
Chapter 11
Handling Membrane FEM Results

11.1 Surprising Stresses

11.1.1 Effect of Poisson’s Ratio

We consider a box-shaped steel bridge as shown in Figure 11.1. The box
has two horizontal walls, at the top and bottom respectively, and two vertical
walls, one at each outer side. There are no inner vertical longitudinal webs
in the bridge. The structure is a new bridge on an existing pier that had been
used for a narrower structure. Therefore, the two bearings at each bridge end
do not coincide with the vertical side walls of the box structure, but are in a
position more inward. It makes the end diaphragm behave as a beam with a

parts, two squares outside the bearings and one between the bearings which
has a length over depth ratio of two. The outer vertical walls are schema-
tized as vertical stiffeners at the ends of the diaphragm. These walls carry
forces F to the two ends of the diaphragm. These point loads cause support
reactions F in the bearings. In order to introduce these concentrated sup-

Figure 11.1 End diaphragm of box-shaped bridge.
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four-point loading as drawn in Figure 11.1. The diaphragm consists of three
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port reactions in the web of the diaphragm, two vertical stiffeners have been
added at the position of the bearings. The diaphragm will bend such that the
upper edge becomes longer and the lower edge shorter. Because of compat-
ibility reasons, parts of the horizontal walls of the box will then participate
in the transfer of the forces. In Figure 11.1 these parts have been modeled as
horizontal stiffeners over the full length of the diaphragm, top and bottom.

Now we draw attention to the spots A in the diaphragm. The normal force
in the vertical stiffener will be Nvert = −F . The normal force in the horizon-
tal stiffener at that position will also be Nhor = −F . This result means that
the strains are equal, to ε, in the vertical and horizontal stiffeners at position
A. The stress σ in the vertical stiffener is σ = Eε. Because of compatibility
the strains in the web material adjacent to the stiffener must be of the same
size: εxx = εyy = ε. The stress in the web plate must be calculated with
Eq. (1.13):

σyy = E

1 − ν2

(
εyy + νεxx

) = E

1 − ν
ε (11.1)

For Poisson’s ratio ν = 0.3 we find a stress is σyy = Eεyy/0.7 = 1.43Eε,
43% larger than the stress σ = Eε in the adjacent stiffener with the same
strain. Accounting for Poisson’s ratio in this way can be important, partic-
ularly if buckling must be considered. The web is compressed, both in the
horizontal and vertical direction.

11.1.2 Effect of Kink in Beam Flange

Now consider a clamped beam of I-section subjected to a point load at its
free end, as shown in Figure 11.2. The cross-section of the beam consists
of two flanges and a web. The width of the flanges and depth of the web
are equal. The top flange is straight over the full length of the beam. The
bottom flange is parallel to the top flange over about two-third of the beam
counted from the clamped end, but then the height of the web decreases
linearly to about half its height at the free end. As a result a kink occurs
in the bottom flange. The subject of this Section is the distribution over the
beam length of the bending stress σ in the connection line between the web
and the bottom flange. Classic beam theory predicts σ = M/W , where M

is the bending moment and W the section modulus. The bending moment
M varies linearly over the length of the beam; W is constant between the
clamped end and kink, and decreases in a nonlinear way to about one quarter
of the constant value at the free end. So the expected stress distribution will
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Figure 11.2 Unexpected effect of kink in bottom flange.

be linear between the clamped edge and kink. Between the kink and free end
the stress will be larger than for a constant W , but it will become zero at the
free end.

As an alternative we can perform the calculation with the aid of a FEM
program in which we choose membrane elements. We model the flanges by
rectangular elements, say four over the half width. Choosing an aspect ratio
of about two, we obtain the wanted number of elements over the length. For
the web the same number of elements over length and depth is used. A sketch
of the result to be expected from the FE analysis is included in Figure 11.2.
It is completely different from the expectation on basis of the classical beam
theory.

