
Chapter 2
Applications of the Plate Membrane Theory

In this chapter we will give solutions for plates, which are loaded only on
their edges. This implies that no distributed forces px and py occur, and the
fourth-order bi-harmonic equation (1.23) reduces to the simple form

∇2∇2ux = 0 (2.1)

When a general solution has been found for ux , the solution for uy can be
derived from the relation between ux and uy as given in Eq. (1.17). If we
choose the first equation, the relation is (px = py = 0)

(
∂2

∂x2
+ 1 − ν

2

∂2

∂y2

)
ux +

(
1 + ν

2

∂2

∂x∂y

)
uy = 0 (2.2)

We will demonstrate two types of solution. In the first type, solutions for
the displacements ux and uy will be tried, which are polynomials in x and
y. We will see that interesting problems can be solved through this ‘inverse
method’. The second type of solution is found by assuming a periodic dis-
tribution (sine or cosine) in one direction. Then in the other direction an
ordinary differential equation has to be solved. This approach is suitable for
deep beams or walls.

2.1 Trial Solutions in the Form of Polynomials

In this section we consider problems of which we know the stress state. For
this stress state we want to determine the displacement field. For this purpose
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20 2 Applications of the Plate Membrane Theory

appropriate trial functions for the displacements ux and uy will be chosen,
in which a number of coefficients occur, yet to be determined. As a trial
solution in its most general form we can choose

ux(x, y) = a1 + a2x + a3y + a4x
2 + a5xy + a6y

2 + a7x
3

+ a8x
2y + a9xy2 + a10y

3 + a11x
3y + a12xy3

(2.3)

uy(x, y) = b1 + b2x + b3y + b4x
2 + b5xy + b6y

2 + b7x
3

+ b8x
2y + b9xy2 + b10y

3 + b11x
3y + b12xy3

(2.4)

All 12 polynomial terms in Eq. (2.3) for ux are independent solutions of the
differential equation (2.1), so the 12 coefficients ai are independent of each
other. In the same way is Eq. (2.4) a general solution for the bi-harmonic
equation for uy .

In this section we start with the simple case that only constant and linear
polynomial terms are chosen. After that a problem is solved for which we
have to consider quadratic terms. Finally a problem will be solved for which
we also have to include cubic terms.

2.1.1 Homogeneous Stress States

We consider the constant and linear terms with coefficients a1, a2, a3, b1, b2,
and b3

ux(x, y) = a1 + a2x + a3y; uy(x, y) = b1 + b2x + b3y (2.5)

Together the six terms determine all possible states of homogeneous strains
and all possible rigid body displacements, as can easily be shown. Applying
the kinematic relations (1.9) we find the strains

εxx = a2

εyy = b3

γxy = a3 + b2

⎫⎪⎬
⎪⎭ Homogeneous strains

These strains are constant over the plate domain. The constants a1 and b1 do
not appear in the strains at all. Those represent the rigid body translations. Of
the constants a3 and b2, only the sum appears in the strains. The difference
of these constants defines a rigid body rotation. The three rigid body motions
are
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Figure 2.1 Constant tensile stress.

ux = a1

uy = b1

ωxy = 1
2 (−a3 + b2)

⎫⎪⎬
⎪⎭ Rigid body motions

The homogenous strain state of Eq. (2.6) defines the stresses. From the con-
stitutive law in Eq. (1.13) we find for t = 1

σxx = E

1 − ν2
(a2 + νb3)

σyy = E

1 − ν2
(b3 + νa2) (2.8)

σxy = E

2(1 + ν)
(a3 + b2)

In the two following examples we will determine the three coefficients ai

and three coefficients bi for some special cases.

Case 1: Constant Normal Stress

A plate of unit thickness will be analyzed; it is subjected to a constant (uni-
axial) tensile stress σ in the x-direction (see Figure 2.1). The loads px and
py are zero. We need six conditions to find the coefficients ai and bi . We
know σxx = σ, σyy = 0, and σxx = 0, and we prescribe that no translations
or rotations occur at the origin of the coordinate system. The stresses satisfy
the equilibrium conditions in (1.14). Accounting for Eq. (2.8), we obtain
three conditions for stresses

E

1 − ν2
(a2 + νb3) = σ ; b3 + νa2 = 0; a3 + b2 = 0 (2.9)

Equation (2.7) for the rigid body motions specifies three other conditions:

a1 = 0; b1 = 0; −a3 + b2 = 0 (2.10)

Plates and FEM



22 2 Applications of the Plate Membrane Theory

Figure 2.2 Deformation without zero rigid body motion.

