
Chapter 6
Circular Membrane Plates

In this chapter circular plates in a membrane state require our attention. In
Section 6.1 we study plates for axisymmetric load. Section 6.2 is devoted to
non-axisymmetric load. Plate bending will be the subject of Chapter 7.

6.1 Axisymmetric Circular Membrane Problems

Figure 6.1 shows a homogeneous circular plate of constant thickness t and
axisymmetric loading. For this type of problems it is convenient to change
to polar coordinates. The position in the plate is specified by means of the
radius r and the angle θ . The state of stress and strain is independent of θ ,
and there is just one displacement u in radial direction. Ordinary derivatives

per unit area. Only two membrane forces are present, nrr and nθθ . The shear
stress nrθ cannot occur. Therefore, only two strains exist, εrr and εθθ . The
scheme for the essential quantities is displayed in Figure 6.2.

The strain εrr and the displacement u both act in the r-direction; they are
related by εrr = du/dr. For the derivation of the tangential strain, εθθ , a cir-
cle is considered with radius r. The circumference of this circle is 2πr. After
application of the axisymmetric load, each point of the circle displaces over
a radial distance u. The new radius of the circle is r + u and the circumfer-
ence 2π(r + u). The increase of the circumference is 2πu. Division of this
increase by the original length 2πr provides the required strain εθθ = u/r.
So, the constitutive relations for plane stress are

εrr = du

dr
, εθθ = u

r
Kinematic (6.1)
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can be used since u depends only on the coordinate r, as does the load p
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124 6 Circular Membrane Plates

Figure 6.1 Displacement, load and membrane forces in axisymmetric plate.

The constitutive relations of Eq. (1.13) reduce to

nrr = Et

1 − ν2
(εrr + νεθθ )

nθθ = Et

1 − ν2
(εθθ + νεrr)

⎫⎪⎬
⎪⎭ Constitutive (6.2)

For the equilibrium equations we consider an elementary plate part of length
dr and aperture angle dθ as shown in Figure 6.1. The length of the edge at the
inside of the element is r dθ . The total force on this edge is nrrr dθ and points
to the left. At the outside of the element, at a distance dr further, the force has
increased d(nrrr dθ) dr, pointing to the right. The angle dθ is independent of
r, which means that the increment can be written as d(nrrr) dr dθ . A force
nθθ dr is acting perpendicular to each straight edge of the element. Since
the angle between the two forces is dθ , there is a force −nθθ dr dθ , where
the minus sign indicates the direction of the force (negative r-direction).The
distributed load p provides an outward-pointing force. For that purpose, p

Figure 6.2 Scheme of relationships.
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Figure 6.3 Only one constant stress-state exists with equal nrr and nθθ .

has to be multiplied by the area r rmdθ dr of the plate element. The force
equals pr dθ dr. For equilibrium, the sum of the three forces has to be zero.
After division by dθ dr the following equilibrium equation is obtained:

− d

dr
(r nrr) + nθθ = rp Equilibrium (6.3)

In this stress problem, there are no rigid body displacements. For any
displacement u there is a strain field. Further, only one combination of
constant strains is possible. For the strain εθθ to have a constant value ε0

a displacement is required of u = ε0r. The strain εrr then also equals ε0.
The only possible constant strains are identical strains εθθ and εrr . Then,
from the constitutive relations in Eq. (6.2) it follows that the membrane
forces nrr and nθθ are equal and constant too. When the constant values
nrr = n0 and nθθ = n0 are substituted in the equilibrium equation (6.3)
it appears that the distributed load p across the plate area has to be
zero. The plate can be loaded only along the edge. Figure 6.3 shows two
situations, a circular plate with and without a hole. In both plates, in each
point, a membrane force n0 is present and Mohr’s circle is reduced to a point.

An alternative to deriving the three basic sets of equations is the considera-
tion of work. Slightly different quantities are used, which we will show here.
The equilibrium equation (6.3) comprises the terms rnrr and rp. It makes
sense to introduce new variables for these combinations. This will be done
for rnθθ too. We define

Nrr = r nrr; Nθθ = r nθθ ; f = rp (6.4)

The two quantities Nrr and Nθθ are normal forces with the dimension of
force; f is a line load with the dimension of force per unit of length. Ap-
plication of the transformations in Eq. (6.4) keeps the kinematic equations
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Figure 6.4 Thick-walled pipe with load at inner face.

