
Chapter 5
Rectangular Plate Examples

We focus on special aspects of the theory of thin plates by discussing a state
of constant bending curvature in Section 5.1 and a panel of constant torsion
in Section 5.2. In Section 5.3 we show the effectiveness of a square simply-
supported plate subject to a distributed load. In Section 5.4 we discuss the
special case of a twist-less plate. Finally, we devote Section 5.5 to a viaduct
subject to an edge load.

5.1 Basic Bending Cases

5.1.1 Cylindrical Deflection

We consider a cylindrical deflection (see Figure 5.1) with shape

w = Cx (a − x) (5.1)

for a plate with a non-zero Poisson’s ratio. Substitution of this expression
into the bi-harmonic equation (4.7) gives p = 0. This means that the function

p. The deflection is zero along the straight edges x = 0 and x = a. This is
where the supports can be thought to be. All lines that run parallel to the
supports remain straight. The formulas in (4.7) imply

mxx = 2DC, myy = 2νDC, mxy = 0 (5.2)

We conclude that there is a bending moment in the y-direction, Poisson’s
ratio times the moment in the x-direction

©  Springer Science+Business Media B.V. 2010

J. Blaauwendraad, Plates and FEM: Surprises and Pitfalls, Solid Mechanics
and Its Applications 171, DOI 10.1007/978-90-481-3596-7_5,

w is a solution to the differential equation in the absence of a distributed load
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Figure 5.1 Cylindrical deflection plane.

myy = νmxx (5.3)

Furthermore Eq. (4.4) implies

vx = 0, vy = 0 (5.4)

There is a constant bending moment mxx in the plate, which is caused by an
externally applied moment of the same size along the straight edges x = 0
and x = a. In the direction of the straight generating lines, there is a constant
moment myy of magnitude vmxx . For steel, with a value ν = 0.3, this will
lead to my = 0.3mxx ; for concrete with the value ν = 0.2, my = 0.2mxx .
Twenty percent of the reinforcement in the span direction is necessary in the
lateral direction, even when there is no curvature there!

5.1.2 Cylindrical Deflection of Arbitrary Shape

Now we consider the general shape of the deflection w = f (x) due to a
distributed load p. Substitution into the bi-harmonic equation in (4.7) shows
that the load is

p = D
d4

dx4
f (x) (5.5)

For the moments we find, see Eq. (4.7)

mxx = −D
d2

dx2
f (x), myy = νmxx, mxy = 0 (5.6)
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Figure 5.2 Omni-directional bending.

We infer again that if the deflection is constant in the y-direction, a moment
myy is generated even though there is no curvature in the y-direction. This
confirms our finding for the clamped edge in Section 4.4.1.

5.1.3 Omni-Directional Bending

We consider the superposition of the solutions w = −Cx2 and w = −Cy2.
With x2 + y2 = r2 this leads to

w = −C(x2 + y2) = −Cr2 (5.7)

This is a paraboloid of revolution (see Figure 5.2). The moments are

mxx = 2DC(1 + ν), myy = 2DC(1 + ν), mxy = 0 (5.8)

Using the transformation formulas (4.17) we find

mnn = mxxcos2α + myysin2α = 2DC (1 + ν)

mtt = 2DC (1 + ν) (5.9)

mnt = 0

The bending moment is equal in all directions. Torsional moments do not
appear. Here we have the case of pure bending due to a constant moment m

along the perimeter of a circular plate. The constant C follows from

m = 2DC (1 + ν) → C = m

2D (1 + ν)
(5.10)

Plates and FEM
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Figure 5.3 Panel with constant torsion.

and the formula for the plane of deflection is

w = −m

2D (1 + ν)
r2 (5.11)

5.2 Torsion Panel

We give a rectangular plate a deflection of the shape (see Figure 5.3)

w = −Cxy (5.12)

This gives a mixed second derivative

∂2w

∂x ∂y
= −C (5.13)

The other two derivatives are zero. The moments are

mxy = (1 − ν)DC, mxx = 0, myy = 0 (5.14)

Both bending moments are zero and the torsion is constant and positive. Ac-
cording to Eq. (4.4) the derivative of the moments provides the shear forces.
The shear forces are zero:

vx = 0, vy = 0 (5.15)

