.e.,
with probability equal to unity) the value of a physical quantity, then there exists
an element of physical reality corresponding to that physical quantity. (Einstein
et al. 1935, p. 777)

Certain infelicities, it must be admitted, attend this formulation. One is that it does
not adequately differentiate between phenomena and theories as representatives of
phenomena; for surely predictions are conclusions of inferences from premises,
where lawlike sentences and descriptions of initial conditions characteristically
serve as evidential warrants. Thus, it seems, we should think of Einstein as regarding
a theory as describing a system in the world, where ascriptions of initial conditions
assign specific values vi which permit the derivation of specific predictions of other
values vj from certain theoretical assumptions. But another difficulty is thereby
made apparent, for this formulation likewise fails to separate the ontic from the epis-
temic: even well-entrenched theories are likely to yield accurate predictions, without
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therefore being guaranteed to be true. Phlogiston, Allan Franklin reminds me, did
not acquire existence as an element of physical reality in spite of innumerable “accu-
rate predictions” of gains and losses of this property based upon phlogiston theory.

As a criterion of belief, in other words, there may be much to be said in support
of the thesis that, under the conditions specified, an evidential warrant supports the
belief that there exists an element of physical reality corresponding to such physical
quantities. As a criterion of truth, however, there is little to be said in support of
the claim that, under the specified conditions, an evidential warrant guarantees the
truth that there exists an element of physical reality corresponding to such physical
quantities. And clearly an adequate conception of a standard of existence should
not commit any realist to the existence of properties stipulated by any theory –
unless that theory is true! In order for Einstein’s criterion of reality to be adequate,
therefore, it has to be qualified with the condition, “so long as the theory from which
those predictions were derived is true”. If this condition is satisfied, however, then
the rest of Einstein’s criterion does not require satisfaction, since corresponding
elements of physical reality must then exist whether or not they are ever subject to
systematic prediction. From an ontic point of view, without this condition, Einstein’s
criterion is false; but with this condition, it is trivial.

These apparent shortcomings notwithstanding, Einstein’s criterion has exerted
considerable influence upon discussions of realism in the past and in the present;
for this reason, as well as others, it will serve as an appropriate background for
our discussion of ontic indeterminism. Thus, the formulation endorsed by Einstein
bears a striking resemblance to a certain construction advanced by Reichenbach as
his account of strict causal laws, which we shall refer to as “Assumption D” (for
“determinism”), as follows:

Assumption D: The statement that nature is governed by strict causal laws means
that we can predict the future with a determinate probability and
that we can push this probability as close to certainty as we want
by using a sufficiently elaborate analysis of the phenomena under
consideration. (Reichenbach 1944, pp. 2–3)

Indeed, the resemblance is even closer than it initially appears, insofar as Reichen-
bach, like Einstein, interprets “certainty” as a probability equal to unity. Moreover,
as Clifford Hooker has observed, Einstein almost certainly adopted another assump-
tion as well, which we shall refer to as “Assumption E” (for “Einstein”), as follows:

Assumption E: A complete description of a physical system S during some time in-
terval T is one for which every attribute of S is precisely determined
for each instant t 2 T . (Hooker 1972, p. 71)

These assumptions are theoretically significant for understanding Einstein’s posi-
tion, since they jointly entail the following claim, namely:

(5) If we can predict every attribute of a system S for each instant t 2 T with
certainty, then (a) our description of S is complete and (b) S is governed by
strict causal laws;
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which supports the possibility that alternative formulations may be required to cap-
ture a realistic interpretation of ontic indeterminism.

Perhaps the most obvious logical feature of Einstein’s criterion (4) is also one of
its most important aspects; for, as he himself remarked, it is intended as a sufficient
condition, but not as a necessary condition, for the value of a predicted quantity vj

to correspond to an element of physical reality. Its ‘If . . . , then ’ conditional
structure reflects that this criterion of reality, such as it may be, is only meant to
represent one way in which the existence of an element of physical reality may be
ascertained. Thus, the crucial issue before us may be expressed in the following
manner:

(6) If, without in any way disturbing a system S , we can predict, not with certainty
but with some probability less than 1, the value of a physical quantity, can there
then not still exist some element of physical reality corresponding to that phys-
ical quantity?

where it is especially important, in light of Assumption D and Assumption E, that
Einstein’s criterion as a sufficient condition not be confounded with, let us say, a
sufficient definition, in the sense of a weakest criterion of reality, which would be a
necessary and sufficient condition of the broadest general kind. For a realistic inter-
pretation of ontic indeterminism to qualify as a theoretical possibility, in principle,
after all, surely it must be at least logically possible .a0/ that our description of a
system S could be complete even though .b0/ the system S is not governed by strict
causal laws. Otherwise, the combined force of Assumption D with Assumption E
as features of Einstein’s criterion of reality strongly suggests if not strictly entails
that realistic interpretations of quantum phenomena are deterministic, necessarily,
in which case the probabilistic hypothesis h4 could not possibly be true.

Indeterminism and Realism

We have discovered a striking dilemma, insofar as the arguments of the second
section, which are based upon experimental findings, support the conception that
a realistic interpretation of ontic indeterminism is a theoretical necessity, while the
arguments of the third section, which are based upon Einstein’s criterion, suggest
the conclusion that a realistic interpretation of ontic indeterminism is a theoretical
impossibility. This dilemma, of course, is more apparent than real, once Einstein’s
criterion has been diagnosed as a sufficient rather than a necessary condition. Dis-
closing the inadequacy of a deterministic criterion, moreover, is not the same thing
as uncovering an adequate indeterministic criterion, but it still might pave the way;
for the identification of “certainty” with probability equal to unity raises the possibil-
ity that the identification of “uncertainty” with probability less than unity deserves
to be explored. The theoretical significance of the probabilistic hypothesis, h4, in
relation to quantum phenomena, after all, cannot be ascertained without considera-
tion for the interpretation of probability that effects its connection with this domain,
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where three interpretations appear to warrant special consideration within this spe-
cific context, namely: the frequency, the subjective, and the propensity conceptions,
respectively.

According to the frequency conception, probabilities are limiting frequencies
for specified attributes, such as impacting in area B , within designated reference
classes, such as emissions of electrons from sources such as A. A probabilistic
hypothesis under the frequency interpretation may be characterized as possessing
the following logical form,

(7) P.B=A/ D p

where ‘p’ denotes the limiting frequency for the attribute B within an infinite
reference class A. If the probability with which an electron emitted from source
A lands in area B is given by the absolute value of the corresponding psi-function
squared, j‰B j2 D 1

4
, say, this means that the limiting frequency with which im-

pacts in area B should be expected to occur over an endless sequence of emissions
from source A is equal to 1

4
. If a reference class happens to be finite, ‘p’ may be

taken as the limit that would obtain were its members repetitiously counted over
and over again. Since values of limits are logically compatible with any number of
exceptions n, of course, the identification of “certainties” (in Einstein’s sense) with
probabilities of one (or of zero) appears to be inappropriate; but this is not a diffi-
cult problem to repair, since constant conjunctions (and constant non-occurrence)
are properly entertained as the strongest (and the weakest) possible connections be-
tween the members of these classes. Thus, the identification of “uncertainties” (in
a similar sense) with probabilities between zero and one inclusively promises to
provide an interpretation of the probabilistic hypothesis h4 which might support a
realistic interpretation of ontic indeterminism.

Because probabilities as frequencies are physical properties of physical systems,
the frequency approach exerts considerable prima facie appeal as an appropriate
conception within the quantum context. But appearances often deceive us, and this
is no exception. For in order to apply to any particular quantum outcome, such as
impacting in area B , it is essential to assign each quantum experiment, such as
each emission of an electron from the source A, to the proper class of trials of
some kind, where the kind of trial involved is determined by the complete set of
relevant properties attending its occurrence, relative to the frequency criterion of
statistical relevance. According to this criterion of relevance, any property F with
respect to which frequencies differ, i.e., such that P.B=A\ F / ¤ P.B=A \ �F /,
is statistically relevant, necessarily. Unfortunately, there are excellent grounds for
assuming that, for any two events, say, e1 and e2, there is at least one property, F ,
such that F is an aspect of e1 but not of e2. But this means that, even if e1 and e2

both happen to be emissions of electrons from the same source, A, nevertheless, the
only circumstance under which they can both be classified as members of the same
reference class, such as A, under the frequency criterion of statistical relevance,
is when they both happen to have the same outcome, such as B . Hence, unless a
quantum experiment, ei , is assigned to a reference class in which its outcome, B ,



Probability and Objectivity in Deterministic and Indeterministic Situations 239

occurs with “certainty”, it is not even logically possible that experiment ei has been
assigned to the proper class of trials.

In order to avoid misunderstanding, we must keep in mind that, whenever
an outcome B; C; : : : , occurs, a question arises as to what set of properties
A; A\F 1; A\F 1 \F 2; : : : , so to speak, “brought it about” (or, in other words, to
what reference class the single event, ei , should be assigned). For any difference in
outcomes, of course, it is entirely possible that that difference was “brought about”
by the occurrence of different relevant conditions. If any two events, ei and ej , differ
with respect to at least one property F , however, then every event, strictly speaking,
qualifies as an event of a distinctive kind, since, with respect to any other event, there
must be at least one property, F k , that is an aspect of ei , while – F k is an aspect
of ej . Intuitively, of course, we are inclined to believe that, even if two emissions
of electrons from source A occurred at different times, under different weather con-
ditions, in different colored rooms, and so forth, nevertheless, only some – but not
all – of these conditions are explanatorily and/or predictively relevant with respect
to a specific outcome, such as B , as the result of the specific event e2, say, where
e2 belongs to many different reference classes, A; A \ F 1; A \ F 1 \ F 2; : : : .
With the frequency criterion of statistical relevance, however, there is no latitude for
judgements that some of these properties are, but some of these properties are not,
explanatorily/predictively relevant to a specific result, other than those displayed by
frequencies per se: when “effects” differ, their “causes” differ, necessarily. Since ev-
ery single event, ei , is different in kind from every other, ej , if a certain result, such
as B , occurs on one trial, while an incompatible outcome, such as C , occurs on an-
other, then the frequency criterion of statistical relevance, in principle, demands that
the differences between these events have to qualify as statistically relevant. Indeed,
the frequency interpretation thus understood cannot sustain probability assignments
of other than zero and one. (For detailed elaboration, see Fetzer 1981, Chapter 4.)

Now if the only probabilities that are properly assignable to quantum outcomes
are “certainties”, i.e., degenerate probabilities of zero and of one, which actually
represent constant non-occurrence and constant conjunction, respectively, then if
this result follows as a matter of logical necessity from essential features of the fre-
quency interpretation, then it is not logically possible for a probabilistic hypothesis –
such as one assigning the probability of 1

4
to landing in area B as an outcome of an

emission from source A – to be true, when the probabilities involved are not degen-
erate probabilities of zero or of one. Moreover, since this conclusion is a necessary
consequence of the frequency interpretation, it applies alike to events in the future
as well as to events in the past, completely independently of our knowledge or be-
lief or awareness thereof. But if this is the case, then it is logically impossible for
the frequency interpretation to provide the theoretical foundation for a realistic in-
terpretation of ontic indeterminism which the probabilistic hypothesis, h4, requires.
So let us assume that this approach is not what we desire.

According to the subjective conception, probabilities are supposed to be degrees
of belief in particular propositions, such as, say, that an electron will impact in area
B , when an individual x possesses certain other beliefs, such as that an electron has
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been emitted from source A. The ascription of a degree of belief thus assumes the
following logical form,

(8) ŒPA.B/ D r�xt

where ‘r’ denotes the degree of belief in the proposition that B when individual
x already possesses the belief that A. The presence of subscripts, ‘xt’, of course,
reflects that these probabilities are properties of individuals x at times t , where it
is perfectly permissible for two different individuals, say, x and y, to have different
degrees of belief in the same proposition, B , even when they are under the same
conditions of belief,A, so long as their respective distributions of degrees of belief at
any time t remain formally consistent (or “coherent”). Nevertheless, each individual
x is required to preserve a special relationship between his distribution of degrees
of belief at time ti (before acquiring the belief thatA) and at time tj (after acquiring
the belief that A), where his prior degree of belief in B conditional upon A, when
x already holds other beliefs, say, F , is supposed to equal his posterior belief in
B , when he has acquired the belief A as an addition to his other beliefs, F , i.e.,
PF [A.B/ D PF .B=A/, a process known as “conditionalization” regulating degree
of belief distributions across time. (Compare, for example, Fetzer 1981, Chapters 8
and 10.)

Since probabilities as degrees of belief are mental properties of particular
persons-at-times, this interpretation does not appear to hold great promise as an
appropriate conception within the quantum context. The probability with which an
electron emitted from sourceA lands in area B , for example, need not be equal to 1

4

for different individuals at the same time or even for the same individual at different
times. The assignment of degrees of belief, of course, is determined by the complete
set of relevant beliefs for an individual x at a time t , relative to a subjective criterion
of evidential relevance, according to which any member of the set of beliefs that x
accepts at t , such as A, is evidentially relevant to the degree of belief x assigns at
t to some other belief, such as B , if the truth or falsity of A “makes a difference”
to that degree of belief, i.e., PF [A.B/ ¤ PF [�A.B/. Now while this criterion of
relevance permits the possibility that particular propositions, such as B , might be
assigned degrees of belief which are not equal to degenerate probabilities of zero
(as “incredulity”) or of one (as “indubitability”), it does not permit the possibility
that any outcome of which x becomes aware could be assigned any degree of belief
other than equal to one. For x’s prior degree of belief in B conditional uponB when
x already holds other beliefs, F , has to be equal to one, as a function of coherence;
but then x’s posterior belief in B , when he has acquired the belief B as an addition
to his other beliefs, F , also has to equal one, as a function of conditionalization,
where PF [B .B/ D PF .B=B/.

Not the least of the consequences attending this conception, therefore, is that,
when probabilities are understood as degrees of belief, it is only possible for a quan-
tum outcome to be assigned a probability value between zero and one so long as that
specific outcome, such as B , remains unknown; for as soon as x becomes aware that
B is the case, his degree of belief in the proposition that B has to change to one!
This situation is illustrated by the Schrödinger “Cat Paradox”, in fact, where the
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discovery that the cat is dead (or is alive) brings about a “reduction of the wave
packet” in the form of an abrupt shift in subjective probabilities from 1

2
, let us say,

to one! This phenomenon is not at all peculiar to quantum contexts, moreover, but
commonplace with respect to tosses of coins, throws of dice, and “games of chance”,
in general, which are usually ontically deterministic – and only epistemically inde-
terministic as functions of ignorance. Although the subjective interpretation thus
contributes toward clarification of the anomalous character of the “reduction of the
wave packet”, it does not appear to provide the theoretical foundation for a real-
istic interpretation of ontic indeterminism which the probabilistic hypothesis, h4,
requires. So let us assume that this approach too is not what we desire.

According to the propensity conception, finally, probabilities are to be under-
stood as dispositional properties (or “causal tendencies”) for one or another possible
outcome, such as impacting in area B , in area C , etc., to be brought about (with a
certain strength) by the occurrence of a test, trial, or experiment with a fixed kind of
apparatus or arrangement, such as the emission of an electron from a source such as
A. A probabilistic hypothesis under the propensity interpretation may be character-
ized as possessing the following logical form,

(9) .x/.t/.Axt

t

m Bxt�/

where ‘m’ denotes the strength of the tendency for an outcome of kind B at time t�
to be brought about by a single trial of kind A at time t – and t� is equal to t C�t .
If the probability with which an electron x emitted from source A lands in area
B is given by the square of the absolute value of the corresponding psi-function,
j‰B j2 D 1

4
, as before, this means that a single trial of kind A would bring about

an outcome of kind B with strength equal to 1
4

, which in turn (probabilistically)
implies that a very large number of trials of kind A would tend to bring about an
outcome of kind B with a relative frequency equal to 1

4
, where the strength of this

tendency becomes enormously strong as the length of such a sequence increases
without bound.

Since propensities, like frequencies, are properties of the world independently of
anyone’s knowledge, belief, or awareness thereof, we are again confronted by an
intriguing point of view. In order to apply to any particular quantum outcome, such
as impacting in areaB , of course, it is essential to characterize each single trial, such
as each emission of an electron from its source A, as a trial of the appropriate kind,
where the kind involved is determined by the complete set of relevant properties
attending its occurrence, as before, but now relative to the propensity criterion of
causal relevance. According to this criterion of relevance, any property, F , with
respect to which propensities differ, i.e., such that .x/.t/Œ.Axt 	 Fxt/

t

m Bxt�� and
.x/.t/Œ.Axt 	�Fxt/

t

n Bxt��, where m ¤ n, is causally relevant to an outcome of
kind B on a trial of kind A, necessarily. Since causally relevant properties need not
be statistically relevant properties, the complete set of relevant properties present on
a single trial can be a subset of the complete set of properties present at that trial,
which means that the strength of the tendency for an outcome of kind B to be the
effect of a trial of kind A can have a value between zero and one inclusively, where
it is not the case that the only probabilities that are properly assignable to quantum
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outcomes are “certainties”, i.e., degenerate probabilities with the values of zero and
of one. (For further discussion, see Fetzer 1981.)

Like the frequency conception, the propensity conception is such that probabil-
ities of zero and of one are logically compatible with any number of exceptions;
consequently, “certainties” should be identified, not with constant non-occurrence
and constant conjunction, but rather with null and universal strength instead. Thus,
causal tendencies of universal strength obtain where, if only the relevant parameters
are completely specified, it is possible, in principle, to predict the outcome that will
occur in every single case without exception, assuming, of course, some such theory
is true, because this situation is one of ontic determinism. And causal tendencies of
probabilistic strength obtain where, if only the relevant parameters are completely
specified, it is possible, in principle, not to predict the outcomes that occur in ev-
ery single case without exception, but rather to derive probabilistic expectations for
outcome distributions instead, assuming some such theory is true, because this situ-
ation is one of ontic indeterminism. Hence, the propensity interpretation overcomes
the difficulties confronting the frequency interpretation, because it is logically pos-
sible for a probabilistic hypothesis – such as one assigning the probability of 1

4
to

landing in area B as an outcome of an emission from source A – to be true, even
when the probabilities involved are not degenerate probabilities of zero or of one.
And the propensity conception overcomes the difficulties confronting the subjective
conception, because it is logically possible for a probabilistic hypothesis – such as
one assigning the probability of 1

4
to landing in areaB as an outcome of an emission

from source A – to be true, even when that outcome is known to have occurred. The
situation thus appears to be as follows:

(10)

Three interpretations Explanatory Predictive
are possible: indeterminism indeterminism

a. Frequency Constructions (FC): No No
b. Subjective Constructions (SC): No Yes
c. Propensity Constructions (PC): Yes Yes

Only the propensity interpretation permits probabilistic hypotheses assigning non-
degenerate probabilities to known or unknown outcomes to be true. Since this is the
case, moreover, it is logically possible for the propensity conception to provide the
theoretical foundation for a realistic interpretation of ontic indeterminism which the
probabilistic hypothesis, h4, requires. So let us tentatively assume that this approach
is what we desire.

Refining Einstein’s Criterion

If these considerations are correct, then of the three interpretations which we have
examined here – the frequency, the subjective, and the propensity – only the third
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accommodates the possibility, in principle, of providing a realistic interpretation of
ontic indeterminism. Insofar as the arguments of the third section, which were based
upon Einstein’s criterion, suggested the conclusion that a realistic interpretation of
ontic indeterminism might be a theoretical impossibility, such an interpretation must
satisfy another criterion of reality than the one endorsed by Einstein for this reason:

(11) If, without in any way disturbing a system S , we can predict, not with cer-
tainty but with some probability less than 1, the value of a physical quantity,
then either .a�/ our description of system S is not complete (in the sense of
Assumption E) or .b�/ system S is not governed by strict causal laws (in the
sense of Assumption D).

That .b�/ should be the case, of course, is entirely unproblematic, insofar as inde-
terministic situations are not governed by strict causal laws. But that .a�/ should
be the case is highly problematic, since it invites the re-introduction of the hidden-
variable hypothesis h5. Fortunately, Feynman has supplied the missing element in
the form of an alternative conception, which we shall refer to as “Assumption F”
(for “Feynman”), as follows:

Assumption F: An ideal experiment is one in which all of the initial and final con-
ditions of the experiment are completely specified. (Feynman et al.
1965, Vol. III, p. 1–10)

To be precise, an ideal experiment E is one for which all the actual initial condi-
tions and possible final conditions are completely specified. I therefore suggest the
following as an improvement upon Einstein’s criterion:

(12) If an ideal experiment with a system S permits the prediction of its future
states with deductive certainty or with probabilistic confidence, then that
system is a deterministic or an indeterministic element of physical reality,
respectively (in the sense of Assumption F)

where this criterion applies to indeterministic as well as to deterministic situations.
And I further conclude that, while the Copenhagen Interpretation represents an un-
warranted intrusion of subjectivism into physics, the propensity conception tends
to remove (at least some of) the mystery from quantum phenomena, precisely as
Popper has claimed.
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How Bayesian Confirmation Theory Handles
the Paradox of the Ravens

Branden Fitelson and James Hawthorne

Introduction

The Paradox of the Ravens (aka, The Paradox of Confirmation) is indeed an old
chestnut. A great many things have been written and said about this paradox and
its implications for the logic of evidential support.1 The first part of this paper will
provide a brief survey of the early history of the paradox. This will include the orig-
inal formulation of the paradox and the early responses of Hempel, Goodman, and
Quine. The second part of the paper will describe attempts to resolve the paradox
within a Bayesian framework, and show how to improve upon them. This part be-
gins with a discussion of how probabilistic methods can help to clarify the statement
of the paradox itself. And it describes some of the early responses to probabilistic
explications. We then inspect the assumptions employed by traditional (canonical)
Bayesian approaches to the paradox. These assumptions may appear to be overly
strong. So, drawing on weaker assumptions, we formulate a new-and-improved
Bayesian confirmation-theoretic resolution of the Paradox of the Ravens.

The Original Formulation of the Paradox

Traditionally, the Paradox of the Ravens is generated by the following two assump-
tions (or premises).

	 Nicod Condition (NC): For any object a and any predicateF andG, the proposi-
tion that a has bothF andG confirms the proposition that everyF hasG. A more
formal version of (NC) is the following claim: .Fa	Ga/ confirms .8x/.Fx � Gx/,
for any individual term ‘a’ and any pair of predicates ‘F ’ and ‘G’.
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	 Equivalence Condition (EC): For any propositions H1; H2, and E , if E
confirms H1 and H1 is (classically) logically equivalent to H2, then E

confirmsH2.
From (NC) and (EC), we can deduce the following, “paradoxical conclusion”:

	 Paradoxical Conclusion (PC): The proposition that a is both non-black and
a non-raven, .�Ba 	 �Ra/, confirms the proposition that every raven is black,
.8x/.Rx � Bx/.

The canonical derivation of (PC) from (EC) and (NC) proceeds as follows:

1. By (NC), .�Ba 	 �Ra/ confirms .8x/.�Bx � �Rx/.
2. By Classical Logic, .8x/.�Bx � �Rx/ is equivalent to .8x/.Rx � Bx/.
3. By (1), (2), and (EC), .�Ba 	 �Ra/ confirms .8x/.Rx � Bx/QED.

The earliest analyses of this infamous paradox were offered by Hempel, Goodman,
and Quine. Let’s take a look at how each of these famous philosophers attempted to
resolve the paradox.

Early Analyses of the Paradox due to Hempel,
Goodman, and Quine

The Analyses of Hempel and Goodman

Hempel (1945) and Goodman (1954) didn’t view (PC) as paradoxical. Indeed,
Hempel and Goodman viewed the argument above from (1) and (2) to (PC) as
sound. So, as far as Hempel and Goodman are concerned, there is something mis-
guided about whatever intuitions may have lead some philosophers to see “paradox”
here. As Hempel explains (Goodman’s discussion is very similar on this score), one
might be misled into thinking that (PC) is false by conflating (PC) with a different
claim .PC�/ – a claim that is, in fact, false. Hempel warns us that [our emphasis]

: : : in the seemingly paradoxical cases of confirmation, we are often not judging the relation
of the given evidence E alone to the hypothesis H : : : instead, we tacitly introduce a com-
parison ofH with a body of evidence which consists of E in conjunction with an additional
amount of information we happen to have at our disposal.

We will postpone discussion of this crucial remark of Hempel’s until the later
sections on Bayesian clarifications of the paradox – where its meaning and signif-
icance will become clearer. Meanwhile, it is important to note that Hempel and
Goodman also provide independent motivation for premise (1) of the canonical
derivation of (PC) – a motivation independent of (NC) – in an attempt to further bol-
ster the traditional argument.2 The following argument for premise (1) is endorsed
by both Hempel and Goodman [our emphasis and brackets]:

If the evidence E consists only of one object which : : : is a non-raven Œ�Ra�, then E
may reasonably be said to confirm that all objects are non-ravens Œ.8x/�Rx�, and a
fortiori, E supports the weaker assertion that all non-black objects are non-ravens Œ.8x/
.�Bx 
 �Rx/�.
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This alternative argument for premise (1) presupposes the Special Consequence
Condition:

(SCC) For all propositionsH1; H2, and E , ifE confirms H1, andH1 (classically) logically
entails H2, then E confirms H2.

Early instantial and probabilistic theories of confirmation (e.g., those presupposed
by Hempel et al. (1950)) embraced (SCC). But, from the point of view of contem-
porary Bayesian confirmation theory, (SCC) is false, as was first shown by Carnap
(1950). We will return to this recent dialectic below, in our discussion of the para-
dox within the context of contemporary Bayesian confirmation theory. But before
making the transition to Bayesian confirmation, let us briefly discuss Quine’s rather
influential response to the paradox, which deviates significantly from the views of
Hempel and Goodman.

Quine on the Paradox of the Ravens

In his influential paper “Natural Kinds”, Quine (1969) offers an analysis of the
paradox of confirmation that deviates radically from the Hempel–Goodman line.
Unlike Hempel and Goodman, Quine rejects the paradoxical conclusion (PC). Since
Quine accepts classical logic, this forces him to reject either premise (1) or premise
(2) of the (classically valid) canonical argument for (PC). Since Quine also accepts
the (classical) equivalence condition (EC), he must accept premise (2). Thus, he is
led, inevitably, to the rejection of premise (1). This means he must reject (NC) – and
he does so. Indeed, according to Quine, not only does .�Ba 	 �Ra/ fail to confirm
.8x/.�Bx � �Rx/, but also �Ra fails to confirm .8x/�Rx. According to Quine,
the failure of instantial confirmation in these cases stems from the fact that the predi-
cates ‘non-black’ Œ�B� and ‘non-raven’ Œ�R� are not natural kinds – i.e., the objects
falling under �B and �R are not sufficiently similar to warrant instantial confirma-
tion of universal laws involving �B or �R. Only instances falling under natural
kinds can warrant instantial confirmation of universal laws. Thus, for Quine, (NC)
is the source of the problem here. He suggests that the unrestricted version (NC) is
false, and must be replaced by a restricted version that applies only to natural kinds:

Quine–Nicod Condition (QNC): For any object a and any natural kinds F and G, the
proposition that a has both F andG confirms the proposition that every F has G. More for-
mally, .Fa � Ga/ confirms .8x/.Fx 
 Gx/, for any individual term a, provided that the
predicates ‘F ’ and ‘G’ refer to natural kinds.

To summarize, Quine thinks (PC) is false, and that the (valid) canonical argument
for (PC) is unsound because (NC) is false. Furthermore, according to Quine, once
(NC) is restricted in scope to natural kinds, the resulting restricted instantial con-
firmation principle (QNC) is true, but useless for deducing (PC).3 However, many
other commentators have taken (NC) to be the real culprit here, as we’ll soon see.
We think that the real problems with (NC) (and (QNC)!) only become clear when
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the paradox is cast in more precise Bayesian terms, in a way that will be explicated
in the second part of this paper. But we will first show how the Bayesian framework
allows us to clarify the paradox and the historical debates surrounding it.

Bayesian Clarifications of (NC) and (PC)

Hempel (1945) provided a cautionary remark about the paradox. He warned us
not to conflate the paradoxical conclusion (PC) with a distinct (intuitively) false
conclusion .PC�/ that (intuitively) does not follow from (NC) and (EC). We think
Hempel’s intuitive contrast between (PC) and .PC�/ is important for a proper un-
derstanding the paradox. So, we’ll discuss it briefly.

What, precisely, was the content of this .PC�/? Well, that turns out to be a bit
difficult to say from the perspective of traditional, deductive accounts of confirma-
tion. Based on the rest of Hempel’s discussion and the penetrating recent exegesis
of Patrick Maher (Maher 1999), we think the most accurate informal way to char-
acterize .PC�/ is as follows:

.PC�/ If one observes that an object a – already known to be a non-raven – is non-black
(hence, is a non-black non-raven), then this observation confirms that all ravens are black.

As Maher points out, it is somewhat tempting to conflate .PC�/ and (PC). But,
Hempel did not believe that .PC�/ was true (intuitively) about confirmation, nor
did he think that .PC�/ (intuitively) follows from (NC) and (EC). This is because,
intuitively, observing (known) non-ravens does not tell us anything about the color
of ravens. While this seems intuitively quite plausible, it is quite difficult to see how
Hempel’s confirmation theory can theoretically ground the desired distinction be-
tween (PC) and .PC�/. What Hempel says is that we should not look at the evidence
E in conjunction with other information that we might have at our disposal. Rather,
we should look at the confirmational impact of learning E and only E.

There are two problems with this (the second worse than the first). First, as we
have cast it (and as we think it should be cast), .PC�/ is not a claim about the
confirmational impact on .8x/.Rx � Bx/ of learning �Ba in conjunction with other
information about a (i.e., �Ra), but the impact on .8x/.Rx � Bx/ of learning �Ba
given that you already know �Ra. Basically, we are distinguishing the following
two kinds of claims:

	 E confirmsH , given A – e.g., �Ba confirms .8x/.Rx � Bx/, given �Ra – versus
	 .E 	A/ confirms H, unconditionally – e.g., .�Ba 	 �Ra/ confirms .8x/.Rx � Bx/

unconditionally.

Note: in classical deductive logic, there is no distinction between:

	 X entails Y , given Z, and
	 .X 	Z/ entails Y

For this reason, Hempel’s theory of confirmation (which is based on deductive
entailment – see below) is incapable of making such a distinction. Perhaps this
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explains why he states things in terms of conjunction, rather than conditionalization.
After all, he offers no confirmation-theoretical distinction between ‘and’ and ‘given
that’. So, while it seems that there is an intuitive distinction of the desired kind be-
tween (PC) and .PC�/, it is unclear how Hempel’s theory is supposed to make this
distinction formally precise (see Maher (1999) for discussion).4

The second problem with Hempel’s intuitive “explaining away” of the paradox is
far more worrisome. As it turns out, Hempel’s official theory of confirmation is logi-
cally incompatible with his intuitive characterization of what is going on. According
to Hempel’s theory of confirmation, the confirmation relation is monotonic. That is,
Hempel’s theory entails:

(M) If E confirms H , relative to no (or tautological) background information, then E
confirms H relative to any collection of background information whatsoever.

The reason Hempel’s theory entails (M) is that it explicates “E confirmsH relative
to K” as “E & K entails X”, where the proposition X is obtained from the syntax
of H and E in a certain complex way, which Hempel specifies (the technical de-
tails of Hempel’s approach to confirmation won’t matter for present purposes). Of
course, if E by itself entailsX , then so does E &K , for anyK .5 Thus, according to
Hempel’s theory of confirmation, if (PC) is true, then .PC�/ must also be true. So,
while intuitively compelling and explanatory, Hempel’s suggestion that (PC) is true
but .PC�/ is false contradicts his own theory of confirmation. As far as we know,
this logical inconsistency in Hempel (and Goodman’s) discussions of the paradox
of confirmation has not been discussed in the literature.6

It is clear that Hempel was onto something important here with his intuitive dis-
tinction between claims (PC) and .PC�/, but his confirmation theory just lacked the
resources to properly spell out his intuitions. Here contemporary Bayesian confir-
mation theory really comes in handy.

According to Bayesian confirmation theory, “E confirms H , given K”, and
“.E 	K/ confirms H , unconditionally” have quite different meanings. Essentially,
this is possible because Bayesian explications of the confirmation relation do not
entail monotonicity (M). Specifically, contemporary Bayesians offer the follow-
ing account of conditional and unconditional confirmation – where hereafter, we
will use the words “confirms” and “confirmation” in accordance with this Bayesian
account:

	 Bayesian Confirmation E confirms H , given K (or relative to K), just in
case PŒH jE 	 K� > PŒH jK�. And, E confirms H, unconditionally, just in case
PŒH jE� > PŒH �, where PŒ	� is some suitable probability function.7

It is easy to see, on this account of (conditional and unconditional) confirmation,
that there will be a natural distinction between (PC) and .PC�/. From a Bayesian
point of view this distinction becomes:

(PC) PŒ.8x/.Rx � Bx/j�Ba 	 �Ra� > PŒ.8x/.Rx � Bx/�, and
(PC�) PŒ.8x/.Rx � Bx/j�Ba 	 �Ra� > PŒ.8x/.Rx � Bx/j�Ra�
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What Hempel had in mind (charitably) is the former, not the latter. This is crucial
for understanding the ensuing historical dialectic regarding the paradox. The im-
portant point here is that Bayesian confirmation theory has the theoretical resources
to distinguish conditional and unconditional confirmation, but traditional (classical)
deductive accounts do not. As a result Bayesian theory allows us to precisely ar-
ticulate Hempel’s intuition concerning why people might (falsely) believe that the
paradoxical conclusion (PC) is false by conflating it with .PC�/.