The explanation for the unexpected FEM result has to do with the fact
that the classical beam solution is not admissible at the location of the kink.
That solution predicts that a stress σ = M/W acts in the horizontal flange
at the position of the kink and that the same stress acts in the inclined flange
at that position. The two membrane forces meet each other at an angle, and
therefore equilibrium can only exist if a third force in another direction acts
in the same point to balance them. In reality there is no third force, so the
membrane stresses in the bottom flange can be zero only at the location of the
kink. In fact, there the I-section beam behaves as a T-section beam, consisting
of the web and the top flange, shown in Figure 11.3. The section modulus
reduces substantially, the neutral line shifts upward, and the bottom stress
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Figure 11.3 Explanation of unexpected high bending stress.

increases. At some distance from the kink, the flange will contribute again.
Shear stresses σxy between the web and each flange half must develop to
obtain this effect. These shear stresses abruptly change sign and direction
at the kink, and the bending stress σxx correspondingly decreases in two
directions.

FE analyses bring to light omissions in design

FE analyses show stress concentrations where classic beam calcula-
tions suppose smooth stress distributions. Sometimes they bring mer-
ciless to light omissions in design.

Those who are familiar with bond stresses in a cracked reinforced concrete
bar under tension will see a similarity. At a crack the reinforcement bar has to
carry all the tensile force, and at some distance from the crack the concrete
and bar carry the force together. A transition length occurs in which high
bond shear stresses transfer part of the high tensile force in the crack to the
concrete.
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Figure 11.4 FE analyses do not converge in case of stress singularities.

11.2 Stress Singularities in FEM

In Section 6.2.2 we derived the stress state in the Brazilian splitting test.
A cylindrical body is compressed by two opposed line loads. We found a
constant horizontal tensile stress over the vertical plane of the cylinder and
concentrated horizontal compressive point loads, one on the top and the other
at the bottom, to balance the tensile stresses. In Figure 11.4 this test is simu-
lated by a FE analysis. Instead of the circular cross-section, a square is cho-
sen. The four corner areas outside the inner circle are relatively low-stress
regions which hardly influence the stress state in the vertical plane of sym-
metry. The theoretical solution of the horizontal stress σxx is shown, and the
stress is computed by FEM in two positions, point 1 at the top edge of the
square and point 2 in the centre. The analysis is done for different mesh fine-
nesses, indicated by the number of elements N over the width and height of
the cross-section. It is expected in a FE analysis that mesh refinement would
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make the stress result converge to its final correct value. We notice that this
is indeed the case for the stress at point 2, but not at point 1.

Lesson on singularities

Convergence is obtained for stresses of finite value, but not at locations
where the membrane plate theory predicts a singularity. Then no con-
vergence will occur. The same is true for an infinitely large bending
moment in plate bending, the subject of Chapter 14. There, too, mesh
refinement does not make sense.

11.3 FEM-Supported Strut-and-Tie Modeling

If we have to design the reinforcement in concrete walls, it may be helpful
for understanding force transfer to draw a Strut-and-Tie Model (STM). It is
a truss-type model in which the load is represented by a set of well-chosen
lumped forces, and the transfer to the supports occurs through a system
of compressed struts and tensioned ties. In simple statically determinate
problems the structural designer easily knows how to choose the strut and
ties, but statically indeterminate structures may be puzzling, because more
than one possibility exists. Figure 11.5 shows a simple example. A square
silo is supported at the four corners and is subjected to a homogeneously
distributed vertical load over the area of the walls. This load is due to own
weight and possible friction of bulk material in the silo.

Each silo wall is a deep beam, of which the maximum bending moment oc-
curs in the vertical line of symmetry at mid-span. The distribution of the
horizontal stresses in this section must be known in order to design the rein-
forcement properly. The strut-and-tie model for an individual wall is simple,
as appears from Figure 11.5. Green is compression, red is tension. In the line
of symmetry at mid-span of the wall there is a compressive horizontal force
and a tensile horizontal force of equal size. The product of the distance be-
tween these two forces times the value of the forces is the bending moment.
The problem for the structural engineer is to make a fair guess about the dis-
tance, then calculate the tensile force and decide on the amount of horizontal
reinforcement. Because the structure is highly statically indeterminate, the
choice is hard to make. A FE analysis may help to make a good estimate.
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Figure 11.5 FEM as support for Strut-and-Tie Model