According to Eq. (4.5) we can compute the load from the second derivatives
of the moments. As a result the load p is also zero. On the edge x = constant,
the following support reaction is obtained:
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Figure 5.4 Two-way sine load on a simply-supported square plate.

f = vx + ∂mxy

∂y
= 0 (5.16)

which is also zero. This is also the case for the other edges. So, no load occurs
at the edges and no load over the area of the plate. Yet a twisting moment
is present. The twisting moments in the four corners of the plate generate
a concentrated support reaction of 2mxy , as shown in Figure 5.3. The load
consists of two couples of point loads in opposite direction. In literature,
this plate case is known as the Nadai’s plate. This stress state may be used
to experimentally determine the plate flexural rigidity D. The panel with a
constant twisting moment and four corner forces will play a role in Chapter 9
on approximating computational methods in pre-FE days.

5.3 Two-Way Sine Load on Square Plate

A square plate with dimensions a is simply supported along its four edges.
The origin of the coordinate system is chosen in a corner, and the axes coin-
cide with the sides of the square, see Figure 5.4. A distributed load is applied
of the form

p = p̂ sin
πx

a
sin

πy

a
(5.17)

This two-way sine load may be considered to be the first term of a Fourier
series of a homogeneously distributed load. The amplitude p̂ is the value of
the load at the plate centre (x = y = a/2).

5.3.1 Displacement

We assume
w = ŵ sin

πx

a
sin

πy

a
(5.18)
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where ŵ is the centre value. This choice satisfies the boundary conditions
along the simple supports as discussed in Section 4.4.2.

x = 0 and x = a →

⎧⎪⎨
⎪⎩

w = 0

∂2w

∂x2
= 0

(5.19)

y = 0 and y = a →
⎧⎨
⎩

w = 0
∂2w

∂y2
= 0

(5.20)

Substitution of this trial solution in the differential equation (4.7) yields

[
π4

a4
+ 2

π4

a4
+ π4

a4

]
ŵ = p̂

D
→ ŵ = p̂a4

4π4D
(5.21)

The solution is therefore

w = p̂a4

4π4D
sin

πx

a
sin

πy

b
(5.22)

This is a particular solution that satisfies the boundary conditions of the
simply-supported plate. Then the particular solution is the complete solution
and we do not need find a homogenous solution of the differential equation.
The plane of deflection is similar in shape to the load distribution. This is
visualized in Figure 5.5. For the maximum deflection of the square plate we
find

ŵ = p̂a4

4π4D
(5.23)

For the maximum deflection of a beam with unit width, flexural rigidity D

and the same span and subjected to a one-way sine line load with maximum
p̂, we find

ŵ = p̂a4

π4D
(5.24)

The deflection of the plate is a quarter of the deflection of the beam. The
beam solution applies for a very wide plate that spans in one direction; that
plate is only a quarter as stiff as the square plate.

One might expect a square plate to be twice as stiff as a beam, at a first
look, noticing that a plate can transfer loads in two directions, so beam-
action in the x-direction and beam-action in the y-direction may cooperate.
However, the square plate receives additional stiffness by two other ‘beams’,
which act in the diagonal direction. The length of these ‘beams’ is longer, but
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Figure 5.5 Deflection of the square plate.

the ends act as clamped ends in the corners. Because of the straight edges,
both ∂w/∂x and ∂w/∂y are zero at the corners. Therefore, the derivative of
w must be zero in all directions at that position, which explains the apparent
clamped ends of the diagonal ‘beams’ and their important contribution to the
stiffness.

Effectiveness of plate

The middle term in the bi-harmonic differential equation due to torsion
contributes to the same extent as the first and last term due to bending.
This shows that a square or nearly square plate is a very effective load-
carrying structure. A factor of about four in effectiveness is also to be
expected for a homogeneously distributed load.