A key insight of Bayesian confirmation theory is that it represents confirmation
as a three-place relation between evidence E, hypothesis H, and background corpus
K. From this perspective the traditional formulation of the paradox is imprecise in an
important respect: it leaves unclear which background corpus is presupposed in the
(NC) – and, as a result, also in the (PC). In other words, there is a missing quantifier
in the traditional formulations of (NC) and (PC). Here are four possible precisifica-
tions of (NC) (the corresponding precisifications of (PC) should be obvious):

	 .NCw/ For any individual term ‘a’ and any pair of predicates ‘F ’ and ‘G’, there
is some possible background K such that .Fa 	 Ga/ confirms .8x/.Fx � Gx/,
given K.

	 .NC’/ Relative to our actual background corpusK’, for any individual term ‘a’
and any pair of predicates ‘F ’ and ‘G’, .Fa 	 Ga/ confirms .8x/.Fx � Gx/,
givenK’.

	 .NC>/ Relative to tautological (or a priori) background corpus K>, for any in-
dividual term ‘a’ and any pair of predicates ‘F ’ and ‘G’, .Fa 	 Ga/ confirms
.8x/.Fx � Gx/, given K>.

	 .NCs/ Relative to any possible background corpus K , for any individual term
‘a’ and any pair of predicates ‘F ’ and ‘G’, .Fa 	 Ga/ confirms .8x/.Fx � Gx/,
given K.

Which rendition of (NC) is the one Hempel and Goodman had in mind? Well, .NCw/

seems too weak to be of much use. There is bound to be some corpus with respect to
which non-black non-ravens confirm ‘All non-black things are non-ravens’, but this
corpus may not be very interesting (e.g., the corpus which contains ‘.�Ba 	 �Ra/ �
.8x/.�Bx � �Rx/’!).

What about .NC’/? Well, that depends. If we happen to (actually) already know
that �Ra, then all bets are off as to whether �Ba confirms .8x/.�Bx � �Rx/,
relative to K’ (as Hempel suggests, and Maher makes precise). So, only a suitably
restricted version of .NC’/ would satisfy Hempel’s constraint. (We’ll return to this
issue, below.)

How about .NCs/? This rendition is too strong. As we’ll soon see, I.J. Good
demonstrated that .NCs/ is false in a Bayesian framework.

What about .NC>/? As Maher (1999) skillfully explains, Hempel and Goodman
(and Quine) have something much closer to .NCT/ in mind. Originally, the question
was whether learning only .�Ba 	�Ra/ and nothing else confirms that all ravens are
black. And, it seems natural to understand this in terms of confirmation relative to
“tautological (or a priori) background”. We will return to the notion of “tautological
confirmation”, and the .NC’/ vs .NC>/ controversy, below. But, first, it is useful
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to discuss I.J. Good’s knock-down counterexample to .NCs/, and his later (rather
lame) attempt to formulate a counterexample to .NC>/.

I.J. Good’s Counterexample to .NCs/

and His “Counterexample” to .NC>/

Good (1967) asks us to consider the following example (we’re paraphrasing here):

	 Our background corpus K says that exactly one of the following hypotheses is
true: .H/ there are 100 black ravens, no non-black ravens, and 1 million other
birds, or else .�H/ there are 1,000 black ravens, 1 white raven, and 1 million
other birds. And K also states that an object a is selected at random from all the
birds. Given this backgroundK , we have:

PŒRa 	 Baj.8x/.Rx � Bx/ 	K� D 100

1000100

< PŒRa 	 Baj�.8x/.Rx � Bx/ 	K� D 1000

1001000

Hence, Good has described a background corpus K relative to which .Ra 	 Ba/
disconfirms .8x/.Rx � Bx/. This is sufficient to show that .NCs/ is false.

Hempel (1967) responded to Good by claiming that .NCs/ is not what he had
in mind, since it smuggles too much “unkosher” (a posteriori) empirical knowledge
into K . Hempel’s challenge to Good was (again, charitably) to find a counterexam-
ple to .NC>/. Good (1968) responded to Hempel’s challenge with the following
much less conclusive (rather lame, we think) “counterexample” to .NC>/ (our
brackets):

: : : imagine an infinitely intelligent newborn baby having built-in neural circuits enabling
him to deal with formal logic, English syntax, and subjective probability. He might now
argue, after defining a [raven] in detail, that it is initially extremely unlikely that there are
any [ravens], and therefore that it is extremely likely that all [ravens] are black. : : : On the
other hand, if there are [ravens], then there is a reasonable chance that they are a variety of
colours. Therefore, if I were to discover that even a black [raven] exists I would consider
Œ.8x/.Rx 
 Bx/� to be less probable than it was initially.

Needless to say, this “counterexample” to .NC>/ is far from conclusive! To us it
seems completely unconvincing (see Maher (1999) for a trenchant analysis of this
example). The problem here is that in order to give a rigorous and compelling coun-
terexample to .NC>/, one needs a theory of “tautological confirmation” – i.e. of
“confirmation relative to tautological background”. Good doesn’t have such a the-
ory (nor do most contemporary probabilists), which explains the lack of rigor and
persuasiveness of “Good’s Baby”. However, Patrick Maher does have such an ac-
count; and he has applied it in his recent, neo-Carnapian, Bayesian analysis of the
paradox of the ravens.
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Maher’s Neo-Carnapian Analysis of the Ravens Paradox

Carnap (1950, 1952, 1971, 1980) proposed various theories of “tautological
confirmation” in terms of “logical probability”. Recently Patrick Maher (1999,
2004) has brought a Carnapian approach to bear on the ravens paradox, with some
very enlightening results. For our purposes it is useful to emphasize two conse-
quences of Maher’s neo-Carnapian, Bayesian analysis of the paradox. First, Maher
shows that .PC�/ is false on a neo-Carnapian theory of (Bayesian) confirmation.
That is, if we take a suitable class of Carnapian probability functions Pc.	j	/ – e.g.,
either those of Maher (1999) or Maher (2004) – as our “probabilities relative to
tautological background”, then we get the following result (see Maher 1999)

	 Pc Œ.8x/.Rx � Bx/j�Ba 	 �Ra� D Pc Œ.8x/.Rx � Bx/j�Ra�

Intuitively, this says that observing the color of (known) non-ravens tells us nothing
about the color of ravens, relative to tautological background corpus. This is a the-
oretical vindication of Hempel’s intuitive claim that .PC�/ is false – a vindication
that is at best difficult to make out in Hempel’s deductive theory of confirmation.
But, all is not beer and skittles for Hempel.

More recently, Maher (2004) has convincingly argued (contrary to what he had
previously argued in his (1999)) that, within a proper neo-Carnapian Bayesian
framework, Hempel’s .NC>/ is false, and so is its Quinean “restriction” .QNC>/.
That is, Maher (2004) has shown that (from a Bayesian point of view) pace Hempel,
Goodman, and Quine, even relative to tautological background, positive instances
do not necessarily confirm universal generalizations – not even for generalizations
that involve only natural kinds! The details of Maher’s counterexample to .QNC>/
(hence, to .NC>/ as well) would take us too far afield. But, we mention it here
because it shows that probabilistic approaches to confirmation are much richer and
more powerful than traditional, deductive approaches. And, we think, Maher’s work
finally answers Hempel’s challenge to Good – a challenge that went unanswered for
nearly 40 years.

Moreover, Maher’s results also suggest that Quine’s analysis in “Natural Kinds”
was off the mark. Contrary to what Quine suggests, the problem with (NC) is not
merely that it needs to be restricted in scope to certain kinds of properties. The
problems with (NC) run much deeper than that. Even the most promising Hempelian
precisification of (NC) is false, and a restriction to “natural kinds” does not help
(since Maher-style, neo-Carnapian counterexamples can be generated that employ
only to “natural kinds” in Quine’s sense).8

While Maher’s neo-Carnapian analysis is very illuminating, it is by no means in
the mainstream of contemporary Bayesian thought. Most contemporary Bayesians
reject Carnapian logical probabilities and the Carnapian assumption that there is any
such thing as “degree of confirmation relative to tautological background.” Since
contemporary Bayesians have largely rejected this project, they take a rather differ-
ent tack to handle the ravens paradox.
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The Canonical Contemporary Bayesian Approaches
to the Paradox

Perhaps somewhat surprisingly, almost all contemporary Bayesians implicitly
assume that the paradoxical conclusion is true. And, they aim only to “soften the
impact” of (PC) by trying to establish certain comparative and/or quantitative con-
firmational claims. Specifically, Bayesians typically aim to show (at least) that the
observation of a black raven, .Ba 	Ra/, confirms “all ravens are black” more strongly
than the observation of a non-black non-raven, .�Ba 	 �Ra/, relative to our actual
background corpus K’ (which is assumed to contain no “unkosher” information
about instance a). Specifically, most contemporary Bayesians aim to show (at least)
that relative to some measure c of how strongly evidence supports a hypothesis, the
following COMParative claim holds:9

.COMPc/ cŒ.8x/.Rx � Bx/; .Ra 	 Ba/jK’� > cŒ.8x/.Rx � Bx/; .�Ba 	 �Ra/jK’�:

Here c.H;EjK/ is some Bayesian measure of the degree to which E confirms
H , relative to background corpus K . The typical Bayesian strategy is to isolate
constraints onK’ that are as minimal as possible (hopefully, even ones that Hempel
would see as kosher), but that guarantee that .COMPc/ obtains.

As it stands, .COMPc/ is somewhat unclear. There are many Bayesian relevance
measures c that have been proposed and defended in the contemporary literature on
Bayesian confirmation. The four most popular of these measures are the following
(see Fitelson 1999, 2001 for historical surveys).10

	 The Difference: dŒH;EjK� D PŒH jE 	K�� PŒH jK�
	 The Log-Ratio: rŒH;EjK� D log.PŒH jE 	K�=PŒH jK�/
	 The Log-Likelihood-Ratio: lŒH;EjK� D log.PŒEjH 	K�=PŒEj�H 	K�/
	 The Normalized Difference: sŒH;EjK� D PŒH jE 	K�� PŒH j�E 	K�
Measures d, r, and l all satisfy the following desideratum, for allH;E1; E2, andK:

.�/ if PŒH jE1 	K� > PŒH jE2 	K�; then cŒH;E1jK� > cŒH;E2jK�:

But, interestingly, measure s does not satisfy .�/. So, putting s aside, if one uses
either d, r, or l to measure confirmation, then one can establish the desired compar-
ative claim simply by demonstrating that:

.COMPP/ PŒ.8x/.Rx � Bx/jRa 	 Ba 	K’� > PŒ.8x/.Rx � Bx/j�Ba 	 �Ra 	K’�

(If one uses s, then one has a bit more work to do to establish the desired comparative
conclusion, because .COMPP/ does not entail .COMPs/.)11

Some Bayesians go farther than this by trying to establish not only the
comparative claim (COMPc), but also the quantitative claim that the observation of



256 B. Fitelson and J. Hawthorne

a non-black non-raven confirms “All ravens are black” to a very minute degree. That
is, in addition to the comparative claim, some Bayesians also go for the following
QUANTative claim:

.QUANTc/ cŒ.8x/.Rx � Bx/; .�Ba 	 �Ra/jK’� > 0; but very nearly 0:

Let’s begin by discussing the canonical contemporary Bayesian comparative
analysis of the paradox. In essence, almost all such accounts trade on the fol-
lowing three assumptions about K’ (where we may suppose that the object a is
sampled at random from the universe):12

(1) PŒ�BajK’� > PŒRajK’�.
(2) PŒRaj.8x/.Rx � Bx/ 	K’� D PŒRajK’�.
(3) PŒ�Baj.8x/.Rx � Bx/ 	K’� D PŒ�BajK’�.

Basically, assumption (1) relies on our knowledge that (according to K’) there are
more non-black objects in the universe than there are ravens. This seems like a very
plausible distributional constraint on K’, since – as far as we actually know – it is
true. Assumptions (2) and (3) are more controversial. We will say more about them
shortly. First, we note an important and pretty well-known theorem.

Theorem (1)–(3) entails .COMPP/. Therefore, since d, r, and l each satisfy .�/, it
follows that (1)–(3) entails .COMPd /; .COMPr/, and .COMPl/.

In fact, (1)–(3) entails much more than .COMPP/, as the following theorem
illustrates:

Theorem (1)–(3) also entail the following:

(4) PŒ.8x/.Rx � Bx/j�Ba 	 �Ra 	K’� > PŒ.8x/.Rx � Bx/jK’�.
(5) sŒ.8x/.Rx � Bx/; .Ra 	 Ba/jK’� > sŒ.8x/.Rx � Bx/; .�Ba 	 �Ra/jK’�.

In other words, (4) tells us that assumptions (1)–(3) entail that the observation of
a non-black non-raven positively confirms that all ravens are black – i.e., that the
paradoxical conclusion (PC) is true. And, (5) tells us that even according to measure
s (a measure that violates .�/) the observation of a black raven confirms that all
ravens are black more strongly than the observation of a non-black non-raven.

The fact that (1)–(3) entail (4) and (5) indicates that the canonical Bayesian
assumptions go far beyond the minimal comparative claim most Bayesians were
looking for. Why, for instance, should a Bayesian be committed to the qualitative
paradoxical conclusion (PC)? After all, as Patrick Maher and I.J. Good have made
so clear, probabilists don’t have to be committed to qualitative claims like (NC)
and (PC). It would be nice (and perhaps more informative about the workings of
Bayesian confirmation) if there were assumptions weaker than (1)–(3) that sufficed
to establish (just) the comparative claim .COMPP/, while implying no commitment
to specific qualitative claims like (PC). Happily, there are such weaker conditions.
But, before we turn to them, we first need to briefly discuss the quantitative Bayesian
approaches as well.
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Various Bayesians go farther than .COMPc/ in their analysis of the ravens
paradox. They seek to identify stronger constraints, stronger background knowledge
K’, that entails both .COMPc/ and .QUANTc/. The most common strategy along
these lines is simply to strengthen assumption (1), as follows:

.10/ PŒ�BajK’� � PŒRajK’� – e.g., because there are far fewer ravens than non-
black things in the universe.

Peter Vranas (2004) provides a very detailed discussion of quantitative Bayesian
approaches to the ravens paradox along these lines. We won’t dwell too much on
the details of these approaches here. Vranas has already done an excellent job of
analyzing them. However, some brief remarks on a result Vranas proves (and uses
in his analysis) are worth considering.

Vranas shows that assumptions .10/ and (3) (without (2)) are sufficient for
.QUANTc/ to hold – i.e. for .8x/.Rx � Bx/ to be positively confirmed by
.�Ba 	 �Ra/ given K’, but only by a very small amount. He shows this for all
four measures of confirmation d, r, l, and s. Moreover, he argues that in the presence
of .10/, (3) is “approximately necessary” for .QUANTc/. That is, he proves that
given .10/, and supposing that PŒH jK’� is not too small, the following approximate
claim is necessary for .QUANTc/:

.30/ PŒ�Baj.8x/.Rx � Bx/ 	K’� � PŒ�BajK’�.

Vranas then argues that Bayesians have given no good reason for assuming this
(necessary and sufficient) condition. Thus, he concludes, Bayesian resolutions of the
paradox that claim non-black non-ravens confirm by a tiny bit, due to assumption
.10/, have failed to establish a condition they must employ to establish this claim –
they have failed to establish .30/.13

Vranas’ claim that (3) is “approximately necessary” for .QUANTc/ may be
somewhat misleading. It makes it sound as if (3) has a certain property. But, in fact,
nothing about (3) itself follows from Vranas’ results. It is more accurate to say (as
Bob Dylan might) that “approximately (3)” (i.e., .30/) is necessary for .QUANTc/.
To see the point, note that (3) is a rather strong independence assumption, which
entails many other identities, including:

(3.1) PŒ.8x/.Rx � Bx/jBa 	K’� D PŒ.8x/.Rx � Bx/jK’�, and
(3.2) PŒ.8x/.Rx � Bx/jBa 	K’� D PŒ.8x/.Rx � Bx/j�Ba 	K’�.

But, .30/ is not an independence assumption. Indeed, .30/ is far weaker than an
independence assumption, and it does not entail the parallel approximates:

.30:1/ PŒ.8x/.Rx � Bx/jBa 	K’� � PŒ.8x/.Rx � Bx/jK’�, and

.30:2/ PŒ.8x/.Rx � Bx/jBa 	K’� � PŒ.8x/.Rx � Bx/j�Ba 	K’�.

Vranas argues convincingly that strong independence assumptions like (3) (and (2))
have not been well motivated by Bayesians who endorse the quantitative approach
to the ravens paradox. He rightly claims that this is a lacuna in the canonical quanti-
tative Bayesian analyses of the paradox. But, what he ultimately shows is somewhat
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weaker than appearances might suggest. In the next two sections we will describe
(pace Vranas and most other commentators) considerably weaker sets of assump-
tions for the comparative and the quantitative Bayesian approaches.

A New Bayesian Approach to the Paradox

As we have seen, Bayesians typically make two quite strong independence
assumptions in order to establish the comparative claim that a black raven con-
firms more than does a non-black non-raven. In addition they usually suppose
that given only actual background knowledge K˛, a non-black instance is more
probable than a raven instance. Happily, there is a quite satisfactory analysis of the
ravens that employs none of these assumptions up front. This solution to the ravens
paradox is more general than any other solution we know of, and it draws on much
weaker assumptions. It solves the paradox in that it supplies plausible necessary
and sufficient conditions for an instance of a black raven to be more favorable to
‘All ravens are black’ than an instance of a non-black non-raven. Our most general
result doesn’t depend on whether the Nicod Condition (NC) is satisfied, and does
not draw on probabilistic independence. Nor does it assume that more plausible
claim that (given background knowledge) a non-black instance is more probable
than a raven instance (i.e. assumption (1) in the previous section). Indeed, the con-
ditions for this result may be satisfied even if an instance of a black raven lowers
the degree of confirmation for ‘All ravens are black’. In that case it just shows that
non-black non-ravens lower the degree of confirmation even more. Thus, this result
strips the Bayesian solution to bare bones, decoupling it from any of the usual
assumptions, and then permits the introduction of whatever additional suppositions
may seem plausible and fitting (e.g. those leading to positive confirmation) to be
added separately.

For the sake of notational simplicity, let ‘H ’ abbreviate ‘All ravens are black’ –
i.e., ‘.8x/.Rx � Bx/’. Let ‘K’ be a statement of whatever background knowl-
edge you may think relevant – e.g. K might imply, among other things, that ravens
exist and that non-black things exist, ..9x/Rx 	 .9x/�Bx/. One object, call it ‘a’
will be observed for color and to see whether it is a raven. The idea is to as-
sess, in advance of observing it, whether a’s turning out to be a black raven,
.Ra 	 Ba/, would make H more strongly supported than would a’s turning out
to be a non-black non-raven, .�Ra 	 �Ba/. We want to find plausible conditions
for PŒH jBa 	 Ra 	 K� > PŒH j�Ba 	 �Ra 	 K� to hold. Equivalently, we want
to find plausible conditions for the ratio PŒBa 	 RajH 	 K�=PŒBa 	 Raj�H 	 K�
to exceed the ratio PŒ�Ba 	 �RajH 	 K�=PŒ�Ba 	 �Raj�H 	 K�.14 We will at-
tack the paradox by finding plausible sufficient and necessary conditions for this
relationship between likelihood-ratios.15 Notice that in general this relationship,
PŒBa 	 RajH 	K�=PŒBa 	 Raj�H 	K� > PŒ�Ba 	 �RajH 	 K�=PŒ�Ba 	 �Raj�H 	K�,
may hold regardless of whether the instance .Ba 	 Ra/ raises the confirmation of the
hypothesis – i.e., regardless of whether PŒH jBa 	 Ra 	 K� is greater than, or less
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than, PŒH jK�.16 Thus, no condition that implies black ravens raise the degree of
confirmation can be a necessary condition for black ravens to yield greater support
than non-black non-ravens. Any such positive confirmation implying condition goes
beyond what is strictly needed here.

We assume throughout the remainder of the paper the following very weak and
highly plausible non-triviality conditions:

Non-triviality Assumptions: PŒBa 	 RajK� > 0; PŒ�Ba 	 �RajK� > 0; PŒ�Ba 	
RajK� > 0; 0 < PŒH jBa 	 Ra 	K� < 1; 0 < PŒH j�Ba 	 �Ra 	K� < 1.17

That is, we assume that it is at least epistemically (confirmationally) possible,
given only backgroundK , that observed object a will turn out to be a black raven;
and possible that a will turn out to be a non-black non-raven; and even possible that
a will turn out to be a non-black raven – a falsifying instance ofH . Furthermore, we
assume that finding a to be a black raven neither absolutely proves nor absolutely
falsifies ‘All ravens are black’, nor does finding a to be a non-black non-raven do so.

Our analysis of the ravens will draw on three factors, which we label ‘p’, ‘q’,
and ‘r’.

Definition: Define q D PŒ�Baj�H 	 K�=PŒRaj�H 	 K�, define r D PŒ�BajH 	
K�=PŒRajH 	K�, and define p D PŒBajRa 	 �H 	K�.

Given Non-triviality, p, q, and r are well-defined (q and r have non-zero denom-
inators); q and r are greater than 0; and p is greater than 0 and less than 1. (See
Lemma 1 in the Appendix.)

The factor r represents how much more likely it is that a will be a non-black
thing than be a raven if the world in fact contains only black ravens (i.e. if H is
true). Given the kind of world we think we live in, r should be quite large, since
even if all of the ravens are black, the non-black things far outnumber the ravens.
Similarly, the factor q represents how much more likely it is that a will be a non-
black thing than be a raven if the world in fact contains non-black ravens (i.e. if H
is false). Given the kind of world we think we live in, q should also be quite large,
since the non-black things far outnumber the ravens even if some of the non-black
things happen to be ravens. However, though plausibly r and q are very large, for
now we will assume neither this nor anything else about their values except what is
implied by the Non-triviality Assumptions – i.e. that r and q are well-defined and
greater than 0.

Suppose that H is in fact false – i.e. non-black ravens exist – and suppose that a
is a raven. How likely is it that a will turn out to be black? The factor p represents
this likelihood. This factor may be thought of as effectively representing a “mixture”
of the likelihoods due to the various possible alternative hypotheses about the fre-
quency of black birds among the ravens. It would be reasonable to suppose that the
value of p is pretty close to 1 – if there are non-black ravens, their proportion among
all ravens is most plausibly some small percentage; so the proportion of black birds
among ravens should be a fairly small increment below 1. However, for now we
will not assume this, or anything else about the value of p, except what is implied
by the Non-triviality Assumptions – i.e. that 0 < p < 1 (shown in Lemma 1 of the
Appendix).
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It turns out that the relative confirmational support for H from to a black raven
instance as compared to that from a non-black non-raven instance is merely a func-
tion of p, q, and r.

Theorem 1. Given Non-triviality, it follows that q > .1 � p/ > 0 and

P ŒBa 	RajH 	K� =P ŒBa 	Raj�H 	K�
P Œ�Ba 	 �RajH 	K� =P Œ�Ba 	 �Raj�H 	K� D Œq � .1 � p/� = .p 	 r/ > 0:

(This and the other theorems are proved in the Appendix.)
This theorem does not itself express the necessary and sufficient conditions for

black ravens to favor ‘All ravens are black’ more strongly than do non-black non-
ravens. But an obvious Corollary does so.

Corollary 1. Given Non-triviality,

P ŒBa � RajH �K� =P ŒBa �Raj�H �K�
P Œ�Ba � �RajH �K� =P Œ�Ba � �Raj�H �K� > 1 if and only if q � .1 � p/ > p � r:

And, more generally, for any real number s,

P ŒBa � RajH �K�=P ŒBa � Raj�H �K�
P Œ�Ba � �RajH �K�=P Œ�Ba � �Raj�H �K�DsD Œq � .1 � p/� = .p � r/ > 1 if and only if

Œq � .1� p/� D s � p � r > p � r:

This gives us a fairly useful handle on what it takes for a black raven to support
H more than a non-black non-raven. For instance, suppose that q D r. Then the
corollary implies that the value of the ratio of likelihood-ratios is greater than 1 just
in case q D r > 1.18 Thus, if the likelihood that an object is non-black is greater
than the likelihood that it’s a raven, and is greater by the same amount regardless
of whether or not every raven is black, then a black raven supports ‘All ravens are
black’ more strongly than does a non-black non-raven.

Notice that none of this depends on either Ba or Ra being probabilistically in-
dependent of H . Such independence, if it held, would make PŒ�Baj�H 	 K� D
PŒ�BajH 	K� D PŒ�BajK� and make PŒRaj�H 	K� D PŒRajH 	K� D PŒRajK�.
In that case we would indeed have q D r, and so the result discussed in the previous
paragraph would apply. However, that result applies even in cases where probabilis-
tic independence fails miserably – even when PŒ�Baj�H 	K�=PŒ�BajH 	K� is very
far from 1, provided only that PŒRaj�H 	K�=PŒRajH 	K� is equally far from 1.

What if q ¤ r? Theorem 1 tell us that q > .1� p/ > 0, so q � .1� p/ is positive
and a little smaller than q itself. As long as this q � .1� p/ remains larger than r, the
corollary tells us that the likelihood-ratio due to a black raven favors H more than
does the likelihood-ratio due to a non-black non-raven. Indeed q � .1�p/ need only
remain larger than a fraction p of r in order to yield the desired result.
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It turns out that 1/p is a convenient benchmark for comparing the size of the
black-raven likelihood-ratio to the size non-black-non-raven likelihood-ratio.

Corollary 2. Given Non-triviality, for real number s such that

P ŒBa 	RajH 	K� =P ŒBa 	Raj�H 	K�
P Œ�Ba 	 �RajH 	K� =P Œ�Ba 	 �Raj�H 	K� D s D Œq � .1 � p/�=.p 	 r/;

we have the following:

(1) s > .1=p/ > 1 iff q � .1 � p/ > r.
(2) s D .1=p/ > 1 iff q � .1 � p/ D r.
(3) .1=p/ > s > 1 iff r > q � .1 � p/ > p 	 r.

Notice that when q D r, Clause 3 applies (because then r > q � .1 � p/); so the
value of the ratio of the likelihood-ratios, s, must be strictly between 1/p and 1.
Alternatively, when q diminished by .1 � p/ is greater than r, Clause 1 applies; so
the ratio of likelihood-ratios s must be greater than (1/p), possibly much greater.
Indeed, looking back at Corollary 1, we see that the value of the ratio of likelihood
ratios s can be enormous, provided only that Œq � .1 � p/� o .p 	 r/.

The emergence of 1/p as a particularly useful benchmark is no accident. For, p is
just PŒBajRa	�H 	K�, so 1=p D PŒBajRa	H 	K�=PŒBajRa	�H 	K�. Furthermore, if
the usual independence assumption (2) were to hold (i.e. if PŒRajH 	K� D PŒRajK�),
it would follow that PŒRajH 	 K� D PŒRaj�H 	 K�; and then we’d have 1=p D
PŒBa	RajH 	K�=PŒBa	Raj�H 	K�. Following this thought further, the usual Bayesian
analysis adds independence assumption (3) (i.e. PŒ�BajH 	 K� D PŒ�BajK�) to
get PŒ�BajH 	 K� D PŒ�Baj�H 	 K�; from which we’d have PŒ�Ba 	 �RajH 	
K�=PŒ�Ba 	 �Raj�H 	K� D PŒ�BajH 	K�=.PŒ�Raj�Ba 	 �H 	K� 	 PŒ�Baj�H 	
K�/ D 1=PŒ�Raj�Ba 	 �H 	 K�, where PŒRaj�Ba 	 �H 	 K� should be just a
smidgen, ©, above 0 – because, very probably, only a really minuscule proportion
of the non-black things are ravens, regardless of whether H is true or false. Thus,
the usual analysis would peg the ratio of likelihood-ratios at a value s D .1 � ©/=p
(for © almost 0), which is just a tiny bit below 1/p – which is only within the range
of possible values for s encompassed by Clause 3 of Corollary 2, and merely within
the uppermost end of that range. In light of this, the benchmark 1/p in Corollary 2
provides a telling indicator of the extent to which our treatment supersedes the usual
approach.

Theorem 1 and its Corollaries show that for a very wide range of probabilistic
confirmation functions P, a black raven is more confirming of ‘All ravens are black’
than is a non-black non-raven. These functions are so diverse that some of them even
permit a black raven to provide evidence against ‘All ravens are black’ (i.e. make
PŒBa 	 RajH 	 K�=PŒBa 	 Raj�H 	 K� < 1). Only a small range of these functions
abide by the usual independence claims. For black ravens to be more confirming, all
that matters are the relative sizes of q and r, as mediated by the factor p.
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Let’s now look at one more theorem that solves the paradox by drawing on addi-
tional conditions that restrict the values of q and r in a plausible way. This result is
less general than Theorem 1 and its corollaries, but closely related to them.19

Theorem 2. Given Non-triviality, both of the following clauses hold:

(2.1) If PŒ�BajH 	K� > PŒRajH 	K� (i.e. if r > 1) and
OŒH jRa 	K�=OŒH j�Ba 	K� > p C .1 � p/=r (where, ‘O’ is the odds), then

P ŒBa 	RajH 	K� =P ŒBa 	Raj�H 	K�
P Œ�Ba 	 �RajH 	K� =P Œ�Ba 	 �Raj�H 	K� > 1:

(2.2) If PŒ�BajH 	K� 6 PŒRajH 	K� (i.e. r 6 1), but either PŒ�BajK� > PŒRajK�
or (at least) PŒ�Baj�H 	K� > PŒRaj�H 	K� (i.e. q > 1), then

P ŒBa 	RajH 	K� =P ŒBa 	Raj�H 	K�
P Œ�Ba 	 �RajH 	K� =P Œ�Ba 	 �Raj�H 	K� > 1:

Clause (2.1) is the more interesting case, since its antecedent conditions are a better
fit to the way we typically judge our world to be. The first antecedent of (2.1) draws
on the idea that, provided all of the ravens are black, a randomly selected object
a is more likely (in our world) to be a non-black thing than a raven. This seems
really quite plausible. Indeed, not only does it seem that PŒ�BajH 	 K� is merely
greater than PŒRajH 	 K�, quite plausibly PŒRajH 	 K� is close enough to 0 that
PŒ�BajH 	 K� is billions of times greater than PŒRajH 	 K� (though the theorem
itself doesn’t suppose that).

Now consider the second antecedent to (2.1). One wouldn’t normally think that
the mere fact that an object is black (without also taking account of whether it’s a
raven) should provide more evidence for ‘All ravens are black’ than would the mere
fact that an object is a raven (without taking account of its color). Indeed, generally
speaking, one would expect OŒH jRa 	K� to be very nearly equal to OŒH j�Ba 	K�.
However, the second condition for Clause (2.1) is even weaker than this. Notice that
for r > 1 the term p C .1 � p/=r is less than p C .1 � p/ D 1; and the larger r
happens to be (i.e. the greater the ratio r D PŒ�BajH 	 K�=PŒRajH 	 K� is), the
smaller p C .1� p/=r will be, approaching the lower bound p D PŒBajRa 	 �H 	K�
for very large r. Thus, the second condition for (2.1) will be satisfied provided that
either OŒH jRa 	K� is bigger than or equal to OŒH j�Ba 	K� (perhaps much bigger)
or OŒH jRa 	K� is a bit smaller than OŒH j�Ba 	K�. Thus, this second condition can
fail to hold only if (without taking account of whether it’s a raven) a black object
provides more than a bit more evidence for ‘All ravens are black’ than would a raven
(without taking account of its color).20

Although the antecedent conditions for Clause (2.2) seem a less plausible fit to
our world, it fills out Theorem 2 in an interesting way. Think of it like this. It is
reasonable to suppose, given plausible background knowledge, that the non-black
things will be much more numerous than ravens, regardless of whether all the ravens
are black. But perhaps this intuition is confused. It is clearly guided by the fact
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that we inhabit a world in which there are far more non-black things than ravens.
Problem is, if our world is one in which there are non-black ravens, we may only
be warranted in taking the non-black things to outnumber the ravens in worlds like
our – i.e. worlds whereH is false. If, on the other hand, ours happens to be a world
in which all of the ravens are black, then we may only be warranted in taking the
non-black things to outnumber the ravens in worlds like ours – i.e. worlds whereH
is true. But we don’t know which of these two kinds of worlds ours happens to be.
That is precisely what is at issue – precisely what the evidence is supposed to tell
us. Nevertheless, we can easily fineness this apparent difficulty. For, the apparent
dilemma takes it as granted that either non-black things are much more numerous
than ravens if H holds, or non-black things are much more numerous than ravens
if �H holds. Thus, given reasonable background knowledge, for an object a about
which nothing else is known, either PŒ�BajH 	 K� > PŒRajH 	 K� (i.e. r > 1) or
PŒ�Baj�H 	K� > PŒRaj�H 	K� (i.e. q > 1) (or perhaps PŒ�BajK� > PŒRajK�).
But Clause (2.1) of the theorem already takes account of the case where PŒ�BajH 	
K� > PŒRajH 	 K�. So Clause (2.2) deals with the remaining case: that in case
PŒ�BajH 	K� 6 PŒRajH 	K� (i.e. r 6 1) holds, at least PŒ�Baj�H 	K� > PŒRaj�H 	
K�, or maybe PŒ�BajK� > PŒRajK� holds. This is the only condition required for
(2.2), and it’s a very weak condition indeed.

Consider the disjunction of the antecedent conditions for Clause (2.1) with the
antecedent conditions for Clause (2.2). This disjunction is a highly plausible claim –
even more plausible than each antecedent taken alone. Given realistic background
knowledge K, any reasonable probabilistic confirmation function P should surely
satisfy the full antecedent of at least one of these two clauses. Thus, a black raven
should favor ‘All ravens are black’ more than a non-black non-raven over a very
wide range of circumstances. Furthermore, neither of the usual approximate inde-
pendence conditions is required for this result. Thus, Theorem 1 and its corollaries
together with Theorem 2 dissolve any air of a qualitative paradox in the case of the
ravens.