(6.1), and changes the constitutive equations (6.2) and equilibrium equation
(6.3) into

εrr = du

dr
, εθθ = u

r
Kinematic (6.5)

Nrr = Etr

1 − ν2
(εrr + νεθθ )

Nθθ = Etr

1 − ν2
(εθθ + νεrr )

⎫⎪⎬
⎪⎭ Constitutive (6.6)

−dNr

dr
+ Nθθ

r
= f Equilibrium (6.7)

We will continue with these three equations for the derivation of the dif-
ferential equation. Substitution of the kinematic equations (6.5) into the con-
stitutive equations (6.6) leads to

Nrr = Etr

1 − ν2

(
du

dr
+ ν

u

r

)
; Nθθ = Etr

1 − ν2

(
u

r
+ ν

du

dr

)
(6.8)

Substitution of this result into the equilibrium equation (6.7) leads to the
differential equation

Et

1 − ν2
Lu = f (6.9)

where the operator L is

L = r
d

dr

1

r

d

dr
r (6.10)

This differential equation is of the second order.
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6.1.1 Thick-Walled Tube

The differential equation can be used to determine the stress state in a thick-
walled tube subjected to an internal gas pressure q. Figure 6.4 defines the
tube. Flat sections remain flat after deformation, but the strain εzz in the axial
direction will not be zero. On average, σzz will be equal to zero. Therefore,
the problem will be treated as a plane stress state. A slice of unit thickness
of the tube is considered, which is cut perpendicularly to the axial direction.
This means that nrr and nθθ are equal to σrr and σθθ , respectively. For this
load case it holds that the distributed load f is zero and therefore

Lu = 0 (6.11)

In the general solution of this second-order differential equation there are
two coefficients which must be determined from the boundary conditions.
Choosing the trial solution Crm, we obtain two roots m = −1 and m = 1.
Therefore

u = C1
1

r
+ C2 r (6.12)

The coefficients C1 and C2 follow from the two boundary conditions

r = a → nrr = −q; Nrr = −qr

r = b → nrr = 0; Nθθ = 0
(6.13)

The results for the displacement u and the stress quantities nrr and nθθ be-
come

u(r) = a2

b2 − a2

q

Et

{
(1 + ν)

b2

r
+ (1 − ν) r

}
(6.14)

nrr = a2

b2 − a2

(
−b2

r2
+ 1

)
q; nθθ = a2

b2 − a2

(
b2

r2
+ 1

)
q (6.15)

The results are presented in Figure 6.5. Both stresses σrr and σθθ are nonlin-
ear over the thickness of the tube.

6.1.2 Circular Hole in a Homogeneous Stress State

We want to compute the stress concentration factor on the edge of a circu-
lar hole in a large plate with a homogeneous stress state of equal principal
membrane forces n. The radius of the hole is a. The homogeneous membrane
forces without the hole are
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128 6 Circular Membrane Plates

Figure 6.5 Stresses in a thick-walled pipe due to gas pressure.

nrr = n; nθθ = n (6.16)

In order to make the edge of the proposed hole to be stress-free a loading
case must be superimposed in which the edge is loaded with an opposite
load on the boundary r = a. The boundary condition is nrr = −n. Further it
is known that the stresses will vanish for large radius r, which requires C2 to
be zero. The result is

nrr = n

(
−a2

r2

)
; nθθ = n

(
a2

r2

)
(6.17)

Still these membrane forces must be superimposed on the constant equal
stresses for the case without a hole. The final result for the large plate with
hole is

nrr = n

(
1 − a2

r2

)
; nθθ = n

(
1 + a2

r2

)
(6.18)

Due to the hole, the maximum value of the membrane force nθθ is twice the
value n of the homogeneous stress state. The stress concentration factor is 2,
see Figure 6.6.

Figure 6.6 Concentration factor 2 for equal principal stresses.
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Figure 6.7 Curved beam subjected to constant moment.