These six equations imply

a1 = 0; a2 = σ

E
; a3 = 0

b1 = 0; b2 = 0; b3 = −ν
σ

E
(2.11)

The displacement field equation (2.5) then becomes

ux = σ

E
x; uy = −ν

σ

E
y (2.12)

The middle of the plate does not translate or rotate. So the left-hand side of
the plate moves towards the left, and the right-hand side towards the right
(see Figure 2.2). In the lateral direction contraction takes place; this yields a
negative displacement uy for positive values y, and a positive displacement
for negative values.

As an alternative we could have required the left-hand side not to move.
In that case a rigid body displacement uo has to be added (a displacement of
the plate towards the right as shown in Figure 2.3, and instead of a1 = 0 we
should choose a1 = uo.

Note

We have two states of equal stresses, but different displacement fields.
The difference consists of rigid body motions.

Figure 2.3 Deformation with rigid body motion in x-direction.



23

Figure 2.4 Constant shear stress.

Case 2: Constant Shear Stress

Consider a plate undergoing pure shear σ (see Figure 2.4). This stress state
satisfies the equilibrium conditions in Eq. (1.14). We do not permit rigid
body displacements a1 and b1. However, we take into account a rigid body
rotation ω. The stresses are, see Eq. (2.8)

a2 + νb3 = 0; b3 + νa2 = 0; E

2(1 + ν)
(a3 + b2) = σ (2.13)

The rigid body displacements are, see Eq. (2.76)

a1 = 0; b1 = 0; 1

2
(−a3 + b2) = ω (2.14)

From Eqs. (2.13) and (2.14) we find four zero values

a1 = 0; a2 = 0; b1 = 0; b3 = 0 (2.15)

Only two equations remain with coefficients a3 and b2

σ = E

2(1 + ν)
(a3 + b2) ; ω = 1

2
(−a3 + b2) (2.16)

Therefore the displacements will be

ux = a3y; uy = b2x (2.17)

Now, we will consider three subcases.

Plates and FEM



24 2 Applications of the Plate Membrane Theory

Figure 2.5 Deformation without rigid body rotation.

Figure 2.6 Deformation with rigid body motion in x-direction.

Subcase 2.1

No rigid body rotation (see Figure 2.5) occurs. We choose

ω = 0 → a3 = b2 = (1 + ν)σ

E
(2.18)

and therefore

ux = (1 + ν)σ

E
y; uy = (1 + ν) σ

E
x (2.19)

The linear distribution of ux in y-direction and of ux in x-direction is con-
firmed by the deformation as shown in Figure 2.5.

Subcase 2.2

No displacement in x-direction (see Figure 2.6) takes place. The plate has
vertical edges after a rigid body rotation. Now

a3 = 0 → b2 = 2(1 + ν)σ

E
; ω = (1 + ν)σ

E
(2.20)

and therefore

ux = 0; uy = 2(1 + ν)σ

E
x (2.21)
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Figure 2.7 Deformation with zero displacement in y-direction.

Subcase 2.3

There is no displacement in the y-direction (see Figure 2.7). The plate has
horizontal edges after a rigid body rotation. Now

b2 = 0 → a3 = 2(1 + ν)σ

E
; ω = −(1 + ν)σ

E
(2.22)

and therefore

ux = 2(1 + ν)σ

E
y; uy = 0 (2.23)

Same Stress, Different Displacements

In all three cases the same shear stress occurs, however the displace-
ment fields are different. The difference is related to the magnitude and
sign of the rigid body rotation.

Case 3: Rigid Body Displacements

There is a field of displacements that consists only of rigid body displace-
ments

ux(x, y) = C1 − C3y

uy(x, y) = C2 + C3x
(2.24)

Substitution into the kinematic equations (1.9) shows that the three strains
are zero. Therefore the three stresses will be zero too. The constants C1 and
C2 relate to translations; the constant C3 to rotation.

Plates and FEM



26 2 Applications of the Plate Membrane Theory

Figure 2.8 Cantilever beam subjected to pure bending.