Quantitative Results

Traditional quantitative Bayesian approaches also make rather strong independence-
like assumptions. For example, in order to establish that a non-black non-raven
positively confirms ‘All ravens are black’ by (only) a very small amount – the
thesis we’ve labeled .QUANTc/; cŒH;�Ba 	 �RajK� > 0 but very near 0 –
the usual approach employs an (at least approximate) independence assumption
like (3) or .30/; PŒ�BajH 	 K� � PŒ�BajK�, together with an assumption like
.10/; PŒ�BajK’� � PŒRajK�.21

Quantitative claims like .QUANTc/ are most informative when cashed out in
terms of a specific measure of confirmation c. That is, although several of the well-
studied measures of incremental confirmation (d, r, and l) agree with regard to
qualitative confirmational relationships, their quantitative scales differ in ways that
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that make quantitative results difficult to compare meaningfully across measures.
So in this section we’ll restrict our discussion to a single measure of incremental
confirmation. In our judgment the most suitable Bayesian measure of incremen-
tal confirmation is the (log) likelihood-ratio measure.22 We have detailed reasons
for this assessment (see Fitelson 2001, 2004), but we’ll not pause to discuss them
here. Let’s see what the likelihood-ratio measure can tell us quantitatively about the
ravens.

In terms of the likelihood-ratio measure, and drawing on our factors p, q, and r,
a reworking of Vranas’s (2004) result leads to the following:

Theorem 3. If the degree to which a non-black non-raven incrementally confirms
‘All ravens are black’, as measured by the likelihood-ratio, is in the interval
1 < PŒ�Ba 	 �RajH 	K�=PŒ�Ba 	 �Raj�H 	K� 6 1C ©, for very small © > 0, then
.Œq � .1 � p/�=q/ < PŒ�BajH 	K�=PŒ�Baj�H 	K� 6 .Œq � .1 � p/�=q/ 	 .1C ©/.

If instead .1 � ©/ < PŒ�Ba 	 �RajH 	 K�=PŒ�Ba 	 �Raj�H 	 K� 6 1, then
.Œq�.1�p/�=q/	.1�©/ < .PŒ�BajH 	K�=PŒ�Baj�H 	K�/ 6 .Œq�.1�p/�=q/: In both
cases, for large q, .Œq � .1� p/�=q/ � 1, so PŒ�BajH 	K�=PŒ�Baj�H 	K� � 1.23

(Recall that q D PŒ�Baj�H 	K�=PŒRaj�H 	K�, which is plausibly quite large.)
So, the approximate independence of Ba from the truth or falsehood of H ,

given K , is a necessary condition for a non-black non-raven to provide only a very
small amount of positive (or negative) support for ‘All ravens are black’. Vranas’s
point is that traditional Bayesian treatments of the ravens paradox almost always
employ the “small positive confirmation from non-black non-ravens” idea, and they
inevitably draw directly on some such independence assumption to achieve it. But,
Vranas argues, no plausible justification for assuming this (near) independence has
yet been given by those who employ it.

Our approach sidesteps this issue completely. None of our results have relied
on assuming approximate independence; indeed, our results haven’t even supposed
that non-black non-ravens should yield positive confirmation for H , either small or
large. We’ve only given sufficient (and necessary) conditions for a black raven to
confirm H more than would a non-black non-raven.

In order to address the ravens in quantitative terms, let’s consider the sizes of
r D PŒ�BajH 	K�=PŒRajH 	K� and of q D PŒ�Baj�H 	K�=PŒRaj�H 	K�. Given
background K that reflects how all of us generally believe our world to be, both r
and q should presumably be quite large, and should be very nearly the same size.
However, notice that such suppositions about r and q, even if we take q to precisely
equal r, don’t imply the approximately independence of either Ra or of Ba from H

or from �H (givenK).24

Under such circumstances, let’s consider how much more a black raven confirms
‘All ravens are black’ than does a non-black non-raven.

Theorem 4. Given Non-triviality, suppose PŒ�BajH 	 K�=PŒRajH 	 K� � L > 1

(i.e. r � L > 1); and suppose PŒ�Baj�H 	K�=PŒRaj�H 	K� is very nearly the same
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size as r – i.e., for some • > 0 but near 0, 0 < 1� • 6 .PŒ�Baj�H 	K�=PŒRaj�H 	
K�/=.PŒ�BajH 	K�=PŒRajH 	K�/ 6 1C • (that is, 1� • 6 q=r 6 1C •). Then the
“ratio of likelihood ratios” is bounded as follows:

(4.1) Œ.1�•/�.1�p/=L�	.1=p/<
P ŒBa 	RajH 	K�=P ŒBa 	Raj�H 	K�

P Œ�Ba 	 �RajH 	K�=P Œ�Ba 	 �Raj�H 	K�<
.1 C •/ 	 .1=p/
If in addition PŒBajRa 	�H 	K� > 1=2, then we get an improved lower bound:
PŒBa 	 RajH 	K�=PŒBa 	 Raj�H 	K�

(4.2) .1 � •/ .1=p/ � 1=L <
P ŒBa 	RajH 	K� =P ŒBa 	Raj�H 	K�

P Œ�Ba 	 �RajH 	K� =P Œ�Ba 	 �Raj�H 	K� <
.1 C •/ 	 .1=p/

In either case, for large very L > 1 and positive • near 0 the “ratio of likelihood
ratios” is almost exactly equal to (1/p).25

The larger r is, and the closer the size of q is to the size of r (i.e. the smaller • is),
the closer will be the “ratio of likelihood ratios” to 1/p. And, if instead of being
nearly the same size as r, q is significantly larger than r, then q/r is significantly larger
than 1 and (according to Theorem 1) the “ratio of likelihood ratios” must nearly be
.q=r/ 	 .1=p/ (precisely .Œq � .1� p/�=r/ 	 .1=p/), which must be significantly larger
than 1/p.

Let’s illustrate this theorem by plug in some fairly realistic numbers. Suppose,
as seems plausible, that r is at least as large as L D 109. (L should really be
much larger than this since, given H 	 K , it seems highly probable that there will
be trillions of times more non-black things than ravens, not just billions of times
more). And suppose that q is very nearly the same size as r – say, within a mil-
lion of r, q D r ˙ 106, so that q=r D 1 ˙ 10�3. Then Theorem 4 tells us that
for PŒBajRa 	 �H 	 K� D p > 1=2, the “ratio of likelihood-ratios” is bounded be-
low by .1 � 10�3/.1=p/ � 1=109 D .:999/.1=p/ � 10�9; and the upper bound is
.1 C 10�3/ 	 .1=p/ D .1:001/.1=p/. Thus, to three significant figures the “ratio of
likelihood ratios is .1=p/˙ .:001/=p.

Suppose PŒBajRa 	 �H 	K� D p is somewhere around.9 or.95; so (1/p) is some-
where around 1=:9 � 1:11 or 1=:95 � 1:05. Then a single instance of a black raven
may not seem to yield a whole lot more support for H than a single instance of a
non-black non-raven. However, under plausible conditions a sequence of n instances
(i.e. of n black ravens, as compared to n non-black non-ravens) will yield a “ratio of
likelihood-ratios” on the order of .1=p/n, which blows up significantly for large n.
For example, for n D 100 instances, .1=:95/100 � 169, and .1=:9/100 � 37; 649 –
that is, for p D :95, 100 black raven instances would yield a likelihood-ratio 169
times higher than would 100 instances of non-black non-ravens.

Nothing in the previous paragraphs draws on the assumption that a non-black
non-raven yields (at most) a tiny amount of support forH – i.e. that PŒ�Ba	�RajH 	
K�=PŒ�Ba 	�Raj�H 	K� D .1˙ ©/. But this may be a plausible enough additional
supposition. When it holds we have the following result.

Theorem 5. Suppose Non-triviality, and suppose that r is large and q is very nearly
the same size as r in the sense that .1 � •/ 6 q=r 6 .1 C •/, for very small •
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(i.e., suppose the conditions for Theorem 4 hold). And suppose, in addition, that the
support forH by a non-black non-raven is very small – i.e. 1�© 6 PŒ�Ba 	�RajH 	
K�=PŒ�Ba 	 �Raj�H 	 K� 6 1 C © for very small ©. Then the support for H by a
black raven must be

PŒBa 	RajH 	K�=PŒBa	Raj�H 	K� D .1˙•/ 	.1˙©/ 	.PŒBajRa 	H 	K�=PŒBajRa	
�H 	K�/ � 1=p; where; of course; PŒBajRa	H 	K�=PŒBajRa	�H 	K� D 1=p.26

Notice that the suppositions of this theorem permit a non-black non-raven to provide
absolutely no support for H.© D 0/, or a tiny bit of positive support .© > 0/, or to
even provide a tiny bit of evidence against .© < 0/. Here, rather than assuming the
near probabilistic independence of Ra and Ba from H and �H (given K), we’ve
effectively gotten it for free (via Theorem 3), as a consequence of the more plausi-
ble direct supposition that non-black non-ravens don’t confirm much, if at all. This
shows how the effect of near independence is accommodated by our analysis, if
it happens to be implied by some additional plausible supposition – e.g. the as-
sessment that no more than a minute amount of confirmation could come from an
observation of a single non-black non-raven instance.

Thus, under quite weak, but highly plausible suppositions, a black raven favors
‘All ravens are black’ more than would a non-black non-raven by about (1/p) – i.e.,
by about the amount that a black object supports ‘All ravens are black’, given that it
is a raven, since

PŒBajRa 	H 	K�=PŒBajRa 	 �H 	K� D 1=p:27

This quantitative result, together with the qualitative results of the previous section,
shows that a careful Bayesian analysis puts the paradox of the ravens to rest.

Appendix: Proofs of Various Results

Claim 1. Given the Non-trivality Assumptions,

P ŒBa 	RajH 	K� =P ŒBa 	Raj�H 	K�
P Œ�Ba 	 �RajH 	K� =P Œ�Ba 	 �Raj�H 	K� > 1

just in case PŒH jBa 	 Ra 	K� > PŒH j�Ba 	 �Ra 	K�.
Proof. Assuming Non-triviality we have: PŒH jBa 	 Ra 	K� > PŒH j�Ba 	 �Ra 	K�
iff both

PŒH jBa 	 Ra 	K� > PŒH j�Ba 	 �Ra 	K� and PŒ�H jBa 	 Ra 	K�
< PŒ�H j�Ba 	 �Ra 	K� iff PŒH jBa 	 Ra 	K�=PŒ�H jBa 	 Ra 	K�
> PŒH j�Ba 	 �Ra 	K�=PŒ�H j�Ba 	 �Ra 	K�
iff .PŒBa 	 RajH 	K�=PŒBa 	 Raj�H 	K�/ 	 .PŒH jK�=PŒ�H jK�/
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> .PŒ�Ba 	 �RajH 	K�=PŒ�Ba 	 �Raj�H 	K�/ 	 .PŒH jK�=P Œ�H jK�/
iff .PŒBa 	 RajH 	K�=PŒBa 	 Raj�H 	K�/=
.PŒ�Ba 	 �RajH 	K�=PŒ�Ba 	 �Raj�H 	K�/ > 1:

The following lemma establishes that all of the terms used to define p, q, and r are
non-zero.

Lemma 1. Given Non-triviality, it follows that PŒRajH 	K� > 0;PŒ�BajH 	K�>0,
1 > PŒRaj�H 	K� > 0; 1 > PŒ�Baj�H 	K� > 0, and 1 > PŒBajRa 	 �H 	K� > 0.

Proof. From Non-triviality we have:

(i) 0 < PŒH jBa 	 Ra 	K� D PŒBa 	 RajH 	K� 	 PŒH jK�=PŒBa 	 RajK�, so PŒRajH 	
K� D PŒBa 	 RajH 	K� > 0;

(ii) 0 < PŒH j�Ba 	 �Ra 	K� D PŒ�Ba 	 �RajH 	K� 	 PŒH jK�=PŒ�Ba 	 �RajK�,
so PŒ�BajH 	K� D PŒ�Ba 	 �RajH 	K� > 0;

(iii) 0 < PŒ�H jBa 	 Ra 	 K� D PŒBa 	 Raj�H 	 K� 	 PŒ�H jK�=PŒBa 	 RajK�, so
PŒBaj�H 	K� � PŒBa 	 Raj�H 	K� > 0 and PŒRaj�H 	K� � PŒBa 	 Raj�H 	
K� > 0 and PŒBajRa 	 �H 	K� > 0;

(iv) 0 < PŒ�H j�Ba 	 �Ra 	 K� D PŒ�Ba 	 �Raj�H 	 K� 	 PŒ�H jK�=PŒ�Ba 	
�RajK�, so PŒ�Baj�H 	K� � PŒ�Ba 	 �Raj�H 	K� > 0 and PŒ�Raj�H 	
K� � PŒ�Ba 	 �Raj�H 	K� > 0.

(v) 0 < PŒ�Ba 	 RajK� D PŒ�Ba 	 RajH 	K� 	 PŒH jK�C PŒ�Ba 	 Raj�H 	K� 	
PŒ�H jK� D PŒ�Ba 	 Raj�H 	 K� 	 PŒ�H jK� < PŒ�Ba 	 Raj�H 	 K� 6
PŒRaj�H 	K�, so 0 < PŒ�BajRa 	 �H 	K�, so PŒBajRa 	 �H 	K� < 1.

The next claim shows how positive support forH depends on p and q. Our solution
of the ravens will not depend on H receiving positive support (as can be seen by
comparing this claim to the main Theorem, which will come next). But it’s useful
and interesting to see what positive support requires.

Claim 2. PŒBa 	 RajH 	K�=PŒBa 	 Raj�H 	K� > 1 (i.e. H is positively supported
by .Ba 	 Ra/) if and only if PŒRajH 	K�=PŒRaj�H 	K� > p (where p D PŒBajRa 	
�H 	K�); and

PŒ�Ba 	 �RajH 	K�=PŒ�Ba 	 �Raj�H 	K� > 1
.i:e: H is positively supported by.�Ba 	 �Ra//

if and only if PŒ�BajH 	K�=PŒ�Baj�H 	K� > Œq � .1 � p/�=q:

Proof. PŒBa 	 RajH 	K�=PŒBa 	 Raj�H 	K� D PŒRajH 	K�=.PŒBajRa 	 �H 	K� 	
PŒRaj�H 	K�/

D .1=p/ 	 PŒRajH 	K�=P ŒRaj�H 	K�
> 1 iff PŒRajH 	K�=P ŒRaj�H 	K� > p:

PŒ�Ba 	 �RajH 	K�=PŒ�Ba 	 �Raj�H 	K�
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D PŒ�BajH 	K�=.PŒ�Baj�H 	K�� PŒ�Ba 	 Raj�H 	K�/
D PŒ�BajH 	K�=.PŒ�Baj�H 	K�� .1 � p/ 	 PŒRaj�H 	K�/
D .PŒ�BajH 	K�=PŒRaj�H 	K�/=.q � .1� p//

D Œq=.q � .1 � p//� 	 PŒ�BajH 	K�=PŒ�Baj�H 	K�
> 1 iff PŒ�BajH 	K�=PŒ�Baj�H 	K� > Œq � .1 � p/�=q:

Now we prove Theorem 1. We’ll prove it in terms of two distinct names, ‘a’ and
‘b’, where ‘a’ is taken to be an instance of a black raven and ‘b’ is taken to be an
instance of a non-black non-raven. We do it this way to assure the careful reader that
no funny-business is going on when, in the main text, we treat only a single instance
‘a’ to see how its turning out to be a black raven compares with its turning out to
be a non-black non-raven. To proceed with the treatment in terms of two possibly
distinct instances we’ll just need to suppose the following:

PŒBbjH 	 K� D PŒBajH 	 K�; PŒRbjH 	 K� D PŒRajH 	 K�; PŒBbj�H 	 K� D
PŒBaj�H 	K�; PŒRbj�H 	K� D PŒRaj�H 	K�, and PŒBbjRb 	�H 	K� D PŒBajRa 	
�H 	K�. The idea is that we have no special knowledge about b that permits us to
treat it probabilistically any differently than a (prior to actually observing it). When
a and b are the same instance, as in the main text, these equalities are tautological.

Theorem 1. Given Non-triviality, q > .1 � p/ > 0 and

P ŒBa 	RajH 	K� =P ŒBa 	Raj�H 	K�
P Œ�Bb 	 �RbjH 	K� =P Œ�Bb 	 �Rbj�H 	K� D Œq � .1 � p/� = .p 	 r/ > 0

Proof. To see that q > .1 � p/, just observe that q D PŒ�Baj�H 	K�=PŒRaj�H 	
K� D .PŒ�Ba 	 Raj�H 	K�CPŒ�Ba 	�Raj�H 	K�/=PŒRaj�H 	K� D PŒ�BajRa 	
�H 	K�C .PŒ�Ba 	 �Raj�H 	K�=PŒRaj�H 	K�/ > .1� p/, since Non-triviality
implies PŒ�Ba 	 �Raj�H 	K� > 0,

Non-triviality also implies (via Lemma 1) p D PŒBajRa 	�H 	K� < 1; so 0 < 1�p.
To get the main formula, observe that

.PŒBa 	 RajH 	K�=PŒBa 	 Raj�H 	K�/=.PŒ�Bb 	 �RbjH 	K�=P

Œ�Bb 	 �Rbj�H 	K�/ D .PŒRajH 	K�=fPŒRaj�H 	K� 	 pg/=.P
Œ�BbjH 	K�=fPŒ�Bbj�H 	K� � PŒ�Bb 	 Rbj�H 	K�g/
D .1=p/.PŒRajH 	K�=PŒRaj�H 	K�/ 	 .PŒ�Bbj�H 	K�� PŒRbj
�H 	K� 	 .1 � p//=PŒ�BbjH 	K� D .1=p/ 	 .PŒRajH 	K�=PŒRaj�H 	K�/ 	
.q � .1 � p// 	 .PŒRbj�H 	K�=PŒ�BbjH 	K�/ D .1=p/ 	 .q � .1 � p// 	
.PŒRajH 	K�=PŒ�BbjH 	K�/ 	
.PŒRbj�H 	K�=PŒRaj�H 	K�/ D .1=p/ 	 .q � .1 � p//=r:
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Corollary 1. Given Non-triviality,

P ŒBa 	RajH 	K� =P ŒBa 	Raj�H 	K�
P Œ�Bb 	 �RbjH 	K� =P Œ�Bb 	 �Rbj�H 	K� > 1 if and only if q � .1 � p/ > p 	 r:

And, more generally, for any real number s,

P ŒBa 	RajH 	K� =P ŒBa 	 Raj�H 	K�
P Œ�Ba 	 �RajH 	K� =P Œ�Ba 	 �Raj�H 	K� D s

D Œq � .1 � p/� = .p 	 r/ > 1 if and only if Œq � .1 � p/� D s 	 p 	 r > p 	 r:

Proof. The first biconditional follows from Theorem 1 together with the obvious
point that

Œq � .1 � p/�=.p 	 r/ > 1 iff q � .1 � p/ > p 	 r:

To get the second biconditional just observe that (for any real number s),

s D Œq � .1� p/�=.p 	 r/ > 1 iff s 	 p 	 r D Œq � .1 � p/� > p 	 r:

Corollary 2. Given Non-triviality, for real number s such that

P ŒBa 	RajH 	K� =P ŒBa 	Raj�H 	K�
Œ�Bb 	 �RbjH 	K� =P Œ�Bb 	 �Rbj�H 	K� D s

D Œq � .1 � p/� = .p 	 r/ ;

we have the following:

(1) s > .1=p/ > 1 iff q � .1 � p/ > r
(2) s D .1=p/ > 1 iff q � .1 � p/ D r
(3) .1=p/ > s > 1 iff r > q � .1 � p/ > p 	 r.

Proof. Follows easily from Theorem 1.

Theorem 2. Given Non-triviality, both of the following clauses hold:

(2.1) If PŒ�BajH 	K� > PŒRajH 	K� (i.e. if r > 1) and
OŒH jRa 	K�=OŒH j�Ba 	K� > .p C .1 � p=r/, then

P ŒBa 	RajH 	K� =P ŒBa 	Raj�H 	K�
P Œ�Ba 	 �RajH 	K� =P Œ�Ba 	 �Raj�H 	K� > 1:

(2.2) If PŒ�BajH 	K� 6 PŒRajH 	K� (i.e. r 6 1), but either PŒ�BajK� > PŒRajK�
or P[�Ba j�H 	K] > P[Ra j�H 	K] (i.e. q > 1), then

P ŒBa 	RajH 	K� =P ŒBa 	Raj�H 	K�
P Œ�Ba 	 �RajH 	K� =P Œ�Ba 	 �Raj�H 	K� > 1:
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Proof. Assume Non-triviality.
Both parts of the theorem draw on the following observation:
Theorem 1 tells us that q > .1 � p/ > 0 and

P ŒBa 	RajH 	K� =P ŒBa 	Raj�H 	K�
P Œ�Bb 	 �RbjH 	K� =P Œ�Bb 	 �Rbj�H 	K� D Œq � .1 � p/� = .p 	 r/ :

So
P ŒBa 	RajH 	K� =P ŒBa 	Raj�H 	K�

P Œ�Bb 	 �RbjH 	K� =P Œ�Bb 	 �Rbj�H 	K� > 1 iff Œq � .1 � p/� = .p 	 r/

> 1 iff

q > p 	 r C .1 � p/ iff q=r > .p C .1 � p/=r/. We will established each of the two
parts of Theorem 2 by showing that their antecedents imply q=r > .p C .1 � p/=r/.

(2.1) Suppose that r > 1 and OŒH jRa 	K�=OŒH j�Ba 	K� > .p C .1� p/=r/. Then

q=r D .PŒ�Baj�H 	K�=PŒRaj�H 	K�/=.PŒ�BajH 	K�=PŒRajH 	K�/
D .PŒRajH 	K�=PŒRaj�H 	K�/=.PŒ�BajH 	K�=PŒ�Baj�H 	K�/
D .P ŒRajH 	K� =P ŒRaj�H 	K�/ 	 .P ŒH jK� =P Œ�H jK�/
.P Œ�BajH 	K� =P Œ�Baj�H 	K�/ 	 .P ŒH jK� =P Œ�H jK�/

D O ŒH jRa 	K�
O ŒH j�Ba 	K� > .p C .1 � p/=r/:

(2.2) Suppose PŒ�BajH 	 K� 6 PŒRajH 	 K� (i.e. r 6 1), but either PŒ�BajK� >
PŒRajK� or PŒ�Baj�H 	K� > PŒRaj�H 	K� (i.e. q > 1).

First we show that we must have q > 1 in any case. This is shown by reductio, as
follows:

Suppose q 6 1. Then PŒ�BajK� > PŒRajK�.
So we have PŒ�Baj�H 	K� 6 PŒRaj�H 	K� (i.e. q 6 1) and
PŒ�BajH 	K� 6 PŒRajH 	K� (i.e. r 6 1). Then

PŒ�BajK� D PŒ�BajH 	K�PŒH jK�C PŒ�Baj�H 	K�PŒ�H jK�
6 PŒRajH 	K�PŒH jK�C PŒRaj�H 	K�PŒ�H jK� D PŒRajK� < PŒ�BajK�
Contradiction!!!

Thus we have q > 1 and r 6 1I so1=r � 1. Then .pC.1�p/=r/ 6 p=rC.1�p/=r D
1=r < q=r.

Theorem 3. If the degree to which a non-black non-raven incrementally confirms
‘All ravens are black’, as measured by the likelihood-ratio, is in the interval 1 <
PŒ�Ba 	 �RajH 	 K�=PŒ�Ba 	 �Raj�H 	 K� 6 1 C ©, for very small © > 0, then
.Œq � .1 � p/�=q/ < PŒ�BajH 	K�=PŒ�Baj�H 	K� 6 .Œq � .1 � p/�=q/.1C ©/.

If instead .1 � ©/ < PŒ�Ba 	 �RajH 	K�=PŒ�Ba 	 �Raj�H 	K� 6 1, then

.Œq � .1 � p/�=q/.1� ©/ < .PŒ�BajH 	K�=PŒ�Baj�H 	K�/ 6 .Œq � .1 � p/�=q/:
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In both cases, for large q, .Œq � .1� p/�=q/ � 1, so PŒ�BajH 	K�=PŒ�Baj�H 	
K� � 1.

Proof. PŒ�Ba 	�RajH 	K�=PŒ�Ba 	�Raj�H 	K� D PŒ�BajH 	K�=.PŒ�Baj�H 	
K��PŒ�Ba 	Raj�H 	K�/ D PŒ�BajH 	K�=.PŒ�Baj�H 	K�� .1�p/ 	PŒRaj�H 	
K�/ D .PŒ�BajH 	K�=PŒRaj�H 	K�/=.q�.1�p//D .PŒ�BajH 	K�=PŒ�Baj�H 	
K�/ 	 q=.q � .1 � p//. So, for 1 < PŒ�Ba 	 �RajH 	K�=PŒ�Ba 	 �Raj�H 	K� 6
.1 C ©/; .Œq � .1 � p/�=q/ < .PŒ�BajH 	 K�=PŒ�Baj�H 	 K�/ 6 .Œq � .1 �
p/�=q/.1C ©/. Also, if .1� ©/ < PŒ�Ba 	 �RajH 	K�=PŒ�Ba 	 �Raj�H 	K� 6 1,
then .Œq�.1�p/�=q/ 	 .1�©/ < .PŒ�BajH 	K�=PŒ�Baj�H 	K�/ 6 Œq�.1�p/�=q.
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Notes

1 For a nice taste of this voluminous literature, see the bibliography in Vranas (2004).
2 Almost all early commentators on the paradox have viewed (EC) and premise (2) as beyond

reproach. But not all contemporary commentators are so sanguine about (EC) and (2). See
Sylvan and Nola (1991) for detailed discussion of non-classical logics and the paradoxes of
confirmation. See Gemes (1999) for a probabilistic approach that also denies premise (2). We
will not discuss such approaches here. We restrict our focus to accounts couched in terms of
classical logic.

3 Interestingly, while Hempel and Goodman are completely unsympathetic to Quine’s strategy
here, they are much more sympathetic to such maneuvers in the context of the Grue Paradox. In
this sense, Quine’s approach to the paradoxes is more unified and systematic than Hempel’s or
Goodman’s, since they give “special treatment” to Grue-predicates, while Quine views the prob-
lem – in both paradoxes of confirmation – to be rooted in the “non-naturalness” of the referents
of the predicates involved. For what it’s worth, we think a unified and systematic approach to the
paradoxes is to be preferred. But, we think a unified Bayesian approach is preferable to Quine’s
instantial approach. However, our preferred Bayesian treatment of Grue will have to wait for
another paper.

4 Perhaps Hempel had something like the following in mind. Notice that .8x/.Rx 
 Bx/ entails
Ba given Ra; so, given Ra;�Ba falsifies .8x/.Rx 
 Bx/ and, on Hempel’s account, Ba confirms
it. Likewise, .8x/.Rx 
 Bx/ entails �Ra given �Ba; so, given �Ba, Ra falsifies .8x/.Rx 

Bx/ and, on Hempel’s account, �Ra confirms it. However, .8x/.Rx 
 Bx/ entails neither Ba
nor �Ba given �Ra; so, arguably, one might hold that .8x/.Rx 
 Bx/ cannot be confirmed
by either Ba or by �Ba given �Ra (though, as already affirmed, it is confirmed by �Ra given
�Ba). Similarly, .8x/.Rx 
 Bx/ entails neither Ra nor �Ra given Ba; so, arguably, one might
hold that .8x/.Rx 
 Bx/ cannot be confirmed by either Ra or by �Ra given Ba (though, of
course, it is confirmed by Ba given Ra). Even if a Hempelian story along these lines can be told,
it won’t save Hempel’s analysis from problem #2, below.

5 Hypothetico-deductive approaches to confirmation also imply (M), since they explicate “E con-
firms H relative to K” as “H & K entails E .” So, H-D confirmation cannot avail itself of a
Hempel-style resolution of the paradox either.
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6 Maher notes that Hempel never proves that (PC) is true while .PC�/ is false. This is an
understatement! He cannot prove this claim, on pain of contradiction with his official theory
of confirmation. We think the reason Hempel (and others) missed this inconsistency is that it is
easy to conflate objectual and propositional senses of “confirmation”. If you think of the objects
doing the confirming, then one can see (PC) as true and .PC�/ as false (even from a deductivist
point of view). But, if you think of the propositions as doing the confirming, then this is impos-
sible from a deductivist point of view (i.e., from the point of view of any theory which entails
(M)). The salient passages from Hempel suggest that he slides back and forth between objec-
tual and propositional senses of confirmation. And, we suspect that this is what led him into the
present inconsistency.

7 We won’t bother to discuss the competing axiomatizations and interpretations of probability.
These details won’t matter for our discussion. For simplicity we will just assume that P is
some rational credence function, and that it satisfies an appropriate version of the standard
(Kolmogorov 1956) axioms. But these assumptions could be altered in various ways without
affecting the main points we will make below.

8 Metaphysically, there may be a problem with “non-natural kinds” (in Quine’s sense - e.g.,
disjunctive and negative properties) participating in certain kinds of causal or other law-like
relations. This sort of problem has been suggested in the contemporary literature by Armstrong
(1978), Shoemaker (1980), and others. But, we think this metaphysical fact (if it is a fact) has
few (if any) confirmational consequences. Confirmation is a logical or epistemic relation, which
may or may not align neatly with metaphysical relations like causation or law-likeness.

9 As Chihara (1981) points out, “there is no such thing as the Bayesian solution. There are many
different ‘solutions’ that Bayesians have put forward using Bayesian techniques”. That said, we
present here what we take to be the most standard assumptions Bayesians tend to make in their
handling of the paradox - assumptions that are sufficient for the desired comparative and quan-
titative confirmation-theoretic claims. On this score, we follow Vranas (2004). However, not
all Bayesians make precisely these assumptions. To get a sense of the variety of Bayesian ap-
proaches, see, e.g.: (Alexander 1958); (Chihara 1981); (Earman 1992); (Eells 1982); (Gaifman
1979); (Gibson 1969); (Good 1960, 1961); (Hesse 1974); (Hooker & Stove 1968); (Horwich
1982), (Hosiasson-Lindenbaum 1940); (Howson & Urbach 1993); (Jardine 1965); (Mackie
1963); (Nerlich 1964); (Suppes 1966); (Swinburne 1971, 1973); (Wilson 1964); (Woodward
1985); (Hint ikka 1969); (Humburg 1986); (Maher 1999, 2004); (Vranas 2004).

10 We take logarithms of the ratio measures just to ensure that they are positive in cases of confir-
mation, negative in cases of disconfirmation, and zero in cases of neutrality of irrelevance. This
is a useful convention for present purposes, but since logs don’t alter the ordinal structure of the
measures, it is a mere convention.

11 This has led some former defenders of s to abandon it as a measure of incremental confirmation.
See Joyce (2004, fn. 11). See, also, Eells and Fitelson (2000, 2002) and Fitelson (2001) for
further peculiarities of the measure s.

12 Often, Bayesians use a two-stage sampling model in which two objects a and b are sampled
at random from the universe, and where K’ entails .Ra � �Bb/ (e.g., Earman 1992). On that
model we still have (2), but (3) is replaced with PŒ�BbjH �K’� D PŒ�BbjK’�, and .COMPP/

is replaced by .COMP0

P/PŒH jRa � Ba � K’� > PŒH j�Bb � �Rb � K’�. However, no real loss of
generality comes from restricting our treatment to “one-stage sampling” – i.e., to the selection
of a single object a, which K’ doesn’t specify to be either an R or a �B (Vranas 2004, fns. 10
and 18). We prefer a one-stage sampling approach because it simplifies the analysis somewhat,
and because we think it is closer in spirit to what Hempel and Goodman took the original paradox
to be about – where K’ is assumed not to have any implications about the color or species of
the objects sampled, and where a single object is observed “simultaneously” for its color and
species.

13 However, Vranas does not argue that .30/ is false or implausible – only that no good argument
for its plausibility has been given. So, it is consistent with his result that one might be able
to find some plausible condition X that, together with .10/, implies .QUANTc/. Vranas’ result
would then show that condition X (together with .10/) also implies .30/ – and so in effect would
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provide a plausibility argument for .30/. Some of the results we prove in the next two sections
will provide such conditions, X.

14 PŒH jBa � Ra � K� > PŒH j�Ba � �Ra � K� iff PŒ�H jBa � Ra � K� < PŒ�H j�Ba � �Ra � K�.
So, PŒH jBa � Ra � K� > PŒH j�Ba � �Ra � K� iff PŒH jBa � Ra � K�=PŒ�H jBa � Ra � K� >
PŒH j�Ba � �Ra � K�=PŒ�H j�Ba � �Ra � K� iff PŒBa � RajH � K�=PŒBa � Raj�H � K� >
PŒ�Ba � �RajH �K�=PŒ�Ba � �Raj�H �K�.

15 Throughout the remainder of the paper our treatment will focus on the relationship between these
likelihood-ratios. However, for 0 < PŒH jK� < 1, we have PŒH jBa�Ra�K� > PŒH j�Ba��Ra�K�
if and only if cŒH;Ba � RajK� > cŒH;�Ba � �RajK�, where c is any of the three measures of
incremental confirmation d, r, and l . This is the result .�/ discussed in the previous section,
together with its (easy to established) converse. So, a specific qualitative relationship (>, or D,
or <) holds between these likelihood-ratios just in case it holds between PŒH jBa � Ra �K� and
PŒH j�Ba � �Ra � K�, just in case it holds between cŒH;Ba � RajK� and cŒH;�Ba � �RajK�,
where c is any of the measures d, r, and l .

16 That is, the conditions we will establish do not imply that likelihood-ratio PŒBa�RajH �K�=PŒBa�
Raj�H � K� is itself greater than 1. And, since this likelihood-ratio will be greater than 1 just
when H receives positive support from .Ba � Ra/ (i.e. just when PŒH jBa � Ra �K� > PŒH jK�), it
follows that we will not be requiring that H receive positive support from .Ba � Ra/. (See Claim
2 in the Appendix for more about this.)