6.1.3 Curved Beam Subjected to Constant Moment

Consider a curved beam with a constant radius of curvature as shown in Fig-
ure 6.7. The inner and outer radii are a and b, respectively, and the beam
is subjected to a constant moment M. The stress state in this axisymmet-
ric structure will also be axisymmetric. The beam has a rectangular cross-
section of small width t . This curved bar is modelled as a thin plate with
thickness t . This problem can be solved with the findings of Section 6.1. An
alternative solution procedure is given in [7]. The stresses are

σrr = frr

M

C
; σθθ = fθθ

M

C
(6.19)

where

C = t

(
1

4

(
b2 − a2

) − a2b2

b2 − a2

(
ln

b

a

)2
)

(6.20)

frr = − ab

b2 − a2
ln

(
b

a

)
ab

r2
+ a2

b2 − a2
ln

( r

a

)
− b2

b2 − a2
ln

( r

b

)
,

fθθ = −1 + a b

b2 − a2
ln

(
b

a

)
a b

r2
+ a2

b2 − a2
ln

( r

a

)
− b2

b2 − a2
ln

( r

b

)(6.21)

In these expressions, C depends only on a, b and the thickness t , the geom-
etry data. The functions frr(r) and fθθ (r) are dimensionless and provide the
distribution of stresses over the height of the cross-section. In Figure 6.8 this
distribution is displayed for two different values of the ratio a/b, a value
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Figure 6.8 Stress distribution in curved beam for different curvatures.

that is small compared to unity (strong curvature) and a value close to unity
(weak curvature). For a strong curvature, the bending stress distribution de-
viates severely from a linear distribution, irrespective of the fact that flat
cross-sections remain flat.

We note that for pure bending, there are also stresses σrr in the height di-
rection. This can be made clear if we consider the equilibrium of the part of
the beam below the neutral line. Integration of the tensile stresses σθθ over
the height of the beam part leads to a tensile force. The two tensile forces
acting on both ends of the beam part have different directions and work line.
Equilibrium is possible only if there is a radial outward-pointing stress σrr in
the neutral line, acting over the whole length of the beam part. Therefore, it
can be concluded that σrr is a tensile stress. The same conclusion is obtained
if we consider the part of the beam outside the neutral line, where compres-
sive stresses σθθ are present. If we translate this finding to a curved reinforced
concrete beam, we conclude that stirrups are needed in a curved beam even
when there is no shear force. Figure 6.9 demonstrates this by drawing struts
and ties in the curved beam. Red lines are in tension and green lines in com-
pression.

Figure 6.9 A constant moment in concrete curved beam may ask for stirrups.
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6.2 Non-Axisymmetric Circular Membrane Problems

If the stress state is not axisymmetric, we have to account for three stresses
σrr , σθθ and σrθ . It appears advantageous to switch to the force method for
this type of problem. We will discuss problems where load is applied only
on the edges. We start the discussion in the orthogonal set of axes x, y. In
Chapter 1 we derived the kinematic equations (1.9), the constitutive equa-
tions (1.13) and the equilibrium equations (1.14), and we substituted them in
each other, starting from the kinematic equations and ending with the equi-
librium equations. In the force method we make use of these three set of
equations in the opposite order. We first construct a stress solution that sat-
isfies equilibrium, after that we use the constitutive relations, to end up with
expressions for strains and finally we construct a compatibility condition
for the strains from the kinematic relations. In Eq. (1.14) we have three un-
known stresses in two equilibrium equations. Therefore the stress state is
statically indeterminate and we introduce a stress function ϕ(x, y), as ini-
tially proposed by Airy [13]. The following set of stresses satisfies the two
equilibrium equations in (1.6) for zero distributed area forces px and py

nxx = ∂2ϕ

∂y2
; nyy = ∂2ϕ

∂x2
; nxy = − ∂2ϕ

∂x∂y
Equilibrium (6.22)

The constitutive relations are now used in the shape of Eq. (1.12)
⎧⎨
⎩

εxx

εyy

γxy

⎫⎬
⎭ = 1

Et

⎡
⎣ 1 −ν 0

−ν 1 0
0 0 2 (1 + ν)

⎤
⎦

⎧⎨
⎩

nxx

nyy

nxy

⎫⎬
⎭ Constitutive (6.23)

The required compatibility relation for the strains is derived from the kine-
matic relations in (1.9). There three strain relations are expressed in terms of
in two degrees of freedom ux and uy . Elimination of these two displacements
leads to one relation between the three strains

∂2εxx

∂y2
+ ∂2εyy

∂x2
− ∂2γxy

∂x∂y
= 0 Compatibility (6.24)

Substitution of the three relationships (6.22) and (6.23) into Eq. (6.24) leads
to a differential equation for the stress function ϕ. Again we find the bi-
harmonic equation which was obtained in Chapter 1.

