
Chapter 15
Sense and Nonsense of Mindlin

In Chapters 3 and 4 we presented the theories of Mindlin (more properly
Mindlin and Reissner) and Kirchhoff, without explaining which theory must
be used in a particular practical case. Commercially provided FEM software
usually offers both options and even may have chosen one of them as the
default option. The goal of this chapter is to help users make a proper choice.

15.1 Result Dependence on Analyst and Program

We start with the comparison of plate bending results obtained by different
programs and analysts. Four providers of commercial software accepted the
invitation to participate in the computation of a plate structure. They were

top part of Figure 15.1, has the shape of a carpenter’s square. The two long
edges have a length of 4 m and the short edges 2 m. The modulus of elasticity
is 40 × 106 kN/m2 and Poisson’s ratio is 0.2. The plate is subjected to a
distributed load of 1 kN/m2. We choose a set of orthogonal axes x, y along
the long edges. The z-axis is normal to the plate. The corner is supported by
a ball support which prevents the displacement w and permits free rotations
ψx and ψy . The two short edges of length 2 m are simply-supported. All
other edges are free.
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asked to perform a linear-elastic computation. The plate, shown in the left
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Figure 15.1 Three plates. Mesh fineness and thickness varied.

15.1.1 Invitation

The software houses were invited to perform three calculations with square
elements for three versions of the plate.

• Plate 1. Mesh 8 × 8 elements (spacing 500 mm). Thickness 160 mm.
• Plate 2. Mesh 16 × 16 elements (spacing 250 mm). Thickness 160 mm.
• Plate 3. Mesh 16 × 16 elements (spacing 250 mm). Thickness 480 mm.

These different plates are shown in Figure 15.1. The required output should
include

• a plot of the shear force vx in section x = 0.5 m.
• a plot of the moment mxx in the section x = 2.0 m.
• a plot of the twisting moment mxy along the edge x = 0.



277

Figure 15.2 Big scatter in submitted results for twisting moment and shear force.
Units in N and m.

The ultimate goal was to investigate which plate theory should be used:
Kirchhoff or Mindlin.

A span of 4,000 mm and a thickness of 160 mm imply a span-depth ra-
tio of 25. Without any doubt, this is a thin plate. This holds for the first
two analyses; any differences are due to the mesh fineness. The element size
500 mm is about three times the thickness, and the element size of 250 mm
about one and a half times. In both analyses the element size is not smaller
than the plate thickness. If related to the longest span of 4,000 mm, the el-
ement size 500 mm means that only eight elements occur between the ball
support and the simply-supported edge; this must be considered a coarse
mesh, at least in the neighbourhood of the ball support. The element size
250 mm means the application of 16 elements, which sounds acceptable for
the case.

The second and third analyses have the mesh fineness in common. Here
the difference is in thickness. In the third analysis the span-thickness ratio
is slightly greater than eight; to the perception of structural engineers, this
plate is thick.

In conclusion, the thin plate 2 may be considered representative for the
choice of structural engineers in practice. Variant plate 1 is intended to show
the effect of mesh change and variant plate 3 the effect of slenderness.

Plates and FEM
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15.1.2 Submitted Results

Three software providers performed the analysis primarily with Mindlin
theory and one chose Kirchhoff theory. Figure 15.2 depicts the scatter of
results. Each time, we report the smallest and largest submitted value, and
do it for both the thin plate 2 and the thick plate 3. The support reaction R

at the ball support is insensitive to the plate thickness. Differences are less
than 1%. The differences in the bending moment mxx are not significant
too. However, large differences appear in the values of the twisting moment
mxy , both at the re-entrant corner and at the ball support, and also in the
shear force vx . Except in one case, the lowest and largest values come from
a Mindlin analysis. The exception is marked with (k) of Kirchhoff.