We have analyzed the wall with a course mesh, which is appropriate. In
fact the wall behaves as a deep beam, as discussed in Section 2.2.2. There
we assumed that the wall has a distributed support over the full height of
each vertical edge. The result for deep walls will be that the vertical sup-
port reaction is very much concentrated in the lower part of the edges. This
distribution of the support reaction is close to the real support of the deep
wall. The difference is then not significant. And for the rest, it anyhow is
not relevant where the support occurs along the vertical edge. This does not
influence the total beam moment which must be transferred in the vertical
line of symmetry of the wall. The result of the FE analysis has been included
in Figure 11.5. First, we see that the computed result agrees well with the
theoretical expectation in Figure 2.13 for a short, tall wall. Second, the stress
distribution along the line of symmetry nicely shows where we can choose
the center of gravity of the tensile stresses and of the compressive stresses,
which determine the positions of the horizontal tie and strut, respectively.

FE analysis as support for strut-and-tie modeling

FE analysis supports the structural engineer in making strut-and-tie de-
cisions. It helps positioning the reinforcement and determining lever
arms.

Plates and FEM
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Figure 11.6 Exploded view of elements around re-entrant corner.

11.4 Re-entrant Corner

The silo wall of Section 11.3 offers a good occasion to draw attention
to a typical aspect which accompanies FE analyses for structures with a
re-entrant corner. An example is displayed in Figure 11.6, which could
be the corner between the column and the bottom edge of the wall. We
have drawn in an exploded view rows and columns of rectangular elements
around the corner. The re-entrant corner has edges BC and BD, so the corner
is at node B. For ease of explanation it is assumed that the load is applied
outside the considered part of the element mesh. We consider the vertical
line which runs from node A over B to C, and focus on the horizontal
forces at the nodes and the equilibrium of these forces. The two nodes
between A and B can be seen as regular mesh nodes. Here four elements
join together in a node and each element brings in an element force to the
equilibrium equation for that node. The two forces coming from the left
are more or less equal, and the same holds true for the two forces coming
from the right. Equilibrium requires that the sum of the four forces is zero.
The result is that the horizontal stresses in the four elements will be almost
equal. An averaging procedure makes sense in such points. In corner node
B a different situation exists. Now there are three element forces and they
must sum to zero. The two left forces, more or less of equal size, must
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balance those coming from the right. Therefore, the horizontal stress in
the element to the right of node B is about twice the stress in the elements
to the left of the node. If the stress to the left of the node is about σ in
both elements, then it will be 2σ to the right of the node. This latter size
must be considered as the most realistic one. The average value is 1.33σ ,
which is only two-third of the maximum stress 2σ , the realistic one. Below
corner B, only two element forces remain, which must be equal and opposite.

The stress state in the re-entrant corner is singular. In fact infinitely large
shear stresses must occur in the horizontal line through corner node B to
achieve that the stress 2σ in the right plate part is spread over the two plate
parts left of the vertical line. A disturbance occurs in the FE analysis which
is still noticed in the edge nodes below the corner B. The stress distributions
over sections just left and right of the vertical line through the corner node,
sketched in Figure 11.6, visualize this. The dotted line represents the stresses
to the left of the line ABC. It takes a couple of elements before the stress re-
ally is zero on the free edge BC. The explained phenomenon is inherent to
the finite element method. The finer the element mesh, the smaller the region
will be where the disturbance is seen. Similar effects are seen in plate bend-
ing near re-entrant corners. What we have explained here for plate forces,
will occur there for plate moments.

Note on averaging procedures

Averaging procedures can be misleading at re-entrant corners. The av-
erage value can be far less than the real maximum stress.