(
∂4

∂x4
+ 2

∂4

∂x2∂x2
+ ∂4

∂y4

)
ϕ = 0, ∇2∇2φ = 0 (6.25)
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Figure 6.10 Displacements and stresses in polar coordinates.

Due to Eq. (6.22), the quantity ∇2ϕ is the sum of the two normal forces.
Figure 6.10 shows which displacements and stresses are involved for the
description in polar coordinates. The three second derivatives in (6.22) need
be transformed to derivatives with respect to r and θ . More precisely, we
have to change from the orthogonal set of axis (x, y) to the orthogonal set
(r, t) of directions, where t is the direction of the tangent line to a circle of
radius r, see Figure 6.10. Formally the transformation is done with aid of the
chain rule for derivatives; This leads to

∂2ϕ

∂x2
→ ∂2ϕ

∂r2

∂2ϕ

∂y2
→ 1

r

∂ϕ

∂r
+ 1

r2

∂2ϕ

∂θ2
(6.26)

∂2ϕ

∂x∂y
→ ∂

∂r

(
1

r

∂ϕ

∂θ

)

The transfer from the second derivative with respect to x to the second deriv-
ative with respect to r is simple. We just replace x by r. The mixed second
derivative with respect to x and y is also simple, if we notice that dy is equal
to r dθ . However, the transformation of the second derivative with respect to
y needs more explication. The result consists of two contributions. The last
one, which has r2 dθ2 in the numerator, is expected; but the first one may
be a surprise. This term is independent of θ . Figure 6.11 helps to explain
this term. To understand the second derivative in t-direction we consider the
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Figure 6.11 Second derivative in tangent line in axisymmetric state.

value of ϕ at point A on the circle with radius r and the two points B at the
circle with radius r + dr. If dϕ/dr is not zero the value of ϕ in the points B
will be different from the value in point A, and therefore a non-zero second
derivative exists in the tangent line at point A. This second derivative always
occurs, in axisymmetric as well as non-axisymmetric cases.

Now it is clear how we must replace Eq. (6.22). For polar coordinates we
use

nrr = 1

r

∂ϕ

∂r
+ 1

r2

∂2ϕ

∂θ2
; nθθ = ∂2ϕ

∂r2
; nrθ = − ∂

∂r

(
1

r

∂ϕ

∂θ

)
(6.27)

The Laplace operator ∇2 can be determined from the sum of nrr and nθθ .
The equation of Airy (6.25) then becomes:

(
∂2

∂r2
+ 1

r

∂

∂r
+ 1

r2

∂2

∂θ2

) (
∂2

∂r2
+ 1

r

∂

∂r
+ 1

r2

∂2

∂θ2

)
ϕ = 0 (6.28)

6.2.1 Point Load on a Half Plane

The obtained differential equation (6.28) can be used to find the stress dis-
tribution in a half plane due to a point load F on the edge, as shown in
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Figure 6.12 Stresses in half-plane with vertical point load.

Figure 6.12. The boundary conditions are zero stresses σθθ and σrθ at the
free edge and zero stresses for infinitely large radius r. It can be shown that
the trial function

ϕ = Crθ sin θ (6.29)

satisfies Airy’s biharmonic equation and the boundary conditions. By appli-
cation of Eq. (6.27) the membrane forces become

nrr = 2C
1

r
cos θ; nθθ = 0; nrθ = 0 (6.30)

This result is very special. The stresses σθθ and σrθ are not zero just at the
edge (θ = π/2), but for any value of the angle θ . At a half circle in the half
plane the shear stress σrθ and tangential stress σθθ are zero. Just a membrane
force nrr is present. The value of C can be calculated from the condition that
vertical equilibrium must exist between the point load F and the membrane
forces nrr . This condition leads to

nrr = 2F

π

cos θ

r
(6.31)

Boussinesq [14] even found such a type of solution for a compressive point-
load F on an infinite 3D half-space, from which Flamant [15] obtained the
stated solution. Therefore, the solution for a point-load on a half-plane is
also called Boussinesq’s solution. In each point (r, θ) a transformation can be
made from the stresses σrr , σθθ and σrθ to the stresses σxx, σyy and σxy . These
three stresses are all different from zero. Figure 6.13 shows the distribution
of the vertical membrane force nyy. The deeper the section, the more nyy is
spread.
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Figure 6.13 Vertical stress under point load on half-space.

