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Preface

The Finite Element Method, shortly FEM, is a widely used computational
tool in structural engineering. For basic design purposes it usually suffices
to apply a linear-elastic analysis. Only for special structures and for forensic
investigations the analyst need to apply more advanced features like
plasticity and cracking to account for material nonlinearities, or nonlinear
relations between strains and displacements for geometrical nonlinearity to
account for buckling. Advanced analysis techniques may also be necessary
if we have to judge the remaining structural capacity of aging structures. In
this book we will abstain from such special cases and focus on everyday
jobs. Our goal is the worldwide everyday use of linear-elastic analysis, and
dimensioning on basis of these elastic computations. We cover steel and
concrete structures, though attention to structural concrete prevails.

Structural engineers have access to powerful FEM packages and apply them
intensively. Experience makes clear that often they do not understand the
software that they are using. This book aims to be a bridge between the
software world and structural engineering. Many problems are related to the
correct input data and the proper interpretation and handling of output. The
book is neither a text on the Finite Element Method, nor a user manual for
the software packages. Rather it aims to be a guide to understanding and
handling the results gained by such software.

We purposely restrict ourselves to structure types which frequently occur
in practise. We consider shear walls and other two-dimensional structures
loaded in their plane (membrane state), and we deal with floor and bridge
structures loaded perpendicular to their plane (bending state). The content
reflects the subject matter of continuing education courses in European coun-
tries, such as Belgium and the Netherlands.

xv



xvi Preface

The book is composed of four parts. In the first one we present an
overview of the classical theory of plates in the membrane and bending
state. This is considered necessary in order to better understand instructions
to be given in later parts. For a few relevant examples which play an illus-
trative role exact solutions are presented. To some extent the presentation
for plates in the membrane state diverges from classical text books. There
all membrane problems are discussed on basis of the well-known Airy
function. This theory can be considered as an application of the force
method in which stress function is chosen as the statically dependent
quantity. However, this method is completely opposite to the current
displacement method (stiffness method) as applied in the finite element
method. We consider this an unwanted discrepancy and anachronism, and
therefore have chosen a displacement method for the membrane state as
well. The degree of difficulty does not become higher, while there is now
uniformity with the theory for the bending state. We resort to Airy’s theory
only for some well-known classical solutions. The problem of discrepancy
and anachronism does not occur for plates in bending and transverse shear,
because the relevant classical differential equations are already based on the
displacement method. For this category another aspect needs attention, more
than usually given in classical text books. Nowadays, explicit clarification is
needed on the difference between thick plates (Mindlin–Reissner) and thin
plates (Kirchhoff), because both options are offered in commercial software
and surprising choices appear to have been made as default option or are
made by users.

Before moving to the main body of the book we direct attention in Part 2
of the book to some instructive computational models of pre-FEM days.
These are re-called for both plates in membrane state and plates in bending.
It is believed that they are of great didactical value, particularly for plates in
bending.

The contents of Part 3 of the book provide the impetus for publication. We
intend to help the structural engineer in handling linear-elastic computational
results in daily practice. This part starts with an overview of the stiffness
method, as applied in commercial FEM packages. We review element types
which are relevant to the subject matter of the book, discuss input options,
and review output selection. We address the subject that results of the
calculation are highly dependent on the structural engineer who performs
the computation, and give hints how to avoid dependency on mesh fineness.
We show how FE analysis can support application of the strut-and-tie



xvii

design model and draw attention to several surprises and pitfalls. We
are pleased with the contribution of Professor Paulo Lourenço of Minho
University in Portugal on reinforcement design of plates in membrane state,
bending-shear state or combined membrane-bending-shear state. We also
review a couple of contemporary two-way slab systems, and consider op-
tions for calculating the deflection and crack-width in the serviceability state.

The final part of the book (Part 4) is another reason for publication: it deals
with orthotropy as it occurs in bridge and floor systems. The focus for these
orthotropic properties is on calculating correct input rigidity data, and de-
termining whether computed plate moments and shear forces match code
requirements. Noticing odd outcomes we observe a definite need for clari-
fication of this subject matter. Orthotropic properties also render a service
when structural engineers want to calculate deflections and crack-widths in
the cracked serviceability state.
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Conversion of SI Units to Imperial Units

1 SI unit = C USCS units
1

C
SI units = 1 USCS unit

SI Unit C 1/C Imperial

Area
1 m2 10.76 0.0929 ft2

1 mm2 1.55 × 10−3 645 in2

Distributed line load
1 N/m 0.0685 1.46 lbf/ft
1 kN/m 0.0306 32.7 tonf/ft

1 N/m 5.71 × 10−3 175 lb/in
1 kN/m 2.55 × 10−3 392 tonf/in

Distributed area load
1 N/m2 0.0209 47.9 lbf/ft2

1 kN/m2 0.0933 10.7 tonf/ft2

1N/m2 0.145 × 10−3 6.89 × 103 lbf/in2

1kN/m2 64.7 × 10−6 15.5 × 103 tonf/in2

Force
1 N 0.225 4.45 lbf
1 kN 0.100 9.96 tonf

Length
1 m 3.28 0.305 ft
1 mm 0.0394 25.4 in

xxiii



xxiv Conversion of SI Units to Imperial Units

SI Unit C 1/C Imperial

Moment. Torque
1 N·m 0.738 1.36 lbf·ft
1 N·m 8.85 0.113 lbf·in

1 kN·m 0.329 3.04 tonf·ft
1 kN·m 3.95 0.253 tonf·in

Moment in plate
1 N·m/m 0.225 4.45 lbf·ft/ft
1 N·m/m 0.225 4.45 lbf·in/in

1 kN·m/m 0.100 9.96 tonf·ft/ft
1 kN·m/m 0.100 9.96 tonf·in/in

Shear force in plate
1 N/m 0.0685 14.6 lbf/ft
1 kN/m 0.0305 32.8 tonf/ft

1 N/m 5.71 × 10−3 175 lbf/in
1 kN/m 2.55 × 10−3 392 tonf/in

Moment of inertia (second moment of area)
1 mm4 2.40 × 10−6 0.416 × 106 in4

1 m4 2.40 × 106 0.416 × 10−6 in4

Pressure, Stress
1 Pa 0.0209 47.9 lbf/ft2

1 Pa 0.145 × 10−3 6890 lbf/in2

1 MPa 20.9 × 103 47.9 lbf/ft2

1 MPa 0.145 × 10−3 7.20 lbf/in2

1 MPa 93.3 0.0107 tonf/ft2

1 MPa 0.648 1.54 tonf/in2

Section modulus. Volume
1 mm3 0.0610 × 10−3 16.4 × 103 in4

1 m3 0.0610 × 106 16.4 × 10−6 in4



Conversion of SI Units to US Customary System

1 SI unit = C USCS units
1

C
SI units = 1 USCS unit

SI Unit C 1/C US CS

Area
1 m2 10.76 0.0929 ft2

1 mm2 1.55 × 10−3 645 in2

Distributed line load
1 N/m 0.0685 1.46 lb/ft
1 kN/m 0.0685 14.6 k/ft

1 N/m 5.71 × 10−3 175 lb/in
1 kN/m 5.71 × 10−3 175 k/in

Distributed area load
1 N/m2 0.0209 l47.9 lb/ft2

1 kN/m2 0.0209 47.9 k/ft2

1 N/m2 0.145 × 10−3 6.89 × 103 lb/in2

1 kN/m2 0.145 × 10−3 6.89 × 103 k/in2

Force
1 N 0.225 4.45 lb
1 kN 0.225 4.45 k

Length
1 m 3.28 0.305 ft
1 mm 0.0394 25.4 in
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xxvi Conversion of SI Units to US Customary System

SI Unit C 1/C US CS

Moment. Torque
1 N·m 0.738 1.36 ft-lb
1 N·m 8.85 0.113 in-lb

1 kN·m 0.738 1.36 ft-k
1 kN·m 8.85 0.113 in-k

Moment in plate
1 N·m/m 0.225 4.45 ft-lb/ft
1 N·m/m 0.225 4.45 in-lb/in

1 kN·m/m 0.225 4.45 ft-k/ft
1 kN·m/m 0.225 4.45 in-k/in

Shear force in plate
1 N/m 0.0685 14.6 lb/ft
1 kN/m 0.0685 14.6 k/ft

1 N/m 5.71 × 10−3 175 lb/in
1 kN/m 5.71 × 10−3 175 k/in

Moment of inertia (second moment of area)
1 mm4 2.40 × 10−6 0.416 × 106 in4

1 m4 2.40 × 106 0.416 × 10−6 in4

Pressure. Stress
1 Pa 0.0209 47.9 psf
1 Pa 0.145 × 10−3 6890 psi

1 MPa 20.9 0.0479 ksf
1 MPa 0.145 6.89 ksi

Section Modulus. Volume
1 mm3 0.0610 × 10−3 16.4 × 103 in4

1 m3 0.0610 × 106 16.4 × 10−6 in4
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Chapter 1
Plate Membrane Theory

The word plate is a collective term for systems in which transfer of forces
occurs in two directions; walls, deep beams, floors and bridge slabs are all

plane, and plates loaded perpendicularly to their plane. For both categories
we give an approach with differential equations, such that a basic understand-
ing is provided and for certain characteristic cases an exact solution can be

equations. In plates that are loaded in their plane, the plane stress state is
called the membrane state. All stress components are parallel to the mid-

A well-known example is a prismatic slender beam of rectangular cross-
section, loaded by bending moments and shear forces as shown in Figure 1.1.
For this special case we can easily calculate the bending stresses σxx and the
shear stresses σxy from Euler–Bernoulli beam theory. However, less simple

Figure 1.1 Stresses in prismatic beam in classical beam theory.

©
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determined. We follow the displacement method, working with differential
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plane of the plate. In special cases we can simply determine the stresses.

plates. We distinguish two main categories, plates that are loaded in their
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4 1 Plate Membrane Theory

Figure 1.2 Example of the deformation and stress distribution in a deep beam.

In a deep beam, the stress distribution differs from what the classical beam
theory predicts. The bending stress σxx is no longer linear and beam theory
does not give any information about the vertical normal stresses σyy , but they
do of course occur. Finally, the shear stress σxy in a deep beam does not have
a parabolic distribution, as in the classic beam theory. Classical text books
on the subject refer to Girkmann [2] and Timoshenko [3]. This chapter will
offer a solution method for such general problems. We deal with a group of
problems that we can consider to be two-dimensional. Plane stress occurs in
a thin flat plate, which is loaded in its plane by a perimeter load f or/and a
distributed load p over the plate with components px and py , see Figure 1.3.

Figure 1.3 Thin flat plate loaded in-plane.
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Figure 1.4 Bar subjected to extension with relevant quantities.

1.1 Introduction: Special Case of a Plate, the Truss

Before continuing with the general two-dimensional case, we first discuss
the one-dimensional case as a special case. So, we take a plate, on which
a load is applied in one direction, the x-axis. Everything in y-direction
is constant, and Poisson’s ratio is zero. Figure 1.4 shows this uni-axial
situation. In fact we can handle it as a truss. The x-axis is chosen from left to
right. At the position x, the cross-section displaces u(x) in x-direction after
applying the load; the displacement is accompanied by a specific strain ε(x).
The truss with length l is loaded along its length with a distributed load p(x)

per unit length, and at both ends with forces f1 and f2. The cross-section
of the truss has area A. The modulus of elasticity of the material is E.
The stress resultant in the cross-section is the normal force N(x). For this
problem we can derive three basic equations between the quantities u, ε, N ,
and p, as is shown in Figure 1.5, and these relationships are the basis for the
differential equation.

Figure 1.5 Scheme of three basic equations.

Plates and FEM



6 1 Plate Membrane Theory

Recurring scheme

Hereafter in the book such a scheme will occur each time that we will
derive differential equations. The three relationships are the kinematic
equation, the constitutive equation and the equilibrium equation. In
short, we refer to them hereafter as kinematic, constitutive and equi-
librium.

ε = du

dx
Kinematic (1.1)

N = EAε Constitutive (1.2)

−dN

dx
= p Equilibrium (1.3)

Substitution of the kinematic equation in the constitutive law and after that
the changed constitutive in the equilibrium equation transforms the latter into

−EA
d2u

dx2
= p (1.4)

This is a differential equation in the degree of freedom u. The procedure of
subsequent substitution from left to right will occur in this book each time
that differential equations are to be derived, and these equations always will
be differential equations in degrees of freedom.

The second-order differential equation (1.4) can be solved if two bound-
ary conditions are specified, one at the left end and one at the right end. At
position x = 0 the boundary condition is either

u1 = u1,0 (1.5)

in which u1,0 is a prescribed value, or

−N1 = f1 → −EA

(
du

dx

)
1

= f1 (1.6)

where f1 is a given load. At x = l the boundary condition is either

u2 = u2,0 (1.7)

or
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N2 = f2 → EA

(
du

dx

)
2

= f2 (1.8)

From the differential equation (1.4) and the boundary conditions in Eq. (1.5)
up to Eq. (1.8), we can solve the displacement u. When the solution u
has been ob- tained, we can calculate the normal force N from Eq. (1.2)
accounting for Eq. (1.1). If the displacement u at an end is a constraint, we
can compute the support reaction f . Conversely, if the load f is specified at
a free end, we find a solution for the displacement u at that position.

Recurring procedure

The method stated here is known as the displacement method or stiff-
ness method. In the next sections we will solve the plate problem with a
two-way load along similar lines, and throughout the whole book a sim-
ilar approach will be followed. Our procedure will always be to track
down the quantities which govern the problem and should be included
in the scheme for the three basic sets of relationships. Each time we
must decide which displacements are the degrees of freedom and will
introduce associate external loads. We also choose proper deforma-
tions and their associated stress resultants. The kinematic relationships
relate the displacements and deformations to each other, the constitu-
tive relationships (laws) the deformations and stress resultants, and the
equilibrium relationships the stress resultants to the external loads.

1.2 Membrane Plate Problem Statement

Every point (x, y) of a plate loaded in its plane goes through a displacement
ux(x, y) in the direction of the x-axis and a displacement uy(x, y) in
the direction of the y-axis, see Figure 1.6. So, the displacement field is
defined by two degrees of freedom. That means that distributed external
loads px and py per unit area can be applied in these two directions. Three
deformations occur internally in the plate, the strain εxx in x-direction, the
strain εyy in the y-direction, and a shear strain γxy . This conjugates with
the stresses σxx, σyy and σxy , respectively, see Figure 1.6. As said before,
throughout the book we make a clear distinction between displacements
and deformations. Structural engineers often use displacements and de-

Plates and FEM



8 1 Plate Membrane Theory

Figure 1.6 Quantities which play a role in a plate loaded in-plane.

formations synonymously; we do not. Displacements indicate a shift of
a point relative to a coordinate frame; deformations relate to change of shape.

Notation and sign convention

The notation for the stress in the membrane state may require clarifica-
tion. For each stress we use two indices. The first indicates the face on
which the stress acts. It is the direction of the normal of the face. The
second index is the direction in which the stress is acting. For instance,
the stress σxy acts on a face with normal in the x-direction and is di-
rected in the y-direction.
The sign convention is as follows. A stress is positive if it acts in the
positive coordinate direction on a plane with the normal vector in the
positive coordinate direction. Correspondingly, a stress is positive if it
acts in the negative coordinate direction on a plane with its normal in
the negative coordinate direction, see Figure 1.6.

The stresses are constant through the thickness. Common practice is to
multiply them by the plate thickness t . The resulting membrane forces nxx,
nyy , and nxy are the stress resultants per unit plate width, see Figure 1.7, hav-
ing the dimension force per unit length. The sign convention for the mem-
brane forces is the same as for the stresses. While we use the capitol symbol
N for a truss element, we now use lower cast n for membrane forces. This
is because of difference in units. The normal force in a truss has the unit of
force (N), and the membrane forces have the unit force per unit width (N/m).
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Figure 1.7 Membrane forces used by the designer

Figure 1.8 Scheme of relationships in a plate in membrane state.

We can define relationships between the degrees of freedom, associated
loads, membrane forces and associate strains as is shown in the scheme of
Figure 1.8 for plates in membrane state, just as with the truss problem in
Section 1.1.

1.2.1 Kinematic Equations

Consider an elementary rectangular plate particle with sides dx and dy in an
orthogonal set of axes x, y in an unloaded state. These are the dotted lines in
Figure 1.9. After a load is applied, this particle is displaced and deformed.
The new position in the set of axes can be established by three rigid body
displacements and three deformations. The three rigid body displacements
are

• a translation ux in x-direction;
• a translation uy in y-direction;

Plates and FEM
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Figure 1.9 Three rigid body displacements.

• a rotation ωxy , positive as shown.

The three deformations are shown in Figure 1.10; they are

• strain εxx in x-direction; this is positive when elongation is involved;
• strain εyy in y-direction; this is positive when elongation is involved;
• shear strain γxy; this deformation changes a square shape into a rhombus,

such that the diagonal coinciding with the bisector of the first quadrant
becomes larger and the other diagonal shorter; the magnitude of γxy is the
angular deviation of the initially right angle.

The rigid body displacements are strain-less movements and occur without
generating any stresses. The deformations are associated with strains and do
create stresses. The kinematic equations define the relationship between the
displacements and the strains. The effect of the displacement field is shown
in Figure 1.11. An elementary plate part ABCD in an unloaded state trans-
forms into the quadrilateral A′B ′C ′D′ after application of the load. Accord-
ing to the definitions of Figure 1.6 the following relationships are valid:

Figure 1.10 Three deformations.
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Figure 1.11 Displaced and deformed state of an elementary plate part.

εxx = ∂ux

∂x

εyy = ∂uy

∂y
Kinematic (1.9)

γxy = ∂ux

∂y
+ ∂uy

∂x

Equation (1.9) is a generalization of Eq. (1.1) for the truss. From Figure 1.10
we also deduce the determination of the rotation ωxy from the displacements
ux and uy

ωxy =
(

−∂ux

∂y
+ ∂uy

∂x

)
(1.10)

1.2.2 Constitutive Equations

The constitutive equations give us information about the material behaviour,
by providing the relation between the stresses and the strains. Hooke’s law is
considered in its most general form for linear-elastic materials. Figure 1.12
displays the deformation states due to a normal stress σxx, a normal stress
σyy and a shear stress σxy . Normal stresses cause an elongation in the direc-

Plates and FEM



12 1 Plate Membrane Theory

Figure 1.12 Stress-strain relations for non-zero Poisson’s ratio.

tion they act and a lateral contraction due to Poisson’s ratio. Shear stresses
cause a square to deform to a rhombus. The mathematical relation between
deformations and stress resultants become

εxx = 1

Et
(nxx − νnyy)

εyy = 1

Et
(nyy − νnxx)

γxy = nyy

Gt

(1.11)

where G = E/2(1 + ν). These constitutive relations presuppose that the
plate carries no stresses in the direction z perpendicular to the x,y-plane. In
matrix notation the three relations read⎧⎨

⎩
εxx

εyy

γxy

⎫⎬
⎭ = 1

Et

⎡
⎣ 1 −ν 0

−ν 1 0
0 0 2(1 + ν)

⎤
⎦

⎧⎨
⎩

nxx

nyy

nxy

⎫⎬
⎭ (1.12)
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Figure 1.13 Equilibrium of an elementary plate part.

This is the flexibility formulation of the constitutive equations. By inverting
Eq. (1.12) we obtain the stiffness formulation⎧⎨

⎩
nxx

nyy

nxy

⎫⎬
⎭ = Et

1 − ν2

⎡
⎣ 1 ν 0

ν 1 0
0 0 1

2 (1 − ν)

⎤
⎦

⎧⎨
⎩

εxx

εyy

γxy

⎫⎬
⎭ Constitutive

(1.13)
Eq. (1.13) is a generalization of Eq. (1.2) for the truss.

1.2.3 Equilibrium Equations

Equilibrium equations give the relations between the loads and the mem-
brane forces. An equilibrium equation can be formulated in the direction of
both degrees of freedom ux and uy (see Figure 1.13). In the x-direction, the
equation for an elementary plate part with sizes dx and dy is

−nxx dy +
(

nxx + ∂nxx

∂x
dx

)
dy − nyx dx

+
(

nyx + ∂nyx

∂y
dy

)
dx + px dx dy = 0

In the y-direction a similar equation is valid that is obtained by simply in-
terchanging all x and y. Some terms will cancel out. Then division through
dx dy leads to
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Figure 1.14 Shape-orthotropic plates.

−
(

∂nxx

∂x
+ ∂nyx

∂y

)
= px

−
(

∂nxy

∂y
+ ∂nyy

∂x

)
= py

⎫⎪⎪⎬
⎪⎪⎭

Equilibrium (1.14)

Equation (1.14) is a generalization of Eq. (1.3) for the truss. All basic equa-
tions have been determined now.

Remark

The derivations of the basic equations are valid for a homogenous isotropic
plate. Plate theory is also used for homogenous orthotropic plates or struc-
tures of shape-orthotropy (Figure 1.14). Then more generally the constitutive
relationship of Eq. (1.15) holds

⎧⎨
⎩

nxx

nyy

nxy

⎫⎬
⎭ =

⎡
⎣ dxx dν 0

dν dyy 0
0 0 dxy

⎤
⎦

⎧⎨
⎩

εxx

εyy

γxy

⎫⎬
⎭ (1.15)

The rigidity terms in Eq. (1.15) will have to be determined separately for
each case, depending on the structure of the plate field. This is the subject of
Chapter 20.

1.2.4 The Displacement Method

The procedure in the displacement method is to substitute the kinematic
equations and the constitutive equations into the equilibrium equations. First
the kinematic relationships in Eq. (1.9) will be introduced into the constitu-
tive relationships in Eq. (1.13), so the membrane forces are expressed in the
displacements
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nxx = Et

1 − ν2

(
∂ux

∂x
+ ν

∂uy

∂y

)

nyy = Et

1 − ν2

(
∂uy

∂y
+ ν

∂ux

∂x

)
(1.16)

nxy = Et

2(1 + ν)

(
∂ux

∂y
+ ∂uy

∂x

)

The second step is substituting this intermediate result into the equilibrium
relationships of Eq. (1.14), which leads to two partial differential equations
in ux and uy , the Navier equations

− Et

1 − ν2

(
∂2ux

∂x2
+ 1 − ν

2

∂2ux

∂y2
+ 1 + ν

2

∂2uy

∂x∂y

)
= px

− Et

1 − ν2

(
∂2uy

∂y2
+ 1 − ν

2

∂2uy

∂x2
+ 1 + ν

2

∂2ux

∂x∂y

)
= py

(1.17)

These equations are the generalization of the differential equation in Eq. (1.4)
for the truss problem. If there are no variations in the y-direction, the first
differential equation becomes equal to Eq. (1.4) if one substitutes t = A

and ν = 0. To be complete, we will write Eq. (1.17) in a matrix operator
formulation:

− Et

1 − ν2

⎡
⎢⎢⎢⎣

∂2

∂x2
+ 1 − ν

2

∂2

∂y2

1 + ν

2

∂2

∂x∂y

1 + ν

2

∂2

∂x∂y

∂2

∂y2
+ 1 − ν

2

∂2

∂x2

⎤
⎥⎥⎥⎦

{
ux

uy

}
=

{
px

py

}
(1.18)

In Eq. (1.18) we have derived two coupled partial differential equations in
two unknown displacements ux and uy , which have to be solved simultane-
ously. We can replace the set of second-order differential equations by one
of the fourth order, by eliminating one of the displacements. If we choose
to eliminate uy we must perform the lower right differential operation of the
matrix on both members of the first equation in (1.18) and the upper right
operation with a minus sign on the second equation. If we then sum the two
equations, the displacement uy will disappear and we find a fourth-order dif-
ferential equation for ux

− Et

2(1 + ν)

(
∂4

∂x4
+ 2

∂4

∂x2∂y2
+ ∂4

∂y4

)
ux

=
(

∂2

∂y2
+ 1 − ν

2

∂2

∂x2

)
px −

(
1 + ν

2

∂2

∂x∂y

)
py

(1.19)

Plates and FEM



16 1 Plate Membrane Theory

Introducing the harmonic Laplace-operator ∇2 (pronounce: nabla squared)

∇2 = ∂2

∂x2
+ ∂2

∂y2
(1.20)

we can rewrite Eq. (1.19) as the bi-harmonic equation

− Et

2(1 + ν)
∇2∇2ux =

(
∂2

∂y2
+ 1 − ν

2

∂2

∂x2

)
px −

(
1 + ν

2

∂2

∂x∂y

)
py

(1.21)
If the plate is loaded only by edge line forces f and no distributed surface
loads px and py occur, the bi-harmonic equation takes the simple form

∇2∇2ux = 0 (1.22)

We could also have chosen to single out the displacement ux ; we would have
obtained a bi-harmonic equation in the displacement uy .

1.3 Boundary Conditions

We must solve the differential equations (1.21) taking into account the
boundary conditions. We name the part of the edge where displacements
u have been specified Su and the part where the load f is prescribed Sf .
Together Su and Sf form the total perimeter. On Su the prescribed displace-
ments are indicated by ux,o and uy,o. The prescribed perimeter load generally
consists of two components fx and fy . Both these distributed edge loads have
the dimension force per unit of length. If ux,o is specified, fx cannot be pre-
scribed on that same part of the edge and vice-versa. The same is true for
uy,o and fy . However, it is possible for ux,o and fy to be prescribed on the
same part of the edge, as goes for uy,o and fx simultaneously. A formal way
of writing is

ux = ux,o

uy = uy,o

}
on Su (1.23)

These are the kinematic boundary conditions. Where the load is given, we
speak of dynamic boundary conditions. Prescribed values of the load are
basically a condition for the stresses on the edge, for the following applies:

σxxex + σyxey = fx

σxyex + σyyey = fy

}
on Sf (1.24)

Here ex and ey are the components of the unit normal outward-pointing vec-
tor on the edge.
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1.4 Message of the Chapter

• Differential equations have been derived in the framework of the
displacement method (stiffness method). Throughout the book we
will distinguish the following four quantities: displacements, their
associate external loading, deformations and their associate internal
stress resultants.

• The plane stress state in the membrane plate theory is defined by
two degrees of freedom (displacements) and two corresponding load
components. The three deformations are strains, and the associate
stress resultants are membrane forces.

• Three basic sets of equations must be derived: kinematic, consti-
tutive and equilibrium equations. The kinematic equations relate
the deformations (strains) to the displacements. The constitutive
equations define the relationship between deformations and stress
resultants (membrane forces). The equilibrium relations relate the
stress resultants to the external loads.

• Subsequent substitution of the one in the other leads to the required
differential equations, which are equilibrium equations, expressed
in displacements. In the membrane plate theory we obtain two
simultaneous partial differential equations of the second-order,

• In the membrane plate theory two boundary conditions can be speci-
fied per plate edge, either the displacement normal to the edge (kine-
matic condition) or the edge load in that direction (dynamic condi-
tion). In the same way either the displacement parallel to the edge or
the load in that direction.

which can be replaced by one fourth-order bi-harmonic equation.

Plates and FEM



Chapter 2
Applications of the Plate Membrane Theory

In this chapter we will give solutions for plates, which are loaded only on
their edges. This implies that no distributed forces px and py occur, and the
fourth-order bi-harmonic equation (1.23) reduces to the simple form

∇2∇2ux = 0 (2.1)

When a general solution has been found for ux , the solution for uy can be
derived from the relation between ux and uy as given in Eq. (1.17). If we
choose the first equation, the relation is (px = py = 0)

(
∂2

∂x2
+ 1 − ν

2

∂2

∂y2

)
ux +

(
1 + ν

2

∂2

∂x∂y

)
uy = 0 (2.2)

We will demonstrate two types of solution. In the first type, solutions for
the displacements ux and uy will be tried, which are polynomials in x and
y. We will see that interesting problems can be solved through this ‘inverse
method’. The second type of solution is found by assuming a periodic dis-
tribution (sine or cosine) in one direction. Then in the other direction an
ordinary differential equation has to be solved. This approach is suitable for
deep beams or walls.

2.1 Trial Solutions in the Form of Polynomials

In this section we consider problems of which we know the stress state. For
this stress state we want to determine the displacement field. For this purpose

©  Springer Science+Business Media B.V. 2010
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20 2 Applications of the Plate Membrane Theory

appropriate trial functions for the displacements ux and uy will be chosen,
in which a number of coefficients occur, yet to be determined. As a trial
solution in its most general form we can choose

ux(x, y) = a1 + a2x + a3y + a4x
2 + a5xy + a6y

2 + a7x
3

+ a8x
2y + a9xy2 + a10y

3 + a11x
3y + a12xy3

(2.3)

uy(x, y) = b1 + b2x + b3y + b4x
2 + b5xy + b6y

2 + b7x
3

+ b8x
2y + b9xy2 + b10y

3 + b11x
3y + b12xy3

(2.4)

All 12 polynomial terms in Eq. (2.3) for ux are independent solutions of the
differential equation (2.1), so the 12 coefficients ai are independent of each
other. In the same way is Eq. (2.4) a general solution for the bi-harmonic
equation for uy .

In this section we start with the simple case that only constant and linear
polynomial terms are chosen. After that a problem is solved for which we
have to consider quadratic terms. Finally a problem will be solved for which
we also have to include cubic terms.

2.1.1 Homogeneous Stress States

We consider the constant and linear terms with coefficients a1, a2, a3, b1, b2,
and b3

ux(x, y) = a1 + a2x + a3y; uy(x, y) = b1 + b2x + b3y (2.5)

Together the six terms determine all possible states of homogeneous strains
and all possible rigid body displacements, as can easily be shown. Applying
the kinematic relations (1.9) we find the strains

εxx = a2

εyy = b3

γxy = a3 + b2

⎫⎪⎬
⎪⎭ Homogeneous strains

These strains are constant over the plate domain. The constants a1 and b1 do
not appear in the strains at all. Those represent the rigid body translations. Of
the constants a3 and b2, only the sum appears in the strains. The difference
of these constants defines a rigid body rotation. The three rigid body motions
are
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Figure 2.1 Constant tensile stress.

ux = a1

uy = b1

ωxy = 1
2 (−a3 + b2)

⎫⎪⎬
⎪⎭ Rigid body motions

The homogenous strain state of Eq. (2.6) defines the stresses. From the con-
stitutive law in Eq. (1.13) we find for t = 1

σxx = E

1 − ν2
(a2 + νb3)

σyy = E

1 − ν2
(b3 + νa2) (2.8)

σxy = E

2(1 + ν)
(a3 + b2)

In the two following examples we will determine the three coefficients ai

and three coefficients bi for some special cases.

Case 1: Constant Normal Stress

A plate of unit thickness will be analyzed; it is subjected to a constant (uni-
axial) tensile stress σ in the x-direction (see Figure 2.1). The loads px and
py are zero. We need six conditions to find the coefficients ai and bi . We
know σxx = σ, σyy = 0, and σxx = 0, and we prescribe that no translations
or rotations occur at the origin of the coordinate system. The stresses satisfy
the equilibrium conditions in (1.14). Accounting for Eq. (2.8), we obtain
three conditions for stresses

E

1 − ν2
(a2 + νb3) = σ ; b3 + νa2 = 0; a3 + b2 = 0 (2.9)

Equation (2.7) for the rigid body motions specifies three other conditions:

a1 = 0; b1 = 0; −a3 + b2 = 0 (2.10)

Plates and FEM



22 2 Applications of the Plate Membrane Theory

Figure 2.2 Deformation without zero rigid body motion.

These six equations imply

a1 = 0; a2 = σ

E
; a3 = 0

b1 = 0; b2 = 0; b3 = −ν
σ

E
(2.11)

The displacement field equation (2.5) then becomes

ux = σ

E
x; uy = −ν

σ

E
y (2.12)

The middle of the plate does not translate or rotate. So the left-hand side of
the plate moves towards the left, and the right-hand side towards the right
(see Figure 2.2). In the lateral direction contraction takes place; this yields a
negative displacement uy for positive values y, and a positive displacement
for negative values.

As an alternative we could have required the left-hand side not to move.
In that case a rigid body displacement uo has to be added (a displacement of
the plate towards the right as shown in Figure 2.3, and instead of a1 = 0 we
should choose a1 = uo.

Note

We have two states of equal stresses, but different displacement fields.
The difference consists of rigid body motions.

Figure 2.3 Deformation with rigid body motion in x-direction.
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Figure 2.4 Constant shear stress.

Case 2: Constant Shear Stress

Consider a plate undergoing pure shear σ (see Figure 2.4). This stress state
satisfies the equilibrium conditions in Eq. (1.14). We do not permit rigid
body displacements a1 and b1. However, we take into account a rigid body
rotation ω. The stresses are, see Eq. (2.8)

a2 + νb3 = 0; b3 + νa2 = 0; E

2(1 + ν)
(a3 + b2) = σ (2.13)

The rigid body displacements are, see Eq. (2.76)

a1 = 0; b1 = 0; 1

2
(−a3 + b2) = ω (2.14)

From Eqs. (2.13) and (2.14) we find four zero values

a1 = 0; a2 = 0; b1 = 0; b3 = 0 (2.15)

Only two equations remain with coefficients a3 and b2

σ = E

2(1 + ν)
(a3 + b2) ; ω = 1

2
(−a3 + b2) (2.16)

Therefore the displacements will be

ux = a3y; uy = b2x (2.17)

Now, we will consider three subcases.

Plates and FEM



24 2 Applications of the Plate Membrane Theory

Figure 2.5 Deformation without rigid body rotation.

Figure 2.6 Deformation with rigid body motion in x-direction.

Subcase 2.1

No rigid body rotation (see Figure 2.5) occurs. We choose

ω = 0 → a3 = b2 = (1 + ν)σ

E
(2.18)

and therefore

ux = (1 + ν)σ

E
y; uy = (1 + ν) σ

E
x (2.19)

The linear distribution of ux in y-direction and of ux in x-direction is con-
firmed by the deformation as shown in Figure 2.5.

Subcase 2.2

No displacement in x-direction (see Figure 2.6) takes place. The plate has
vertical edges after a rigid body rotation. Now

a3 = 0 → b2 = 2(1 + ν)σ

E
; ω = (1 + ν)σ

E
(2.20)

and therefore

ux = 0; uy = 2(1 + ν)σ

E
x (2.21)
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Figure 2.7 Deformation with zero displacement in y-direction.

Subcase 2.3

There is no displacement in the y-direction (see Figure 2.7). The plate has
horizontal edges after a rigid body rotation. Now

b2 = 0 → a3 = 2(1 + ν)σ

E
; ω = −(1 + ν)σ

E
(2.22)

and therefore

ux = 2(1 + ν)σ

E
y; uy = 0 (2.23)

Same Stress, Different Displacements

In all three cases the same shear stress occurs, however the displace-
ment fields are different. The difference is related to the magnitude and
sign of the rigid body rotation.

Case 3: Rigid Body Displacements

There is a field of displacements that consists only of rigid body displace-
ments

ux(x, y) = C1 − C3y

uy(x, y) = C2 + C3x
(2.24)

Substitution into the kinematic equations (1.9) shows that the three strains
are zero. Therefore the three stresses will be zero too. The constants C1 and
C2 relate to translations; the constant C3 to rotation.

Plates and FEM



26 2 Applications of the Plate Membrane Theory

Figure 2.8 Cantilever beam subjected to pure bending.

2.1.2 Constant Bending Moment in Beam

Consider the classic Euler–Bernoulli beam theory [1] of a cantilever beam
loaded by a moment at the free end, see Figure 2.8. In this case, no shear
force V occurs, and the bending moment M is constant (and positive) over
the length of the beam. In the beam theory the stresses in the beam are

σxx = M

I
y; σyy = 0; σxy = 0 (2.25)

Here I = d t3/12 is the second moment of the cross-sectional area, where
d is the width and t the depth of the beam. This stress distribution has been
derived in classical beam theory on the assumption that a plane cross-section
remains plane after applying the load. The stress state equation (2.25) satis-
fies the equilibrium conditions in (1.14) and therefore is a set of equilibrating
stresses. In the stresses of Eq. (2.25) a term occurs which is linear in y, which
means that we also can expect linear terms in the strains. Because strains are
first derivatives of displacements, we therefore must consider quadratic dis-
placement terms. We start with the most general form of all quadratic terms

ux(x, y) = a4x
2 + a5xy + a6y

2; uy(x, y) = b4x
2 + b5xy + b6y

2 (2.26)

εxx = 2a4x + a5y

εyy = b5x + 2b6y (2.27)

γxy = (a5 + 2b4) x + (2a6 + b5) y

The strains and stresses are now
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σxx = E

1 − ν2

{
(2a4 + ν b5)x + (a5 + 2νb6)y

}

σyy = E

1 − ν2

{
(2νa4 + b5)x + (ν a5 + 2b6)y

}
(2.28)

σxy = E

2(1 + ν)

{
(a5 + 2b4)x + (2a6 + b5)y

}

A comparison of these stresses with the actual stresses leads to six conditions

2a4 + νb5 = 0, νa5 + 2b6 = 0

a5 + 2b4 = 0,
E

1 − ν2
(a5 + 2νb6) = M

I
(2.29)

2νa4 + b5 = 0, 2a6 + b5 = 0

The solution of these six equations is

a4 = 0; a5 = M

EI
; a6 = 0

b4 = − M

2EI
; b5 = 0; b6 = − νM

2EI

(2.30)

Therefore the displacements are

ux(x, y) = M

EI
xy; uy(x, y) = − M

2EI
(x2 + νy2) (2.31)

For a homogenous moment distribution, the classical assumption that a
plane cross-section remains plane after loading is correct, as appears from
Eq. (2.31), because ux has a linear dependence on y for each value of x.
The stress state does not change when a rigid body displacement is added, as
defined in Eq. (2.24). In total we get

ux(x, y) = M

EI
xy + c1 − c3y

uy(x, y) = − M

2EI
(x2 + νy2) + c2 + c3x

(2.32)

The three constants c1, c2 and c3 have to be found from the boundary condi-
tions. In the example we have a support in x = 0. We interpret this support
as conditions that hold for x = 0, y = 0. The axis of the beam at x = 0
cannot translate and rotate, the bar axis remains horizontal.

Plates and FEM
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ux = 0; uy = 0

∂uy

∂x
= 0

⎫⎬
⎭ for x = 0, y = 0 (2.33)

Substitution of Eq. (2.32) into Eq. (2.33) leads to

c1 = 0; c2 = 0; c3 = 0 (2.34)

Apparently the displacements in Eq. (2.32) already fully meet the boundary
conditions. To interpret these results, we move over to the deflection w and
the rotation ϕ of the cross-section. Because the section is plane after defor-
mation we can write

ux = yϕ, uy = w (2.35)

This changes Eq. (2.32) into

ϕ = M

EI
x, w = −1

2

M

EI
(x2 + νy2) (2.36)

At the free end of the beam, at the position of the axis (x = l, y = 0), we
find

ϕ = M l

EI
, w = −1

2

M l2

EI
(2.37)

These results are well known from elementary beam theory. The rotation ϕ

is both the inclination of the beam axis and the tilt of the cross-section plane.

Check on Euler–Bernoulli beam theory

We conclude that the well known results of Euler–Bernoulli beam the-
ory are confirmed by plate theory. From Eq. (2.36) it follows, that the
rotation ϕ increases linearly with x and the vertical deflection w is
square in x. In one way the results of the plane stress theory differ from
Euler–Bernoulli beam theory. The predicted deflections are the same
only along the axis of the beam, where y = 0. Outside the beam axis a
small correction factor is needed when ν �= 0. So, strictly speaking, the
assumption of the deflection on all points along the height of the beam
being the same is incorrect. However, for slender beams the correction
term is an order ν(d/ l)2 smaller than the main term. This is of the order
of 1% or less, so the assumption in the beam theory is acceptable.
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Figure 2.9 Detail of the boundary condition at the restrained end.

Remark

The boundary condition in x = 0, y = 0 in fact means that the horizontal
displacement ux is obstructed in the complete vertical cross-section in x = 0,
but that the vertical displacement uy could occur freely in this section, except
for y = 0, see Figure 2.9. The bar axis is horizontal at the clamped end.