17 PŒBa � RajK� > 0 and PŒ�Ba � �RajK� > 0 are required for PŒH jBa � Ra �K� and PŒH j�Ba �
�Ra � K� to be well-defined; 0 < PŒH jBa � Ra � K� < 1 implies 0 < PŒH jK� < 1. Other
implication of Non-trivality are in Appendix Lemma 1.

18 Since for q D r; s > 1 iff q � .1� p/ > p � q iff q.1� p/ D q � pq > .1� p/ iff q > 1.
19 One clause of this result draws on the notion of odds, O. By definition, OŒX jY � D

PŒX jY �=PŒ�X jY �.
20 An equivalent (and perhaps more illuminating) alternative to the second condition for Clause

(2.1) is this: the ratio PŒRajH � K�=PŒRaj�H � K� is no less than the ratio PŒ�BajH �
K�=PŒ�Baj�H �K�, or perhaps only a bit less – i.e. .PŒRajH �K�=PŒRaj�H �K�/=.PŒ�BajH �
K�=PŒ�Baj�H � K�/ � .p C .1 � p/=r/. Here p C .1 � p/=r < 1 because the first con-
dition of Clause 2.1 requires r > 1. This condition (and the equivalent odds condition) is
strictly weaker than the usual independence assumptions. For, if independence assumption (2)
holds, then the PŒRajH � K�=PŒRaj�H � K� D 1, and if independence assumption (3) holds,
then the PŒ�BajH � K�=PŒ�Baj�H � K� D 1. Thus, the two usual conditions entail the
much more restrictive PŒRajH � K�=PŒRaj�H � K� D PŒ�BajH � K�=PŒ�Baj�H � K� – i.e.
OŒH jRa �K� D OŒH j�Ba �K�.

21 Vranas (2004) provides a detailed exposition.
22 We’ll suppress the “log”, since nothing we’ll say depends on the re-scaling of likelihood-ratios

by taking the log.
23 This approximate independence condition implies approximate independence condition .10/,

since PŒ�BajK� D PŒ�BajH �K� � PŒH jK�C PŒ�Baj�H �K� � .1� PŒH jK�/ � PŒ�BajH �
K� �PŒH jK�CPŒ�BajH �K� �.1�PŒH jK�/ D PŒ�BajH �K�. The two versions of approximate
independence are equivalent if PŒH jK� isn’t extremely close to 1.

24 To see this clearly, supposes that PŒRajH �K� is larger than PŒRaj�H �K� by a very large factor
f > 1 – i.e. PŒRajH �K� D f � PŒRaj�H � K� – and suppose that PŒ�BajH � K� is larger than
PŒ�Baj�H � K� by the same factor – i.e. PŒ�BajH � K� D f � PŒ�Baj�H � K�. Then we’d
have r D PŒ�BajH � K�=PŒRajH � K� D PŒ�Baj�H � K�=PŒRaj�H � K� D q even though
neither Ra nor Ba would be anywhere close to independence of H or �H . The same goes for
PŒRaj�H �K� larger than PŒRajH �K� and PŒ�Baj�H �K� larger than PŒ�BajH �K�, both by
very large factor f > 1.

25 Proof: .PŒBa � RajH �K�=PŒBa � Raj�H �K�/=.PŒ�Ba ��RajH �K�=PŒ�Ba ��Raj�H �K�/ D
.q=r/.1=p/ � Œ.1 � p/=p�=r, by Theorem 1. We get the upper bounds as follow: .q=r/.1=p/ �
Œ.1 � p/=p�=r < .q=r/.1=p/ 6 .1C •/ � .1=p/. To get the lower bound in (4.1): .q=r/ � .1=p/ �
Œ.1� p/=p�=r > .1� •/=p �1=pr � Œ.1� •/�1=L� � .1=p/. To get the lower bound in (4.2), first
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notice that for p > 1=2; Œ.1�p/=p� < 1, so .q=r/ �.1=p/�Œ.1�p/=p�=r � .1�•/ �.1=p/�1=r >
.1� •/ � .1=p/� 1=L.

26 Proof: From Theorem 3 we already have that PŒ�Ba � �RajH �K�=PŒ�Ba � �Raj�H �K� D
.1˙©/ implies PŒ�BajH �K�=PŒ�Baj�H �K� D .1˙©/. Then PŒRajH �K�=PŒRaj�H �K� D
Œ.PŒRajH �K�=PŒRaj�H �K�/=.PŒ�BajH �K�=PŒ�Baj�H �K�/��.PŒ�BajH �K�=PŒ�Baj�H �
K�/ D .q=r/ � .1 ˙ ©/ D .1 ˙ •/.1 ˙ ©/. And PŒBa � RajH � K�=PŒBa � Raj�H � K� D
.PŒBajRa �H �K�=PŒBajRa � �H �K�/.PŒRajH �K�=PŒRaj�H �K�/.

27 The factor p D PŒBajRa � �H �K� is a reflection of both likelihoods and prior probabilities for
the whole range of alternative hypotheses Hf, where each says that the frequency of black things
among ravens, FŒBx; Rx� D f, is a specific fraction f. When p is pretty close to 1, the only
alternative hypotheses Hf that can have non-miniscule prior probabilities are those for which
f is pretty close to 1 as well. So a single black raven doesn’t provide very much confirmation
for H (i.e., only about 1/p, which isn’t much), because it takes a lot of instances to distinguish
between H and the alternatives that have f near 1. To see this formally, consider: for each k � 1

such that 1=.1� p/ > k; p D PŒBajRa � �H �K� D †1>f�0PŒBajRa �Hf �K�PŒHfjRa � �H �
K� D †1>f�0f � PŒHfjRa � �H � K� < †1>f�1�k.1�p/PŒHfjRa � �H � K� C Œ1 � k � .1 �
p/�†1�k.1�p/>f�0PŒHfjRa � �H �K� D 1� k � .1� p/ � †1�k.1�p/>f�0PŒHfjRa � �H �K�, so
†1�k�.1�p/>f�0PŒHfjRa � �H �K� < 1=k; thus †1>f�1�k.1�p/PŒHfjRa � �H �K� > .k � 1/=k.
For example, for p D :98 and k D 5 we have that †1�f>:90PŒHfjRa � �H �K� > :80. Indeed, in
this case one only gets †1�f>:90PŒHfjRa �K� to be as small as .80 by making PŒH:9jRa � �H �
K� D :20 and PŒH:999jRa � �H � K� D :80, and PŒHfjRa � K� D 0 for all other values of
f. If non-zero priors are more evenly distributed throughout the interval between.9 and 1, then
†1�f>:90PŒHfjRa � �H �K� has to be quite a bit larger than .80 (in order to permit p D :98).
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Learning to Network

Brian Skyrms and Robin Pemantle

Introduction

In species capable of learning, including our own, individuals can modify their
behavior by some adaptive process. Important classes of behavior – mating, preda-
tion, coalitions, trade, signaling, and division of labor – involve interactions between
individuals. The agents involved learn two things: with whom to interact and how
to act. That is to say that adaptive dynamics operates both on structure and strategy.

In an interaction, individuals actualize some behavior, the behavior of the indi-
viduals jointly determines the outcome of the interaction, and the consequences for
the individuals motivate learning. At this high level of abstraction, we can model
interactions as games. The relevant behaviors of individuals are called strategies of
the game, and the strategies of the players jointly determine their payoffs. Payoffs
drive the learning dynamics (Skyrms and Pemantle 2000).

If we fix the interaction structure in this abstract scheme, we get models of the
evolution of strategies in games played on a fixed structure. An interaction struc-
ture need not be deterministic. In general, it can be thought of as a specification of
the probabilities of interaction with other individuals. By far the most frequently
studied interaction structure is one in which the group of individuals is large and
individuals interact at random. That is to say that each individual has equal proba-
bility of interacting with every other individual in the population. Among a list of
virtues of this model, mathematical tractability must come near the top. At another
end of the spectrum we have models where individuals interact with their neighbors
on a torus, or a circle, or (less frequently) some other graphical structure (Ellison
1993; Nowak and May 1992; Hegselmann 1996; Alexander 2000). Except in the
simplest cases, these models sacrifice mathematical tractability to gain realism, and
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computer simulations have played an important role in their investigation. These two
extreme models, however, can have quite different implications for the evolution of
behavior. In large, random encounter settings cooperators are quickly eliminated
in interactions with a Prisoner’s Dilemma structure. Comparable local interaction
models allow cooperators to persist in the population.

If we fix the strategies of individuals and let the interaction structure evolve
we get a model of interaction network formation. Evolution of structure is less
well-studied than evolution of strategies, and is the main focus of this paper. Most
current research on theory of network formation takes the point of view that net-
works are modeled as graphs or directed graphs, and network dynamics consists of
making and breaking of links (Jackson and Watts 2002; Bala and Goyal 2000). In
taking an interaction structure to be a specification of probabilities of interaction
rather than a graphical structure, we take a more general view than most of the liter-
ature (but see Kirman 1997 for a point of view close to that taken here). It is possible
that learning dynamics may drive these probabilities to zero or one and that a deter-
ministic graphical interaction structure may crystallize out, but this will be treated
as a special case. We believe that this probabilistic approach can give a more faith-
ful account of both human and non-human interactions. It also makes available a
set of mathematical tools that do not fit the coarser picture of making or breaking
deterministic links in a graphical structure.

Ultimate interest resides in the general case where structure and strategy
coevolve. These may be modified by the same or different kinds of learning.
They may proceed at the same rate or different rates. The case where structure
dynamics is slow and strategy dynamics is fast may approximate more familiar
models where strategies evolve on a fixed interaction structure. The opposite case
may be close to that of individuals with fixed strategies (or phenotypes) learning to
network. In between, there is a very rich territory waiting to be explored. We will
close this paper with a discussion of the co-evolution of structure and strategy in
a game which one of us has argued is the best simple prototype of the problem of
instituting a social contract (Skyrms 2004). Whether coevolution of structure and
strategy supports or reverses the conventional wisdom about equilibrium selection
in this game, depends on the nature and relative rates of the two learning processes.

Learning

Learning can be divided into two broad categories: (1) belief learning in which the
organism forms beliefs (or internal representations of the world) and uses these to
make decisions, and (2) reinforcement learning, where the organism increases the
probability of acts that have been rewarded and decreases the probability of those
that have not been rewarded. Ultimately the distinction may not be so clear cut, but
it is useful for a categorization of learning theories. In the simplest belief learning
model, Cournot dynamics, an individual assumes that others will do what they did
last time and performs the act that has the highest payoff on that assumption. More
sophisticated individuals might form their beliefs more carefully, by applying induc-
tive reasoning to some or all of the available evidence. Less confident individuals
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might hedge their bet on Cournot dynamics with some probabilistic version of the
rule. Strategically minded individuals might predict the effect of their current choice
on future choices of the other agents involved, and factor this into their decision.
Humans, having a very large brain, can do all of these things but often they do
not bother (Suppes and Atkinson 1960; Roth and Erev 1995; Erev and Roth 1998;
Busemeyer and Stout 2002; Yechiam and Busemeyer 2005).

Reinforcement learning does not require a lot of effort, or a large brain, or any
brain at all. In this paper we will concentrate on reinforcement learning, although
we will also touch on other forms of learning. Specifically, we apply a mathematical
model in which the probability of an act is proportional to the accumulated rewards
from performing that act Herrnstein 1970; Roth and Erev 1995). Following Luce
(1959), the learning model can be decomposed into two parts: (i) a reinforcement
dynamics, in which weights or propensities for acts evolve, and (ii) a response rule,
which translates these weights into probabilities of acts. If we let weights evolve by
adding the payoff gotten to the weight of the act chosen, and let our probabilities
be equal to the normalized weights (Luce’s linear response rule), we get the basic
Herrnstein–Roth–Erev dynamics.

There are alternative models of reinforcement learning that could be investigated
in this setting. In a path-breaking study, Suppes and Atkinson (1960) applied stim-
ulus sampling dynamics to learning in two-person games. Borgers and Sarin (1997)
have investigated dynamics of Bush and Mosteller (1955) in a game-theoretic set-
ting. Instead of the Luce’s linear response rule of normalizing the weights, some
models use a logistic response rule. Bonacich and Liggett (2004) apply Bush–
Mosteller learning in a setting closely resembling our own. They get limiting results
that are closely connected to this of the discounted model of Friends II in Skyrms
and Pemantle (2000). Liggett and Rolles (2004) generalize the results of Bonacich
and Liggett to an infinite space of agents. We, however, will concentrate attention
on the basic Herrnstein–Roth–Erev dynamics and on a “slight” variation on it.

Erev and Roth (1997) suggest modifying the basic model by discounting the past
to take account of “forgetting”. At each time period, accumulated weights are mul-
tiplied by some positive discount factor less than one, while new reinforcements are
added at full strength. Discounting is a robust phenomenon in experimental studies
of reinforcement learning, but there seems to be a great deal of individual vari-
ability with reported discount factors ranging from .5 to .99 (Erev and Roth 1997;
Busemeyer and Stout 2002; and Busemeyer 2004; Goeree and Holt forthcoming).
Discounting changes the limiting properties of the learning process radically. We
will see that within the reported range of individual variability, small variations in
the discount rate can lead to large differences in predicted observable outcomes in
interactive learning situations.

Two-Person Games with Basic Reinforcement Learning

We begin by investigating basic (undiscounted) reinforcement learning in sim-
ple two-person interactions. The following model was introduced in Skyrms and
Pemantle (2000). Each day each individual in a small group wakes up and decides
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to visit someone. She decides by chance, with the chance of visiting anyone else in
the group being given by normalized weights for that individual. (We can imagine
the process starting with some initial weights; they can all be set to one to start the
process with random encounters.) The person selected always accepts, and there is
always time enough in the day for all selected interactions to take place. In a group
of ten, if Jane decides to visit someone and the other nine all happen to decide to
visit Jane, she has a total of ten interactions in that day. Each interaction produces
a payoff. At the end of the day, each individual updates her weights for every other
individual by adding the payoffs gotten that day from interactions with that indi-
vidual. (Obvious variations on the basic model suggest themselves, but we confine
ourselves here to just this model applied to different kinds of interactions.) Initially,
we investigate baseline cases where individuals have only the choice of with whom
to interact, and interactions always produce payoffs in the same way. Then we build
on the results for these cases to analyze interactions in the stag hunt game, in which
different agents can have different acts and the combination of acts determines the
payoffs.

Consider two games of “Making Friends.” In Friends I the visitor is always
treated well, and gains a payoff of 1, while the host goes to some trouble but also
enjoys the encounter, for a net payoff of zero. In Friends II the visitor and host are
both equally reinforced, with a payoff of 1 going to each. We start each learning
process with each individual having initial weights of one for each other individual,
so that our group begins by interacting at random. It is easy to run computer simu-
lations of the Friends I and Friends II processes, and it is a striking feature of such
simulations that in both cases non-random interaction structure rapidly emerges.
Furthermore, rerunning the processes from the same starting point seems to gener-
ate different structure each time. In this setting, we should expect the emergence of
structure without an organizer, or even an explanation in terms of payoff differences.
The state of uniform random encounters with which we started the system does not
persist, and so must count as a very artificial state. Its use as the fixed interaction
structure in many game theoretic models is therefore extremely suspect.

We can understand the behavior of the Friends I process if we notice that each
individual’s learning process is equivalent to a Polya urn. We can think of him as
having an urn with balls of different colors, one color for each other individual. Ini-
tially there is one ball of each color. A ball is chosen (and returned), the designated
individual is visited. Because visitors are always reinforced, another ball of the same
color is added to the urn. Because only visitors are reinforced, balls are not added
to the urn in any other way. (Philosophers of science will be familiar with the Polya
urn because of its equivalence with Bayes–Laplace inductive inference.) The Polya
urn converges to a limit with probability one, but it is a random limit with uniform
distribution over possible final probabilities. Anything can happen, and nothing is
favored! In Friends I the random limit is uniform for each player, and makes the
players independent (Skyrms and Pemantle 2000, Theorem 1). All interaction struc-
tures are possible in the limit, and the probability that the group converges to random
encounters is zero.
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In Friends II, both visitor and host are reinforced and so the urns interact. If
someone visits you, you are reinforced to visit him – or to put it graphically, some-
one can walk up to your door and put a ball of his color in your urn. This complicates
the analysis. Nevertheless, the final picture is quite similar. The limiting probabil-
ities must be symmetric, that is to say X visits Y with the same probability that Y
visits X, but subject to this constraint and its consequences anything can happen
(Skyrms and Pemantle 2000; Theorem 2).

So far, the theory has explained the surprising results of the simulations, but a
rather special case of Friends II provides a cautionary contrast. Suppose that there
are only three individuals. (What we are about to describe is much less likely to
happen if the number of individuals is a little larger.) Then the only way we can
have symmetric visiting probabilities is if each individual visits the other two each
with probability one-half. Then the previous theorem implies that in this case the
process must converge to these probabilities. In simulations this sometimes happens
rapidly. However, there are other trials in which the system appears to be converging
to a state in which individual A visits B and C equally, but B and C always visit A
and never each other. You can think of individual A as “Ms. Popular.” The system
was observed to stay near such a state for a long time (5,000,000 iterations of the
process.)

This apparent contradiction is resolved in Pemantle and Skyrms (2004b), using
the theory of stochastic approximation. For the basic Herrnstein–Roth–Erev model,
there is an underlying deterministic dynamics that can be obtained from the ex-
pected increments of the stochastic process. This deterministic dynamics has four
equilibria – one in which each individual visits the others with equal probability and
the other three having A, B, and C respectively as “Ms. Popular.” The symmetric
equilibrium is strongly stable – an attractor – while the “Ms. Popular” equilibria are
unstable saddle points. The system must converge to the symmetric equilibrium. It
cannot converge to one of the unstable saddles, but if in the initial stages of learning
it wanders near a saddle it may take a long time to escape because the vector pushing
it away is very small. This is what happens in the anomalous simulations. There is a
methodological moral here that we will revisit in the next section. Simulations may
not be a reliable guide to limiting behavior and limiting behavior is not necessarily
all that is of interest.

The Making Friends games provide building blocks for analyzing learning dy-
namics where the interactions are games with non-trivial strategies. Consider the
two-person Stag Hunt. Individuals are either Stag Hunters or Hare Hunters. If a Stag
Hunter interacts with a Hare Hunter no Stag is caught and the Stag Hunter gets zero
payoff. If a Stag Hunter interacts with another Stag Hunter the Stag is likely caught
and the hunters each get a payoff of one. Hare Hunting requires no cooperation, and
its practitioners get a payoff of .75 in any case. The game is of special interest for
social theory because cooperation is both mutually beneficial and an equilibrium,
but it is risky (Skyrms 2004). In game theoretic terminology, Stag hunting is payoff
dominant and Hare hunting is risk dominant. In a large population composed of half
Stag Hunters and half Hare Hunters with random interactions between individuals,
the Hare Hunters would get an average payoff of .75 while the Stag Hunters would
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only get an average payoff of .50. The conventional wisdom is that in the long run
evolution will strongly favor Hare hunting, but we say that one should consider the
possibility that the players learn to network.

We use exactly the same model as before, except that the payoffs are now
determined by the individuals’ types or strategies: Hunt Stag or Hunt Hare. We start
with an even number of Stag Hunters and Hare Hunters. Theory predicts that, in the
limit, Stag Hunters always visit Stag Hunters and Hare Hunters always visit Hare
Hunters (Skyrms and Pemantle 2000; Th. 6). Simulation confirms that such a state is
approached rapidly. Although on rational choice grounds Hare Hunters “should not
care” whom they visit, they cease to be reinforced by visits from Stag Hunters after
Stag Hunters learn not to visit them. Hare Hunters continue to be visited by other
Hare Hunters, so all the differential learning for Hare Hunters takes place when
they are hosts rather than visitors. Once learning has sorted out Stag Hunters and
Hare Hunters so that each group only interacts with its own members, each is play-
ing Friends II with itself and previous results characterize within-group interaction
structure.

Now Stag Hunters prosper. Was it implausible to think that Stag Hunters might
find a way to get together? If they were sophisticated, well-informed, optimizing
agents they would have gotten together right away! Our point is that it doesn’t
take much for Stag Hunters to get together. A little bit of reinforcement learning
is enough.

Clique Formation with Discounting the Past

Adding a little discounting of the past is a natural and seemingly modest modifica-
tion of the reinforcement process. However, it drastically alters the limiting behavior
of learning. If the Polya urn, which we used in the analysis of Friends I, is modified
by discounting the past the limiting result is that after some time (can’t say when)
there will be one color (can’t say which) that will always be picked. Discounting
the past, no matter how little the discounting, leads to deterministic outcomes. This
is also true when we learn to network. Discounting the past leads to the formation
of cliques, whose members never interact with members of alternative cliques. Why
then, did we even bother to study learning without discounting? We will see that
if discounting is small enough, learning with discounting may, for long periods of
time, behave like learning without discounting.

The effects of adding discounting to the learning process are already apparent in
two-person interactions (Skyrms and Pemantle 2000), but they are more interesting
in multi-person interactions. Here we discuss two three-person interactions, Three’s
Company (a uniform reinforcement counterpart to Friends II), and a Three-Person
version of the Stag Hunt. Every day, each individual picks two other individuals to
visit to have a three-person interaction. The probability of picking a pair of indi-
viduals is taken to be proportional to the product of their weights. The payoff that
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an individual receives from a three-person interaction is added to her weights for
each of the other two participants. We again start the learning process with random
interaction. Everyone begins having weight one for everyone else.

In Three’s Company, as in Friends II, everyone is always reinforced in every
interaction. Everyone gets a payoff of one. No matter what the discount rate, the
limiting result of discounted learning is clique formation. For a population size of
six or more, the population will break up into cliques of size 3, 4, or 5. Each member
of a given clique chooses each other member of that clique with positive limiting
relative frequency. For each member of a clique, there is a finite time after which she
does not choose outsiders. All such cliques – that is each partition of the population
into sets of size 3, 4, and 5, has positive probability of occurring (Pemantle and
Skyrms 2004b, Th. 4.1).

Simulations at a discount rate of .5 conform to theory. A population of 6 always
broke into two cliques of size 3, with no interactions between cliques. As we dis-
count less – keeping more of the past weights – we see a rapid shift in results.
Multiplying past weights by .6, led to formation of two cliques in 994/1000 trials;
by .7 in 13/1000; by .8 in none. (We ran the process for 1,000,000 time steps and
rounded interaction probabilities to two decimal places.) Writing the discount factor
by which past payoffs are multiplied as .1� x/, we can say that simulation says that
clique formation occurs reliably for large x, but not at all for small x with a large
transition taking place between x D :4 and x D :3. The theory says that clique
formation occurs for any positive x.

This apparent conflict between theory and simulation is resolved in Pemantle
and Skyrms (2004a), where it is shown that time to clique formation increases ex-
ponentially in 1/x as the discount factor .1 � x/ approaches 1. The behavior of the
process for observable finite sequences of iterations is highly sensitive to the dis-
count parameter, within ranges that fall within the individual variability that has
been reported in the experimental literature. When x is close to 1, discounted rein-
forcement learning behaves for long periods of time like undiscounted learning in
which clique formation almost never occurs.

Three’s Company, like Friends II, is important because it arises naturally in the
analysis of less trivial interactions. Consider a Three-Player Stag Hunt (Pemantle
and Skyrms 2004a). Pairs of individuals are chosen, and weights evolve, just as
in Three’s Company, but the payoffs depend on the types of players. If three Stag
Hunters interact, they all get a payoff of 4, but a Stag Hunter who has at least one
Hare Hunter in his trio gets nothing. (In a random encounter setting, Stag Hunting
is here even more risky that in the two person case.) Hare hunters always get a
payoff of 3.

In the limit Stag Hunters learn to always visit other Stag Hunters but, unlike
some other limiting results we have discussed, this one is attained very rapidly.
With 6 Stag Hunters and 6 Hare Hunters and a discount rate of .5, the probability
that a stag hunter will visit a hare hunter usually drops below half a percent in 25
interactions. In 50 iterations this always happened in 1,000 trials, and this remains
true for values of x between .5 and .1. For x D :01, 100 iterations suffices and 200
iterations are enough if x D :001.
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Once Stag Hunters learn to visit Stag Hunters, they are essentially playing a game
of Three’s Company among themselves. They may be visited by Hare Hunters, but
these visits produce no reinforcement for the Stag Hunters and so do not alter their
weights. Stag Hunters then form cliques of size 3, 4, or 5 among themselves. This
will take a long time if the past is only slightly discounted.

There is a tendency for Hare Hunters to learn to visit Hare Hunters after the Stag
Hunters learn not to visit them, but because of the discounting it is possible for a
Hare Hunter to be frozen in a state of visiting one or two Stag Hunters. This is a
real possibility when the past is heavily discounted. At x D :5, at least one Hare
Hunter interacted with a Stag Hunter (after 10,000 iterations) in 384 out of 1,000
trials. This dropped to 6/1,000 for x D :2 and to 0 for x D :1. Hare Hunters who are
no trapped into interactions with Stag Hunters eventually end up playing Three’s
Company among themselves and also form cliques of size 3, 4, and 5.

Coevolution of Structure and Strategy

So far we have concentrated on the dynamics of interaction, because we believe
that it has not received as much attention as it deserves. The full story involves co-
evolution of both interaction structure and strategy. Depending on the application,
these may involve the same or different adaptive dynamics and they may evolve at
the same or different rates. We will illustrate this with two different treatments of
the two-person Stag Hunt.

To the two-person Stag Hunt of the section Two-Person Games with Basic
Reinforcement Learning, we add a strategy revision process based on imitation.
This reinforcement-imitation model was discussed in Skyrms and Pemantle (2000).
With some specified probability, an individual wakes up, looks around the whole
group, and if some strategy is prospering more than his own, switches to it. Individ-
ual’s probabilities are independent. If imitation is fast relative to structure dynamics,
it operates while individuals interact more or less at random and Hare Hunters will
take over more often than not. If imitation is slow, stag hunters find each other
and prosper, and then imitation slowly converts Hare Hunters to Stag Hunters (who
quickly learn to interact with other Stag Hunters).

Simulations show that in intermediate cases, timing can make all the difference.
We start with structure weights equal to 1 and vary the relative rates of the dynamics
by varying the imitation probability. With “fast” imitation .pr D :1/ 78% of the
trials ended up with everyone converted to Hare Hunting and 22% ended up with
everyone converted to Stag Hunting. Slower imitation .pr D :01/ almost reversed
the numbers, with 71% of the trials ending up All Stag and 29% ending up All Hare.
Fluid network structure coupled with slow strategy revision reverses the orthodox
prediction that Hare Hunting (the risk dominant equilibrium) will take over.

(This conclusion remains unaffected if we add discounting to the learning
dynamics for interaction structure. Discounting the past simply means that Stag
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Hunters find each other more rapidly. No matter how Hare Hunters end up, Stag
Hunters are more prosperous. Imitation converts Hare Hunters to Stag Hunters.).

The foregoing model illustrates the combined action of two different dynamics,
reinforcement learning for interaction structure and imitation for strategy revision.
What happens if both processes are driven by reinforcement learning? In particular,
we would like to know whether the relative rates of structure and strategy dynam-
ics still make the same difference between Stag Hunting and Hare Hunting. In this
Double Reinforcement model, each individual has two weight vectors, one for in-
teraction propensities and one for propensities to either Hunt Stag or Hunt Hare.
Probabilities for whom to visit and what to do are both gotten by normalizing the
appropriate weights. Weights are updated by adding the payoff from an interaction
to both the weight for the individual involved and to the weight for the action taken.
Relative rates of the two learning processes can be manipulated by changing the
magnitude of the initial weights.

In the previous models we started the population off with some Stag Hunters
and some Hare Hunters. That point of view is no longer correct. The only way one
could be deterministically a Stag Hunter would be if he started out with zero weight
for Hare Hunting, and then he could never learn to hunt Stag. We have to start
out individuals with varying propensities to hunt Hare and Stag. There are various
interesting choices that might be made here; we will report some simulation results
for one. We start with a group of 10, with 2 confirmed Stag Hunters (weight 100 for
Stag, 1 for Hare), 2 confirmed Hare Hunters (weight 100 for Hare, 1 for Stag), and
6 undecided guys (weights 1 for Stag and 1 for Hare. Initial weights for interaction
structure were all equal, but their magnitude was varied from .001 to 10, in order
to vary the relative rates of learning structure and strategy. The percent of 10,000
trials that ended up All Stag or All Hare (after 1,000,000 iterations) for these various
settings are shown in Fig. 1. As before, fluid interaction structure and slow strategy
adaptation favor Stag Hunting, while the reverse combination favors Hare Hunting.

In both reinforcement-imitation and double reinforcement models of the coevo-
lution of structure and strategy a fluid network structure shifts the balance form the
risk dominant Hare Hunting equilibrium to the cooperative Stag Hunt.

Double Reinforcement Dynamics
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Fig. 1 Stag hunt with reinforcement dynamics for both strategy and structure
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Why Dynamics?

Classical, pre-dynamic, game theory would approach the problem differently. The
whole group of 10 individuals is playing a 10-person game. A move consists in
choosing both a person to play with and a strategy. We can just identify the Nash
equilibria of this large game. None are strict. The pure equilibria fall into two
classes. One class has everyone hunting Stag and every possible interaction struc-
ture. The other has everyone hunting Hare and every possible interaction possible
interaction structure. (There are also mixed equilibria with every possible interac-
tion structure.) From this point of view, interaction structure does not seem very
important. If you ignore dynamics you miss a lot.
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Probabilities in Decision Rules

Paul Weirich

Decision theory advances an account of rational behavior. It uses a type of prob-
ability accessible to agents to guide their decisions, usually subjective probability,
that is, probability for an agent. Personalized, a probability assignment indicates an
agent’s degrees of belief at a time. If an agent is cognitively ideal and rational, her
degrees of belief conform to the standard probability axioms and so form a type of
probability.

This paper examines subjective probabilities in principles of rational decision
making. The principles are important in the behavioral sciences such as economics
(especially microeconomics) and psychology (especially cognitive psychology).
I explain how the goal of accessibility motivates making propositions the objects
of probabilities and then relativizing probabilities to ways of grasping propositions.
These are ways of understanding propositions and have sentence-like structure.
My points about them apply given various accounts of their nature. They may,
for instance, be mental representations as in Crimmins (1992) and Fodor (1998,
Chap. 1), modes of presentation as in McKinsey (1999), or epistemic intensions as
in Chalmers (2002).

The proposed relativization promotes psychological realism. Personal pronouns,
demonstratives, proper names, and other expressions refer directly without the in-
termediary of a concept. Hence two sentences may express the same proposition.
An ideal agent who understands both sentences may nonetheless miss their syn-
onymy and consequently assign two probabilities to the proposition they express.
Relativization to ways of grasping propositions resolves such inconsistency. It gen-
eralizes the usual probability laws and returns them as a special case when an agent
knows all relevant synonymies.

Relativization is a complication that theorists rightly are reluctant to accept.
Realism in decision theory, however, compels making probabilities relative to ways
of grasping propositions. An agent’s probability assignment to a proposition re-
quires her understanding the proposition. If there are two ways of understanding
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the proposition, she may assign two probabilities to the proposition. This possibility
requires that a proposition’s probability be relative to a way of grasping it.

Relativizing probabilities to ways of grasping propositions makes a decision’s
rationality relative to the way the agent frames the decision. Most framing effects
arise from logical mistakes and misunderstanding propositions. However, because
of multiple ways of understanding the same proposition, they may also arise from
lack of empirical information. Then they affect the rationality of decisions made by
cognitively ideal agents. Acknowledging this influence makes normative decision
theory more realistic.

The first four sections make the case for relativization. They present standard
probability and decision principles and show that relativization handles the phe-
nomenon of direct reference. The next three sections carry out the relativization
aiming for minimal revision of probability and decision principles.

Subjective Probability

How does subjective probability compare with other types of probability? Subjec-
tive probabilities, in contrast with physical probabilities, depend on evidence. The
physical probability of drawing a particular ball from an urn containing several balls
depends on factors such as the number of balls in the urn, whereas the subjective
probability of drawing that ball depends on one’s evidence concerning such factors.

Theorists debate the extent to which evidence controls rational degrees of belief
and so subjective probabilities. Harsanyi (1967) and Aumann (1976) hold that ratio-
nal ideal agents with the same information make the same probability assignments.
They hold that evidence completely settles rational degrees of belief. Binmore
(1994, pp. 61–63, 206–216) rejects that view. He holds that rationality gives agents
some latitude in assigning probabilities. Morris (1995) explores the issue, which
I leave open.

Physical probabilities manifest themselves in relative frequencies of results of a
repeated experiment, for example, the relative frequency of Heads in repeated tosses
of a coin. Taking a physical probability to be a relative frequency, the probability
attaches to an event-type, with some event-type serving as a reference class. Taking
the physical probability to be a propensity, it attaches to an event relative to a phys-
ical situation. For instance, the probability that a uranium atom decays in a certain
time period is relative to a physical situation including time. It has one value at a time
before the atom has decayed and another value at a time after the atom has decayed.

Subjective probabilities may rest on evidence concerning frequencies but are
single-case probabilities. For instance, an agent’s subjective probability that a par-
ticular coin toss yields Heads may rest on his evidence concerning the coin’s
symmetry, the tossing mechanism, and the history of results from past tosses. Still,
the probability concerns the outcome of a single toss. Moreover, it is not relative
to a reference class or a physical situation, although evidence concerning classes to
which the toss belongs and concerning the physical situation of the toss influences
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the probability. Decision rules need such single-case probabilities because decisions
concern action in a single-case, for example, betting on the outcome of a particu-
lar coin toss. They also need probabilities depending on evidence only, because an
agent may not know pertinent physical probabilities relative to appropriate reference
classes or physical situations.