6.2.2 Brazilian Splitting Test

A well-known method for determining the splitting strength of brittle materi-
als like concrete is the so called Brazilian splitting test. In this test a circular
cylinder is loaded by two opposite line loads as shown in Figure 6.14. Direct
tensile tests on concrete are difficult to perform, because a special tensile test
set-up needs to be available. Fortunately, there is a simple relation between
the vertical line load and the tensile stress in a Brazilian splitting test. It is
assumed that the stresses do not vary along the axial direction of the cylinder
so that a slice of unit thickness can be considered. The solution of the point
load on an half space of Section 6.2.1 can be used to determine the stress
state in the cylinder. The solution for a compressive force F on a half-plane
becomes very simple when it is presented by eccentric circles as done in Fig-
ure 6.15. For all points on a circle r = d cos θ . Then in each circle the stress
σrr is constant while the other stress components σθθ and σrθ are zero. The
constant value of σrr is −σo in which σo = 2F/πd is positive. In the verti-
cal line of symmetry, the horizontal stress, σθθ , is zero. The material outside

Figure 6.14 Loading scheme on solid cylinder in Brazilian splitting test.
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Figure 6.15 Alternative presentation of stresses in half-space.

the circle has been removed and replaced by the edge loading σo. In Fig-
ure 6.16 the same figure is presented together with the mirror image of the
solution. When both solutions are superimposed a circular disk is obtained
that is loaded by two concentrated forces F and a radial edge stress −σo.
Note that no horizontal stresses are present in the vertical line of symmetry.

The final step in the derivation is to remove the edge stress by adding the
axisymmetric solution of a disk with a constant tensile stress σo on the edge
depicted in Figure 6.3. In this load case there is a hydrostatic stress state with
a tensile stress σo acting in all directions. Therefore, the horizontal stress,
σθθ , in the vertical line of symmetry is σo. The result of the superposition is

Figure 6.16 Sum of half-space solution and its mirror image.
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Figure 6.17 Superposition of two stress states yields the final solution.

a circular disk subjected to two diametrically opposite point-loads F with a
free unloaded circular edge, see Figure 6.17. On the vertical line of symmetry
there is a constant tensile stress σo. Therefore, the ultimate result is a homo-
geneous tensile stress along the vertical line of symmetry, σxx = 2F/πd.
The total horizontal force on the line of symmetry has to be zero. Therefore,
there must be local horizontal compressive forces at the point of action of
the forces F , equal to 1

2σod = F/π .
In this linear-elastic solution the homogeneous tensile stress in the verti-

cal line of symmetry is balanced by a concentrated horizontal force F/π at
each end of the line of symmetry. This implies infinitely large compressive
stresses at those positions. In reality the elasticity limits will be surpassed
and nonlinear material effects will enter in the zones where the loads are
applied.

Plates and FEM
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Figure 6.18 Uniaxial stress state as combination of two basic cases.

6.2.3 Hole in Plates with Shear and Uniaxial Stress

In Section 6.1 for axisymmetric problems we were able to determine the
stress peak near a hole in a plate in a radially homogeneous (is hydrosta-
tic) stress state. Now we will investigate the case of a hole in a plate with
a constant shear stress. We do it for a plate which has a tensile stress in
the x-direction and a compressive stress in the y-direction. After we have
solved that problem we also can determine the stress concentration in an
uniaxially stressed plate. That case is a superposition of the hydrostatic case
of Section 6.1 and the present constant shear case. Figure 6.18 shows this
superposition.