2.1.3 Constant Shear Force in Beam

We increase the complexity of the cantilever beam by replacing the moment
at the free end by a downward vertical force F as shown in Figure 2.10. Now
there is a constant shear force V (positive) and the bending moment M varies
linearly along the beam axis (negative). The expressions for M and V are

M = F(x − l), V = F (2.38)

Figure 2.10 Cantilever beam loaded by point load.
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The stresses are

σxx = My

I
= F

I
(xy − ly)

σyy = 0 (2.39)

σxy = 3

2

(
1 − 4y2

d2

)
V

A
= 3F

2A

(
1 − 4y2

d2

)

where

A = td; I = 1

12
td3 (2.40)

This set of equations satisfies the equilibrium equations in (1.14). The bound-
ary conditions in the left end of the beam axis (x = 0, y = 0) are chosen in
the same fashion as in the previous example with the moment load (horizon-
tal bar axis)

ux = 0; uy = 0; ∂uy

∂x
= 0 (2.41)

In the expression for the stress σxx, a term −F ly/I is present which we
recognize as the distribution of a constant moment M = −F l. For such a
stress state we already found

ux = M

EI
xy = − F l

EI
xy; uy = 1

2

M

EI
(x2+νy2) = F l

2EI
(x2+νy2) (2.42)

In the stress σxy , a constant part 3F/2A is also present. Taking into account
the boundary conditions, subcase 3 of case 2 (Section 2.1.1) is applicable.
We substitute G = E/2(1 + ν)

ux = σ

G
y = 3F

2GA
y, uy = 0 (2.43)

The residual part of the stresses is

σxx = F

I
xy; σyy = 0; σxy = − 6F

Ad2
y2 (2.44)

The displacement field corresponding with these stresses still needs to be de-
termined. Quadratic stress polynomials imply quadratic strain polynomials
and cubic displacement polynomials, because strains are the first derivative
of the displacements. So, we start from the most general cubic terms

ux(x, y) = a7x
3 + a8x

2y + a9xy2 + a10y
3

uy(x, y) = b7x
3 + b8x

2y + b9xy2 + b10y
3

(2.45)
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The corresponding strains are

εxx = 3a7x
2 + 2a8xy + a9y

2

εyy = b8x
2 + 2b9xy + 3b10y

2 (2.46)

γxy = (a8 + 3b7) x2 + 2 (a9 + b8) xy + (3a10 + b9) y2

and the stresses

σxx = E

1 − ν2

{
(3a7 + νb8) x2 + 2 (a8 + νb9) xy + (a9 + 3νb10) y2

}

σyy = E

1 − ν2

{
(3νa7 + b8) x2 + 2 (νa8 + b9) xy + (νa9 + 3b10) y2

}
(2.47)

σxy = E

2(1 + ν)

{
(a8 + 3b7) x2 + 2 (a9 + b8) xy + (3a10 + b9) y2}

A comparison with Eq. (2.44) leads to the conditions

3a7 + νb8 = 0,
2E

1 − ν2
(a8 + νb9) = F

I
, a9 + 3νb10 = 0

3νa7 + b8 = 0, νa8 + b9 = 0, νa9 + 3b10 = 0

a8 + 3b7 = 0, a9 + b8 = 0, G(3a10 + b9) = − 6F

Ad2

(2.48)
The solution of these nine equations for eight unknown coefficients produces
only four no-zero coefficients

a8 = F

2EI
, a10 = νF

6EI
− 2F

GAd2
, b7 = − F

6EI
, b9 = − νF

2EI
(2.49)

The displacements in this case have become

ux = a8x
2y + a10y

3, uy = b7x
3 + b9x y2 (2.50)

Substitution of Eq. (2.49) leads to

ux = F

2EI
x2y +

(
νF

6EI
− 2F

GAd2

)
y3

uy = − F

6EI
x3 − νF

2EI
xy2

(2.51)

The total displacement field is found by adding Eqs. (2.42), (2.43) and (2.51),
and the addition of a rigid body displacement. In this final result we assemble
the terms with EI and the terms with GA and find

Plates and FEM
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Figure 2.11 Rotation due to ‘mean’ shear deformation.

ux = F

EI

{
x

(
1

2
x − l

)
y + ν

6
y3

}
+ F

GAd2

(
−2y3 + 3

2
d2y

)
+ c1 − c3y

uy = F

EI

{
x2

(
−1

6
x + 1

2
l

)
+ ν

(
−1

2
x − 1

2
l

)
y2

}
+ c2 + c3x

(2.52)

The boundary conditions (2.41) are met for c1 = 0, c2 = 0, c3 = 0. If we
define the rotation ϕ as the inclination of the beam axis

ϕ = −∂uy

∂x
(2.53)

and the displacement w as the vertical displacement uy of the beam axis, the
rotation ϕ and deflection w of the free beam end (in the axis of the beam) are

ϕ = −1

2

F l2

EI
, w = 1

3

F l3

EI
(2.54)

Again, these are equal to the well-known results of classical beam theory.
However, the cross-sections no longer remain plane. In ux , not only linear
terms in y are present, but also terms y3, even when ν = 0. Nonetheless,
the bending stress develops linearly over the height of the beam. So, an
erroneous assumption in classical beam theory has led in the past to correct
solutions for the stresses!

Now we want to have a closer look at the shape of the deformed beam at the
restrained end (see the left figure of Figure 2.11). We see that a horizontal
beam axis does not imply that the cross-section takes up a vertical position.
First, the cross-section is distorted. In addition, the ‘mean’ cross-section is
tilted. The distortion and the tilt are the result of lateral contraction (Pois-
son’s ratio) and shear deformation (angle γ ), though primarily by the latter.
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The shear deformation is recognizable by the term in GA. A rigid body ro-
tation over an angle γ is necessary to eliminate the tilt caused by the shear
deformation. This rigid body rotation generates an additional displacement
at the free end of the beam. This is the contribution of the shear deformation
to the deflection. The value of γ is

γ = η
F

GA
. (2.55)

The shape factor η has a value of 1 if the shear stress is constant over the
cross-section. For the parabolic variation over a rectangular cross-section
the value is 6/5. At the free end of the beam we obtain

ϕ = −1

2

F l2

EI
− γ, w = 1

3

F l3

EI
+ γ l (2.56)

Introduction of γ from Eq. (2.55) and accounting for A = td, I = td3/12
and the shear modulus G = E/2(1 + ν) leads to

ϕ = −1

2

F l

EI

(
1 + η (1 + ν)

3

d2

l2

)
, w = 1

3

F l3

EI

(
1 + η (1 + ν)

2

d2

l2

)

(2.57)
The term d2/ l2 mirrors the influence of slenderness of the beam on the end
rotation and deflection. When l/d is larger than five, this term may be ne-
glected. The shear force or shear deformation is not of any importance for
slender beams.

Assumption of plane sections

When deriving the classic beam theory, people like Euler and Bernoulli
and after them Navier [1] started from the supposition that a plane sec-
tion normal to the beam axis remains plane and stays normal to the
axis. Supposing this, they made no distinction between a constant and
linear moment, and found a linear distribution of bending stresses over
the depth of the beam. Their finding of the stress distribution is correct,
but the membrane theory shows that their supposition holds true only
for a constant moment, and that it is at best a good approximation for
linear moments in case of slender beams. They were just lucky!

Plates and FEM
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Figure 2.12 Deep beam with edge load.

2.2 Solution for a Wall

Consider a wall on two simple supports for ratios of depth and span ranging
from tall wall to slender beam. The wall is loaded along its lower edge by
a homogeneously distributed load f , as shown in the left-hand part of Fig-
ure 2.12. We want to determine the distribution of the bending stresses σxx

in the vertical axis of symmetry x = 0. We replace the structure and load by
the problem stated in the right-hand part of Figure 2.12. The supports in the
two lower corners have been replaced by boundary conditions for both ver-
tical edges. These edges can freely move horizontally, but prohibit vertical
displacements. In the figure this is indicated by the dotted lines. This means
that the reaction force will be distributed along the vertical edge. This can
be done without changing the bending moment in the vertical cross-section
mid-span (x = 0). The homogeneously distributed line load f is replaced by
a varying load f (x), which has a cosine distribution

f (x) = fm cos(αx) (2.58)

in which α = π/l and fm is the maximum load value at mid-span. This
cosine load is the first term in a Fourier series development of load f , so the
value of fm is

fm = 4

π
f (2.59)

2.2.1 Beam Intermezzo

We will show that the value of the bending moment M in the mid-span cross-
section is practically the same for the actual load p and the replacing load
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f (x). The differential equation for beams in bending is

EI
d4w

dx4
= f (x) (2.60)

in which EI is the bending stiffness and f ((x) is a distributed load. The
bending moment M is computed by

M = −EI
d2w

dx2
(2.61)

Load f and displacement w are positive if pointing downwards. The bending
moment M is positive when tensile stresses are generated in the lower part
of the beam. For the homogeneously distributed load, f (x) = f . This is a
classical case with a well-known solution

wmax = 5

384

f l4

EI

(
= 0.0130

f l4

EI

)

Mmax = 1

8
f l2(= 0.125f l2)

(2.62)

The solution for the cosine load is easily found by substitution of the trial
displacement function

w(x) = wm cos αx (2.63)

in the differential equation in combination with the cosine load of Eq. (2.58).
This gives us a particular solution

w(x) = fml4

π4EI
cos αx

M(x) = fml2

π2
cos αx

(2.64)

Substitution of fm = 4f/π leads to maximum values

wm = (4f/π)l4

π4EI
= 0.0131

f l4

EI

Mm = (4f/π)l2

π2
= 0.129f l2

(2.65)

which are close to the correct values shown above. For the cosine load, the
proposed shape of the deflection w(x) is the exact one for a beam on simple
supports. At the supports, the boundary conditions are w = 0 and M = 0.
These conditions are satisfied, so the particular solution we have found is the
real solution. No homogeneous solution needs to be added.
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2.2.2 Solution for the Wall

Encouraged by the good result for a beam subjected to a cosine load, we
propose a similar cosine displacement field in x-direction for uy(x, y). This
choice meets the conditions that the vertical displacement must be zero at
the vertical edges and maximum at mid-span. The horizontal displacement
ux must be zero in the vertical line of symmetry (x = 0) and can have
values that are not zero (equal, but with an opposite sign) at the two vertical
edges. Therefore, we use a sine distribution for ux . So our expectation for
the displacements is

ux(x, y) = uxm(y) sin αx

uy(x, y) = uym(y) cos αx
(2.66)

Here uxm(y) is the distribution of the horizontal displacement along the ver-
tical edges and uym(y) is the distribution of the vertical displacement along
the line of symmetry at mid span. We can choose to work with either uxm(y)

or uym(y). Choosing the former, we substitute the expectation for ux(x, y)

into the bi-harmonic differential equation (2.1), which leads to a normal dif-
ferential equation for uym(y)

α4uxm − 2α2 d2uxm

dy2
+ d4uxm

dy4
= 0 (2.67)

We suppose a solution of the form

uxm = Aery (2.68)

Substitution in Eq. (2.67) leads to a characteristic equation for the roots r

α4 − 2α2r2 + r4 = 0 (2.69)

which can be rearranged to

(r − α)2(r + α)2 = 0 (2.70)

There are two equal roots α and two equal roots −α. For equal roots r the
general solution has a term with ery and a term with yery . So the solution for
uxm(y) becomes

uxm(y) = A1e
αy + A2αyeαy + A3e

−αy + A4αye−αy (2.71)
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We added a constant α in the second and fourth term in order to give the
coefficient A1 up to and included A4 equal dimensions. This can be done
without loss of generality. Now Eq. (2.2) is used to determine uym(y). From
here on we choose without loss of understanding v = 0. Accounting for
Eq. (2.2) and after integration, we find

uym(y) = (−A1+3A2)e
αy−A2αyeαy+(A3+3A4)e

−αy+A4αye−αy (2.72)

Based on Eqs. (1.9), (2.71) and (2.72) the strains can be expressed in terms of
the constants too, and therefore also the membrane forces nxx, nyy and nxy .
The four constants then can be determined from four boundary conditions

y = −d/2 → nyy = 0, nxy = 0

y = d/2 → nyy = fm cos αx, nxy = 0
(2.73)

The elaboration is skipped here. For nxx in the line of symmetry (x = 0) we
find

nxx = α(A1e
αy + A2αyeαy + A3e

−αy + A4αye−αy) (2.74)

Case 1

We consider the case d/l � 1. This occurs for a tall wall. The stress dis-
tribution is highly nonlinear over the depth; in the upper part of the wall the
influence of the load on the lower edge is not noticeable, see the left part of
Figure 2.13.

Figure 2.13 Deep beam results for several depth-span ratios.
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Case 2

We now consider the case d/l ≈ 1. This occurs for a wall or beam of which
the height and length are nearly equal. The bending stress distribution is
again nonlinear over the height, but approaches to classical beam theory.
The middle part of Figure 2.13 displays the result.

Case 3

Finally we consider the case d/l � 1. This is the case for the slender beam
and we expect to find the solution for Euler beam theory as drawn in the
right-hand part of Figure 2.13. If d/l � 1, then αy � 1. For these argu-
ments αy, all the exponential functions can be expanded in a Taylor series
around y = 0. It appears that the contributions to nxx of powers of αy larger
than 1, are negligibly small, so a linear distribution remains. This is the clas-
sical solution.

2.2.3 Practical Application

The discussed case of a high wall (d/l � 1) can be used to estimate the
stress distribution in practical structures. An example of this is a silo wall on
columns, loaded by a uniformly distributed load, shown in Figure 2.14. This
may be its own weight, and wall friction forces due to the bulk material in
the silo. To estimate the horizontal stress σxx in the wall halfway between
the columns, we adopt the following approach. The load can be split up into

Figure 2.14 Silo wall on columns.
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Figure 2.15 Strut-and-tie model for silo wall.

two parts. Part one is a simple stress state in which only vertical stresses
σyy are present and no stresses σxx occur. We are not interested in this part.
The second part is the load case in which the solution for the high wall in
Section 2.2.2 can be applied.

Structural engineers who must design reinforced concrete walls often ap-
ply truss models for the determination of the reinforcement. For the silo wall
they may concentrate the total distributed load in two forces F as shown in
Figure 2.15. Each support reaction R is equal to F . The green lines carry
compressive forces and the red line the tensile force. The structural engineer
wants to know where to place the horizontal compressive strut and the ten-
sile tie, because the distance between them influences the magnitude of the
forces in the strut and tie. Knowledge about the elastic solution will be a
great help.

2.3 Stresses, Transformations and Principal Stresses

The stresses we have discussed until now have been chosen to be in direc-
tions parallel to the x-axis or the y-axis. Sometimes it is useful to know the
stresses σnn, σtt and σnt in the directions n and t that make an angle α with
the x-axis and y-axis (Figure 2.16). With the help of simple transformation
rules, such stresses can be calculated if σxx, σyy and σxy are known

σnn = σxx cos2 α + σyy sin2 α + σxy sin 2α

σtt = σxx sin2 α + σyy cos2 α − σxy sin 2α (2.75)

σnt = −1

2
σxx sin 2α + 1

2
σyy sin 2α + σxy cos 2α

Written in another way
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40 2 Applications of the Plate Membrane Theory

Figure 2.16 Transformation of stresses. Principle stresses and direction.

[
σnn σnt

σnt σtt

]
=

[
cos α sin α

− sin α cos α

][
σxx σxy

σxy σyy

] [
cos α − sin α

sin α cos α

]

(2.76)
We see on the basis of Eq. (2.75) that σnn + σtt = σxx + σyy . The sum of the
normal stresses is invariant under rotations of the axes. An alternative for this
transformation is the graphic determination using the Mohr’s circle. There is
one special value for α that leads to a shear stress value of zero. Then the two
normal stresses reach an extreme value. These stresses are called principal
stresses σ1 and σ2 and have the direction α0, which is called the principal
stress direction (Figure 2.16). The principal stresses are

σ1,2 = σxx + σyy

2
±

√(
σxx − σyy

2

)2

+ σ 2
xy (2.77)

The direction αo belonging to Eq. (2.77) is computed from

tan 2αo = 2σxy

σxx − σyy

(2.78)

FE codes may offer the option to show this direction of the principle stresses
and refer to it as trajectories.

2.4 Other Applications

Consider a circular hole in a plate subjected to a homogenously distrib-
uted stress state in which the (normal) stress σ is equal in all directions.
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Figure 2.17 Plate with circular hole subjected to a biaxial homogeneous stress state.

The hole causes a disturbance in this homogenously distributed stress field.
Figure 2.17 shows the variation of the stresses σxx and σyy along the ver-
tical through the centre of the hole. On the edge of the hole, the stress is:
σxx = 2σ . This means a doubling of the stress of the homogenously distrib-
uted stress state. The factor 2 is called the stress concentration factor. We
refer to Section 6.1.2 for the derivation.

A higher stress concentration factor occurs at a circular hole in a plate in
a uni-axial stress state (see Figure 2.18). At the edge of the hole, a stress of
magnitude σxx = 3σ can be found.

Another example is a curved beam (see Figure 2.19). The bending stresses
in a cross-section no longer vary linearly. In the direction towards the centre
of curvature they strongly increase and the maximum stress on the inside
may be much larger than can be expected on basis of the elementary bending
theory for a straight beam. This is the subject of Section 6.1.3.

Figure 2.18 Plate with circular hole subjected to a uniaxial homogeneous stress
state.
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Figure 2.19 Curved bar subjected to a bending moment.

Many interesting stress states can be described with analytical solutions,
but many others cannot, for example because the boundary conditions cannot
be met or because the contour of the plane stress state cannot be simply de-
scribed. In such cases numerical methods like the Finite Difference Method
or Finite Element Method offer a solution.

We want to give some more examples of stress states that have been de-
termined numerically. First we show another high wall with a load in the
middle and restraints along the bottom edge as shown in Figure 2.20. A
foundation block can be modeled in this way. The normal stresses σxx do
not vary linearly. The maximum stress at the bottom is noticeably higher
than elementary bending theory would have calculated. The moment of these
stresses of course should be equal to the total moment in the considered
cross-section. Figure 2.20 shows the strut-and-tie model. Green is compres-
sion, red is tension.

Figure 2.20 Foundation block. Stresses and strut-and-tie scheme.
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Figure 2.21 Load spreading (for example the anchorage of a pre-stressed cable in
a beam).

Another example addresses the load distribution in a beam for the anchor-
age of a post-tensioned cable. At some distance from the end of the section
the forces are distributed uniformly. If we make a vertical cut in the mid-
dle and consider one of the halves, then it follows from equilibrium that,
in this cutting plane, horizontal stresses σxx should be present, which are
compression stresses at the top and tensile stresses at some distance from
the top. The distribution shows the attenuated character again. Practice is
not ordinarily prepared for these tensile stresses. They can lead to cracks
in the plane of the beam axis; a concrete beam will require reinforcement
in the form of stirrups or spiral reinforcement. Figure 2.21 shows some
principal stress trajectories. The corresponding strut-and-tie model is also
shown.

A similar example of load spreading is the foundation footing, as found
under buildings with brick walls (see Figure 2.22). If we make another ver-
tical cut and consider the equilibrium of one of the halves, it will show the
presence of horizontal tensile stresses σxx at the bottom. To determine the
magnitude, the stress problem has to be fully solved. The broader the base
of the foundation, the lower is the pressure on the soil. However, the tensile
stresses in the brickwork will increase, and the poor tensile strength of this
material will soon lead to cracks.

Plates and FEM
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Figure 2.22 Foundation foot. Stresses and strut-and-tie scheme.

Set-back corners (window, door or other openings in a wall) deserve spe-
cial attention. Figures 2.23 and 2.24 give two more examples. If there is no
rounding in the corner the stresses are theoretically infinitely large. In this
relation we speak of notch stresses. Many cracks are the result of this, and
many accidents have occurred (e.g. airplane industry). These corners need
special attention from the designer. Often the corners have to be rounded off
(plane windows) or strengthened in another way. Concrete structures need
special detailed designs for the reinforcement in such corners.

Figure 2.23 Set-back corner.
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Figure 2.24 Beam-column connection. Stresses and strut-and-tie scheme.

2.5 Message of the Chapter

• One stress state can correspond to more than one displacement
field; the difference between the fields are rigid body motions,
displacement fields with zero strains. A rigid body motion leaves
the structure stress-less.

• Displacements due to a constant bending moment in classical
bending theory for a beam of thin cross-section are confirmed by
the plane stress membrane theory. Plane sections before loading
remain plane after loading. The well-known simple formulas for the
deflection and rotation in basic standard cases are confirmed.

• The membrane solution for a constant shear force, in combination
with a linearly varying bending moment, deviates from classical
beam theory. Plane sections are no longer plane after loading. A
linear distribution of bending stresses over the depth of the beam
is accompanied by a distorted cross-section. The simple formulas
for deflection and rotation in classical beam theory must be amended

Plates and FEM
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for shear deformation. This amendment is negligible if the cantilever
length is over five times the beam depth.

• The distribution of bending stresses in a shear wall is dependent
on the ratio of the wall depth and span. Three aspect ratios are
considered. For a high ratio (tall wall) the bending stress distribution
is highly nonlinear, and the top part of the wall does not contribute
to the load transfer. For a ratio in the order of unity (square wall) the
distribution is still nonlinear, but the full cross-section participates
in the transfer. For a low ratio (slender beam) the stress distribution
approaches to the linear distribution of bending stress in classical
beam theory.

• From the computed stress state we can compute two principal
stresses and their direction. Trajectories are an instructive and
insight-providing aid to structural designers.



Chapter 3
Thick Plates in Bending and Shear

A plate subjected to a load perpendicular to its plane is in a state of bending
and transverse shear. If the plate is of concrete, it is called a slab. Plates are
generalizations of beams. A beam spans one direction, but a plate is able to
carry loads in two directions. Figure 3.1 shows an example of a plate on four
supports under a point load Fz. The mid-plane of the plate is in the x–y plane
and Fz is acting in z-direction perpendicular to the plate. The plate will un-
dergo deflections, and moments and shear forces can be expected. The aim of

Figure 3.1 Plate with transverse load.

©  Springer Science+Business Media B.V. 2010
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Figure 3.2 Beam with degrees of freedom w and ϕ and loading p and q .

of this chapter is to explain how these stress resultants can be determined.
If both bending moments and shear forces occur, in general bending defor-
mations and shear deformations have to be accounted for. For beams, it is
known that shear deformation can be neglected only if the beam is slender.
Similarly we must distinguish between thin plates and thick plates. We will
start so that the theory applies for both categories. In Chapter 4 we reduce
the complexity and restrict ourselves to the theory for thin plates and its ap-
plication. An important reason for starting in a general way, including thick
plates is, that many computer programs also offer options for thick plates.

3.1 Introduction – Beam as Special Case

As in Chapter 2 for plates loaded in their plane, we will start with the simple
case of a plate that spans one direction. We will not consider the effect of
Poisson’s ratio yet, and leave that for later. Thus, we can consider a strip of
width b and depth d as shown in Figure 3.2. We choose a beam axis halfway
through the depth d. This axis coincides with the x-axis of a chosen set of
axes x and z. The z-axis is pointing downward and is perpendicular to the
beam axis. The displacement of the beam axis in the z-direction is called
w. In beam theory, it is assumed that no normal force will occur due to
constrained supports. This will be true if the deflections are small compared
to the depth of the beam (w � d). Then the beam axis has no axial strain
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Figure 3.3 Relation scheme for bending and shear in beams.

and will not stretch. This means that after application of the load a cross-
section will rotate through an angle ϕ with the vertical, see Figure 3.2. The
rotation ϕ is an independent degree of freedom, as is the displacement w.
The rotation is positive if it leads to positive displacements in x-direction for
positive z. Figure 3.2 suggests that an unloaded plane section remains plane
after the load is applied. From Figure 2.11 in Chapter 2 we know that this is
not generally true. In reality the cross-section is distorted due to shear. We
replace the distorted cross-section by a straight plane as shown in Figure 3.2.
The straight plane is equivalent to the distorted plane in the sense that they
involve an equal amount of shear strain energy.

To have two independent degrees of freedom, means that we can apply
two independent load components. In the direction w a distributed line load
p can be applied and in the direction of ϕ a distributed torque q. The stresses
in a cross-section have resultants M, the bending moment, and V , the shear
force. These stress resultants cause a curvature κ and an (average) shear de-
formation γ , respectively. The total scheme of quantities for the beam prob-
lem is shown in Figure 3.3. The curvature κ is the change of the rotation ϕ

per unit length of the beam, and the shear deformation γ is the change of the
right angle between beam axis and cross-section, see Figure 3.4. We intro-
duce the symbol Db for the flexural rigidity EI , and Ds for the shear rigidity
GAs , in which As is the cross-sectional area A divided by the shape factor
η in order to account for the distorted shape due to the inhomogeneous dis-
tribution of the shear stresses over the cross-section, see Section 2.1.3. The
factor η is 6/5 for a rectangular shape. Equilibrium can be formulated in the
two directions w and ϕ on the basis of the forces acting on a part of the beam
of length dx as depicted in Figure 3.4. The three basic sets of equations are

Plates and FEM
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Figure 3.4 Equilibrium in w- and ϕ-direction; definition of deformations γ and κ .

κ = dϕ

dx
(curvature)

γ = ϕ + dw

dx
(shear angle)

⎫⎪⎬
⎪⎭ Kinematic (3.1)

M = Dbκ (bending)

V = Dsγ (shear)

}
Constitutive (3.2)

dV

dx
+ p = 0 (w-direction)

dM

dx
− V + q = 0 (ϕ-direction)

⎫⎪⎬
⎪⎭ Equilibrium (3.3)

Special attention is drawn to the second equilibrium equation. If the ex-
ternal torque load q is zero, the equation reads that the shear force is the
derivative of the bending moment, which is well known to engineers. Note
that the shear force is no longer equal to the derivative of the moment if a
load q is applied. Substitution of the kinematic equations (3.1) into the con-
stitutive equations (3.2) leads to
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M = Db

dϕ

dx

V = Ds

(
ϕ + dw

dx

) (3.4)

Substitution of these expressions into the equilibrium equations (3.3) trans-
forms these equations into two simultaneous differential equations for w and
ϕ

− Ds

d2w

dx2
− Ds

dϕ

dx
= p

Ds

dw

dx
+

(
−Db

d2

dx2
+ Ds

)
ϕ = q

(3.5)

For these two second-order differential equations we need four boundary
conditions, two at each end. Per beam end this can be either w or V and
either ϕ or M.

Remark 1

The two differential equations (3.5) in w and ϕ can be replaced by two equa-
tions in w and M if the load q is zero. If we eliminate V from Eq. (3.3), we
obtain

−d2M

dx2
= p (3.6)

Combining Eqs. (3.1) and (3.2) we obtain the relations

M = Db

dϕ

dx
,

V = Ds

(
ϕ + dw

dx

)
(3.7)

Using this information, we can write the first equation of (3.5) as

−Ds

(
d2w

dx2
+ M

Db

)
= p (3.8)

Equations (3.6) and (3.8) now replace Eq. (3.5).
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Figure 3.5 Simply-supported beam under cosine load.

Remark 2

In the literature, beams with both flexural and shear deformation are known
as Timoshenko beams since Timoshenko discussed such beams in [4].

3.1.1 Illustration

To illustrate this theory we choose the problem of a simply-supported beam
of length l, which is subjected to a cosine load p and zero load q, see Fig-
ure 3.5. The origin of the axis x is at mid-span. The maximum value of p

is pm. We assume a cosine distribution for w with maximum wm and a sine
distribution for ϕ with maximum ϕm. For easy writing, we introduce a para-
meter β, which is defined by

β2 = Ds

Db

= GA/η

EI
(3.9)

For a rectangular cross-section with depth d and ν = 0.2 the value of β is
with engineering accuracy equal to 2/d. We see that β has the same dimen-
sion as α, which is equal to π/l. The squared quotient (α/β)2 is practically
equal to 2.5(d/ l)2 and therefore is apparently a measure for the slenderness
of a beam. Substitution of the expected shapes for w and ϕ into the two
differential equations results in two algebraic equations in wm and ϕm
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EI

[
β2α2 β2α

β2α β2 + α2

] {
wm

ϕm

}
=

{
pm

0

}
(3.10)

The solution to these equations is

wm =
{

1 +
(

α

β

)2
}

pm

α4EI

ϕm = − pm

α3EI

(3.11)

In this example, the rotation ϕ is not influenced by the shear rigidity. The
displacement w, however, does depend on β, and so on the shear rigidity,
but this influence diminishes for slender beams, because (α/β)2 approaches
zero in that case. If d/l is 1/5, the contribution to wm due to shear is 10%. If
d/l reduces to 1/10, the shear contribution is only 2.5%. For d/l = 1/20 the
contribution is less than 1%. The chosen simple case could have been solved
without the use of the differential equations. This is not done here because
we want to demonstrate a general approach.

3.1.2 Simplification for Slender Beam

For slender beams, the theory can be drastically simplified. Let us return to
the basic equations in (3.1), (3.2) and (3.3). If the shear deformation can be
neglected, then we can state that γ is zero. From the second equation in (3.1)
we then conclude

ϕ = −dw

dx
(3.12)

Now the rotation ϕ is no longer an independent degree of freedom, but is
related to the displacement w. Therefore the first equation in (3.1) transforms
due to Eq. (3.6) into

κ = −d2w

dx2
Kinematic (3.13)

The second constitutive equation in (3.2) does not make sense any longer.
The shear force V still has a value, but the shear rigidity Ds is infinitely
large and the shear deformation γ is zero. We just skip this equation, so the
only constitutive equation is

M = Dbκ Constitutive (3.14)
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Figure 3.6 Relation scheme for slender beams (bending only).

Finally also the equilibrium equations (3.3) must be inspected. If ϕ is no
longer a degree of freedom, we cannot apply a load q. So it is set to zero.
Then the shear force V is the derivative of the bending moment M

V = dM

dx
(3.15)

We now substitute this result into the first equilibrium equation of (3.3),
which leads to

−d2M

dx2
= p Equilibrium (3.16)

Summarizing, the exclusion of the shear deformation reduces the six equa-
tions in (3.1), (3.2) and (3.3) to (3.13), (3.14) and (3.16). Figure 3.6 shows
the relation scheme for beams subjected to bending if the shear deformation
is neglected. The new equations provide, after successive substitution, the
classical relation between M and w and between V and w (with Ds = EI )
given by

M = −EI
d2w

dx2

V = −EI
d3w

dx3

(3.17)

and the fourth-order differential equation then is

EI
d4w

dx4
= p (3.18)

This differential equation can be solved taking into account four boundary
conditions, two at each end. These are either w or V and either dw/dx or
M. The reader should be familiar with the application of this classical beam
theory.
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3.1.3 Suppositions of Timoshenko Beam in Hindsight

In the derivation of the Timoshenko beam theory, we made use of a number
of suppositions. It is good to summarize them here:

1. The member is prismatic, and the material is homogeneous and isotropic.
2. No extensional forces occur, so the bar axis is a neutral line. This is valid

if w � d.
3. A plane section in the unloaded state remains plane after the load is ap-

plied. In fact, the cross-section will distort, but we can work with an ‘av-
erage’ plane, as explained in Section 2.1.3. The non-homogeneous shear
distribution is accounted for by introducing a shape factor η to reduce the
shear stiffness.

4. Without saying, it is assumed that σzz is zero. Due to a non-zero Poisson’s
ratio, strains εzz will occur that are not zero. Strictly speaking, the vertical
displacement will therefore vary a little bit over the depth of the beam. We
have neglected this.

5. At the end of the discussion of theory, the shear deformation has been set
to zero, which limits the theory to slender beams and simplifies it notice-
ably. This last assumption means that a plane section not only remains
plane, but also that it will remain normal to the beam axis.

Remark

If we neglect the shear deformations, we find

−d2M

dx2
= p (3.19)

M = −Db

d2w

dx2
(3.20)

We can compare these equations with (3.6) and (3.8) for the case that shear
deformation does occur (special case in which the distributed load q = 0).
Equation (3.9) is exactly the same as Eq. (3.6). The equivalence between
Equations (3.20) and (3.8) is also easily shown if we divide the latter by Ds

−
(

d2w

dx2
+ M

Db

)
= p

Ds

(3.21)

The case of no shear deformation is achieved when Ds is chosen infinitely
large. Then the right-hand member of Eq. (3.8) becomes zero and the equa-
tion is equal to (3.20).
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Figure 3.7 Three load components on plate subjected to bending and shear.

3.2 Outline of Thick Plates

In this section we will give the derivation of the differential equations of
the homogeneous isotropic plate subjected to bending and shear. For this
purpose we will consider a plate with a constant thickness t as shown in
Figure 3.7. The mid-plane coincides with the x–y plane of a right-handed
orthogonal coordinate system x, y, z. The z-axis is perpendicular to the un-
loaded plate. After we have discussed plane stress theory in Chapter 1 and
the beam theory in Section 3.1 we can be brief in introducing the main sym-
bols for thick plate theory. Hereafter it will be shown that a plate in bending
and transverse shear can be considered as a layered system of plane stress
states. If we consider a vertical line over the thickness of the plate and nor-
mal to the mid-plane, this is subjected to a displacement w in z-direction, a
rotation ϕx and rotation ϕy , as shown in Figure 3.7.

Sign convention

Displacement w is positive in the z-direction, the rotation ϕx is positive
if it leads to positive displacements ux at positive z-side of the mid-
plane, and the rotation ϕy is positive if it leads to positive displacements
uy on the positive z-side. It is stressed here that the definition of the
rotations and their sign convention are different from what is normal
in FE codes; this is discussed in Chapter 10. The special choice we
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Figure 3.8 Stress resultants in the plate.

have made in the present chapter has advantage in the derivation of the
differential equations.

The load contains a distributed load p, associated with displacement w,
that is positive in the positive z-direction, and distributed couples qx and
qy , associated with the rotations ϕx and ϕy , see Figure 3.7. Therefore, the
couple qx acts in a plane parallel to the x–z plane, and qy parallel to the
y–z plane. The loads are positive if they act in the positive direction of the
degrees of freedom w, ϕx and ϕy .

In each plate layer through the thickness we will find plane stresses σxx, σyy

and σxy . Integration over thickness will lead to bending moments mxx and
myy and a twisting moment mxy . They are positive if they lead to a positive
stress in layers on the positive z-side of the mid-plane. For the meaning of
the subscripts we refer to Section 1.2. In the same way as we defined strains
εxx , εyy and γxy for plane stress, we will now introduce associate curvatures
κxx , κyy and torsional deformation ρxy . Further, we have transverse shear
forces both in the x-direction and the y-direction, vx and vy respectively.
They are positive if directed in the positive z-direction on a section with
positive normal. These shear forces are associated with transverse shear an-
gles γx and γy . All introduced symbols are shown in Figure 3.9. There we
see which symbols will occur in the kinematic, constitutive and equilibrium
relationships.
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Figure 3.9 Relation scheme for plate with both bending and shear deformation.

Notation

In this book the shear forces in a beam are expressed by a capital V ,
and the shear forces in a plate by a letter v. This is done to differentiate
between the dimensions of the two quantities, [N] and [N/m], respec-
tively. The dimension of the bending and twisting moments is moment
per unit length, so [Nm/m or N]. For plates we use small letters m to
emphasize the difference in dimension of the moments in beams for
which we use capital letters M.

3.2.1 Suppositions

The analysis of plates is based on suppositions, which are comparable to the
suppositions made in beam theory:

1. The plate has a constant thickness, and the material is homogeneous and
isotropic.

2. No membrane forces will occur due to support constraints or large deflec-
tions. The mid-plane of the plate will remain strain-less after applying the
load. This is correct if w � t .
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Figure 3.10 Determination of ux and uy as function of ϕx and ϕy .

3. It is assumed that a straight line normal to the mid-plane of the plate in an
unloaded state remains a straight line after application of the load, how-
ever it needs not be normal to the mid-plane of the plate. If one could
bring in a needle perpendicular to the mid-plane of the unloaded plate,
this needle could freely tilt after loading in the x-direction (angle ϕx) and
the y-direction (angle ϕy), but it would remain a straight needle. This
needle hypothesis is the generalization of the plane section hypothesis in
the beam theory. As said, the sign convention for ϕx and ϕy in this chap-
ter is that these rotations are positive if they cause a positive horizontal
displacement for plate particles with positive z.

4. The stress σzz in the direction normal to the mid-plane is negligibly small
compared to the bending stresses σxx and σyy and is set to zero. The strain
εzz in z-direction is also set to zero. Possible small differences in the dis-
placement w over the thickness of the slab are neglected.

5. The above-mentioned four suppositions are valid for thin and thick plates.
For thin plates an additional assumption will be made regarding the shear
deformation, which will be neglected if compared to the flexural deforma-
tion.

The needle hypothesis implies that the in-plane displacements ux and uy vary
linearly over the thickness t . Because there are no strains in the mid-plane
these displacements will be zero there. From Figure 3.11 it then follows that
ux and uy can be expressed in terms of the rotations ϕx and ϕy :

ux = z ϕx

uy = z ϕy

(3.22)
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Figure 3.11 Displacements and deformations, observed in three orthogonal planes.

3.3 Basic Equations

We will formulate the three basic equations in the following order: kinematic
equations, constitutive equations and equilibrium equations.

3.3.1 Kinematic Equations

The kinematic equations describe the relation between the displacements and
the deformations. Figure 3.11 shows three views of an elementary block with
the dimensions dx , dy and dz. The dashed line represents the view in an
unloaded state and the solid line in the deformed state. From Figure 3.12
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Figure 3.12 Moments and curvatures for zero Poisson’s ratio.

as a definition for the strains and shear angles it follows

εxx = ∂ux

∂x
, εyy = ∂uy

∂y
, γxy = ∂ux

∂y
+ ∂uy

∂x

γxz = ∂ux

∂z
+ ∂w

∂x
, γyz = ∂uy

∂z
+ ∂w

∂y

(3.23)

The strain εzz has not been included here because it does not play a role in
the plate theory. All the five strains can be expressed in terms of the three
quantities ϕx , ϕy and w. These degrees of freedom are functions of x and y,
i.e. of the position in the mid-plane of the plate. Then the strains γxz and γyz

in Eq. (3.23), which are associated with the stresses due to the shear forces,
are independent of z. They are constant over the thickness as a consequence
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of the needle hypothesis. In reality the distribution will be parabolic over
thickness, for which a correction will be made later when we discuss the
constitutive equation. We skip the index z in γxz and γyz, and continue using
γx and γy for the shear angles associated with the transverse shear forces
vx and vy . The other three strains εxx , εxx and γxy are not only dependent
on x and y (the position in the mid-plane) but also on z. We find that they
vary linearly over the thickness and are zero in the mid-plane. Substitution
of Eq. (3.22) into Eq. (3.23) provides

εxx = z
∂ϕx

∂x
, εyy = z

∂ϕy

∂y
, γxy = z

(
∂ϕx

∂y
+ ∂ϕy

∂x

)
(3.24)

γx = ϕx + ∂w

∂x
, γy = ϕy + ∂w

∂y
(3.25)

Introducing here the three curvatures κxx, κy and ρxy we redefine the three
strains in the horizontal planes

εxx = zκxx, εyy = zκyy, γxy = zρxy (3.26)

The three curvatures in Eq. (3.26) and the two shear deformations in
Eq. (3.25) together are five deformations that in general govern the plate
problem. Their relations to the three degrees of freedom are the kinematic
equations

κxx = ∂ϕx

∂x
, κyy = ∂ϕy

∂y
, ρxy = ∂ϕx

∂y
+ ∂ϕy

∂x

γx = ϕx + ∂w

∂x
, γy = ϕy + ∂w

∂y

⎫⎪⎪⎬
⎪⎪⎭

Kinematic (3.27)

3.3.2 Constitutive Equations

For each horizontal layer of the plate at a distance z from the mid-plane
and with thickness dz we have supposed that the normal stress σzz is zero.
This implies that all layers are in a state of plane stress, so we can apply the
constitutive relations (1.13)

σxx = E

1 − ν2
(εxx + νεyy)

σyy = E

1 − ν2
(εyy + νεxx) (3.28)

σxy = E

2(1 + ν)
γxy
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As the normal stresses are functions of the z-coordinate, they provide bend-
ing moments per unit length. Also the shear stress σxy is a function of the
z-coordinate, so there is now a resulting twisting moment:

mxx =
∫
t

zσxx dz, myy =
∫
t

zσyy dz, mxy =
∫
t

zσxy dz (3.29)

σxy = σyx implies mxy = myx . Positive values of the moments discussed
above are shown in Figure 3.8. Substitution of Eq. (3.28) and accounting for
Eqs. (3.24) and (3.26) changes these equations into

mxx = Db(κxx + νκyy)

myy = Db(κyy + νκxx) (3.30)

mxy = 1

2
Db(1 − ν)ρxy

in which

Db = E t3

12(1 − ν2)
(3.31)

is called the plate flexural rigidity. If we make use of the matrix notation,
Eq. (3.20) becomes

⎧⎪⎨
⎪⎩

mxx

myy

mxy

⎫⎪⎬
⎪⎭ = Db

⎡
⎢⎣

1 ν 0

ν 1 0

0 0 1
2 (1 − ν)

⎤
⎥⎦

⎧⎪⎨
⎪⎩

κxx

κyy

ρxy

⎫⎪⎬
⎪⎭ (3.32)

In Figure 3.12 the relation between curvatures and moments is visualized
for zero Poisson’s ratio. The flexural rigidity matrix in Eq. (3.32) then be-
comes a diagonal matrix, which means that bending in x-direction, bending
in y-direction and torsion are uncoupled phenomena. In Figure 3.13 the de-
formations are shown for a non-zero Poisson’s ratio.