2.1.2 Constant Bending Moment in Beam

Consider the classic Euler–Bernoulli beam theory [1] of a cantilever beam
loaded by a moment at the free end, see Figure 2.8. In this case, no shear
force V occurs, and the bending moment M is constant (and positive) over
the length of the beam. In the beam theory the stresses in the beam are

σxx = M

I
y; σyy = 0; σxy = 0 (2.25)

Here I = d t3/12 is the second moment of the cross-sectional area, where
d is the width and t the depth of the beam. This stress distribution has been
derived in classical beam theory on the assumption that a plane cross-section
remains plane after applying the load. The stress state equation (2.25) satis-
fies the equilibrium conditions in (1.14) and therefore is a set of equilibrating
stresses. In the stresses of Eq. (2.25) a term occurs which is linear in y, which
means that we also can expect linear terms in the strains. Because strains are
first derivatives of displacements, we therefore must consider quadratic dis-
placement terms. We start with the most general form of all quadratic terms

ux(x, y) = a4x
2 + a5xy + a6y

2; uy(x, y) = b4x
2 + b5xy + b6y

2 (2.26)

εxx = 2a4x + a5y

εyy = b5x + 2b6y (2.27)

γxy = (a5 + 2b4) x + (2a6 + b5) y

The strains and stresses are now
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σxx = E

1 − ν2

{
(2a4 + ν b5)x + (a5 + 2νb6)y

}

σyy = E

1 − ν2

{
(2νa4 + b5)x + (ν a5 + 2b6)y

}
(2.28)

σxy = E

2(1 + ν)

{
(a5 + 2b4)x + (2a6 + b5)y

}

A comparison of these stresses with the actual stresses leads to six conditions

2a4 + νb5 = 0, νa5 + 2b6 = 0

a5 + 2b4 = 0,
E

1 − ν2
(a5 + 2νb6) = M

I
(2.29)

2νa4 + b5 = 0, 2a6 + b5 = 0

The solution of these six equations is

a4 = 0; a5 = M

EI
; a6 = 0

b4 = − M

2EI
; b5 = 0; b6 = − νM

2EI

(2.30)

Therefore the displacements are

ux(x, y) = M

EI
xy; uy(x, y) = − M

2EI
(x2 + νy2) (2.31)

For a homogenous moment distribution, the classical assumption that a
plane cross-section remains plane after loading is correct, as appears from
Eq. (2.31), because ux has a linear dependence on y for each value of x.
The stress state does not change when a rigid body displacement is added, as
defined in Eq. (2.24). In total we get

ux(x, y) = M

EI
xy + c1 − c3y

uy(x, y) = − M

2EI
(x2 + νy2) + c2 + c3x

(2.32)

The three constants c1, c2 and c3 have to be found from the boundary condi-
tions. In the example we have a support in x = 0. We interpret this support
as conditions that hold for x = 0, y = 0. The axis of the beam at x = 0
cannot translate and rotate, the bar axis remains horizontal.

Plates and FEM



28 2 Applications of the Plate Membrane Theory

ux = 0; uy = 0

∂uy

∂x
= 0

⎫⎬
⎭ for x = 0, y = 0 (2.33)

Substitution of Eq. (2.32) into Eq. (2.33) leads to

c1 = 0; c2 = 0; c3 = 0 (2.34)

Apparently the displacements in Eq. (2.32) already fully meet the boundary
conditions. To interpret these results, we move over to the deflection w and
the rotation ϕ of the cross-section. Because the section is plane after defor-
mation we can write

ux = yϕ, uy = w (2.35)

This changes Eq. (2.32) into

ϕ = M

EI
x, w = −1

2

M

EI
(x2 + νy2) (2.36)

At the free end of the beam, at the position of the axis (x = l, y = 0), we
find

ϕ = M l

EI
, w = −1

2

M l2

EI
(2.37)

These results are well known from elementary beam theory. The rotation ϕ

is both the inclination of the beam axis and the tilt of the cross-section plane.

Check on Euler–Bernoulli beam theory

We conclude that the well known results of Euler–Bernoulli beam the-
ory are confirmed by plate theory. From Eq. (2.36) it follows, that the
rotation ϕ increases linearly with x and the vertical deflection w is
square in x. In one way the results of the plane stress theory differ from
Euler–Bernoulli beam theory. The predicted deflections are the same
only along the axis of the beam, where y = 0. Outside the beam axis a
small correction factor is needed when ν �= 0. So, strictly speaking, the
assumption of the deflection on all points along the height of the beam
being the same is incorrect. However, for slender beams the correction
term is an order ν(d/ l)2 smaller than the main term. This is of the order
of 1% or less, so the assumption in the beam theory is acceptable.
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Figure 2.9 Detail of the boundary condition at the restrained end.

Remark

The boundary condition in x = 0, y = 0 in fact means that the horizontal
displacement ux is obstructed in the complete vertical cross-section in x = 0,
but that the vertical displacement uy could occur freely in this section, except
for y = 0, see Figure 2.9. The bar axis is horizontal at the clamped end.