To what does a subjective probability attach? In other words, what is its object?
A subjective probability, being a degree of belief, has the same object as a belief,
namely, a proposition. Suppose that an agent believes that Chicago is in Illinois.
The object of his belief is the proposition that Chicago is in Illinois. If he holds this
belief with certainty, then he assigns to that proposition a degree of belief equal to
1, the maximum degree of belief.

Propositions are intensional objects, and nuances of meaning differentiate them.
The theory of rational choice benefits from making objects of probability as fine-
grained as propositions are. A rational agent’s certainty that Chicago is in Illinois
and uncertainty that Chicago is in the land of Lincoln may motivate a difference
in response to questions and wagers about Chicago’s location. Hence probabilities
should distinguish the attitudes. A difference in doxastic attitude that motivates a
difference in behavior normally grounds a difference in objects of probability. Eco-
nomic theory recognizes the value of making fine-grained the objects of attitudes
that generate behavior. For instance, Debreu (1959, pp. 28–29, 32) introduces dated
and located commodities in place of generic commodities to acknowledge that dates
and locations influence a consumer’s decisions about commodities.

Some theorists, such as Savage (1972), take subjective probabilities to attach
to events, more precisely, possible events. The difference between possible events
and propositions may not be large. Although an actual event taken as a concrete
object differs from a true proposition taken as an abstract object, the nature of events
and propositions is an open topic, and some accounts identify possible events with
propositions. Nonetheless, unification of theories of belief and degrees of belief
drives the prevalent account of subjective probabilities to taking propositions as
their objects. Jeffrey (1983) is a standard bearer for this account.

Subjective probability is intensional in virtue of applying to intensional objects
such as propositions. Some authors who discuss the intensionality of subjective
probabilities are Gärdenfors (1975) and Horgan (2000). Some authors who discuss
the intensionality of a decision’s possible outcomes, a closely related topic, are van
Fraassen (2002, pp. 103–108) and Schick (2003, Chap. 1).

Subjective probability is degree of belief in a proposition, but what is a
proposition? It is a meaning of a declarative sentence and a basic bearer of a
truth-value. According to some accounts, for example Stalnaker (1984), proposi-
tions are sets of possible worlds. The proposition that Chicago is in Illinois is the
set of worlds in which it is true that Chicago is in Illinois. According to this view of
propositions, only one necessary proposition exists. A rival view of Kaplan (1989)
and others attributes to propositions structures similar to sentences’ structures and
distinguishes necessary propositions according to their structures. I take proposi-
tions to have structure and, moreover, to be compositional, that is, to be meanings
that are a function of the meanings of their parts.
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Although propositions resemble sentences, they differ from sentences because
ambiguous sentences and sentences with indexicals express different propositions
in different contexts. For instance, the sentence, “It is raining,” is true at some times
and places but false at other times and places. Also, different sentences may ex-
press the same proposition. For instance, “It is raining,” and the French sentence,
“Il pleut,” are synonymous.

Explicating subjective probabilities in terms of degrees of belief leads to ques-
tions about the latter. The subject is complex, and I clarify just a few key points. An
agent’s degree of belief in a proposition may represent a range of doxastic attitudes
from certainty that the proposition is false (and so not belief at all) to certainty that
the proposition is true. Also, a degree of belief need not represent a quantitative
mental state. It is a quantitative representation of a mental state, which may be non-
quantitative, as Jeffrey (1992, p. 29) and Weirich (2004b) explain.

In some cases information is too meager to support a precise probability assign-
ment to a proposition. Also, in some cases an agent fails to assign a proposition
a probability because making the assignment is pointless. For simplicity, I explore
only cases in which a rational ideal agent with a good, although incomplete, stock
of information assigns a precise probability to every proposition relevant to current
decision problems.

Some authors define degrees of belief operationally in terms of preferences con-
cerning bets and support their definitions with the type of representation theorem
common in measurement theory. The theorem shows that if a rational ideal agent
has preferences with a rich structure, then his probability and utility assignments
are inferable from his preferences. In this school, degrees of belief satisfy the prob-
ability laws by definition. Consequently, the laws are not norms for degrees of belief.
Instead, they generate a norm for preferences: Have preferences over gambles that
probability and utility functions may represent as agreeing with expected utilities.
If an agent’s preferences cannot be represented that way, then they are incoherent.

Textbooks usually present probability laws as norms for degrees of belief. For
example, they say that if the probability of getting two Heads from two coin tosses
is 1/4, then an agent should assign 1–1/4, or 3/4, as the probability of getting at
least one Tails from those tosses. They use the probability laws to guide probability
assignments. I follow the textbooks rather than operationism and take the probability
laws as normative constraints on degrees of belief. Degrees of belief not satisfying
the probability laws are possible, but irrational in an ideal agent. Betting behavior
is evidence for, but not definitive of, degrees of belief, as Weirich (2001, Sec. 1.4)
explains. A degree of belief of x% represents a propositional attitude. It is not just
part of a mathematical representation of preferences among gambles.

Taking a proposition’s probability as the expression of an attitude toward the
proposition raises many interesting questions that operational definitions squelch.
This paper treats one: Can an agent assign two probabilities to the same proposition?
Taking probability doxastically, an agent needs to grasp a proposition to assign it a
probability. Dispositions to bet do not suffice. Can an agent grasp a proposition two
ways and assign a different probability given each way of grasping it? I address
cases where this happens even though the agent is rational and ideal.
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To conclude this section, let me mention and set aside two problems concerning
the view that propositions are the objects of probabilities. Because the problems are
resolvable, they do not refute the view.

First, taking the objects of probability as propositions generates probabilities of
probabilities. These higher-order probabilities threaten inconsistency. They generate
paradoxes in the style of the liar paradox, as Weirich (1983, pp. 87–89) observes.
They also generate paradoxes of exhaustiveness, as Skryms (1980, pp. 109–111)
notes. If every set of propositions generates a proposition, say, the proposition that
all the propositions in the set are true, then there cannot be a set of all propositions.
For every set’s cardinality is less than the cardinality of the set of all its subsets. Stan-
dard methods of dealing with the semantic and set-theoretic paradoxes, however,
handle these problems. One may introduce a hierarchy of probability assignments.
Also, applications may work with a finite set of possible worlds specifying just what
matters to an agent. Skryms (1984, pp. 29–36), Gaifman (1988), Sahlin (1994), and
Weirich (2004b) address the issues.

Second, taking propositions as objects of probabilities invites an agent to assign
probabilities to propositions expressing his possible acts. Jeffrey (1983) and Joyce
(1999) acknowledge such probability assignments. On the other hand, Levi (2000)
objects to them, claiming that they preclude choice. He holds that an agent choosing
an option is not in a position to make predictions about his choice. Joyce (2002)
responds to the objections, arguing that an agent who regards his choices as effica-
cious must assign probabilities to his acts.

Applications of Probability Laws

An agent has access to his own degrees of belief and so is responsible for regu-
lating them and taking account of them. He is irrational if he lets his degrees of
belief run afoul of principles governing them and makes decisions unresponsive to
them. How does an agent’s access to his probability assignment affect applications
of standard probability and decision principles? The principles have two main in-
terpretations. According to one interpretation, they are principles that an agent uses
to guide his probability judgments and his decisions. They direct an agent’s delib-
erations. According to another interpretation, they are standards of evaluation that
an outsider may use to appraise for rationality an agent’s probability judgments and
decisions. A child may conform with these standards without using them to guide
behavior. Under the first interpretation, an agent’s access to his probability assign-
ments clearly matters. He cannot use the principles to form probability judgments
and make decisions if he lacks information their application requires. Under the
second interpretation, an agent’s access also matters. Suppose an agent makes prob-
ability judgments and decisions that violate the principles. An extenuating factor is
his lack of access to the probabilities the violations involve. Their inaccessibility
may excuse the violations. The agent may not be in a position to know about the
violations and correct them. Whether a violation is inexcusable from rationality’s
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standpoint depends in part on whether the agent commits the violation knowingly.
Standards of rationality are attainable in the sense that agents can comply know-
ingly. Agents are thus responsible for shortcomings.

According to my view, in many although not all cases probability and deci-
sion principles furnish rational procedures. Applying the probability laws clearly
requires access to the probabilities they govern. An agent uses the laws effectively
only if she knows the propositions assigned as values to propositional variables and
the probabilities attached to those propositions. Consider P.s/ for some state s. To
know the probability, an agent needs knowledge of the state and the probability
function, at least as applied to the state. By design, subjective probabilities are ac-
cessible. They equal an agent’s own degrees of belief. Although a nonideal agent
may be unaware of her degrees of belief, an ideal agent is aware of them.

Taking probability and decision principles to yield rational procedures for ideal
agents clearly motivates an interpretation of probabilities that makes them accessible
to those agents. It motivates taking them as degrees of belief attached to proposi-
tions. Later sections argue that it also motivates making probabilities of propositions
relative to ways of grasping propositions. An agent lacks access to a probability if it
attaches to a proposition independently of her grasp of the proposition. An agent’s
assignment of a probability to a proposition should acknowledge its dependence
on her understanding of the proposition. Acknowledging that dependence creates
a problem, however. An agent may grasp a proposition two ways and so assign it
two probabilities. Accessibility requires a way of grasping the proposition, but ways
of grasping a proposition may generate two probabilities for the same proposition.
Neither the procedural nor even the evaluative interpretation of the probability and
decision principles licenses addressing the problem by giving up accessibility.

The standard probability laws arise in the context of background laws concerning
the existence of probabilities. For subjective probabilities, one assumes a finite set of
atomic propositions to which the operations of negation, disjunction, and conjunc-
tion apply indefinitely to yield the closure of the base set under those operations.
The closure constitutes an algebra of propositions, and probabilities attach to the
propositions in the algebra. The standard axioms governing their probabilities are:

For all s; P.s/ � 0.
For all s such that s is an a priori truth, P.s/ D 1.
For all s and r such that s and r are inconsistent a priori, P.s _ r/ D P.s/CP.r/.

A theorem following from these axioms states that P.s/ D P.r/ if s and r are
equivalent a priori.

This presentation of the basic laws of probability puts aside the topic of condi-
tional probability. That topic raises issues independent of relativization, such as the
nature of conditional probabilities and the requirement to update probabilities by
conditionalization. Also, it puts aside algebras formed from infinite sets of atomic
propositions because they raise independent issues concerning, for instance, count-
able additivity.

The background laws make P.s/ relative to an algebra of which s is a member.
Can s be atomic in two algebras and have one probability relative to one algebra and
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another probability relative to the other algebra? The probability axioms do not rule
out this possibility, but an implicit coherence requirement does. Coherence requires
that a proposition have just one probability and so the same probability relative to
each algebra containing it.

Some classic examples show how various partitions of possible events, and the
algebras the partitions generate, may lead to multiple probabilities for an event. The
eighteenth century French probabilist d’Alembert argued that the probability of two
Heads on two coin tosses is 1/3 because the possible cases are two Heads, two Tails,
and a mixture of Heads and Tails. An agent under d’Alembert’s spell may assign
P.HH/ the value 1/3, dividing possible cases as he did, but also assign it the value
1/4, dividing possible cases the usual way. Consequently, the probability the agent
assigns two Heads depends on how she frames the relevant possible cases.

Bertrand’s paradox also draws attention to such framing effects. Drop a straw
across a barrel top. What is the probability that the chord it forms has a length greater
than half the barrel top’s diameter? Taking lengths of the chord as equiprobable
yields one answer. Taking lengths of the arc cut by the chord as equiprobable yields
another answer. An agent who falls victim to such framing effects is inconsistent
in the identification of equiprobable base cases. He assigns equal probabilities to
the atomic propositions of rival algebras. He should not take both algebras’ atomic
propositions to be equiprobable. Attention to base cases, however, does not prevent
inconsistent probabilities that arise from two ways of grasping the same proposition.

Necessary, logical, and a priori truths form distinct categories, which are, respec-
tively, metaphysical, formal, and epistemic. According to the usage I follow, an a
priori truth is roughly a true proposition whose truth is apparent to a fully rational
ideal agent regardless of her evidence. The laws of probability attend to a priori
features of propositions because the laws impose epistemic constraints on degrees
of belief.

Logical truths are sentences true under all interpretations of nonlogical expres-
sions. To make them objects of probabilities, one may take them as the propositions
such sentences express. However, it is best to retain the standard, formal definition
of logical truths, maintain the distinction between logical truths and a priori truths,
and attend to a priori matters when applying the laws of probability. The axiom of
total probability, for instance, gains scope when applied to a priori truths, which
include propositions that are logical truths according to any propositional account
of them. Furthermore, taking a proposition as logically true just in case a logically
true sentence expresses it creates problems. In some cases, as subsequent sections
show, two sentences express the same proposition although only one sentence is
logically true.

Necessary truth is truth in all possible worlds. Some necessary truths, such as
arithmetic truths, are not logical truths. Moreover, an identity such as “Water is
H2O” expresses a necessary truth but is not a logical truth because some interpreta-
tions give its two terms distinct denotations. An evidently true necessary proposition
is an a priori truth. But not all necessary truths are evident, for instance, not the
identity of water and H2O. Because subjective probability is epistemic rather than
metaphysical, a prioricity fits its axioms better than necessity does.
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Probabilities yield expected utilities of an agent’s options. If the agent is ideal and
rational, an option’s utility equals its expected utility and a decision maximizes util-
ity. An option’s expected utility is a probability-weighted average of the option’s
utilities relative to a set of mutually exclusive and jointly exhaustive possible states
of the world, which I call a partition of states. Assuming that the states are indepen-
dent of the option, the weights are the states’ probabilities, and the option’s utility
with respect to a state is U (o given s). Therefore, an option’s utility U.o/ equals
a sum of probability-utility products, namely,

P
i P.si /U (o given si ), where i in-

dexes the states. Weirich (2001, Chap. 3) explains this principle and the utilities it
involves.

Next, I address some problems that arise in applying the laws of probability. An
agent must understand the propositions to which she assigns probabilities so that
she can make her assignments comply with the laws of probability. How does she
attain the understanding she needs?

Imperfections in an agent’s understanding of propositions may seem to generate
two probabilities for the same proposition. To illustrate, reconsider the view that
propositions are sets of possible worlds. According to that view, all necessary truths
express the same proposition. However, given a proposition p an agent may assign
probability 1 to the proposition that p ! p and yet not assign the same probability
to the proposition that ..p ! p/ ! p/ ! p. To resolve this problem, psychologi-
cal realism suggests distinguishing the two necessary truths. Taking propositions as
structured, and not just sets of possible worlds, does this and provides for probability
assignments less than 1 to complex necessary truths, such as the second necessary
truth, which involves the material conditional more often than the first does. An
agent may understand that proposition well enough to give it a probability without
understanding it well enough to see that it is true. Garber (1983) revises probability
theory to accommodate learning logical truths and so makes it more realistic.

This section treats another source of failure to comprehend a probability’s ob-
ject and advances a different response to it. To begin, consider the following case in
which a rational ideal agent, who is logically omniscient, appears to assign two prob-
abilities to the same proposition. Suppose that Frege’s favorite proposition is that
7C 5 D 12, and imagine an agent who does not know this and assigns probability
0.5 to the truth of Frege’s favorite proposition. Let the value of the propositional
variable s be Frege’s favorite proposition. What is the agent’s probability assign-
ment to s? His own answer depends on the proposition’s presentation. He says that
P (Frege’s favorite proposition) D 0.5 and that P.7 C 5 D 12/ D 1 and bets ac-
cordingly. It appears that he assigns two probabilities to the same proposition. His
assignments may be relative to the same algebra. They may conflict only because
of ignorance of empirical matters, in particular, Frege’s preferences among propo-
sitions.

Besides creating an inconsistency, the assignment P (Frege’s favorite proposi-
tion) D 0.5 violates the probability axiom that P.s/ D 1 if s is an a priori truth.
Also, it creates violations of the probability theorem that equivalent propositions
have the same probability.
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This problem case arises because an application of the probability laws may
designate the value of a propositional variable without providing a way of grasping
the proposition designated. As the example shows, some designations of a proposi-
tion do not provide access to the proposition and its probability. One way of handling
the problem is to require that a probability attach to a proposition given a way of
grasping it. Relativizing the probability P.s/ to a way of grasping the proposition s
ensures access to the proposition and eliminates inconsistent probabilities.

What is a way of grasping a proposition? It is a structured way of understanding
a proposition. As mentioned, my points allow some latitude in specifying its nature.
It may, for instance, be a mental representation of a proposition. Standard sentential
names of propositions furnish ways of grasping propositions. “The proposition that
7 C 5 D 12” both designates a proposition and furnishes a way of grasping the
proposition designated. The proposition that 7C 5 D 12 receives a probability as-
signment of 1 relative to the way of grasping it that the arithmetic formula provides.
It receives no assignment relative to the designation “Frege’s favorite proposition”
because that designation does not furnish a way of grasping the proposition. The de-
scription does not reveal the structural features of the proposition it describes, and
it designates different propositions in different worlds.

The stated grounds for relativizing probabilities to ways of grasping proposi-
tions are not compelling because there are other ways of resolving the apparent
inconsistency. The remainder of this section examines an alternative response. The
next section shows that it is inadequate for additional problem cases and thereby
strengthens the grounds for relativization.

The alternative response to the apparent inconsistency accepts an agent’s an-
nouncement of a proposition’s probability only given a designation of the proposi-
tion that reveals the proposition to the agent. Hence it rejects the agent’s claim that
P (Frege’s favorite proposition) D 0.5. It takes P (Frege’s favorite proposition) as an
unknown probability. The probability value the agent asserts for the proposition is
the probability of a related but different proposition.

Consider (1) Frege’s favorite proposition and (2) the proposition that Frege’s
favorite proposition is true. These propositions differ. The second proposition is not
a necessary truth even if Frege’s favorite proposition is that 7 C 5 D 12. Its sub-
ject differs from world to world according to Frege’s tastes, and it is false in worlds
where Frege favors a false proposition. Its probability is a probability-weighted av-
erage of the worlds in which Frege favors a true proposition. Hence its probability
may be 0.5 while the probability that 7C 5 D 12 is 1. The two propositions’ prob-
abilities also respond differently to information. P (Frege’s favorite proposition is
true), unlike P.7C 5 D 12/, is sensitive to empirical information. It varies with in-
formation about Frege’s tastes in propositions. “Frege’s favorite proposition is true”
is true just in case Frege’s favorite proposition is true. However the truth predicate in
the sentence quoted is not redundant; besides having a crucial grammatical role, it
distinguishes the proposition that Frege’s favorite proposition is true from Frege’s
favorite proposition. The truth predicate’s role makes truth a substantial property in
one sense of the phrase.



298 P. Weirich

When announcing probability assignments, the agent does not reveal that he
assigns to Frege’s favorite proposition the probability 0.5. He reveals that he as-
signs that probability to the proposition that Frege’s favorite proposition is true.
The announced value of the unknown probability is the known probability of the
metaproposition. The agent admits that he does not know what Frege’s favorite
proposition is. Consequently, he does not know his probability assignment to that
proposition so designated. The agent does not know the value of P.s/ under the
assignment of Frege’s favorite proposition to the variable s. Its value is not 0.5
but rather 1, although the agent does not know this. He does not know his own
probability assignment to Frege’s favorite proposition because he does not know
which proposition is Frege’s favorite. The propositional name “Frege’s favorite
proposition” has a denotation, but the agent does not know s’s value when it is
assigned using that description because he does not know what proposition the de-
scription denotes. “Frege’s favorite proposition” designates a proposition but does
not express it and so does not offer a way of understanding it. A way of assigning
a value to a propositional variable may in some cases fail to express a proposition
so that the agent can grasp the proposition and can know the variable’s probability
given that value.

Similar cases arise if an agent runs across a proposition expressed in a foreign
language. The French sentence, “Il pleut,” expresses the proposition that it is rain-
ing. If the agent announces a probability assignment for the proposition the sentence
expresses, he may inadvertently substitute his probability assignment to the propo-
sition that “Il pleut” is true. The metalinguistic proposition clearly differs from the
proposition that it is raining. Unlike quotations of sentences, standard sentential
names of propositions rigidly designate propositions. Hence, necessarily the propo-
sition that it is raining is true just in case it is raining. In contrast, the metalinguistic
proposition is false if it is raining, given a hypothetical convention whereby the
sentence “ll pleut” means that it is not raining.

For a related problem concerning utilities, consider the utility an agent assigns
to a gamble g that yields $1 if Frege’s favorite proposition is true and $0 otherwise.
According to the expected utility principle, U.g/ D P.s/U.$1/ C P.�s/U.$0/
given that Frege’s favorite proposition is the value of s. Using our knowledge that
s is the proposition that 7 C 5 D 12 and that the agent assigns that arithmetic
proposition probability 1, we compute that U.g/ D 1U.$1/ C 0U.$0/ D U.$1/.
This is the wrong value for U.g/. It is not the utility assignment that should direct
the agent’s decision about the gamble, if, say, he has a choice between it and similar
gambles involving different propositions. This application of the expected utility
principle is defective because the agent does not know Frege’s favorite proposition
and so does not know P.s/ even though P is his own probability assignment.

Distinguishing (1) Frege’s favorite proposition from (2) the proposition that
Frege’s favorite proposition is true resolves the problem. A partition consisting
of the first proposition and its negation differs from a partition consisting of the
second proposition and its negation. Thus, evaluating an option using the first
partition differs from evaluating it using the second partition. In particular, the
elements of the first partition have probabilities unknown to the agent, and their
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inaccessibility hampers an evaluation relying on them. A practical evaluation of
a gamble concerning Frege’s favorite proposition, yielding probabilities accessi-
ble to the agent, uses the second proposition and its negation. Then U.g/ D
0:5U.$1/C 0:5U.$0/. Applied this way, the expected utility principle yields a util-
ity for the gamble that appropriately guides decisions among options. Probabilities
must be accessible to be factors in utilities with that guiding role.

To make relevant probabilities accessible to an agent, applications of decision
principles involving probabilities typically avoid specifications of values for propo-
sitional variables that do not give the agent ways of grasping the propositions. A
standard sentential expression of a proposition in the agent’s language furnishes her
a way of grasping the proposition. It makes the proposition’s probability accessible
to her and so yields a probability useful for making decisions.

The probability laws involve quantified variables. Quantifiers, under their normal
interpretation, work with assignments of values to variables without discriminating
among designations of those values. How can one control assignments of values to
variables so that accessible probabilities result? One method adopts a substitutional
interpretation of quantifiers. Then it restricts applications of the probability laws
to instances that replace propositional variables with standard sentential names of
propositions, as in Weirich (2001, pp. 92–100, 2004b, Sec. A.4). Another method,
adopted here, retains the normal interpretation of quantifiers but requires specifi-
cation of values of variables using sentential names of propositions. This method
shifts the remedy from values of variables to their specifications. It uses standard
sentential names of propositions to yield specifications of instances of generaliza-
tions rather than to yield the instances themselves.

Textbook applications of the probability axioms and the expected utility principle
take this approach. They designate values of propositional variables so that students
grasp the propositions designated. An example applying the axiom of total proba-
bility may say that the value of s is the a priori truth that Socrates died in 399 BC or
Socrates did not die in 399 BC. An example applying the expected utility principle
to a bet that Heads will appear on a coin toss may specify a partition of states with
two members: first, the state that Heads will appear and, second, the state that Heads
will not appear. Approaching applications this way dodges the problem of unknown
probabilities by specifying a way of grasping each relevant proposition.

This section presented a case of apparently inconsistent probabilities and then
two resolutions of the inconsistency. The first resolution relativizes probabilities
to ways of grasping propositions and takes one member of the inconsistent pair
of probabilities to be under-specified. The second resolution takes one probability
to be unknown and to be confused with a related, known probability. To resolve
apparent violations of the laws of probability, it restricts the laws to instances that
furnish ways of grasping propositions. This restriction ensures access to relevant
probabilities. The second resolution is not perfectly satisfactory. A variable’s value
is the same under any designation of that value. An assignment of a value to a
propositional variable should not be limited to selected designations of propositions.
Rather than press this objection, however, the next section presents another problem
concerning probabilities that creates a stronger case for relativizing probabilities to
ways of grasping propositions.
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The Problem of Direct Reference

This section strengthens the argument for relativizing probabilities to ways of
grasping propositions. In the cases it considers, a single proposition clearly receives
two probabilities. Imposing restrictions on designations of values of propositional
variables is not a viable alternative to relativization.

A definite description such as “the red planet” refers to an object using concepts
that identify the object. Some expressions refer directly to an object without the in-
termediary of a concept identifying the object. For example, a variable such as “x”
under an assignment of a value such as Mars refers to an object directly. The variable
does not express a concept by which it refers to the object, even if the assignment
of a value to the variable employs a concept. Pronouns function as variables do. On
some occasions a pronoun may stand for a name introduced earlier. On other oc-
casions, however, its denotation is not parasitic on another expression’s denotation.
Features of context such as pertinence and shared interests assign it a value. Con-
sider the sentence, “It is blue,” in a context where “it” designates the sky. Without
expressing a concept, the subject “it” refers to an object and hence is directly ref-
erential. Frege holds that reference takes place only through the intermediary of a
concept, however J. S. Mill champions the view that reference is sometimes direct,
as the essays in Salmon and Soames (1988) explain.

For another example, consider demonstratives. Suppose one points to a building
and says, “That’s on fire.” One refers directly to the building. No concept intervenes.
The demonstrative has a character that defines its role in expressing a proposition, as
Kaplan (1989) notes. But that character is not a concept in the traditional, Fregean
sense. It is not the sort of concept a definite description expresses and is not the
content of an expression. The demonstrative’s content in a context is its denotation.
D. Kaplan (personal communication) observes that direct reference is a means of
making objects in the external world the subjects of thoughts. Direct reference en-
ables a thought expressed in language to discriminate between the actual world and
other possible worlds. A definite description may be uniquely satisfied in many pos-
sible worlds. However, the demonstrative “that” applies only to an individual in the
actual world.

Proper names are not plausibly taken as abbreviations of definite descriptions;
no informative definite description is synonymous with a proper name. Accord-
ing to the account of proper names that I adopt, they are directly referential, too.
Consequently, the sentences “Cicero is Cicero” and “Tully is Cicero” have subjects
directly referring to the same person. The two names may yield different ways of
grasping an individual, but I do not classify those ways of grasping the individual as
concepts of the individual. A concept of an individual is not just a way of picking
out an individual. Concepts, according to the standard usage I follow, are abstract,
shareable meanings that form propositions, and not concrete, private, psychological
components of thoughts. Names such as “Sherlock Holmes” that do not denote an
individual have cognitive significance but do not express concepts. The negative ex-
istential sentence, “Sherlock Holmes does not exist,” does not express a proposition
with Sherlock Holmes as subject.
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Some predicates may yield their extensions without expressing a concept, but I
assume “is blue” expresses a concept. That concept is a property according to some
accounts of properties, and the objects with the property form the predicate’s ex-
tension. The sentence “It is blue” expresses a proposition composed of its subject’s
denotation and the concept its predicate expresses. The proposition is thus a hy-
brid entity with a concrete component and an abstract component. The view that
a proposition may contain a concrete object is Russellian. It contrasts with Frege’s
view that a proposition is composed of concepts exclusively. The Fregean view dis-
tinguishes the proposition that Cicero is Cicero from the proposition that Tully is
Cicero, but the Russellian view of propositions that I adopt does not distinguish
them. All subject–predicate sentences with subjects directly referring to the same
object and having synonymous predicates express the same proposition. Differences
in the way their subjects directly refer to the same object do not yield differences in
the proposition they express. Hence the sentences “Cicero is Cicero” and “Tully is
Cicero” express the same proposition. That proposition is a hybrid comprising a
person and the concept of being identical with Cicero, which itself comprises the
concept of the identity relation and Cicero. The sentences express the same proposi-
tion because they express propositions with the same components. The formula “x is
Cicero” expresses that proposition under an assignment of a value to its variable. A
way of grasping the variable’s value completes a way of grasping the proposition.

According to Frege, the belief that Cicero is Cicero and the belief that Tully
is Cicero have different objects. He holds that sentences such as “Cicero is Ci-
cero” and “Tully is Cicero,” when used to report the content of a belief, denote the
propositions they normally express. Because the sentences normally express differ-
ent propositions, in belief reports they denote different objects of belief. The theory
of direct reference challenges Frege’s analysis of propositions and belief. It holds
that “Cicero is Cicero” and “Tully is Cicero” express the same proposition and so a
single object of belief.

Two sentences differing only in means of directly referring to their subjects offer
two ways of grasping the same proposition. Do two ways of understanding the same
proposition emerge in other cases also? Are there multiple ways of expressing the
same proposition without direct reference? “Female foxes are female foxes” and
“Vixens are female foxes” come close to being synonymous. Perhaps they express
different propositions, however, because it appears that a person may believe one
and doubt the other. The appearance may be an illusion. If a person affirms the first
sentence and denies the second, perhaps he does not understand both sentences.
Maybe he denies the second sentence because he does not understand the word
“vixen.” His affirming and denying sentences does not establish his attitude toward
propositions they express unless he understands the sentences.

A. Church (personal communication) holds that “8xFx” is synonymous with
“8yFy.” If one sincerely asserts the first and denies the second, then one does not
understand both. If one understands both, then to believe one is to believe the other.
Perhaps such formal synonymies do not yield two ways of understanding the same
proposition. They may offer the same way of understanding a proposition because
they lead to the same propositional attitudes and never to believing the proposition
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understood according its first expression and disbelieving the proposition under-
stood according to its second expression.

To believe a proposition or assign it a probability, an agent must understand the
proposition. An agent may understand it without having perfect knowledge of the
concepts it involves. Burge (1979) observes, for example, that one may possess
the concept of arthritis without understanding it perfectly and, in particular, may
have beliefs about arthritis without knowing that it occurs only in joints. An agent
may, for instance, believe that she has arthritis in her thigh. Medical concepts are
introduced by theories that employ them. One can grasp a concept without knowing
the entire theory that introduces it. Arthritis has an implicit definition via medicine,
but one may form beliefs involving the concept without being an expert in medicine.
Perhaps imperfect understanding of the concept arthritis may lead one to believe
and doubt a proposition involving that concept. The two attitudes may draw on
different parts of one’s understanding of the concept, each of which is sufficient for
understanding the proposition. Perhaps through imperfect understanding an agent
may both believe and doubt that she has arthritis.

Although direct reference may not be the only source of multiple ways of un-
derstanding the same proposition, I rely only on it in making a case for relativizing
probabilities. It yields clear cases of propositions understood two ways.

The directly referential sentences “I have mustard on my chin” and “He has mus-
tard on his chin” express the same proposition if I utter the second while pointing
to my image in a mirror. These two ways of expressing (and not simply designat-
ing) the same proposition supply two ways of understanding that proposition. Hence
I may believe and disbelieve the proposition, or assign it different probabilities, ac-
cording to my way of grasping it. If I do not know that the image in the mirror
is mine, I may disbelieve the proposition when I entertain it using the expression
“I have mustard on my chin” but believe it when I entertain it using the expression
“He has mustard on his chin.”

Tradition treats propositions as basic bearers of truth-values and also objects
of thought. Can propositions serve both roles? The propositions that Cicero is Ci-
cero and that Tully is Cicero have the same truth-conditions and are identical. Yet
an agent may assert that Cicero is Cicero and deny that Tully is Cicero. His attitudes
appear to have different objects. If the object of a belief is a proposition, how can this
happen? Can an agent believe and disbelieve the same proposition? Making propo-
sitions both objects of thought and basic bearers of truth-values gives propositions
two roles that they cannot serve equally well. Propositions cannot be attuned to both
cognitive values and truth-conditions because cognitive values and truth-conditions
are not attuned to each other.

What role does traditional usage favor? In my view, the primary role of propo-
sitions is to be basic bearers of truth-values. Instead of distinguishing two types of
proposition, one for each role, I follow a usage that makes the primary role defini-
tive. In the example concerning Cicero, there is just one proposition but two ways
of expressing it with different cognitive values.

Disbelief is not failure to believe, that is, the absence of an attitude, but rather
doubt, an attitude toward a proposition. In the example concerning Cicero, the
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agent does not believe and fail to believe the same proposition. That is impossible.
Instead, the agent believes and disbelieves the same proposition. The agent, not the
example, is inconsistent. If, contrary to my analysis, disbelief is treated as failure to
believe, then the example may be recast so that it involves believing both a propo-
sition and its negation. According to the theory of direct reference, the proposition
that Tully is not Cicero is the negation of the proposition that Cicero is Cicero. An
agent may believe that Tully is not Cicero. He may understand the proposition but
not see that it is false. Then the agent may believe that Cicero is Cicero and also
believe that Tully is not Cicero. No contradiction arises from an agent’s believing
both a proposition and its negation. An agent’s holding contradictory beliefs does
not create a contradiction.

In my example, I assume that the agent has in his vocabulary the two names
“Cicero” and “Tully.” Perhaps he is a beginning student of the classics who has
come across both names but has not yet realized that they are names for the same
person. Understanding a proposition requires knowing the proposition’s meaning
but does not require knowing everything relevant to the proposition’s truth. An agent
may understand the proposition that Tully is Cicero without knowing that Tully is
Cicero. He may know the person “Tully” designates, being familiar with the name,
but may not know everything about that person, in particular, that “Cicero” denotes
that person. He may believe that Cicero is Cicero and yet disbelieve that Tully is
Cicero. Then he believes and disbelieves the same proposition. He may understand
it well enough to believe it, and doubt it, without knowing everything about the
proposition, in particular, that he grasps it two ways.

A good ground for attributing a belief to an agent is the agent’s sincere assent
to a sentence of his language expressing the proposition. Similarly, sincere denial
is a good ground for attributing disbelief. To fill out the example, let the agent de-
scribed assent to the sentence “Cicero is Cicero” and deny the sentence “Tully is
Cicero.” Then he assents to a sentence expressing a proposition and denies another
sentence expressing the same proposition. This all happens without a change in cir-
cumstance grounding a change in opinion. Although the two sentences express the
same proposition, they have different cognitive significance. The way of grasping
the proposition the first sentence furnishes makes the proposition’s truth apparent.
That explains why an agent may affirm the first sentence and yet deny the second
sentence.