Shear Stress

We consider a large plate with a hole, in which equal principal stresses of
opposite sign occur, see Figure 6.19. We choose the origin of the axes r and
θ at the centre of the hole. The value of the principal membrane forces is
n. It can be verified from Mohr’s circle or the transformation rules that the
homogeneous membrane forces at each position in the plate in absence of
the hole would be

nrr = n cos 2θ

nθθ = −n cos 2θ (6.32)

nrθ = −n sin 2θ

If a hole is created, the membrane forces nrr and nrθ have to be made zero on
the edge of the hole. This means that an edge loading has to be superimposed,
which causes the same membrane forces but with an opposite sign:
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Figure 6.19 Circular hole in constant shear field.

nrr = −n cos 2θ

nrθ = n sin 2θ
(6.33)

The bi-harmonic differential equation (6.28) has to be solved. This can be
done by choosing a solution for ϕ of the form

ϕ = ϕ(r) cos 2θ (6.34)

This means that the variables r and θ are separated. Substitution in the dif-
ferential equation yields an ordinary fourth-order differential equation for
ϕ(r): (

d2

dr2
+ 1

r

d

dr
− 4

r2

) (
d2

dr2
+ 1

r

d

dr
− 4

r2

)
ϕ = 0 (6.35)

The general solution of this fourth-order differential equation will have four
constants, to be determined from the boundary conditions. Substitution of
the trial function Crm leads to four roots m = −2, m = 0, m = 2 and
m = 4, therefore the solution is

ϕ =
(

C1 r4 + C2 r2 + C3 + C4
1

r2

)
cos 2θ (6.36)

From Eq. (6.27) we derive the expressions for the membrane forces. We
must determine the four coefficients from the boundary conditions, two on
the edge of the hole, see Eq. (6.33), and two from the condition that all
membrane forces vanish for large r. The result for the membrane forces is
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Figure 6.20 Stress concentration factors for constant shear and uniaxial stress.

nrr = n

(
−4

a2

r2
+ 3

a4

r4

)
cos 2θ

nθθ = n

(
−3

a4

r4

)
cos 2θ (6.37)

nrθ = n

(
−2

a2

r2
+ 3

a4

r4

)
sin 2θ

This solution still has to be superimposed on the homogenous stresses of
Eq. (6.33) for the situation without hole. The final result is

nrr = n

(
1 − 4

a2

r2
+ 3

a4

r4

)
cos 2θ

nθθ = n

(
−1 − 3

a4

r4

)
cos 2θ (6.38)

nrθ = n

(
−1 − 2

a2

r2
+ 3

a4

r4

)
sin 2θ

The maximum tensile stress nθθ at the hole edge in peripheral direction ap-
pears for r = a, θ = ±π and is equal to 4n. This value is four times the
applied principal membrane stresses; the stress concentration factor is 4, see
Figure 6.20.
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Uni-Axial Stress

The uni-axial stress state is found from the superposition of solution (6.39)
and the solution for the axisymmetric case in Section 6.1.2, divided by 2 in
order to relate it to an applied stress of the magnitude n

nrr = n

2

{(
1 − a2

r2

)
+

(
1 − 4

a2

r2
+ 3

a4

r4

)
cos 2θ

}

nθθ = n

2

{(
1 + a2

r2

)
−

(
1 + 3

a4

r4

)
cos 2θ

}
(6.39)

nrθ = n

2

{
−1 − 2

a2

r2
+ 3

a4

r4

}
sin 2θ

For this stress state the maximum tensile membrane force nθθ is three times
the value of the uniaxial membrane force. The stress concentration factor
is 3. The distribution of the stresses is shown in the right-hand part of Fig-
ure 6.20.

6.3 Message of the Chapter

• In thick-walled tubes under internal pressure the stress in tangential
direction is not constant over the thickness. There is a nonlinear
distribution.

• In thick-walled tubes under internal pressure we cannot neglect the
stresses in thickness direction.

• A constant moment in a curved beam evokes tensile stresses in the
depth direction of the beam. For a reinforced beam, stirrups may be
needed in absence of a shear force.

• At a round hole in a homogeneous (hydrostatic) stress field the
stress concentration factor is 2.
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• At a round hole in a uniaxial stress field the stress concentration
factor is 3.

• For a constant shear stress field the stress concentration factor even
gets the value 4.

• Stresses in a half plane due to a point load normal to the free
edge are very special. In polar coordinates just normal stresses in
radial direction occur. The tangential stress and shear stress are zero.

• In the Brazilian splitting test there is a homogeneous tensile stress
over the vertical plane of symmetry of the cylinder. These stresses
are accompanied by balancing compressive lumped forces, close to
the applied loads.
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