The correspondence of Eq. (3.32) with Eq. (1.13) for a plate in plane stress
is obvious. If we consider layers over the thickness of the plate, each layer is
in a state of plane stress as discussed in Chapter 1. Integrated over thickness
the stresses lead to moments.
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Figure 3.13 Moments and curvatures for non-zero Poisson’s ratio.
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Warning

At this stage in the derivation a warning is appropriate. In books and
papers one may find two different ways of writing the relation between
the twisting moment and the associated deformation. The difference
regards the definition of the deformation. Authors use either ρxy or κxy ,
which leads to different relationships

either mxy = Db(1 − ν)κxy or mxy = 1

2
Db(1 − ν)ρxy (3.33)

It is clear that the torsion curvature κxy is half ρxy . The second defin-
ition in (3.33) has been used in the derivation here, and is common in
theory and user manuals of commercial Finite Element software. The
first definition is a typical pre-FE notation, and is found in classical
books on plate theory. This can cause confusion when users have to
determine the torsional rigidity themselves, as may be the case for or-
thotropic plates. In Chapter 21 we will return to this subject.

Now we proceed to the vertical shear stresses σxz and σyz. From beam theory
we know that they have a parabolic distribution over the thickness and inte-
gration over the thickness yields the shear forces vx and vy per unit length.
Also from the beam theory we know (see Chapter 2) that a relation exits
between the shear forces vx and vy and the shear deformations γx and γy

vx = Dsγx, vy = Dsγy (3.34)

in which Ds is the plate shear rigidity; Ds = Gt/η, where G is the shear
modulus and η = 6/5 as explained in Section 2.1.3.

The equations (3.32) and (3.34) together form the constitutive equations
for a plate with bending and shear deformation

mxx = Db(κxx + νκyy)

myy = Db(κyy + νκxx)

mxy = 1
2 Db(1 − ν)ρxy

vx = Dsγx

vy = Dsγy

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

Constitutive (3.35)

Herein Db = Et3/{12(1 − ν2)}, the stiffness term 1
2Db(1 − ν) for torsion

can be written as Gt3/12 and Ds as Gt/η.
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Figure 3.14 Structure that can be considered as an orthotropic plate.

3.3.3 Equilibrium Equations

In the preceding sections we determined the kinematic relations between
three degrees of freedom (w, ϕx and ϕy) and five deformations (κxx , κxx,
ρxy , γx , γy) and the constitutive equations between these deformations and
five stress resultants (mxx , myy , mxy , vx , vy). Still to be determined are the
equilibrium equations between the five stress resultants and three load com-

Figure 3.15 Positive loads and stress resultants.
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Figure 3.16 Plate equilibrium in z-direction.

ponents p, qx , qy . For this purpose we consider equilibrium in the directions
w, ϕx and ϕy respectively, see Figure 3.15.

For the equilibrium in w-direction, consider the infinitesimal small plate
part with edges dx and dy as shown in Figure 3.16. The equilibrium equation
contains three terms, i.e. the increase of vx over the distance dx , the increase
of vy over the distance dy , and the load p. Remember that vx and vy are forces
per unit length, so the increases must be multiplied by dy and dx respectively,
and p is defined per unit area, and so must be multiplied by dx dy

(
∂vx

∂x
dx

)
dy +

(
∂vy

∂y
dy

)
dx + p dx dy = 0 (3.36)

Similarly the moment equilibrium in ϕx- and ϕy-direction requires (see Fig-
ures 3.17 and 3.18).

(
∂mxx

∂x
dx

)
dy +

(
∂myx

∂y
dy

)
dx − (vx dy) dx + qx dx dy = 0

(
∂myy

∂y
dy

)
dx +

(
∂mxy

∂x
dx

)
dy − (vy dx) dy + qy dx dy = 0

(3.37)

Note that the increase of myx in the y-direction enters in the equilibrium
equation for the ϕx-direction and so does the increase of mxy in x-direction
in the equation for the ϕy-direction. In all three equations the product dx dy

occurs, so it can be left out, which yields the desired equilibrium relations
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Figure 3.17 Plate equilibrium in ϕx-direction.

Figure 3.18 Plate equilibrium in ϕy-direction.

∂vx

∂x
+ ∂vy

∂y
+ p = 0

∂mxx

∂x
+ ∂myx

∂y
− vx + qx = 0

∂myy

∂y
+ ∂mxy

∂x
− vy + qy = 0

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

Equilibrium (3.38)

It is instructive to compare these equations with the two equilibrium equa-
tions for a beam in Eq. (3.3). The first two equations in (3.38) transform into
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(3.3) if w and ϕx are constant in the y-direction and ϕy is zero. Then ∂vy/∂y

is cancelled out in the first equation and ∂myx/∂y in the second one. Further
we see from Eq. (3.38) that for qx = 0 the shear force vx is no longer the
derivative of the bending moment mxx , as we know for beams. An additional
derivative in the lateral direction of the twisting moment myx appears.

3.4 Differential Equations for Thick Plates

As we did earlier for a beam, we substitute the kinematic relations (3.27)
into the constitutive equations (3.35) and subsequently substitute the result
in the equilibrium equations (3.38). This transforms the latter into three si-
multaneous partial differential equations expressed in terms of w, ϕx and
ϕy

−Ds

(
∂2

∂x2 + ∂2

∂y2

)
w − Ds

∂ϕx

∂x
− Ds

∂ϕy

∂y
= p

Ds
∂w

∂x
+

(
Ds − Db

∂2

∂x2
− 1

2
(1 − ν) Db

∂2

∂y2

)
ϕx − 1

2
(1 + ν) Db

∂2ϕy

∂x∂y
= qx

Ds
∂w

∂y
− 1

2
(1 + ν) Db

∂2

∂x∂y
ϕx +

(
Ds − 1

2
(1 − ν) Db

∂2

∂x2 − Db
∂2

∂y2

)
ϕy = qy

(3.39)

When written in matrix operator form, they are
⎡
⎢⎢⎢⎢⎣

−Ds

(
∂2

∂x2 + ∂2

∂y2

)
−Ds

∂
∂x

−Ds
∂
∂y

Ds
∂
∂x

Ds−Db

(
∂2

∂x2 + 1
2 (1−ν) ∂2

∂y2

)

−1
2 (1+ν)Db

∂2

∂x∂y

Ds
∂
∂y

− 1
2 (1+ν) Db

∂2

∂x∂y

Ds−Db

(
1
2(1−ν) ∂2

∂x2 + ∂2

∂y2

)

⎤
⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

w

ϕx

ϕy

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

p

qx

qy

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(3.40)

These three differential equations are valid for both thick and thin plates, and
follow from the first four suppositions mentioned in Section 3.2.1.
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Remark 1

If we set qx and qy to zero, the last two equations of (3.28) become

vx = ∂mxx

∂x
+ ∂myx

∂y
, vy = ∂myy

∂y
+ ∂mxy

∂x
(3.41)

These relations between shear forces and moments are a generalization of the
relation in (3.15) for beams. Substitution of this result in the first equation of
(3.38) leads to

−
(

∂2mxx

∂x2
+ 2

∂2mxy

∂x∂y
+ ∂2myy

∂y2

)
= p (3.42)

Making use of the kinematic equations (3.27) and the constitutive equations
(3.32) for bending, we can transform Eq. (3.42) into

−∇2m = p (3.43)

where ∇2 is the Laplace operator and m is the weighted sum with respect to
Poisson’s ratio of the two bending moments

m = mxx + myy

1 + ν
(3.44)

This sum of moments is an invariant under rotation of the x–y coordi-
nate system about its origin. Equation (3.43) is the plate generalization of
Eq. (3.16) for beams.

We can derive another interesting equation. From the kinematic equations
in (3.27) and the constitutive relations in (3.32) we know m = Db(∂ϕ/∂x +
∂ϕy/∂y). With this result, the first equation in (3.39) becomes

−Ds

(
∇2w + m

Db

)
= p (3.45)

We conclude that, if only a load p occurs, we can formulate the problem of
a plate (thick or thin) with the two differential equations (3.43) and (3.45).
Written in this form we see the correspondence with the beam theory, for
which we derived Eqs. (3.6) and (3.8).
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Spiritual fathers of thick plate theory

The theory for thick plates was derived independently by E. Reissner
(1945) [5] and R.D. Mindlin (1951) [6], with small differences in their
theories. We have described Mindlin’s theory. FE codes refer to the
theory of thick plates as Mindlin theory; we do the same in this book.
Reissner did not start from an assumed displacement field but from an
assumed stress field, and additionally he took into account the influence
of vertical stresses σzz not equal to zero.

For zero Poisson’s ratio, the Reissner and Mindlin theories are the same.
For v = 0.3 and a span to thickness ratio 5 the values of maximum bending
moment may differ by 10% and twisting moment by 20% [7].

3.5 Orthotropic Plate

In many cases in structural engineering, particularly in bridge engineering,
the slabs are not homogeneous and isotropic, for instance a viaduct cross-
section, which is built up of I- or T-sections on top of which a thin concrete
deck layer is cast in-situ, see Figure 3.15. Such shape-orthotropic plates can
be handled as plates of homogeneous thickness with orthotropic rigidities.
The kinematic and equilibrium relationships do not change, but the consti-
tutive equations do change from the homogeneous isotropic case. Now five
different flexural rigidities must be determined, being Dxx , Dyy , Dv, Dxy and
Dyx .

mxx = Dxxκxx + Dνκyy

myy = Dyyκyy + Dνκxx

mxy = Dxyρxy

myx = Dyxρxy

(3.46)

It requires experience in structural mechanics to properly estimate the off-
diagonal term Dν . In many cases one of the rigidities Dxx and Dyy is small
compared to the other, and then a simple relation exists. If we suppose that
Dyy is smaller than Dxx, we can write

Dν = νDyy (3.47)

Plates and FEM
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The torsional deformation ρxy is common for the x- and y-direction, but the
moments mxy and myx are different now. From a virtual work consideration
we conclude that it is convenient to work with the average mav of the mo-
ments mxy and myx and with the average rigidity Dav of Dxy and Dyx .

mav = 1

2
(mxy + myx)

Dav = 1

2
(Dxy + Dyx)

(3.48)

We just have to replace Eq. (3.32) by
⎧⎪⎨
⎪⎩

mxx

myy

mav

⎫⎪⎬
⎪⎭ =

⎡
⎢⎣

Dxx Dv 0

Dv Dyy 0

0 0 Dav

⎤
⎥⎦

⎧⎪⎨
⎪⎩

κxx

κyy

ρxy

⎫⎪⎬
⎪⎭ (3.49)

After we have solved the plate problem and therefore found mav, we can
calculate the value of the two unequal twisting moments mxy and myx from

mxy = 2Dxy

Dxy + Dyx

mav, myx = 2Dyx

Dxy + Dyx

mav (3.50)

For the transverse shear forces a small change is necessary. Whereas for
isotropic plate material the same shear rigidity Ds can be used in both x- and
y-direction, we now must distinguish between Dsx and Dsy .

vx = Dsx γx, vy = Dsy γy (3.51)

3.6 Twisted Plate Strip

Following Reissner in his seminal 1945 paper [5], we study the stress dis-
tribution in a plate strip of length 2l and width a as shown in Figure 3.19.
The length l is large compared to a. The thickness of the strip need not be
small, however is not expected to exceed a/2. The strip is in a state of pure
torsion of unrestrained warping. A set of axes x, y, z is chosen, with x in
length direction of the strip and y and z in the cross-section, see Figure 3.19.
Note the position of the origin of the axes in the very centre of the strip.
Hereafter we call the y-direction horizontal and the z-direction vertical. The
long strip is twisted about the x-axis by torques Mt . The exact solution for
this torsion problem is known from theory of elasticity, thanks to early work
of St. Venant [8]. Characteristics of this classic solution are as follows:
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Figure 3.19 Thick plate strip due to torque load.

• The rectangular cross-section before loading remains rectangular in the
rotated state after applying torques at both ends.

• Warping of the cross-section occurs, and is the same in all individual
cross-sections, independent of x.

• Consequently, all three normal stresses σxx , σyy and σzz are zero, and so
is the shear stress σyz. Only shear stresses σxy and σxz in the strip cross-
section are present.

• In a cross-section, the horizontal shear stresses σxy account for one half of
the twisting moment, and the vertical shear stresses σxz for the other half.

In this section we will determine the stress state in the strip by considering
it as a thick plate. The plate has dimensions 2l and a in the x–y plane,
and thickness t in z-direction. Distributed loads p, qx and qy are zero. The
load consists of torques Mt at the two strip ends. Throughout the length 2l,
the distribution of the shear stresses is equal in all cross-sections. We will
interpret the consequences of the classical assumptions for a thick plate. The
zero value of normal stress σzz in the thickness direction is in agreement
with the assumption in plate theory. The absence of normal stresses σxx

and σyy implies that there are no bending moments mxx and myy . The zero
shear stress σyz means that the shear force vy is zero all over the plate. The
two non-zero shear stresses σxy and σxz represent the twisting moment mxy

and shear force vx in the cross-section normal to the x-axis, respectively.
Therefore, the distribution of the shear stream in the classical theory of
elasticity is replaced by a distribution of twisting moments mxy and shear
forces vx . This is depicted in Figure 3.20. The twisting moment is shown for
the left edge zone of the strip, and the shear force for the right edge zone.

Plates and FEM
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Figure 3.20 Stress resultants in strip due to torque load. Distribution of twisting
moment shown left and for shear force right.

The twisting moment must decrease in the direction of the strip edge and
the shear force increase. The distribution of the horizontal shear stress of the
twisting moment is linear over the thickness, and that of the transverse shear
force parabolic.

At the plate edge x = −l a rotation of the cross-section is imposed, such
that the deflection is w = −θyl. Here θ is the twist, the rotation per unit
length. In the plate edge x = l the rotation is in the opposite direction. The
deflection at this end is w = θyl. Linear interpolation in the x-direction
between these two ends leads to the general expression for the deflection
w = θxy. Because the cross-section keeps its shape in the y–z plane, and
rotates about the x-axis as a rigid body, the curvature κyy is zero. Therefore,
the rotation ϕy is independent of y and depends on x only. The deflection
w and rotation ϕy are coupled due to the rigid body rotation of the cross-
section. The zero moment mxx implies a zero curvature κxx, so a rotation ϕx

independent of x. Summing up, we choose the displacement field

w(x, y) = θxy, ϕx(y), ϕy = −θx (3.52)

In fact, only ϕx is unknown. In general, we must satisfy three boundary con-
ditions at each edge in thick plate theory. At the edges y = ± 1

2a the condi-
tions are myy = 0, myx = 0, vy = 0. Because the moment myy and shear
force vy are zero all over the plate, it remains to require that the twisting
moment is zero at the edges y = ± a/2

myx = 0 (3.53)
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At the edges x = ± l we must in general consider the edge tractions mxx , mxy

and vx . The moment mxx is zero all over the plate, and the twisting moment
mxy and shear force vx are applied loads. Together they deliver the torque
Mt . The distribution of mxy and vx and the value of the resulting torque are
aims of the computation.

Substituting the trial solution (3.52) into the three governing differential
equations of (3.39), we find that the first and third equation are satisfied iden-
tically. We need not consider them any more. The second equation simplifies
to

λ2 d2ϕx

dy2
− ϕx = θy (3.54)

where λ is a characteristic length, defined by

λ2 = 1 − ν

2

Db

Ds

(3.55)

Accounting for Db = Et3/{12(1 − v2)} and Ds = (5/6)Gt , the expression
for λ simplifies to

λ = t/
√

10 (3.56)

Note that the characteristic length λ is of the order of the plate thickness, in
fact about one third. The solution of Eq. (3.54) is

ϕx(y) = −yθ + C1e
−y/λ + C2e

y/λ (3.57)

Without loss of generality, transferring to another constant and taking ac-
count of the knowledge that the stress state can be mirrored with respect to
the centre of the cross-section, we write this solution alternatively

ϕx(y) = −yθ − Ce−(a/2+y)/λ + Ce−(a/2−y)/λ (3.58)

The advantage is that the first exponential term occurs in the edge zone y =
−a/2 and attenuates from there, and the other in the opposite edge zone y =
a/2. They start with the value 1 at the edge. Due to the assumption a/t >

2, both exponential functions will have completely vanished at a distance
a, therefore before they reach the opposite plate edge. This is because the
exponent of e is then −2

√
10, which leads to a value less than 0.002. From

boundary condition (3.53) it follows, accounting for Eqs. (3.52) and (3.58)

ρxy = 0 → ∂ϕx

∂y
+ ∂ϕy

∂x
= 0 → 1

λ
C

[
e−(a/2+y)/λ + e−(a/2−y)/λ

] = 2θ

(3.59)

Plates and FEM



76 3 Thick Plates in Bending and Shear

Figure 3.21 Distribution of twisting moment and shear force.

Note that one exponential term is zero for y = −a/2 and the other for y =
a/2. Substitution of either edge y = −a/2 or edge y = a/2 leads to the
solution C = 2λθ . The final shape of Eq. (3.58) becomes

ϕx(y) = (−y − 2λe−(a/2+y)/λ + 2λe−(a/2−y)/λ
)
θ (3.60)

Now we are able to calculate the twisting moment mxy and shear force vx

in the cross-section. The formulas are, with η = 6/5, and accounting for
Eqs. (3.52) and (3.60)

mxy = Et3

24(1 + ν)

(
∂ϕx

∂y
+ ∂ϕy

∂x

)

= −Et3

12(1 + ν)

(
1 − e−(a/2+y)/λ − e−(a/2−y)/λ

)
θ

(3.61)

vx = Etλ

2(1 + ν)η

(
ϕx + ∂w

∂x

)

= 5Etλ

6(1 + ν)

(−e−(a/2+y)/λ + e−(a/2−y)/λ
)
θ

(3.62)

The distribution of these functions is shown in Figure 3.21. The twisting
moment is practically constant over the full width a of the strip. In the edge
zones the moment decreases to zero at the edge. The value is negative, which
leads to the direction of the shear stress as shown in the figure. The shear
force is negative at the edge y = −a/2 (right in the figure) and positive at
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the edge y = a/2 (left). Together a flowing-around stream of shear stresses
occurs. The exponential functions reduce over short distance to a negligible
value. At the edge their value is 1.00, at distance t/2 from the edge 0.21, and
at a distance t just 0.04 remains. This is still true when a is large compared
to t . Disturbances occur only at the edges over a distance of the order of the
plate thickness.

We determine the twisting moment in the strip outside the edge zone and
the resultant of the shear forces in the edge zone. The twisting moment fol-
lows from Eq. (3.61) accounting for Eq. (3.56)

mxy = −Et3

12(1 + ν)
θ (3.63)

The integral over the plate width a of the exponential functions which occur
in the expressions for mxy and vx is λ. Then the resultant V of the shear
forces vx in each edge zone follows from Eq. (3.62)

V =
∫

vxdx =
(

5Etλ

6 (1 + ν)
θ

)
× λ = Et3

12 (1 + ν)
θ (3.64)

We find that the twisting moment mxy and the resulting shear force V are
equal. In Chapter 4 this will be derived again in another way.

We also can compute the ratio of the maximum vertical shear stress at
the edge and the horizontal shear stress due to the twisting moment outside
the disturbed edge zone. For the calculation of the vertical shear stress we
assume a parabolic distribution over the thickness of the plate. So we must
divide the vertical shear force at the edge by 2t/3. For the horizontal shear
stress we divide the twisting moment by the section modulus t2/6. The result
is

σshear force

σtwisting moment
= 5

2
√

10
= 0.79 (3.65)

The maximum vertical shear stress is 79% of the horizontal shear stress by
the twisting moment. The result is independent of materials properties.

Now we compute the torque Mt in the cross-section from the distributions
in Eqs. (3.61) and (3.62). We write Mt = Mm + Mv , where Mm is the con-
tribution by the twisting moments mxy and Mv by the shear forces vx . The
integral of the twisting moment in Eq. (3.61) is quickly written

Mm =

∣∣∣∣∣∣∣
a/2∫

−a/2

mxy dy

∣∣∣∣∣∣∣
= Et3

12(1 + ν)
(a − 2λ) (3.66)
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Table 3.1 Comparison of torsional moments of inertia.

It /at3

a/t Thick plate theory Theory of elasticity

2 0.228 0.229
4 0.281 0.281

10 0.312 0.312
∞ 0.333 0.333

The contribution of the shear force vx is calculated in the following way.
Apart from the integral of the exponential functions (value λ) we also need
the position of the resultant V . Elementary mathematics shows that the dis-
tance from the edge also is λ. Therefore, the lever arm between the two
resultants is a − 2λ, and, accounting for Eq. (3.64), we obtain

Mv = Et3

12(1 + ν)
(a − 2λ)θ (3.67)

We find that Mm and Mv are equal, as in theory of elasticity. The final result
for the torque Mt is the sum of both

Mt = Mm + Mv = Et3

6(1 + ν)
(a − 2λ)θ (3.68)

We may rewrite Eq. (3.68) as

Mt = GItθ, It = 1

3
t3(a − 2λ) (3.69)

In this shape a comparison can be made with results of Timoshenko and
Goodier [7] on the basis of theory of elasticity. In Table 3.1 the ratio It/a

3
t is

given for different values of a/t . The match is striking.
Reissner obtained the same result on the basis of his approach using

assumed stress fields. In this case there is no difference between the
approaches of Reissner and Mindlin. Differences only occur if vertical
stresses σzz are present, which is not the case in the twisted plate strip.

Lesson of this example

We restricted ourselves in the present example to a plate strip in a state of
pure torsion. In other plates subjected to different loads, twisting moments
may always occur along free edges. Then we will see the same phenomenon
as in the twisted plate.
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The twisting moment at free edges must be zero, and there are transverse
shear forces in cross-sections normal to the free edge. These shear forces
occur in an edge zone with a width of the order of the thickness; the twisting
moment has to decrease to zero in this small edge zone. Similar phenomena
occur on simply-supported edges.

The resultant of the shear forces in the edge zone is equal to the twisting
moment outside the edge zone.

The vertical shear stress at the edge is about 80% of the horizontal shear
stress outside the disturbed edge.

3.7 Message of the Chapter

• In thick plates we use three independent degrees of freedom, the
vertical displacement and two rotations. An appropriate definition
of rotations is chosen, different from what is done in the Finite
Element Method. Three independent distributed external loads are
associated with the degrees of freedom, one vertical load and two
torque loads. The latter are usually zero in applications.

• We distinguish five deformations in thick plates, three plate curva-
tures and two transverse shear angles. Three plate moments and two
shear forces are associated with these deformations.

• The needle hypothesis is adopted, which is a generalization of the
supposition in beam theory that plane sections remain plain. In the
unloaded state the straight needle is perpendicular to the middle
plane of the plate. After application of the load the needle still is
straight, but, due to shear deformation it can tilt in both the x-and
the y-direction compared to the middle plane. This means that we
will work with the straight needle line which is ‘the best fit’ of the
distorted cross-section.

• The plate can be considered as a composition of layers as far as
bending and torsion is regarded. Each layer is in a state of plane
stress, which leads to a flexural rigidity matrix which is similar to
the membrane plate apart from a different stiffness factor.

Plates and FEM
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• We end up with three simultaneous differential equations, each
of the second-order. If two degrees of freedom are eliminated a
sixth-order differential equation will be found. This means that
three boundary conditions must be specified at each edge, which
implies, that the vertical displacement, the rotation normal to the
edge face and the rotation in the edge face can be prescribed. If
one or more of these displacements is unconstrained, the associated
distributed edge loads in those directions can be prescribed.

• If the plate has a free edge and a twisting moment is present outside
the edge zone, the twisting moment is zero at the free edges and
local vertical shear forces occur in the edge zone over a distance
of the order of the plate thickness. This is shown on the basis of a
twisted plate strip.

• The resulting transverse shear force in the edge zone is equal to the
twisting moment outside the edge zone.

• The maximum vertical shear stress at the edge is about 80% of the
maximum horizontal shear stress outside the disturbed edge zone.

• FE codes refer to the theory of thick plates as Mindlin theory, though
Reissner was the first to publish on the subject.



Chapter 4
Thin Plates in Bending

Classical text books on thin plate bending theory are due to Girkmann [2] and
Timoshenko and Gere [9]. Szilard [10] and Reddy [11] are authors of more

we follow a different approach. We make thick plate theory of Chapter 3 our
starting point, and derive thin plate theory from it as a limit case. Apart of
the different approach, also the aim of this book is different. Plate theory
need to be covered only as far as necessary to explain traps and surprises in
applications of the Finite Element Method.

4.1 Theory for Thin Plates

As was done earlier for beams, we assume that shear deformation is negligi-
bly small, which allows us to state γx = 0 and γy = 0. Then, the kinematic

x and ϕy dependent on the dis-
placement w

ϕx = −∂w

∂x
; ϕy = −∂w

∂y
(4.1)

which reduce and transform the kinematic relations into three new ones
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recent books on the subject. We will not copy their derivation of theory rather
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κxx = −∂2w

∂x2

κyy = −∂2w

∂y2

ρxy = −2
∂2w

∂x∂y

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

Kinematic (4.2)

The shear deformation can be neglected if the span to thickness ratio is
larger than 5, which is always the case in normal slabs.

The constitutive relations for the shear forces are meaningless now, and
are cancelled out. Therefore, it is no longer necessary to distinguish between
Db and Ds . Only Db has a meaning, and we can omit the subscript b.

mxx = D
(
κxx + νκyy

)
myy = D

(
νκxx + κyy

)
mxy = 1

2D (1 − ν) ρxy

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

Constitutive (4.3)

We now consider the equilibrium equations (3.38). The rotations ϕx and
ϕy are no longer independent degrees of freedom, but depend on the dis-
placement w. In this case the loads qx and qy cannot be applied. They must
be set to be zero, which transforms the last two equilibrium equations in
(3.38), as we have already seen in Eq. (3.41), into

vx = ∂mxx

∂x
+ ∂myx

∂y
, vy = ∂myy

∂y
+ ∂mxy

∂x
(4.4)

Substitution of this result in the first relationship of Eq. (3.38) leads to

−
(

∂2mxx

∂x2
+ 2

∂2mxy

∂x∂y
+ ∂2myy

∂y2

)
= p Equilibrium (4.5)

as was found earlier in Eq. (3.42) for thick plates with no torque loads qx

and qy . The relationships Eqs. (4.2), (4.3) and (4.5) govern the behaviour of
thin plates. They are the generalization for thin plates of the three relation-
ships (3.13), (3.14) and (3.16) for beams. So, the general relation scheme for
thick plates in Figure 3.9 has been simplified to Figure 4.1. Substitution of
Eq. (4.2) into Eq. (4.3) gives
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Figure 4.1 Scheme for thin plates (bending only).

mxx = −D

(
∂2w

∂x2
+ ν

∂2w

∂y2

)

myy = −D

(
ν
∂2w

∂x2
+ ∂2w

∂y2

)
(4.6)

mxy = − (1 − ν)D
∂2w

∂x∂y

and Eq. (4.7) into Eq. (4.5) delivers a partial differential equation in w only

D

(
∂4

∂x4
+ 2

∂4

∂x2∂y2
+ ∂4

∂y4

)
w = p (4.7)

We have seen the operator in this equation earlier in Chapter 1. With the
Laplace operator as defined in Eq. (1.20) we can write

D ∇2∇2w = p (4.8)

Again a bi-harmonic equation is obtained. Lagrange (1811) was the first
to derive a differential equation for bending of thin plates in this form, be it
still with a wrong perception about D.

Correspondence with classical beam theory

The correspondence between the differential equation Eq. (4.7) for
plates and the differential equation EI d4w/dx4 = p for beams is
evident. The first term of equation Eq. (4.7) relates to the load bear-
ing capacity in the x-direction, the last term relates to the capacity of
the y-direction. The middle term is new, and describes the load bearing
capacity due to torsion.

Plates and FEM
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This fourth-order differential equation must be solved subject to the govern-
ing boundary conditions (to be discussed later). Once a solution for w(x, y)

is found, the bending and twisting moments are calculated with the aid of
Eq. (4.7) and finally the shear forces from Eq. (4.4) on the basis of the solu-
tion for the moments.

In Eq. (4.7), the moments are expressed in terms of the displacement w.
Then this is also possible for the shear forces. If we introduce Eq. (4.7) into
Eq. (4.4) we obtain

vx = −D
∂

∂x
∇2w, vy = −D

∂

∂y
∇2w (4.9)

The expressions in Eq. (4.9) are plate generalizations of the shear force in
a beam as shown in the second relationship of Eq. (3.17).

Remark 1

The expressions in Eq. (4.9) for the shear forces offer us an alternative for
the derivation of the bi-harmonic plate equation. Substitution in the first re-
lationship of Eq. (3.38) leads again to the bi-harmonic equation.

−
(

∂vx

∂x
+ ∂vy

∂y

)
= p → D

(
∂2

∂x2
+ ∂2

∂y2

)
∇2w = p → D∇2∇2w = p

(4.10)

Remark 2

We can show the correspondence to the beam formulas. For beams, we have

−d2M

dx2
= p (4.11)

M = −EI
d2w

dx2
(4.12)

We define again m as the weighted sum of the two bending moments in
the plate with respect to Poisson’s ratio

m = mxx + myy

1 + ν
(4.13)

We have seen in Section 2.3 that the sum of the normal stresses in plane
stress is invariant under rotation of axes. Likewise, the sum of the bending
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Figure 4.2 Stress transformation.

moments is invariant, and therefore m. We then find that the bi-harmonic
equation can be decomposed into

−∇2m = p, m = −D∇2w (4.14)

These two equations show the same structure as Eqs. (4.11) and (4.12) do for
beams. The first relationship in (4.14) was obtained earlier for thick plates in
Eq. (3.43). The second relationship has a companion in Eq. (3.45) for thick
plates. If that equation is divided by Ds , it becomes for infinitely large Ds

equal to the second relationship in Eq. (4.14).

4.2 Transformation Rules and Principal Moments

For bending and twisting moments the same transformation rules apply for
axes rotation as for the stresses in a plane stress state (see Figure 4.2). For
new axes n, t of which the n-axis has an angle α with the x-axis, the follow-
ing is true in plane stress

σnn = σxx cos2 α + σxy sin 2α + σyy sin2 α

σtt = σxx sin2 α − σxy sin 2α + σyy cos2 α (4.15)

σnt = −1

2
(σxx − σyy) sin 2α + σxy cos 2α

By integrating the corresponding expressions for the bending and twisting
moments over thickness we obtain

Plates and FEM
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mnn = mxx cos2 α + mxy sin 2α + myysin2α

mtt = mxx sin2 α − mxy sin 2α + myycos2α (4.16)

mnt = −1

2

(
mxx − myy

)
sin 2α + mxy cos 2α

The directions of n and t , for which mnt is zero and mnn and mtt adopt
extreme values, are principal directions. These moments mnn and mtt are the
principal moments. The direction of the principle moments is determined by

tan 2αo = 2mxy

mxx − myy

(4.17)

Instead of formulae (4.17) and (4.17) one may also apply the graphical ap-
proach using Mohr’s circle. From Eq. (4.17) we find again the invariance of
the moment sum under rotation of axes.

4.3 Principal Shear Force

We can write the shear forces of Eq. (4.9) for constant D as

vx = ∂

∂x
(−D∇2w), vy = ∂

∂y
(−D∇2w) (4.18)

and subsequently with reference to the second part of Eq. (4.14) as

vx = ∂m

∂x
, vy = ∂m

∂y
(4.19)

The shear force is the derivative of m. Written in this way, we see even
better that the expressions for the shear forces are generalizations of the for-
mula for beams. In order to find vx , the derivative in x-direction has to be
determined and for vy the derivative in y-direction. In a random direction r

the shear force is

vr = ∂m

∂r
(4.20)

In Figure 4.3 we have sketched iso-lines of the function m(x,y). In the
direction t of the iso-lines the value of m does not change, therefore the
shear force vt is equal to zero and in the direction of the slope, perpendicular
to the iso-lines in n-direction, the shear force vn obtains its maximal value.
This is called the maximal shear force. The trajectories of vn are orthogonal
to the iso-lines of m.
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Figure 4.3 Shower analogy. Water flows in the direction of the deepest slope.

W.J. Beranek, former professor of structural mechanics in the architec-
tural department of Delft University of Technology, introduced the shower
analogy to illustrate the phenomenon of the direction of the load discharge.
He considered the function m as ‘hill’ above the plate surface, and the load
p as a rain shower. Then the trajectories of vn may be compared to the
streamlines of the flowing water. All shower water between two trajectories
flows parallel to the trajectories and does not pass trajectories (flow lines).

We can compute the value of the maximal shear force and the direction of
the trajectories from the values vx and vy . Figure 4.4 shows two triangular
plate parts with the shear forces acting on their edges. We see two orthog-
onal sets of axes, the x–y set and the n–t set. The angle between the two

Figure 4.4 Equilibrium of plate parts.
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Figure 4.5 Relation between α0, vx and vy .

sets is β. In both sets the z-axis is downwards, so the direction of the shear
forces is perpendicular to the plane of drawing. Shear forces are shown as
arrows. We can see the top of the arrow (a point) or the back (a cross).An
arrow coming towards the reader (the point is seen) indicates shear forces
on faces with a negative normal vector; an arrow moving away (the cross is
seen) indicates shear forces on faces with a positive normal vector. From the
vertical equilibrium of the triangular parts it follows that

vn = vx cos β + vy sin β (4.21)

vt = −vx sin β,+vy cos β (4.22)

To determine the value and direction of the maximal shear force vn we re-
quire that ∂vn/∂β = 0. This leads to the condition −vx sin β + vy cos β = 0.
On basis of this condition we conclude two things. First, comparison of this
condition with the formula for vt in Eq. (4.22) shows that vt is zero when vn

is maximal. Second, we can calculate the direction angle βo of the trajectory
by the formula

tan βo = vy

vx

(4.23)

Next we can compute the value of the maximal shear force vo from
Eq. (4.21). The sine and cosine follow from Figure 4.5. Therefore the maxi-
mal shear force becomes

vo =
√

v2
x + v2

y (4.24)

Depending on the boundary conditions, load may flow to the edges at an
angle to the edge. This angle need not necessarily be a right angle.
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Note the differences

We stress two differences between the principal moments and principal
shear forces.

First, the maximum principal moment is in general accompanied by
a minimum non-zero principal moment. The maximal shear force is
always accompanied by a zero minimum shear force.

Second, the direction β0 of the maximal shear force is in general
different from the direction α0 of the principal moments. Therefore,
trajectory plots for shear forces and moments are different.

4.4 Boundary Conditions for Thin Plates

The bi-harmonic equation contains fourth-order derivatives of the deflection
w. For a rectangular plate in both directions eight boundary conditions can be
specified, two per edge. Along each edge of a plate we can specify two out of
four quantities: w, ϕ, f and t . The quantity f is a given distributed line load
in the w-direction and t a given distributed line torque in the ϕ-direction. If
we prescribe w, we cannot specify f simultaneously. If we specify w, then f

will be the computed support reaction. If we specify f on a free edge, then
w will be the computed displacement of the edge. Similarly t is a support
reaction if ϕ is specified, and ϕ is the computed rotation if t is prescribed.

Note on sign convention

Note that the sign convention for f and t differs from the sign conven-
tion for shear forces and bending moments. They are loads associated
with the displacement w and rotation ϕ, respectively, and their sign
convention is the same as for these degrees of freedom.

4.4.1 Clamped Edge

We consider the plate in Figure 4.6, which is totally restrained along the
edge x = a. The following kinematic boundary conditions hold for that
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Figure 4.6 Clamped edge.

edge: w = 0, ϕx = 0. Because of ϕ = −∂w/∂x, we get

x = a →
⎧⎨
⎩

w = 0

∂w

∂x
= 0

(4.25)

These are both kinematic conditions. Similarly, at a restrained edge y = b,

y = b →

⎧⎪⎨
⎪⎩

w = 0

∂w

∂y
= 0

(4.26)

We will also consider the support reactions along the edge x = a that occur
at the kinematic boundary conditions. Figure 4.7 shows a small part of the
plate and its equilibrium. We generally recommend for formulating bound-
ary or transitional conditions to consider a small plate part, to consider its
equilibrium, and to have the width of the plate part reduce to zero.

Zero twisting moment at clamped edge

At the clamped edge, the twisting moment is zero because ∂w/∂x is
zero for every value of y along the edge. Then also the derivative of
∂w/∂x in y-direction is zero, which is ∂2w/∂x∂y. Therefore the tor-
sion deformation ρxy is zero, and the moment mxy cannot occur at a
clamped edge.

Only a bending moment and a shear force are transmitted to a clamped sup-
port. In Figure 4.7 such an edge is depicted parallel to the y-axis, such that



91

Figure 4.7 Support reactions at clamped edge.

a moment mxx and a shear force vx are transmitted. The distributed support
force f is positive when the force is acting in the w-direction and the distrib-
uted fixed-end moment t is positive when it acts in positive ϕ-direction. The
fixed-end moment t is equal to the moment mxx , and the support reaction f

is equal to shear force vx .

Non-zero moment for zero curvature

The bending moment myy at the edge will not be zero although the
curvature is zero. This follows from the relationships between moments
and curvatures in Eq. (4.3). If κxx �== 0 and κyy = 0, we find bending
moments mxx = Dκxx and myy = νDκxx. Therefore myy = νmxx .
This will always occur at a straight clamped edge.

4.4.2 Simply-Supported Edge

If a plate is simply-supported along the edge x = a (see Figure 4.8), we
state a condition to the deflection w and the moment t along the edge. In the
general case of a non-zero edge moment load t , three plate quantities will
be non-zero, the bending moment mxx , the shear force vx and the twisting
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Figure 4.8 Simply-supported edge.

moment mxy . Usually the edge moment t will be zero and therefore mxx

also.

Non-zero twisting moment at simply-supported edge

The twisting moment mxy will be non-zero. The slope ∂w/∂x normal
to the edge is free to vary along the edge in the y-direction, therefore
its derivative ∂2w/∂x∂y in the y-direction can have a non-zero value.
Then a torsion deformation occurs and a non-zero twisting moment
mxy .

So, in practice two plate quantities at the simply supported edge are non-
zero, the shear force vx and the twisting moment mxy . This raises a difficulty,
because plate stress resultants must be balanced by one support reaction f .

We have sufficiently explored the problem to be solved. Let us continue and
work out the various conditions. With zero value of t we must satisfy the
following boundary conditions

x = a →
{

w = 0

t = 0
(4.27)

This is a kinematic boundary condition in the displacement direction and a
dynamic boundary condition for the rotation direction. The dynamic con-
dition implies mxx = 0. With relationship (4.7) we can turn the dynamic
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Figure 4.9 Support reaction at simply-supported edge.

condition into a requirement for w

∂2w

∂x2
+ ν

∂2w

∂y2
= 0 (4.28)

However, the second derivative ∂2w/∂y2 is zero when w is zero for every
value of y on the straight edge x = a. Therefore the two conditions in
Eq. (4.27) become

x = a →

⎧⎪⎨
⎪⎩

w = 0

∂2w

∂x2
= 0

(4.29)

Zero moment for zero curvature at simply-supported edge

Thus both second derivatives ∂2w/∂x2 and ∂2w/∂y2 are zero at a
simply-supported edge. Therefore, both moments mxx and myy are
zero at a straight simply-supported edge. Here is a difference with the
clamped straight edge. There a bending moment myy occurs which is
ν times the clamped moment mxx . Along a simply-supported edge, by
contrast, the moment myy is zero.

The kinematic boundary condition w = 0 leads to a support reaction f .
Doing the calculation for f we have to take into account both the shear force
vx and the twisting moment mxy . Consider an edge part as in the clamped
case for determination of the support reaction f . Figure 4.9 shows such a
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Figure 4.10 Constant twisting moment at the edge.

simply supported edge. The connecting plate transmits a shear force vx and a
twisting moment mxy to this support, but the support can be only a distributed
force f on the plate. The question arises what happens to mxy and if f still
has the same value as vx , as is the case for a fully clamped edge. To answer
these questions we will have to expand on the phenomenon of torsion.

Consider a plate part in which the twisting moment is constant. To eluci-
date, in Figure 4.10 the plate parts of Figure 4.9 are now stuck together. In
the section perpendicular to the support, a positive twisting moment myx is
present. Figure 4.10 shows a positive twisting moment. The twisting shear
stresses, varying linearly over the plate thickness in a section perpendicular
to the edge, cannot act on the free edge. Therefore, the twisting shear stresses
have to run around at the ends; this happens in an edge zone with a length
approximately equal to the thickness of the plate, as explained in Section 3.6.
In this small zone, the vertical resultant of the shear stresses is a force Vy ,
a concentrated shear force in the y-direction. In thin plate theory this force
Vy is thought to be concentrated at the very edge. In a section on the side
of the positive y-direction (the front side in Figure 4.10) this force faces up-
ward, and in a section on the side of the negative y-direction (the rear side)
this force faces downward. In Section 3.6 we have shown that Vy is equal
to the twisting moment mxy . There it was the result of a long derivation on
the basis of thick plate theory. The magnitude of the concentrated force Vy

can also be calculated in a quicker way, using the part of the plate repre-
sented in Figure 4.11. In the sections parallel to the x-axis a moment myx is
present, and in the sections parallel to the y-axis a moment mxy is present;
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Figure 4.11 Determination of concentrated shear force at edge.

these are equal for isotropic material properties. We now consider the torque
equilibrium about the x-axis. In this equilibrium, only mxy and Vy play a
part. A possible shear force vx and support reaction f do not contribute to
the moment equilibrium. Shear forces vy do contribute, but this contribution
vanishes when the size of the considered plate part in x-direction is reduced
to zero. Therefore, see Figure 4.11, the equilibrium leads to

Vy = mxy (4.30)

Shear force equals twisting moment

The vertical force Vy that belongs to the shear stresses running round
due to myx has the numerical magnitude of mxy . The force has the
dimension N (Newton) and the twisting moment Nm/m, so the dimen-
sions are equal.