5.3.2 Moments and Shear Forces

The formulas in (4.7) lead to the moments

mxx = 1 + ν

4π2
p̂a2 sin

πx

a
sin

πy

a

myy = 1 + ν

4π2
p̂a2 sin

πx

a
sin

πy

a
(5.25)

mxy = −1 − ν

4π2
p̂a2 cos

πx

a
cos

πy

a

The distributions of these moments are drawn in Figure 5.6. The solution for
the moments confirms that the boundary conditions are satisfied. The distri-
butions of the bending moments have the same shape as the deflection and
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Figure 5.6 Distribution of moments under two-way sine loading.

the load. The shape of the twisting moments is different. Where the bending
moment is at a maximum, the twisting moment is zero, and where the bend-
ing moment is zero the twisting moment is at a maximum. The maximum
bending moment in the plate is

m̂xx = m̂yy = 1 + ν

4π2
p̂a2 (5.26)

For a very wide plate that is supported only in one direction (x-direction) we
find

m̂xx = 1

π2
p̂a2 (5.27)

This is also the moment in a beam with a unit width under a comparable
load. The maximum moment in the plate is a factor (1+v)/4 smaller than in
a beam. Again, the force action in a square plate is very effective. The largest
twisting moments arise in the four corners. In the corner x = 0, y = 0 of the
plate the twisting moment is

m̂xy = −(1 − ν)

4π2
p̂a2 (5.28)

This moment is of the same order of magnitude as the maximum bending
moment in the centre of the plate. For a zero Poisson’s ratio it is even equal.
The shear forces can be derived from the moments by applying Eq. (4.4)

vx = 1

2π
p̂a cos

πx

a
sin

πy

a

vy = 1

2π
p̂a sin

πx

a
cos

πy

a

(5.29)

Their distribution over the plate area is depicted in Figure 5.7. The correct-
ness of the shear forces can be checked as follows. We can compute the total
shear force that flows to the edges. Along edge x = 0 the shear force is
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Figure 5.7 Distribution of shear forces under two-way sine load.

vx = 1

2π
p̂a sin

πy

a
(5.30)

and the total shear force S along this edge is

S = 1

2π
p̂a

a∫
0

sin
πy

a
dy = 1

2π
p̂a · 2a

π
= 1

π2
p̂a2 (5.31)

For reasons of symmetry the total shear force which flows to the four edges
is four times S

4S = 4

π2
p̂a2 (5.32)

This total shear force should be equal to the total load P , which is applied to
the plate

P = p̂

a∫
0

sin
πx

a
dx

a∫
0

sin
πy

a
dy = p̂

2a

π
· 2a

π
= 4

π2
p̂a2 (5.33)

Indeed 4S equals P correctly.

5.3.3 Support Reactions

We continue the analysis of the square plate by computing the distributed
support reactions. Along the edge x = 0 the formula is, see Eq. (4.33)

f = −
(

vx + ∂mxy

∂y

)
x=0

(5.34)

The earlier results for vx and mxy lead to
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f = −
(

3 − ν

4π
p̂a cos

πx

a
sin

πy

a

)
x=0

= −3 − ν

4π
p̂a sin

πy

a
(5.35)

The support reaction is negative, so its direction will be opposite to the di-
rection of w and the load p (compressive reactions).

Surprising support reaction

The support reaction f is larger than the shear force vx . For zero
Poisson’s ratio the difference is a factor of 1.5.

The sum of the total support reaction along the four edges is

4R = 4

⎛
⎝−3 − ν

4π
p̂a

a∫
0

sin
πy

a
dy

⎞
⎠ = −

(
6 − 2ν

π2

)
p̂a2 (5.36)

The absolute value of this is evidently much larger than the total load given
in Eq. (5.33); again a factor of 1.5 exists between load and support reactions
for zero Poisson’s ratio. This difference is fully explained by the existence of
balancing concentrated reactions in the four plate corners. In the left-upper
corner (x = 0, y = 0) the value of the twisting moment is

mxy = −1 − ν

4π2
p̂a2 (5.37)

This is a negative value, so the direction of the shear stresses in sections
perpendicular to the edges is as shown in Figure 5.8. Therefore, the two
concentrated edge shear forces Vx and Vx are directed upward. For vertical
equilibrium, a downward lumped corner reaction F is needed

