
Chapter 13
FE Analysis for Different Supports

In Chapter 4 we became acquainted with various edge conditions in thin
plate theory; in Chapter 5 we applied this knowledge to square plates with
three different support conditions. Here we meet the three cases again, now
they appear in a FE analysis. In Chapter 5 we considered a two-way sine
load and a homogeneous distributed load. That was done in order to be able
to solve the differential equation. Here we need not make that difference in

we did earlier for the discrete model in Section 9.4. In Chapter7 we became
acquainted with the behaviour of circular plates subjected to both distributed
load and a point load. Here we consider the behaviour of a square plate due
to a central point load. It will appear that the response near the point load
is of the same nature as occurs for the point load on a circular plate. In all
analyses we choose Kirchhoff theory.

13.1 Simply-Supported Plate

We consider a square simply-supported thin plate and choose a mesh of 20
elements in each direction. In thin plates the span is about 25 times thickness,
so the chosen mesh size is in the order of the thickness of the plate. Poisson’s
ratio is 0.2. Section 13.1.1 is devoted to distributed load and Section 13.1.2
to a point load.
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load type and will subject the plate to a homogenous load in all cases, as
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Figure 13.1 FE results. Square plate. Simply-supported. Distributed load.

13.1.1 Distributed Load

Figure 13.1 depicts FE results for a homogeneous distributed load. The dis-
tributions are very similar to, and a confirmation of, theoretical results in Fig-
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ures 5.6 and 5.7 for the two-way sine load. In Figure 13.1 we show moments
twice, as three-dimensional plots and as contour plots. Three-dimensional
representation is preferred, for it highlights areas needing special care. This
is particularly important when moment peaks occur. FE codes should offer
this output option in any case.

Here we are not interested in values but rather in distributions and ways
of load transfer. Therefore we skip legend scales. Maximum values are ex-
pressed in terms of the homogeneous load p and the span a. Figure 13.1
shows that the maximum values of mxx occur in the centre of the plate, and
of mxy in the corners. These values are 0.0441pa2 and 0.0371pa2 respec-
tively. They are identical to the theoretical values 0.0442pa2 and 0.0371pa2,
borrowed from Timoshenko and Geere, converted from Poisson’s ratio 0.3
to 0.2 [16]. Most plots for the moments and shear forces need no comment.
We draw attention to the trajectories of the moments and shear force. For
the support condition and load under consideration the shear trajectories ap-
proach the plate edges normal to the edge, because the shear force parallel to
the edge is zero; Eq. (4.23) leads to a trajectory angle βo = π/2.

13.1.2 Point Load

Figure 13.2 shows the results for a point load on a square simply-supported
plate for the 20 × 20 mesh. The plots for the trajectories of the principal mo-
ments and shear force show that the state of moments and shears is almost
perfectly axisymmetric near the point load. Note that the trajectories for the
shear force are depicted for a part of the plate with sizes a/2 around the point
load. This is done because of the large gradient in that region. In the contour
plot of the twisting moment we recognise the horizontal and vertical lines of
plate symmetry. In the considered example the twisting moments increase in
the direction of the corners. The maximum value is of red colour. In other ex-
amples the contour plot of the twisting moment may appear as a cloverleaf.
At the lines of symmetry mxy is zero (yellow zones). This always holds true
for twisting moments and shear forces for symmetrical loads. They are anti-
symmetric quantities in contrast to bending moments which are symmetric,
and have maximum values on lines of plate symmetry.
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Figure 13.2 FE results. Square plate. Simply-supported. Central point load.
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13.2 Corner Supports

We repeat the analyses for a plate with free edges and corner supports. In
Section 13.2.1 we consider distributed load, in Section 13.2.2 a point load.

13.2.1 Distributed Load

Figure 13.3 shows the results for the distributed load. The corners are sup-
ported by balls, which permit rotations but prevent vertical displacements.
Now the maximum moment does not occur in the plate centre, but mid-span
of the free edge. The maximum twisting moments again occur in the corners,
however with opposite signs compared to the simply-supported case. There
a tensile corner reaction occurs, here a compressive one.