After we know what happens when a constant twisting moment occurs, the
expansion to a varying twisting moment is no longer difficult. Figure 4.12
shows a part of the edge with all the vertical forces that act on it. Over a dis-
tance dy, the concentrated vertical shear force has changed with the amount
(∂mxy/∂y) dy. The vertical equilibrium of the considered plate part yields

f = vx + ∂mxy

∂y
(4.31)

In the literature on plate theory, f is referred to as the Kirchhoff shear force.
This is to be regretted, because it is not a shear force, but rather a support
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Figure 4.12 Varying twisting moment at edge.

reaction, therefore a line load acting externally on the plate. Analogously,
the line load on an edge parallel to the x-axis can be found

f = vy + ∂myx

∂x
(4.32)

The twisting moment is resisted by extra support reactions. The expressions
(4.31) and (4.32) are valid for supports in which the outward-pointing normal
on the plate edge points in the positive x-direction, or positive y-direction
respectively. The definition of f (positive when acting in the positive w-
direction) implies that the sign of the right-hand term must change if the
normal on the plate edge is pointing in the negative direction

f = −
(

vx + ∂mxy

∂y

)
, f = −

(
vy + ∂myx

∂x

)
(4.33)

The formulas for f provide the magnitude of the distributed support reaction
per unit length on the edge. Deriving these formulas showed that only the
increase of the twisting moment plays a part. However, at the end of the
edge a special situation occurs. Figure 4.13 shows a corner of a plate in
which two simply-supported edges come together. The dimensions �l of the
plate particle are thought to be small. In the vertical equilibrium of this plate
particle in the corner of the plate, two concentrated loads Vy = mxy and
Vx = myx play a role, together with the distributed support reactions f and
load p on the plate. The reaction f must be multiplied by �l and p by (�l)2.
If we allow �l to approach zero, the contribution of f and p vanishes. Only
the forces Vy = mxy and Vx = myx persist. Because the vertical equilibrium
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Figure 4.13 Twisting moment at simply-supported corner.

of this plate corner has to be ensured, there has to be a concentrated corner
reaction of the magnitude mxy +myx . For isotropic plates mxy = myx , so the
corner reaction is 2mxy . Depending on the sign of the twisting moment, this
reaction force can be either compressive or tensile.

Spiritual father or mother?

Lagrange was the first to derive the bi-harmonic differential equation in
the correct form. In fact, he was a jury member in a competition orga-
nized by the French Academy of Science at the suggestion of emperor
Napoleon, and corrected the solution subjected by Sophie Germain.
However, in his solution the meaning of constant D is still unclear.
Later, Navier derives the differential equation again and obtains for D

the plate flexural rigidity of Eq. (3.31). After him Kirchhoff clarifies
the boundary problem [12]. Therefore, it is common practice to refer to
thin plate theory as Kirchhoff theory.

4.4.3 Free Edge

A free edge is not supported at all. Again, the edge previously drawn sim-
ply supported, but now without support, is the starting point. In the stress
picture, such a free edge is comparable to a simply supported edge, the only
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difference being that w is not prescribed, but f is. The structural engineer
could also place a line load t on the edge, in which case one will get two
equilibrium (dynamic) boundary conditions

x = a →

⎧⎪⎨
⎪⎩

mxx = t

vx + ∂mxy

∂y
= f

(4.34)

With Eq. (4.4) we can determine

∂mxx

∂x
+ 2∂mxy

∂y
= f (4.35)

With Eq. (4.7) this becomes

−D

{
∂3w

∂x3
+ (2 − ν)

∂3w

∂x∂y2

}
= f (4.36)

For Eq. (4.34) we can then write

x = a →

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂2w

∂x2
+ ν

∂2w

∂y2
= −t

D
,

∂3w

∂x3
+ (2 − ν)

∂3w

∂x∂y2
= −f

D

(4.37)

If the free edge is not being loaded at all, both right-hand members of
Eq. (4.37) will be zero.

4.4.4 Discontinuity in Thickness

Let us consider a discontinuity in plate thickness. The boundary between the
two parts of different thickness is assumed to be in y-direction. We denote
the two plate parts by L (left) and R (right). Then four transition conditions
apply

wL = wR, ϕxL = ϕxR, mxxL = mxxR, vxkL = vxkR (4.38)

where vxK is the Kirchhoff shear force. That the Kirchhoff shear forces must
be equal, can be clarified by showing the physical reality. In a section per-
pendicular to the boundary the magnitude of the twisting moment abruptly
changes, because the mixed second derivative ∂2w/∂x∂y at the boundary
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Figure 4.14 Twisting moment at discontinuity in thickness.

is common for both plate parts, but the flexural rigidity D is different. On
the boundary there is a vertical force, see Figure 4.14. The size of this force
is equal to the difference of the two twisting moments left and right of the
boundary. If both plate thicknesses are equal, the difference between the two
twisting moments is zero and no force will occur, and if one of the thick-
nesses is zero (a free edge) the full twisting moment of the present plate part
remains. The vertical equilibrium of the shown plate part requires (when no
line load is present on the boundary)

− vxL − ∂

∂y

(
mxyL − mxyR

) + vxR = 0 →
(

vxL + ∂mxyL

∂y

)
−

(
vxR + ∂mxyR

∂y

)
= 0

(4.39)
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The final equation clearly states that the Kirchhoff shear force of the left
plate part is equal to the Kirchhoff shear force of the right plate part. We can
also read the equation in a different way. The first term is exactly fL for the
plate part on the left-hand side for an edge with its normal in a positive x-
direction. The second term, including the minus sign, is fR for the right-hand
plate part for an edge with its normal pointing in the negative x-direction.
This provides us with

fL + fR = 0 (4.40)

The sum of the two line loads on the boundary is zero. If an external line
load f is applied on the boundary, the condition becomes

fL + fR = f (4.41)

The bending moment mxx is continuous across the boundary, but the mo-
ment myy is not. The curvature in y-direction is equal in both plate parts,
but the flexural rigidities are different. Therefore the moment myy will be
discontinuous.

Summing up for thickness discontinuity

Summing up, at a boundary between plates of different thickness the
bending moment normal to the boundary is continuous, and the bend-
ing moment parallel to the boundary and the twisting moment are dis-
continuous. The Kirchhoff shear force must be continuous. This im-
plies that the shear forces normal to the boundary and parallel to the
boundary will be discontinuous.

4.5 Message of the Chapter

• The theory for thin plates is a limiting case of the theory of thick
plates in which shear deformation tends to zero. Rotations depend
on the vertical displacements. Curvatures become second derivatives
of the displacement.
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• The bi-harmonic equation, which is obtained for membrane plates,
also appears in the plate bending theory.

• FE codes refer to the theory of thin plates as Kirchhoff theory,
though Lagrange was the first to derive the correct differential
equation.

• A shear force in any direction is the derivative of the bending
moment in that direction plus the derivative of the twisting moment
in the transverse direction.

• The transformation rules for moments are the same as for mem-
brane forces. Principal moments occur in the direction in which the
twisting moment is zero.

• A principal shear force occurs, while the shear force in the trans-
verse direction is zero. The direction of the principal shear force
(trajectories) differs from the direction of the principle moments.
Therefore, a trajectory plot of the shear forces is different from the
trajectory plot of the moments.

• The shower analogy helps us understand the flow of the distributed
plate load to the supports. If the moment sum is considered as a hill,
the load flows like water in the direction of the steepest slope to the
edges.

• At a clamped edge there is a bending moment normal to the edge
and a bending moment in the direction of the edge. The value of the
latter is Poisson’s ratio times the former. The twisting moment is
always zero.

• At a (unloaded) simply-supported edge, the bending moments both
normal to the edge and in direction of the edge are zero. However,
the twisting moment need not be zero.

• At a simply-supported edge, there is a concentrated edge shear force
in sections normal to the edge. The size is equal to the size of the
twisting moment. (A twisting moment has the same dimensions as
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a point load, Nm/m and N respectively). This also occurs at free
edges.

• The support reaction in a simply-supported edge is equal to the
shear force normal to the edge plus the derivative of the twisting
moment in the direction of the edge.

• If two simply-supported edges join in an (unloaded) corner, a
concentrated vertical corner support reaction occurs with a value
twice the twisting moment. This can be upward or downward
depending on the sign of the twisting moment.

• In a corner between two free edges, the twisting moment is zero if
the corner is not loaded. If a point load is applied in the free cor-
ner, the twisting moment will become half the size of the point load.

• At a discontinuity of thickness, the bending moments normal to the
line of discontinuity are continuous. However, the bending moment
in the direction of the boundary, and the twisting moments are
discontinuous.

• At a discontinuity of thickness, the Kirchhoff shear force is contin-
uous. The shear forces normal to and parallel to the boundary are
discontinuous.



Chapter 5
Rectangular Plate Examples

We focus on special aspects of the theory of thin plates by discussing a state
of constant bending curvature in Section 5.1 and a panel of constant torsion
in Section 5.2. In Section 5.3 we show the effectiveness of a square simply-
supported plate subject to a distributed load. In Section 5.4 we discuss the
special case of a twist-less plate. Finally, we devote Section 5.5 to a viaduct
subject to an edge load.

5.1 Basic Bending Cases

5.1.1 Cylindrical Deflection

We consider a cylindrical deflection (see Figure 5.1) with shape

w = Cx (a − x) (5.1)

for a plate with a non-zero Poisson’s ratio. Substitution of this expression
into the bi-harmonic equation (4.7) gives p = 0. This means that the function

p. The deflection is zero along the straight edges x = 0 and x = a. This is
where the supports can be thought to be. All lines that run parallel to the
supports remain straight. The formulas in (4.7) imply

mxx = 2DC, myy = 2νDC, mxy = 0 (5.2)

We conclude that there is a bending moment in the y-direction, Poisson’s
ratio times the moment in the x-direction

©  Springer Science+Business Media B.V. 2010
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w is a solution to the differential equation in the absence of a distributed load
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Figure 5.1 Cylindrical deflection plane.

myy = νmxx (5.3)

Furthermore Eq. (4.4) implies

vx = 0, vy = 0 (5.4)

There is a constant bending moment mxx in the plate, which is caused by an
externally applied moment of the same size along the straight edges x = 0
and x = a. In the direction of the straight generating lines, there is a constant
moment myy of magnitude vmxx . For steel, with a value ν = 0.3, this will
lead to my = 0.3mxx ; for concrete with the value ν = 0.2, my = 0.2mxx .
Twenty percent of the reinforcement in the span direction is necessary in the
lateral direction, even when there is no curvature there!

5.1.2 Cylindrical Deflection of Arbitrary Shape

Now we consider the general shape of the deflection w = f (x) due to a
distributed load p. Substitution into the bi-harmonic equation in (4.7) shows
that the load is

p = D
d4

dx4
f (x) (5.5)

For the moments we find, see Eq. (4.7)

mxx = −D
d2

dx2
f (x), myy = νmxx, mxy = 0 (5.6)
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Figure 5.2 Omni-directional bending.

We infer again that if the deflection is constant in the y-direction, a moment
myy is generated even though there is no curvature in the y-direction. This
confirms our finding for the clamped edge in Section 4.4.1.

5.1.3 Omni-Directional Bending

We consider the superposition of the solutions w = −Cx2 and w = −Cy2.
With x2 + y2 = r2 this leads to

w = −C(x2 + y2) = −Cr2 (5.7)

This is a paraboloid of revolution (see Figure 5.2). The moments are

mxx = 2DC(1 + ν), myy = 2DC(1 + ν), mxy = 0 (5.8)

Using the transformation formulas (4.17) we find

mnn = mxxcos2α + myysin2α = 2DC (1 + ν)

mtt = 2DC (1 + ν) (5.9)

mnt = 0

The bending moment is equal in all directions. Torsional moments do not
appear. Here we have the case of pure bending due to a constant moment m

along the perimeter of a circular plate. The constant C follows from

m = 2DC (1 + ν) → C = m

2D (1 + ν)
(5.10)
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Figure 5.3 Panel with constant torsion.

and the formula for the plane of deflection is

w = −m

2D (1 + ν)
r2 (5.11)

5.2 Torsion Panel

We give a rectangular plate a deflection of the shape (see Figure 5.3)

w = −Cxy (5.12)

This gives a mixed second derivative

∂2w

∂x ∂y
= −C (5.13)

The other two derivatives are zero. The moments are

mxy = (1 − ν)DC, mxx = 0, myy = 0 (5.14)

Both bending moments are zero and the torsion is constant and positive. Ac-
cording to Eq. (4.4) the derivative of the moments provides the shear forces.
The shear forces are zero:

vx = 0, vy = 0 (5.15)

According to Eq. (4.5) we can compute the load from the second derivatives
of the moments. As a result the load p is also zero. On the edge x = constant,
the following support reaction is obtained:
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Figure 5.4 Two-way sine load on a simply-supported square plate.

f = vx + ∂mxy

∂y
= 0 (5.16)

which is also zero. This is also the case for the other edges. So, no load occurs
at the edges and no load over the area of the plate. Yet a twisting moment
is present. The twisting moments in the four corners of the plate generate
a concentrated support reaction of 2mxy , as shown in Figure 5.3. The load
consists of two couples of point loads in opposite direction. In literature,
this plate case is known as the Nadai’s plate. This stress state may be used
to experimentally determine the plate flexural rigidity D. The panel with a
constant twisting moment and four corner forces will play a role in Chapter 9
on approximating computational methods in pre-FE days.

5.3 Two-Way Sine Load on Square Plate

A square plate with dimensions a is simply supported along its four edges.
The origin of the coordinate system is chosen in a corner, and the axes coin-
cide with the sides of the square, see Figure 5.4. A distributed load is applied
of the form

p = p̂ sin
πx

a
sin

πy

a
(5.17)

This two-way sine load may be considered to be the first term of a Fourier
series of a homogeneously distributed load. The amplitude p̂ is the value of
the load at the plate centre (x = y = a/2).

5.3.1 Displacement

We assume
w = ŵ sin

πx

a
sin

πy

a
(5.18)
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where ŵ is the centre value. This choice satisfies the boundary conditions
along the simple supports as discussed in Section 4.4.2.

x = 0 and x = a →

⎧⎪⎨
⎪⎩

w = 0

∂2w

∂x2
= 0

(5.19)

y = 0 and y = a →
⎧⎨
⎩

w = 0
∂2w

∂y2
= 0

(5.20)

Substitution of this trial solution in the differential equation (4.7) yields

[
π4

a4
+ 2

π4

a4
+ π4

a4

]
ŵ = p̂

D
→ ŵ = p̂a4

4π4D
(5.21)

The solution is therefore

w = p̂a4

4π4D
sin

πx

a
sin

πy

b
(5.22)

This is a particular solution that satisfies the boundary conditions of the
simply-supported plate. Then the particular solution is the complete solution
and we do not need find a homogenous solution of the differential equation.
The plane of deflection is similar in shape to the load distribution. This is
visualized in Figure 5.5. For the maximum deflection of the square plate we
find

ŵ = p̂a4

4π4D
(5.23)

For the maximum deflection of a beam with unit width, flexural rigidity D

and the same span and subjected to a one-way sine line load with maximum
p̂, we find

ŵ = p̂a4

π4D
(5.24)

The deflection of the plate is a quarter of the deflection of the beam. The
beam solution applies for a very wide plate that spans in one direction; that
plate is only a quarter as stiff as the square plate.

One might expect a square plate to be twice as stiff as a beam, at a first
look, noticing that a plate can transfer loads in two directions, so beam-
action in the x-direction and beam-action in the y-direction may cooperate.
However, the square plate receives additional stiffness by two other ‘beams’,
which act in the diagonal direction. The length of these ‘beams’ is longer, but
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Figure 5.5 Deflection of the square plate.

the ends act as clamped ends in the corners. Because of the straight edges,
both ∂w/∂x and ∂w/∂y are zero at the corners. Therefore, the derivative of
w must be zero in all directions at that position, which explains the apparent
clamped ends of the diagonal ‘beams’ and their important contribution to the
stiffness.

Effectiveness of plate

The middle term in the bi-harmonic differential equation due to torsion
contributes to the same extent as the first and last term due to bending.
This shows that a square or nearly square plate is a very effective load-
carrying structure. A factor of about four in effectiveness is also to be
expected for a homogeneously distributed load.

5.3.2 Moments and Shear Forces

The formulas in (4.7) lead to the moments

mxx = 1 + ν

4π2
p̂a2 sin

πx

a
sin

πy

a

myy = 1 + ν

4π2
p̂a2 sin

πx

a
sin

πy

a
(5.25)

mxy = −1 − ν

4π2
p̂a2 cos

πx

a
cos

πy

a

The distributions of these moments are drawn in Figure 5.6. The solution for
the moments confirms that the boundary conditions are satisfied. The distri-
butions of the bending moments have the same shape as the deflection and
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Figure 5.6 Distribution of moments under two-way sine loading.

the load. The shape of the twisting moments is different. Where the bending
moment is at a maximum, the twisting moment is zero, and where the bend-
ing moment is zero the twisting moment is at a maximum. The maximum
bending moment in the plate is

m̂xx = m̂yy = 1 + ν

4π2
p̂a2 (5.26)

For a very wide plate that is supported only in one direction (x-direction) we
find

m̂xx = 1

π2
p̂a2 (5.27)

This is also the moment in a beam with a unit width under a comparable
load. The maximum moment in the plate is a factor (1+v)/4 smaller than in
a beam. Again, the force action in a square plate is very effective. The largest
twisting moments arise in the four corners. In the corner x = 0, y = 0 of the
plate the twisting moment is

m̂xy = −(1 − ν)

4π2
p̂a2 (5.28)

This moment is of the same order of magnitude as the maximum bending
moment in the centre of the plate. For a zero Poisson’s ratio it is even equal.
The shear forces can be derived from the moments by applying Eq. (4.4)

vx = 1

2π
p̂a cos

πx

a
sin

πy

a

vy = 1

2π
p̂a sin

πx

a
cos

πy

a

(5.29)

Their distribution over the plate area is depicted in Figure 5.7. The correct-
ness of the shear forces can be checked as follows. We can compute the total
shear force that flows to the edges. Along edge x = 0 the shear force is
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Figure 5.7 Distribution of shear forces under two-way sine load.

vx = 1

2π
p̂a sin

πy

a
(5.30)

and the total shear force S along this edge is

S = 1

2π
p̂a

a∫
0

sin
πy

a
dy = 1

2π
p̂a · 2a

π
= 1

π2
p̂a2 (5.31)

For reasons of symmetry the total shear force which flows to the four edges
is four times S

4S = 4

π2
p̂a2 (5.32)

This total shear force should be equal to the total load P , which is applied to
the plate

P = p̂

a∫
0

sin
πx

a
dx

a∫
0

sin
πy

a
dy = p̂

2a

π
· 2a

π
= 4

π2
p̂a2 (5.33)

Indeed 4S equals P correctly.

5.3.3 Support Reactions

We continue the analysis of the square plate by computing the distributed
support reactions. Along the edge x = 0 the formula is, see Eq. (4.33)

f = −
(

vx + ∂mxy

∂y

)
x=0

(5.34)

The earlier results for vx and mxy lead to
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f = −
(

3 − ν

4π
p̂a cos

πx

a
sin

πy

a

)
x=0

= −3 − ν

4π
p̂a sin

πy

a
(5.35)

The support reaction is negative, so its direction will be opposite to the di-
rection of w and the load p (compressive reactions).

Surprising support reaction

The support reaction f is larger than the shear force vx . For zero
Poisson’s ratio the difference is a factor of 1.5.

The sum of the total support reaction along the four edges is

4R = 4

⎛
⎝−3 − ν

4π
p̂a

a∫
0

sin
πy

a
dy

⎞
⎠ = −

(
6 − 2ν

π2

)
p̂a2 (5.36)

The absolute value of this is evidently much larger than the total load given
in Eq. (5.33); again a factor of 1.5 exists between load and support reactions
for zero Poisson’s ratio. This difference is fully explained by the existence of
balancing concentrated reactions in the four plate corners. In the left-upper
corner (x = 0, y = 0) the value of the twisting moment is

mxy = −1 − ν

4π2
p̂a2 (5.37)

This is a negative value, so the direction of the shear stresses in sections
perpendicular to the edges is as shown in Figure 5.8. Therefore, the two
concentrated edge shear forces Vx and Vx are directed upward. For vertical
equilibrium, a downward lumped corner reaction F is needed

F = |mxy + myx| = 2

∣∣∣∣−1 − ν

4π2
p̂a2 cos

πx

a
cos

πy

a

∣∣∣∣
x=0
y=0

= 1 − ν

2π2
p̂a2

(5.38)
Apparently a local downward force is needed to keep the square plate on the
simple support. If the plate is not fixed to the support, it will lift up in the
corner. To fix the corner, a tensile reaction force is needed. The same force
occurs in all corners. Now we should compare 4R + 4F to the applied load
P

4R + 4F = −6 − 2ν

π2
p̂a2 + 2 − 2ν

π2
p̂a2 = −4

π2
p̂a2 = −P (5.39)
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Figure 5.8 Direction of shear stresses for negative mxy in left-upper corner

The sum of all reactions is equal to the load. The sign has become negative
because of the sign convention for support reactions.

It is interesting to examine how the shower analogy must be interpreted in
this case. Figure 5.9 is a picture of the trajectories. Let us consider the ‘hill’
as a roof. The diagonals and the horizontal and vertical lines through the
middle of the roof are lines of symmetry and therefore trajectories. For this
combination of load and boundary conditions the trajectories between these
lines of symmetry end perpendicular to the edges. We may consider the edges
as open gutters that are perforated at their lower side over their full length

Figure 5.9 Trajectories for shear forces.
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in order to let the rain that flows from the roof through immediately. At the
same time a lumped well in each corner is bringing up water. This additional
water flows through the gutters off the corner and also disappears through
the perforations. In this way the water that flows through the perforations is
more than the water that falls upon the roof in a rain shower. The additional
part comes from the wells in the corners.

Remark

If the simply-supported plate is not rigidly connected to the support, and
tensile forces cannot be carried, corners will lift and tilt, which makes the
plate less stiff and leads to higher bending moments. A known example of
the tilting of a corner of the plate occurs at lock gates produced as double
mitre gate. There is leakage at the lower corners of each single gate, because
no tensile reaction force can occur.

5.3.4 Stiff Edge Beams

We have seen that the support reaction f is a factor of 1.5 larger than the
shear force vx near the edge for zero Poisson’s ratio. We could imagine that
the simple support is realized by edge beams of infinite flexural and shear
rigidity and zero torsion rigidity, supported by columns at the corners. These
beams are subjected to higher loads than might be expected at first glance,
and this needs to be kept in mind when detailing such beams. We will now
elaborate on the maximum moment and shear force in the beams.

Figure 5.10c shows the plan of a square plate on edge beams. The edge
beams are supported by ball supports at the four corners. An edge beam is
supposed to be an I-section. A side view is made in section A-A, shown in
Figure 5.10b. At both ends of the section, other edge beams are crossed. The
plate (thickness t) fits nicely between the flanges of the I-section and is per-
fectly glued to the web of the edge beam. The connection is able to transfer
the shear force vx and twisting moment mxy from plate to web. These plate
actions are the loading of the edge beam. No concentrated vertical shear force
need occur in the plate edge zone, as is the case at a simply-supported edge.
At the end of the section A-A, there are shear forces Vb in the edge beams
which are crossed by the section. We show such a force in Figure 5.10b in
the web of the I-section.
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Figure 5.10 Loading of rigid edge beam due to plate.

The maximum bending moment Mb in the edge beam occurs at mid-span,
and the maximum shear force Vb at the beam ends. The beam moment is due
to both the shear force vx and twisting moment mxy . The shear force in the
beam is due to the shear force vx only. Accounting for the cosine shape of vx

and the sine shape of mxy in Eqs. (5.28) and (5.29) we obtain

M = v̂xa
2

π2
+ 1

π
m̂xya = p̂a3

2π3
+ (1 − ν) p̂a3

4π3
= (3 − ν) p̂a3

4π3

V = 1

π
v̂xa = p̂a2

2π2

(5.40)

Surprising large beam moment

In the expression for the beam moment M we notice the factor (3−v)/4
again as seen earlier in Eq. (5.35) for the support reaction! For zero
Poisson’s ratio the moment is 50% larger than expected on the basis of
the shear force that acts on the beam. For ν = 0.2 it is 40%.

The column reaction R is computed as follows:

R = −2V = − p̂a2

π2
(5.41)
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which indeed is one quarter of the total load P on the plate, and it is a com-
pressive force. No corner tensile force occurs if the simple support is realized
through a flexure-rigid edge beam.

The introduction of the edge beam provides an alternative way to derive
the boundary condition at a free edge. For that purpose we have to consider
an elementary beam part of length dy as depicted in Figure 5.10d. For force
equilibrium in the z-direction and moment equilibrium about the x-axis, re-
spectively, we obtain

dVb

dy
− vx = 0, Vb + mxy = 0 (5.42)

From the second equation we learn Vb = −mxy . Substitution in the first
equation and sign change leads to

∂mxy

∂y
+ vx = 0 (5.43)

which, for zero load f , is identical to the condition we derived earlier in
Eq. (4.34).

5.4 Twist-Less Plate

In the preceding section we considered a square plate subjected to distributed
load and supported by flexure-stiff and torsion-weak edge beams. For the
two-way sine load we found maximum bending moments in the plate centre
and maximum twisting moments at the corners. The values of these mo-
ments are of about the same size and for zero Poisson’s ratio exactly equal.
If the flexural rigidity of the edge beams decreases, the deflections will in-
crease and the distribution of moments will change. The bending moments
will become larger and the twisting moments smaller. For a sufficiently small
flexural rigidity the twisting moments become zero. This can best be shown
for a homogeneously distributed load p. No twisting moments in the plate
means that the middle term in the bi-harmonic differential equation can be
skipped. Then the plate behaves as a grid of orthogonal strips in which only
bending occurs. The displacement field in this case becomes

w(x, y) = ŵ[f (x) + f (y)] (5.44)

Here ŵ is the maximum deflection of the edge beams; the shape function
f (x), with maximum 1, is the deflected shape of a simply-supported beam
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Figure 5.11 Deflection and support reactions in twist-less plate.

subjected to a homogeneously distributed load. The same applies for f (y).
The displacement field is shown in Figure 5.11. The consequence of this
choice is a zero torsion deformation ρxy and zero twisting moments mxy .
Furthermore the curvature κxx depends only on x and the curvature κyy only
on y. This leads to moments mxx and shear forces vx which are constant in
the y-direction, and moments myy and shear forces vy which are constant in
the x-direction.

So, each edge beam is loaded by a homogeneously distributed load pa/4
and must have the same deflected shape as the adjacent plate. This can be the
case only when the flexural rigidity EI of the edge beam equals the bending
stiffness of a plate strip of width a/2. Therefore EI = aD/2. If we choose
this beam rigidity, no twisting moments will occur in the plate.

Twistless slab

For a proper choice of the edge beam stiffness no twisting moments will
occur. Then the distributed load p is half transferred in the x-direction
and half in the y-direction.

5.5 Edge Load on Viaduct

Consider a bridge slab with span a, and width b. The bridge is simply sup-
ported at x = a/2, and x = −a/2, and has free edges at y = b/2 and
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Figure 5.12 Bridge with load on edge.

y = −b/2. A cosine-shaped load is applied on the edge y = −b/2, see Fig-
ure 5.12. This load can be considered to be an approximation to a distributed
line load with some heavy vehicles in the middle part of the span. In this
case, a distributed load p is not taken into account. The distributed edge load
is

f (x) = f̂ cos αx, α = π/a (5.45)

The boundary conditions require

x = ±1

2
a →

{
w = 0

mxx = 0
(5.46)

y = −1

2
b →

⎧⎪⎨
⎪⎩

myy = 0

−
(

vx + ∂mxy

∂y

)
= f

(5.47)

y = +1

2
b →

⎧⎪⎨
⎪⎩

myy = 0

vx + ∂mxy

∂y
= 0

(5.48)

Applying the method of separation of variables, we can describe w as a prod-
uct of two functions, w = w(y) cos αx. The function w(y) is the distribu-
tion of the deflection along the vertical line at mid-span. This choice for w

satisfies the boundary conditions at the supports. Substitution into the bi-
harmonic equation (4.7) delivers an ordinary differential equation for w(y)

of the fourth order.

D

(
α4w − 2α2 d2w

dy2
+ d4w

dy4

)
= 0 (5.49)
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Figure 5.13 Deflection curve at mid-span.

In Section 2.2.2 we have already determined the solution of this homogenous
equation. It follows that w(x, y) becomes

w = (
A1e

αy + A2αyeαy + A3e
−αy + A4αye−αy

)
cos αx (5.50)

The four constants A1 to and included A4 follow from two boundary condi-
tions in the edge y = −b/2 and two in the edge y = b/2. At y = −b/2
the moment in y-direction is zero and the Kirchhoff shear force is −f . At
y = b/2 both the bending moment and the Kirchhoff shear force are zero.
We will now outline the solution for w on the line x = 0 (see Figure 5.13)
for three special cases. This solution is closely related to the distribution of
the bending moment over the width of the bridge at the middle of the span.

Case 1

The plate is supposed infinitely long in the y-direction, so the viaduct is very
wide. Then A1 and A2 must be zero, for fading away of the first two terms in
Eq. (5.50) to take place. As stated, the picture for the displacement is also a
measure for the bending moment in the span direction. At sufficient distance
from the loaded edge there is no deflection and bending moment.

Case 2

The plate is a square. This is a practical shape, as could appear in a viaduct.
All four constants now are involved, and therefore all four terms eαy , αyeαy ,
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e−αy and αye−αy are present in the solution. The plate sags at the loaded edge
and lifts at the opposite edge.

Case 3

The plate (viaduct) is so narrow that it turns into a strip-shaped beam. The
plate contributes over all its width in carrying the load, though the part close
to the load carries most. In Section 2.2.2 we showed the solution in another
form (Taylor expansion).

w = {
B1 + B2αy + B3(αy)2 + B4(αy)3 + · · ·} cos αx (5.51)

We shall limit ourselves to the case that ν = 0. The curvature is the second
derivative, so the moment myy is linear in y; only the coefficients B1, B2,
B3 and B4 need be considered. Because the moment myy has to be zero on
both edges, it is zero everywhere. This means that B3 and B4 are zero. As
a result, the deflection becomes linear in y. The two constants B1 and B2

follow from Kirchhoff shear force at the two edges, −f and 0 respectively.
The same solution would follow from beam theory. The beam is subjected to
bending in x-direction by a line load f and to torsion about the x-axis by a
distributed torque bf/2. The line load causes the constant deflection B1 and
the torque load the rotated part B2αy.

Effective Width

For the convenience of structural design the concept of effective width is
introduced in codes of practice, because designers normally prefer to do a
beam analysis. Suppose that Figure 5.14 is the distribution of the bending

Figure 5.14 Definition of the effective width beff.
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moment mxx over the width b and the maximum value at the edge is m.
If the sine-shaped load were applied to a beam with the same span a and
a rectangular cross-section with the same depth as the plate, the maximum
moment at mid-span would be

M = f̂ a2

π2
(5.52)

The ratio of M and m is the effective width beff of the plate. If engineers
can make a good guess for this width, it suffices to do a beam analysis and
to spread the total moment over the effective width in order to calculate the
edge moment m. Codes of practice offer practical rules for the determination
of the effective width.

5.6 Message of the Chapter

• A bending moment can occur for zero curvature. This is due to
the effect of a non-zero Poisson’s ration and a curvature in the
transverse direction.

• A rectangular plate can be brought in a state of constant twisting
moment by a set of four equilibrating corner forces.

• A simply-supported square plate under distributed load is about
four times more effective than a one-way plate for the same load.
Torsion in the corner zones takes care of half the load.

• The support reaction in a simply-supported plate under distributed
load is about 50% higher than we expect on the basis of the shear
force. The too-large compressive support reactions are balanced by
concentrated tensile forces at the four corners. A large concentrated
shear force occurs along the edges.

• If the simple support is materialized by stiff edge beams, the
moment in the edge beams is about 50% larger than expected on the
basis of the load that flows to the edge.
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• The flexural stiffness of edge beams can be chosen such that zero
twisting moments occur. In a twist-less square plate the bending
moments in the edge beams must be calculated on the basis of one
quarter of the load on the plate.

• Plate theory helps us to make estimates of the effective width in case
of line edge loadings.



Chapter 6
Circular Membrane Plates

In this chapter circular plates in a membrane state require our attention. In
Section 6.1 we study plates for axisymmetric load. Section 6.2 is devoted to
non-axisymmetric load. Plate bending will be the subject of Chapter 7.

6.1 Axisymmetric Circular Membrane Problems

Figure 6.1 shows a homogeneous circular plate of constant thickness t and
axisymmetric loading. For this type of problems it is convenient to change
to polar coordinates. The position in the plate is specified by means of the
radius r and the angle θ . The state of stress and strain is independent of θ ,
and there is just one displacement u in radial direction. Ordinary derivatives

per unit area. Only two membrane forces are present, nrr and nθθ . The shear
stress nrθ cannot occur. Therefore, only two strains exist, εrr and εθθ . The
scheme for the essential quantities is displayed in Figure 6.2.

The strain εrr and the displacement u both act in the r-direction; they are
related by εrr = du/dr. For the derivation of the tangential strain, εθθ , a cir-
cle is considered with radius r. The circumference of this circle is 2πr. After
application of the axisymmetric load, each point of the circle displaces over
a radial distance u. The new radius of the circle is r + u and the circumfer-
ence 2π(r + u). The increase of the circumference is 2πu. Division of this
increase by the original length 2πr provides the required strain εθθ = u/r.
So, the constitutive relations for plane stress are

εrr = du

dr
, εθθ = u

r
Kinematic (6.1)
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can be used since u depends only on the coordinate r, as does the load p
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Figure 6.1 Displacement, load and membrane forces in axisymmetric plate.

The constitutive relations of Eq. (1.13) reduce to

nrr = Et

1 − ν2
(εrr + νεθθ )

nθθ = Et

1 − ν2
(εθθ + νεrr)

⎫⎪⎬
⎪⎭ Constitutive (6.2)

For the equilibrium equations we consider an elementary plate part of length
dr and aperture angle dθ as shown in Figure 6.1. The length of the edge at the
inside of the element is r dθ . The total force on this edge is nrrr dθ and points
to the left. At the outside of the element, at a distance dr further, the force has
increased d(nrrr dθ) dr, pointing to the right. The angle dθ is independent of
r, which means that the increment can be written as d(nrrr) dr dθ . A force
nθθ dr is acting perpendicular to each straight edge of the element. Since
the angle between the two forces is dθ , there is a force −nθθ dr dθ , where
the minus sign indicates the direction of the force (negative r-direction).The
distributed load p provides an outward-pointing force. For that purpose, p

Figure 6.2 Scheme of relationships.
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Figure 6.3 Only one constant stress-state exists with equal nrr and nθθ .

has to be multiplied by the area r rmdθ dr of the plate element. The force
equals pr dθ dr. For equilibrium, the sum of the three forces has to be zero.
After division by dθ dr the following equilibrium equation is obtained:

− d

dr
(r nrr) + nθθ = rp Equilibrium (6.3)

In this stress problem, there are no rigid body displacements. For any
displacement u there is a strain field. Further, only one combination of
constant strains is possible. For the strain εθθ to have a constant value ε0

a displacement is required of u = ε0r. The strain εrr then also equals ε0.
The only possible constant strains are identical strains εθθ and εrr . Then,
from the constitutive relations in Eq. (6.2) it follows that the membrane
forces nrr and nθθ are equal and constant too. When the constant values
nrr = n0 and nθθ = n0 are substituted in the equilibrium equation (6.3)
it appears that the distributed load p across the plate area has to be
zero. The plate can be loaded only along the edge. Figure 6.3 shows two
situations, a circular plate with and without a hole. In both plates, in each
point, a membrane force n0 is present and Mohr’s circle is reduced to a point.

An alternative to deriving the three basic sets of equations is the considera-
tion of work. Slightly different quantities are used, which we will show here.
The equilibrium equation (6.3) comprises the terms rnrr and rp. It makes
sense to introduce new variables for these combinations. This will be done
for rnθθ too. We define

Nrr = r nrr; Nθθ = r nθθ ; f = rp (6.4)

The two quantities Nrr and Nθθ are normal forces with the dimension of
force; f is a line load with the dimension of force per unit of length. Ap-
plication of the transformations in Eq. (6.4) keeps the kinematic equations
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Figure 6.4 Thick-walled pipe with load at inner face.

(6.1), and changes the constitutive equations (6.2) and equilibrium equation
(6.3) into

εrr = du

dr
, εθθ = u

r
Kinematic (6.5)

Nrr = Etr

1 − ν2
(εrr + νεθθ )

Nθθ = Etr

1 − ν2
(εθθ + νεrr )

⎫⎪⎬
⎪⎭ Constitutive (6.6)

−dNr

dr
+ Nθθ

r
= f Equilibrium (6.7)

We will continue with these three equations for the derivation of the dif-
ferential equation. Substitution of the kinematic equations (6.5) into the con-
stitutive equations (6.6) leads to

Nrr = Etr

1 − ν2

(
du

dr
+ ν

u

r

)
; Nθθ = Etr

1 − ν2

(
u

r
+ ν

du

dr

)
(6.8)

Substitution of this result into the equilibrium equation (6.7) leads to the
differential equation

Et

1 − ν2
Lu = f (6.9)

where the operator L is

L = r
d

dr

1

r

d

dr
r (6.10)

This differential equation is of the second order.
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6.1.1 Thick-Walled Tube

The differential equation can be used to determine the stress state in a thick-
walled tube subjected to an internal gas pressure q. Figure 6.4 defines the
tube. Flat sections remain flat after deformation, but the strain εzz in the axial
direction will not be zero. On average, σzz will be equal to zero. Therefore,
the problem will be treated as a plane stress state. A slice of unit thickness
of the tube is considered, which is cut perpendicularly to the axial direction.
This means that nrr and nθθ are equal to σrr and σθθ , respectively. For this
load case it holds that the distributed load f is zero and therefore

Lu = 0 (6.11)

In the general solution of this second-order differential equation there are
two coefficients which must be determined from the boundary conditions.
Choosing the trial solution Crm, we obtain two roots m = −1 and m = 1.
Therefore

u = C1
1

r
+ C2 r (6.12)

The coefficients C1 and C2 follow from the two boundary conditions

r = a → nrr = −q; Nrr = −qr

r = b → nrr = 0; Nθθ = 0
(6.13)

The results for the displacement u and the stress quantities nrr and nθθ be-
come

u(r) = a2

b2 − a2

q

Et

{
(1 + ν)

b2

r
+ (1 − ν) r

}
(6.14)

nrr = a2

b2 − a2

(
−b2

r2
+ 1

)
q; nθθ = a2

b2 − a2

(
b2

r2
+ 1

)
q (6.15)

The results are presented in Figure 6.5. Both stresses σrr and σθθ are nonlin-
ear over the thickness of the tube.

6.1.2 Circular Hole in a Homogeneous Stress State

We want to compute the stress concentration factor on the edge of a circu-
lar hole in a large plate with a homogeneous stress state of equal principal
membrane forces n. The radius of the hole is a. The homogeneous membrane
forces without the hole are
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Figure 6.5 Stresses in a thick-walled pipe due to gas pressure.

nrr = n; nθθ = n (6.16)

In order to make the edge of the proposed hole to be stress-free a loading
case must be superimposed in which the edge is loaded with an opposite
load on the boundary r = a. The boundary condition is nrr = −n. Further it
is known that the stresses will vanish for large radius r, which requires C2 to
be zero. The result is

nrr = n

(
−a2

r2

)
; nθθ = n

(
a2

r2

)
(6.17)

Still these membrane forces must be superimposed on the constant equal
stresses for the case without a hole. The final result for the large plate with
hole is

nrr = n

(
1 − a2

r2

)
; nθθ = n

(
1 + a2

r2

)
(6.18)

Due to the hole, the maximum value of the membrane force nθθ is twice the
value n of the homogeneous stress state. The stress concentration factor is 2,
see Figure 6.6.

Figure 6.6 Concentration factor 2 for equal principal stresses.
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Figure 6.7 Curved beam subjected to constant moment.