We computed the same three plates with the program Kola, switching on
the Reissner theory (as the program calls Mindlin theory). Figure 15.3 is the
result for the moment mxx in section x = 2.0 m. This moment is insensitive
to mesh fineness or slenderness, and to the applied theory. Values vary within
2%. Note that the bending moment near the re-entrant corner is not correctly
zero at the free edge. Only at a couple of elements distant from the corner
does the moment become zero. This is in agreement with the expectation, as
explained in Section 11.4.

Figure 15.4 is the result for the twisting moments at the edge x = 0, and
Figure 15.5 for the shear force in the section x = 0.5 m. Now large differ-
ences are exposed in a convincing way. The values of the twisting moment
differ by a factor of 1.3. The shear forces at the edge differ by a factor of
2.0. The output submitted by the participating providers is very similar to
the results of the program Kola.

Figure 15.3 Bending moments mxx (Nm/m) in section x = 2 m for Mindlin theory.
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Figure 15.4 Twisting moments mxy (Nm/m) at edge x = 0 for Mindlin theory.

Figure 15.5 Shear force vx (N/m) in section x = 0.5 m for Mindlin theory.

15.2 Explanation of the Differences

In order to understand the large differences in the twisting moment and shear
force we must recall the starting points of the Kirchhoff and Mindlin theories.
Classically, plates have been analyzed by the Kirchhoff theory for thin plates.
Only since the broad availability of FE codes has Mindlin theory come on the
scene. The user of commercial software is expected to make a choice from
the two theories, but often one of them is a default option without the user
being aware of this. Kirchhoff theory holds for plates in which the defor-
mation by shear forces can be neglected, which is the case for a sufficiently
large span-thickness ratio l/t . The slenderness l/t > 10 is sufficient, and
most slabs will satisfy l/t ≥ 20.

Plates and FEM
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Figure 15.6 Different boundary conditions for Kirchhoff and Mindlin.

We must investigate which circumstances justify or even command the
choice of Mindlin theory. We have presented his theory in Section 3.2 to
which we refer. For the purpose of explaining differences in computational
results it is helpful to repeat the discussion about boundary conditions at a
free edge. For convenience we choose axes n normal to and s parallel to the
edge. In Mindlin theory there are three independent degrees of freedom at the
edge, the displacement w, the rotations ϕn normal to the edge and ϕs in the
plane of the edge. This is visualized in Figure 15.6. Note that we return tot the
rotation ϕ as used in Chapter 3 for the derivation of the differential equations.
In general there are three edge load components: a distributed force f in the
direction of w, a distributed torque tn in the direction of ϕn and a distributed
torque ts in the direction of ϕs . These edge loads are one-to-one equal to
the shear force vn, the bending moment mnn and the twisting moment mns ,
respectively. Usually tn and ts are zero, therefore both the bending moment
mnn and the twisting moment mns are zero. Eq. (15.1) summarizes this
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Figure 15.7 Close look at stress state near free edge.

In Kirchhoff theory there are only two degrees of freedom at the free edge:
the displacement w and the rotation ϕn normal to the edge. The rotation ϕs in
the plane of the edge is a slave of the displacement w because of the relation
ϕs = ∂w/∂s. Now only two edge loads can be applied, f in the direction of
w, and tn in the direction of ϕn. Yet, in general all three plate quantities vn,
mnn and mns can occur at the edge and may be non-zero. In Section 4.4 we
have seen which relations exist between these three quantities and the two
edge loads. We repeat them here.