2.1.3 Constant Shear Force in Beam

We increase the complexity of the cantilever beam by replacing the moment
at the free end by a downward vertical force F as shown in Figure 2.10. Now
there is a constant shear force V (positive) and the bending moment M varies
linearly along the beam axis (negative). The expressions for M and V are

M = F(x − l), V = F (2.38)

Figure 2.10 Cantilever beam loaded by point load.

Plates and FEM



30 2 Applications of the Plate Membrane Theory

The stresses are

σxx = My

I
= F

I
(xy − ly)

σyy = 0 (2.39)

σxy = 3

2

(
1 − 4y2

d2

)
V

A
= 3F

2A

(
1 − 4y2

d2

)

where

A = td; I = 1

12
td3 (2.40)

This set of equations satisfies the equilibrium equations in (1.14). The bound-
ary conditions in the left end of the beam axis (x = 0, y = 0) are chosen in
the same fashion as in the previous example with the moment load (horizon-
tal bar axis)

ux = 0; uy = 0; ∂uy

∂x
= 0 (2.41)

In the expression for the stress σxx, a term −F ly/I is present which we
recognize as the distribution of a constant moment M = −F l. For such a
stress state we already found

ux = M

EI
xy = − F l

EI
xy; uy = 1

2

M

EI
(x2+νy2) = F l

2EI
(x2+νy2) (2.42)

In the stress σxy , a constant part 3F/2A is also present. Taking into account
the boundary conditions, subcase 3 of case 2 (Section 2.1.1) is applicable.
We substitute G = E/2(1 + ν)

ux = σ

G
y = 3F

2GA
y, uy = 0 (2.43)

The residual part of the stresses is

σxx = F

I
xy; σyy = 0; σxy = − 6F

Ad2
y2 (2.44)

The displacement field corresponding with these stresses still needs to be de-
termined. Quadratic stress polynomials imply quadratic strain polynomials
and cubic displacement polynomials, because strains are the first derivative
of the displacements. So, we start from the most general cubic terms

ux(x, y) = a7x
3 + a8x

2y + a9xy2 + a10y
3

uy(x, y) = b7x
3 + b8x

2y + b9xy2 + b10y
3

(2.45)
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The corresponding strains are

εxx = 3a7x
2 + 2a8xy + a9y

2

εyy = b8x
2 + 2b9xy + 3b10y

2 (2.46)

γxy = (a8 + 3b7) x2 + 2 (a9 + b8) xy + (3a10 + b9) y2

and the stresses

σxx = E

1 − ν2

{
(3a7 + νb8) x2 + 2 (a8 + νb9) xy + (a9 + 3νb10) y2

}

σyy = E

1 − ν2

{
(3νa7 + b8) x2 + 2 (νa8 + b9) xy + (νa9 + 3b10) y2

}
(2.47)

σxy = E

2(1 + ν)

{
(a8 + 3b7) x2 + 2 (a9 + b8) xy + (3a10 + b9) y2}

A comparison with Eq. (2.44) leads to the conditions

3a7 + νb8 = 0,
2E

1 − ν2
(a8 + νb9) = F

I
, a9 + 3νb10 = 0

3νa7 + b8 = 0, νa8 + b9 = 0, νa9 + 3b10 = 0

a8 + 3b7 = 0, a9 + b8 = 0, G(3a10 + b9) = − 6F

Ad2

(2.48)
The solution of these nine equations for eight unknown coefficients produces
only four no-zero coefficients

a8 = F

2EI
, a10 = νF

6EI
− 2F

GAd2
, b7 = − F

6EI
, b9 = − νF

2EI
(2.49)

The displacements in this case have become

ux = a8x
2y + a10y

3, uy = b7x
3 + b9x y2 (2.50)

Substitution of Eq. (2.49) leads to

ux = F

2EI
x2y +

(
νF

6EI
− 2F

GAd2

)
y3

uy = − F

6EI
x3 − νF

2EI
xy2

(2.51)

The total displacement field is found by adding Eqs. (2.42), (2.43) and (2.51),
and the addition of a rigid body displacement. In this final result we assemble
the terms with EI and the terms with GA and find

Plates and FEM
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Figure 2.11 Rotation due to ‘mean’ shear deformation.