6.1.3 Curved Beam Subjected to Constant Moment

Consider a curved beam with a constant radius of curvature as shown in Fig-
ure 6.7. The inner and outer radii are a and b, respectively, and the beam
is subjected to a constant moment M. The stress state in this axisymmet-
ric structure will also be axisymmetric. The beam has a rectangular cross-
section of small width t . This curved bar is modelled as a thin plate with
thickness t . This problem can be solved with the findings of Section 6.1. An
alternative solution procedure is given in [7]. The stresses are

σrr = frr

M

C
; σθθ = fθθ

M

C
(6.19)

where

C = t

(
1

4

(
b2 − a2

) − a2b2

b2 − a2

(
ln

b

a

)2
)

(6.20)

frr = − ab

b2 − a2
ln

(
b

a

)
ab

r2
+ a2

b2 − a2
ln

( r

a

)
− b2

b2 − a2
ln

( r

b

)
,

fθθ = −1 + a b

b2 − a2
ln

(
b

a

)
a b

r2
+ a2

b2 − a2
ln

( r

a

)
− b2

b2 − a2
ln

( r

b

)(6.21)

In these expressions, C depends only on a, b and the thickness t , the geom-
etry data. The functions frr(r) and fθθ (r) are dimensionless and provide the
distribution of stresses over the height of the cross-section. In Figure 6.8 this
distribution is displayed for two different values of the ratio a/b, a value

Plates and FEM



130 6 Circular Membrane Plates

Figure 6.8 Stress distribution in curved beam for different curvatures.

that is small compared to unity (strong curvature) and a value close to unity
(weak curvature). For a strong curvature, the bending stress distribution de-
viates severely from a linear distribution, irrespective of the fact that flat
cross-sections remain flat.

We note that for pure bending, there are also stresses σrr in the height di-
rection. This can be made clear if we consider the equilibrium of the part of
the beam below the neutral line. Integration of the tensile stresses σθθ over
the height of the beam part leads to a tensile force. The two tensile forces
acting on both ends of the beam part have different directions and work line.
Equilibrium is possible only if there is a radial outward-pointing stress σrr in
the neutral line, acting over the whole length of the beam part. Therefore, it
can be concluded that σrr is a tensile stress. The same conclusion is obtained
if we consider the part of the beam outside the neutral line, where compres-
sive stresses σθθ are present. If we translate this finding to a curved reinforced
concrete beam, we conclude that stirrups are needed in a curved beam even
when there is no shear force. Figure 6.9 demonstrates this by drawing struts
and ties in the curved beam. Red lines are in tension and green lines in com-
pression.

Figure 6.9 A constant moment in concrete curved beam may ask for stirrups.
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6.2 Non-Axisymmetric Circular Membrane Problems

If the stress state is not axisymmetric, we have to account for three stresses
σrr , σθθ and σrθ . It appears advantageous to switch to the force method for
this type of problem. We will discuss problems where load is applied only
on the edges. We start the discussion in the orthogonal set of axes x, y. In
Chapter 1 we derived the kinematic equations (1.9), the constitutive equa-
tions (1.13) and the equilibrium equations (1.14), and we substituted them in
each other, starting from the kinematic equations and ending with the equi-
librium equations. In the force method we make use of these three set of
equations in the opposite order. We first construct a stress solution that sat-
isfies equilibrium, after that we use the constitutive relations, to end up with
expressions for strains and finally we construct a compatibility condition
for the strains from the kinematic relations. In Eq. (1.14) we have three un-
known stresses in two equilibrium equations. Therefore the stress state is
statically indeterminate and we introduce a stress function ϕ(x, y), as ini-
tially proposed by Airy [13]. The following set of stresses satisfies the two
equilibrium equations in (1.6) for zero distributed area forces px and py

nxx = ∂2ϕ

∂y2
; nyy = ∂2ϕ

∂x2
; nxy = − ∂2ϕ

∂x∂y
Equilibrium (6.22)

The constitutive relations are now used in the shape of Eq. (1.12)
⎧⎨
⎩

εxx

εyy

γxy

⎫⎬
⎭ = 1

Et

⎡
⎣ 1 −ν 0

−ν 1 0
0 0 2 (1 + ν)

⎤
⎦

⎧⎨
⎩

nxx

nyy

nxy

⎫⎬
⎭ Constitutive (6.23)

The required compatibility relation for the strains is derived from the kine-
matic relations in (1.9). There three strain relations are expressed in terms of
in two degrees of freedom ux and uy . Elimination of these two displacements
leads to one relation between the three strains

∂2εxx

∂y2
+ ∂2εyy

∂x2
− ∂2γxy

∂x∂y
= 0 Compatibility (6.24)

Substitution of the three relationships (6.22) and (6.23) into Eq. (6.24) leads
to a differential equation for the stress function ϕ. Again we find the bi-
harmonic equation which was obtained in Chapter 1.

(
∂4

∂x4
+ 2

∂4

∂x2∂x2
+ ∂4

∂y4

)
ϕ = 0, ∇2∇2φ = 0 (6.25)
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Figure 6.10 Displacements and stresses in polar coordinates.

Due to Eq. (6.22), the quantity ∇2ϕ is the sum of the two normal forces.
Figure 6.10 shows which displacements and stresses are involved for the
description in polar coordinates. The three second derivatives in (6.22) need
be transformed to derivatives with respect to r and θ . More precisely, we
have to change from the orthogonal set of axis (x, y) to the orthogonal set
(r, t) of directions, where t is the direction of the tangent line to a circle of
radius r, see Figure 6.10. Formally the transformation is done with aid of the
chain rule for derivatives; This leads to

∂2ϕ

∂x2
→ ∂2ϕ

∂r2

∂2ϕ

∂y2
→ 1

r

∂ϕ

∂r
+ 1

r2

∂2ϕ

∂θ2
(6.26)

∂2ϕ

∂x∂y
→ ∂

∂r

(
1

r

∂ϕ

∂θ

)

The transfer from the second derivative with respect to x to the second deriv-
ative with respect to r is simple. We just replace x by r. The mixed second
derivative with respect to x and y is also simple, if we notice that dy is equal
to r dθ . However, the transformation of the second derivative with respect to
y needs more explication. The result consists of two contributions. The last
one, which has r2 dθ2 in the numerator, is expected; but the first one may
be a surprise. This term is independent of θ . Figure 6.11 helps to explain
this term. To understand the second derivative in t-direction we consider the
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Figure 6.11 Second derivative in tangent line in axisymmetric state.

value of ϕ at point A on the circle with radius r and the two points B at the
circle with radius r + dr. If dϕ/dr is not zero the value of ϕ in the points B
will be different from the value in point A, and therefore a non-zero second
derivative exists in the tangent line at point A. This second derivative always
occurs, in axisymmetric as well as non-axisymmetric cases.

Now it is clear how we must replace Eq. (6.22). For polar coordinates we
use

nrr = 1

r

∂ϕ

∂r
+ 1

r2

∂2ϕ

∂θ2
; nθθ = ∂2ϕ

∂r2
; nrθ = − ∂

∂r

(
1

r

∂ϕ

∂θ

)
(6.27)

The Laplace operator ∇2 can be determined from the sum of nrr and nθθ .
The equation of Airy (6.25) then becomes:

(
∂2

∂r2
+ 1

r

∂

∂r
+ 1

r2

∂2

∂θ2

) (
∂2

∂r2
+ 1

r

∂

∂r
+ 1

r2

∂2

∂θ2

)
ϕ = 0 (6.28)

6.2.1 Point Load on a Half Plane

The obtained differential equation (6.28) can be used to find the stress dis-
tribution in a half plane due to a point load F on the edge, as shown in
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Figure 6.12 Stresses in half-plane with vertical point load.

Figure 6.12. The boundary conditions are zero stresses σθθ and σrθ at the
free edge and zero stresses for infinitely large radius r. It can be shown that
the trial function

ϕ = Crθ sin θ (6.29)

satisfies Airy’s biharmonic equation and the boundary conditions. By appli-
cation of Eq. (6.27) the membrane forces become

nrr = 2C
1

r
cos θ; nθθ = 0; nrθ = 0 (6.30)

This result is very special. The stresses σθθ and σrθ are not zero just at the
edge (θ = π/2), but for any value of the angle θ . At a half circle in the half
plane the shear stress σrθ and tangential stress σθθ are zero. Just a membrane
force nrr is present. The value of C can be calculated from the condition that
vertical equilibrium must exist between the point load F and the membrane
forces nrr . This condition leads to

nrr = 2F

π

cos θ

r
(6.31)

Boussinesq [14] even found such a type of solution for a compressive point-
load F on an infinite 3D half-space, from which Flamant [15] obtained the
stated solution. Therefore, the solution for a point-load on a half-plane is
also called Boussinesq’s solution. In each point (r, θ) a transformation can be
made from the stresses σrr , σθθ and σrθ to the stresses σxx, σyy and σxy . These
three stresses are all different from zero. Figure 6.13 shows the distribution
of the vertical membrane force nyy. The deeper the section, the more nyy is
spread.
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Figure 6.13 Vertical stress under point load on half-space.

6.2.2 Brazilian Splitting Test

A well-known method for determining the splitting strength of brittle materi-
als like concrete is the so called Brazilian splitting test. In this test a circular
cylinder is loaded by two opposite line loads as shown in Figure 6.14. Direct
tensile tests on concrete are difficult to perform, because a special tensile test
set-up needs to be available. Fortunately, there is a simple relation between
the vertical line load and the tensile stress in a Brazilian splitting test. It is
assumed that the stresses do not vary along the axial direction of the cylinder
so that a slice of unit thickness can be considered. The solution of the point
load on an half space of Section 6.2.1 can be used to determine the stress
state in the cylinder. The solution for a compressive force F on a half-plane
becomes very simple when it is presented by eccentric circles as done in Fig-
ure 6.15. For all points on a circle r = d cos θ . Then in each circle the stress
σrr is constant while the other stress components σθθ and σrθ are zero. The
constant value of σrr is −σo in which σo = 2F/πd is positive. In the verti-
cal line of symmetry, the horizontal stress, σθθ , is zero. The material outside

Figure 6.14 Loading scheme on solid cylinder in Brazilian splitting test.

Plates and FEM



136 6 Circular Membrane Plates

Figure 6.15 Alternative presentation of stresses in half-space.

the circle has been removed and replaced by the edge loading σo. In Fig-
ure 6.16 the same figure is presented together with the mirror image of the
solution. When both solutions are superimposed a circular disk is obtained
that is loaded by two concentrated forces F and a radial edge stress −σo.
Note that no horizontal stresses are present in the vertical line of symmetry.

The final step in the derivation is to remove the edge stress by adding the
axisymmetric solution of a disk with a constant tensile stress σo on the edge
depicted in Figure 6.3. In this load case there is a hydrostatic stress state with
a tensile stress σo acting in all directions. Therefore, the horizontal stress,
σθθ , in the vertical line of symmetry is σo. The result of the superposition is

Figure 6.16 Sum of half-space solution and its mirror image.
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Figure 6.17 Superposition of two stress states yields the final solution.

a circular disk subjected to two diametrically opposite point-loads F with a
free unloaded circular edge, see Figure 6.17. On the vertical line of symmetry
there is a constant tensile stress σo. Therefore, the ultimate result is a homo-
geneous tensile stress along the vertical line of symmetry, σxx = 2F/πd.
The total horizontal force on the line of symmetry has to be zero. Therefore,
there must be local horizontal compressive forces at the point of action of
the forces F , equal to 1

2σod = F/π .
In this linear-elastic solution the homogeneous tensile stress in the verti-

cal line of symmetry is balanced by a concentrated horizontal force F/π at
each end of the line of symmetry. This implies infinitely large compressive
stresses at those positions. In reality the elasticity limits will be surpassed
and nonlinear material effects will enter in the zones where the loads are
applied.

Plates and FEM
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Figure 6.18 Uniaxial stress state as combination of two basic cases.

6.2.3 Hole in Plates with Shear and Uniaxial Stress

In Section 6.1 for axisymmetric problems we were able to determine the
stress peak near a hole in a plate in a radially homogeneous (is hydrosta-
tic) stress state. Now we will investigate the case of a hole in a plate with
a constant shear stress. We do it for a plate which has a tensile stress in
the x-direction and a compressive stress in the y-direction. After we have
solved that problem we also can determine the stress concentration in an
uniaxially stressed plate. That case is a superposition of the hydrostatic case
of Section 6.1 and the present constant shear case. Figure 6.18 shows this
superposition.

Shear Stress

We consider a large plate with a hole, in which equal principal stresses of
opposite sign occur, see Figure 6.19. We choose the origin of the axes r and
θ at the centre of the hole. The value of the principal membrane forces is
n. It can be verified from Mohr’s circle or the transformation rules that the
homogeneous membrane forces at each position in the plate in absence of
the hole would be

nrr = n cos 2θ

nθθ = −n cos 2θ (6.32)

nrθ = −n sin 2θ

If a hole is created, the membrane forces nrr and nrθ have to be made zero on
the edge of the hole. This means that an edge loading has to be superimposed,
which causes the same membrane forces but with an opposite sign:
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Figure 6.19 Circular hole in constant shear field.

nrr = −n cos 2θ

nrθ = n sin 2θ
(6.33)

The bi-harmonic differential equation (6.28) has to be solved. This can be
done by choosing a solution for ϕ of the form

ϕ = ϕ(r) cos 2θ (6.34)

This means that the variables r and θ are separated. Substitution in the dif-
ferential equation yields an ordinary fourth-order differential equation for
ϕ(r): (

d2

dr2
+ 1

r

d

dr
− 4

r2

) (
d2

dr2
+ 1

r

d

dr
− 4

r2

)
ϕ = 0 (6.35)

The general solution of this fourth-order differential equation will have four
constants, to be determined from the boundary conditions. Substitution of
the trial function Crm leads to four roots m = −2, m = 0, m = 2 and
m = 4, therefore the solution is

ϕ =
(

C1 r4 + C2 r2 + C3 + C4
1

r2

)
cos 2θ (6.36)

From Eq. (6.27) we derive the expressions for the membrane forces. We
must determine the four coefficients from the boundary conditions, two on
the edge of the hole, see Eq. (6.33), and two from the condition that all
membrane forces vanish for large r. The result for the membrane forces is
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Figure 6.20 Stress concentration factors for constant shear and uniaxial stress.

nrr = n

(
−4

a2

r2
+ 3

a4

r4

)
cos 2θ

nθθ = n

(
−3

a4

r4

)
cos 2θ (6.37)

nrθ = n

(
−2

a2

r2
+ 3

a4

r4

)
sin 2θ

This solution still has to be superimposed on the homogenous stresses of
Eq. (6.33) for the situation without hole. The final result is

nrr = n

(
1 − 4

a2

r2
+ 3

a4

r4

)
cos 2θ

nθθ = n

(
−1 − 3

a4

r4

)
cos 2θ (6.38)

nrθ = n

(
−1 − 2

a2

r2
+ 3

a4

r4

)
sin 2θ

The maximum tensile stress nθθ at the hole edge in peripheral direction ap-
pears for r = a, θ = ±π and is equal to 4n. This value is four times the
applied principal membrane stresses; the stress concentration factor is 4, see
Figure 6.20.
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Uni-Axial Stress

The uni-axial stress state is found from the superposition of solution (6.39)
and the solution for the axisymmetric case in Section 6.1.2, divided by 2 in
order to relate it to an applied stress of the magnitude n

nrr = n

2

{(
1 − a2

r2

)
+

(
1 − 4

a2

r2
+ 3

a4

r4

)
cos 2θ

}

nθθ = n

2

{(
1 + a2

r2

)
−

(
1 + 3

a4

r4

)
cos 2θ

}
(6.39)

nrθ = n

2

{
−1 − 2

a2

r2
+ 3

a4

r4

}
sin 2θ

For this stress state the maximum tensile membrane force nθθ is three times
the value of the uniaxial membrane force. The stress concentration factor
is 3. The distribution of the stresses is shown in the right-hand part of Fig-
ure 6.20.

6.3 Message of the Chapter

• In thick-walled tubes under internal pressure the stress in tangential
direction is not constant over the thickness. There is a nonlinear
distribution.

• In thick-walled tubes under internal pressure we cannot neglect the
stresses in thickness direction.

• A constant moment in a curved beam evokes tensile stresses in the
depth direction of the beam. For a reinforced beam, stirrups may be
needed in absence of a shear force.

• At a round hole in a homogeneous (hydrostatic) stress field the
stress concentration factor is 2.
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• At a round hole in a uniaxial stress field the stress concentration
factor is 3.

• For a constant shear stress field the stress concentration factor even
gets the value 4.

• Stresses in a half plane due to a point load normal to the free
edge are very special. In polar coordinates just normal stresses in
radial direction occur. The tangential stress and shear stress are zero.

• In the Brazilian splitting test there is a homogeneous tensile stress
over the vertical plane of symmetry of the cylinder. These stresses
are accompanied by balancing compressive lumped forces, close to
the applied loads.



Chapter 7
Circular Thin Plates in Bending

In this chapter we elaborate on the theory of thin plates for circular plates
resisting an axisymmetric load. We can do that in a compact way by us-
ing the derivation of the bi-harmonic equation for rectangular coordinates in
Chapter 4 and its transformation to polar coordinates in Chapter 6.

7.1 Derivation of the Differential Equation

The vertical deflection w will solely depend on the radius r. The moments
and shear forces are defined in the direction of the polar coordinates r and
θ . The moments to be distinguished are the radial moments mrr and the
tangential moments mθθ . Due to the axisymmetry no twisting moments mrθ

occur. Only one shear force component is present, the radial shear force
vr

no shear force vθ in sections of constant θ . We conclude that the bending
moments mrr and mθθ are principal moments. The moment trajectories
coincide with the radii and meridians of the plate. The shear force vr is the
principal shear force, and the shear trajectories are in the directions of the
radii.

The second derivatives for polar coordinates in Eq. (6.27) can be used to find
the curvatures in the circular plate. Because of axisymmetry the derivative
with respect to θ is zero. The two curvatures become

κrr = −d2w

dr2
; κθθ = −1

r

dw

dr
(7.1)
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Figure 7.1 Displacements, moments and shear force in axisymmetric plate.

The constitutive relationships of (4.3) are replaced by and reduced to

mrr = D(κrr + νκθθ ); mθθ = D(νκrr + κθθ ) (7.2)

On the basis of Eq. (6.28) we can transform the bi-harmonic equation (4.8)
for a rectangular plate under a homogeneous distributed load p into an equa-
tion for polar coordinates, omitting terms which are dependent on θ(

∂2

∂r2
+ 1

r

∂

∂r

) (
∂2

∂r2
+ 1

r

∂

∂r

)
w = p. (7.3)

The general solution of this fourth-order differential equation is

w = C1 + C2r
2 + C3 ln r + C4r

2 ln r + pr4

64D
. (7.4)

The last term is the particular solution. The four integration constants have
to be determined from the boundary conditions. After that, we obtain the
moments and the shear force from the formulae

mrr = −D

(
d2w

dr2
+ ν

1

r

dw

dr

)
,

mθθ = −D

(
1

r

dw

dr
+ ν

d2w

dr2

)

vr = −D

(
d3w

dr3
+ 1

r

d2w

dr2
− 1

r2

dw

dr

)
(7.5)

7.2 Simply-Supported Circular Plate with Edge Moment

Figure 7.2 shows a simply-supported circular plate subjected to a moment
mo at the outer edge r = a. The inner edge is the centre point r = 0. The
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Figure 7.2 Simply supported circular plate with edge moment.

boundary conditions at the outer edge are w = 0 and mrr = mo. At the inner
edge the conditions are zero rotation and zero shear force, so dw/dr = 0
and vr = 0. On this basis we find C3 = 0 and C4 = 0 and obtain a parabolic
deflection shape

w = m0

2(1 + ν)D
(a2 − r2) (7.6)

Further, we find two equal curvatures, two equal moments, and a zero shear
force

mrr = mθθ = mo, vr = 0 (7.7)

Apparently, there is a homogeneous moment field, equal to the applied edge
moment. In hindsight, the solution for the deflection w is to be expected.
Over a diagonal of the plate there is a constant moment, and therefore a
constant curvature, which corresponds to a parabolic displacement diagram.

7.3 Clamped Circular Plate with Distributed Load

Next we consider a plate which is clamped at the edges and subjected to a
uniformly distributed load p, see Figure 7.3. Again the outer edge of the plate
is given by r = a and the centre by r = 0. Now the boundary conditions
at the supported edge are a zero displacement and rotation, so w = 0 and
dw/dr = 0. At the centre point the same conditions hold as in the previous
case, a zero rotation and zero shear force, so dw/dr = 0 and vr = 0. The
four conditions lead to next function for the deflection (again C3 and C4 are
zero)

Figure 7.3 Clamped circular plate with uniformly distributed load.
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Figure 7.4 Results for clamped plate due to uniformly distributed load.

w = p

64D
(a2 − r2)2. (7.8)

The displacement function is of the fourth degree in r and, of course, the
maximum of the vertical deflection occurs at the centre of the plate. This is
wmax = pa4/(64D). The bending moments and shear force in this case are

mrr = 1

16
pa2

(
(1 + ν) − (3 + ν)

r2

a2

)

mθθ = 1

16
pa2

(
(1 + ν) − (1 + 3ν)

r2

a2

)
(7.9)

vr = −1

2
pr

Figure 7.4 is the graphical representation of these results. Similar to what
we know from beams under a comparable distributed load, the moment
distribution is quadratic in r. As we may expect, the moments mrr and mθθ

are equal at the centre of the plate. Of course, there mrr for an angle θ be-
comes mθθ for an angle θ + π/2. Here the distinction between the moments
disappears. At the clamped edge the tangential moment is just v times the
radial moment mrr . This result is in agreement with the moments in a rec-
tangular plate with clamped edges. The tangent line to the clamped circular
edge remains a straight horizontal line, and yet a non-zero bending moment
mθθ occurs, due to Poisson’s ratio of the material. For zero Poisson’s ratio
the moment at the centre is half the moment at the edge, as is the case for
a clamped beam. In a clamped beam of unit width and length 2a the sum
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Figure 7.5 Equilibrium between load and shear force.

of the absolute values of the mid-span and end moment would be pa2/2.
In the clamped circular plate it is pa2/5 for Poisson’s ratio v = 0.2, so
the clamped circular plate is a factor 2.5 more moment-efficient than a beam.

The shear force has a linear distribution. We can find this result without solv-
ing the differential equation. Figure 7.5 shows the cross-section of a part of
the plate with radius r. Consider the free-body equilibrium. The distributed
load p over the area πr2 must be carried by the shear force vr over the cir-
cumference with length 2πr. So, accounting for the sign conventions, we
must solve the simple equation πr2p + 2πrvr = 0, which leads indeed to
vr = −pr/2. Because we have considered an inward plate part around the
centre, the result is independent of the boundary conditions at the edge. The
same result will be found for a simply-supported edge. In a beam of unit
width with the same span 2a and the same distributed load, the shear force at
the support would be pa, twice as much. The shear-efficiency of the circular
plate is doubled.

7.4 Simply-Supported Circular Plate with Distributed Load

The solution for the simply-supported plate drawn in Figure 7.6 can be ob-
tained from the solution of the clamped plate. Along the outer edge of the
clamped plate there is a support moment equal to mrr = pa2/8. For the
simply-supported plate this moment has to be made zero. Therefore, the so-
lution for the simply-supported plate can be found by superposition of the

Figure 7.6 Simply-supported circular plate under uniformly distributed load.

Plates and FEM



148 7 Circular Thin Plates in Bending

Figure 7.7 Moments in simply-supported circular plate.

solution for the clamped plate and the solution for a circular plate with just
having an edge moment mrr = pa2/8 (see Section 7.2):

mrr = 3 + ν

16
pa2

(
1 − r2

a2

)

mθθ = 1

16
pa2

(
(3 + ν) − (1 + 3ν)

r2

a2

)
(7.10)

vr = −1

2
pr

This means that the horizontal axis in Figure 7.4 just has to shift upward
over a distance of pa2/8, leading to Figure 7.7. The shear force diagram
need not be re-drawn, for it is the same as for the clamped plate. At the
edge, there is a positive moment mθθ , both for zero and non-zero Poisson’s
ratio. This is different from what occurs at the edge of a simply-supported
rectangular plate. There, a zero moment mxx normal to the edge will always
lead to a zero moment myy in the direction parallel to the edge, as explained
in Section 4.4.2.

We can make an engineer’s check on the moments mθθ . For that purpose
we consider a half plate as shown in Figure 7.8 and introduce the symbol P

Figure 7.8 Position of centres of gravity.
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Figure 7.9 Clamped circular plate with point load.

for the total load πa2p on the plate. The sum Mθθ of all the moments mθθ

along the straight edge can be calculated by integration of the formula in
Eq. (7.10). We then find Mθθ = a3p/3. This moment must be balanced by
the moments due to the support reactions and load. The support reactions on
the half plate sum to P/2 and so does the load. An elementary calculation
shows that the centre of gravity of the support reactions is at a distance 2a/π

of the straight edge and at a distance 4a/3π for the distributed load. This is
depicted in Figure 7.8. The distance e between the two centres of gravity is
2a/3π . The moment due to the support reactions and the load is Pe/2 =
a3p/3. Indeed, this is just the value of Mθθ . The average value of mθθ along
the diagonal is a2p/6.

7.5 Clamped Circular Plate with Point Load

In this case the plate is loaded only at the centre by a point load F , as shown
in Figure 7.9. No distributed load is present, so p = 0. The boundary condi-
tions at the outer edge are the same as in Section 7.3 for a distributed load.
The displacement and the rotation are zero, so w = 0 and dw/dr = 0.
At the plate centre, the two conditions involve the rotation and the shear
force. The first one is the same as in Section 7.3 for a distributed load, and
is dw/dr = 0. The second one is different and is derived from the free-body
diagram in Figure 7.10, and is vr = F/(2πr). On the basis of these boundary
conditions, the solution becomes

Figure 7.10 Free-body diagram of central plate part.
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Figure 7.11 Moments and shear force due to point load.

w = Fa2

16πD

(
1 − r2

a2

)
+ Fr2

8πD
ln

( r

a

)
. (7.11)

The maximum displacement at the centre of the plate is wmax =
Fa2/(16πD). Comparison of this result with the maximum vertical deflec-
tion for a uniformly distributed load in Section 7.3 shows that the deflection
increases by a factor of 4 when the full load (P = πa2p) is concentrated at
the centre of the plate. For a clamped beam this factor is 2. For the moments
and the shear force we find

mrr = F

4π

{
−1 + (1 + ν) ln

(a

r

)}

mθθ = F

4π

{
−ν + (1 + ν) ln

(a

r

)}
(7.12)

vr = − F

2πr

These results are displayed in Figure 7.11. Again we find moments mθθ along
the clamped edge which are ν times the clamped moment mrr . At the position
of the point load F the moments are infinitely large. In reality, point loads
will be spread over some area which makes the moments finite. We will
return to this in Section 7.7. The shear force at the plate centre also becomes
infinitely large. For point loads spread over some area, it will in reality be
finite.
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7.6 Simply-Supported Circular Plate with Point Load

The solution for the simply-supported plate with point load F can be found
by shifting the horizontal axis in Figure 7.11 for the moments in the vertical
direction, such that mrr becomes zero at the edge r = a as in Section 7.4 for a
distributed load. The origin then shifts from O to O ′. The graph for the shear
force remains unchanged for it is independent of the boundary condition at
the outer edge. The formulas in (7.12) for the moments and shear force now
change into

mrr = F

4π
(1 + ν) ln

(a

r

)

mθθ = F

4π

{
1 − ν + (1 + ν) ln

(a

r

)}
(7.13)

vr = − F

2πr

It is striking again that the moments and the shear force at the centre of
the plate are infinite. The bending and shear stresses become infinite too. The
same holds for the vertical stress σzz just beneath the point load. In reality
infinite stresses never develop because theoretical point loads do not exist.
In the neighbourhood of a point load, the assumptions of plate-theory are no
longer satisfied. At a distance of approximately the plate thickness from the
point load, the plate theory becomes valid.

Point loads on plates in general

We have derived the singular character of the moments and shear force
for a circular plate. For other plate shapes and boundary conditions the
moments and shear force will also be very large in the neighbourhood
of concentrated loads. It can be stated that the behaviour in the neigh-
bourhood of any concentrated load is of the same character. For exam-
ple, the formulas (7.12) and (7.13) can be used for the calculation of
the moments in the neighbourhood of a concentrated load on a square
plate. Close to the point load the difference between these two sets of
formula is negligible, because the term (1 + ν) ln(a/r) by far exceeds
the constant term in the formulas. Then the difference between mrr and
mθθ vanishes and so does the influence of the boundary condition.

Plates and FEM
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We can do the same equilibrium check for the sum of bending moments mθθ

in the plate diagonal as we did for a distributed load. Now only the support
reactions lead to bending moments mθθ in this line. In this case the total mo-
ment is Mθθ = Fe/2 where e = 2a/π . We obtain therefore Mθθ = 2aF/π .
Even when the moment mθθ becomes infinitely large at the centre, its inte-
gral is finite, with an average value F/π . In Chapter 14 we will continue on
this subject when we discuss the design of reinforcements on top of columns.
For a distributed load we obtained the result Mθθ = aP/3, so the value for
the point load, Mθθ = 2aF/π , is about twice as large for the same total load
(P = F ). In a beam the difference is exactly a factor two. In this respect, the
circular plate is apparently not particularly more effective for point loads.

7.7 Circular Plate Part on Top of Column

Floors in buildings often consist of reinforced slabs supported by a regular
pattern of columns. It appears hard for structural engineers to decide which
plate moment must be assumed on the tops of the columns. Anticipating
Chapter 14 where we will address this subject in more detail, here we make
a preliminary assessment. We consider a column grid which is equidistant in
two directions, and in this grid we consider a column which is sufficiently re-
mote from the edge of the grid. The distance between rows of columns is 2a.
Figure 7.12 shows a square plate part around such a column. The boundaries
of the plate part are lines of symmetry at which a positive moment occurs,
requiring reinforcement in the bottom layer of the slab. Negative moments
occur on top of the column, requiring reinforcement in the top layer of the
slab. The column has a square cross-section. We replace the slab part by
a circular plate of radius a which is supported by a circular column of ra-
dius b. This radius is chosen such that the cross-section area of the replacing
column is equal to the area of the replaced square cross-section. We do not
precisely know how the support reaction between the slab and the column is
spread; therefore we make two different assumptions. First we assume that
the column load is a homogeneously distributed load p over a circular area
of radius b. Secondly, we assume that the column is transferred to the slab as
a circumferential line load f with radius b. In the analysis we must connect
two different plate parts, a circular plate with radius 0 ≤ r < b and an annu-
lar plate b ≤ r ≤ a. At the edge r = 0 the displacement and rotation must
be zero, at the boundary r = b between the two plates, four conditions hold,
equal displacements, equal rotations and equal moments in the r-direction;
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Figure 7.12 Investigation of moments above column in a grid.

the fourth is related to the shear forces. At the boundary of the two late parts,
shear forces are equal in the first analysis, and balance the circumferential
line load in the second analysis. At the outer edge r = a the rotation and the
shear force are zero.

We have sketched in Figure 7.12 what type of results are to be expected.
On top of the column some differences occur between one load type and the
other, but at some distance from the column there are no noticeable differ-
ences. It appears that we can make a fair guess of the maximum moments on
top of the column by the following formulas

mmax ≈ F

4π

(
−1

4
+ (1 + ν) ln

a

b

)
p-load

mmax ≈ F

4π

(
−3

4
+ (1 + ν) ln

a

b

)
f -load

(7.14)
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Figure 7.13 Expected moments above column.

The difference between the two formulas is independent of the ratio a/b.
For large a/b the term ln(a/b) is dominant, so the relative difference de-
creases. For Poisson’s ratio ν = 0.2 we find values for different ratios a/b

as shown in Figure 7.13. On the basis of this exploration we expect plate
bending moments on top of a column with reaction force F in the band with
between F/6 and F/4, dependent on the ratio a/b. A practical rule of thumb
for mmax might be F/5. A safe rule is F/4.

7.8 Message of the Chapter

• In a circular plate with axisymmetric load, principal bending
moments occur in the direction of the radius and the meridian.
The twisting moment is zero. Only one shear force occurs in the
direction of the radius.

• Moment trajectories coincide with the radii and the meridians.
Shear trajectories coincide with the radii.

• For the same axisymmetric load, moment diagrams for a clamped
plate and a simply-supported plate are the same, apart from a shift
of the base line of the moment diagram.
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• At a circular clamped edge the moment response is the same as
at a straight clamped edge. There is a moment in the direction of
the edge equal to the product of Poisson’s ratio and the clamped
moment.

• Moments at a circular simply-supported edge are different from
moments at a straight simply-supported edge. At a straight edge,
both moments (normal to and in direction of the edge) are zero.
At a circular edge, the moment normal to the edge is zero, but the
moment in the direction of the edge is not.

• The shear force due to an axisymmetric load is independent of the
boundary conditions.

• A point load leads to infinitely large bending moments at the plate
centre. However, if the moments are integrated over the diagonal,
we find a finite result.

• For a point load, the total moment about a diagonal is about twice
that for a distributed load of the same total size.

• The moment on top of a column can be expressed in terms of the
size of the support reaction R. Dependent on the area of the column
cross-section, the maximum moment lies between R/6 and R/4. A
practical rule of thumb is R/5; a safe rule is R/4.
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Chapter 8
Discrete Model for Membrane Analysis

This chapter and the next chapter (Chapter 9) are intended as an intermedi-
ate step between the classical approach with differential equations and the
current computational Finite Element analysis. In pre-FE days, differential
equations were solved approximately by Finite Difference (FD) analysis. In
that method a grid is chosen over the area of the plate, and the differen-
tial equation at each grid point (node) is displaced by an algebraic equa-
tion. Solving the set of linear equations leads to an approximate solution
of the problem, a solution which becomes more accurate as the mesh is
chosen finer. The Finite Element Method (FEM) is the successor of the Fi-
nite Difference Method (FDM), in a way which makes it much easier to
model plates of any shape and to satisfy boundary conditions. The model

cational goals. First, the discussion is a simple preparation to the stiffness
method. The concept of stiffness matrix is introduced, boundary effects are
easily accounted for, and often the same solution is obtained as in a clas-
sic FD-analysis. Second, the structural engineer sees that different trans-
fer mechanisms are present in a plane stress state. Some members carry
horizontal axial forces in the horizontal direction, other members vertical
axial forces and special members shear forces. In Chapter 9 comparable
members will occur for bending in two directions, and a special member
for torsion.

©  Springer Science+Business Media B.V. 2010
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for membrane states to be discussed in the present chapter serves two edu-
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Figure 8.1 Bar loaded in axial direction by a distributed load.

Figure 8.2 Structure divided into four discrete elements.

8.1 Truss Model

To achieve a good approximation to membrane plate behaviour, we first ex-
amine an approximation of a bar. We can restrict ourselves to a truss element
that is loaded axially, so only normal forces N occur (a truss element). Con-
sider the structure shown in Figure 8.1. The cross-sectional area A, the dis-
tributed line load f and the elastic modulus E are constant over the length
of the structure.

In order to approximate this continuous system, we select nodes. We keep
the load distributed, but lump the elastic deformation into discrete springs.
This means that we consider the structure as an assemblage of mass-less
rigid parts and springs. We divide the total length l into elements. In the
example we choose four equal parts of length a, see Figure 8.2. Next we
replace each element by the structure shown in Figure 8.3, a rigid bar with a
spring at each end and load fa. The spring stiffness is chosen such that the
new structure experiences the same axial deformation as the original element
for a constant normal force. This leads to the spring rigidity D = 2EA/a. If
we link the four elements, we obtain the structure of Figure 8.4, with spring
rigidities D = EA/a and D = 2EA/a. Figure 8.5 shows the result for this
approximation. The normal force N(x) is continuous and the displacements
u(x) discontinuous.

This is a very simple example because the structure is statically deter-
minate. In more general statically indeterminate cases we apply the stiff-
ness method. We look upon the structure as an assembly of four elements as
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Figure 8.3 Element discretization.

Figure 8.4 Structure divided into four discrete elements.

Figure 8.5 Displacement and normal force for the exact solution and approxima-
tion.
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Figure 8.6 Application of the stiffness method.

shown in Figure 8.6. The discrete field elements 1, 2 and 3 have a stiffness
matrix consisting of two rows and two columns. For an edge element 4 the
stiffness matrix consists of one number

EA

a

[
1 − 1

−1 1

]
︸ ︷︷ ︸

element 1

; EA

a

[
1 − 1

−1 1

]
︸ ︷︷ ︸

element 2

; EA

a

[
1 − 1

−1 1

]
︸ ︷︷ ︸

element 3

; EA

a
[2]︸ ︷︷ ︸

element 4

(8.1)
The assemblage of the global stiffness matrix of the total structure leads to

(8.2)

The contribution of all four elements is shown by the four squares of dashed
lines from the top left-hand corner to the bottom right-hand corner of the
global stiffness matrix. The terms in the right-hand load vector consist of the
load on the rigid parts of the structure. The solution of this set of equations
is

{u1 u2 u3 u4} = f a2

EA
{8 7 5 2} (8.3)

From these displacements, one can easily calculate the stress resultants (nor-
mal forces) in the springs of the four elements. To distinguish the element
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Figure 8.7 Discretization scheme. Also FDM-scheme.

number from the number of a degree of freedom (d.o.f.), we use element
numbers as superscript.

{N1 N2 N3 N4} = f a{1 2 3 4} (8.4)

Pattern of coefficients as in Finite Difference Method

In the rows of the stiffness matrix which correspond to u2 and u3 we
notice the pattern as shown in Figure 8.7. If more elements were used,
more such rows would appear in the global stiffness matrix. In this
particular case the same scheme is found when a discretization of the
governing differential equation −EAd2u/dx2 = f of Eq. (1.14) is
made on basis of finite differences.

The linking of elements is not restricted to elements of the same length and
the same EA. The spring rigidity D may vary from one element to another.
The serial linking of springs of different rigidities is a well-known procedure.

8.2 Membrane Plate Model

A proper approximation must accurately model the membrane forces nxx,
nyy and nxy. We start from the results of the previous section for truss el-
ements and make the extension to plates. In this section our primary goals
are insight and understanding, therefore, in order to keep it simple, we ex-
clude lateral contraction. We take into consideration a rectangular plate el-
ement with sizes a and b. To approximate the behaviour of the element we
replace it by four truss elements, one along each edge of the element, and
one shear panel between the trusses. Figure 8.8 shows this composition. The
shear panel is drawn by dotted lines and the size is slightly reduced.

First, we focus on the normal forces nxx and nyy. Membrane forces nxx

on the edge with length b are replaced by two lumped forces nxxb/2. The
spring properties are chosen such that strains εxx for a homogeneous field

Plates and FEM
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Figure 8.8 Approximation of plate element by trusses and shear panels.

of nxx equal in the actual plate element and in the spring model. The same
is done for the y-direction. This leads to the following stiffnesses for the
springs in the x-direction and the y-direction respectively

Dx = αEt, Dy = βEt, where α = b

a
, β = a

b
(8.5)

In an assemblage of a large number of elements, several elements may sur-
round a specific node. In the x-direction at each node one or two couples
of two springs may occur, from which we obtain one composed spring. The
same holds true for the y-direction.

Next we model the so far neglected nxy-action of the plate element by
the introduced shear panel. We choose a constant shear stress in the panel,
then the shear strain γxy will be constant, and therefore the deformed panel
will have straight edges, which do not elongate. This enables us to express
the state of stress and strain by the use of four degrees of freedom as shown
in Figure 8.9. The shear panel is a discrete element that fits perfectly in an
orthogonal assemblage of axial discrete spring elements. The stiffness matrix
of the panel is

Figure 8.9 Shear panel in the discrete model.
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(8.6)

8.2.1 Example. Deep Beam Subjected to Own Weight

The simply-supported deep beam in Figure 8.10 is a symmetric plate in a
membrane state subjected to its own weight w per unit area. Because of
symmetry we need consider only half the deep beam. We have drawn the
degrees of freedom in this half structure and the different discrete element
types which we need for this example. The weight is lumped to forces wab in
the vertical degrees of freedom; the forces at the edge and line of symmetry
are wab/2.

Some results for this example are displayed in Figure 8.11. They are for
a = 2 and b = 1. The membrane shear force nxy is constant over the height
of an element. The normal membrane force nxx is discontinuous over the
height of an element. The analysis leads to lumped normal forces in the hori-
zontal springs; we have to spread these forces over an appropriate width, b/2
for the springs at the top and bottom edge, and b for the inward springs. The
stress distribution according to the theory for slender beams is included by
dotted lines. If judged judiciously, the result of the current analysis comes
rather close to the outcome of classical beam theory.

Rows in the global stiffness matrix which are not influenced by boundary
conditions have a scheme of coefficients as shown in Figure 8.12. The same
scheme holds for the Finite Difference Method.