{
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mnn
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(15.2)

A zero edge load tn will lead to a zero bending moment mnn, however a zero
edge load f does not in general lead to a zero shear force vn and zero twist-
ing moment mns . At an unloaded free edge (f = 0, t = 0) there will be both
a twisting moment and a shear force. This phenomenon is closely related
with the concentrated edge shear force Vs in sections normal to the edge, as
we found in Section 4.4. This concentrated shear force in Kirchhoff theory
does not appear in Mindlin theory. That theory is able to compute distributed
shear forces vs in a narrow edge zone. In order to understand what makes the
difference, we repeat in Figure 15.7 the shear stress flow due to a twisting
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moment in a section normal to the free edge. At a sufficient distance from
the edge, the twisting moment causes a linear distribution of shear stresses
over the depth of the plate, with zero value in the mid plane. Close to the
edge, the shear flow must turn around within the section, because the edge
face is stress free. This happens over a plate part with a length of about plate
thickness t . We want to describe the stress state in this small end part of the
plate in terms of plate quantities vs and mns . At the mid plane of the plate the
shear stresses have a vertical direction, and a distribution which increases
from zero to a maximum value at the edge. The distribution is not linear.
At the edge, the shear stress is vertical over the full thickness of the plate,
with a distribution which is (close to) parabolic, becoming zero at the top
and bottom of the edge. Outside the mid plane and at some distance from the
edge we can decompose the shear stress into vertical and horizontal compo-
nents. The integral of the vertical components delivers a vertical shear force
vs , which is zero at a distance from the edge of about one thickness, and
becomes maximum at the edge. The integral of all horizontal components
leads to a twisting moment mns , which decreases in the opposite direction
and becomes zero at the free edge. Here the principal difference between
Mindlin theory and Kirchhoff theory becomes apparent. Mindlin is able to
describe the discussed distribution of the shear force and twisting moment
and Kirchhoff is not. In Mindlin theory we can handle the boundary con-
dition mns = 0, whereas we cannot in Kirchhoff theory. Instead, Kirchhoff
determines the integral of all the local vertical stress components and con-
centrates them into one shear force Vs located at the very edge. At the same
time, Kirchhoff is not able to have the twisting moment diminish to zero, and
instead keeps it constant up to the edge, see Figure 15.7.

Once more we want to stress the fact that these differences happen in
a plate length of about one plate thickness. In this domain a big gradient
occurs in the n-direction. To cover this in a FE analysis needs a big number
of elements over a short distance.

15.3 Supporting Side Study

What we have explained on the basis of the theory can be supported by a
case study. We computed a simply-supported square plate by both Kirchhoff
and Mindlin, each for a thin and a thick plate. The length l of the edges is
9 m. The thickness t is 200 mm for the thin plate, and 2,250 mm for the
thick plate. The span-thickness ratios are 45 and 4 respectively. The first is
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Figure 15.8 Mesh for thin plate analyses.

clearly a thin plate, and the second a thick plate. In all calculations the same
distributed load p = 3 kN/m2 is applied. In the plots to follow, Kirchhoff
is depicted on the left and Mindlin on the right. The chosen meshes are dis-
played in Figure 15.8. An element size of 570 mm is used over the main
area of the plate outside the edge zone. For the thin plate this is almost three
times the plate thickness and for the thick plate it is about a quarter of the
plate thickness. In the edge zone one element of 225 mm width is used in
the Kirchhoff analysis. A smaller element size has no effect because the lo-
calized shear force in the edge zone anyhow is replaced by a concentrated
shear force at the edge. This is different for the Mindlin analysis; there this
225 mm edge zone has been divided into 15 very small elements of 15 mm
width each. Usually we would avoid a large aspect ratio, but we can use it for
the purpose of this study, as no large gradients are expected in the direction
parallel to the edges.

15.3.1 Thin Plate Results

We start with the analysis for the thin plate. Figure 15.9 shows the displace-
ment and bending moment. The difference between Kirchhoff and Mindlin
is of the order of 2%, both for displacement and moment. A difference oc-
curs in the corners, where Mindlin leads to an isolated peak, which is absent
for Kirchhoff. The twisting moments and the shear forces are given in Fig-
ure 15.10. The twisting moment in the Kirchhoff-analysis is non-zero at the
edge, whereas the Mindlin analysis manages to make the twisting moment

Plates and FEM
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Figure 15.9 Deflection and bending moment in thin plate.

practically zero. However, this must be obtained in a very small edge zone.
The maximum value occurs very close to the corner and is only 3% smaller
than in the Kirchhoff analysis, where the maximum value is found exactly in
the corner. Remembering that the Mindlin analysis requires an impractically
fine mesh to provide the correct solution, our conclusion is justified that
Kirchhoff in combination with a practical mesh delivers a good result. The
shear force distributions are at first glance very different. However, we must
bear in mind that the Mindlin analysis is supposed to reproduce the local
shear force distribution at the edge due to the returning twisting moment
shear flow, and that these local shear stresses very much dominate the plot.

