
Chapter 9
Discrete Model for Plate Bending

9.1 Beam Model

In Chapter 8 we discussed an approximation for trusses. The elastic defor-
mations were lumped in springs. We may apply a similar model to beams in
bending as a first step to a discrete model for plate bending. A rigid element
that has rotational springs at its ends replaces a beam element of length a.
This model is depicted in Figure 9.1. The rotational spring is considered to
be composed of two parallel springs, for the compression and tension zones,
respectively. The rotational rigidity at each end is D. It is required that the
beam-ends in both the model and the actual beam have the same rotation e for

beam elements are linked together, the two rotational end springs are con-
nected in series. The rigidity of the resulting rotational spring is D = EI/a.

Figure 9.1 Discrete bending model for beam.
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a constant moment M. This requirement is met if D = 2EI/a. When two
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Figure 9.2 Modelling of a cantilever beam.

Figure 9.2 shows a cantilever beam modelled by four beam parts with
length a. The homogeneous load is lumped at the hinges between the four
sections. The deflections of the hinges are the unknowns. The structure is
considered to be an assembly of four discrete elements and to have four
degrees of freedom. The elements 1, 2, and 3 each have three degrees of
freedom, element 4 only has one. This latter element is used at the clamped
end. It need also to be used in a line of symmetry. Then the element has two
degrees of freedom. Naturally, this element may occur with the rotational
spring at the other end as well. First, the different stiffness matrices of the
two element types are derived. The element types will be named field element
and edge element respectively. The stiffness matrices for a field element with
nodes i, j, k and an edge element with nodes i, j are respectively
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Figure 9.3 Composition of the global stiffness matrix.
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The stiffness matrix of the cantilever beam structure is an assembly of three
field elements and one edge element. The result is shown in Figure 9.3. The
matrix needs to be multiplied by EI/a3. As is seen in the figure, the displace-
ments are not yet constrained. If displacements are prescribed, corresponding
rows and columns are omitted. Figure 9.4 shows a number of possibilities.
The third row of the stiffness matrix is complete; that is to say, there is no
influence of the boundaries on the coefficients of this row. If we use a finer
mesh in the model, then the global stiffness matrix would contain more of
these complete rows. Apart from the multiplication factor EI/a3, the scheme
shown in Figure 9.5 applies for nodes not affected by any edge conditions.

Plates and FEM
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Figure 9.4 Effect of various boundary conditions.

Figure 9.5 Scheme for a complete field row.

9.1.1 Example. Cantilever Beam

The set of equations has been solved for the cantilever beam of Figure 9.6.
The nodal force is F = f a. The matrix equation reads:

(9.2)

The dotted lines hold for the matrix equation in which boundary conditions
have not yet been introduced, the full lines after accounting for the boundary
conditions. The solution of the set of equations is

{w1 w2 w3 w4} w5
a4f

EI
{34 23 121

2 4} 0 (9.3)

Figure 9.6 Cantilever beam with four elements.

=
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Figure 9.7 Cantilever results for exact solution and approximation

The support reaction, calculated from the fifth row in Eq. (9.2), is R =
−4f a. The moments are determined from the spring equations

M = EI

a2
(−wi + 2wj − wk) Field element

M = 2
EI

a2
(wj − wi) Edge element

(9.4)

The results are depicted in Figure 9.7. Even this course mesh and simple
elements give a good approximate result.

Same pattern of coefficients in Finite Difference Method

When the classical Finite Difference Method (FDM) is applied, the dif-
ferential equation EI d4w/dx4 = f is replaced by a set of algebraic
equations, one for each node. The FDM-equation related to node 3,
which is not influenced by the boundary conditions, is exactly the same
as the third row in the above matrix equation. So, the scheme of Fig-
ure 9.5 is both the scheme in FDM and the present discrete model. The
rotational spring method is not restricted to equal element dimensions

Plates and FEM
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and constant bending rigidity EI for all elements. Serial linking of dif-
ferent spring stiffness is allowed.

9.2 Plate Bending Model

The spring model for bending of the previous section is a building block
for the discrete plate bending model, just as the truss model was for the
discrete membrane model. We consider a rectangular plate element of length
a and width b, subjected to a homogeneously distributed load p. The plate
thickness is t , Young’s modulus is E, and Poisson’s ratio is zero. The relation
between the moments and curvatures is⎧⎨
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Here the plate flexural rigidity is D = Et3/12. The rigidity matrix is a di-
agonal matrix, therefore bending in the x-direction and y-direction are inde-
pendent of each other. Torsion is another independent transfer mechanism.