Figure 8.10 Deep beam example with used discrete elements.
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Figure 8.11 Numerical result for the deep beam discrete model.

Figure 8.12 Discretization scheme; also FDM-scheme.

Advantage of discrete model

The conventional Finite Difference Method for plates is not easy to apply
to nodes close to or on the boundary. Also, abrupt changes in thickness are
difficult to deal with. The concept of springs and shear panels provides an
elegant way to overcome such difficulties.

Remark

In the discrete model for membrane plates we have used two different ele-
ment types, truss elements and shear panels, respectively. So, the axial force
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action and the shear force action are handled with separate elements. In the
Finite Element Method the two actions are integrated into one and the same
element. For an orthogonal grid, each element coincides with one rectangle
in the grid; this has an advantage for programmers and users. We will return
to this in Chapter 10.

8.3 Message of the Chapter

• A structure in a membrane state (plane stress) can be modeled by
trusses (spring elements) and shear panels. Each element type has
its own stiffness matrix. The global stiffness matrix of a structure is
assembled from the stiffness matrices of the individual elements. A
load vector is composed from nodal loads.

• Equations in the global stiffness matrix which are not influenced
by boundary conditions, are similar to those found in the classical
Finite Difference Method.

• Stress distributions over sections of the structure can be discontinu-
ous in a numerical analysis.

• The spring-panel model nicely demonstrates the separate action of
normal forces and shear forces.

Plates and FEM



Chapter 9
Discrete Model for Plate Bending

9.1 Beam Model

In Chapter 8 we discussed an approximation for trusses. The elastic defor-
mations were lumped in springs. We may apply a similar model to beams in
bending as a first step to a discrete model for plate bending. A rigid element
that has rotational springs at its ends replaces a beam element of length a.
This model is depicted in Figure 9.1. The rotational spring is considered to
be composed of two parallel springs, for the compression and tension zones,
respectively. The rotational rigidity at each end is D. It is required that the
beam-ends in both the model and the actual beam have the same rotation e for

beam elements are linked together, the two rotational end springs are con-
nected in series. The rigidity of the resulting rotational spring is D = EI/a.

Figure 9.1 Discrete bending model for beam.
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a constant moment M. This requirement is met if D = 2EI/a. When two
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Figure 9.2 Modelling of a cantilever beam.

Figure 9.2 shows a cantilever beam modelled by four beam parts with
length a. The homogeneous load is lumped at the hinges between the four
sections. The deflections of the hinges are the unknowns. The structure is
considered to be an assembly of four discrete elements and to have four
degrees of freedom. The elements 1, 2, and 3 each have three degrees of
freedom, element 4 only has one. This latter element is used at the clamped
end. It need also to be used in a line of symmetry. Then the element has two
degrees of freedom. Naturally, this element may occur with the rotational
spring at the other end as well. First, the different stiffness matrices of the
two element types are derived. The element types will be named field element
and edge element respectively. The stiffness matrices for a field element with
nodes i, j, k and an edge element with nodes i, j are respectively
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Figure 9.3 Composition of the global stiffness matrix.

⎧⎨
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a2

[
1 −1

−1 1

] {
wi

wj

} (9.1)

The stiffness matrix of the cantilever beam structure is an assembly of three
field elements and one edge element. The result is shown in Figure 9.3. The
matrix needs to be multiplied by EI/a3. As is seen in the figure, the displace-
ments are not yet constrained. If displacements are prescribed, corresponding
rows and columns are omitted. Figure 9.4 shows a number of possibilities.
The third row of the stiffness matrix is complete; that is to say, there is no
influence of the boundaries on the coefficients of this row. If we use a finer
mesh in the model, then the global stiffness matrix would contain more of
these complete rows. Apart from the multiplication factor EI/a3, the scheme
shown in Figure 9.5 applies for nodes not affected by any edge conditions.
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Figure 9.4 Effect of various boundary conditions.

Figure 9.5 Scheme for a complete field row.

9.1.1 Example. Cantilever Beam

The set of equations has been solved for the cantilever beam of Figure 9.6.
The nodal force is F = f a. The matrix equation reads:

(9.2)

The dotted lines hold for the matrix equation in which boundary conditions
have not yet been introduced, the full lines after accounting for the boundary
conditions. The solution of the set of equations is

{w1 w2 w3 w4} w5
a4f

EI
{34 23 121

2 4} 0 (9.3)

Figure 9.6 Cantilever beam with four elements.

=
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Figure 9.7 Cantilever results for exact solution and approximation

The support reaction, calculated from the fifth row in Eq. (9.2), is R =
−4f a. The moments are determined from the spring equations

M = EI

a2
(−wi + 2wj − wk) Field element

M = 2
EI

a2
(wj − wi) Edge element

(9.4)

The results are depicted in Figure 9.7. Even this course mesh and simple
elements give a good approximate result.

Same pattern of coefficients in Finite Difference Method

When the classical Finite Difference Method (FDM) is applied, the dif-
ferential equation EI d4w/dx4 = f is replaced by a set of algebraic
equations, one for each node. The FDM-equation related to node 3,
which is not influenced by the boundary conditions, is exactly the same
as the third row in the above matrix equation. So, the scheme of Fig-
ure 9.5 is both the scheme in FDM and the present discrete model. The
rotational spring method is not restricted to equal element dimensions
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and constant bending rigidity EI for all elements. Serial linking of dif-
ferent spring stiffness is allowed.

9.2 Plate Bending Model

The spring model for bending of the previous section is a building block
for the discrete plate bending model, just as the truss model was for the
discrete membrane model. We consider a rectangular plate element of length
a and width b, subjected to a homogeneously distributed load p. The plate
thickness is t , Young’s modulus is E, and Poisson’s ratio is zero. The relation
between the moments and curvatures is⎧⎨

⎩
mxx

myy

mxy

⎫⎬
⎭ = D

⎡
⎣ 1 0 0

0 1 0
0 0 1

2

⎤
⎦

⎧⎨
⎩

κxx

κyy

ρxy

⎫⎬
⎭ (9.5)

Here the plate flexural rigidity is D = Et3/12. The rigidity matrix is a di-
agonal matrix, therefore bending in the x-direction and y-direction are inde-
pendent of each other. Torsion is another independent transfer mechanism.

The bending behaviour in the x- and the y-direction is modelled with the
spring elements derived in Section 9.1. Thus an orthogonal grid of beams is
obtained. To account for twisting moments, torsion panels are inserted in the
grid in the same way as shear panels were in the membrane model. From
Section 5.2 we know that a field of constant mxy can exist if the panel is
loaded by two pairs of equilibrating corner point loads occur, and that the
edges remain straight. On the basis of this knowledge a torsion panel can be
derived with four degrees of freedom as shown in Figure 9.8. The stiffness

Figure 9.8 Loading for positive twisting moment. Left physical reality, right stiff-
ness method.
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Figure 9.9 Uniformly loaded simply-supported rectangular plate.

Figure 9.10 Moment distributions in the slab.

matrix of this panel is
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(9.6)

Any plate that may be considered a composition of rectangular plate parts
can now be modelled with spring elements and torsion panels.

Plates and FEM
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Figure 9.11 Scheme for both FDM and discrete model.

9.2.1 Example 1. Rectangular Simply-Supported Plate

We will perform the discrete analysis for the example of Figure 9.9. For rea-
sons of symmetry only one quarter of the plate needs to be modelled. The
computational result is presented in Figure 9.10. As was seen earlier for the
normal forces in the membrane solution, we again obtain a continuous dis-
tribution for the bending moments in the one direction and a discontinuous
one in the other. Like the shear forces in the membrane solution, now the
twisting moment is discontinuous.

Advantage of discrete model

In the Finite Difference Method (FDM) the bi-harmonic differential
equation is replaced by a set of linear algebraic equations, one for each
mesh node. For nodes which are at sufficient distance from the edge
the scheme of coefficients is shown in Figure 9.11. The discrete model
with flexural springs and torsion panels leads to the same result. The
advantage of the discrete modelling is the ease of handling boundary
conditions, discontinuities in thickness, and non-square meshes.
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Figure 9.12 Application of discrete model to office building floor.

9.2.2 Example 2. Lift-Slab in Office Building

The model was in use in the 1960s for the analysis of viaducts and floor
slabs in office buildings. An example is the floor of the office building in
Figure 9.12 as built at Amsterdam Airport. The contractor cast and cured all
floors at ground level around a tall central shaft (not shown in Figure 9.12),
and then lifted them in place. Therefore they are not clamped to the central
shaft, but just connected at discrete points. The hatched quarter of the floor
has been considered in the analysis. The bending moments for two directions
are shown in Figure 9.13.

Figure 9.13 Bending moments in quarter of floor slab.

Plates and FEM
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9.3 Didactical Model for Simply-Supported Plate

The discrete model is no longer in use since Finite Element Analysis has re-
placed it, however it still has great didactical value. This value is illustrated
for the simply-supported plate, subjected to a two-way sine load, the exact
solution of which we discussed in Section 5.3. Here we recall the most im-
portant results of the exact analysis. The deflection w and bending moments
mxx and myy have double-sine distributions, with a maximum in the centre of
the plate. The twisting moment has a double-cosine distribution with a value
zero in the horizontal and vertical line of symmetry. The maximum value oc-
curs at the four corners. The shear forces vx and vy have sine-shaped distri-
butions in the one direction and cosine-shaped in the other. Their maximum
value appears at the edges. The distributed support reactions f (positive if
directed downward) along the four edges are sine-shaped with a maximum
value halfway along the edges. The various maxima are, apart of the sign

w = p̂ l4

4 π4D
, mxx = myy = p̂ l2

4 π2
, mxy = p̂ l2

4 π2

vx = 1

2 π
p̂ l, vy = 1

2 π
p̂ l, f = − 3

4 π
p̂ l (9.7)

where p̂ is the maximum value of the load and D is the plate stiffness. The
support reaction is 50% larger in absolute value than the maximum shear
force at the edge. The negative sign means that it concerns a compressive
support reaction in the opposite direction to the load p. Finally it was found
that four balancing concentrated corner tensile support reactions R occur
with the value

R = 1

2
p̂ l2/π2 (9.8)

We now start to explain the discrete model. The coarsest mesh possible is
a two-by-two grid with one central node; there is just one degree of freedom.
However, a three-by-three mesh leads also to one degree of freedom; There
are four free nodes in the plate, but they all have the same displacement.
This finer mesh will produce more information, and therefore is chosen. The
square plate has edges of length l which are divided in three equal parts a.
Figure 9.14 shows the applicable discrete model of four beams, two in each
direction.

In a three-by-three grid we need in general nine torsion panels, but in
our case five of them occur on lines of symmetry and therefore will have
zero twist. So, just the four corner panels need be entered in the analysis,
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Figure 9.14 Elementary spring-panel model for a square plate.

which confirms the importance of torsion in the corners. The two-way sine
load is replaced by four point loads F each pa2. We restrict the analysis
to a zero Poisson’s ratio. The model is very simple. The load F at each
free point is carried by three elements, a beam in the x-direction, a beam in
the y-direction and a torsion panel. The three contributions are Fx , Fy and
Ft , respectively. They are derived in an elementary way on the basis of the
properties of the spring model and torsion model

Fx = D w

a2
, Fy = D w

a2
, Ft = 2

D w

a2
(9.9)

The three contributions are related to the same displacement and are linked in
parallel. Therefore they can be summed, which leads to the relation between
the displacement w and the load F

Fx + Ft + Fy = F,
D

a2
(1 + 2 + 1)w = F, w = Fa2

4D
(9.10)

Clearly

Fx = 1

4
F, Fy = 1

4
F, Ft = 1

2
F (9.11)

This very elementary model effectively confirms what was seen earlier after
solving the bi-harmonic equation for a double-sine load in Section 5.3. The

Plates and FEM



180 9 Discrete Model for Plate Bending

Figure 9.15 Exact results for a two-way sine load.

torsion in the plate carries half the load, and the deflection is a quarter of
the value that occurs if one beam had to transfer all the load F . The bending
moment at the position of the rotational springs, the twisting moment in the
panels, and the shear forces midway between the two nodes become

mxx = myy = mxy = 1

4
F, vx = vy = 1

2

F

a
(9.12)

As we found for zero Poisson’s ratio in the exact solution, the maximum
torsion moment is equal to the maximum bending moment. Figure 9.16 com-
pares the results of the discrete moments to the outcome of the exact analy-
sis for a number of sections over the plate. Figure 9.17 does the same for
the shear force and support reaction. Finally, we can calculate the reaction
forces in the edge and corner nodes. The simple model leads to Rcorner = 1

2F ,
Redge = − 3

4F . Figure 9.18 presents an overview of these boundary forces.
The distributed support reaction f = Redge/a = − 3

4F/a is again 50% larger
in absolute value than the shear force vx . For vertical equilibrium of the total
plate it is required that 4Rcorner + 8Redge + 4F = 0. This is indeed satisfied:
4( 1

2F) + 8(− 3
4F) + 4F = 0. All the results that were seen in the solution of

the bi-harmonic equation reappear in this elementary model.

Comparison

The results of the discrete model are compared to the exact solution of the
square simply supported plate subjected to a double-sine load. Table 9.1 lists
the maximum occurring values of the displacement w, the moments m, the
shear force v, the distributed support reaction f and the concentrated corner
reaction Rcorner is given. The results of the discrete model and the exact so-
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Figure 9.16 Comparison between discrete model and exact solution for moments.

Figure 9.17 Comparison between discrete model and exact solution for shear force
and support reaction.

Figure 9.18 Distribution of support reactions.

Plates and FEM
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Table 9.1 Comparison of discrete model with exact values for two-way sine load.

Exact values divided by Values for discrete model divided by
pl2/π2 F = pl2/9

w l2/(4π2D) l2/(4 ∗ 9D)

m 1/4 1/4
v π/2l 3/2l

f −3π/4 −3 ∗ 3/4
Rcorner 1/2 1/2

lution are very close to each other. The simple model accurately shows the
main aspects in the force transfer of a simply-supported plate:

1. Maximum bending moments mxx and myy occur at the centre of the plate.
2. Maximum twisting moments mxy occur at the corners, and have the same

magnitude as the bending moments.
3. The distributed support reactions are 50% larger than the shear forces.
4. Lumped tensile corner support reactions are twice the size of the twisting

moments.

9.4 Discrete Model for Plate on Flexible Edge Beams

In the previous section we modelled the simply-supported plate which had
been discussed in Section 5.3 for a two-way sine load. In Section 5.4 we
considered another interesting case, a flexible edge beam, which leads to a
twist-less plate, at that time for a homogeneously distributed load. Because
the two cases have different loads and different boundary conditions, we had
to study them with different displacement fields. With the discrete model
we can study both cases in one model for the same load. We will do so
for the square model of Figure 9.14 and a homogeneously distributed load p.

The new model is shown in Figure 9.19. The grid consists of four beams in
the x-direction, four in the y-direction, and four torsion panels. The beams
inside the plate represent a plate strip of width a. The beams at the position
of the edge represent the actual applied edge beam plus a plate strip of width
1
2a. Because the edges can deflect, an additional degree of freedom must be
introduced. We call the displacement of each inner node w1 and of each edge
node w2. Now the stiffness matrix of the plate has two rows and two columns.
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Figure 9.19 Discrete model for plate with flexible edge beams.

We introduce the edge beam flexural rigidity EI = λ( 1
2 lD), where l = 3a is

the length of the plate edge and D the plate flexural rigidity; the parameter
λ relates the beam rigidity to the rigidity of the half plate width. Now we
obtain, on the basis of the properties of the rotational spring elements and
torsion panel, the following matrix equation

D

a2

[
4 −6

−6 11+3λ

] {
w1

w2

}
= F

{
1
1

}
(9.13)

The force F is equal to pa2. We found the solution of this matrix equation
for three different values of the parameter λ

λ = ∞ → w1 = 1

4

Fa3

D
, w2 = 0

λ = 1 → w1 = Fa3

D
, w2 = 1

2

Fa3

D
(9.14)

λ = 0 → w1 = 17

8

Fa3

D
, w2 = Fa3

D

The computation of the bending and torsion moments from these dis-
placements is a straight-forward procedure. The bending moment along
a section at mid-span and the torsion moment along the edge are pre-
sented in Figure 9.20. The case of infinite large λ corresponds to the
simply-supported case. The same solution is obtained as in the previous
Section. The twisting moments and the bending moments are equal. For
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Figure 9.20 Results for different edge beam stiffness.

λ = 1, the plate becomes twist-less; all twisting moments are zero; the
edge beam has the same stiffness as the half plate width. For λ = 0 the
plate has free edges and is supported just by four compressive point loads
in the corners. Twisting moments occur, but they have an opposite sign
compared to the simply-supported plate. There, the corner reaction was
tensile, here it is compressive. When λ decreases from infinity to zero, we
see the twisting moments switch sign, and notice a substantial increase of
the bending moments. In Figure 9.20, note the large increase of deflection,
the substantial increase in the bending moments, and the switch in sign of
the twisting moments.

The total bending moment over the full width of the plate at mid-span due
to the load is 3Fa, which is equal to pl3/9. Part of this moment is carried
by the plate and part by the edge beams. For the three considered cases of
rigid supports, twist-less plate and free edges, the plate part is 1/6, 1/2 and 1,
respectively. Two edge beams account for the remaining part, 5/6, 1/2 and 0,
respectively. The moment in each edge beam becomes pl3/21.6, pl3/32 and
0, respectively.

It is interesting to compare these values to those arising from the practi-
cal approach of structural engineers and recommendations in some codes of
practice, in which the load is supposed to flow to the beams as depicted in
Figure 9.21, referred to as envelope approach. For a square plate this leads
to a distributed beam load of triangular shape with maximum value pl/2 at
mid-span. In its turn, this load leads to a bending moment pl3/24, which is
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Figure 9.21 Loading of edge beams in ‘envelope’ approach.

10% too small, compared to the exact value pl3/21.6 for an infinite rigid
beam. For flexible edge beams in a twist-less plate with exact moment value
pl3/32, it is too large. Then the envelope approach overestimates the mo-
ment by 50%.

If a structural engineer is detailing flexible edge beams on the basis of the
envelope approach, the reinforcement in the plate itself may be too weak.
Even though safety may not be affected, there may be severe cracking in
practice.

9.5 Message of the Chapter

• Plate bending can be modeled by a grid of beams filled in by torsion
panels. The beams in their turn can be modeled by rotational spring
elements.

• The spring-panel model elegantly shows that the central part
of a square simply-supported plate under distributed loading is
dominated by bending and the corner parts by torsion, and that
the maximum bending moment is equal to the maximum twisting
moment for zero Poisson’s ratio.

• Equations in the global stiffness matrix are similar to those in the
classical Finite Difference Method.

Plates and FEM
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• The effect of edge beams can be shown by a simple hand calculation
with two degrees of freedom. Very stiff edge beams and very
flexible edge beams both lead to twisting moments in the corner
regions of the plate, however of opposite sign. For an in between
edge beam stiffness the plate is perfectly twist-less.

• For infinitely rigid edge beams, the engineering envelope approach
to calculate the maximum edge beam moment is 10% too optimistic.
It is 50% too pessimistic for flexible beams with a torsion-less plate.
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Chapter 10
FEM Essentials

In Chapters 8 and 9 the stiffness method was introduced in the framework of
discrete models out of a pre-FEM era. In those models we had to apply dif-
ferent element types to model the complete membrane behaviour: springs for
normal forces and panels for shear forces. The same was necessary in mod-
eling plates in bending; there separate rotational springs and torsion panels
were used. Compared to this approach the Finite Element Method (FEM) has
been a major step forward. One and the same membrane element accounts
for normal forces in two directions and shear forces, and one and the same
plate bending element accounts for bending in two directions and torsion.
The present Chapter is an overview of the main features of FEM codes and
comments on its practical use. The aim of this book is not an in-depth pre-

Zienkiewicz et al. [16] and Hughes [17].

10.1 Elements and Degrees of Freedom

The Finite Element Method provides an approximation to structural behav-
iour. The first step is to divide the structure into a large number of elements.
In this book the elements are plane elements; the dimension in the third di-
rection is small compared to the other two. The elements are joined to each
other at element corners; these are called nodes. Sometimes also mid-side
nodes occur on the edges of elements. In the nodes we choose degrees of
freedom. In a membrane plate analysis they are two orthogonal displace-
ments ux and uy . In a plate bending element we normally use three degrees
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sentation of FEM theory. For that purpose we refer to standard text books of

and Its Applications 171, DOI 10.1007/978-90-481-3596-7_10,



190 10 FEM Essentials

Figure 10.1 Degrees of freedom for membrane and bending analysis.

of freedom per node: the displacement w, the rotation ψx about the x-axis
and ψy about the y-axis. For rectangular examples we refer to Figure 10.1.

Sign definition

We stress that the definition of the rotations in FE codes is different
from the definition we used in Chapters 3 and 4 for the derivation of
differential equations. To avoid confusion we use another symbol. In
Chapters 3 and 4 we had chosen ϕ, now we use ψ . The sign convention
and subscripts are also different. The rotations ϕx and ϕy in Chapters 3
and 4 are positive when they lead to positive displacements ux and ux ,
respectively, for positive z-values in the plate. The rotations ψx and ψy

have a different definition. They are rotations about the x- and y-axis,
respectively, and are positive according to the right-hand rotation rule.

Plate elements may be spatially assembled. Examples are box-beams and
multi-cell bridges. In such structures, elements are needed both for mem-
brane and bending action; we usually need six degrees of freedom per node.
Regretfully, structural engineers call such elements shell elements. It is true,
FE codes include shell elements for curved surfaces, and in the limit case
of zero curvature they are used for combined membrane bending action. We
recommend calling such flat elements membrane-bending elements. In shell
structures there is interaction between the membrane and bending state; this
is absent in flat plates.

Commercially available packages usually offer a number of element
shapes to be used. Figure 10.2 shows triangles, rectangles and quadrilater-
als that can be inserted in the model. If a mid-side node is applied, the edge
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Figure 10.2 Commercially available packages offer various element shapes.

can be curved. For reasons beyond the scope of this chapter, such elements
are called isoparametric elements. Sometimes a commercial package offers
a quadrilateral element which, unknown to the user, is in fact an assemblage
of triangles.

In order to make an analysis the structure is divided into elements. Fig-
ure 10.3 shows two examples. The left part comes close to the Brazilian test
to determine the splitting tensile strength of a concrete cylinder. The right-
hand part of the figure shows a shear wall example with a vertical row of
openings as may occur in a tall building. In both examples a coarse mesh is
drawn. In reality finer meshes will be applied. It is common practise that the
software itself makes an appropriate mesh on the basis of the available ele-
ment types. Usually the user needs to specify just the average size of the ele-
ments; the program does the rest. Figure 10.4 shows two examples of spatial
structures which are assembled from flat membrane-bending plate elements:
a multi-cell bridge and a part of a train carriage.

Figure 10.3 Examples of membrane plate structures with element mesh.

Plates and FEM
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Figure 10.4 Examples of spatial structures composed of plate elements.

10.2 Stiffness Matrix and Constraints

The degrees of freedom at a node are common to all elements that meet at
that node. An individual element, in turn, shares the degrees of freedom of
different nodes. These degrees of freedom together form the displacement
vector of the element (this may also contain rotations). A generalized force
(which may be also a moment) is associated with each degree of freedom;
these forces together form the force vector of the element. The element stiff-
ness matrix relates the element displacement vector to the element force vec-
tor. For a triangular element with corner nodes i, j and k the matrix relation
appears as ⎡

⎣ ∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

⎤
⎦

⎧⎨
⎩

ui

uj

uk

⎫⎬
⎭ =

⎧⎨
⎩

Fe,i

Fe,j

Fe,k

⎫⎬
⎭ (10.1)

Herein the vector ui represents the degrees of freedom in node i and Fe,i

the vector of generalized element forces. The stiffness matrix governs the
structural behaviour of the element. Its derivation is based on the approxi-
mation of the displacement field within the element. The higher the degree
of polynomials in the field, the more accurate the element will perform. As
a rule, the performance of an element is better if it has more degrees of free-
dom, but it is not a guarantee. The quality of an element is dependent on
a number of items: the chosen displacement field, the way numerical inte-
grations are done, the extent to which displacements in adjacent elements
are compatible, etc. An element with mid-side nodes is expected to perform
better for the same mesh compared to elements without, but sometimes they
may do not.
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Figure 10.5 Two schemes for Gaussian points.

Programmers use Gaussian points in the mathematical integration proce-
dure to construct element stiffness matrices. Gaussian points relate to inte-
grals of polynomials over the area of an element. Gauss showed that one can
write such integrals as weighted sums of values of the polynomial at a num-
ber of discrete points. The points do not coincide with nodes, but are situated
inside elements at some distance from the edges. In rectangles sometimes
a two-by-two scheme is used, sometimes three-by-three, see Figure 10.5.
Normally the user need not know at all about such integration points, but
occasionally programs may refer to the Gaussian points, therefore they are
mentioned here. We refer for more details to [11] or [12].

The global stiffness matrix equation of a total structure with N degrees of
freedom is similar to that for a discrete model as shown in Eq. (8.2)

⎡
⎢⎢⎣

. . . .

. . . .

. . . .

. . . .

⎤
⎥⎥⎦

⎧⎪⎪⎨
⎪⎪⎩

u1

.

.

uN

⎫⎪⎪⎬
⎪⎪⎭

=

⎧⎪⎪⎨
⎪⎪⎩

F1

.

.

FN

⎫⎪⎪⎬
⎪⎪⎭

(10.2)

The global stiffness matrix is an assemblage of the individual element
matrices. Simple examples of the procedure appeared in Chapters 8 and 9.
The right-hand vector holds the load to which the structure is subjected. This
load consists of point loads at the nodes. When the user inputs a distributed
load, the program will replace it by statically equivalent point loads. With
the high speed of computers this is no problem in practice, and the user can
apply fine meshes. The assembling procedure has a physical meaning. If
M elements join together in node i then the M generalized element force
vectors Fe,i together balance the applied load Fi at that node.

The set of equations in (10.2) cannot be solved as long as rigid body dis-
placements can occur, for then the global stiffness matrix will be singular. We
must specify displacement constraints to prevent such singularity. Therefore,
all commercial packages offer features to specify rigid or flexible supports.
If a support is rigid, the corresponding displacement in that direction must be
zero. So, it is no longer a degree of freedom. Therefore, the row and column

Plates and FEM
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in the global matrix equation which correspond with that degree of freedom
must be omitted from the set. If a spring support in a node is specified, the
program will add the spring stiffness to the main diagonal term which corre-
sponds with the degree of freedom to be supported. This option can also be
used to specify a rigid support. Then, a very large spring stiffness must be
introduced. Some programs offer the choice for a support type in which only
a compressive force can occur. In fact, this makes the analysis nonlinear. The
analysis can be made by a linear-elastic analysis in an iterative way. We start
including all supports. After the analysis we release the supports with a ten-
sile reaction and restart the analysis. The iterative procedure is stopped when
all support reactions are compressive or zero. Some programs do the iterative
procedure itself.

10.3 Model Input

The preparation of input for a FE analysis covers all data for assembling
a solvable set of algebraic equations. At least the following data must be
specified:

• the shape of the structure,
• fineness of the mesh,
• element type and/or section profile,
• supports,
• material properties,
• load cases,
• applicable code of practice,
• combinations and weight factors.

Finite Element packages will always offer the feature of several load
cases and the possibility of making various combinations. Codes of practice
define which combinations must be considered, and which load factor must
be assigned to each load case in a combination. The user can make a choice
of point loads, line loads and distributed loads. Usually the load case for
the self-weight of the structure is generated automatically on basis of the
inputted data for geometry and material properties.

Often the element mesh is automatically generated by the program. How-
ever, the user may be asked to indicate the order of magnitude of the average
element size. The choice of the element type is a very important decision by
the user. For instance, in case of a slab analysis one must decide whether
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to use Kirchhoff elements or Mindlin ones. In Chapter 15 we will explain
the importance of this choice. Many a user is not aware, however, that
commercial packages have default options. For truss or beam elements, to
be inserted in plate models, the user must make a choice from a section
library.

Support data are easy to understand. As we noted earlier, a degree of free-
dom is either completely restrained, or a spring is introduced. Occasionally
a special compression-only support is offered. Spring supports may be point
springs, springs distributed along edges or over the area of an element.

10.4 Output Selection

Finite Element packages always offer a wide choice of output options. Stan-
dards are

• contour plots,
• trajectories,
• section graphs,
• lists,
• unity check,
• dimensioning/detailing.

The option of coloured contour plots has become very popular. These
plots can be selected for displacements and stresses (or stress resultants like
membrane forces, plate moments and transverse shear forces). Contour plots
for principal stresses, forces and moments and their trajectories are more or
less standard. Trajectories for shear forces are an exception, unfortunately.

Plea for graph output in sections

The great popularity of contour plots is to be regretted, the more so
when they are used in combination with options for automatic detailing,
results of which are also shown as contour plots. It prevents the struc-
tural engineer from fully grasping in which way the structure transfers
load to supports. A far more valuable facility is the graph option for
displacements or forces in sections over the structure. We will return
to this in Chapter 14. Software providers should take pride in offering

Plates and FEM
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this option. It is very helpful if the structural engineer can output the
integral of forces and moments in sections or dedicated part of sections.

Contour plots should at most be used to decide in which sections graphs will
be shown. A good alternative to contour plots are 3D pictures of displace-
ments, forces and moments. They are very instructive, because they appeal
to the engineer’s sense for structural behaviour.

Blameworthy use of envelopes of load cases

A really blameworthy practice is to consider an envelope of load cases
and combination results, rather than judging the result of each load
case and combination individually. In that way the structural engineer
cannot pick up how the structure behaves, and will have no idea about
actual safety levels. Apart of this, the approach is not economic. Struc-
tural engineers should investigate results of load cases and combina-
tions individually, at least for the most important ones.

When specifying stresses or stress resultants that the engineer wants to be
presented, there are several possibilities, such as stress (resultants) at nodes
or in the element centres. Stresses at a node differ from element to element.
The software may offer the choice of computing the average at a node or
the values at the centre of elements. Averaging is a pleasant feature, but is
misleading for elements which join in a node and have different thickness.
Exceptionally, software may present output at Gaussian points. In such
cases the software most probably deals with a specialized subject.

All programs will calculate support reactions. Usually an equilibrium check
is done in so far that a check is made to compare the total load to the sum
of the support reactions. Strictly speaking it is not proving that the set
of equations has been solved correctly, because an ill-conditioned set of
equations may lead to a wrong solution even though the test is satisfied.
However, in practice it is valuable to test the correctness of the applied load,
because ill-conditioned sets of equations are rare in practice.

Finally, the user can usually ask to see at which positions in the structure the
permissible stress level is surpassed. This is of great use for steel structures.
The stresses can be combined to yield the Von Mises stress which is then



197

compared to the yield stress. In a unity check it is tested whether the ratio
of the Von Mises stress and the yield stress is smaller than 1. If not, the
design must be changed. For reinforced concrete slabs a FEM package often
offers the feature of calculating the wanted reinforcement ratios. Because of
its importance, Chapter 16 is fully devoted to this subject.

10.5 Message of the Chapter

• The reliability of a FE analysis highly depends on the competence
of the structural engineer. Garbage in is garbage out.

• Seemingly, higher-order elements need not necessarily perform
better than simpler elements.

• Programmers sometimes make choices which are hidden from the
user. The user should be aware of set defaults.

• FE codes may offer post-processing options for unity-checks
and detailing of reinforcement. The user should be aware of the
assumptions underlying such design options.

• Contour plots are a popular way to present results, but they prevent
the structural engineer from grasping how a structure will transfer
load to supports.

• 3D plots and section graphs may appeal much more to the engineer’s
sense for structural behaviour. Software providers should take pride
in offering such options. It must be possible to output the integral of
forces and moments in sections and dedicated part of sections.

• The practice of making envelopes for results of load cases and com-
binations is blameworthy and fundamentally wrong. Structural en-
gineers should investigate results of load cases and combinations
individually, at least for the most important ones.
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Chapter 11
Handling Membrane FEM Results

11.1 Surprising Stresses

11.1.1 Effect of Poisson’s Ratio

We consider a box-shaped steel bridge as shown in Figure 11.1. The box
has two horizontal walls, at the top and bottom respectively, and two vertical
walls, one at each outer side. There are no inner vertical longitudinal webs
in the bridge. The structure is a new bridge on an existing pier that had been
used for a narrower structure. Therefore, the two bearings at each bridge end
do not coincide with the vertical side walls of the box structure, but are in a
position more inward. It makes the end diaphragm behave as a beam with a

parts, two squares outside the bearings and one between the bearings which
has a length over depth ratio of two. The outer vertical walls are schema-
tized as vertical stiffeners at the ends of the diaphragm. These walls carry
forces F to the two ends of the diaphragm. These point loads cause support
reactions F in the bearings. In order to introduce these concentrated sup-

Figure 11.1 End diaphragm of box-shaped bridge.
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four-point loading as drawn in Figure 11.1. The diaphragm consists of three
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port reactions in the web of the diaphragm, two vertical stiffeners have been
added at the position of the bearings. The diaphragm will bend such that the
upper edge becomes longer and the lower edge shorter. Because of compat-
ibility reasons, parts of the horizontal walls of the box will then participate
in the transfer of the forces. In Figure 11.1 these parts have been modeled as
horizontal stiffeners over the full length of the diaphragm, top and bottom.

Now we draw attention to the spots A in the diaphragm. The normal force
in the vertical stiffener will be Nvert = −F . The normal force in the horizon-
tal stiffener at that position will also be Nhor = −F . This result means that
the strains are equal, to ε, in the vertical and horizontal stiffeners at position
A. The stress σ in the vertical stiffener is σ = Eε. Because of compatibility
the strains in the web material adjacent to the stiffener must be of the same
size: εxx = εyy = ε. The stress in the web plate must be calculated with
Eq. (1.13):

σyy = E

1 − ν2

(
εyy + νεxx

) = E

1 − ν
ε (11.1)

For Poisson’s ratio ν = 0.3 we find a stress is σyy = Eεyy/0.7 = 1.43Eε,
43% larger than the stress σ = Eε in the adjacent stiffener with the same
strain. Accounting for Poisson’s ratio in this way can be important, partic-
ularly if buckling must be considered. The web is compressed, both in the
horizontal and vertical direction.

11.1.2 Effect of Kink in Beam Flange

Now consider a clamped beam of I-section subjected to a point load at its
free end, as shown in Figure 11.2. The cross-section of the beam consists
of two flanges and a web. The width of the flanges and depth of the web
are equal. The top flange is straight over the full length of the beam. The
bottom flange is parallel to the top flange over about two-third of the beam
counted from the clamped end, but then the height of the web decreases
linearly to about half its height at the free end. As a result a kink occurs
in the bottom flange. The subject of this Section is the distribution over the
beam length of the bending stress σ in the connection line between the web
and the bottom flange. Classic beam theory predicts σ = M/W , where M

is the bending moment and W the section modulus. The bending moment
M varies linearly over the length of the beam; W is constant between the
clamped end and kink, and decreases in a nonlinear way to about one quarter
of the constant value at the free end. So the expected stress distribution will
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Figure 11.2 Unexpected effect of kink in bottom flange.

be linear between the clamped edge and kink. Between the kink and free end
the stress will be larger than for a constant W , but it will become zero at the
free end.

As an alternative we can perform the calculation with the aid of a FEM
program in which we choose membrane elements. We model the flanges by
rectangular elements, say four over the half width. Choosing an aspect ratio
of about two, we obtain the wanted number of elements over the length. For
the web the same number of elements over length and depth is used. A sketch
of the result to be expected from the FE analysis is included in Figure 11.2.
It is completely different from the expectation on basis of the classical beam
theory.

The explanation for the unexpected FEM result has to do with the fact
that the classical beam solution is not admissible at the location of the kink.
That solution predicts that a stress σ = M/W acts in the horizontal flange
at the position of the kink and that the same stress acts in the inclined flange
at that position. The two membrane forces meet each other at an angle, and
therefore equilibrium can only exist if a third force in another direction acts
in the same point to balance them. In reality there is no third force, so the
membrane stresses in the bottom flange can be zero only at the location of the
kink. In fact, there the I-section beam behaves as a T-section beam, consisting
of the web and the top flange, shown in Figure 11.3. The section modulus
reduces substantially, the neutral line shifts upward, and the bottom stress
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Figure 11.3 Explanation of unexpected high bending stress.

increases. At some distance from the kink, the flange will contribute again.
Shear stresses σxy between the web and each flange half must develop to
obtain this effect. These shear stresses abruptly change sign and direction
at the kink, and the bending stress σxx correspondingly decreases in two
directions.

FE analyses bring to light omissions in design

FE analyses show stress concentrations where classic beam calcula-
tions suppose smooth stress distributions. Sometimes they bring mer-
ciless to light omissions in design.

Those who are familiar with bond stresses in a cracked reinforced concrete
bar under tension will see a similarity. At a crack the reinforcement bar has to
carry all the tensile force, and at some distance from the crack the concrete
and bar carry the force together. A transition length occurs in which high
bond shear stresses transfer part of the high tensile force in the crack to the
concrete.
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Figure 11.4 FE analyses do not converge in case of stress singularities.

11.2 Stress Singularities in FEM

In Section 6.2.2 we derived the stress state in the Brazilian splitting test.
A cylindrical body is compressed by two opposed line loads. We found a
constant horizontal tensile stress over the vertical plane of the cylinder and
concentrated horizontal compressive point loads, one on the top and the other
at the bottom, to balance the tensile stresses. In Figure 11.4 this test is simu-
lated by a FE analysis. Instead of the circular cross-section, a square is cho-
sen. The four corner areas outside the inner circle are relatively low-stress
regions which hardly influence the stress state in the vertical plane of sym-
metry. The theoretical solution of the horizontal stress σxx is shown, and the
stress is computed by FEM in two positions, point 1 at the top edge of the
square and point 2 in the centre. The analysis is done for different mesh fine-
nesses, indicated by the number of elements N over the width and height of
the cross-section. It is expected in a FE analysis that mesh refinement would
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make the stress result converge to its final correct value. We notice that this
is indeed the case for the stress at point 2, but not at point 1.

Lesson on singularities

Convergence is obtained for stresses of finite value, but not at locations
where the membrane plate theory predicts a singularity. Then no con-
vergence will occur. The same is true for an infinitely large bending
moment in plate bending, the subject of Chapter 14. There, too, mesh
refinement does not make sense.

11.3 FEM-Supported Strut-and-Tie Modeling

If we have to design the reinforcement in concrete walls, it may be helpful
for understanding force transfer to draw a Strut-and-Tie Model (STM). It is
a truss-type model in which the load is represented by a set of well-chosen
lumped forces, and the transfer to the supports occurs through a system
of compressed struts and tensioned ties. In simple statically determinate
problems the structural designer easily knows how to choose the strut and
ties, but statically indeterminate structures may be puzzling, because more
than one possibility exists. Figure 11.5 shows a simple example. A square
silo is supported at the four corners and is subjected to a homogeneously
distributed vertical load over the area of the walls. This load is due to own
weight and possible friction of bulk material in the silo.

Each silo wall is a deep beam, of which the maximum bending moment oc-
curs in the vertical line of symmetry at mid-span. The distribution of the
horizontal stresses in this section must be known in order to design the rein-
forcement properly. The strut-and-tie model for an individual wall is simple,
as appears from Figure 11.5. Green is compression, red is tension. In the line
of symmetry at mid-span of the wall there is a compressive horizontal force
and a tensile horizontal force of equal size. The product of the distance be-
tween these two forces times the value of the forces is the bending moment.
The problem for the structural engineer is to make a fair guess about the dis-
tance, then calculate the tensile force and decide on the amount of horizontal
reinforcement. Because the structure is highly statically indeterminate, the
choice is hard to make. A FE analysis may help to make a good estimate.
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Figure 11.5 FEM as support for Strut-and-Tie Model

We have analyzed the wall with a course mesh, which is appropriate. In
fact the wall behaves as a deep beam, as discussed in Section 2.2.2. There
we assumed that the wall has a distributed support over the full height of
each vertical edge. The result for deep walls will be that the vertical sup-
port reaction is very much concentrated in the lower part of the edges. This
distribution of the support reaction is close to the real support of the deep
wall. The difference is then not significant. And for the rest, it anyhow is
not relevant where the support occurs along the vertical edge. This does not
influence the total beam moment which must be transferred in the vertical
line of symmetry of the wall. The result of the FE analysis has been included
in Figure 11.5. First, we see that the computed result agrees well with the
theoretical expectation in Figure 2.13 for a short, tall wall. Second, the stress
distribution along the line of symmetry nicely shows where we can choose
the center of gravity of the tensile stresses and of the compressive stresses,
which determine the positions of the horizontal tie and strut, respectively.

FE analysis as support for strut-and-tie modeling

FE analysis supports the structural engineer in making strut-and-tie de-
cisions. It helps positioning the reinforcement and determining lever
arms.

Plates and FEM
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Figure 11.6 Exploded view of elements around re-entrant corner.