A report of an agent’s belief may imperfectly indicate the belief’s content. A jour-
nalist may use English to report in translation a Russian official’s speech. The report,
although true, may only imperfectly indicate the propositions the official believes.
Also, a true report of a belief may use a brief description of the proposition believed.
It may say, “He believes what Bush said,” or “He believes that theory’s first proposi-
tion.” To be true, a report of a belief must present the proposition believed in a way
that identifies the proposition but not necessarily in a way that permits recipients of
the report to grasp the proposition. Perhaps the report that the agent believes that
Tully is Cicero is true, because he believes that Cicero is Cicero, but is misleading
because he denies that Tully is Cicero.
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The distinction between beliefs and reports of beliefs is important but not
adequate for resolving the problem of multiple ways of grasping the same proposi-
tion. To explain, let me compare an agent’s not knowing that the sentences “Cicero
is Cicero” and “Tully is Cicero” express the same proposition with other cases of
ignorance concerning propositions. In the first case an agent does not know that
the sentence “It is raining” and the French sentence “Il pleut” express the same
proposition. In the second he does not know that the descriptions “the proposition
that 7 C 5 D 12” and “Frege’s favorite proposition” name the same proposition.
In the third he does not know that the statements “He was a genius” and “Einstein
was a genius” express the same proposition because he does not know that the first
statement refers to Einstein in its context. In these cases the agent does not believe
a proposition given one way of grasping it and disbelieve it given another way of
grasping it. Rather, he does not know what proposition a linguistic item presents.
As the section “Applications of Probability Laws” explains, in the second case the
agent does not know the denotation of “Frege’s favorite proposition” and so does not
grasp any proposition by means of that designation. If he says that Frege’s favorite
proposition is false, he is not expressing disbelief that 7C 5 D 12. Similarly, in the
other two cases, a failure to endorse a proposition believed, when presented a certain
way, does not indicate disbelief but rather ignorance of the proposition presented.

Direct reference creates belief and disbelief concerning the same proposition.
The sentences “Cicero is Cicero” and “Tully is Cicero” furnish two ways of grasp-
ing the same proposition. They are full expressions of a proposition and are in the
agent’s repertoire. In contrast, the description “Frege’s favorite proposition” does
not provide the agent a way of grasping the proposition that 7C5 D 12. The French
sentence “Il pleut” is not in the agent’s repertoire. The statement “He was a genius”
does not furnish the agent a way of grasping a proposition because he is not aware of
the features of its context that yield the subject’s denotation. Because the sentences
“Cicero is Cicero” and “Tully is Cicero” furnish two ways of grasping the same
proposition, it is implausible that the agent withholds assent to the latter because
he is ignorant of the proposition it expresses. It is implausible that he believes that
Tully is Cicero but does not know he holds that belief. It is implausible that a report
of that belief is just misleading and not also false.

Direct reference creates complications for degrees of belief as well as for belief.
Because the proposition that Tully is Cicero is the same as the proposition that
Cicero is Cicero, it seems that P (Tully is Cicero) equals P (Cicero is Cicero). But
an agent may not know that the propositions are the same. Because their identity
depends on an empirical matter, even a rational ideal agent may be ignorant of it.
Such an agent may be certain that Cicero is Cicero and yet doubt that Tully is Cicero.

Sincere assertion of the probability of a proposition a sentence expresses is good
evidence that the proposition’s probability has the value asserted, provided that the
sentence is in the agent’s language. If when asked about his probability assign-
ment for the proposition expressed by “Cicero is Cicero,” a sincere agent says 1,
and if when asked about his assignment for the proposition expressed by “Tully is
Cicero,” he says 0.5, then it is plausible that the probabilities announced are the
probabilities the agent assigns. In such cases it appears that the agent assigns two
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probabilities to the same proposition and so is inconsistent. The two assignments are
psychologically compatible because each assignment represents a degree of belief
and not the absence of other degrees of belief.

The problem of direct reference runs deeper than the problem of unknown prob-
abilities exemplified by the case of P (Frege’s favorite proposition). Designating
values for propositional variables in ways that reveal propositions does not re-
solve it. The sentence “Tully is Cicero” furnishes a way of grasping a proposition. So
P (Tully is Cicero) is not an unknown probability. One cannot discard or reinterpret
it, as the section on Applications of Probability Laws handled P (Frege’s favorite
proposition). In contrast with apparent inconsistencies arising from ignorance of
propositions, the appearance of two probabilities for the same proposition in cases
of direct reference cannot be dispelled by requiring applications to assign a value
to a propositional variable using a standard name of a proposition. Direct reference
creates two standard names of the same proposition. The sentences “Cicero is Ci-
cero” and “Tully is Cicero” are equally good expressions of a proposition although
they differ in cognitive significance. The problem of direct reference remains despite
requiring that applications of probability laws fix values of propositional variables
using ways the agent grasps propositions. The requirement discards opaque desig-
nations of propositions, such as “Frege’s favorite proposition,” because they make
probabilities inaccessible. However, direct reference creates distinct full expres-
sions of a single proposition. Assigning to a propositional variable the proposition
that Tully is Cicero is just as transparent as assigning the proposition that Cicero
is Cicero. Both sentential expressions of the proposition are standard names of
propositions. Both furnish ways of grasping a proposition. Both are in the agent’s
repertoire. There are no grounds for dismissing the assignment of the proposition
that Tully is Cicero as there are for dismissing the assignment of Frege’s favorite
proposition. There are no grounds for saying that the agent does not identify the
proposition that Tully is Cicero. He identifies the proposition even if he does not
know that it is the same as the proposition that Cicero is Cicero. The problem of two
probabilities for the same proposition, when it arises from direct reference, cannot
be resolved by declaring one probability to be unknown.

Direct reference creates cases in which an agent knows a proposition and its
probability given a way of grasping it but does not know that two ways of grasp-
ing a proposition yield the same proposition. Using independently the two ways of
grasping the proposition, he assigns it two probabilities. In the example, the agent
knows the proposition that Cicero is Cicero and knows the proposition that Tully is
Cicero but does not know that they are the same proposition because he does not
know that Tully and Cicero are the same person.

Suppose that because of direct reference a proposition has two probabilities,
each according to a different way of grasping the proposition. That plainly violates
the laws of probability. Inconsistent probabilities also upset principles of rational
choice. The expected utility principle licenses use of any partition of states. To in-
stantiate the principle, a state variable si is assigned a proposition as value. The
assignment is indifferent among ways of grasping the proposition. However, to use
the principle’s instance, an agent adopts a way of grasping the proposition assigned.
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One has not specified a propositional variable’s value adequately for applications
unless one specifies a way for the agent to grasp the proposition. That ensures the
agent’s access to its probability but also makes the principle’s application sensitive
to various ways of grasping the same proposition.

Suppose that an agent frames a decision problem using certain ways of grasp-
ing propositions that form a partition of possible states. Those ways of grasping
the propositions influence his assignment of probabilities to the propositions. Then
the probabilities influence the expected utilities of options and whether an option
maximizes expected utility. An inconsistency in decision recommendations arises
if the agent also frames the decision problem using different ways of grasping the
same states, and they generate different probabilities for the states and therefore a
different ranking of options according to expected utilities.

To resolve the problem of direct reference, one must deal with the problems it
causes for the laws of probability and the principle of expected utility maximization.
Later sections make a proposition’s probability relative to a way of grasping the
proposition. In my view, the inconsistencies in probabilities that direct reference
creates are not defects in assignments of probabilities but defects in representations
of probabilities.

Alternatives to Relativization

The laws of probability applied to degrees of belief appeal to idealizations. For in-
stance, they treat the degrees of belief of ideal agents, who are logically omniscient.
Should the laws incorporate the additional idealization that agents know for any two
ways of grasping a single proposition that they yield the same proposition? Because
such knowledge requires empirical information, demanding it is counter-productive.
The laws’ objective is to treat agents with incomplete empirical information, and
so they must accommodate ignorance that two ways of grasping a proposition yield
the same proposition. They cannot meet their objective if they dismiss such igno-
rance. Similarly, restricting the laws to propositions whose probabilities are constant
with respect to ways of grasping them is counter-productive. To furnish a general
treatment of degrees of belief, the laws must dispense with that restriction.

I seek a resolution of the problem of direct reference that minimally revises prob-
ability theory. Relativizing a proposition’s probability to a way of grasping the
proposition does this. It allows an agent’s grasp of a proposition to influence the
probability she assigns the proposition, just as her evidence influences that assign-
ment. It gives her access to her assignment and allows her to state it when furnished
the way of grasping the proposition.

A formally equivalent alternative to this relativization takes a probability’s object
to be a pair composed of a proposition and a way of grasping it. If a probability’s
object were expanded this way, then probability’s attention to truth would narrow to
the truth of the pair’s first component. The second component would just furnish a
means of assessing the first component’s truth.



Probabilities in Decision Rules 307

Although a conservative response to the problem of direct reference may take
various forms, some responses to the problem are not conservative. They necessitate
major changes in probability theory. This section reviews their drawbacks.

One response to the problem of direct reference is to make the objects of proba-
bilities finer-grained than propositions. Let them be ways of grasping propositions,
for instance. “Cicero is Cicero” and “Tully is Cicero” yield two ways of grasping the
same proposition. Let those ways of grasping the proposition be objects of probabil-
ities. Their probabilities may be the probabilities that they yield true propositions.
The literature suggests many ways of fleshing out this response. A way of grasp-
ing a proposition might be a narrow rather than a wide content of a thought with
internal rather than external individuation. It might be a concrete, particular mental
representation, and might involve private rather than socially shared concepts.

Suppose that ways of grasping propositions are sets of centered-worlds. Lewis
(1983) defines a centered world as a pair consisting of a world and an individual
in the world. Chalmers (2002) adds a time in the world to the world’s center. Other
definitions are possible, too. Specifying a world’s center accommodates direct refer-
ence to individuals. However, sets of centered worlds do not have enough structure
to distinguish necessary truths. Moreover, the sets do not distinguish the ways of
grasping a proposition that the sentences “He is in danger” and “I am in danger”
furnish in cases where their subjects refer to the same individual.

Suppose that ways of grasping propositions are epistemic intensions, as Chalmers
(2002) characterizes them. These are functions from scenarios, or epistemic possi-
bilities, to truth-values, and so may be represented by sets of scenarios. Scenarios are
representations of centered worlds. Hence the objections to taking sets of centered
worlds as objects of probability carry over to epistemic intensions. Also, epistemic
intensions are a type of narrow content. Truth according to a scenario is not truth
according to a centered possible world, for a scenario may contain impossibilities
such as the non-identity of Tully and Cicero. Not being bearers of truth-values in
the ordinary sense, epistemic intensions are not apt for probability assignments.
Chalmers, in fact, takes belief to attach not to epistemic intensions but rather to
two-dimensional intensions that comprise both epistemic intensions and standard
intensions going from possible worlds to truth-values. His two-dimensional account
of belief resembles a relativization of propositional belief to ways of grasping
propositions.

Several general problems also caution against taking ways of grasping propo-
sitions as objects of probabilities. These problems do not presume any particular
interpretation of ways of grasping propositions. First, it may turn out that a single
way of grasping a proposition yields different propositions in different contexts.
This happens if factors such as the character of an indexical are involved in ways
of grasping propositions. Then the probability assigned to the way of grasping a
proposition must be relative to a context. However, applying the probability laws
requires combining objects of probability. How can one combine ways of grasping
propositions relative to different contexts? For example, suppose that “I am hungry”
furnishes a way of grasping a proposition, and it is relative to contexts including
times. A combination of its uses at different times is not relative to any time, but
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needs relativization to yield an object of probability. Instead of devising a way of
combining context-relative ways of grasping propositions, it is simpler to combine
propositions, as traditional probability theory does. It is more conservative to assign
probabilities to propositions relative to ways of grasping them.

Second, it may turn out that ways of grasping propositions are private, not shared
among people. Then making them objects of probabilities makes it hard to explain
cases in which we say two people assign a probability to the same object. Cases
of agreement and disagreement concerning probabilities become complicated. It is
simpler to treat them as cases in which people appraise the same proposition, each
according to his grasp of it.

Third, in special cases an agent may assign a probability to a proposition without
adopting a way of grasping it. For example, an agent may assign the same probabil-
ity to every atomic proposition of an algebra, thus distributing probability uniformly
over the atoms, without entertaining each proposition individually. This may happen
if propositions are objects of probability under a null relativization to ways of grasp-
ing propositions. But it cannot happen if ways of grasping propositions are objects
of probability.

Fourth, taking ways of grasping propositions as objects of probability disregards
probability’s focus on truth. Ways of grasping propositions are not fine-grained
propositions. Even if represented by functions from worlds to truth-values, they
yield a truth-value only by first yielding a proposition. Ways of grasping a propo-
sition, if assigned probabilities, have probabilities parasitic on the probabilities of
propositions. Therefore, nothing grounds two probability assignments to two ways
of grasping the same proposition. Even taking account of structural considerations,
the same truth-conditions govern the propositions provided by the sentences “Cicero
is Cicero” and “Tully is Cicero.” Associated ways of grasping propositions have
the same derivative truth-values because those truth-values derive from the same
proposition. Even if the two ways of grasping a proposition are distinct objects of
probability, their probabilities’ attention to the same truth-conditions align their val-
ues. The cognitive difference between the expressions of propositions does not yield
a difference in truth-conditions to ground a difference in probability assignment. The
objects of probabilities cannot differ in probability despite being governed by the
same truth-conditions unless their probabilities are relative to different contextual
features. Simply making the objects of probability fine-grained, without relativiz-
ing probabilities to fine-grained contextual features, leaves the problem of direct
reference unresolved.

Another rival of relativization, taking the objects of probabilities to be sentences
interpreted by contexts, faces a similar objection. The probabilities of sentences
are parasitic on the probabilities of propositions they express. Suppose that two
sentences express the same proposition although an agent does not realize this.
For instance, an agent may not know that “It is raining” and the French sentence
“Il pleut” express the same proposition. Nothing grounds an assignment of different
probabilities to those sentences. Because they express the same proposition, they
have the same truth-conditions. Probability assignments attend only to those truth-
conditions and generate the same value for each sentence.
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In general, although thoughts and sentences bear truth-values, propositions are
the basic bearers of truth-values. The truth-values of propositions yield the truth-
values of sentences and thoughts. So making thoughts or sentences the objects of
probabilities does not handle cases in which an agent assigns two probabilities to the
same proposition. This phenomenon demands another revision. The revision must
change the interpretation of probability to make a proposition’s probability depend
not only on the proposition but also on a way of grasping it.

To conclude this section, I examine an attempt to resolve the problem of di-
rect reference by appealing to metalinguistic propositions. This approach takes
belief that Cicero is Cicero and doubt that Tully is Cicero as, respectively, belief
that “Cicero is Cicero” is true and doubt that “Tully is Cicero” is true. According
to it, objects of probabilities are not sentences but propositions about sentences.
Although the truth-conditions for the two sentences mentioned are the same, the
truth-conditions for the propositions about the two sentences differ. For instance, the
propositions’ truth-values depend on different empirical facts about the denotations
of names.

This metalinguistic approach fails to resolve the problem of direct reference.
First, it is unfaithful to the phenomenon of belief. Suppose that “p” abbreviates an
English sentence (and to dispense with corner quotations marks suppose that the
abbreviation persists within ordinary quotation marks). Belief that p is not the same
as belief that “p” is true. That expansion generates an endless ascent of metabeliefs.
According to it, belief that “p” is true is belief that “‘p’ is true” is true, and so on.
Second, the objections to taking belief’s objects to be sentences rather than propo-
sitions carry over to the view that belief’s objects are propositions about sentences
being true. For example, for a French speaker, belief that it is raining is not be-
lief that “It is raining” is true. Third, the problem of direct reference resurfaces at
the metalevel in cases with two names for the same sentence. A person may be-
lieve that “7C 5 D 12” is true and disbelieve that Frege’s favorite sentence is true
although “7C 5 D 12” is Frege’s favorite sentence. Similarly, an agent may affirm
the sentence “Cicero is Cicero” and deny the sentence “That sentence is true” in a
context where “that sentence” denotes “Cicero is Cicero.” He may not know that
the demonstrative has that denotation. For these reasons, probability theory needs
another approach to the problem of direct reference.

Relativization

All accounts of subjective probability recognize that an assignment of a probability
to a proposition is relative to an agent and to a time. To resolve the problem of direct
reference, I make it relative also to a way of grasping the proposition. Accordingly,
an agent assigns a probability to a proposition at a time given a way of grasping the
proposition. This relativization of probability assignments still takes the object of a
probability to be a proposition but lets a contextual factor influence that assignment.

Crimmins (1992) takes belief as a relation between an agent, time, proposition,
and mental representation of the proposition. According to Crimmins, a report that
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Caius believes that Cicero is Cicero may be true while a report that Caius believes
that Tully is Cicero is false because the reports supply different mental representa-
tions to which the beliefs reported are relative. In particular, the report that Caius
believes that Tully is Cicero may be a false report because the context it creates
indicates a mental representation by which Caius does not belief the proposition.
Weirich (2004a) extends Crimmins’ account of belief to degrees of belief. This sec-
tion elaborates the extension’s consequences for the laws of probability. However, it
replaces a mental representation of a proposition with a way of grasping the propo-
sition. A way of grasping a proposition may be interpreted, following Crimmins, as
a concrete particular mental representation but may be interpreted other ways, too,
for example, as abstract and shareable. To maintain neutrality about side issues, I do
not articulate an account of a way of grasping a proposition.

McKinsey (1999) uses “mode of presentation of a proposition,” a term roughly
interchangeable with “way of grasping a proposition,” to mean a traditional Fregean
sense. However, I use the technical term “way of grasping a proposition” without
any commitment to Frege’s view. Using the term does not indicate a stand on issues
distinguishing a mode of presentation of a proposition, a guise in which a proposi-
tion appears, and a mental representation of a proposition.

My introduction of ways of grasping a proposition is minimal but clarifies some
important points. A way of grasping a proposition enables an agent to understand
a proposition, to know it, and to identify it. A sentential expression of a proposi-
tion provides a standard way of grasping a proposition. Also, I assume that ways
of grasping propositions may be combined to form compound ways of grasping
compound propositions. I use logical operations such as disjunction to form such
compounds.

Let P.s; w/ stand for the probability of a proposition s given a way w of
grasping that proposition. Consider an agent’s probability assignment to the propo-
sition that Cicero is Cicero and to the proposition that Tully is Cicero in a case
where the agent is certain of the proposition understood using its first expression
but doubts the proposition understood using its second expression. In this case
P.C D C; w1/ ¤ P.T D C; w2/. The probabilities concern a single proposi-
tion, but the ways of grasping that proposition differ. That difference explains the
difference in probabilities.

How does making probabilities relative to ways of grasping propositions affect
the laws of probability? First, it prevents the embarrassment of assigning two prob-
abilities to the same proposition relative to the same indices. It allows the laws to
maintain single-valued probability assignments. Second, it requires rewriting the
laws of probability to accommodate the extra index. The expected utility principle
also needs rewriting to accommodate relativizing a state’s probability to a way of
grasping the state. The resultant relativization may generate different rankings of
options relative to different ways of framing states.

The standard probability laws handle the indices of person and time by fixing
them. The probability laws apply to just one person’s degrees of belief at just one
time. Can the index for a way of grasping a proposition be fixed, too? One might
specify for each proposition exactly one way of grasping the proposition, perhaps a
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way of grasping it indicated by a standard sentential expression of the proposition.
Textbook problems do this implicitly. However, this approach accommodates rela-
tivization by making it irrelevant. I want to preserve the relevance of relativization
and use it to address the problem of direct reference. I seek an approach that handles
cases in which the same proposition receives different probabilities given different
ways of grasping it. Such cases require rewriting the laws of probability and the
principle of expected utility maximization.

Applications of the probability law that P.s/ D 1 if s is an a priori truth may
not supply, along with a proposition assigned as a value for the variable s, a way of
grasping the proposition. I supply the missing factor by adding to the law another
variable that takes as a value a way of grasping a proposition. The additional variable
makes the law more sensitive: P.s; w/ D 1 if s is an a priori truth when grasped
in way w. The relativization also governs the a priori status of a proposition. The
proposition s is a priori relative to a way of grasping it. It is a priori relative to w
if grasped via w its truth-value is apparent to any rational ideal agent. It does not
matter whether employing w requires having had certain experiences.

The standard probability laws presume that a probability assignment is a single-
valued function that yields just one probability for a proposition. The laws do not
regulate a set-valued or multi-valued function and for such functions leave un-
specified relations between probabilities such as P.s/ and P.�s/. Independently
relativizing each proposition’s probability to a way of grasping it weakens the laws’
inferential power. The same holds for the expected utility principle’s inferential
power. Relativizing for multiple ways of grasping the same proposition risks de-
stroying the structure standard principles impose on probabilities and decisions.
Relativizing should take care to preserve that structure as much as possible.

Sometimes, according to an agent’s epistemic standards, his evidence is insuffi-
cient for precise probability assignments. For instance, the probability of rain may
have admissible values ranging from 0.3 to 0.7. Skyrms (1990, pp. 66–67) uses
sets of entire probability assignments to represent imprecise probability judgments.
Each admissible value of a proposition’s probability is relative to an admissible to-
tal probability assignment. This representation of imprecise probability judgments
preserves the structure the probability laws impose on probabilities relative to the
same total probability assignment. Relativization to a total probability assignment
accommodates imprecision without losing traditional structure.

To preserve structure among probabilities, relativization for intensionality must
also be coordinated. It cannot yield probabilities that are independently relative to
ways of grasping propositions. Preserving structure requires relativizing complete
probability assignments to ways of grasping propositions. A proposition receives
several probabilities with respect to several ways of grasping it only in the context
of several total probability assignments, each of which obeys the standard laws. As
a result, given each total probability assignment P.s; w/ equals 1 � P.�s;�w/,
where �w is a compound way of grasping �s formed from w using negation. The
other laws relativized for ways of grasping propositions similarly hold with respect
to total probability assignments.
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The next section rewrites the probability laws relativizing a proposition’s
probability first to ways of grasping a proposition and then to total probability
assignments. The relativization to total probability assignments rebuilds structure
after relativization to ways of grasping a proposition breaks it down.

Relativizing the Laws of Probability

To set the stage for rewriting the probability laws, let me note how the phenomenon
of direct reference bears on their basic design, in particular, on their application to
propositions and their attention to a priori features of propositions.

In applications of the probability laws to sentences, an algebra generated by
atomic sentences yields the compound sentences to which probabilities attach. Sup-
pose that “C ” stands for Cicero and “T ” stands for Tully. If an atomic sentence s is
“C D C ,” then �s is “C ¤ C ” and not “T ¤ C .” Hence if the probability laws
treat sentences instead of propositions, they do not need rewriting to handle multi-
ple ways of grasping a proposition. Applying the laws to sentences in effect restricts
them to a single way of grasping each proposition. Retreating to assignments of
probabilities to sentences thus dodges the problem of direct reference. Nonetheless,
that retreat is unappealing. The laws gain generality when applied to propositions,
and that gain compensates for wrestling with direct reference.

Also, treating logical truth as a classification for propositions, if “C D C ” ex-
presses a logical truth so does “T D C ” because the sentences express the same
proposition. Granting that logical truths receive maximum probability, the proposi-
tion each sentence expresses has a probability of 1. This is an awkward consequence
of treating logical truths as propositions. The phenomenon of direct reference there-
fore counts against that view. It reinforces the reasons in the section on Applications
of Probability Laws for taking logical truths as sentences and making the probability
laws attend to a priori features of propositions.

Because the same proposition may be grasped in ways differing in cognitive sig-
nificance, a proposition’s classification as an a priori truth is relative to a way of
grasping the proposition. Take the proposition that Cicero is Cicero. By itself, it is
not classified as a priori or not a priori. Its status is relative to a way of grasping it.
Although it is a necessary truth independently of ways of grasping it, its epistemic
status is relative to a way of grasping it typically furnished by its expression. The
proposition that Cicero is Cicero has a priori status grasped as a self-identity but
not grasped using “T D C.” It may not be a priori even grasped using “C D C” if
the agent is unaware of the co-referentiality of the two occurrences of “C” in that
sentence. The a priori inconsistency of a pair of propositions is similarly relative
to ways of grasping its elements. The propositions that Cicero is Cicero and that
Cicero is not Cicero are not inconsistent a priori relative to ways of grasping those
propositions using “C D C” and “T ¤ C.” Relative to grasping the pair as a propo-
sition and its denial, however, they are inconsistent a priori. Given those ways of
grasping the propositions, their inconsistency is apparent to a rational ideal agent.
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To simplify relativization of the probability laws, I reformulate them for
cognitively unlimited agents only and postpone their extension to cognitively lim-
ited agents. Also, I assume that every relevant proposition has a precise probability
assignment. Standard methods of accommodating imprecision may add generality
later. I adopt a notational convention, too. If w is a way of grasping s and v is a way
of grasping r , then w _ v is a way of grasping s _ r .

Given these stipulations, making probabilities relative to ways of grasping propo-
sitions yields the following new axioms:

For all s and w such that w is a way of grasping s, P.s; w/ � 0.
For all s and w such that s is an a priori truth grasped via w; P.s; w/ D 1.
For all s, w, r, v such that s grasped via w and r grasped via v are inconsistent a
priori, P.s _ r; w _ v/ D P.s; w/C P.r; v/.

The theorem stated earlier becomes: For all s, w, r, v such that s grasped via w
and r grasped via v are equivalent a priori, P.s; w/ D P.r; v/.

As the previous section mentioned, this relativization to ways of grasping propo-
sitions puts in jeopardy proofs of traditional theorems because the proofs use a priori
properties and relations of propositions. For example, the proof of the theorem that
P.�s/ D 1 � P.s/ uses the a priori truth of s _ �s and the a priori inconsistency
of the disjuncts. Perhaps s _ �s is not an a priori truth if s is grasped via w and �s
is grasped via �v, where v is a way of grasping s different from w. To deal with the
problem, one may fix the way of grasping s throughout the theorem’s proof. Let the
theorem say that P.�s; �w/ D 1 � P.s; w/ where �w is a way of grasping �s
via negation and w. Then appealing to omniscience about a priori matters, the proof
succeeds. For an agent with that omniscience, s _ �s is an a priori truth if grasped
via w _ �w. Similarly, s and �s are inconsistent a priori if grasped via w and �w
respectively.

How may one fix ways of grasping propositions so that proofs of theorems
succeed? Traditional laws make a proposition’s probability relative to an algebra
containing it. Let a way of grasping each atomic proposition accompany the propo-
sition in the algebra that furnishes the objects of probability. Then relativize each
compound proposition of the algebra to a way of grasping it obtained from analo-
gous compounding of the ways of grasping the atomic propositions that generate it.
The compound way of grasping the compound proposition mirrors the structure of
the proposition. Relativized this way, the new laws of probability govern a rational
agent’s total assignment of probabilities relative to an algebra. They fix a way of
grasping a proposition throughout inferences involving the probability laws.

This relativization accommodates the problem of direct reference without sac-
rificing the structure the standard probability laws impose. It just generalizes the
standard probability laws. The standard laws are recoverable as a special case of the
new laws by fixing the ways in which atomic propositions are grasped. Relativiz-
ing to ways of grasping propositions does not destroy the structure the probability
laws impose. It just elaborates the laws’ traditional relativization to an algebra of
propositions.
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How much freedom does the relativization allow? Whereas the standard pre-
sentation of the probability laws presumes that a rational ideal agent’s assignment
of probability to a proposition will not vary from algebra to algebra, I allow the
assignment to vary if acceptable ignorance of empirical matters accounts for the
variation.

To illustrate the new probability laws, let me apply them to the example con-
cerning beliefs about Cicero and Tully. To begin, consider the law concerning
propositions that are true a priori grasped a certain way. Consider the proposition
that Cicero is Cicero. Grasped as asserting a self-identity, it is an a priori truth, and
so has probability 1. In contrast, grasped using “Tully is Cicero,” it is not an a pri-
ori truth and so may have probability less than 1. Also, the proposition grasped as
a self-identity is not a priori equivalent to the proposition grasped using “Tully is
Cicero.” So the proposition may receive different probabilities under those two ways
of grasping it without violating the theorem concerning a priori equivalence. To use
the probability laws to form degrees of belief, an agent must know how she grasps
propositions. The cognitively ideal agents the laws govern have this knowledge.
However, even an ideal agent may not know that she grasps the same proposition
two ways.

Although I have relativized probability to an algebra of propositions grasped
certain ways, I have not relativized probability to ways of grasping the truth-
functions generating the algebra. This is not necessary because an ideal agent grasps
a truth-function only if she grasps its effect on the truth-conditions of compound
propositions formed with it. Consequently, a rational ideal agent does not assign
different probabilities to a compound proposition according to different ways of
grasping the truth-functions it involves.

Expected Utility

Kahneman and Tversky (1979, pp. 286–288, 1982, pp. 166–168) demonstrate the
influence on decisions of frames for decision problems. Take, for example, the case
of the rare Asian disease. The disease strikes 600 people. You are a public health
official and must decide on a course of treatment.

Situation I. The available treatments have the following outcomes:
Treatment A. 200 people are saved for sure.
Treatment B. A probability 1/3 of saving all 600 and a probability 2/3 of saving 0.
Situation II. The available treatments have the following outcomes:
Treatment C. 400 people die for sure.
Treatment D. A probability 1/3 that none die and a probability 2/3 that all 600 die.

Most people pick treatment A over treatment B in situation I, and treatment D
over treatment C in situation II. But the situations are the same and are only de-
scribed differently. Treatment A is equivalent to treatment C, and treatment B is
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equivalent to treatment D. Situation II represents outcomes as losses, whereas Situa-
tion I represents them as gains with respect to a lower reference point. The two ways
of framing the same decision problem create inconsistent preferences. People are
more ready to take chances to avert possible losses than to secure possible gains. So
representing outcomes as losses rather than gains increases willingness to take risks.

Many other decision theorists also observe that different ways of framing de-
cision problems lead to different choices, for example, Resnik (1987, pp. 8–10),
Rubinstein (1998, p. 17), van Fraassen (2002, pp. 103–108), Peterson (2003,
pp. 23–33), and Schick (2003, Chap. 2). In cases where unequally valued choices
emerge from two representations of the same decision problem, usually at least one
representation, or its employment, is mistaken. Rationality does not support both
decisions. In particular, the framing effects Kahneman and Tversky describe disap-
pear if the agent recognizes the logical equivalence of different ways of framing the
same decision problem. Logic and a priori knowledge eliminate common framing
effects.

Although for an ideal agent with precise probability and utility assignments a
decision’s rationality is generally independent of framing, direct reference creates
exceptional cases. It yields multiple ways of understanding the same proposition.
A rational agent may understand a proposition two ways without realizing that each
way yields the same proposition. The probability an agent assigns to a state depends
on his way of grasping it. Each way of grasping it provides an understanding of the
proposition, even if some ways of grasping it better display its truth-value. Rational
framing effects are possible, therefore. The framing effects direct reference gener-
ates do not disappear given logical omniscience and perfect cognitive capacities.
They arise because of ignorance of empirical matters.

In preferences concerning treatments of the Asian disease, a typical agent un-
derstands the treatments and their possible outcomes but does not recognize that
some outcomes are logically equivalent. Limited logical perspicuity may excuse
that failure. Other decision problems generate another type of excuse. Suppose that
an agent can buy for $0.50 a gamble that pays $1.00 if Frege’s favorite proposition
is true and nothing otherwise. If he does not know Frege’s favorite proposition, he
decides without understanding the proposition on which the outcome turns. That
ignorance may excuse a failure to buy the gamble although it guarantees a profit of
$0.50 because Frege’s favorite proposition is that 7C 5 D 12.

Cases involving direct reference put aside both types of excuses. Suppose an
agent is ideal and understands the propositions at issue. He declines an opportunity
to buy for $0.50 a gamble that pays $1.00 if Tully is Cicero and nothing otherwise.
Although he understands the bet and reasons flawlessly, he is ignorant of relevant
empirical matters. He does not know that Tully is Cicero, and so passes up a chance
to guarantee $0.50 profit. He assigns a probability of 0.5 to the proposition at issue,
grasping it as a general identity rather than as a self-identity.

The decision’s rationality depends on the way the agent frames the decision prob-
lem. His decision has a proposition as object, a first-person action proposition. The
agent may grasp the proposition various ways. His decision’s rationality depends
not only on the proposition but his grasp of it. The proposition that I bet that Cicero
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is Cicero is identical to the proposition that I bet that Tully is Cicero. Nonetheless,
the presentations of the proposition have different cognitive significance. Declining
the gamble is irrational if the gamble is framed as a wager that Cicero is Cicero
but is rational if the gamble is framed as a wager that Tully is Cicero. Indeed, the
gamble has different expected utilities according to different ways of grasping the
states that generate its expected utility. For example, one partition of states presents
the state that Cicero D Cicero and the state that Cicero ¤ Cicero. Another parti-
tion presents the state that Tully D Cicero and the state that Tully ¤ Cicero. The
expected utilities of options vary with the partition presented when probabilities of
states are relativized to ways of grasping states. It may be rational to bet that Cicero
D Cicero and not to bet that Tully D Cicero because of framing effects. That is, one
may rationally accept and reject the same bet offered twice if the offers present the
bet differently.

This example assumes that bets are individuated according to propositions bet
upon without regard for the way in which the propositions are grasped. A bet that
Cicero D Cicero is the same as a bet that Tully D Cicero despite differences in
the pivotal proposition’s presentation. The proposition’s truth-value settles the bet
independently of any bettor’s grasp of it. The proposition is an objective element of
the agreement between bettors.

Resolving the problem of direct reference requires generalizing the principle of
expected utility to accommodate probability’s, and hence expected utility’s, rela-
tivization to ways of grasping propositions. The reformulation has two steps. First,
one assigns to each atomic state of an algebra furnishing partitions a way of grasp-
ing that state and assigns to compound states analogous compound ways of grasping
them. Second, one demands invariance of an option’s expected utility only with re-
spect to partitions formed using the same algebra.