The bending behaviour in the x- and the y-direction is modelled with the
spring elements derived in Section 9.1. Thus an orthogonal grid of beams is
obtained. To account for twisting moments, torsion panels are inserted in the
grid in the same way as shear panels were in the membrane model. From
Section 5.2 we know that a field of constant mxy can exist if the panel is
loaded by two pairs of equilibrating corner point loads occur, and that the
edges remain straight. On the basis of this knowledge a torsion panel can be
derived with four degrees of freedom as shown in Figure 9.8. The stiffness

Figure 9.8 Loading for positive twisting moment. Left physical reality, right stiff-
ness method.
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Figure 9.9 Uniformly loaded simply-supported rectangular plate.

Figure 9.10 Moment distributions in the slab.

matrix of this panel is
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(9.6)

Any plate that may be considered a composition of rectangular plate parts
can now be modelled with spring elements and torsion panels.
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Figure 9.11 Scheme for both FDM and discrete model.

9.2.1 Example 1. Rectangular Simply-Supported Plate

We will perform the discrete analysis for the example of Figure 9.9. For rea-
sons of symmetry only one quarter of the plate needs to be modelled. The
computational result is presented in Figure 9.10. As was seen earlier for the
normal forces in the membrane solution, we again obtain a continuous dis-
tribution for the bending moments in the one direction and a discontinuous
one in the other. Like the shear forces in the membrane solution, now the
twisting moment is discontinuous.

Advantage of discrete model

In the Finite Difference Method (FDM) the bi-harmonic differential
equation is replaced by a set of linear algebraic equations, one for each
mesh node. For nodes which are at sufficient distance from the edge
the scheme of coefficients is shown in Figure 9.11. The discrete model
with flexural springs and torsion panels leads to the same result. The
advantage of the discrete modelling is the ease of handling boundary
conditions, discontinuities in thickness, and non-square meshes.
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Figure 9.12 Application of discrete model to office building floor.

9.2.2 Example 2. Lift-Slab in Office Building

The model was in use in the 1960s for the analysis of viaducts and floor
slabs in office buildings. An example is the floor of the office building in
Figure 9.12 as built at Amsterdam Airport. The contractor cast and cured all
floors at ground level around a tall central shaft (not shown in Figure 9.12),
and then lifted them in place. Therefore they are not clamped to the central
shaft, but just connected at discrete points. The hatched quarter of the floor
has been considered in the analysis. The bending moments for two directions
are shown in Figure 9.13.

Figure 9.13 Bending moments in quarter of floor slab.

Plates and FEM
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9.3 Didactical Model for Simply-Supported Plate

The discrete model is no longer in use since Finite Element Analysis has re-
placed it, however it still has great didactical value. This value is illustrated
for the simply-supported plate, subjected to a two-way sine load, the exact
solution of which we discussed in Section 5.3. Here we recall the most im-
portant results of the exact analysis. The deflection w and bending moments
mxx and myy have double-sine distributions, with a maximum in the centre of
the plate. The twisting moment has a double-cosine distribution with a value
zero in the horizontal and vertical line of symmetry. The maximum value oc-
curs at the four corners. The shear forces vx and vy have sine-shaped distri-
butions in the one direction and cosine-shaped in the other. Their maximum
value appears at the edges. The distributed support reactions f (positive if
directed downward) along the four edges are sine-shaped with a maximum
value halfway along the edges. The various maxima are, apart of the sign

w = p̂ l4

4 π4D
, mxx = myy = p̂ l2

4 π2
, mxy = p̂ l2

4 π2

vx = 1

2 π
p̂ l, vy = 1

2 π
p̂ l, f = − 3

4 π
p̂ l (9.7)

where p̂ is the maximum value of the load and D is the plate stiffness. The
support reaction is 50% larger in absolute value than the maximum shear
force at the edge. The negative sign means that it concerns a compressive
support reaction in the opposite direction to the load p. Finally it was found
that four balancing concentrated corner tensile support reactions R occur
with the value

R = 1

2
p̂ l2/π2 (9.8)

We now start to explain the discrete model. The coarsest mesh possible is
a two-by-two grid with one central node; there is just one degree of freedom.
However, a three-by-three mesh leads also to one degree of freedom; There
are four free nodes in the plate, but they all have the same displacement.
This finer mesh will produce more information, and therefore is chosen. The
square plate has edges of length l which are divided in three equal parts a.
Figure 9.14 shows the applicable discrete model of four beams, two in each
direction.