Figure 13.3 FE results. Square plate. Corner supports. Distributed load.
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Figure 13.4 Load flow in shower analogy.

The engineer’s feeling is that the load will flow in the direction of the
corners, and high transverse shear forces occur in a quarter of a circle
around the ball support. The structural engineer expects that all trajectories
will be directed to the corner in a different way from the simply-supported
case. However, reality is different. Figure 13.4 is very instructive about the
transfer of loads to the supports. The shear trajectories are hardly different
from the trajectories for the simply-supported structure in Figure 13.1. The
load p flows as shear force vx to the depicted edge. The value of vx is almost
constant along the major part of the edge. A load flow occurs along the free
edge in the direction of the support, which is the concentrated force Vy in
the y-direction. This force has the value of mxy at the free edge. Starting
from the middle of the edge, the concentrated shear force increases from
zero to its maximum at the ball support. Vy is the integral of the shear force
vx . The shower analogy of Section 4.3 fully applies. The square plate is
the m-hill, the free edges are gullies, and the ball support is a drain pipe.
The distributed p-load is the shower. The water flows in the direction of the
deepest slope to the gully, and from there through the gully to the drain pipe
at the corner. The flow in the gully represents the concentrated shear force Vy .

The support reaction in the ball support is twice the maximum value of the
concentrated shear force Vy . Therefore the expected maximum value of this
shear force is pa2/8. The FE analysis value for the reported mesh fineness
20×20 is 0.117pa2 instead of 0.125pa2. Continuous refinement to 40×40,
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80 × 80 and 120 × 120 leads to coefficients 0.117, 0.120 and 0.121. The
convergence to the exact value 0.125 is slow, but appears to be obtained.
Therefore, all the distributed load p is transferred to the corner supports by
the concentrated edge shear force. The distributed shear force vy parallel to
the edge is not zero at the edge and increases from zero at mid-span of the
edge to its maximum at the ball support, but it remains finite as the element
mesh is refined. The same holds for the principle shear force along the diag-
onal of the plate.

In reality corner supports will have some size. Let us assume that the
support covers an area of a quarter of a circle with a radius of the order of the
plate thickness t . Then the boundary between support and plate has a length
of the order of πt/2, say 2t . In Section 3.6 we learned that the concentrated
edge shear force attenuates over a length of the order t . This means that the
two concentrated forces which arrive at a corner do not spread nicely over
boundary of length 2t , but rather remain concentrated at the two ends of the
boundary.

13.2.2 Point Load

The results for the point load are assembled in Figure 13.5. After the discus-
sion of the point load for the simply-supported edge and the distributed load
for the ball support, no further comment is needed. In the plate centre the
correspondence with a circular plate is seen again. Figure 13.5 confirms the
shower analogy Distributed shear forces vx transfer the point load to the free
edge and a concentrated shear force Vy (equal to mxy) carries the distributed
shear forces vx to the ball supports.

13.3 Edge Beams

In Section 5.3 we touched on the subject of flexurally rigid, torsionally weak
beams as a way to simulate simply-supported edges. It was found that for
zero Poisson’s ratio the bending moment M in the edge beam is 50% higher
than expected on the basis of the load which flows to the edge. In Section 5.3
this study was done on the basis of a two-way sine load. In the discrete model
of Section 9.4 we touched on the same subject for a homogeneously distrib-
uted load p. In the present section we again use a homogeneous distribution
and check whether similar results are produced in a FE analysis.
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Figure 13.5 FE results. Square plate. Corner supports. Central point load.