This reformulation of the expected utility principle recognizes the influence of
framing effects on rational choice in cases such as the example. An option’s ex-
pected utility is relative to a partition of states, whose probabilities are relative to
ways of grasping them. Hence, a ranking of options according to expected utilities,
and an option’s having maximum expected utility, are relative to ways of grasping
propositions. Ways of grasping propositions affect rational behavior, and expected
utilities must take account of them to yield principles of rational behavior.

The relativization is conservative. If an agent makes a set of decisions using the
same algebra of states relative to constant ways of grasping them, then standard rep-
resentation theorems ensure that the agent’s assignment of probabilities to the states
may be inferred from the decisions, given satisfaction of the theorems’ assumptions
about the rationality of the agent and the structure of the set of decisions.

It is possible to individuate decisions according to frames. For example, one may
distinguish a decision to bet that Cicero is Cicero from a decision to bet that Tully
is Cicero because the decisions involve different ways of grasping their common
content. In analogy with belief, decision may be a relation between an agent, time,
proposition, and way of grasping the proposition. However, even making this rea-
sonable move, a decision still needs relativization to a frame. For a decision so
specified may nonetheless maximize expected utility with states framed one way
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and not maximize expected utility with states framed another way. For example, the
decision to bet that Cicero is Cicero may maximize expected utility with respect
to states presented as fCicero is Cicero, Cicero is not Cicerog but not maximize
expected utility with respect to the same states presented as fTully is Cicero, Tully
is not Cicerog.

Relativizing decisions to ways of grasping their contents and relativizing ex-
pected utilities to ways of grasping atomic states sanctions posting different odds
for bets on the same proposition. Such postings invite a Dutch book, a combina-
tion of bets such that one loses money no matter what. However, falling victim to a
Dutch book is not irrational, even for an ideal agent, if the necessity of losing money
is not a priori but rather a posteriori. For example, suppose that an agent sells for
$0.50 a gamble that pays $1.00 if Tully is Cicero and nothing otherwise. That wager
may seem incoherent, but is rational if the agent’s grasp of the proposition at issue
prompts him to assign it a probability of 0.5. Ignorance of the empirical fact that
Tully is Cicero excuses the agent’s wagering in a way that ensures a loss of $0.50.

Given commonplace idealizations, a decision is rational if it maximizes utility
with respect to the agent’s representation of the decision problem, provided that
his representation is acceptable. Two points about this standard of rationality are
especially important. First, the standard is not utility maximization with respect to
some frame or other. Rather, it is utility maximization with respect to the frame the
agent actually uses, even if alternative frames are acceptable. A decision’s rationality
depends on the agent’s way of framing his decision problem, that is, his way of
grasping relevant propositions.

Second, a decision’s evaluation relative to a frame, if comprehensive, considers
whether the frame and its use are reasonable. Should the agent have used a different
frame? Should the agent have noticed his frame’s equivalence to other frames point-
ing toward different decisions? Should the agent have sorted out conflicts among
recommendations arising from various frames before deciding? Rationality’s toler-
ance of different decisions with respect to different frames presumes that an agent
has made a reasonable effort to resolve inconsistencies among frames. In particu-
lar, it assumes that he has investigated the identity of propositions as much as his
decision problem and his abilities warrant. Granting a reasonable effort to achieve
coherence, remaining failings acceptable in the sense of Weirich (2004b, Chap. 6)
do not discredit the decisions they influence.

Relativizing a decision’s rationality to an agent’s frame makes identifying that
frame important. How does an agent frame her decision? Sometimes an agent’s
deliberations adopt a single frame. Then her frame is clear. If an agent frames a
decision two ways, what matters is the frame her deliberations use to reach her de-
cision. Sometimes an agent decides without deliberation. Then her frame is less
clear. Perhaps the main evidence for a frame is the decision itself. The agent grasps
the proposition that forms the content of her decision. The way she grasps it in-
dicates the frame for her decision. If she takes herself to have bet that Cicero is
self-identical, then the frame for her decision is clear. In general, a decision’s ratio-
nality is relative to the way the agent frames her decision in deliberations yielding
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it if she consciously uses a particular frame, and is relative to the frame that is the
best explanation of her decision if she does not consciously use a particular frame.

In cases where an agent’s frame is indeterminate, her decision’s rationality may
also be indeterminate. For example, suppose an agent may frame her decision prob-
lem multiple ways, and the frame that steers her decision, if any, is indeterminate.
If different frames support different decisions, an evaluation of her decision’s ratio-
nality may lack an adequate metaphysical foundation. Evaluations should not move
beyond the grounds for them.

Conclusion

Human rationality is “bounded.” More precisely, the requirements of rationality are
sensitive to human limits. Direct reference draws attention to a person’s inability to
identify propositions presented in different guises. Rationality recognizes that limit.
This paper presents probability and decision principles that accommodate it. They
retain the standard idealization of logical omniscience but dispense with knowledge
of necessary truths, in particular, a posteriori necessary truths concerning identities
of propositions. They apply to agents ignorant of such empirical matters.

Relativizing probabilities to ways of grasping propositions improves accounts
of rational behavior because relativizing brings greater realism. This realism bene-
fits economics and other behavioral sciences. It benefits philosophy, too. It makes
normative decision rules psychologically realistic without sacrificing precision. It
generalizes probability and decision principles so that they cover cases of incom-
plete information about identities of propositions.

My main conclusion is that a decision’s rationality depends on the way the agent
frames his decision problem. The decision’s rationality is relative to that frame even
if the agent is fully rational, cognitively ideal, and assigns precise probabilities and
utilities to all propositions relevant to his decision problem. His frame is as sig-
nificant as his information and goals in an evaluation of his decision’s rationality.
A comprehensive evaluation of his decision considers his way of understanding per-
tinent propositions.
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Propensities and Frequencies:
Inference to the Best Explanation�

James H. Fetzer

Perhaps no principle of reasoning holds more promise for understanding the
foundations of scientific inquiry than that of inference to the best explanation.
In its general form, this is a species of inductive inference that involves selecting
one member from a set of alternative hypotheses as the hypothesis providing the
best explanation for the available evidence. Alternatives that explain more of the
available evidence are preferable to those that explain less, while those that are
preferable when sufficient evidence is available are also acceptable. Acceptable
hypotheses may still be false, making reasoning of this kind fallible, but remain the
most rational of those alternatives under consideration.

This approach toward understanding science has often been associated with the
name of Charles Peirce, whose conception of abductive inference properly qualifies
as a mode of creative conjecture that might best be envisioned as a psychologi-
cal process rather than as a logical procedure, which functions as a heuristic as
opposed to an algorithm. Among the points that I shall address is that abductive in-
ference complements inference to the best explanation as an essential component of
a conception of scientific inquiry called “abductivism”, where abductivism seems to
supply a more adequate reconstruction of science than do its “inductivist”, “deduc-
tivist” and “hypothetico-deductive” alternatives.

It has often been said, in the spirit of Occam, that simpler theories ought to be
preferred to complex alternatives. That maxim, however, properly implies that sim-
pler theories are preferable theories only when they are also adequate. If we assume
that science aims at the discovery of laws of nature that have the form of general
principles that are applicable for purposes of explanation and of prediction, then
abductivism not only supplies a more complex theory of science than its inductivist
and deductivist alternatives, but also appears to be the only account that is adequate.
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Establishing that this is indeed the case, however, not only presupposes establishing
the conditions that scientific explanations have to satisfy but also entails establishing
the limitations of these alternative accounts.

Measuring degrees of goodness of explanations, where some are better than oth-
ers, requires distinctions between possible and actual explanations and between
probabilistic and deterministic explanations, where differences between probabil-
ities as propensities and probabilities as frequencies matter most. The analysis of
science advocated here integrates a Popperian conception of natural laws with a
modified Hempelian account of explanation, where Hacking’s law of likelihood (in
nomic guise) serves a crucial inferential function. These elements yield a coher-
ent point of view that succeeds where its alternatives cannot, while clarifying and
illuminating fundamental aspects of ontology and of epistemology.

The Inductivist Model

The place to begin, no doubt, is with the inductivist conception, which is both the
simplest and the least adequate account of scientific inquiry. Drawing inspiration
from Hume’s reduction of causation to relations of resemblance, temporal succes-
sion and spatial contiguity, this approach envisions deterministic laws as no more
than constant conjunctions between reference properties and attributes. Probabilistic
(or, better, statistical) laws are identified with relative frequencies in finite sequences
or as the limits of relative frequencies in infinite sequences. The most influential
20th C. representatives of this conception among philosophers, no doubt, have been
Hans Reichenbach and his student Wesley C. Salmon.

This approach envisions scientific inquiry as a process or procedure involving
four stages or steps, which are supposed to be followed in this sequence, namely
(see Fig. 1):

Observation 

Classification 

Generalization 

Prediction 

Fig. 1 The four stages of inductivism

where the fundamental principle of inference is “the straight rule”, namely: if m/n
observed As are Bs, then infer (inductively) that m/n As are Bs, provided that a
suitable number of As have been observed over a wide variety of conditions (see
Reichenbach 1937, 1949; Salmon 1967, 1971).
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A schematization of this approach is easily supplied, where the double-line
between premises and conclusion indicates that such an inference is inductive:

1a] m/n As have been observed to be Bs.
The sample of n is large and varied.
= = = = = = = = = = = = = = = = = = = = =
m/n As are Bs.

The definition of probabilities as relative frequencies, moreover, justifies the trans-
lation of conclusions of the form, ‘m/n As are Bs’, into logically equivalent proba-
bilistic hypotheses of the form, ‘P.B=A/ D m=n’, that might function as premises
in inductive explanations having more or less the following form:

1b] P.B=A/ D m=n.
x is an A.
= = = = = = = = = = = [m/n]
x is a B.

where the bracketed value ‘[m/n]’ is a logical probability that represents the truth
frequency with which conclusions of that form are true when premises of that form
are true, as Reichenbach (1949) proposed. This approach might incorporate a condi-
tion that [m/n] must equal or exceed some specific value, such as 1/2, for example,
for explanations or for predictions to be adequate.

Thus, such an approach could justify inferring from the premise that three fourths
of the rabbits in a sample have been observed to be white to the conclusion that three
fourths of all rabbits are white, from the premise that drinks of water have been
observed to quench thirst to the conclusion that water quenches thirst, from the
premise that bodies in free fall have been observed to accelerate at 32 fps/ps to the
conclusion that bodies in free fall accelerate at 32 fps/ps, and from the premise that
locations of planets orbiting around the Sun have been observed to be points on
elliptical paths to the conclusion that the orbits of the planets are elliptical, together
with corresponding explanations and predictions.

Inductivist Inference

Without doubt, inductivism provides a simple model of scientific inquiry that com-
bines a Humean conception of natural laws as constant conjunctions or as relative
frequencies with a principle of inference that appears to accommodate them. More-
over, when more evidence becomes available, conclusions that were previously
justified may be replaced by alternative conclusions in conformity with the require-
ment of total evidence. When science is assumed to aim at the discovery of relative
frequencies or their limits within sequences, the straight rule can be vindicated prag-
matically by the argument that it has the capacity to discover those values, if any rule
can, provided only they exist.
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The inductivist conception, however, encounters certain objections. When
interpreted algorithmically, it specifies that scientific inquiries have to begin with
observation. If this injunction means that scientists must observe everything that
could possibly be observed before proceeding to classification, then it would never
reach that stage, since there is an infinity of things that might be observed. Every
single event, such as the first time that Galileo dropped bodies in free fall from the
Tower of Pisa, has innumerable relations to other events, such as its distance from
the Moon, the Sun and other celestial objects, which could never be exhaustively
described. Thus, as Carl G. Hempel (1966) remarked, scientific inquiries, thus
conceived, could never get off the ground.

The reply that Reichenbach and Salmon would advance, no doubt, is that this
criticism involves attacking a straw man, because scientists never have to observe
everything that could possibly be observed before proceeding to classification. What
needs to be observed, they would say, does not include everything but only what is
relevant. The relevance of observations (experiments, measurements), however, de-
pends upon the prior specification of one or more hypotheses with respect to which
those observations become relevant. If observations only become relevant in rela-
tion to specific hypotheses, then inductivism is not right. The stages of inductivism
occur in the wrong order.

Moreover, although inferences from samples to populations are important, infer-
ences of this kind appear to be confined to the observable properties of observable
entities, where the only sense in which they allow inferences from the observed to
the unobserved is when the “unobserved” has simply not yet been observed! In-
ferences from observations about falling bodies might permit inferences about other
falling bodies, but would not permit inferences to non-observable properties, such as
gravitational attraction and relative mass. The achievements of Newton transcended
those of Galileo and of Kepler, not merely by their subsumption, but by subsuming
them by means of a theory.

Inductivist Explanation

Somewhat surprisingly, the inductivist account implies that the conditions for pre-
dictions do not necessarily coincide with those for explanations. Since probabilities
for attributes vary in different reference classes, singular events need to be assigned
to appropriate reference classes. When other properties make a difference to the out-
come – such as when water is salty as opposed to fresh, for example – their existence
can be accommodated through the supplemental principle of basing predictions
upon the narrowest reference class for which reliable statistics are available, as
Reichenbach recommended, a standard that applies in relation to the current state of
our statistical knowledge.

The conception that a property is statistically relevant to the occurrence of
another property when its presence or absence makes a difference to the relative fre-
quency with which that property occurs, however, could apply as an ontic rather than
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as an epistemic measure by imposing the more stringent condition of truth. Salmon
therefore proposed that the occurrence of singular events should be explained by
assigning them to the broadest homogeneous reference classes to which they belong
by taking into account every property of these events that is statistically relevant to
their attributes (Salmon 1971).

The statistical relevance criterion combined with the requirement of ontic homo-
geneity, however, has the uningratiating consequence of making statistical expla-
nations of singular events logically impossible, in principle. Attributes can occur
with relative frequencies relative to some of the properties of their predecessors
when those predecessors are unique, but since explanations of their occurrence are
required to take into account every property whose presence affects their relative
frequency, there is no theoretical latitude for discounting conjunctions of properties
instantiated by these events, which may or may not have other instances, relative to
which those attributes occurred (Fetzer 1981).

Thus, in any case in which the relative frequency for an attribute B is not equal to
one or to zero, there will always exist additional properties F of their predecessors A
that qualify as “statistically relevant”, on pain of contradiction. The conditions for
adequate predictions, it turns out, are not necessarily the same as those for adequate
explanations, because the result that every event occurs with a degenerate proba-
bility of one or zero does not preclude predictive adequacy. Every event occurs or
fails to occur, which is exactly what we want to know. But it vitiates the statistical
relevance theory of explanation.

Inductivist Regularities

While the implicit restriction to observable properties delimits the kinds of hypothe-
ses within the scope of inductivist procedure, explicit reliance upon the straight rule
itself raises other concerns. The large number and wide variety conditions are in-
tended to insure that samples are “random”, at least in the epistemic sense that
measures have been taken to guard against bias. The application of this rule is
equivalent to the decision to treat such samples as representative, where the relative
frequencies of properties within those samples are supposed to correspond to those
of the population entire. Yet this approach supplies no ontic rationale to explain why
that should be true.

The absence of an ontic rationale for the presumptive representativeness of epis-
temically random samples, which are believed to be unbiased because they reflect a
suitable number observed under a wide variety of conditions, is part and parcel of the
Humean character of the conception of laws as merely constant conjunctions or rela-
tive frequencies. Another ontic objection to the inductivist account thus becomes the
failure to differentiate between causation and correlation. Any two properties, how-
ever arbitrarily selected, such as shapes and colors, like round and red, occur with
some relative frequency during the history of the world. But they are not therefore
lawfully related.



328 J.H. Fetzer

Additional conditions have therefore been introduced, including the identifica-
tion of lawful regularities as those for which m/n converges to a limit p. Conditions
of insensitivity to place selection and of freedom from aftereffect have also been
proposed to distinguish laws from accidental generalizations, where a sequence
of instances of As may be said to be normal when its outcomes B (non-B, and
so on) have relative frequencies that neither depend upon those of their predeces-
sors nor differ from those for subsequences selected by taking every kth instance
(Reichenbach 1949, pp. 143–144). These sequences of As have to be infinite, how-
ever, since otherwise they cannot be satisfied for large k. Without infinite sequences,
therefore, laws of nature cannot exist.

The existence of infinite sequences within abstract contexts might pose no spe-
cial problems, but the existence of infinite sequences in physical contexts is another
thing. If there were an ontic rationale for epistemic randomness, then it might be
appropriate to view lawful regularities as subjunctive conditionals, for which proba-
bilities specify the limits with which specific attributes would occur if their reference
sequences were infinite, and accidental generalizations turn out to be regularities
without subjunctive counterparts. Unfortunately, the inductivist approach affords no
foundation for drawing such a distinction, apart from Hume’s “habits of mind”,
which are psychological rather than ontological.

The Deductivist Model

By insisting that laws have the force of prohibitions, therefore, Popper (1965) cap-
tured a crucial difference between natural laws and merely accidental regularities.
Unlike laws of society, for example, which can be violated and can be changed, laws
of nature cannot be violated and cannot be changed. Rather than begin with obser-
vation, moreover, deductivism envisions the introduction of hypotheses and theories
as a psychological process rather than as logical procedure, where their credibility
depends upon their ability to withstand our best efforts to refute them: they are cre-
ated or contrived as guesses or conjectures that are not derived from experience, but
instead tested by experience.

Popper’s emphasis upon corroboration as distinct from confirmation, moreover,
reflects the difference between conceptions of laws as regularities with an ontic
foundation and as regularities without an ontic foundation. While confirmation
searches for positive instances of hypotheses, the only evidence that should count
in favor of the existence of lawful regularities arises when we seriously attempt to
falsify, refute or disconfirm them and do so without success! Unsuccessful attempts
to violate presumptive regularities must therefore be distinguished from successful
attempts to find positive instances. Science thus proceeds through the process of
forming conjectures and attempting to refute them.

When understood as implementing corroboration in lieu of confirmation, this
approach likewise envisions scientific inquiry as a process or procedure involving
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four steps or stages, which are supposed to be followed in this sequence, namely
(see Fig. 2):

Conjecture 

Derivation 

Experimentation 

Elimination 

Fig. 2 The four stages of deductivism

where the fundamental principle of inference is “modus tollens” in application to
hypotheses as follows: if hypothesis H is true, then its logical consequence C must
also be true; but (as observations, measurements or experiments show) it is not the
case that C is true; thus, infer (deductively) that hypothesis H is false.

The advantages of deductivism over inductivism are conspicuous relative to
the simplest case. Even if 3/4 of rabbits have been observed to be white, that rel-
ative frequency need not be lawful. The percentage of rabbits that are white could
be subject to manipulation, say, by placing a bounty on non-white rabbits and hunt-
ing them down. There are underlying laws that relate rabbits to their color, but they
concern unobservable properties of rabbit genes. If white W is a dominant gene
and non-white n is a recessive, then if these genes were equally distributed and ran-
domly combined, about 3/4 of all rabbits would be born white. Conjectures about
phenomena thus not only permit the introduction of theoretical hypotheses about
non-observable properties but also guide inquiry.

Deductivist Inference

The fundamental rule of deductivist reasoning may likewise be schematized in
application to hypotheses H and their consequences C, where the single line be-
tween premises and conclusion indicates that such an inference is deductive:

6a] If H is true, then so is C.
But (as the evidence shows) C is not true.

H is not true.

Indeed, this pattern of reasoning commonly occurs within abstract contexts, where
arguments depend upon formal methods rather than on observation, measurement,
or experiment. Within physical contexts of the kind that distinguish empirical sci-
ence, its application tends to require a somewhat more complex formulation, as
many students, including Popper, have pointed out.

Since the derivation of testable consequences from theoretical hypotheses typi-
cally depends upon additional premises, this naive conception must be displaced by
a more sophisticated version, as even the most classic cases display. The Bishops
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of Padua, for example, sought to deflect the falsifying significance of Galileo’s
telescopic observations of the irregular and pockmarked surface of the Moon –
which if accepted refuted the Aristotelian doctrine that all celestial objects are per-
fect spheres – by objecting that Galileo must have been pointing his telescope at
some object other than the Moon or else that spherical objects simply do not look
spherical when they are observed by means of a telescope.

Indeed, the Bishops were on firm ground, insofar as the truth of auxiliary hy-
potheses A concerning experimental apparatus (such as telescopes, microscopes,
and the like) and initial conditions I concerning test subjects (such as that the object
under observation is the Moon) are invariably assumed in the process of deriv-
ing testable consequences C from any testable hypothesis H. The naive deductivist
model must therefore be displaced by its sophisticated counterpart, which takes into
account the role of additional factors as follows,

6b] If H and A and I are all true, then so is C.
But (as the evidence shows) C is not true.

H and A and I are not all true.

where the weight of the evidence against H being true depends on the strength of
collateral evidence for the truth of A and I (cf. Hempel 1966, p. 7 and p. 23).

Ironically, these considerations even extend to the outcome of “naked-eye” ob-
servations, insofar as things that are green, for example, typically look green under
standard conditions of lighting to individuals who possess normal vision, but not in
the dark when lights are off or when suffering from color-blindness. While the ad-
vantages of deductivism over inductivism include the freedom to create hypotheses
and theories, unconstrained by their direct or indirect connections to observation
and experience, as classical Newtonian mechanics illustrates, even naked-eye ob-
servations turn out to be “theory-laden” in ways that undermine the plausibility of
inductivism while enhancing that of deductivism.

Deductivist Regularities

Popper sought to extend the scope of deductivist methodology to encompass em-
pirical tests of probabilistic hypotheses by embracing the principle that improbable
results, although logically possible, should be presumed to not occur. Even as an ad-
vocate of the conception of probabilities as limiting frequencies, Popper extended
the principle of falsifiability to statistical conjectures on the basis of the supple-
mental principle that, insofar as almost all finite segments of large size will exhibit
relative frequencies that are very close to the limiting frequencies of these infi-
nite sequences, highly improbable outcomes deserve systematic neglect (Popper
1965, pp. 410–419). The methodology of conjectures and refutations was thereby
extended far beyond universal hypotheses.
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While he thus sought to take advantage of classic limit theorems that apply to se-
quences that are “normal” in the frequentist sense, Popper’s subsequent introduction
of the propensity interpretation of probability affords a much firmer foundation for
his own methodological maxims. While propensities may be envisioned as disposi-
tional properties of arrangements of conditions (as “chance set-ups”) to bring about
specific outcomes with limiting frequencies that equal their long-run propensities
over infinite sequences of trials, as Popper initially envisioned them, they may also
be construed as tendencies to bring about the same outcomes with specific strengths
on singular trials (Popper 1959, 1990; Fetzer 1981, 1993).

The adoption of the single-case conception brings with it many advantages,
including, for example, an ontic account of random sequences. Thus, when a se-
quence consists of replications of the same relevant conditions, where each trial has
propensities of the same strength for each of the same possible outcomes and the
outcomes of no trials affect the strengths of the outcomes for any other, they assume
the character of independent, identically distributed random variables. Even though
these are physical and not merely abstract sequences, classic mathematical results,
such as the central limit theorem, become applicable for inferring from propensities
to frequencies (Gnedenko and Kolmogorov 1954 and Fetzer 1981).

The propensity account of randomness thus probabilistically implies that, when
H is true, almost all sequences of large size will exhibit relative frequencies that are
very close to their generating propensities. It thereby provides the ontic rationale for
epistemic randomness that frequentist interpretations are unable to supply. It relin-
quishes a definition in terms of infinite sequences for a definition in terms of singular
events – “the single case” – where relative frequencies in finite sequences – “the
short run” – as well as limiting frequencies in infinite sequences – “the long run” –
are appropriately viewed as finite and infinite sequences of singular events during
the world’s history.

Permanent Properties

Thus, unlike probabilities as frequencies, probabilities as propensities can exist no
matter whether the history of the world is short or is long. When the conception of
laws as prohibitions receives appropriate elaboration, moreover, then the differences
between different kinds of laws becomes apparent. Thus, an attribute A is a perma-
nent property of everything that has a reference property R when, even though the
possession of A is not part of the definition of R, there is no process or procedure,
natural or contrived, by means of which something that possesses R could lose A,
except by losing the reference property R. Attributes things could lose and remain
R are merely transient (Fetzer 1977, 1981).

When “gold” is defined by means of its atomic number, which is 79, things that
are gold have many permanent attributes, including being a yellow, malleable metal,
which has a melting point of 1064ıC and a boiling point of 3080 ıC (Ruben 1985,
p. 35). These are properties that things that are gold could lose only by losing their
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atomic number, something that could be done by nuclear bombardment, for ex-
ample; otherwise, these relations between properties are invariable: they cannot be
violated and cannot be changed. Other properties of things that are gold, however,
such as their size, their shape, or their selling price, could be taken away from them
without affecting their atomic number.

The introduction of non-logical necessary connections of this kind entails the
conception of lawlike sentences as subjunctive conditionals whose consequents
are dispositional predicates (Fetzer 1981). Indeed, the perspective afforded by the
single-case propensity conception suggests that dispositions should be viewed as
single-case causal tendencies of variable strength, where those that invariably bring
about the same outcome under the same conditions (such as a melting point of
1064 ıC) are deterministic, while those that bring about one or another outcome
within a fixed class of possible outcomes with constant probabilities (such as a half-
life of 3.05 min) are indeterministic.

Popper endorsed the general conception of explanation by subsumption but did
not otherwise pursue it. While Hempel’s more detailed covering-law model would
confront criticisms of the kind that Salmon and others advanced, a Popperian
approach toward understanding the nature of laws of nature – inspired by the con-
ception of laws as prohibitions and the propensity account of probability – provides
crucial ingredients for overcoming them. Most importantly, the difference between
universal and probabilistic laws is not a matter of how many members of a reference
class possess the attribute of interest but of the comparative strength of the attribute
possessed by every member of that class.

Hypothetico-Deductivism I

The conditions for Popperian rejection were always more conspicuous than the
conditions for Popperian acceptance. Popper distinguished between acting on an
hypothesis as though it were true and accepting that hypothesis as true. While we
are entitled to act on the basis of well-corroborated theories, namely: those that have
survived our best attempts to refute them, we must recognize that even our best
theories may turn out to be false. They are forever vulnerable to new observations,
measurements, and experiments or to the invention of new theoretical alternatives.
Our failure to discover falsifying conditions is no guarantee they do not exist; we
may have not looked in the right places.

Thus, although Newton’s and Einstein’s theories of gravitation are strictly in-
consistent, they yield the same results for weak gravitational fields and for objects
moving slowly (in relation to the speed of light). Tests within their overlapping
domain of application could not possibly discriminate between them; but beyond
this range of overlap, they offer incompatible outcomes, which provide opportuni-
ties to differentiate between them by severe observational and experimental tests,
which have corroborated Einstein while refuting Newton. Since Newton’s theory
was surely the most thoroughly confirmed in the history of science, this is a stun-
ning example of Popper’s point.
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Of the three most common forms of inductive reasoning – from samples to pop-
ulations, from the observed to the unobserved, and from the past to the future –
therefore, the deductivist conception most conspicuously exemplifies the pattern of
drawing inferences from the observed to the unobserved. But it does so by invit-
ing conjectures about the unobservable, the non-observable, and the theoretical,
which are subjected to empirical tests on the basis of their deductive consequences.
It thereby promotes the invention of hypotheses and theories of broad scope and
systematic power. What it fails to do, however, is to establish suitable conditions for
the acceptance of hypotheses and theories.

The difference between hypothetico-deductivism and deductivism within this
context, therefore, is that hypothetico-deductivism likewise envisions scientific in-
quiry as involving four steps or stages, three of which are the same (see Fig. 3):

Acceptance 

Experimentation

Derivation

Conjecture

Fig. 3 The four stages of hypothetico-deductivism

where the fundamental principle of inference in application to hypotheses assumes
something more or less like the following form: if hypothesis H is true, then its
logical consequence C must be true; as observations, measurements or experiments
show, C is true; thus, infer (inductively) that hypothesis H is true.

Hypothetico-Deductivism II

While hypothetico-deductivism thus promises to go beyond deductivism by sup-
porting the acceptance of hypotheses and theories, whether it can deliver is another
matter. Were this principle of inference construed deductively, it would display the
pattern characteristic of the following argument form,

10a] If H is true, then so is C.
(As the evidence shows) C is true.
= = = = = = = = = = = = = = = = = = =
H is true.

which is a familiar fallacy known as “affirming the consequent”, where the truth of
the premises provides no guarantee of the truth of the conclusion. Consider: if Sarah
is a freshman, then she is a student, and she is a student; or if Steven won the lottery,
then he bought a ticket, and he bought a ticket.

Indeed, the suggestion that deductively invalid arguments should provide the
foundation for inductive reasoning led to the witticism that books on logic were
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divided into two parts, the first on deduction (where the fallacies were explained),
the second on induction (where they were committed). Yet it is almost impossible to
deny that, if more of its deductive consequences can be shown to be true, the greater
the reason for accepting the hypothesis as true:

10b] If H is true, then so is C1, C2, : : : , Cn.
(As the evidence shows) C1, C2, : : : , Cn are all true.
= = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
H is true.

If Sarah is a freshman, then she is a student, lives in the dorms, takes introductory
classes, and has not declared a major; Sarah is a student who lives in a dorm, takes
introductory classes and has not declared a major. It does not guarantee that Sarah
is a freshman, but the argument has grown far stronger.

It would be wrong to assume that arguments that are deductively unsound are
therefore inductively incorrect. Every inductive argument that has a proper form
must be deductively invalid, precisely because its conclusion contains more content
than do its premises. The failure to satisfy deductive standards is not at fault. Never-
theless, it does seem rather odd that a form of argument that is deductively defective
should turn out to be inductively virtuous if only it is committed often enough. If
these patterns of argument are the best to be found on behalf of acceptance, perhaps
Popper had the right attitude, after all.

The problem of acceptance, however, has to be resolved; otherwise, science can-
not attain the aim of discovering general principles that can be applied for the
purposes of explanation and of prediction. Indeed, even if predictions can be based
upon mere correlations in conformity with inductivist procedures, in order to be ad-
equate, explanations must be true. Whether or not the covering-law account might
require modification, as long as explanation occurs by subsumption, explanations
cannot be adequate in the absence of premises that can function as covering laws.
The success of science thus depends upon its ability to fallibilistically accept hy-
potheses and theories as true (Fetzer 2000a, p. xxvi).

The Abductivist Model

Like its inductivist and deductivist alternatives, the abductivist model can be
described as characterizing scientific inquiries as having four steps or stages
(see Fig. 4):

Puzzlement

Speculation

Adaptation

Explanation

Fig. 4 The four stages of abductivism
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The fundamental principle is “inference to the best explanation”, which involves
selecting one member from a set of alternative hypotheses as the hypothesis that pro-
vides the best explanation for the available evidence. Alternatives that explain more
of the available evidence are preferable to those that explain less, while those that
are preferable when sufficient evidence is available are also acceptable. Acceptable
hypotheses may still be false, which makes reasoning of this kind fallible, but they
are the most rational among the alternatives.

Unlike inductivism and deductivism, abductivism does not presume observations
or conjectures must come first but rather assumes instead that human curiosity as a
psychological phenomenon motivates scientific inquiries. Here, no doubt, a distinc-
tion can be drawn between pure and applied science, since some discoveries of
hypotheses and theories have more mundane motivation. The process of adapta-
tion, moreover, which shall be considered in some detail, incorporates deductivist
principles on the basis of incorporating the procedure that hypotheses that are in-
compatible with the available evidence are rejected as false, where rejection reflects
a tentative and fallible status that can change.

An important desideratum for abductivism is that every relevant alternative re-
ceive consideration, since otherwise the true hypothesis may not be included among
those under investigation. Peirce proposed a form of thinking he called “abductive
inference” that might serve an heuristic function, namely:

11a] The surprising fact C is observed.
If H were true, then C would be a matter of course.

There is reason to suspect that H is true.

where the broken line between premises and conclusion is meant to indicate that
Peirce did not consider this to be a form of inference that would permit drawing H
as a conclusion, but only as a speculative mode of creative conjecture that H might
deserve consideration (Hartshorne and Weiss 1935, 5.189).

Abductive inference of this kind has a function at the stage of speculation but,
unlike hypothetico-deductivism, does not determine which hypotheses or theories
should be accepted. If abductivism commits the fallacy of affirming the consequent,
therefore, this is not the stage of its occurrence. Presumably, Pierce would also em-
brace the hypothetico-deductive abductive counterpart:

11b] The surprising facts C1, C2, : : : , Cn are observed.
If H were true, then C1, C2, : : : , Cn would be a matter of course.

There are multiple reasons to suspect that H is true.

Since there is no mechanical procedure to guarantee that such a process will gen-
erate every relevant alternative possible explanation H1, H2, : : : , Hn, abductivism
always remains vulnerable to the discovery of new alternatives.
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Abductivist Explanation I

Since every alternative must qualify as a possible explanation, the tenability of ab-
ductivism strongly depends upon the adequacy of the theory of explanation that
provides its foundation. On initial consideration, the most promising account would
appear to be the covering-law account Hempel has proposed, which implements the
conception of explanation by subsumption. Hempel, of course, distinguished two
basic models of explanation, one model for the deductive subsumption of phenom-
ena under laws of universal form the other for their inductive subsumption under
laws of probabilistic form.

Hempel envisioned explanations as arguments with premises that include sen-
tences describing appropriate laws and initial conditions, together known as the
explanans, and a conclusion describing the phenomenon to be explained, known
as the explanandum. The four conditions that he advanced for the adequacy of
deductive-nomological explanations are familiar to us all, namely:

(CA-1) the explanandum must follow from the explanans;
(CA-2) the derivation must appeal to some covering-law;
(CA-3) the explanans must have empirical content; and,
(CA-4) the sentences that constitute the explanans must be true.