ux = F

EI

{
x

(
1

2
x − l

)
y + ν

6
y3

}
+ F

GAd2

(
−2y3 + 3

2
d2y

)
+ c1 − c3y

uy = F

EI

{
x2

(
−1

6
x + 1

2
l

)
+ ν

(
−1

2
x − 1

2
l

)
y2

}
+ c2 + c3x

(2.52)

The boundary conditions (2.41) are met for c1 = 0, c2 = 0, c3 = 0. If we
define the rotation ϕ as the inclination of the beam axis

ϕ = −∂uy

∂x
(2.53)

and the displacement w as the vertical displacement uy of the beam axis, the
rotation ϕ and deflection w of the free beam end (in the axis of the beam) are

ϕ = −1

2

F l2

EI
, w = 1

3

F l3

EI
(2.54)

Again, these are equal to the well-known results of classical beam theory.
However, the cross-sections no longer remain plane. In ux , not only linear
terms in y are present, but also terms y3, even when ν = 0. Nonetheless,
the bending stress develops linearly over the height of the beam. So, an
erroneous assumption in classical beam theory has led in the past to correct
solutions for the stresses!

Now we want to have a closer look at the shape of the deformed beam at the
restrained end (see the left figure of Figure 2.11). We see that a horizontal
beam axis does not imply that the cross-section takes up a vertical position.
First, the cross-section is distorted. In addition, the ‘mean’ cross-section is
tilted. The distortion and the tilt are the result of lateral contraction (Pois-
son’s ratio) and shear deformation (angle γ ), though primarily by the latter.
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The shear deformation is recognizable by the term in GA. A rigid body ro-
tation over an angle γ is necessary to eliminate the tilt caused by the shear
deformation. This rigid body rotation generates an additional displacement
at the free end of the beam. This is the contribution of the shear deformation
to the deflection. The value of γ is

γ = η
F

GA
. (2.55)

The shape factor η has a value of 1 if the shear stress is constant over the
cross-section. For the parabolic variation over a rectangular cross-section
the value is 6/5. At the free end of the beam we obtain

ϕ = −1

2

F l2

EI
− γ, w = 1

3

F l3

EI
+ γ l (2.56)

Introduction of γ from Eq. (2.55) and accounting for A = td, I = td3/12
and the shear modulus G = E/2(1 + ν) leads to

ϕ = −1

2

F l

EI

(
1 + η (1 + ν)

3

d2

l2

)
, w = 1

3

F l3

EI

(
1 + η (1 + ν)

2

d2

l2

)

(2.57)
The term d2/ l2 mirrors the influence of slenderness of the beam on the end
rotation and deflection. When l/d is larger than five, this term may be ne-
glected. The shear force or shear deformation is not of any importance for
slender beams.

Assumption of plane sections

When deriving the classic beam theory, people like Euler and Bernoulli
and after them Navier [1] started from the supposition that a plane sec-
tion normal to the beam axis remains plane and stays normal to the
axis. Supposing this, they made no distinction between a constant and
linear moment, and found a linear distribution of bending stresses over
the depth of the beam. Their finding of the stress distribution is correct,
but the membrane theory shows that their supposition holds true only
for a constant moment, and that it is at best a good approximation for
linear moments in case of slender beams. They were just lucky!

Plates and FEM
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Figure 2.12 Deep beam with edge load.

2.2 Solution for a Wall

Consider a wall on two simple supports for ratios of depth and span ranging
from tall wall to slender beam. The wall is loaded along its lower edge by
a homogeneously distributed load f , as shown in the left-hand part of Fig-
ure 2.12. We want to determine the distribution of the bending stresses σxx

in the vertical axis of symmetry x = 0. We replace the structure and load by
the problem stated in the right-hand part of Figure 2.12. The supports in the
two lower corners have been replaced by boundary conditions for both ver-
tical edges. These edges can freely move horizontally, but prohibit vertical
displacements. In the figure this is indicated by the dotted lines. This means
that the reaction force will be distributed along the vertical edge. This can
be done without changing the bending moment in the vertical cross-section
mid-span (x = 0). The homogeneously distributed line load f is replaced by
a varying load f (x), which has a cosine distribution

f (x) = fm cos(αx) (2.58)

in which α = π/l and fm is the maximum load value at mid-span. This
cosine load is the first term in a Fourier series development of load f , so the
value of fm is

fm = 4

π
f (2.59)

2.2.1 Beam Intermezzo

We will show that the value of the bending moment M in the mid-span cross-
section is practically the same for the actual load p and the replacing load
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f (x). The differential equation for beams in bending is

EI
d4w

dx4
= f (x) (2.60)

in which EI is the bending stiffness and f ((x) is a distributed load. The
bending moment M is computed by