13.3.1 Rigid Beams

In this section the four edge beams have infinitely large flexural rigidity,
but zero torsion rigidity. The flexural stiffness in the FE analysis is chosen
a thousand times larger than the total plate stiffness aD. The beams are
supported by balls at the corners. We do not repeat plots for moments and
shear forces, for they are precisely the same as for the simply-supported
plate in Figure 13.1. Here we are interested in the bending moment M at
mid-span of the beam, and the maximum shear force V at the beam end. In
Figure 13.6 we have plotted the shear force vx and twisting moment mxy in
the plate along the edge beam, and the moment M and shear V of the beam
itself. We can check what moment and shear force in the beam occur if we
load it by the shear force vx only. For this purpose we first adapt the values
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Figure 13.6 Check on excessive moment in rigid edge beam.

of vx because shear forces are less accurate than moments; the reason is that
shear forces are calculated in the centre line of elements. We know that the
area of the vx-diagram must be 0.250pa2. Assuming that the distribution
shape is correct, we increase the maximum value of vx shown in Figure 13.1
from 0.313pa to 0.343pa. Numerical integration of the shear force over
the half span of the beam then leads to 0.125pa2. Integrating twice leads to
the bending moment 0.0377pa3 in the beam. The integration results are the
dashed lines in the moment and shear diagram of the beam. We see that the
FE analysis confirms the theory that the beam moment is larger than would
be expected on the basis of the distributed load vx only. The difference
is caused by the twisting moments, which are an additional load on the
edge beam. The area of the twisting moment diagram over half the span is
0.0106pa3. Adding this to 0.0377pa3 we obtain 0.0483pa3 which is very
close to the FE result 0.0480pa3. For the two-way sine load and Poisson’s
ratio 0.2, the beam moment is 1.4 times the expected value. In the present
case of homogeneously distributed load, a factor 0.0480/0.0377 = 1.27
applies.

In Section 5.3.4 we expressed the expectation that the twisting moment will
not influence the shear force in the beam, based on the assumption that the
twisting moment can be carried to the web of the edge beam. This is not
confirmed by the analysis. The analysis leads to a beam shear force which
is a factor 0.160/0.125 = 1.28 too large, practically the same amplification
factor as for the moment. Apparently, a concentrated force of opposite sign



246 13 FE Analysis for Different Supports

Figure 13.7 FE results. Square plate. Twistless case.

still remains in the plate edge, which balances the overestimated shear force
in the beam. The reason is the use of Kirchhoff theory. Here the thick plate
theory of Mindlin performs better.

13.3.2 Flexible Beams

For flexural edge beams leading to zero twisting moments we must choose
the flexural rigidity aD/2, where D is the plate rigidity and a the plate
span, corresponding with the discussion in Section 5.4. We expect that
half the distributed load p is transferred in the x-direction and half in the
y-direction. The bending moment mxx is independent of y, and myy is
independent of x. Similar considerations hold for the shear forces. The total
load pa2 is homogeneously distributed over the circumference 4pa. The
support reaction is 0.25pa. The maximum moment and shear force in the
plate are 0.0625pa2 and 0.25pa, respectively. FE results for a 20 × 20 mesh
are shown in Figure 13.7. The bending moment mxx and shear force vx

indeed are clearly constant in the y-direction. The moment trajectories are
different from Figure 13.1 for rigid edge beams. The direction is parallel
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to x- and y-direction all over the plate. The moments mxx and myy have
become principal moments because the twisting moment is zero. At the
plate diagonals, the bending moments are equal and Mohr’s circle becomes
a point. Then the direction of the trajectories is indeterminate. The FE
program computes them parallel and normal to the diagonal. The shear
trajectories have also changed compared to the case of rigid edge beams.
Similar to what we have seen for corner supports in Figure 13.3, they are no
longer normal to the edge. For symmetry reasons the moment myy and shear
force vy need not be shown. The twisting moment is zero at each position.
This plot is also skipped.

We now consider the shear trajectories more closely. In a twist-less slab
they are straight lines, originating from the plate centre. The explanation
is straight forward. Consider a set of x- and y-axes with origin in the plate
centre. Then vx = 1

2px and vy = 1
2py. According to Eq. (4.23) the trajectory

direction is calculated from βo = arctan(y/x). In a straight line, starting in
the centre, y/x is constant, so a constant trajectory direction β is obtained
along the straight line.