Hempel observed that (CA-3) was implicitly satisfied by any explanans that satisfied
the other conditions but was of sufficient interest to render explicit.

Although these conditions were intuitively appealing, other students located
certain difficulties with Hempel’s formulations. Among the most interesting were
counterexamples advanced by Salmon (1971, p. 34), such as the following:

12a] Every man who takes birth control pills regularly avoids pregnancy.
John Jones regularly took birth control pills during the past year.

John Jones avoided becoming pregnant during the past year.

Salmon would contend, with considerable justification, that Hempel’s conditions
were undermined by an inappropriate conception of explanatory relevance, but the
statistical-relevance conception he proposed confronted problems of its own.

The birth control pill example, like others, satisfies Hempel’s four conditions, yet
fails to provide an adequate explanation. The argument itself exemplifies the logi-
cal form, modus ponens. Other counterexamples that have the logical form, modus
tollens, are equally persuasive and may be even more revealing:

12b] Everyone who has ever been run over by a steam roller is dead.
Mary Smith is not dead.

Mary Smith has never been run over by a steam roller.

Similar arguments could be fashioned in relation to other conditions that are suffi-
cient to bring about death, such as being stepped on by an elephant, hit by a train,
and so on (Fetzer 1992, p. 258). As long as someone remains alive, sufficient con-
ditions for her (or his) death cannot, as yet, have been realized.
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Abductivist Explanation II

It should be observed that the pattern of inference in the steam roller case works
perfectly successfully for the purpose of retrodiction, just as the pattern in the birth
control case works successfully for the purpose of prediction. Men do not become
pregnant, whether or not they take birth control pills, which makes this explanation
defective by introducing irrelevant conditions. And while the inference that anyone
who is still alive has never been run over by a steam roller may be sound, it fails to
explain why she (or he) has never been run over by a steam roller as an historical
phenomenon.

These difficulties suggest that there must be more to explanation than derivation
from premises that include universal laws. Other problems, however, were gen-
erated by Hempel’s commitment to the underlying desideratum that explanations
explain by displaying the nomic expectability of their explanandum events, which
dictated that every adequate explanation must qualify as a potential prediction, had
its premises been taken into account at a suitable time. This led him to impose
the requirement that the logical probability between explanans and explanandum in
the case of inductive-statistical (later, probabilistic) explanations must have a value
equal to or greater than 1/2.

This condition had the disturbing effect that inductive explanations for phenom-
ena that occur with low probability are logically impossible, in principle. If the
outcome of an ace given a toss of a die occurs with a probability of only 1/6, for
example, then such an outcome was not to be expected and therefore could not be
explained. Unfortunately, it might be the case that each of the possible outcomes
only occurs with a probability less than 1/2, as with tosses of dice, in general, where
neither the outcome of an ace nor a deuce nor a trey could be explained, while the
occurrence of a non-ace or a non-deuce or a non-trey could be explained, consistent
with this account.

Moreover, Hempel made the adequacy of I-S explanations relative to a knowl-
edge context K, thereby abandoning the truth condition imposed upon D-N expla-
nations. His motives, I am convinced, were rooted in an apparent effort to forestall
the consequence that the outcomes of unique events must have degenerate proba-
bilities equal to zero or equal to one, which would follow from taking into account
every property of the unique predecessor of any explanandum event. The result was
virtually a schizophrenic theory of explanation, which mixed together conditions of
adequacy of different kinds.

Abductivist Regularities I

In retrospect, the problems that afflicted Hempel’s account seem to have had two
important sources. The first is that his semiformal explication, (CA-1) to (CA-4),
while intuitively enticing, lacked a requirement that would exclude the presence
of irrelevant factors from the lawlike premises that may appear in an explanans.
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The other was that the extensional methodology to which he was philosophically
committed precluded adopting a conception of probability that could function ade-
quately within the context of probabilistic laws. As a consequence, it was impossible
to formally vindicate his theory of explanation.

These difficulties were most acute in the case of I-S explanations, where he
attempted to fashion a condition that would establish an appropriate relationship
between statistical premises and explanandum events. His initial formulation of the
requirement of maximal specificity was envisioned as an epistemic condition imple-
menting the total evidence requirement (Hempel 1962). Later Hempel recognized
that establishing a suitable connection between events to be explained and proba-
bilistic lawlike premises was a matter of subsumption rather than of inference, with
a distinct rationale, even though “probabilistic explanations” would remain incon-
clusive kinds of arguments (Hempel 1968).

Thus, although Hempel flirted with the propensity interpretation in 1965, its ad-
equate elaboration would entail the utilization of intensional methods at variance
with his extensional commitments. Thus, with reservations, he adhered to a hy-
pothetical long-run interpretation, where the probability of B, given A, equals its
limiting frequency p within an infinite sequence, that is, P.B=A/ D p. Hempel
acknowledged that lawlike sentences, but not accidental generalizations, support
subjunctive and counterfactual conditionals, and he described their testable implica-
tions for sequences of equal and independent trials, but he was never able to provide
an ontic justification for this position.

Indeed, it should be apparent by now that the fundamental inadequacy of any
frequency-based interpretation – whether short-run accounts based upon relative
frequencies or long-run accounts based on limits – is its incapacity to establish
an appropriate relationship between explanans and explanandum in probabilistic
explanations. Accounts based upon relative frequencies attempt to subsume the oc-
currence of singular events by means of short-run generalizations, while accounts
based upon limits attempt to subsume them by means of long-run generalizations.
Neither, however, can successfully explain precisely how and why short-run or long-
run generalizations apply to singular events.

Abductive Regularities II

The fundamental advantage of the deductivist conception of natural laws as sub-
junctive conditionals that attribute dispositional attributes B of constant strength to
everything possessing the reference property A, therefore, is that these are single-
case generalizations that subsume singular events when their initial conditions
instantiate their antecedents. They are capable of supporting counterfactual con-
ditionals because conditionals of that kind are subjunctives with false antecedents.
Since subjunctives imply but are not implied by material conditionals, oddities such
as the alleged paradoxes of confirmation do not arise and the role of idealization in
science can be successfully explained.
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Simple subjunctives of the form, ‘p)q’, attributing permanent property
relations, which are logically contingent, would be vulnerable to paradoxes of
confirmation were they transposable. Like other intensional conditionals, including
causal conditionals of universal and of probabilistic strength, however, they are not,
as the steamroller case already exemplifies. The truth of ‘p)q’ implies that both
‘p!q’ and ‘�q! � p’ is true, but does not imply �p is a permanent property of
�q, which would conflate logical and nomological necessities and thus contradict
the assumption that ��.p!q/ (Fetzer 1981, pp. 193–194).

That malleability M is a permanent property of things that are gold G justifies
the singular subjunctive, ‘Ga)Ma’, which in turn implies (the logically equiv-
alent) subjunctive generalization, ‘(x).Gx)Mx/’, which is a lawlike sentence.
‘(x).Gx)Mx/’ implies its material counterpart, ‘(x).Gx!Mx/’, which is logically
equivalent to ‘(x).�Mx!�Gx/’ and ‘(x)(�Gx v Mx)’. While observations of white
shoes instantiate both the antecedent ‘�Mx’ and the consequent ‘�Gx’ of one of
these material generalizations and, by Nicod’s criteria, thereby confirm both it and
its logical equivalents, none of them is a lawlike sentence.

Perhaps even more strikingly, the subjunctive conditionality of lawlike sentences
means that natural laws make assertions about what would be the case, whether that
happens to be the case or not. The role of abstraction in science thus seems to be
that of specifying conditions that are and may always remain counterfactual. The
influence of air resistance on the fall of light and heavy objects (feathers and cannon
balls, for example), like the influence of friction on inclined plane experiments, is
simply disregarded in formulating idealized laws for those circumstances. The claim
that the laws of physics lie thus only applies to cases of subjunctive conditionality
that exclude relevant conditions.

Abductivist Regularities III

The paradoxes of confirmation thus appear to arise from failing to distinguish di-
rect tests of lawlike sentences, which require instantiations of their antecedents,
from indirect tests, which do not. White shoes are red herrings relative to the hy-
pothesis that gold is malleable as well as that ravens are black, which is reinforced
by observing that there are no paradoxes of corroboration. The subjunctive condi-
tionality of lawlike sentences combined with the desideratum that natural laws are
described by lawlike sentences that are true thus entails that every predicate describ-
ing a property that makes a difference to the attribute’s occurrence or its negation be
implied by their antecedents.

The conception of relevance that applies here, however, is not statistical rele-
vance, which Salmon mistakenly identified with explanatory relevance, but causal
relevance or, more generally, nomic relevance. A property F may be said to be
causally relevant to the occurrence of an attribute B, given the reference property
A, when the strength of the tendency for B, given A & F, differs from the strength
of the tendency for B, given A & �F. Then, employing the probabilistic causal
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conditional, ‘p Dn) q’, F is causally relevant to the occurrence of B, given A, when
(x)Œ.Ax & Fx/Dn) Bx� and (x)Œ.Ax & � Fx/ Dm) Bx�, where the strength of
these propensities vary and m ¤ n (Fetzer 1981).

Analogous definitions are available for nomic relevance relative to law-like
sentences of subjunctive form, ‘(x).Ax ) Bx/’, and for causal conditionals of
universal strength, ‘(x)Œ.Ax & Fx/Du) Bx�’, employing the causal conditional of
universal strength ‘p Du) q’. The truth of lawlike hypotheses of any of these
forms, however, clearly depends upon specifying some complete set of nomically or
causally relevant factors in relation to the outcome phenomenon. Even the behav-
ior of falling bodies cannot be successfully explained without taking into account
appropriate frames of reference, the presence or absence of air resistance, and the
relative masses of objects in gravitational interaction.

Thus, the appropriate condition to attain this relationship (which provides a basis
for relating complete sets of initial conditions to explanandum outcomes), may also
be called the requirement of maximal specificity (Fetzer 1981, p. 50). But it must
be borne in mind that this requirement neither implements the requirement of total
evidence nor attempts to locate singular events in relation to reference classes under
a frequency interpretation of probability. Instead, it is an ontic condition for perma-
nent property relations or single-case causal tendencies to obtain between reference
properties and attributes in the world.

Abductivist Explanations III

The causal relevance (or nomic relevance) account of explanation that emerges from
the propensity perspective thus distinguishes between simple laws of subjunctive
form and causal laws of more complex forms, which may be deterministic or inde-
terministic in kind. There are therefore at least three kinds of explanations in science,
namely: those whose premises include simple laws, those whose premises include
deterministic laws, and those whose premises include indeterministic laws. These
conceptions already overcome the problems generated by identifying statistical rele-
vance with explanatory relevance. But they do not resolve the problems encountered
with respect to irrelevant factors.

The solution to these difficulties is to impose an additional requirement, not on
the truth of lawlike sentences, but upon the adequacy of explanations, namely: that
the antecedents of the lawlike premises that occur in adequate explanations must
exclude any properties whose presence or absence makes no difference to the occur-
rence of the explanandum event (Fetzer 1981, pp. 125–126). This condition, known
as the requirement of strict maximal specificity, requires that adequate explanations
may invoke as explanatory only properties whose presence made a difference to the
explanandum event that is to be explained.

When these conditions are combined, the modified Hempelian account of
explanation that emerges supports the following four conditions of adequacy:
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(CA-1) the explanandum must be a deductive or probabilistic consequence of
the explanans;

(CA-2) the explanans must include at least one lawlike sentence required for the
derivation of the explanandum;

(CA-3) the explanans must satisfy the requirement of strict maximal specificity;
and,

(CA-4) the sentences constituting the explanation – both the explanans and the
explanandum – must be true.

where sets of sentences that satisfy the first three conditions are possible explana-
tions and those that satisfy all four are adequate (Fetzer 1981, p. 127).

These conditions obviously resolve the problems posed by the birth control ex-
ample, because the antecedent of the lawlike sentence that appears in the explanans
does not exclude causally irrelevant conditions and fails to satisfy (CA-3). The steam
roller example turns out to be even more instructive, because it becomes apparent
that the entire explanans is causally irrelevant to the explanandum in violation of
(CA-3). Indeed, being run over by a steam roller is insufficient to bring about death,
since in marshy wetlands and other circumstances, it may cause injury but not death,
as exemplified by a recent case near London (Jepson 1998), reflecting the impor-
tance of maximal specificity considerations

Nomic Expectability

Salmon abandoned the requirement that the logical probability between explanans
and explanandum must equal or exceed 1/2, which was necessary to overcome
the logical impossibility of explaining events that occur only with low probabil-
ity. This was essential and marked the abandonment of Hempel’s desideratum of
nomic expectability for an alternative conception of nomic responsibility (Fetzer
1992). But Salmon also relinquished the conception of explanations as arguments,
which circumvented the obligation to account for the function of the values of logi-
cal probabilities at all (Salmon 1971, pp. 70–71).

In his more recent work on causal-mechanistic explanations implementing con-
ditions that are intended to restrict explanations to all and only causally-relevant
factors, Salmon at least acknowledges the importance of probability values, not only
in relation to the maximally homogeneous reference class to which the event to be
explained should be assigned, but also for every other partition of the reference class
(Samon 1984, pp. 36–37). His causal-mechanistic account thus appears to improve
upon his statistical-relevance model, not only by appealing to causal-relevance rela-
tions in lieu of statistical-relevance relations but by emphasizing the importance of
associated probability values.

In this respect, his approach less resembles the model advanced by Paul
Humphreys than it does the model proposed by Peter Railton, both of which
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also dispense with degrees of nomic expectability. On Railton’s D-N-P model, for
example, complete probabilistic explanations assume the following form:

18a] (1) a theory entailing a law of form (2).
(2) (x)(Ax ) Probability Bx D r).
(3) Aa.

(4) Probability Ba D r.
(5) (Ba).

where the explanandum sentence appears as an addendum (Railton 1978, 1981).
Railton asserts, “what occurs by chance must be explained by chance”, but his model
explains why an event had a certain propensity, not why it occurred.

On Humphreys’ aleatory approach, explanations assume the canonical form,
18b] ‘x because y, despite z’, where ‘y’ specifies contributing factors and ‘z’ coun-
teracting factors that made a difference to the occurrence of the event described by
explanandum sentence x (Humphreys 1981, 1983, 1985). He contends (a) that prob-
abilistic explanations do not require probability values, (b) that explanations can be
adequate even when they are incomplete; and (c) that adequate explanations can do
without subsumption under laws. Some of these are motivated by the mistaken belief
that maximal specificity conditions require that an explanation of death from lung
cancer, for example, would have to include every factor that made an historical con-
tribution to that death, no matter how remote in space/time. But propensities satisfy
Markov conditions that exclude all but the most contemporaneous factors: causal
connectability does not guarantee explanatory relevance. Present effects have to be
explained by present causes (Fetzer 1983).

Abductive Inference I

What is most important about these three accounts relative to the present inquiry,
however, is that they supply no roles for degrees of nomic expectability. This is
a crucial blunder, because these logical probabilities forge the linkage between
explanation, prediction, and inference. These bracketed values not only represent es-
timates of the truth frequency with which explanandum sentences of that form may
be expected to be true over extended sequences of trials, given the truth of premises
with the form of those explanans sentences, but also functions as a designation of
the degree of nomic expectability for such outcomes to occur on each single trial
with the force of logical necessity, a benefit derived from a single-case account of
probability, which in turn provides an ingredient that is essential to inference to the
best explanation (Fetzer 1981).

When the likelihood L of hypothesis h, given evidence e, is defined as equal to
the probability P of e, given h, this relationship may be formalized as follows:

19a] L.h=e/ D P.e=h/
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which might be applied to probability hypotheses generally. We need a special ver-
sion that applies to inferences to laws in relation to the nomic expectability of
evidence describing the initial conditions and the explanandum, specifically:

19b] NL.L=IC & E/ D NE.E=L & IC/

which asserts that the nomic likelihood NL that law L applies, given the initial
conditions IC and the explanandum E, equals the nomic expectability NE of the
explanandum E, given an explanans of IC and the law L (Fetzer 1981, p. 223).

This conception permits the application of Hacking’s “law of likelihood” as the
fundamental principle of reasoning for inference to the best explanation, where
evidence e supports hypothesis h1 better than it does hypothesis h2 when (1) the
likelihood of h1, given e, exceeds that of h2, given e, and (2) the evidence e sup-
ports h1 better than it supports h2 when the likelihood ratio of h1 to h2 exceeds 1
(Hacking 1965, pp. 70–71). While satisfying these relations may make h1 prefer-
able to h2, however, that does not mean h1 is therefore acceptable as well, which
depends upon the quantity and quality of the available evidence e.

Abductivist Inference II

This conception of nomic likelihoods appears to apply to inferences to laws as ex-
planations of relative frequencies as well as to explanations that use laws to draw
inferences to explanations for singular events. Consider, to begin with, an explana-
tion for the occurrence of decay by an atom of polonium 218, namely:

20] .x/.t/ŒPxt218 D> .Txt D 3:05 min D1=2 ) Dxt C 3:05 min/�
Pat218 & Txt D 3:05min.

[1/2]
Dat C 3:05min.

which asserts that, if x were an atom of polonium 218, then subjecting x to a time
trial of 3.05 min duration would bring about its decay with propensity 1/2, because
of which the nomic expectability for that outcome is [1/2].

That the halflife of polonium 218 is 3.05 min not only means that a single atom
has a propensity of 1/2 to decay during a 3.05 min interval but also implies that that
same atom has a propensity of 1/2 to not undergo decay during that same interval.
It also implies that, for large numbers of atoms of polonium 218 given at a specific
time, very close to one-half will still exist 3.05 min later, the remainder having disin-
tegrated by decay (cf. Hempel 1966, p. 66). If the halflife of polonium 218 were not
know, repeated observations of decay on this order would support such an inference
as the hypothesis that provides the best explanation for the frequency data.

Alternative hypotheses that might deserve consideration would include those that
cluster around the observed relative frequency of decay in large samples, which
would have values close to 3.05 min. Those hypotheses would have high likeli-
hoods by virtue of making those outcomes highly probable, which indicates that
more than one hypothesis can have high likelihood within the framework of this
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non-probabilistic account (Fetzer 1981, p. 276). When repeated sequences of ran-
dom trials are conducted under suitable test conditions and yield stable relative
frequencies for decay, the hypothesis with the highest likelihood would deserve to
be accepted (Fetzer 1981, Chapter 9).

Indeed, measures that are internal to the evidence can provide a standard for
determining that sufficient evidence has become available, namely: when the relative
frequencies for possible outcomes have “settled down” and display stable values that
have resisted our best efforts to change them, then we have appropriate evidence
for the acceptance of the most likely hypothesis. While the severity of the tests
that should be employed for this purpose tends to depend upon the seriousness of
the consequences of making mistakes, objective criteria for acceptance have been
advanced that make the sufficiency of evidence a function of the distribution of the
data (Fetzer 1981, esp. pp. 244–254).

Abductivist Inference III

One such approach proposes the degree of divergence of the observed data from a
normal distribution as a suitable measure of epistemic caution, where no hypothesis
may be accepted from the set of alternatives unless its likelihood is greater than this
degree of divergence, which might be measured by the Lévy distance (Gnedenko
and Kolmogorov 1954, p. 33). Hypotheses with high likelihood on the data may be
acceptable even when our measure of confidence happens to be low, while hypothe-
ses with low likelihood on the data will be acceptable only when our measure of
confidence happens to be high (Fetzer 1981).

Considerations of this kind appear to carry over to the explanation of single
events, which may occur in ordinary contexts as well as in scientific inquiries. The
explosion of TWA Flight 800 on 17 July 1996, for example, in which all of the 230
people on board were killed, involved a Boeing 747. At least three hypotheses have
been advanced to account for this explosion, including (H1) that the catastrophe oc-
curred as the result of a terrorist’s bomb, (H2) that the plane was hit by an errant
missile, and (H3) that an unsuspected design failure might have caused the fuel tank
to blow up. The case has been difficult to resolve, not because of a lack of possible
explanations, but because of an absence of evidence.

After expending enormous resources in the recovery and the reconstruction of the
aircraft, however, the situation appears to have settled down. Initial reports ranged
from eyewitness testimony to expert analyses that appeared in a wide range of pub-
lications, from tabloids, such as the Star (26 November 1996) in support of (H1) to
national magazines, such as Newsweek (23 December 1996) in opposition to (H2),
and our nation’s newspaper of record, The New York Times (24 May 1997) in sup-
port of (H3). An extensive investigation by the FAA has now concluded that an
unsuspected design failure appears to have been at fault.

Several elements have contributed to this inference, including simulations of the
kind of explosions that might be brought about by such a flaw. Concern has now
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spread to other aircraft with similar designs, including, especially, the Boeing 737,
among the most popular commercial aircraft in the world, with more than 1,100 in
use today in the United States alone (Wald 1998). The discovery of worn wire insu-
lation in most of 13 planes subject to preliminary inspection has increased concern.
While the probability for the explosion would be high given either (H1) or (H2), the
absence of evidence supporting them and the discovery of evidence corroborating
(H3) has made (H3) an acceptable hypothesis.

Abductivist Inference IV

Events of this kind bring home the importance of the difference between relative
frequencies and causal tendencies. Even if the odds of dying in an aircraft accident
are remote, say, on the order of 1 in 250,000, that does not mean that the chances of
survival for those who are actually involved in aircraft accidents are 249,999 to 1.
On the contrary, although aircraft accidents are relatively rare (and therefore, with
respect to causes of death in general, only about 1 in 250,000 are due to aircraft
accidents), the propensities for death or injury for passengers involved in aircraft
accidents are rather high.

By comparison, a superabundance of evidence was available in the murder of
Nicole Brown and Ronald Goldman on 11 June 1994. Most men who abuse women
do not murder them, but more than half the abused women who are killed were
murdered by their abusers. If we consider our initial hypothesis in this case to be
(H1) that O. J. Simpson committed the crime, then possible alternative explanations
include (H2) that it was a drug-related hit, where Faye Resnick, a friend of Nicole,
was the intended victim, and (H3) that the true target was Ronald Goldman, where
Nicole was an innocent bystander.

Since Faye Resnick was a casual user of cocaine who had lots of money to
support her habit, (H2) really will not do; and since almost no one outside of the
restaurant where he worked would have known that Ron was returning Juditha
Brown’s glasses to her daughter, (H3) cannot be taken seriously. The evidence –
including J. O.’s blood at the scene, in the Bronco, in his home, and so on, the
matching gloves, the hair follicles, the Bruno Magli shoe prints, the photographs,
etc. – all appeared to provide overwhelming evidence that (H1) had to be accepted
as true. So how could the jurors have acquitted him?

The jurors in this case seem to have believed that if any part of the prosecu-
tion’s case was open to doubt, then they could properly disregard it all. The jury
forman, Armanda Cooley, for example, acknowledged that the jurors were unable
to “explain away” the presence of O. J.’s blood at the scene (Cooley 1995, p. 202).
Without some reasonable alternative explanation, however, the only reasonable ex-
planation appears to be that the blood of the accused was at the scene of the crime
because the accused was at the scene of the crime, which he committed. If it cannot
be “explained away”, then it has to be “explained” by hypothesis (H1), which im-
plicates O. J. Simpson in the crime. That explains it.
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Abductivist Inference V

Criminal cases are excellent examples of inference to the best explanation on several
grounds, since they usually commence with puzzlement over who might have com-
mitted the crime and then engage in speculation (often using the heuristic criteria
of motive, means, and opportunity), where a list of suspects represents the alterna-
tive hypotheses. As investigations proceed, some of the suspects may be eliminated
because their commission of the offense is no longer consistent with the available
evidence, while other suspects may become stronger. As sufficient evidence be-
comes available, the prosecutor may bring an indictment and attempt to establish a
case beyond reasonable doubt.

The most fascinating illustration of inference to the best explanation that I have
encountered within purely scientific contexts, however, has appeared in the field
of cognitive ethology. Carolyn Ristau has extensively studied the behavior of the
piping plover, which feigns broken-wing displays that distract predators when they
threaten its nest and young. She describes the plover’s full display as consisting of
outstretched widely-arched wings that flutter and drag along the ground, offering
persuasive evidence of injury, where the observer may trudge hundreds of meters
after it only to see it agilely fly away at a point that is far removed from the nest and
young (Ristau 1991, p. 94).

In order to evaluate the prospect that the piping plover is acting purposefully in
displaying this behavior, Ristau introduces a set of alternative explanations, which
include (H1) that this might be a reflex or fixed action response, (H2) that this
might be a manifestation of conflicting motivation, (H3) that this might be brought
about by approach-avoidance tendencies, (H4) that this might be an innate stimulus-
response pattern of behavior, (H5) that this might be a behavior that the plover has
acquired from experience, and (H6) that it might be purposeful behavior that is in-
tended to secure a specific objective or goal.

By skillfull deducing consequences that would have to be true, given each of
these hypotheses, and conducting systematic experiments that vary variables that
would have to make a difference if various hypotheses were true, Ristau establishes
that the plover’s injury-feigning is non-random, does not simply lead away from
its young or from the intruder, does not inconsistently lead away from its nest, is
not rigid and inflexible, and is not acquired by repeated exposure to similar behav-
ior, where the only alternative hypothesis that can explain the available evidence is
that the plover’s display is purposive behavior that is intended to secure the goal of
protecting its nest and its young.

Abductivist Inference VI

Ristau’s brilliant study, which reports data derived from 19 different experiments
and from 10 birds that were members of 4 different pairs of piping plovers and 2
different pairs of Wilson’s plovers, which yielded 45 displays of broken-wing be-
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havior sufficiently detailed for analysis, could hardly offer a better illustration of
inference to the best explanation. She takes great pains to make sure that every
reasonable alternative hypothesis receives consideration, she considers the conse-
quences that attend each of those alternatives, she conducts systematic experiments
to test them, and, when sufficient evidence becomes available, she accepts the best
explanation that is available.

However impressive this might initially appear, it may all be for naught if Peter
Lipton is correct in suggesting that there is a fundamental difference between the
likeliest explanation and the loveliest explanation (Lipton 1991, pp. 61–63). Thus,
in Lipton’s sense, the likeliest explanation is the best warranted explanation, which
may be the most conservative relative to the available evidence by going least far
beyond it, while the loveliest explanation is the most general explanation, which
provides the greatest understanding. And Lipton is certainly correct in supposing
that there are explanations of different kinds.

Some explanations appeal to premises that are analytic rather than synthetic and
provide understanding rooted in language rather than in phenomena. That bachelors
are unmarried and Donald is a bachelor (again), for example, supports the inference
that Donald is unmarried (again), but it certainly does not appeal to a natural law.
That individual things that are green look green when they are observed under stan-
dard conditions of lighting by persons of normal vision, moreover, may explain why
they look green, but the degree of understanding it provides is restricted to the pres-
ence of properties. Cases of this kind also show how easily instantiations of causes
without laws can occur.

Lipton’s own example, namely: that smoking opium induces sleep because of
its dormative (or sleep-inducing) powers, initially resembles the color case, but
properly understood appears to attribute a permanent property to everything that
is opium. It differs from accidental generalizations that attribute transient proper-
ties, such as that every Volkswagen is painted gray, which at one time was the case
in America. Every VW was such that, if you looked at it under standard conditions
of lighting and had normal vision, it looked gray. His example appears more like the
lawlike sentence that emeralds are green, which implies that, when observed under
suitable conditions, they look green.

Abductivist Inference VII

Even though there are kinds of explanations that do not appeal to lawlike premises
and cannot qualify as scientific, which therefore do not provide the same kind
of understanding as do scientific explanations, there is no apparent basis here for
distinguishing between likely and lovely scientific explanations. Moreover, the con-
ception of explanation that has been presented above seems to have other virtues
that support precisely the conditions of adequacy thereby defined. In particular, the
distinction between possible explanations and adequate explanations appears useful
in separating science from non-science.
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A debate over whether creationism should be taught as part of the science cur-
riculum in public high schools, especially, has generated considerable controversy
in the United States in recent times. Examples of classic creationist hypotheses in-
clude (CH-1) that God created the world and everything therein exactly as it exists
today, (CH-2) that God created the world and living things in fixed and unchang-
ing forms, and (CH-3) that God created the world and all living things using the
causal mechanisms of evolution. Presumably, such hypotheses should be taught in
the science curriculum only if they are scientific.

Using the conditions of adequacy (CA-1) through (CA-3), however, it can be
shown that none of these hypotheses properly qualifies as a possible scientific ex-
planation. (CH-1), for example, does not satisfy (CA-1), the derivability condition,
because no specific explanandum follows from it. It is compatible with the world, no
matter what, and thus possesses no empirical content. (CH-2) implies that all living
things exist in forms that are fixed and unchanging and thus satisfies (CA-1), but it
makes no appeal to any lawlike premise and therefore does not satisfy (CA-2). It
specifies no lawful relationship between God and his creations, whether or not they
exist in fixed and unchanging forms.

(CH-3) asserts that God made the world and all living things using the causal
mechanisms of evolution. Assuming the causal mechanisms of evolution – including
genetic mutation, natural selection, sexual reproduction, sexual selection, genetic
drift, group selection, artificial selection, and genetic engineering – are lawful and
sufficient to explain the origin of species, then this hypothesis satisfies (CA-2). But
God becomes an explanatorily irrelevant factor, whose presence or absence makes
no difference. It therefore cannot satisfy (CA-3). But if these hypotheses cannot
satisfy the conditions for possible explanations, they are not scientific alternatives
and should not be taught as if they were.

Abductive Inference VIII

Lipton also suggests that other explanations may be lovely without being likely, of-
fering conspiracy theories as his illustration (Lipton 1991, pp. 61–62). He observes
that conspiracy theories might acquire considerable explanatory power by showing
that many seemingly unrelated events and apparent coincidents are actually related:
“If only it were true, it would provide a very good explanation. That is, it is lovely.
At the same time, such an explanation may be very unlikely, accepted only by those
whose ability to weigh the evidence has been tilted by paranoia.” But our normal
access to truth is by way of inference.

Sometimes the evidence supports conspiracy theories. In 1992, I organized a
research group in an attempt to place the investigation of the death of JFK on an
objective and scientific foundation. The possible explanations include (H1) that he
was killed by a lone, demented gunman, (H2) that the Mafia did it, (H3) that pro- or
anti-Castro Cubans were responsible, (H4) that the KGB killed him, or (H5) that he
died as the result of a coup d’etat involving the CIA, the Mafia, anti-Castro Cubans
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and powerful politicians, including LBJ and J. Edgar Hoover, with financing from
Texas oil men and parts of the military-industrial complex.

My collaborators, who include a world authority on the human brain who is also
an expert on wound ballistics, a Ph.D. in physics who is board certified in radiation
oncology, and various experts on other aspects of the evidence in this case, have
discovered that autopsy X-rays have been fabricated, in one instance, by concealing
a massive blow-out to the back of his head, in another instance, by adding a 6.5 mm
metal object; that diagrams and photographs of a brain in the National Archives
are of the brain of someone other than JFK; and that the Zapruder film has been
massively edited using highly sophisticated techniques.

These discoveries have substantial impact on alternative theories, since the Mob,
for example, would not have had the reach to extend into Bethesda Naval Hospital
to fabricate X-rays under control of the Secret Service and officers of the U.S. Navy;
pro- or anti-Castro Cubans could not have substituted diagrams and photographs of
the brain of someone else for that of JFK; and the KGB, even if it had the ability to
do so, could not have gained possession of the Zapruder film in order to subject it
to extensive editing. Nor could any of these things have been done by Lee Harvey
Oswald, who was incarcerated or already dead.

These findings, which strongly suggest that the assassination was the result of
a well-organized, high-level conspiracy involving officials of the government, has
been corroborated by the discovery of more than 15 indications of Secret Service
complicity, from the use of an improper motorcade route to vehicles out of se-
quence to the driver bringing the limousine to a halt after bullets began to be fired.
Were we to select only eight or nine of these many events and treat them as simple
coincidences that happen now and then, say, one time in ten, then their improbabil-
ity of simultaneous occurrence would equal 1 in 100,000,000 to 1 in 1,000,000,000,
suggesting they did not happen by chance (Fetzer 1998, 2000c).

The Justification of Induction

Likelihood measures thus work well in cases of various kinds. Even if evolution im-
parts only a low probability to the origin of life, if we assign creationist hypotheses
zero or infinitesimal likelihoods to render them mathematically tractable, likelihood
measures of support will overwhelmingly favor evolution. And if powerful conspir-
ators with money and time could only be expected to successfully execute between
85% and 90% of their diabolical plans, the available relevant evidence concerning
the assassination of JFK would still render the occurrence of a covert coup vastly
more likely than any of its alternatives.

Scientific habits of mind and patterns of inference should be carried into the pub-
lic sphere of daily life, where they can contribute immeasurably to the successful
resolution of difficult problems. While abductivism seems to overcome the most
important objections to its deductivist alternatives, especially by supplying solu-
tions to problems of acceptance, the advantages of deductivism over inductivism are
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profound. Popperian conceptions of laws of nature and of probabilities as propensi-
ties appear to be indispensable to an adequate account of science. Corroboration is
vastly superior to confirmation.

While inductivism can account for inferences from samples to populations and
deductivism can account for inferences from the observed to the unobserved, only
abductivism can account for inferences from the past to the future. The pragmatic
vindication of the straight rule cannot be sustained, because there is no reason to
believe that the world’s history will go on forever. And, even if it did, we could
never know that the relative frequencies we observe are even roughly close to the
values of the limits we infer. The solution to the problem of induction must be based
upon an ontic conception of randomness.

What the single-case propensity account ultimately supplies is an account of nat-
ural laws that applies whether the history of the world is short or long. Even if the
world is as we believe it to be with respect to the laws of nature, it remains logically
possible that the future might not resemble the past in those very respects; but if the
world is as we believe it to be with regard to natural laws, it is not physically possi-
ble that the world might not resemble the past in those same respects, which appears
to be the strongest solution to the problem of induction that empirical procedures are
able to provide.
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