11.4 Re-entrant Corner

The silo wall of Section 11.3 offers a good occasion to draw attention
to a typical aspect which accompanies FE analyses for structures with a
re-entrant corner. An example is displayed in Figure 11.6, which could
be the corner between the column and the bottom edge of the wall. We
have drawn in an exploded view rows and columns of rectangular elements
around the corner. The re-entrant corner has edges BC and BD, so the corner
is at node B. For ease of explanation it is assumed that the load is applied
outside the considered part of the element mesh. We consider the vertical
line which runs from node A over B to C, and focus on the horizontal
forces at the nodes and the equilibrium of these forces. The two nodes
between A and B can be seen as regular mesh nodes. Here four elements
join together in a node and each element brings in an element force to the
equilibrium equation for that node. The two forces coming from the left
are more or less equal, and the same holds true for the two forces coming
from the right. Equilibrium requires that the sum of the four forces is zero.
The result is that the horizontal stresses in the four elements will be almost
equal. An averaging procedure makes sense in such points. In corner node
B a different situation exists. Now there are three element forces and they
must sum to zero. The two left forces, more or less of equal size, must
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balance those coming from the right. Therefore, the horizontal stress in
the element to the right of node B is about twice the stress in the elements
to the left of the node. If the stress to the left of the node is about σ in
both elements, then it will be 2σ to the right of the node. This latter size
must be considered as the most realistic one. The average value is 1.33σ ,
which is only two-third of the maximum stress 2σ , the realistic one. Below
corner B, only two element forces remain, which must be equal and opposite.

The stress state in the re-entrant corner is singular. In fact infinitely large
shear stresses must occur in the horizontal line through corner node B to
achieve that the stress 2σ in the right plate part is spread over the two plate
parts left of the vertical line. A disturbance occurs in the FE analysis which
is still noticed in the edge nodes below the corner B. The stress distributions
over sections just left and right of the vertical line through the corner node,
sketched in Figure 11.6, visualize this. The dotted line represents the stresses
to the left of the line ABC. It takes a couple of elements before the stress re-
ally is zero on the free edge BC. The explained phenomenon is inherent to
the finite element method. The finer the element mesh, the smaller the region
will be where the disturbance is seen. Similar effects are seen in plate bend-
ing near re-entrant corners. What we have explained here for plate forces,
will occur there for plate moments.

Note on averaging procedures

Averaging procedures can be misleading at re-entrant corners. The av-
erage value can be far less than the real maximum stress.

11.5 Tall Wall with Openings

Multi-storey buildings often transmit wind loads to the base through shear
walls of reinforced concrete. Shear walls may be positioned as end walls
in building plans or as inner walls. At each storey an opening may occur;
in end walls they allow for windows, and in inner walls they are necessary
if a corridor crosses the wall, see Figure 11.7. We can view the tall wall
with openings as a structure of two slender walls, left and right respectively,
which are connected by horizontal cross-beams at each floor. Walls and
beams together form one monolithic structure. If the shear wall is subjected
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Figure 11.7 Expected behaviour of tall wall with openings due to wind.

to wind load, the cross-beams will act as dowels, and the wall will deflect
(w) as sketched in Figure 11.7. The structural engineer is interested in the
size of the transverse dowel forces (shear forces) D in the cross-beams, in
order to detail the reinforcement in an adequate way. As a consequence
of the dowel forces D, a tensile base force N will act in the left wall and
a compressive base force N in the right. These normal forces carry part
of the total wind moment at the base. The other part consists of bending
moments in the left and right wall at the base, Ml and Mr respectively. The
total horizontal force due to the wind is the base shear, which is divided
over the left and right wall Vl and Vr respectively. The base information
is of interest to the structural designer in order to properly design the
foundation. The expected diagrams for normal forces N , moments M, and
beam dowel forces D are included in Figure 11.7. Of course, the analyst
must superimpose the load due to self-weight.

In the 1960s and 1970s a lot of research on the force distribution in this
type of structure was published on the basis of differential equations, among
which contributions of Rosman [18] are well known. Today structural engi-
neers will most probably apply FE analysis. In this section we comment on
the FE modeling of this type of structure. We will do this in two ways: in
Section 11.5.1 the focus is on modeling with membrane elements; in Sec-
tion 11.5.2 it is on modeling as a frame structure.
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Figure 11.8 Tall wall with row of openings.

11.5.1 Modeling with Membrane Elements

In Figure 11.8 we consider in more detail the force transfer in an individual
cross-beam. The midpoint of beams is a point of counter-flexion. A constant
shear force D occurs in the cross-beams, and the diagram for the bending
moment M is linear with a zero value at mid-span.

At the connection between the cross-beams and the vertical walls, there
will be high stress concentrations. Therefore, a sufficiently fine mesh must
be chosen around beam-wall connections. Further away in the vertical walls
a courser mesh will be adequate. However, a coarse mesh is not really nec-
essary in view of the speed and the mass storage of current computers. If
the structural engineer chooses the membrane element with mid-side nodes
(quadratic displacement) it suffices to use two elements over the depth of the
cross-beam. For the element with only four corner nodes (linear displace-
ments) three or more elements over the depth must be applied. Additionally,
we recommend choosing the constant shear element because it performs
better in situations where the element must reproduce bending states. The
expected distribution of bending stresses in the cross-beams for linear and
quadratic elements is included in Figure 11.8.
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Figure 11.9 The shaded elements will be seriously cracked.

Figure 11.9 shows the mesh with two elements over the depth. Because
the largest moment occurs at the end of the cross-beam, and there is stress
concentration at the connection, we expect substantial cracking. We can ac-
count for that by reducing the modulus of elasticity. Compared to the middle
part of the cross-beams the actual stiffness might be halved. In Figure 11.9
we have marked these elements by shading. Reduction of the stiffness is im-
portant if the structure is sensitive to geometrical nonlinearity (second-order
effects) and an increase of bending moments must be considered in stability
checks.

11.5.2 Modeling as Frame

Another way to investigate the force distribution in a tall wall with open-
ings is to model the structure as a frame. In this case we must pay attention
to a number of things. The frame consists of two vertical members (line el-
ements), which coincide with the centre lines of the two slender walls. A
horizontal member is placed in the centre line of each cross-beam. The mod-
eling of the vertical members does not raise problems. The engineer must
just make sure that the computer program accounts for deformation due to
both normal forces and bending moments. Shear deformation need not be
considered for slender walls. In the frame model, we introduce horizontal
members with rigid end parts. The length of these rigid parts must be chosen
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Figure 11.10 Frame model of tall wall with openings.

with care. At first glance we may make the length half the width of the verti-
cal walls, but then we make them too long. At the junction of the cross-beam
and the walls, there will be deformation of the wall. Therefore, we recom-
mend working with a fictitious length of the cross-beams larger than the real
length. At each end the cross-beam may be extended by a length equal to
the half depth of the beam, see Figure 11.10. So, the length of the rigid parts
become smaller than the half width of the vertical walls.

Next to the choice of the length of the cross-beams, we must decide
whether they behave as Bernoulli beams (flexural deformation only) or
Timoshenko beams (flexural and shear deformation). Even after we increase
the length of the cross-beam, it is still not slender. We must consider the half
length of the beam, because of the zero value of the moment at mid-span.
The half cross-beam is a cantilever beam with a point load at the end (point
of counter-flexion), as discussed in Section 2.1.3. The length over depth
ratio of the cantilever beam may become of the order of magnitude two and
then, according to Eq. (2.57) stiffness reduction occurs. One can account
for this either by using a program that accounts for shear deformation or by
introducing a judiciously decreased bending stiffness.

Until now, we have assumed that the cross-beams have rectangular cross-
section with the same width as the wall thickness. It is probably more com-
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Figure 11.11 Frame models easily include deviating support structures.

mon that floor slabs are fixed to the cross-beams. Then the engineer has to
increase the bending stiffness of the cross-beam in the model, because of two
reasons. The first reason is that the cross-beam becomes a T-shaped beam be-
cause the floor behaves as a flange of the cross-beam. It is not likely that this
contribution is substantial. Participation of the floor as flange presupposes
that a normal force can operate in the flange, however this requires a suffi-
cient length to build up the normal force, and the half cross-beam is too short
to obtain this. The other reason to include participation of the floor slab is
the bending of the slab. It has to follow the curvatures of the cross-beam,
so an effective slab width must be chosen, the bending stiffness of which
is added to the bending stiffness of the cross-beam. To choose this effective
slab width we could draw a line from the cross-beam centre with an angle of
45 degrees to the cross-beam. This implies, at the connection with the wall,
a slab width at each side of the cross-beam of half the length of the beam.

Figure 11.12 Example of three coupled walls with two rows of openings.
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Figure 11.13 Stress distribution in walls at base level. Dashed line for pin-
connected cross-beams. Dotted lines for infinitely rigid cross-beams. Full line for
real cross-beam stiffness.

Unlike the first, this second contribution to the beam bending stiffness may
be substantial.

The frame method has a number of advantages. First, it provides results
in a way structural engineers appreciate. The analysis leads to normal forces,
shear forces and bending moments, for which code checking is familiar. Sec-
ond, special supporting structures can easily be included in the model. Fig-
ure 11.11 demonstrates this. Third, it is easy to handle irregular structures
with different storey heights and locally deviating cross-beam stiffness, and
walls that are hard to model as a membrane plate fit easily in a frame model.
Figure 11.12 shows an example. The building of about 90 meters height
houses the administration offices of the government of a province in the
Netherlands. The plan form is shown in the right-hand top part of the fig-
ure. The dashed lines are glass facades. In the plan, four T-shaped columns
are connected with the corners of a central rectangular shaft. The connection
of the columns to the shaft is by cross-beams at each floor level. A cross-
beam of exceptional stiffness occurs at all four corners between the sixth
and seventh storey. The building is subjected to wind at the long edge of the
plan form.
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The structure has been modeled as a system of three vertical walls and two
rows of openings, as depicted in Figure 11.12. Because of symmetry, normal
forces occur only in the two outer walls. The results of the analysis are in-
cluded in Figure 11.12. At the position of the cross-beam with exceptional
stiffness, there is a large dowel force D, which causes discontinuities in the
bending moments and in the normal forces of the outer walls. Figure 11.13
displays the base stresses in the three walls. Note that the stress diagrams
have the same gradient; this must hold because the three walls share the same
deflection and therefore curvature. In the plot also the stresses are shown
which would occur for two extreme situations, one in which the cross-beams
are pin-connected and just act as trusses, and another in which the cross-
sections are perfectly rigid such that all three walls act together as one wide
beam, respectively. The actual maximum stress is about twice the stress for
the ideal stiff case, however less than one-third of the pin-connected case.

11.6 Checking and Detailing

Commercial packages offer program features to check whether the design of
structures is in accordance with codes of practice, or to dimension structural
components. Here we just touch the subject to give an impression.

11.6.1 Steel

After a stress analysis has been performed for a steel structure, a so called
unity check is made to confirm that the stress state in the structure is suffi-
cient remote from the state of yielding. For that purpose the Von Mises stress
σVM is calculated. In two-dimensional states this stress is

σVM =
√

σ 2
1 + σ 2

2 − σ1σ2 (11.2)

where σ1 and σ2 are principle stresses. The condition is that this stress is
smaller than the yield stress σy:

γmat σVM ≤ σy (11.3)

Here γmat is the partial safety factor to be taken into consideration. Fig-
ure 11.14 visualizes the yield condition in the two-dimensional diagram for
principal stresses. The actual combination of stresses must remain within the
yield contour.
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Figure 11.14 Von Mises yield criterion. Dashed line Tresca.

11.6.2 Reinforced Concrete

For reinforced concrete structures, programs offer options to design the re-
inforcement automatically. We must solve a problem if we want to apply a
two-way orthogonal reinforcement, because we have three membrane forces
nxx, nyy and nxy . The subject will come up in detail in Chapter 16, but we
will give a taste of the approach here. Consider a square panel with tensile
normal membrane forces and a non-zero positive membrane shear force. In
its most simple form the procedure is to replace the three membrane forces
by two steel forces per unit length, nsx and nsy .

nsx = nxx + nyx

nsy = nyy + nxy

(11.4)

and dimension the reinforcement in the x- and y-direction on the basis of
these two forces. The idea behind this procedure is the assumption that the
concrete is cracked. For the direction of the cracks only the shear membrane
force nxy is considered, which leads to principle forces in the direction of
the diagonals of the panel, one tension and one compression respectively.
The cracks are supposed to develop normal to the tensile principal force.
This situation is shown in the top part of Figure 11.15. There the lower right
triangular part represents concrete, and the upper left triangle shows the re-
inforcement bars. Equation (11.4) follows from the equilibrium conditions
in the x- and y-direction of the concrete triangle. If the shear force has an
opposite sign, the crack direction reverses. The relations in Eq. (11.4) still
hold true if we use the absolute value of the shear forces, as follows from the
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Figure 11.15 Determination of the reinforcement forces nsx and nsy .

bottom part of Figure 11.15. The concrete struts are now in the direction of
the other diagonal. It is a consequence of the assumed cracked state that com-
pressive stresses occur in the concrete. A shear membrane stress σ causes a
compressive stress of 2σ in the concrete struts, as is seen in Figure 11.16.
This follows from the equilibrium of a strut of width s

√
2 if s is the spacing

between the reinforcement bars.
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Figure 11.16 Cracked concrete, tensioned reinforcement, diagonal compressive
struts.

11.7 Message of the Chapter

• Lateral contraction due to Poisson’s ratio can be responsible for
unexpected local increases of stress.

• FE analyses show stress concentrations where classic beam calcu-
lations suppose smooth stress distributions. Sometimes they reveal
omissions in design.

• If the theory of elasticity predicts a singular stress, refinement of
mesh in the FE analysis will lead to ever increasing stress values.
No convergence will be obtained.

• Linear-elastic FE analysis can be a help to structural engineers who
like to use strut-and-tie models in detailing reinforced concrete.
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• Re-entrant corners are singular stress spots in membrane structures.
Here, averaging of discontinuous stress values must be done with
care.

• The structural engineer can account for severe cracking in a linear-
elastic FE analysis by judiciously reducing Young’s modulus in
cracked regions. An example is a tall wall with a row of rectangular
openings. This structure can alternatively be handled as a frame.



Chapter 12
Understanding FEM Plate Bending

12.1 Intended Goal and Chosen Structure

This is the first chapter on FE-based analysis of plate bending. We include
this for in-depth understanding of the nature of the approximation. The
Finite Element Method does not violate the kinematic and constitutive
relationships, but satisfies equilibrium conditions only in an average sense.
We will investigate to what extent equilibrium is maintained. The shape
of the plate is purposely chosen so that all kinds of boundary conditions
can be included. For the goal of this Chapter we choose a coarse mesh.
When discussing real structural problems in subsequent chapters, we will
apply finer meshes. The chosen concrete structure is shown in Figure 12.1,
with a set of axes x,y in the horizontal plane, shown in the left-hand top
corner. The slab has 40 elements and 55 nodes. The nodes and elements
are numbered. Element numbers are put in a frame throughout the whole
chapter, to distinguish them from node numbers. All elements have the same

the y-direction. The plate thickness is 200 mm. The edge between the nodes
1 and 8 is clamped, and the edges between nodes 8 and 55 and between
nodes 51 and 55 are simply-supported. The remaining edges are free. A ball
support is placed in the corner node 33, which is a constraint only to the
vertical displacement. The slab is loaded by a homogenously distributed
load p = 800 N/m2. The material Young’s modulus is E = 30.000 N/m2

and Poisson’s ratio v = 0.2.

The finite element program is based on the frequently applied rectangular
elements with four corner nodes and three degrees of freedom per node,
the vertical displacement w and two rotations ψx and ψy . As stated in Chap-
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size, with a length a = 0.9 m in the x-direction and a length b = 1.3 m in

and Its Applications 171, DOI 10.1007/978-90-481-3596-7_12,



220 12 Understanding FEM Plate Bending

Figure 12.1 Mesh of a plate with node and element numbering.

ter 10, rotations in FE codes are defined about the x- and y-axis, respectively.
In this element type the two bending moments mxx and myy are linear in both
directions x and y, so will in general have different values in the four ele-
ment corners. The twisting moment mxy has a distribution which is slightly
parabolic, and also may take different values in the four corners. The shear
force vx is constant in the x-direction and varies linearly in the y-direction,
whereas the shear force vy is constant in the y-direction and varies linearly in
the x-direction. The program replaces the distributed load over the element
area by lumped vertical forces at the four corners. No torques, associated
with the rotations ψx and ψy , are generated.

We need to discuss the way in which the boundary conditions are chosen.
At the clamped edge, we have chosen w = 0 and ψx = 0 at each node.
We also could have added ψy = 0 in order to enforce the edge to remain a
straight line, but we decided not to do so. In reality meshes are much finer
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Figure 12.2 Moments, shear forces and trajectories.
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than those chosen in this chapter, and then the requirement to model a straight
line is met automatically. For the simply-supported edge we can argue in the
same way. There we have just specified w = 0. However, there is a more
serious argument. In case of the thin plate theory (Kirchhoff) the support
reaction in w-direction will not change when we introduce the additional
rotation constraint. This is inherent to the presuppositions of the theory, for
which we refer to Section 4.4. Things are different for the thick plate theory
(Mindlin). If we put additionally ψx = 0 for the simply-supported vertical
edge in Figure 12.1, then the twisting moments lead to support torques Tx

associated with ψx . And the support reactions in w-direction will become
different. Putting ψx = 0 at the clamped edge will not make much difference
because there the twisting moment is zero.

Contrary to practitioner’s practice, we have listed the computation results
for the moments and shear forces in Tables 12.1a and 12.1b for each element
and all four nodes in the element. This is done because we want to do
checks on detailed scale. In these tables we indeed see that the moments
take different values in each corner of the element, but the shear forces do
not. For the latter, only two different values per element occur, each value
holding true in two nodes (constant in the direction from the one node to the
other). In Table 12.2 we present the computed support reactions. This table
reflects the way we have specified the boundary conditions. In the nodes 1 to
8 we obtain two support reactions, one for w = 0 (direction z in the list) and
one for ψx = 0 (direction x in the list). The nodes 16 to 55 in the table are
nodes on the simply supported edges, with w = 0, and show just a support
reaction in the direction z. The same holds for the ball support in node 33.

In order to give the reader an impression of the real moment and shear force
distribution, we have calculated the slab with a finer mesh as well, and we
present a number of plots in Figure 12.2. Hereafter, however, we will just
work with Tables 12.1 and 12.2 for the coarse mesh. Figure 12.2 shows the
displacement w, the moments mxx , myy and mxy and trajectories for the mo-
ments and shear force. The length of a trajectory is an indication of the size
of the principal moment or shear force. The bending moment myy has an
opposite sign at the clamped edge compared to the moment remote from the
edge. We recognize the irregularity at the inner corner between returning
edges. Locally high twisting moments occur there. Also high shear forces
happen, as is seen from the large trajectories at that position. The bending
moment is highly irregular also.
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Table 12.1a. Output for the elements 1 to 20 of the finite element program.

12.2 Bending Moments and Equilibrium

12.2.1 Discussion of Moment Diagrams

Figure 12.3 shows the plan of the slab with four sections I, II, II, and IV.
Moment diagrams for these sections are shown in Figure 12.4. First, they
make clear that moments are discontinuous at the boundaries between el-
ements. This implies that moments which should be zero at an edge may
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Figure 12.3 Sections where moment diagrams will be shown.

Figure 12.4 Plots of moment distributions.
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Table 12.1b. Output for the elements 21 to 40 of the finite element program.

deviate from the correct value. This is seen for moment mxx in section II.
For realistic mesh fineness this has no practical meaning. The finer the mesh,
the closer the moments become to zero. Secondly, we see in section II that
the twisting moment mxy is non-zero, but now clearly not as a consequence
of the coarse mesh. In Kirchhoff theory a twisting moment is permitted at
free edges. It will also be allowable for fine meshes. Otherwise, the twisting
moment in section IV must be zero at the clamped edge. This is satisfied
apart from the small discontinuities at each element edge. At the opposite
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Table 12.2 Support reactions in the boundary nodes.

end of section IV, a free edge, we would expect a twisting moment, and there
is one. The bending moment myy in section IV shows the expected shape
for a beam simply-supported at the one end and clamped at the other. Sec-
tion III shows the bending moment mxx. The bending moment myy in the
lateral direction is expected to have a value, which is Poisson’s ratio times
the clamped moment myy = −3185 N, so mxx = −0.2 × 3185 = −637 N.
In Table 12.1a we read the value −763 N, the difference being due to the
coarse mesh. At mesh refinement the requirement will be fulfilled better.
The distribution of the lateral moment mxx for section III is also included
in Figure 12.4. Indeed a negative value occurs close to the clamped edge,
of the order of 20% of the clamped moment myy . The other end of section
III coincides with the corner between the returning edges, which is a sin-
gular point in the plate. There a peak value occurs of size 4081 N. If we
shift section III a little to the right, it will lie in the row of adjacent ele-
ments. Then the peak value is 2126 N (average of the value in elements 25
and 29), which is about half of the peak value 4081 N in section III. This
verifies the expectation expressed in Section 11.4 for corners with re-entrant
edges.
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12.2.2 Equilibrium Check for Moments

In a FE analysis we must distinguish two types of moments and forces, as
stated in Chapter 10. First, we have the generalized element forces and mo-
ments, which act between elements at element nodes. These forces and mo-
ments correspond with, and have the same sign convention as, the displace-
ment w and rotations ψx and ψy . Usually they are hidden for the user. Sec-
ondly there are the engineering bending and twisting moments mxx , myy , mxy

and shear forces vx and vy within the elements, with another sign convention.
These are available to the users and can be shown in sections through the el-
ements or as contour plots.

In principle, FE analyses produce an approximation; however, equilib-
rium is always satisfied on the level of the generalized element forces and
moments, regardless of the fineness of the mesh. Because support reactions
are computed from these generalized forces and moments, they are always
in equilibrium with the applied load. The sum of all support reactions in
the z-direction in Table 12.2 is 37,443 N, for a total distributed load p of
37,440 N, a difference less than 0.01%. This difference is due to rounding
off errors rather than inaccuracy of the method.

The story is different for the engineering forces and moments. No
equilibrium is automatically ensured, and we have to inspect to what extent
the engineering bending moments and forces satisfy equilibrium. The check
for moments is the subject of this section; we do the check on shear forces
in the next section.

We will make an equilibrium check of the diagram for the bending moment
myy in section I shown in Figure 12.5. This is the bending moment in the
direction normal to the section. We know that the stress state near the corner
between returning edges is highly irregular. Therefore, we lower our expec-
tations. We will perform the check on equilibrium as follows. We integrate
the internal moment myy over the length of section I, and compare this total
moment with the total moment due to the external load. There is a difficulty:
the plate part below section I is not free hanging. The total moment in the
section cannot be determined on the basis of load only; we also must con-
sider the support reactions in the edge nodes of this plate part; we know that
they are a set of forces and moments equilibrating the load. We calculate the
integral of the bending moments myy by determining the average, which we
multiply by the length 4a of the section. The values of myy are drawn from
Table 12.1, and we find

Plates and FEM
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Figure 12.5 Plot of the distribution of myy in section I.

mave = 1
8

⎡
⎢⎢⎣

29︷ ︸︸ ︷
m36 + m37 +

30︷ ︸︸ ︷
m37 + m38 +

31︷ ︸︸ ︷
m38 + m39 +

32︷ ︸︸ ︷
m39 + m40

⎤
⎥⎥⎦= 1,002.4

Length of line is 4a = 3.6 ×
Integral of moments myy = 3,609 Nm

The load on the plate part below section I consists of distributed load p and
support reactions R at the nodes 45, 50, 51, 52, 53, 54 and 55. The total
external moment with respect to section I is calculated.

4 a × 3 b × p × 3b/2 = −21,902
R45 × b = 3,659
R50 × 2 b = 5,427
(R51 + R52 + R53 + R54 + R55) × 3 b = 16,425 +
Total external moment = 3,611 Nm

We conclude that the sum of the engineering moments myy in section I is
in surprising good equilibrium with the external load and support reactions.
The difference of 3,609 and 3,611 N is less than 0.1%. Considering the very
coarse mesh, we can be satisfied; our low expectations were unjustified.

12.3 Shear Forces, Support Reactions and Equilibrium

We will now discuss the distribution of the shear forces, compare them to the
support reactions, and check their equilibrium with the external load.
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Figure 12.6 Distribution of shear forces and support reactions.

12.3.1 Discussion of Shear Force Diagrams

In Figure 12.6 we show the distribution of shear forces in sections V and VI
close to the clamped and simply-supported edge, respectively. These sections
are drawn through the centre of elements because the shear force is constant
in the direction it acts (vx in the x-direction and vy in the y-direction). The
distance of the sections to the edge is a half element width. For the same
edges we also have depicted the vertical support reactions (z-direction) over
the edges Va and VIa. The distribution of the shear force vx in section VI
corresponds reasonably with the support reaction in edge VIa. A tensile force
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Figure 12.7 Calculation of reaction force R4 from the shear forces.

appears to occur at the clamped edge. This is not due to the twisting moment
which is supposed to be zero at a clamped edge, but rather to the shear force
vx . There is a good agreement between shear force vy and support reactions
along the clamped edge.

12.3.2 Equilibrium Check for Shear Forces

In this section we check to what extent shear forces satisfy equilibrium at
four nodes of the slab. We select node 4 on the clamped edge, node 40 on
the simply-supported edge, node 55 in the corner between the two simply-
supported edges, and node 33 in the corner between the two free edges at the
ball support.

Clamped Edge

We start with node 4 at the clamped edge. We expect that the support reaction
at the node is due to the shear force vy over a width a/2 to the left and a/2
to the right of the node. No effect of twisting moments can occur because
this moment must be zero at a clamped edge. From the data in Table 12.1
we calculate that the average value of vy over the considered length a is
−2,714 N/m. So avy = −0.9×2,714 = −2,441 N. In Table12.2 we read for
the support reaction in z-direction R4 = −3,161, so the value on basis of the
shear force is 23% too small. There is a simple explanation for this mismatch.
We should remind ourselves that the shear force vy is constant in y-direction.
The most probable position where the shear force applies is in a line parallel
to the clamped edge, through the centre of the element. Therefore, we should
consider a rectangular plate part as shown in Figure 12.7, of sizes a and
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b/2. This plate part is loaded by the support reaction R4, distributed load p,
shear forces vx and vx + �vx , and the shear force vy . In Figure 12.7 these
components are depicted for positive values. The equation for the vertical
equilibrium of the plate part is:

R4 + 1

2
abp + 1

2
b�vx + avy = 0

This equation leads to a formula for computing the support reaction:

R=
4 − 1

2
abp − 1

2
b�vx − avy.

From the data in Table 12.1 we calculate

vx = −170

vx + �vx = 222

}
→ �vx = 222 − (−170) = 392 N/m

vy = 2,714 N/m

Using a = 0.9 m, b = 1.3 m and p = 800 N/m2, we obtain

− 1
2abp = −468 N

− 1
2b�vx = −255 N

avy = −2,442 N
+

R4 = −3,165 N
R4 = −3,161 N (Output Table 12.2)

The computer output delivers a practically equal value. The difference is in
the order of 0.1%. At mesh refinement the terms, in which b appears will
vanish, and R4 will follow from vy only. The sign of the support reaction is
negative, which implies – due to the sign convention – a compressive force.

Simply-Supported Edge

We do a similar check for node 40 at the simply-supported edge. The relevant
plate part is shown in Figure 12.8. Compared to Figure 12.7 for the node at
the clamped edge, now two concentrated edge forces are added, due to the
non-zero twisting moment, and equal in value to the twisting moment at the
actual position. The drawn direction applies for a positive twisting moment.
These forces need not be considered at the clamped edge, because there the
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Figure 12.8 Calculation of reaction force R40 from the shear forces.

twisting moment is necessarily zero. Now the equation for the vertical equi-
librium of the plate part is

R40 + 1

2
abp − bvx + 1

2
a�vy − V1 + V2 = 0

From this relation we find the contributions to the support reaction

− 1
2abp = − 468 N

+bvx = −1,958 N

− 1
2avy = + 2 N

−2,424 N

+V1 = − 341 N

−V2 = − 216 N

− 557 N

R40 = −2,981 N

R40 = −2,979 N (Output Table 12.2)

The computed compressive support reaction is again very close to the out-
putted support reaction in Table 12.2. We have purposely separated the con-
tribution of the concentrated edge shear forces in order to show their contri-
bution to the total balance. Without these forces there would be an unbalance
of about 20%.
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Figure 12.9 Calculation of reaction force R55 from shear forces.

Corner between Two Simply-Supported Edges

Figure 12.9 shows the relevant plate part at the corner node 55, and its load-
ing. No further explanation is needed. The equilibrium equation is

R55 + 1

4
abp − 1

2
bvx − 1

2
avy + V1 + V2 = 0

− 1
4abp = − 234 N

+ 1
2bvx = − 28 N

+ 1
2avy = − 12 N

− 274 N

−V1 = +1,296 N

−V2 = +1,351 N

+2,647 N

R55 = +2,373 N

R55 = +2,413 N (Output Table 12.2)

This time the difference is in the order of 2%. Completely in agreement with
theory, the corner support force is a tensile force (positive sign) and is prac-
tically due to the twisting moment only. The two concentrated forces (each
having the size of the twisting moment), are almost equal, so the tensile force
is close to twice the twisting moment. At mesh refinement the factor two will
be attained even better. The lesser accuracy (though still good) may be due
to the slightly parabolic distribution of the twisting moments within an el-
ement. For determining the value of V1 and V2 at the mid of the respective
element edges, we applied linear interpolation between corner values.
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Figure 12.10 Calculation of reaction force R33 from the shear forces.

Corner with Ball Support between Two Free Edges

The plate part at node 33 and its loading is shown in Figure 12.10. The
equilibrium equation is

R33 + 1

4
abp + 1

2
bvx − 1

2
avy − V1 − V2 = 0

− 1
4abp = − 234 N

− 1
2bvx = − 698 N

+ 1
2avy = + 388 N

−1,320 N

−V1 = −1,779 N

−V2 = −1,909 N

−3,688 N

R33 = −5,008 N

R33 = −5,004 N (Output Table 12.2)

The computer output delivers a practically equal value. At mesh refinement
the lengths a and b tend to zero. Then the lumped edge shear forces V1 and
V2 become equal and have the value R33/2.
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12.4 Message of the Chapter

• Moments and shear forces are discontinuous in boundaries between
elements, shear forces more so than moments.

• Moments in a FE analysis are in accordance with expectations from
theory. Twisting moments are zero at clamped edges. Non-zero
twisting moments occur at simply-supported and free edges.

• Support reactions need not necessarily be exact, but they are always
in perfect equilibrium with the load.

• Bending moment distributions will become more exact for refined
meshes. The total moment in a section through the plate is always in
good equilibrium with load and support reactions, even for a coarse
mesh.

• There is good correspondence between shear forces and support re-
actions when we consider the right plate part, and include the con-
centrated edge shear force.

Plates and FEM



Chapter 13
FE Analysis for Different Supports

In Chapter 4 we became acquainted with various edge conditions in thin
plate theory; in Chapter 5 we applied this knowledge to square plates with
three different support conditions. Here we meet the three cases again, now
they appear in a FE analysis. In Chapter 5 we considered a two-way sine
load and a homogeneous distributed load. That was done in order to be able
to solve the differential equation. Here we need not make that difference in

we did earlier for the discrete model in Section 9.4. In Chapter7 we became
acquainted with the behaviour of circular plates subjected to both distributed
load and a point load. Here we consider the behaviour of a square plate due
to a central point load. It will appear that the response near the point load
is of the same nature as occurs for the point load on a circular plate. In all
analyses we choose Kirchhoff theory.

13.1 Simply-Supported Plate

We consider a square simply-supported thin plate and choose a mesh of 20
elements in each direction. In thin plates the span is about 25 times thickness,
so the chosen mesh size is in the order of the thickness of the plate. Poisson’s
ratio is 0.2. Section 13.1.1 is devoted to distributed load and Section 13.1.2
to a point load.
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load type and will subject the plate to a homogenous load in all cases, as
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Figure 13.1 FE results. Square plate. Simply-supported. Distributed load.

13.1.1 Distributed Load

Figure 13.1 depicts FE results for a homogeneous distributed load. The dis-
tributions are very similar to, and a confirmation of, theoretical results in Fig-
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ures 5.6 and 5.7 for the two-way sine load. In Figure 13.1 we show moments
twice, as three-dimensional plots and as contour plots. Three-dimensional
representation is preferred, for it highlights areas needing special care. This
is particularly important when moment peaks occur. FE codes should offer
this output option in any case.

Here we are not interested in values but rather in distributions and ways
of load transfer. Therefore we skip legend scales. Maximum values are ex-
pressed in terms of the homogeneous load p and the span a. Figure 13.1
shows that the maximum values of mxx occur in the centre of the plate, and
of mxy in the corners. These values are 0.0441pa2 and 0.0371pa2 respec-
tively. They are identical to the theoretical values 0.0442pa2 and 0.0371pa2,
borrowed from Timoshenko and Geere, converted from Poisson’s ratio 0.3
to 0.2 [16]. Most plots for the moments and shear forces need no comment.
We draw attention to the trajectories of the moments and shear force. For
the support condition and load under consideration the shear trajectories ap-
proach the plate edges normal to the edge, because the shear force parallel to
the edge is zero; Eq. (4.23) leads to a trajectory angle βo = π/2.

13.1.2 Point Load

Figure 13.2 shows the results for a point load on a square simply-supported
plate for the 20 × 20 mesh. The plots for the trajectories of the principal mo-
ments and shear force show that the state of moments and shears is almost
perfectly axisymmetric near the point load. Note that the trajectories for the
shear force are depicted for a part of the plate with sizes a/2 around the point
load. This is done because of the large gradient in that region. In the contour
plot of the twisting moment we recognise the horizontal and vertical lines of
plate symmetry. In the considered example the twisting moments increase in
the direction of the corners. The maximum value is of red colour. In other ex-
amples the contour plot of the twisting moment may appear as a cloverleaf.
At the lines of symmetry mxy is zero (yellow zones). This always holds true
for twisting moments and shear forces for symmetrical loads. They are anti-
symmetric quantities in contrast to bending moments which are symmetric,
and have maximum values on lines of plate symmetry.

Plates and FEM
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Figure 13.2 FE results. Square plate. Simply-supported. Central point load.
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13.2 Corner Supports

We repeat the analyses for a plate with free edges and corner supports. In
Section 13.2.1 we consider distributed load, in Section 13.2.2 a point load.

13.2.1 Distributed Load

Figure 13.3 shows the results for the distributed load. The corners are sup-
ported by balls, which permit rotations but prevent vertical displacements.
Now the maximum moment does not occur in the plate centre, but mid-span
of the free edge. The maximum twisting moments again occur in the corners,
however with opposite signs compared to the simply-supported case. There
a tensile corner reaction occurs, here a compressive one.

Figure 13.3 FE results. Square plate. Corner supports. Distributed load.
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Figure 13.4 Load flow in shower analogy.

The engineer’s feeling is that the load will flow in the direction of the
corners, and high transverse shear forces occur in a quarter of a circle
around the ball support. The structural engineer expects that all trajectories
will be directed to the corner in a different way from the simply-supported
case. However, reality is different. Figure 13.4 is very instructive about the
transfer of loads to the supports. The shear trajectories are hardly different
from the trajectories for the simply-supported structure in Figure 13.1. The
load p flows as shear force vx to the depicted edge. The value of vx is almost
constant along the major part of the edge. A load flow occurs along the free
edge in the direction of the support, which is the concentrated force Vy in
the y-direction. This force has the value of mxy at the free edge. Starting
from the middle of the edge, the concentrated shear force increases from
zero to its maximum at the ball support. Vy is the integral of the shear force
vx . The shower analogy of Section 4.3 fully applies. The square plate is
the m-hill, the free edges are gullies, and the ball support is a drain pipe.
The distributed p-load is the shower. The water flows in the direction of the
deepest slope to the gully, and from there through the gully to the drain pipe
at the corner. The flow in the gully represents the concentrated shear force Vy .

The support reaction in the ball support is twice the maximum value of the
concentrated shear force Vy . Therefore the expected maximum value of this
shear force is pa2/8. The FE analysis value for the reported mesh fineness
20×20 is 0.117pa2 instead of 0.125pa2. Continuous refinement to 40×40,
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80 × 80 and 120 × 120 leads to coefficients 0.117, 0.120 and 0.121. The
convergence to the exact value 0.125 is slow, but appears to be obtained.
Therefore, all the distributed load p is transferred to the corner supports by
the concentrated edge shear force. The distributed shear force vy parallel to
the edge is not zero at the edge and increases from zero at mid-span of the
edge to its maximum at the ball support, but it remains finite as the element
mesh is refined. The same holds for the principle shear force along the diag-
onal of the plate.

In reality corner supports will have some size. Let us assume that the
support covers an area of a quarter of a circle with a radius of the order of the
plate thickness t . Then the boundary between support and plate has a length
of the order of πt/2, say 2t . In Section 3.6 we learned that the concentrated
edge shear force attenuates over a length of the order t . This means that the
two concentrated forces which arrive at a corner do not spread nicely over
boundary of length 2t , but rather remain concentrated at the two ends of the
boundary.

13.2.2 Point Load

The results for the point load are assembled in Figure 13.5. After the discus-
sion of the point load for the simply-supported edge and the distributed load
for the ball support, no further comment is needed. In the plate centre the
correspondence with a circular plate is seen again. Figure 13.5 confirms the
shower analogy Distributed shear forces vx transfer the point load to the free
edge and a concentrated shear force Vy (equal to mxy) carries the distributed
shear forces vx to the ball supports.

13.3 Edge Beams

In Section 5.3 we touched on the subject of flexurally rigid, torsionally weak
beams as a way to simulate simply-supported edges. It was found that for
zero Poisson’s ratio the bending moment M in the edge beam is 50% higher
than expected on the basis of the load which flows to the edge. In Section 5.3
this study was done on the basis of a two-way sine load. In the discrete model
of Section 9.4 we touched on the same subject for a homogeneously distrib-
uted load p. In the present section we again use a homogeneous distribution
and check whether similar results are produced in a FE analysis.
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Figure 13.5 FE results. Square plate. Corner supports. Central point load.

13.3.1 Rigid Beams

In this section the four edge beams have infinitely large flexural rigidity,
but zero torsion rigidity. The flexural stiffness in the FE analysis is chosen
a thousand times larger than the total plate stiffness aD. The beams are
supported by balls at the corners. We do not repeat plots for moments and
shear forces, for they are precisely the same as for the simply-supported
plate in Figure 13.1. Here we are interested in the bending moment M at
mid-span of the beam, and the maximum shear force V at the beam end. In
Figure 13.6 we have plotted the shear force vx and twisting moment mxy in
the plate along the edge beam, and the moment M and shear V of the beam
itself. We can check what moment and shear force in the beam occur if we
load it by the shear force vx only. For this purpose we first adapt the values
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Figure 13.6 Check on excessive moment in rigid edge beam.

of vx because shear forces are less accurate than moments; the reason is that
shear forces are calculated in the centre line of elements. We know that the
area of the vx-diagram must be 0.250pa2. Assuming that the distribution
shape is correct, we increase the maximum value of vx shown in Figure 13.1
from 0.313pa to 0.343pa. Numerical integration of the shear force over
the half span of the beam then leads to 0.125pa2. Integrating twice leads to
the bending moment 0.0377pa3 in the beam. The integration results are the
dashed lines in the moment and shear diagram of the beam. We see that the
FE analysis confirms the theory that the beam moment is larger than would
be expected on the basis of the distributed load vx only. The difference
is caused by the twisting moments, which are an additional load on the
edge beam. The area of the twisting moment diagram over half the span is
0.0106pa3. Adding this to 0.0377pa3 we obtain 0.0483pa3 which is very
close to the FE result 0.0480pa3. For the two-way sine load and Poisson’s
ratio 0.2, the beam moment is 1.4 times the expected value. In the present
case of homogeneously distributed load, a factor 0.0480/0.0377 = 1.27
applies.

In Section 5.3.4 we expressed the expectation that the twisting moment will
not influence the shear force in the beam, based on the assumption that the
twisting moment can be carried to the web of the edge beam. This is not
confirmed by the analysis. The analysis leads to a beam shear force which
is a factor 0.160/0.125 = 1.28 too large, practically the same amplification
factor as for the moment. Apparently, a concentrated force of opposite sign
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Figure 13.7 FE results. Square plate. Twistless case.

still remains in the plate edge, which balances the overestimated shear force
in the beam. The reason is the use of Kirchhoff theory. Here the thick plate
theory of Mindlin performs better.