We have repeated the Mindlin analysis for the practical mesh (in fact still a
fine mesh) of the Kirchhoff analysis. The result is presented in Figure 15.11.
Now the maximum appears at a distance of about one tenth of the span from
the edge near the corner and is 9% smaller than the correct value. Mindlin in
combination with a practical mesh does apparently not offer an advantage,
but rather decreases the accuracy of the computation. As the saying goes, it
is ‘Neither fish, flesh nor good red herring’. We recommend using Kirchhoff;
this theory gives good results for both moments and shear forces. The struc-
tural engineer must be aware that there is a local concentrated shear force Vs

along the edge, and must be able accounting for it.
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Figure 15.10 Twisting moment and shear force in thin plate.

Figure 15.11 Mindlin analysis for thin plate with practical mesh. Neither fish, nor
flesh, nor good red herring.

We stress that there is no point in choosing smaller elements than plate
thickness. Edge zone effects are disturbed anyhow. At simple supports and
clamped edges, there is always an edge disturbance with a three-dimensional
stress state. The same holds at columns and at intermediate supports of con-
tinuous plates. Point loads actually apply over non-zero areas. Therefore,

Plates and FEM
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Figure 15.12 Mesh, deflection and bending moment for thick plate.

considering all these comments, we justify adopting the rule: never use an
element size smaller than the order of magnitude of the plate thickness.

Lesson

In a thin plate analysis we must use Kirchhoff. The Mindlin analysis
requires a senseless fine mesh to produce practically the same results.
Choosing Kirchhoff, we need never use element sizes smaller than the
plate thickness.

15.3.2 Thick Plate Results

We now turn to the results for the thick plate with slenderness 4. A mesh of
17 × 17 elements is used in the Kirchhoff analysis. The mesh in the Mindlin
analysis is 15 × 15 for the regular area outside the edge zones. In the edge
zones again a fine mesh is used. Displacements and bending moments are
presented in Figure 15.12. Now substantial differences are seen. The deflec-
tion in the Mindlin analysis is about 1.5 larger than in the Kirchhoff-analysis.
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Figure 15.13 Twisting moment and shear force in thick plate.

Moment values are 17% larger in the Mindlin analysis. A Kirchhoff analysis
would seriously underestimate the bending moment. Figure 15.13 shows the
results for the twisting moment and shear force. Now the edge zone in the
Mindlin analysis is a noticeable part of the plate and the peak value of the
twisting moment occurs at a point of the plate far away from the boundary.
The value is about three quarter of the corner value in the Kirchhoff analysis.
Apparently, a thick plate reduces the twisting moment at the cost of a higher
bending moment. The shear force plot in the Mindlin analysis is more regu-
lar than for the thin plate and needs no further explication. The concentrated
edge shear force Vs in a thin plate is nicely spread over a wide zone in a thick
plate and is just part of the overall distribution of the shear force.

Lesson

For thick plates we must use Mindlin. The mesh must be refined in an
edge zone of width equal to about the plate thickness. It is sufficient to
take five elements over the edge zone.

Plates and FEM
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Figure 15.14 For slender multi-cell plates Mindlin theory must be applied.

Thin Orthotropic Plates

All conclusions in this chapter refer to plates of isotropic homogenous mater-
ial. There is an exception, in which we always must analyze a thin plate with
Mindlin theory. That is for a plate of relative small depth and small shear
rigidity, like a multi-cell slab. The distortion of the cells in the x-direction,
as shown in Figure 15.14, is interpreted as a shear deformation γx . For the
shear rigidity of such plates, we refer to Section 21.3.