11.5 Tall Wall with Openings

Multi-storey buildings often transmit wind loads to the base through shear
walls of reinforced concrete. Shear walls may be positioned as end walls
in building plans or as inner walls. At each storey an opening may occur;
in end walls they allow for windows, and in inner walls they are necessary
if a corridor crosses the wall, see Figure 11.7. We can view the tall wall
with openings as a structure of two slender walls, left and right respectively,
which are connected by horizontal cross-beams at each floor. Walls and
beams together form one monolithic structure. If the shear wall is subjected
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Figure 11.7 Expected behaviour of tall wall with openings due to wind.

to wind load, the cross-beams will act as dowels, and the wall will deflect
(w) as sketched in Figure 11.7. The structural engineer is interested in the
size of the transverse dowel forces (shear forces) D in the cross-beams, in
order to detail the reinforcement in an adequate way. As a consequence
of the dowel forces D, a tensile base force N will act in the left wall and
a compressive base force N in the right. These normal forces carry part
of the total wind moment at the base. The other part consists of bending
moments in the left and right wall at the base, Ml and Mr respectively. The
total horizontal force due to the wind is the base shear, which is divided
over the left and right wall Vl and Vr respectively. The base information
is of interest to the structural designer in order to properly design the
foundation. The expected diagrams for normal forces N , moments M, and
beam dowel forces D are included in Figure 11.7. Of course, the analyst
must superimpose the load due to self-weight.

In the 1960s and 1970s a lot of research on the force distribution in this
type of structure was published on the basis of differential equations, among
which contributions of Rosman [18] are well known. Today structural engi-
neers will most probably apply FE analysis. In this section we comment on
the FE modeling of this type of structure. We will do this in two ways: in
Section 11.5.1 the focus is on modeling with membrane elements; in Sec-
tion 11.5.2 it is on modeling as a frame structure.
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Figure 11.8 Tall wall with row of openings.

11.5.1 Modeling with Membrane Elements

In Figure 11.8 we consider in more detail the force transfer in an individual
cross-beam. The midpoint of beams is a point of counter-flexion. A constant
shear force D occurs in the cross-beams, and the diagram for the bending
moment M is linear with a zero value at mid-span.

At the connection between the cross-beams and the vertical walls, there
will be high stress concentrations. Therefore, a sufficiently fine mesh must
be chosen around beam-wall connections. Further away in the vertical walls
a courser mesh will be adequate. However, a coarse mesh is not really nec-
essary in view of the speed and the mass storage of current computers. If
the structural engineer chooses the membrane element with mid-side nodes
(quadratic displacement) it suffices to use two elements over the depth of the
cross-beam. For the element with only four corner nodes (linear displace-
ments) three or more elements over the depth must be applied. Additionally,
we recommend choosing the constant shear element because it performs
better in situations where the element must reproduce bending states. The
expected distribution of bending stresses in the cross-beams for linear and
quadratic elements is included in Figure 11.8.

Plates and FEM
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Figure 11.9 The shaded elements will be seriously cracked.

Figure 11.9 shows the mesh with two elements over the depth. Because
the largest moment occurs at the end of the cross-beam, and there is stress
concentration at the connection, we expect substantial cracking. We can ac-
count for that by reducing the modulus of elasticity. Compared to the middle
part of the cross-beams the actual stiffness might be halved. In Figure 11.9
we have marked these elements by shading. Reduction of the stiffness is im-
portant if the structure is sensitive to geometrical nonlinearity (second-order
effects) and an increase of bending moments must be considered in stability
checks.

11.5.2 Modeling as Frame

Another way to investigate the force distribution in a tall wall with open-
ings is to model the structure as a frame. In this case we must pay attention
to a number of things. The frame consists of two vertical members (line el-
ements), which coincide with the centre lines of the two slender walls. A
horizontal member is placed in the centre line of each cross-beam. The mod-
eling of the vertical members does not raise problems. The engineer must
just make sure that the computer program accounts for deformation due to
both normal forces and bending moments. Shear deformation need not be
considered for slender walls. In the frame model, we introduce horizontal
members with rigid end parts. The length of these rigid parts must be chosen
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Figure 11.10 Frame model of tall wall with openings.

with care. At first glance we may make the length half the width of the verti-
cal walls, but then we make them too long. At the junction of the cross-beam
and the walls, there will be deformation of the wall. Therefore, we recom-
mend working with a fictitious length of the cross-beams larger than the real
length. At each end the cross-beam may be extended by a length equal to
the half depth of the beam, see Figure 11.10. So, the length of the rigid parts
become smaller than the half width of the vertical walls.