M = −EI
d2w

dx2
(2.61)

Load f and displacement w are positive if pointing downwards. The bending
moment M is positive when tensile stresses are generated in the lower part
of the beam. For the homogeneously distributed load, f (x) = f . This is a
classical case with a well-known solution

wmax = 5

384

f l4

EI

(
= 0.0130

f l4

EI

)

Mmax = 1

8
f l2(= 0.125f l2)

(2.62)

The solution for the cosine load is easily found by substitution of the trial
displacement function

w(x) = wm cos αx (2.63)

in the differential equation in combination with the cosine load of Eq. (2.58).
This gives us a particular solution

w(x) = fml4

π4EI
cos αx

M(x) = fml2

π2
cos αx

(2.64)

Substitution of fm = 4f/π leads to maximum values

wm = (4f/π)l4

π4EI
= 0.0131

f l4

EI

Mm = (4f/π)l2

π2
= 0.129f l2

(2.65)

which are close to the correct values shown above. For the cosine load, the
proposed shape of the deflection w(x) is the exact one for a beam on simple
supports. At the supports, the boundary conditions are w = 0 and M = 0.
These conditions are satisfied, so the particular solution we have found is the
real solution. No homogeneous solution needs to be added.

Plates and FEM
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2.2.2 Solution for the Wall

Encouraged by the good result for a beam subjected to a cosine load, we
propose a similar cosine displacement field in x-direction for uy(x, y). This
choice meets the conditions that the vertical displacement must be zero at
the vertical edges and maximum at mid-span. The horizontal displacement
ux must be zero in the vertical line of symmetry (x = 0) and can have
values that are not zero (equal, but with an opposite sign) at the two vertical
edges. Therefore, we use a sine distribution for ux . So our expectation for
the displacements is

ux(x, y) = uxm(y) sin αx

uy(x, y) = uym(y) cos αx
(2.66)

Here uxm(y) is the distribution of the horizontal displacement along the ver-
tical edges and uym(y) is the distribution of the vertical displacement along
the line of symmetry at mid span. We can choose to work with either uxm(y)

or uym(y). Choosing the former, we substitute the expectation for ux(x, y)

into the bi-harmonic differential equation (2.1), which leads to a normal dif-
ferential equation for uym(y)

α4uxm − 2α2 d2uxm

dy2
+ d4uxm

dy4
= 0 (2.67)

We suppose a solution of the form

uxm = Aery (2.68)

Substitution in Eq. (2.67) leads to a characteristic equation for the roots r

α4 − 2α2r2 + r4 = 0 (2.69)

which can be rearranged to

(r − α)2(r + α)2 = 0 (2.70)

There are two equal roots α and two equal roots −α. For equal roots r the
general solution has a term with ery and a term with yery . So the solution for
uxm(y) becomes

uxm(y) = A1e
αy + A2αyeαy + A3e

−αy + A4αye−αy (2.71)
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We added a constant α in the second and fourth term in order to give the
coefficient A1 up to and included A4 equal dimensions. This can be done
without loss of generality. Now Eq. (2.2) is used to determine uym(y). From
here on we choose without loss of understanding v = 0. Accounting for
Eq. (2.2) and after integration, we find

uym(y) = (−A1+3A2)e
αy−A2αyeαy+(A3+3A4)e

−αy+A4αye−αy (2.72)

Based on Eqs. (1.9), (2.71) and (2.72) the strains can be expressed in terms of
the constants too, and therefore also the membrane forces nxx, nyy and nxy .
The four constants then can be determined from four boundary conditions

y = −d/2 → nyy = 0, nxy = 0

y = d/2 → nyy = fm cos αx, nxy = 0
(2.73)

The elaboration is skipped here. For nxx in the line of symmetry (x = 0) we
find

nxx = α(A1e
αy + A2αyeαy + A3e

−αy + A4αye−αy) (2.74)

Case 1

We consider the case d/l � 1. This occurs for a tall wall. The stress dis-
tribution is highly nonlinear over the depth; in the upper part of the wall the
influence of the load on the lower edge is not noticeable, see the left part of
Figure 2.13.

Figure 2.13 Deep beam results for several depth-span ratios.

Plates and FEM
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Case 2

We now consider the case d/l ≈ 1. This occurs for a wall or beam of which
the height and length are nearly equal. The bending stress distribution is
again nonlinear over the height, but approaches to classical beam theory.
The middle part of Figure 2.13 displays the result.