15.4 Comparison in Hindsight

The knowledge obtained in the preceding sections helps us understand why
there was so much scatter in the submitted results for the three different plate
analyses in Section 15.1. Return to Figure 15.4 for the twisting moment at
the free edge. In a Mindlin analysis the twisting moment must become zero.
In plate 1 the thickness is 160 mm and the element size 500 mm. There is
no chance at all that a Mindlin analysis will lead to a reasonable result. At
least five elements must be chosen in an edge zone of 160 mm. The value
of the twisting moment mxy at the ball support in a Kirchhoff analysis is
half the support reaction, so 2,025 N. In the Mindlin analysis of plate 1 we
should obtain mxy = 0, however the moment becomes 1,448 N. It is less
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than 2,025 N but not zero. Again, ‘neither one thing nor the other’. In plate
2 the element size is 250 mm, still about a factor 1.5 larger than thickness
(160 mm), instead of a factor five smaller. Plate 3 has a three times larger
thickness (480 mm). The edge zone in which we should refine the mesh
is about twice the element size (250 mm). We still must refine the row of
elements along the edge substantially in order to get reasonable results. As a
matter of fact, we must conclude that plate 3 is hardly a thick plate; the edge
zone of 480 mm is about one eighth of the span (4,000 mm), still a rather
small zone, the more so if one remembers that the concentration of the edge
shear force in fact occurs in the half of the disturbed edge zone. Mindlin has
no chance to perform well with the applied mesh, and the result proves it.
The corner value of the twisting moment, which should be zero for Mindlin
and 2,025 N for Kirchhoff, is somewhere in between (1,212 N). Again the
shear force is ‘neither one thing nor the other’.

The story for the shear force in the section x = 500 mm can be short. For
the explanation we refer to Figure 15.5. Near the free edge there is a con-
centrated shear force of the size of the twisting moment at that point. This
value will be a little smaller than the corner value 2,025 N. In the Mindlin
analysis this concentrated value is part of the smeared shear force vx . The
concentrated shear force acts in an edge zone of about 160 mm in plate 1 and
2 and in an edge zone of about 480 mm in plate 3. The Mindlin analysis can-
not predict these localized shear forces with the applied large element sizes.
Comparison of plate 1 to plate 2 shows immense element size dependence.
The smoothest result is reached in plate 3, but even this is misleading: the
computed maximum shear force has no physical meaning.

15.5 Message of the Chapter

Thin Plates

• Thin plates should preferably be calculated with Kirchhoff theory.

• If Mindlin theory is used for thin plates, this must be done at the
cost of a very fine mesh, with results hardly different from Kirchhoff.

Plates and FEM
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• Thin plates with Mindlin and a practical mesh are ‘neither fish, flesh
nor good red herring’.

• Application of Kirchhoff theory requires an element size not smaller
than about plate thickness.

• If Kirchhoff theory is chosen and the FE-program offers the option
of a graph for the shear force diagram across a section, also the
concentrated edge shear force should be shown.

• If Kirchhoff theory is chosen and the FE-program is able to deter-
mine the resultant of shear forces and twisting moments (total force,
total torque) over a section, also concentrated edge shear forces
must be accounted for. Otherwise equilibrium is violated. This also
holds at plate boundaries with edge beams.

• If Kirchhoff theory is chosen and edge beams are applied, the bend-
ing moment in the beam is correct, but the shear force must be ob-
tained as the sum of the concentrated edge shear force Vedge and the
beam shear force Vbeam.

Thick Plates

• A thick homogeneous isotropic plate must be analyzed by Mindlin
theory.

• An edge zone must be chosen of a width equal to about plate
thickness, in which a sufficiently fine mesh is applied.

• Sufficiently fine is five or more elements over the edge zone.
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