F = |mxy + myx| = 2

∣∣∣∣−1 − ν

4π2
p̂a2 cos

πx

a
cos

πy

a

∣∣∣∣
x=0
y=0

= 1 − ν

2π2
p̂a2

(5.38)
Apparently a local downward force is needed to keep the square plate on the
simple support. If the plate is not fixed to the support, it will lift up in the
corner. To fix the corner, a tensile reaction force is needed. The same force
occurs in all corners. Now we should compare 4R + 4F to the applied load
P

4R + 4F = −6 − 2ν

π2
p̂a2 + 2 − 2ν

π2
p̂a2 = −4

π2
p̂a2 = −P (5.39)
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Figure 5.8 Direction of shear stresses for negative mxy in left-upper corner

The sum of all reactions is equal to the load. The sign has become negative
because of the sign convention for support reactions.

It is interesting to examine how the shower analogy must be interpreted in
this case. Figure 5.9 is a picture of the trajectories. Let us consider the ‘hill’
as a roof. The diagonals and the horizontal and vertical lines through the
middle of the roof are lines of symmetry and therefore trajectories. For this
combination of load and boundary conditions the trajectories between these
lines of symmetry end perpendicular to the edges. We may consider the edges
as open gutters that are perforated at their lower side over their full length

Figure 5.9 Trajectories for shear forces.
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in order to let the rain that flows from the roof through immediately. At the
same time a lumped well in each corner is bringing up water. This additional
water flows through the gutters off the corner and also disappears through
the perforations. In this way the water that flows through the perforations is
more than the water that falls upon the roof in a rain shower. The additional
part comes from the wells in the corners.

Remark

If the simply-supported plate is not rigidly connected to the support, and
tensile forces cannot be carried, corners will lift and tilt, which makes the
plate less stiff and leads to higher bending moments. A known example of
the tilting of a corner of the plate occurs at lock gates produced as double
mitre gate. There is leakage at the lower corners of each single gate, because
no tensile reaction force can occur.

5.3.4 Stiff Edge Beams

We have seen that the support reaction f is a factor of 1.5 larger than the
shear force vx near the edge for zero Poisson’s ratio. We could imagine that
the simple support is realized by edge beams of infinite flexural and shear
rigidity and zero torsion rigidity, supported by columns at the corners. These
beams are subjected to higher loads than might be expected at first glance,
and this needs to be kept in mind when detailing such beams. We will now
elaborate on the maximum moment and shear force in the beams.

Figure 5.10c shows the plan of a square plate on edge beams. The edge
beams are supported by ball supports at the four corners. An edge beam is
supposed to be an I-section. A side view is made in section A-A, shown in
Figure 5.10b. At both ends of the section, other edge beams are crossed. The
plate (thickness t) fits nicely between the flanges of the I-section and is per-
fectly glued to the web of the edge beam. The connection is able to transfer
the shear force vx and twisting moment mxy from plate to web. These plate
actions are the loading of the edge beam. No concentrated vertical shear force
need occur in the plate edge zone, as is the case at a simply-supported edge.
At the end of the section A-A, there are shear forces Vb in the edge beams
which are crossed by the section. We show such a force in Figure 5.10b in
the web of the I-section.
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Figure 5.10 Loading of rigid edge beam due to plate.

The maximum bending moment Mb in the edge beam occurs at mid-span,
and the maximum shear force Vb at the beam ends. The beam moment is due
to both the shear force vx and twisting moment mxy . The shear force in the
beam is due to the shear force vx only. Accounting for the cosine shape of vx

and the sine shape of mxy in Eqs. (5.28) and (5.29) we obtain

M = v̂xa
2

π2
+ 1

π
m̂xya = p̂a3

2π3
+ (1 − ν) p̂a3

4π3
= (3 − ν) p̂a3

4π3

V = 1

π
v̂xa = p̂a2

2π2

(5.40)

Surprising large beam moment

In the expression for the beam moment M we notice the factor (3−v)/4
again as seen earlier in Eq. (5.35) for the support reaction! For zero
Poisson’s ratio the moment is 50% larger than expected on the basis of
the shear force that acts on the beam. For ν = 0.2 it is 40%.

The column reaction R is computed as follows:

R = −2V = − p̂a2

π2
(5.41)
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which indeed is one quarter of the total load P on the plate, and it is a com-
pressive force. No corner tensile force occurs if the simple support is realized
through a flexure-rigid edge beam.