Next to the choice of the length of the cross-beams, we must decide
whether they behave as Bernoulli beams (flexural deformation only) or
Timoshenko beams (flexural and shear deformation). Even after we increase
the length of the cross-beam, it is still not slender. We must consider the half
length of the beam, because of the zero value of the moment at mid-span.
The half cross-beam is a cantilever beam with a point load at the end (point
of counter-flexion), as discussed in Section 2.1.3. The length over depth
ratio of the cantilever beam may become of the order of magnitude two and
then, according to Eq. (2.57) stiffness reduction occurs. One can account
for this either by using a program that accounts for shear deformation or by
introducing a judiciously decreased bending stiffness.

Until now, we have assumed that the cross-beams have rectangular cross-
section with the same width as the wall thickness. It is probably more com-
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Figure 11.11 Frame models easily include deviating support structures.

mon that floor slabs are fixed to the cross-beams. Then the engineer has to
increase the bending stiffness of the cross-beam in the model, because of two
reasons. The first reason is that the cross-beam becomes a T-shaped beam be-
cause the floor behaves as a flange of the cross-beam. It is not likely that this
contribution is substantial. Participation of the floor as flange presupposes
that a normal force can operate in the flange, however this requires a suffi-
cient length to build up the normal force, and the half cross-beam is too short
to obtain this. The other reason to include participation of the floor slab is
the bending of the slab. It has to follow the curvatures of the cross-beam,
so an effective slab width must be chosen, the bending stiffness of which
is added to the bending stiffness of the cross-beam. To choose this effective
slab width we could draw a line from the cross-beam centre with an angle of
45 degrees to the cross-beam. This implies, at the connection with the wall,
a slab width at each side of the cross-beam of half the length of the beam.

Figure 11.12 Example of three coupled walls with two rows of openings.
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Figure 11.13 Stress distribution in walls at base level. Dashed line for pin-
connected cross-beams. Dotted lines for infinitely rigid cross-beams. Full line for
real cross-beam stiffness.

Unlike the first, this second contribution to the beam bending stiffness may
be substantial.

The frame method has a number of advantages. First, it provides results
in a way structural engineers appreciate. The analysis leads to normal forces,
shear forces and bending moments, for which code checking is familiar. Sec-
ond, special supporting structures can easily be included in the model. Fig-
ure 11.11 demonstrates this. Third, it is easy to handle irregular structures
with different storey heights and locally deviating cross-beam stiffness, and
walls that are hard to model as a membrane plate fit easily in a frame model.
Figure 11.12 shows an example. The building of about 90 meters height
houses the administration offices of the government of a province in the
Netherlands. The plan form is shown in the right-hand top part of the fig-
ure. The dashed lines are glass facades. In the plan, four T-shaped columns
are connected with the corners of a central rectangular shaft. The connection
of the columns to the shaft is by cross-beams at each floor level. A cross-
beam of exceptional stiffness occurs at all four corners between the sixth
and seventh storey. The building is subjected to wind at the long edge of the
plan form.
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The structure has been modeled as a system of three vertical walls and two
rows of openings, as depicted in Figure 11.12. Because of symmetry, normal
forces occur only in the two outer walls. The results of the analysis are in-
cluded in Figure 11.12. At the position of the cross-beam with exceptional
stiffness, there is a large dowel force D, which causes discontinuities in the
bending moments and in the normal forces of the outer walls. Figure 11.13
displays the base stresses in the three walls. Note that the stress diagrams
have the same gradient; this must hold because the three walls share the same
deflection and therefore curvature. In the plot also the stresses are shown
which would occur for two extreme situations, one in which the cross-beams
are pin-connected and just act as trusses, and another in which the cross-
sections are perfectly rigid such that all three walls act together as one wide
beam, respectively. The actual maximum stress is about twice the stress for
the ideal stiff case, however less than one-third of the pin-connected case.