When we consider a length ds along the edge beam, the load p on a tri-
angle with area 1

2 × a/2 × ds flows to this edge part. The total load on this
triangle is 1

4pa × ds, and this flows to an edge part of length ds. Therefore
the shear force per unit length is 1

4pa, which we had decided on earlier on
other grounds.

According to classical beam theory the maximum moment in the edge
beam is M = 1

8 × 1
4pa × a2 = 0.03125pa3 and the maximum shear force

V = 1
4pa×a/2 = 0.125pa2. The value of the beam moment Mis due to the

load vx only on the one edge and to vy on the other edge. The FE analysis
with the 20 × 20 mesh delivers M = 0.03125pa3 and V = 0.11875pa2

respectively. The bending moment is exact. The shear force is 5% less than
the exact value. The difference is easily explained. The shear force in the FE
analysis is constant over each beam element, so in fact holds true in the mid-
dle of the element. In reality the shear force increases linearly from the beam
centre to the column. We have used 10 elements over the half beam length,
therefore we are missing a half element size over 10 elements. This explains
the 5% error. The shear force will approach the exact value 0.125pa2 for
increasing mesh fineness.
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Figure 13.8 FE results. Square plate. Pressure only. Distributed load.

13.4 Pressure-Only Support

In Section 13.1 we considered a simply-supported plate subjected to a homo-
geneously distributed load. It was tacitly assumed that the support is able to
transfer both pressure and tension reactions. And indeed the result showed
that concentrated tensile reactions do occur in the corners. Physically this
presupposes either a very good fixing to, say, a wall below the slab, or the
presence of a wall on top of the slab edge, which provides the needed down-
ward vertical reaction force in the corner. When neither the one nor the other
is secured, we must reckon with another moment distribution. In Chapter 5
we noticed the high efficiency of the simply-supported plate, and that the
diagonal beam action takes care for it to a large extent. This contribution
will be reduced if no tensile reaction forces can occur. We must expect lower
twisting moments at the cost of higher bending moments in the plate centre.
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If we use a linear-elastic program we must do the analysis in an iterative
way. In the first run, all edge nodes are fixed (w = 0). Then the computation
is repeated with the nodes released where a tensile force occurs. This must
be done until there are no tensile reactions. Figure 13.8 shows results of
such an iterative analysis. If we compare the results with moments for the
ideal simple support in Figure 13.1 the following conclusions hold. The plate
corners lift from the supports. This occurs over about 30% of the edge length
near each corner. Only 40% of the edge remains where we find compressive
reactions. The maximum deflection increases 11%. The twisting moment
mxy at the plate edge is zero in the uplifted corner as it should be according
to theory. Its maximum has shifted to a position at some distance from the
corner. The maximum value has become 27% smaller. The bending moment
mxx in the plate centre has increased about 8%. Most probably not many
structural engineers are aware of this phenomenon. It is always wise to make
allowance for unexpected loadings and imperfect support conditions.

13.5 Message of the Chapter

• Whatever boundary conditions, we find a nearly axi-symmetric state
in the neighbourhood of a point load.

• Twisting moments and shear forces are zero on lines of symmetry at
symmetric loading. Bending moments are maximal on the lines of
symmetry.

• For simply-supported and corner-supported plates, there are large
twisting moments at the plate corners. Their signs are different, and
so are the signs of the corner reactions. In the corner supported
plate the reaction is compressive; in the simply-supported plate it is
tensile.

• The two limit cases, simple supports and corner supports, can be
simulated by edge beams with flexural rigidities, which are infinite
or zero, respectively. An ideal twist-less case can be obtained by
a proper in-between choice of the flexural rigidity of the edge beam.
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• If tensile support reactions cannot occur, the twisting moments
in the corner reduce substantially at the cost of higher bending
moments and a larger deflection.

• FE codes should not only offer the output option of contour plots,
but also three-dimensional presentations of deflections, moments
and shear forces. The latter are more appealing to structural engi-
neers, and concentrate attention to spots with large moments and
shear forces.
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