Case 3

Finally we consider the case d/l � 1. This is the case for the slender beam
and we expect to find the solution for Euler beam theory as drawn in the
right-hand part of Figure 2.13. If d/l � 1, then αy � 1. For these argu-
ments αy, all the exponential functions can be expanded in a Taylor series
around y = 0. It appears that the contributions to nxx of powers of αy larger
than 1, are negligibly small, so a linear distribution remains. This is the clas-
sical solution.

2.2.3 Practical Application

The discussed case of a high wall (d/l � 1) can be used to estimate the
stress distribution in practical structures. An example of this is a silo wall on
columns, loaded by a uniformly distributed load, shown in Figure 2.14. This
may be its own weight, and wall friction forces due to the bulk material in
the silo. To estimate the horizontal stress σxx in the wall halfway between
the columns, we adopt the following approach. The load can be split up into

Figure 2.14 Silo wall on columns.
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Figure 2.15 Strut-and-tie model for silo wall.

two parts. Part one is a simple stress state in which only vertical stresses
σyy are present and no stresses σxx occur. We are not interested in this part.
The second part is the load case in which the solution for the high wall in
Section 2.2.2 can be applied.

Structural engineers who must design reinforced concrete walls often ap-
ply truss models for the determination of the reinforcement. For the silo wall
they may concentrate the total distributed load in two forces F as shown in
Figure 2.15. Each support reaction R is equal to F . The green lines carry
compressive forces and the red line the tensile force. The structural engineer
wants to know where to place the horizontal compressive strut and the ten-
sile tie, because the distance between them influences the magnitude of the
forces in the strut and tie. Knowledge about the elastic solution will be a
great help.

2.3 Stresses, Transformations and Principal Stresses

The stresses we have discussed until now have been chosen to be in direc-
tions parallel to the x-axis or the y-axis. Sometimes it is useful to know the
stresses σnn, σtt and σnt in the directions n and t that make an angle α with
the x-axis and y-axis (Figure 2.16). With the help of simple transformation
rules, such stresses can be calculated if σxx, σyy and σxy are known

σnn = σxx cos2 α + σyy sin2 α + σxy sin 2α

σtt = σxx sin2 α + σyy cos2 α − σxy sin 2α (2.75)

σnt = −1

2
σxx sin 2α + 1

2
σyy sin 2α + σxy cos 2α

Written in another way

Plates and FEM
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Figure 2.16 Transformation of stresses. Principle stresses and direction.

[
σnn σnt

σnt σtt

]
=

[
cos α sin α

− sin α cos α

][
σxx σxy

σxy σyy

] [
cos α − sin α

sin α cos α

]

(2.76)
We see on the basis of Eq. (2.75) that σnn + σtt = σxx + σyy . The sum of the
normal stresses is invariant under rotations of the axes. An alternative for this
transformation is the graphic determination using the Mohr’s circle. There is
one special value for α that leads to a shear stress value of zero. Then the two
normal stresses reach an extreme value. These stresses are called principal
stresses σ1 and σ2 and have the direction α0, which is called the principal
stress direction (Figure 2.16). The principal stresses are

σ1,2 = σxx + σyy

2
±

√(
σxx − σyy

2

)2

+ σ 2
xy (2.77)

The direction αo belonging to Eq. (2.77) is computed from

tan 2αo = 2σxy

σxx − σyy

(2.78)

FE codes may offer the option to show this direction of the principle stresses
and refer to it as trajectories.

2.4 Other Applications

Consider a circular hole in a plate subjected to a homogenously distrib-
uted stress state in which the (normal) stress σ is equal in all directions.
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Figure 2.17 Plate with circular hole subjected to a biaxial homogeneous stress state.

The hole causes a disturbance in this homogenously distributed stress field.
Figure 2.17 shows the variation of the stresses σxx and σyy along the ver-
tical through the centre of the hole. On the edge of the hole, the stress is:
σxx = 2σ . This means a doubling of the stress of the homogenously distrib-
uted stress state. The factor 2 is called the stress concentration factor. We
refer to Section 6.1.2 for the derivation.

A higher stress concentration factor occurs at a circular hole in a plate in
a uni-axial stress state (see Figure 2.18). At the edge of the hole, a stress of
magnitude σxx = 3σ can be found.

Another example is a curved beam (see Figure 2.19). The bending stresses
in a cross-section no longer vary linearly. In the direction towards the centre
of curvature they strongly increase and the maximum stress on the inside
may be much larger than can be expected on basis of the elementary bending
theory for a straight beam. This is the subject of Section 6.1.3.