The introduction of the edge beam provides an alternative way to derive
the boundary condition at a free edge. For that purpose we have to consider
an elementary beam part of length dy as depicted in Figure 5.10d. For force
equilibrium in the z-direction and moment equilibrium about the x-axis, re-
spectively, we obtain

dVb

dy
− vx = 0, Vb + mxy = 0 (5.42)

From the second equation we learn Vb = −mxy . Substitution in the first
equation and sign change leads to

∂mxy

∂y
+ vx = 0 (5.43)

which, for zero load f , is identical to the condition we derived earlier in
Eq. (4.34).

5.4 Twist-Less Plate

In the preceding section we considered a square plate subjected to distributed
load and supported by flexure-stiff and torsion-weak edge beams. For the
two-way sine load we found maximum bending moments in the plate centre
and maximum twisting moments at the corners. The values of these mo-
ments are of about the same size and for zero Poisson’s ratio exactly equal.
If the flexural rigidity of the edge beams decreases, the deflections will in-
crease and the distribution of moments will change. The bending moments
will become larger and the twisting moments smaller. For a sufficiently small
flexural rigidity the twisting moments become zero. This can best be shown
for a homogeneously distributed load p. No twisting moments in the plate
means that the middle term in the bi-harmonic differential equation can be
skipped. Then the plate behaves as a grid of orthogonal strips in which only
bending occurs. The displacement field in this case becomes

w(x, y) = ŵ[f (x) + f (y)] (5.44)

Here ŵ is the maximum deflection of the edge beams; the shape function
f (x), with maximum 1, is the deflected shape of a simply-supported beam
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Figure 5.11 Deflection and support reactions in twist-less plate.

subjected to a homogeneously distributed load. The same applies for f (y).
The displacement field is shown in Figure 5.11. The consequence of this
choice is a zero torsion deformation ρxy and zero twisting moments mxy .
Furthermore the curvature κxx depends only on x and the curvature κyy only
on y. This leads to moments mxx and shear forces vx which are constant in
the y-direction, and moments myy and shear forces vy which are constant in
the x-direction.

So, each edge beam is loaded by a homogeneously distributed load pa/4
and must have the same deflected shape as the adjacent plate. This can be the
case only when the flexural rigidity EI of the edge beam equals the bending
stiffness of a plate strip of width a/2. Therefore EI = aD/2. If we choose
this beam rigidity, no twisting moments will occur in the plate.

Twistless slab

For a proper choice of the edge beam stiffness no twisting moments will
occur. Then the distributed load p is half transferred in the x-direction
and half in the y-direction.

5.5 Edge Load on Viaduct

Consider a bridge slab with span a, and width b. The bridge is simply sup-
ported at x = a/2, and x = −a/2, and has free edges at y = b/2 and

Plates and FEM
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Figure 5.12 Bridge with load on edge.

y = −b/2. A cosine-shaped load is applied on the edge y = −b/2, see Fig-
ure 5.12. This load can be considered to be an approximation to a distributed
line load with some heavy vehicles in the middle part of the span. In this
case, a distributed load p is not taken into account. The distributed edge load
is

f (x) = f̂ cos αx, α = π/a (5.45)

The boundary conditions require

x = ±1

2
a →

{
w = 0

mxx = 0
(5.46)

y = −1

2
b →

⎧⎪⎨
⎪⎩

myy = 0

−
(

vx + ∂mxy

∂y

)
= f

(5.47)

y = +1

2
b →

⎧⎪⎨
⎪⎩

myy = 0

vx + ∂mxy

∂y
= 0

(5.48)

Applying the method of separation of variables, we can describe w as a prod-
uct of two functions, w = w(y) cos αx. The function w(y) is the distribu-
tion of the deflection along the vertical line at mid-span. This choice for w

satisfies the boundary conditions at the supports. Substitution into the bi-
harmonic equation (4.7) delivers an ordinary differential equation for w(y)

of the fourth order.

D

(
α4w − 2α2 d2w

dy2
+ d4w

dy4

)
= 0 (5.49)
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Figure 5.13 Deflection curve at mid-span.