In a three-by-three grid we need in general nine torsion panels, but in
our case five of them occur on lines of symmetry and therefore will have
zero twist. So, just the four corner panels need be entered in the analysis,
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Figure 9.14 Elementary spring-panel model for a square plate.

which confirms the importance of torsion in the corners. The two-way sine
load is replaced by four point loads F each pa2. We restrict the analysis
to a zero Poisson’s ratio. The model is very simple. The load F at each
free point is carried by three elements, a beam in the x-direction, a beam in
the y-direction and a torsion panel. The three contributions are Fx , Fy and
Ft , respectively. They are derived in an elementary way on the basis of the
properties of the spring model and torsion model

Fx = D w

a2
, Fy = D w

a2
, Ft = 2

D w

a2
(9.9)

The three contributions are related to the same displacement and are linked in
parallel. Therefore they can be summed, which leads to the relation between
the displacement w and the load F

Fx + Ft + Fy = F,
D

a2
(1 + 2 + 1)w = F, w = Fa2

4D
(9.10)

Clearly

Fx = 1

4
F, Fy = 1

4
F, Ft = 1

2
F (9.11)

This very elementary model effectively confirms what was seen earlier after
solving the bi-harmonic equation for a double-sine load in Section 5.3. The

Plates and FEM
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Figure 9.15 Exact results for a two-way sine load.

torsion in the plate carries half the load, and the deflection is a quarter of
the value that occurs if one beam had to transfer all the load F . The bending
moment at the position of the rotational springs, the twisting moment in the
panels, and the shear forces midway between the two nodes become

mxx = myy = mxy = 1

4
F, vx = vy = 1

2

F

a
(9.12)

As we found for zero Poisson’s ratio in the exact solution, the maximum
torsion moment is equal to the maximum bending moment. Figure 9.16 com-
pares the results of the discrete moments to the outcome of the exact analy-
sis for a number of sections over the plate. Figure 9.17 does the same for
the shear force and support reaction. Finally, we can calculate the reaction
forces in the edge and corner nodes. The simple model leads to Rcorner = 1

2F ,
Redge = − 3

4F . Figure 9.18 presents an overview of these boundary forces.
The distributed support reaction f = Redge/a = − 3

4F/a is again 50% larger
in absolute value than the shear force vx . For vertical equilibrium of the total
plate it is required that 4Rcorner + 8Redge + 4F = 0. This is indeed satisfied:
4( 1

2F) + 8(− 3
4F) + 4F = 0. All the results that were seen in the solution of

the bi-harmonic equation reappear in this elementary model.

Comparison

The results of the discrete model are compared to the exact solution of the
square simply supported plate subjected to a double-sine load. Table 9.1 lists
the maximum occurring values of the displacement w, the moments m, the
shear force v, the distributed support reaction f and the concentrated corner
reaction Rcorner is given. The results of the discrete model and the exact so-
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Figure 9.16 Comparison between discrete model and exact solution for moments.

Figure 9.17 Comparison between discrete model and exact solution for shear force
and support reaction.

Figure 9.18 Distribution of support reactions.
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Table 9.1 Comparison of discrete model with exact values for two-way sine load.

Exact values divided by Values for discrete model divided by
pl2/π2 F = pl2/9

w l2/(4π2D) l2/(4 ∗ 9D)

m 1/4 1/4
v π/2l 3/2l

f −3π/4 −3 ∗ 3/4
Rcorner 1/2 1/2

lution are very close to each other. The simple model accurately shows the
main aspects in the force transfer of a simply-supported plate:

1. Maximum bending moments mxx and myy occur at the centre of the plate.
2. Maximum twisting moments mxy occur at the corners, and have the same

magnitude as the bending moments.
3. The distributed support reactions are 50% larger than the shear forces.
4. Lumped tensile corner support reactions are twice the size of the twisting

moments.

9.4 Discrete Model for Plate on Flexible Edge Beams

In the previous section we modelled the simply-supported plate which had
been discussed in Section 5.3 for a two-way sine load. In Section 5.4 we
considered another interesting case, a flexible edge beam, which leads to a
twist-less plate, at that time for a homogeneously distributed load. Because
the two cases have different loads and different boundary conditions, we had
to study them with different displacement fields. With the discrete model
we can study both cases in one model for the same load. We will do so
for the square model of Figure 9.14 and a homogeneously distributed load p.