Figure 2.18 Plate with circular hole subjected to a uniaxial homogeneous stress
state.

Plates and FEM
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Figure 2.19 Curved bar subjected to a bending moment.

Many interesting stress states can be described with analytical solutions,
but many others cannot, for example because the boundary conditions cannot
be met or because the contour of the plane stress state cannot be simply de-
scribed. In such cases numerical methods like the Finite Difference Method
or Finite Element Method offer a solution.

We want to give some more examples of stress states that have been de-
termined numerically. First we show another high wall with a load in the
middle and restraints along the bottom edge as shown in Figure 2.20. A
foundation block can be modeled in this way. The normal stresses σxx do
not vary linearly. The maximum stress at the bottom is noticeably higher
than elementary bending theory would have calculated. The moment of these
stresses of course should be equal to the total moment in the considered
cross-section. Figure 2.20 shows the strut-and-tie model. Green is compres-
sion, red is tension.

Figure 2.20 Foundation block. Stresses and strut-and-tie scheme.
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Figure 2.21 Load spreading (for example the anchorage of a pre-stressed cable in
a beam).

Another example addresses the load distribution in a beam for the anchor-
age of a post-tensioned cable. At some distance from the end of the section
the forces are distributed uniformly. If we make a vertical cut in the mid-
dle and consider one of the halves, then it follows from equilibrium that,
in this cutting plane, horizontal stresses σxx should be present, which are
compression stresses at the top and tensile stresses at some distance from
the top. The distribution shows the attenuated character again. Practice is
not ordinarily prepared for these tensile stresses. They can lead to cracks
in the plane of the beam axis; a concrete beam will require reinforcement
in the form of stirrups or spiral reinforcement. Figure 2.21 shows some
principal stress trajectories. The corresponding strut-and-tie model is also
shown.

A similar example of load spreading is the foundation footing, as found
under buildings with brick walls (see Figure 2.22). If we make another ver-
tical cut and consider the equilibrium of one of the halves, it will show the
presence of horizontal tensile stresses σxx at the bottom. To determine the
magnitude, the stress problem has to be fully solved. The broader the base
of the foundation, the lower is the pressure on the soil. However, the tensile
stresses in the brickwork will increase, and the poor tensile strength of this
material will soon lead to cracks.

Plates and FEM
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Figure 2.22 Foundation foot. Stresses and strut-and-tie scheme.

Set-back corners (window, door or other openings in a wall) deserve spe-
cial attention. Figures 2.23 and 2.24 give two more examples. If there is no
rounding in the corner the stresses are theoretically infinitely large. In this
relation we speak of notch stresses. Many cracks are the result of this, and
many accidents have occurred (e.g. airplane industry). These corners need
special attention from the designer. Often the corners have to be rounded off
(plane windows) or strengthened in another way. Concrete structures need
special detailed designs for the reinforcement in such corners.

Figure 2.23 Set-back corner.
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Figure 2.24 Beam-column connection. Stresses and strut-and-tie scheme.

2.5 Message of the Chapter

• One stress state can correspond to more than one displacement
field; the difference between the fields are rigid body motions,
displacement fields with zero strains. A rigid body motion leaves
the structure stress-less.

• Displacements due to a constant bending moment in classical
bending theory for a beam of thin cross-section are confirmed by
the plane stress membrane theory. Plane sections before loading
remain plane after loading. The well-known simple formulas for the
deflection and rotation in basic standard cases are confirmed.

• The membrane solution for a constant shear force, in combination
with a linearly varying bending moment, deviates from classical
beam theory. Plane sections are no longer plane after loading. A
linear distribution of bending stresses over the depth of the beam
is accompanied by a distorted cross-section. The simple formulas
for deflection and rotation in classical beam theory must be amended

Plates and FEM
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for shear deformation. This amendment is negligible if the cantilever
length is over five times the beam depth.

• The distribution of bending stresses in a shear wall is dependent
on the ratio of the wall depth and span. Three aspect ratios are
considered. For a high ratio (tall wall) the bending stress distribution
is highly nonlinear, and the top part of the wall does not contribute
to the load transfer. For a ratio in the order of unity (square wall) the
distribution is still nonlinear, but the full cross-section participates
in the transfer. For a low ratio (slender beam) the stress distribution
approaches to the linear distribution of bending stress in classical
beam theory.

• From the computed stress state we can compute two principal
stresses and their direction. Trajectories are an instructive and
insight-providing aid to structural designers.
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