In Section 2.2.2 we have already determined the solution of this homogenous
equation. It follows that w(x, y) becomes

w = (
A1e

αy + A2αyeαy + A3e
−αy + A4αye−αy

)
cos αx (5.50)

The four constants A1 to and included A4 follow from two boundary condi-
tions in the edge y = −b/2 and two in the edge y = b/2. At y = −b/2
the moment in y-direction is zero and the Kirchhoff shear force is −f . At
y = b/2 both the bending moment and the Kirchhoff shear force are zero.
We will now outline the solution for w on the line x = 0 (see Figure 5.13)
for three special cases. This solution is closely related to the distribution of
the bending moment over the width of the bridge at the middle of the span.

Case 1

The plate is supposed infinitely long in the y-direction, so the viaduct is very
wide. Then A1 and A2 must be zero, for fading away of the first two terms in
Eq. (5.50) to take place. As stated, the picture for the displacement is also a
measure for the bending moment in the span direction. At sufficient distance
from the loaded edge there is no deflection and bending moment.

Case 2

The plate is a square. This is a practical shape, as could appear in a viaduct.
All four constants now are involved, and therefore all four terms eαy , αyeαy ,

Plates and FEM
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e−αy and αye−αy are present in the solution. The plate sags at the loaded edge
and lifts at the opposite edge.

Case 3

The plate (viaduct) is so narrow that it turns into a strip-shaped beam. The
plate contributes over all its width in carrying the load, though the part close
to the load carries most. In Section 2.2.2 we showed the solution in another
form (Taylor expansion).

w = {
B1 + B2αy + B3(αy)2 + B4(αy)3 + · · ·} cos αx (5.51)

We shall limit ourselves to the case that ν = 0. The curvature is the second
derivative, so the moment myy is linear in y; only the coefficients B1, B2,
B3 and B4 need be considered. Because the moment myy has to be zero on
both edges, it is zero everywhere. This means that B3 and B4 are zero. As
a result, the deflection becomes linear in y. The two constants B1 and B2

follow from Kirchhoff shear force at the two edges, −f and 0 respectively.
The same solution would follow from beam theory. The beam is subjected to
bending in x-direction by a line load f and to torsion about the x-axis by a
distributed torque bf/2. The line load causes the constant deflection B1 and
the torque load the rotated part B2αy.

Effective Width

For the convenience of structural design the concept of effective width is
introduced in codes of practice, because designers normally prefer to do a
beam analysis. Suppose that Figure 5.14 is the distribution of the bending

Figure 5.14 Definition of the effective width beff.
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moment mxx over the width b and the maximum value at the edge is m.
If the sine-shaped load were applied to a beam with the same span a and
a rectangular cross-section with the same depth as the plate, the maximum
moment at mid-span would be

M = f̂ a2

π2
(5.52)

The ratio of M and m is the effective width beff of the plate. If engineers
can make a good guess for this width, it suffices to do a beam analysis and
to spread the total moment over the effective width in order to calculate the
edge moment m. Codes of practice offer practical rules for the determination
of the effective width.

5.6 Message of the Chapter

• A bending moment can occur for zero curvature. This is due to
the effect of a non-zero Poisson’s ration and a curvature in the
transverse direction.

• A rectangular plate can be brought in a state of constant twisting
moment by a set of four equilibrating corner forces.

• A simply-supported square plate under distributed load is about
four times more effective than a one-way plate for the same load.
Torsion in the corner zones takes care of half the load.

• The support reaction in a simply-supported plate under distributed
load is about 50% higher than we expect on the basis of the shear
force. The too-large compressive support reactions are balanced by
concentrated tensile forces at the four corners. A large concentrated
shear force occurs along the edges.

• If the simple support is materialized by stiff edge beams, the
moment in the edge beams is about 50% larger than expected on the
basis of the load that flows to the edge.

Plates and FEM
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• The flexural stiffness of edge beams can be chosen such that zero
twisting moments occur. In a twist-less square plate the bending
moments in the edge beams must be calculated on the basis of one
quarter of the load on the plate.

• Plate theory helps us to make estimates of the effective width in case
of line edge loadings.
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