The new model is shown in Figure 9.19. The grid consists of four beams in
the x-direction, four in the y-direction, and four torsion panels. The beams
inside the plate represent a plate strip of width a. The beams at the position
of the edge represent the actual applied edge beam plus a plate strip of width
1
2a. Because the edges can deflect, an additional degree of freedom must be
introduced. We call the displacement of each inner node w1 and of each edge
node w2. Now the stiffness matrix of the plate has two rows and two columns.
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Figure 9.19 Discrete model for plate with flexible edge beams.

We introduce the edge beam flexural rigidity EI = λ( 1
2 lD), where l = 3a is

the length of the plate edge and D the plate flexural rigidity; the parameter
λ relates the beam rigidity to the rigidity of the half plate width. Now we
obtain, on the basis of the properties of the rotational spring elements and
torsion panel, the following matrix equation

D

a2

[
4 −6

−6 11+3λ

] {
w1

w2

}
= F

{
1
1

}
(9.13)

The force F is equal to pa2. We found the solution of this matrix equation
for three different values of the parameter λ

λ = ∞ → w1 = 1

4

Fa3

D
, w2 = 0

λ = 1 → w1 = Fa3

D
, w2 = 1

2

Fa3

D
(9.14)

λ = 0 → w1 = 17

8

Fa3

D
, w2 = Fa3

D

The computation of the bending and torsion moments from these dis-
placements is a straight-forward procedure. The bending moment along
a section at mid-span and the torsion moment along the edge are pre-
sented in Figure 9.20. The case of infinite large λ corresponds to the
simply-supported case. The same solution is obtained as in the previous
Section. The twisting moments and the bending moments are equal. For

Plates and FEM
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Figure 9.20 Results for different edge beam stiffness.

λ = 1, the plate becomes twist-less; all twisting moments are zero; the
edge beam has the same stiffness as the half plate width. For λ = 0 the
plate has free edges and is supported just by four compressive point loads
in the corners. Twisting moments occur, but they have an opposite sign
compared to the simply-supported plate. There, the corner reaction was
tensile, here it is compressive. When λ decreases from infinity to zero, we
see the twisting moments switch sign, and notice a substantial increase of
the bending moments. In Figure 9.20, note the large increase of deflection,
the substantial increase in the bending moments, and the switch in sign of
the twisting moments.

The total bending moment over the full width of the plate at mid-span due
to the load is 3Fa, which is equal to pl3/9. Part of this moment is carried
by the plate and part by the edge beams. For the three considered cases of
rigid supports, twist-less plate and free edges, the plate part is 1/6, 1/2 and 1,
respectively. Two edge beams account for the remaining part, 5/6, 1/2 and 0,
respectively. The moment in each edge beam becomes pl3/21.6, pl3/32 and
0, respectively.

It is interesting to compare these values to those arising from the practi-
cal approach of structural engineers and recommendations in some codes of
practice, in which the load is supposed to flow to the beams as depicted in
Figure 9.21, referred to as envelope approach. For a square plate this leads
to a distributed beam load of triangular shape with maximum value pl/2 at
mid-span. In its turn, this load leads to a bending moment pl3/24, which is
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Figure 9.21 Loading of edge beams in ‘envelope’ approach.

10% too small, compared to the exact value pl3/21.6 for an infinite rigid
beam. For flexible edge beams in a twist-less plate with exact moment value
pl3/32, it is too large. Then the envelope approach overestimates the mo-
ment by 50%.

If a structural engineer is detailing flexible edge beams on the basis of the
envelope approach, the reinforcement in the plate itself may be too weak.
Even though safety may not be affected, there may be severe cracking in
practice.

9.5 Message of the Chapter

• Plate bending can be modeled by a grid of beams filled in by torsion
panels. The beams in their turn can be modeled by rotational spring
elements.

• The spring-panel model elegantly shows that the central part
of a square simply-supported plate under distributed loading is
dominated by bending and the corner parts by torsion, and that
the maximum bending moment is equal to the maximum twisting
moment for zero Poisson’s ratio.

• Equations in the global stiffness matrix are similar to those in the
classical Finite Difference Method.

Plates and FEM
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• The effect of edge beams can be shown by a simple hand calculation
with two degrees of freedom. Very stiff edge beams and very
flexible edge beams both lead to twisting moments in the corner
regions of the plate, however of opposite sign. For an in between
edge beam stiffness the plate is perfectly twist-less.

• For infinitely rigid edge beams, the engineering envelope approach
to calculate the maximum edge beam moment is 10% too optimistic.
It is 50% too pessimistic for flexible beams with a torsion-less plate.
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