11.6 Checking and Detailing

Commercial packages offer program features to check whether the design of
structures is in accordance with codes of practice, or to dimension structural
components. Here we just touch the subject to give an impression.

11.6.1 Steel

After a stress analysis has been performed for a steel structure, a so called
unity check is made to confirm that the stress state in the structure is suffi-
cient remote from the state of yielding. For that purpose the Von Mises stress
σVM is calculated. In two-dimensional states this stress is

σVM =
√

σ 2
1 + σ 2

2 − σ1σ2 (11.2)

where σ1 and σ2 are principle stresses. The condition is that this stress is
smaller than the yield stress σy:

γmat σVM ≤ σy (11.3)

Here γmat is the partial safety factor to be taken into consideration. Fig-
ure 11.14 visualizes the yield condition in the two-dimensional diagram for
principal stresses. The actual combination of stresses must remain within the
yield contour.



215

Figure 11.14 Von Mises yield criterion. Dashed line Tresca.

11.6.2 Reinforced Concrete

For reinforced concrete structures, programs offer options to design the re-
inforcement automatically. We must solve a problem if we want to apply a
two-way orthogonal reinforcement, because we have three membrane forces
nxx, nyy and nxy . The subject will come up in detail in Chapter 16, but we
will give a taste of the approach here. Consider a square panel with tensile
normal membrane forces and a non-zero positive membrane shear force. In
its most simple form the procedure is to replace the three membrane forces
by two steel forces per unit length, nsx and nsy .

nsx = nxx + nyx

nsy = nyy + nxy

(11.4)

and dimension the reinforcement in the x- and y-direction on the basis of
these two forces. The idea behind this procedure is the assumption that the
concrete is cracked. For the direction of the cracks only the shear membrane
force nxy is considered, which leads to principle forces in the direction of
the diagonals of the panel, one tension and one compression respectively.
The cracks are supposed to develop normal to the tensile principal force.
This situation is shown in the top part of Figure 11.15. There the lower right
triangular part represents concrete, and the upper left triangle shows the re-
inforcement bars. Equation (11.4) follows from the equilibrium conditions
in the x- and y-direction of the concrete triangle. If the shear force has an
opposite sign, the crack direction reverses. The relations in Eq. (11.4) still
hold true if we use the absolute value of the shear forces, as follows from the
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Figure 11.15 Determination of the reinforcement forces nsx and nsy .

bottom part of Figure 11.15. The concrete struts are now in the direction of
the other diagonal. It is a consequence of the assumed cracked state that com-
pressive stresses occur in the concrete. A shear membrane stress σ causes a
compressive stress of 2σ in the concrete struts, as is seen in Figure 11.16.
This follows from the equilibrium of a strut of width s

√
2 if s is the spacing

between the reinforcement bars.
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Figure 11.16 Cracked concrete, tensioned reinforcement, diagonal compressive
struts.

11.7 Message of the Chapter

• Lateral contraction due to Poisson’s ratio can be responsible for
unexpected local increases of stress.

• FE analyses show stress concentrations where classic beam calcu-
lations suppose smooth stress distributions. Sometimes they reveal
omissions in design.

• If the theory of elasticity predicts a singular stress, refinement of
mesh in the FE analysis will lead to ever increasing stress values.
No convergence will be obtained.

• Linear-elastic FE analysis can be a help to structural engineers who
like to use strut-and-tie models in detailing reinforced concrete.
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• Re-entrant corners are singular stress spots in membrane structures.
Here, averaging of discontinuous stress values must be done with
care.

• The structural engineer can account for severe cracking in a linear-
elastic FE analysis by judiciously reducing Young’s modulus in
cracked regions. An example is a tall wall with a row of rectangular
openings. This structure can alternatively be handled as a frame.
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