13.3.2 Flexible Beams

For flexural edge beams leading to zero twisting moments we must choose
the flexural rigidity aD/2, where D is the plate rigidity and a the plate
span, corresponding with the discussion in Section 5.4. We expect that
half the distributed load p is transferred in the x-direction and half in the
y-direction. The bending moment mxx is independent of y, and myy is
independent of x. Similar considerations hold for the shear forces. The total
load pa2 is homogeneously distributed over the circumference 4pa. The
support reaction is 0.25pa. The maximum moment and shear force in the
plate are 0.0625pa2 and 0.25pa, respectively. FE results for a 20 × 20 mesh
are shown in Figure 13.7. The bending moment mxx and shear force vx

indeed are clearly constant in the y-direction. The moment trajectories are
different from Figure 13.1 for rigid edge beams. The direction is parallel
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to x- and y-direction all over the plate. The moments mxx and myy have
become principal moments because the twisting moment is zero. At the
plate diagonals, the bending moments are equal and Mohr’s circle becomes
a point. Then the direction of the trajectories is indeterminate. The FE
program computes them parallel and normal to the diagonal. The shear
trajectories have also changed compared to the case of rigid edge beams.
Similar to what we have seen for corner supports in Figure 13.3, they are no
longer normal to the edge. For symmetry reasons the moment myy and shear
force vy need not be shown. The twisting moment is zero at each position.
This plot is also skipped.

We now consider the shear trajectories more closely. In a twist-less slab
they are straight lines, originating from the plate centre. The explanation
is straight forward. Consider a set of x- and y-axes with origin in the plate
centre. Then vx = 1

2px and vy = 1
2py. According to Eq. (4.23) the trajectory

direction is calculated from βo = arctan(y/x). In a straight line, starting in
the centre, y/x is constant, so a constant trajectory direction β is obtained
along the straight line.

When we consider a length ds along the edge beam, the load p on a tri-
angle with area 1

2 × a/2 × ds flows to this edge part. The total load on this
triangle is 1

4pa × ds, and this flows to an edge part of length ds. Therefore
the shear force per unit length is 1

4pa, which we had decided on earlier on
other grounds.

According to classical beam theory the maximum moment in the edge
beam is M = 1

8 × 1
4pa × a2 = 0.03125pa3 and the maximum shear force

V = 1
4pa×a/2 = 0.125pa2. The value of the beam moment Mis due to the

load vx only on the one edge and to vy on the other edge. The FE analysis
with the 20 × 20 mesh delivers M = 0.03125pa3 and V = 0.11875pa2

respectively. The bending moment is exact. The shear force is 5% less than
the exact value. The difference is easily explained. The shear force in the FE
analysis is constant over each beam element, so in fact holds true in the mid-
dle of the element. In reality the shear force increases linearly from the beam
centre to the column. We have used 10 elements over the half beam length,
therefore we are missing a half element size over 10 elements. This explains
the 5% error. The shear force will approach the exact value 0.125pa2 for
increasing mesh fineness.

Plates and FEM
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Figure 13.8 FE results. Square plate. Pressure only. Distributed load.

13.4 Pressure-Only Support

In Section 13.1 we considered a simply-supported plate subjected to a homo-
geneously distributed load. It was tacitly assumed that the support is able to
transfer both pressure and tension reactions. And indeed the result showed
that concentrated tensile reactions do occur in the corners. Physically this
presupposes either a very good fixing to, say, a wall below the slab, or the
presence of a wall on top of the slab edge, which provides the needed down-
ward vertical reaction force in the corner. When neither the one nor the other
is secured, we must reckon with another moment distribution. In Chapter 5
we noticed the high efficiency of the simply-supported plate, and that the
diagonal beam action takes care for it to a large extent. This contribution
will be reduced if no tensile reaction forces can occur. We must expect lower
twisting moments at the cost of higher bending moments in the plate centre.
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If we use a linear-elastic program we must do the analysis in an iterative
way. In the first run, all edge nodes are fixed (w = 0). Then the computation
is repeated with the nodes released where a tensile force occurs. This must
be done until there are no tensile reactions. Figure 13.8 shows results of
such an iterative analysis. If we compare the results with moments for the
ideal simple support in Figure 13.1 the following conclusions hold. The plate
corners lift from the supports. This occurs over about 30% of the edge length
near each corner. Only 40% of the edge remains where we find compressive
reactions. The maximum deflection increases 11%. The twisting moment
mxy at the plate edge is zero in the uplifted corner as it should be according
to theory. Its maximum has shifted to a position at some distance from the
corner. The maximum value has become 27% smaller. The bending moment
mxx in the plate centre has increased about 8%. Most probably not many
structural engineers are aware of this phenomenon. It is always wise to make
allowance for unexpected loadings and imperfect support conditions.

13.5 Message of the Chapter

• Whatever boundary conditions, we find a nearly axi-symmetric state
in the neighbourhood of a point load.

• Twisting moments and shear forces are zero on lines of symmetry at
symmetric loading. Bending moments are maximal on the lines of
symmetry.

• For simply-supported and corner-supported plates, there are large
twisting moments at the plate corners. Their signs are different, and
so are the signs of the corner reactions. In the corner supported
plate the reaction is compressive; in the simply-supported plate it is
tensile.

• The two limit cases, simple supports and corner supports, can be
simulated by edge beams with flexural rigidities, which are infinite
or zero, respectively. An ideal twist-less case can be obtained by
a proper in-between choice of the flexural rigidity of the edge beam.
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• If tensile support reactions cannot occur, the twisting moments
in the corner reduce substantially at the cost of higher bending
moments and a larger deflection.

• FE codes should not only offer the output option of contour plots,
but also three-dimensional presentations of deflections, moments
and shear forces. The latter are more appealing to structural engi-
neers, and concentrate attention to spots with large moments and
shear forces.



Chapter 14
Handling Peak Moments

This chapter is devoted to the subject of local peaks in moment distributions.
These occur on top of columns and at receding walls, and for more than one
reason structural engineers do not know how to handle them. It is not clear
how seriously such peaks must be taken, and how they can be smoothed.

mesh, the higher the peak. So, the engineer may think to be punished for
being serious. This chapter intends to provide practical hints on choosing
mesh fineness and designing reinforcement.

14.1 Peaks at Columns

We state the problem for the structure in Figure 14.1. A rectangular concrete
slab of length 20 m, width 10 m and thickness 0.6 m with free edges
is supported by four inner columns as shown in the figure. The plate is
subjected to a homogeneously distributed load p = 10 kN/m2. The material
properties are E = 3 × 107 kN/m2 and v = 0.2. A set of axes x, y is chosen
with x in the direction of the long edge and y in the short direction. In this
section the column is introduced as point support in one single node of the
mesh, acting as a ball. We start with square elements of size 0.5 m, which is
about slab thickness. This mesh is shown in Figure 14.1.

Figure 14.2 is an assemblage of contour plots and 3D representations for this
slab problem. We call the two left-hand columns the left support, and the
two right-hand columns the right one. The plots for the displacement w and
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An additional problem is the dependency on the mesh fineness; the finer the
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Figure 14.1 Rectangular slab on inward columns.

the bending moment mxx show an almost cylindrical bending between the
two supports. In the line over the supports the moment mxx concentrates on
top of the columns, which in another way is noted in Figure 14.3. A similar
concentration holds for the bending moment myy . The plot for the twisting
moment mxy in Figure 14.2 supports the statement that the horizontal line
and vertical line at the supports are more or less lines of symmetry. There
the twisting moments are zero. In the four quadrants around the column we
notice cloverleaf-type distributions.

Figure 14.2 Rectangular slab. Both contour plots and 3D presentation.
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Figure 14.3 Moment diagrams in section over columns.

Next we examine the influence of the mesh fineness, using a commercially
available FE code. Figure 14.4 shows the distribution of the moment mxx in
the section above the two right columns for three different meshes. Starting
from the mesh size 0.5 m we doubled the mesh size to 1.0 m, and then halved
it to 0.25 m. When we call the peak moment of the coarsest mesh 100%, then
the peak in the medium coarse mesh is 128%, and in the finest 153%. This is
not very helpful to the structural designer. But we have other information. We
know the exact value of the integral of the moment mxx over the section of the
plate; it can be determined from the free body equilibrium of the plate part
right of the section under consideration and the p-load on it. We can compare
this exact moment with the value which we obtain when we integrate mxx

from the FE analysis over the section. If we call the exact moment 100%,
then the finest mesh FE mesh delivers 99.2%, the middle 98.9% and the
coarsest 97.6%. The largest error in the integrals is about 2%. While the
difference in peak between the coarsest and finest mesh is 53%, the integral
differs less than 2%! Another observation is that the large difference in value
rapidly disappears in the neighbourhood of the column. The moment in the
field between two columns is within 1% for all three mesh finenesses.

Lesson on moment peaks

We must not look at the peak value, but at the area of the moment
diagram over the section. For this area, it is sufficient to consider a part
of the section which extends left and right of the column.

To offer a helping hand, a plate length two times the column width at each
side of the column will do, in total five times the column width as in Fig-
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Figure 14.4 Moment distribution for different mesh fineness. The peak values differ
much, the areas do not.

Figure 14.5 Smearing out of moment peak.

ure 14.5. The integral over this section part determines the reinforcement
which is needed in this section part. The structural engineer may spread this
total amount equally over the width of the section part or choose to spread
part of it and concentrate the remaining part above the column. Whatever is
chosen, the total amount is the same and is sound.

14.2 Column Reaction Distribution

The previous section has made clear that precise knowledge of the peak mo-
ment is not essential for dimensioning the reinforcement. Yet it may support
our understanding if we know more about what is happening at a column. For
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that purpose we performed an exploratory analysis of the stress problem in
the connection between the column and the plate. We simplified the problem
to a two-dimensional stress state and performed a membrane-type of analy-
sis. It is understood that the real stress state is axisymmetric, but precise
accuracy is not considered necessary. The computed structure is depicted in
the left top part of Figure 14.6. It consists of the parts of a horizontal beam
and vertical column, cast in one course to a monolithic structure. The left
and right edges of this beam are points of counter-flexion with zero moment.
There is a downward shear force, which is the load of the structure under
consideration. A parabolic load distribution over the thickness is supposed.
In the horizontal section between column and beam the vertical stresses are
plotted and the position of the resultant for each column half is determined.
It appears that this resultant is at a distance two-third of the half column
width from the centre line, as depicted in the top right part of the figure. Fig-
ure 14.7 shows the distribution over depth of the bending stress at different
positions in the beam. Halfway the beam end and the column we see a lin-
ear distribution of bending stresses as in beam theory. In the cross-section
above the column face the stress distribution has become nonlinear, particu-
larly in the compression zone. In the column centre line the distribution has

Figure 14.6 Resultant of column reactions.

Plates and FEM



256 14 Handling Peak Moments

Figure 14.7 Bending stresses in monolytic structure.

even changed further, because now part of the column is taking part in the
distribution.

The bottom left part of Figure 14.6 shows the distribution of the bending
stresses in the top and bottom faces of the beam. The dashed line presents
the stress which would apply according to classical beam theory when just
centre-lines are used. Outside the column this classic theory applies prac-
tically over the full length. Above the column it does not; there it is disturbed.

Until now in this section we supposed the support of the plate was flexible.
We change it into a rigid one in which only compression stresses can be
transferred. Such a calculation needs some iteration. The position of the
support reactions is shown in the bottom right part of Figure 14.6. The
resultant of the vertical stresses over one half column width acts along a
line which almost coincides with the face of the column. The distance to the
centre line is 95% of the half column width.

The real column situations will lie in the bandwidth which we have covered
with the two different cases. The first one is flexible and able to transfer
both tensile and compression stresses, and the other is rigid and transfers
compression stresses only. The resultant is at a distance to the column face
in the order of 10% of the half width ( 1

2d) of the column. We expect that this
distance would have been even smaller if we had carried out an axisymmetric
analysis. Then the outer material of the column behaves more stiffly because
more material is present further from the central axis. We conclude that the
reaction is definitely not homogeneously distributed. Instead, it is justified to
accept the rule that the reaction acts at the face of the column.
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14.3 Application

The message of Section 14.2 will be applied to the structure of Figure 14.1.
There the column was introduced as a point support acting on a single node
of the mesh. Now we suppose that the column has an area of 0.4 × 0.4
m2. This time we have taken an element size of 0.2 m in the analysis. The
mesh is unnecessarily small, much smaller than the plate thickness, but this
facilitates fitting the column in the mesh. Over the area of the column cross-
section there are four elements and nine nodes, of which one coincides with
the column centre.

From symmetry considerations we know that the column reaction is
500 kN. We perform three analyses. The first is a repetition of the analy-
sis of Section 14.1, in which the support reaction of 500 kN is introduced
as an upward point load in the centre node above the column. In the second
analysis we apply the support reaction as a homogeneously distributed load
over the column area. In the third analysis the support reaction is introduced
as a line load over the perimeter of the column. In all three cases the vertical
displacement of the node in the centre of the column is constrained in order
to prevent rigid body motions. After completion of the FE analysis the sup-
port reaction will be zero, because we have introduced the support reaction
as an upward load.

The results of the three analyses for the bending moment mxx in the sec-
tion over two columns are assembled in Figure 14.8. The maximum moments
are −205, −150 and −125 kN respectively. Expressed in terms of the size
of the support reaction R = 500 kN the results are in absolute values R/2.3,
R/3.3 and R/4.0 respectively. The moment in the first analysis (point reac-
tion) is more than 60% higher than in the third (edge load). The value R/4.0
for the edge load is in good agreement with the bandwidth expectation of
R/6 to R/4, at which we arrived in Section 7.7 on the basis of the same sup-
position.

14.4 Cast-Connected Column

Usually columns are fixed to the slab so that moments can be transferred
from column to slab. Modelling the column as a one-dimensional line ele-
ment and fixing it to the slab in one single node will in general evoke high
moment peaks in the slab. The same occurs if the column is replaced by a
rotational spring in one single slab node. In these cases the conclusions of
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Figure 14.8 Moments in section for different column distribution assumptions.

the preceding section still apply. It is not the peak that is important, but the
area of the moment diagram over a section.

There is an alternative way to look at this problem. Structural engineers
wonder how to introduce the column in the analysis so that the structural
response is closer to the real stress state at the top of the column. One ap-
proach is to use distributed springs instead of a lumped rotational spring,
either homogeneously distributed over the column cross-section area or as a
line distribution along the edge of the area. On the basis of the exploration in
Section 14.2 we prefer the edge distribution.

Consider the rectangular cross-section of Figure 14.9 and suppose that
this column fits in a mesh of elements. The dimensions of the column cross-
section are h and b respectively, where b < h. We assume that elements are
used with corner nodes only. A lumped spring of constant K is placed in each
node. The units of the spring constant are kN/m. Structural engineers tend
to choose the value of K such that the axial stiffness EA/l of the column is
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Figure 14.9 Springs on column edge for rotational stiffness.

spread over the four lumped springs, therefore 4K = EA/l. We will examine
how realistic this choice is with respect to the rotational stiffness.

We consider bending of the column about the short axis and apply a mo-
ment M, which causes a rotation ψ . We determine the stiffness relation
M = Cψ , in which C is the rotational spring constant. At a rotation ψ , the
two left nodes displace over a distant u, and the right nodes over the same
distant in the opposite direction. The force F in two nodes is F = 2Ku,
and the relation between the displacement and the rotation is u = 1

2hψ .
Therefore we obtain F = Khψ . Because of the relation M = hF we find
M = Kh2ψ . Therefore, the rotational spring constant is

C = Kh2 (14.1)

From the definition of K at the start of the derivation we know

K = 1

4

EA

l
(14.2)

Substituting this equation in Equation (14.1), and remembering that I =
bh3/12, we obtain

C = 3
EI

l
(14.3)

This result will appeal to structural engineers: it is the rotational stiffness
of a column which is pin-connected at the base, see Figure 14.10. If a column
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Figure 14.10 Spring constant for different column conditions.

must be simulated which is clamped at the base, the stiffness K must be
multiplied by 4/3. If the point of counter-flexion is to act halfway up the
column, we must choose a factor 2.

Once more it is stressed that this way of modelling columns requires a
mesh, at least around the column, which may be finer than the plate thick-
ness. This approach possibly satisfies the structural engineer, because the
maximum moment has some physical meaning. But even in this approach
it is wise to determine the integral of the moment distribution in a section
in order to know what total reinforcement is required. The improved knowl-
edge about the peak moment then suggests how the reinforcement should be
spread over the section.

14.5 Dependence on Program

In the current section we discuss two items together. We meet another type
of moment peak, and we address the influence of the choice of program. Fig-
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ure 14.1 shows the structure. There is a reinforced concrete floor slab of an
apartment building with a balcony. The thickness of the floor is 200 mm and
of the balcony 120 mm. The material properties are E = 3 × 107 kN/m2 and
ν = 0.2. The floor is subjected to 1.0 kN/m2 and the balcony to 0.8 kN/m2.
Two providers, I and II, of commercial software have been invited to submit
a solution for the bending moments in this plate. We specified that the bound-
ary line coinciding with the y-axis must be considered as clamped and the
other wall supports as simply-supported. All three balcony edges are free.

14.5.1 Review of FEM Results

Results of provider I are depicted in Figure 14.11. We will comment on these
results first and after that make a comparison with results of provider II. The
moment diagram for mxx is drawn for the section at mid-span of and parallel
to the simply-supported edges. A negative moment mxx = –8.35 kN occurs
at the clamped edge, the moment changes to a positive sign in the middle of
the floor, is negative again at the boundary between floor and balcony, and
ends with a zero value at the free balcony edge. Along the same section also
moment myy is shown. At the clamped edge it is also negative and has the
value −1.66 kN. This value is very close to the product of Poisson’s ratio
ν = 0.2 and the moment mxx = −8.35 kN. This confirms the statement in

Figure 14.11 Apartment floor with balcony.
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Section 4.4.1 that at a clamped edge myy = νmxx , where mxx is the moment
normal to the edge and myy in the direction of the edge.

At the boundary between floor and balcony the bending moment mxx is
continuous, but the moment myy appears not to be. According to theory, this
must be due to the different flexural rigidities of floor (Df l) and balcony
(Dba). It is easily explained for zero Poisson’s ratio, but holds generally. Let
us write mxx,f l and mxx,ba for floor and balcony respectively. In the same
way we write myy,f l and myy,ba. At the boundary between floor and balcony
we have

mxx,f l = Df l κxx,f l

mxx,ba = Dba κxx,ba

(14.4)

myy,f l = Df l κyy,f l

myy,ba = Dba κyy,ba

(14.5)

At the boundary continuity of the moments mxx is required for reasons of
equilibrium, and continuity of the curvatures κyy for reasons of compatibility.
Therefore

mxx,f l = mxx,ba, κyy,f l = κyy,ba (14.6)

Equality of mxx,f l and mxx,ba delivers, according to Eq. (14.4, different val-
ues of κxx,f l and κxx,ba, because of the difference between Df l and Dba. This
does not play a further role in our consideration. If κyy,f l and κyy,ba are equal,
then Eq. (14.5) yields different values of myy,f l and myy,ba. This explains the
discontinuity in myy in the diagram of Figure 14.11.

14.5.2 Program Comparison

In the discussion of the results of provider I in Section 14.5.1 we did not
show a graph for the distribution of moment mxx along the boundary line
between floor and balcony. This is the subject of the present section.

We show the diagram for mxx at the boundary between floor and balcony
in Figure 14.12 for both provider I and provider II. High concentrations are
found at both line ends near the supporting walls. If we consider the free
body equilibrium of the balcony we can compute the total moment due to
the balcony load which must be transferred in the boundary. Apparently this
moment is not evenly distributed along the line, but heavily concentrated at
the ends. If we compare the results of the two companies we notice different
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Figure 14.12 Comparison of two FE codes.

peak values, 7.85 and 6.89 kN respectively. The difference is 14%. However,
the message, learned for columns, holds here as well. If we integrate the
diagram over the length, we obtain moment sums of 99.3 and 99.0% of the
exact value, respectively. Again, it is not the peak value that provides the
best information, but the area of the moment diagram. Again, the moments
at some distance of the peak are virtually the same in both cases. So it is
sufficient to determine the diagram area over a short distance at the end of
the line. This area needs to be examined for detailing reinforcement in the
x-direction at the ends of the boundary line.

Graph output in sections

It is important that FE codes offer the output option for graphs about
sections or part of sections.

We now draw attention to the peculiar fact that provider I with the highest
peak used the coarsest mesh. In this FE analysis the element size is 0.5 m,
while provider II with the lower peak chose a smaller size 0.25 m. This un-
derlines the statement in Section 10.2 that unexpected results may be ob-
tained. It is possible that a higher-order element in combination with a coarse
mesh performs better than a fine mesh in combination with a lower-order el-
ement.
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Figure 14.13 Slab for study about user dependency.

14.6 Dependence on User

In this section we show the influence of users on results. This is carried out on
a structure with a receding wall. It is another example with a moment peak.
The considered floor slab is drawn in Figure 14.13. It has two free edges,
one clamped edge (double lines), one edge partly free and partly simply-
supported, and two inward placed columns. In this example the rotational
stiffness of the columns is specified. The area of the reinforced concrete slab
is 20 × 20 m2 and the thickness 400 mm. The columns have a cross-section
400 × 400 mm2. The design load is 18 kN/m2, which includes self-weight
and variable load, each with accompanying load factors.

We invited structural engineers who attended a continuing education
course to design the reinforcement of this slab. At the start we specified a
number of of items:

• The concrete cover is 35 mm.
• The mass of hair pins and cutting losses is neglected.
• Concrete properties are E = 3 × 107 kN/m2, v = 0.2.
• Steel yield stress is 435 N/mm2.
• If possible, Kirchhoff theory is used.
• Ignore crack widths and deflections; only ULS is considered.
• Codes of practice requirements for minimum reinforcement are disre-

garded.
• The lever arm in the cross-section is 0.9 times the effective plate thickness.

The structural engineers were asked to submit
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Figure 14.14 Deflection and moments for slab of Figure 14.13.

• The peak values of the moments at the column support.
• The total mass of reinforcement in kilograms.
• A subdivision of the total amount of reinforcement needed for the four

meshes, two in the top layers and two in the bottom layers.

The invitation to structural engineers was repeated for five subsequent
courses in place-country-region Belgium and The Netherlands. We show the
result of one of these five courses, which is representative for all. Eighteen
people in the course participated, and they used six different commercial
FE codes. Two of them just provided moment values and did not submit an
amount of reinforcement. We will first show some FE results. They come
from an analysis with small elements such that the column support matches
with 2 × 2 elements. Figure 14.14 shows a 3D plot of the deflection and
bending moments mxx and myy . Figure 14.15 shows the distribution of mxx

and myy over two important sections. The values of mxy are small and there-
fore omitted. The peak values of the bending moment in Figure 14.15 are in
the bandwidth 400 to 450 kNm/m: the peak moment is approximately M =
425 kNm/m. The column support reaction R is 1880 kN. The ratio of R to

Figure 14.15 Moment diagrams in sections.
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Figure 14.16 Moments at column by different participants.

m is 4.5, close to the expected ratio 5 which we expect in a grid of columns,
as discussed in Section 7.7 and depicted in Figure 7.13.

We now will discuss the submissions of the participants. Figure 14.16 is
a bar chart for the moments mxx and myy at the column support. The 18
participants obtained moment peaks differing by more than a factor of two.
Bars with the same colour have been obtained with the same FE code.

Lesson

Using the same program does not necessarily lead to similar results;
the user can make a difference.

In Section 14.1 we explained that the difference in peak value should not
be a big problem in the design of reinforcement; we work with areas of the
moment diagram rather than with peak values. Then no large differences in
reinforcement amount are to be expected. However, reality is different. In
Figure 14.17 both the total amount is shown and the subdivision over the
two orthogonal reinforcement layers in both top and bottom of the slab. The
differences between the participants are substantial.

As stated, the experiment has been repeated several times with other
groups of experienced structural designers, always with a similar outcome.
Do engineers think ‘iron is cheaper than brains’? Many engineers place re-
inforcement where it is not necessary for strength reasons.
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Figure 14.17 Reinforcement demand by different participants.

Lesson

Different structural engineers come to very different amounts of rein-
forcement for the same structure and load.

14.7 Impact of Support Flexibility and Concrete Cracking

In Sections 14.1 and 14.5.2 we considered the moment integral over a
section in the plate and compared it to the exact moment due to the load.

Plates and FEM
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Figure 14.18 Moment-curvature diagram of reinforced concrete cross-section.

There we were able to calculate the total moment due to the load in the
considered section from simple equilibrium considerations. This is not
always possible. In the top left part of Figure 14.18 we show a structure
supported by both a wall and two columns, such that the wall end and the
columns are not in one line. We consider the FE result for myy (direction
parallel to the wall) in the section over the end of the wall. Again we want
to compare the area of this moment diagram to the exact value of the total
moment. For that purpose we must consider the free body equilibrium of
a plate part including the columns. We must now account for the support
reactions; these are a result of the FE analysis and, as stated in Chapter 10,
very reliable. They are in perfect equilibrium with the loads. So, we are
able to calculate the total moment due to load and support reactions and can
perform a check on the area of the computed mxx-diagram. We omit the
calculations and just report that again we obtained a very good match.

We proceed with the example to show the impact of introducing flexibility
of the wall support and accounting for cracking. For that reason we again
consider the distribution of the moment myy in the section over the end of
the wall and perform three calculations. In the first calculation all nodes in
the line where the wall occurs are rigid supports. There the displacement w
is zero. In the second analysis we replace the rigid supports by flexible ones
by inserting springs in the z-direction. The spring constant is EA/l where
E is Young’s modulus of the wall concrete, A is the cross-section of the
wall part which is assigned to a node, and l the height of one storey. In the
third analysis we return to the rigid supports and reduce the plate rigidity D

in order to account for cracking. Due to cracking, the rigidity easily halves
at large moments compared to D for uncracked concrete. Figure 14.18
illustrates this statement. Large negative moments occur on the tops of the
wall and columns. Therefore we introduce a reduction of 50% for the two
rows of elements left and right of the wall and the four elements around
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Figure 14.19 Study about impact of flexible wall and reduced rigidity.

the columns. In the fourth analysis we finally combine wall spring supports
with reduced plate rigidity.

Figure 14.19 shows the results for the four analyses. We notice considerable
differences in the peak values of the moment mxx . For rigid wall supports
and uncracked plate rigidity the maximum moment value is 88 kN. Insert-
ing only wall flexibility makes the value reduce to 64 kN, a reduction of
28%. Reducing only the plate rigidity results in 68 kN, a reduction of 23%.
The combination of springs and cracking leads to a moment 50 kN. Now
the reduction has increased to 43%. We conclude that adapting plate rigid-
ity decreases moments in the order of 20%, and the combination of rigidity
decrease and wall flexibility in the order of 40%.

Use of flexible supports

This small investigation teaches us that it is worthwhile to introduce
realistic conditions. The correct value of the spring constant is not a
critical issue. Introducing flexibility makes the difference. After that,
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halving or doubling the spring constant no longer has much effect. Sim-
ilarly it is worth accounting for cracking by reducing the plate rigidity.

The moment reduces significantly, and (not shown in this example) de-
flections will increase substantially. Of course, the choice made here is
subjective and has just the intention to show the effect. It makes clear that
realistic moment-curvature diagrams must be consulted for fixing rigidities
when FE codes make predictions about deflections in the serviceability state.

Commercially available FE codes are starting to offer checking facilities on
deflections. The programs must be able to handle orthotropic plate properties
as discussed in Section 3.5. In this orthotropic case mxy and myx are equal
so mav = mxy . Also Dxy and Dyx, defined in Eq. (3.46), are equal so Dav =
Dxy . Therefore we must know the rigidities in the constitutive equations

⎧⎪⎨
⎪⎩

mxx

myy

mxy

⎫⎪⎬
⎪⎭ =

⎡
⎢⎣

Dxx Dν 0

Dν Dyy 0

0 0 Dxy

⎤
⎥⎦

⎧⎪⎨
⎪⎩

κxx

κyy

ρxy

⎫⎪⎬
⎪⎭ (14.7)

A first analysis is done with constant plate rigidity D to determine the mo-
ments and design the reinforcement. Then the moment-curvature diagrams
for x- and y-direction are calculated for each element. From the first analy-
sis we know the bending moments mxx and myy , and from the moment-
curvature diagrams we derive the curvatures κxx and κyy . From this new
rigidities Dxx and Dyy are found. It is not clear which off-diagonal rigid-
ity Dν must be used. A practical value is

Dν = ν
√

DxxDyy (14.8)

which leads to the correct term in the isotropic case. The value of Poisson’s
ratio ν can be made dependent on the size of the moments. For an uncracked
cross-section the value 0.2 is fine, and as the reinforcement starts to yield the
value should be set to zero. Between the cracking moment and yield moment
a linear interpolation might be chosen.

It remains to choose a value for the torsion rigidity Dxy which holds for
the value mxy from the first analysis. With reference to Section 11.6.2 and
Chapter 16 we may assume that this twisting moment raises reinforcement
forces which are conforming with bending moments mxx = mxy and myy =
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mxy . At these bending moment values we read rigidities Dxx and Dyy from
the moment-curvature diagrams. Then we may apply the formula

Dxy = 1

2
(1 − ν)

√
DxxDyy (14.9)

A physical ground for this approach does not exist other than the statement
that the correct rigidity is obtained for the limiting case of isotropy.

The second linear-elastic FE analysis with adapted rigidities will yield mo-
ment values different from the first analysis. Therefore the procedure of
rigidity adaptation must be repeated and a further analysis is necessary. This
is done until the results do not change anymore in a practical sense. There-
fore, the final moment values and deflections are the result of an iterative
procedure.

After completing the iteration procedure we can also compute crack
widths. From the moments we know the steel strains in the reinforcement
bars and can pronounce an expectation on the crack widths, following the
codes of practice rules.

14.7.1 Application of Finite Element Program

We show an application with the commercial FE code Diamonds (Buildsoft,
Belgium). This program chose its cracking formula from the Eurocode 2 (EN
1992-1-1). The curvature α in the cracked state is calculated by the formula

α = ζα‖ + (1 − ζ )α| (14.10)

where α| is the curvature for the uncracked section and α‖ the curvature
for the fully cracked section (the section consisting of concrete compression
zone and reinforcement). The distribution coefficient ζ is

ζ = 1 − β(σsr/σs)
2 (14.11)

Here β is a coefficient accounting for the influence of the duration of the
loading or of repeated loading on the average strain (1.0 for single short-
term loading; 0.5 for sustained loads or many cycles of repeated loading); σs

is the stress in the reinforcement calculated on the basis of a cracked section;
σsr is that same stress but under the loading conditions causing first cracking.
The curvature α is used to derive the reduced rigidity in the element stiffness
matrix.
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According to Eurocode 2 (EN 1992-1-1) the crack width is

wk = sr,max(εsm − εcm) (14.12)

where sr,max is the maximum crack spacing in the principal stress direction.
It is calculated from

1

sr,max
= cos θ

sr,max,x

+ sin θ

sr,max,y

(14.13)

Here θ is the angle between the axes of the principal stress and the direc-
tion of the reinforcement, and sr,max,x and sr,max,y are the crack widths in the
reinforcement directions; they are defined by

sr,max = k3 c + k1k2k4 φ/ρp,eff (14.14)

where

k3 = 3.4
C = cover of longitudinal reinforcement
k1 = 0,8 (high bond bars)
k2 = (ε1 + ε2)/2 ε1

ε1 and ε2 are (tensile) strains at the boundaries of the cracked
section;
ε1 is the greater stress

k4 = 0.425
φ = bar diameter
ρp,eff = As/Ac,eff

The factor εsm − εcm in Equation (14.12) is the difference between the mean
strain in the reinforcement and the mean strain in the concrete between
cracks under the relevant combination of loads

εsm − εcm =
σs − kt

fct,eff
ρp,eff

(
1 + αeρp,eff

)
Es

≥ 0.6
σs

Es

(14.15)

where

σs = stress in the tension reinforcement assuming a cracked section
αe = ratio Es/Ecm

kt = 0.4 for long term loading
fct,eff = tensile strength of the concrete
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Figure 14.20 Results of FE code for deflections and moments.

Figure 14.21 Results of FE code for crack widths.

Normally the bar diameter φ is not known in the design process. In this case
a fictive diameter is used defined as

√
(2As/3π); (six bars lead to As).

Figure 14.20 shows results of an analysis for a rectangular slab, supported
at two parallel edges and two inner columns, both for ULS and SLS. The
ultimate limit state was considered for the moments (safety), and the service-
ability limit state for the deflections (normal practice). The left three plots in
the figure are for the un-cracked slab; the right plots are for the cracked slab.
Note that the deflection increases from 10.6 to 21.6 mm due to cracking. The
maximum value of the principal moment m1 for ULS decreases from 721 to
581 kNm/m; this is the order of 20%, mentioned earlier. Notice that the peak
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moment localizes in the uncracked state, and smears out in the cracked state.
Figure 14.21 shows crack widths for SLS in the upper and lower face.

14.8 Message of the Chapter

• We need to focus on the area of the bending moment diagram and
not on the peak bending moments. That area, representing the total
moment to be transferred by the section, is in equilibrium with the
load and support reactions.

• It is possible to pass a judgement on the real peak value. The
column reaction can be best distributed over the perimeter of the
cross-section of the column. The value of the bending moment is,
in conformance with Chapter 7, in the bandwidth of one-sixth to
one-fourth of the column reaction force.

• Cast-connected columns, capable of loading the slab by a lumped
moment, can be modelled by springs on the edge of the column
cross-section.

• FE analysis results are dependent on the chosen FE code and on
the user. Different programs for the same problem lead to different
solutions. Higher-order elements may produce a lower peak than
lower-order elements with a finer mesh.

• Design of reinforcement depends strongly on the individual struc-
tural engineer.

• The introduction of springs at hard support spots and accounting for
severe cracking at moment peaks makes moments spread out over
larger widths and reduces maximum values.

• FE codes should offer the output option of section graphs for deflec-
tions, moments and shear forces. It should also be possible to specify
a special part of a section. The FE code should output integrals over
the (part of the) section.



Chapter 15
Sense and Nonsense of Mindlin

In Chapters 3 and 4 we presented the theories of Mindlin (more properly
Mindlin and Reissner) and Kirchhoff, without explaining which theory must
be used in a particular practical case. Commercially provided FEM software
usually offers both options and even may have chosen one of them as the
default option. The goal of this chapter is to help users make a proper choice.

15.1 Result Dependence on Analyst and Program

We start with the comparison of plate bending results obtained by different
programs and analysts. Four providers of commercial software accepted the
invitation to participate in the computation of a plate structure. They were

top part of Figure 15.1, has the shape of a carpenter’s square. The two long
edges have a length of 4 m and the short edges 2 m. The modulus of elasticity
is 40 × 106 kN/m2 and Poisson’s ratio is 0.2. The plate is subjected to a
distributed load of 1 kN/m2. We choose a set of orthogonal axes x, y along
the long edges. The z-axis is normal to the plate. The corner is supported by
a ball support which prevents the displacement w and permits free rotations
ψx and ψy . The two short edges of length 2 m are simply-supported. All
other edges are free.

©  Springer Science+Business Media B.V. 2010
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asked to perform a linear-elastic computation. The plate, shown in the left
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Figure 15.1 Three plates. Mesh fineness and thickness varied.

15.1.1 Invitation

The software houses were invited to perform three calculations with square
elements for three versions of the plate.

• Plate 1. Mesh 8 × 8 elements (spacing 500 mm). Thickness 160 mm.
• Plate 2. Mesh 16 × 16 elements (spacing 250 mm). Thickness 160 mm.
• Plate 3. Mesh 16 × 16 elements (spacing 250 mm). Thickness 480 mm.

These different plates are shown in Figure 15.1. The required output should
include

• a plot of the shear force vx in section x = 0.5 m.
• a plot of the moment mxx in the section x = 2.0 m.
• a plot of the twisting moment mxy along the edge x = 0.
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Figure 15.2 Big scatter in submitted results for twisting moment and shear force.
Units in N and m.

The ultimate goal was to investigate which plate theory should be used:
Kirchhoff or Mindlin.

A span of 4,000 mm and a thickness of 160 mm imply a span-depth ra-
tio of 25. Without any doubt, this is a thin plate. This holds for the first
two analyses; any differences are due to the mesh fineness. The element size
500 mm is about three times the thickness, and the element size of 250 mm
about one and a half times. In both analyses the element size is not smaller
than the plate thickness. If related to the longest span of 4,000 mm, the el-
ement size 500 mm means that only eight elements occur between the ball
support and the simply-supported edge; this must be considered a coarse
mesh, at least in the neighbourhood of the ball support. The element size
250 mm means the application of 16 elements, which sounds acceptable for
the case.

The second and third analyses have the mesh fineness in common. Here
the difference is in thickness. In the third analysis the span-thickness ratio
is slightly greater than eight; to the perception of structural engineers, this
plate is thick.

In conclusion, the thin plate 2 may be considered representative for the
choice of structural engineers in practice. Variant plate 1 is intended to show
the effect of mesh change and variant plate 3 the effect of slenderness.
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15.1.2 Submitted Results

Three software providers performed the analysis primarily with Mindlin
theory and one chose Kirchhoff theory. Figure 15.2 depicts the scatter of
results. Each time, we report the smallest and largest submitted value, and
do it for both the thin plate 2 and the thick plate 3. The support reaction R

at the ball support is insensitive to the plate thickness. Differences are less
than 1%. The differences in the bending moment mxx are not significant
too. However, large differences appear in the values of the twisting moment
mxy , both at the re-entrant corner and at the ball support, and also in the
shear force vx . Except in one case, the lowest and largest values come from
a Mindlin analysis. The exception is marked with (k) of Kirchhoff.

We computed the same three plates with the program Kola, switching on
the Reissner theory (as the program calls Mindlin theory). Figure 15.3 is the
result for the moment mxx in section x = 2.0 m. This moment is insensitive
to mesh fineness or slenderness, and to the applied theory. Values vary within
2%. Note that the bending moment near the re-entrant corner is not correctly
zero at the free edge. Only at a couple of elements distant from the corner
does the moment become zero. This is in agreement with the expectation, as
explained in Section 11.4.

Figure 15.4 is the result for the twisting moments at the edge x = 0, and
Figure 15.5 for the shear force in the section x = 0.5 m. Now large differ-
ences are exposed in a convincing way. The values of the twisting moment
differ by a factor of 1.3. The shear forces at the edge differ by a factor of
2.0. The output submitted by the participating providers is very similar to
the results of the program Kola.

Figure 15.3 Bending moments mxx (Nm/m) in section x = 2 m for Mindlin theory.
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Figure 15.4 Twisting moments mxy (Nm/m) at edge x = 0 for Mindlin theory.

Figure 15.5 Shear force vx (N/m) in section x = 0.5 m for Mindlin theory.

15.2 Explanation of the Differences

In order to understand the large differences in the twisting moment and shear
force we must recall the starting points of the Kirchhoff and Mindlin theories.
Classically, plates have been analyzed by the Kirchhoff theory for thin plates.
Only since the broad availability of FE codes has Mindlin theory come on the
scene. The user of commercial software is expected to make a choice from
the two theories, but often one of them is a default option without the user
being aware of this. Kirchhoff theory holds for plates in which the defor-
mation by shear forces can be neglected, which is the case for a sufficiently
large span-thickness ratio l/t . The slenderness l/t > 10 is sufficient, and
most slabs will satisfy l/t ≥ 20.

Plates and FEM
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Figure 15.6 Different boundary conditions for Kirchhoff and Mindlin.

We must investigate which circumstances justify or even command the
choice of Mindlin theory. We have presented his theory in Section 3.2 to
which we refer. For the purpose of explaining differences in computational
results it is helpful to repeat the discussion about boundary conditions at a
free edge. For convenience we choose axes n normal to and s parallel to the
edge. In Mindlin theory there are three independent degrees of freedom at the
edge, the displacement w, the rotations ϕn normal to the edge and ϕs in the
plane of the edge. This is visualized in Figure 15.6. Note that we return tot the
rotation ϕ as used in Chapter 3 for the derivation of the differential equations.
In general there are three edge load components: a distributed force f in the
direction of w, a distributed torque tn in the direction of ϕn and a distributed
torque ts in the direction of ϕs . These edge loads are one-to-one equal to
the shear force vn, the bending moment mnn and the twisting moment mns ,
respectively. Usually tn and ts are zero, therefore both the bending moment
mnn and the twisting moment mns are zero. Eq. (15.1) summarizes this

⎧⎨
⎩

w

ϕn

ϕs

⎫⎬
⎭ →

⎧⎨
⎩

f

tn
ts

⎫⎬
⎭ =

⎧⎨
⎩

vn

mnn

mns

⎫⎬
⎭ →

vn = f

mnn = 0
mns = 0

(15.1)
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Figure 15.7 Close look at stress state near free edge.

In Kirchhoff theory there are only two degrees of freedom at the free edge:
the displacement w and the rotation ϕn normal to the edge. The rotation ϕs in
the plane of the edge is a slave of the displacement w because of the relation
ϕs = ∂w/∂s. Now only two edge loads can be applied, f in the direction of
w, and tn in the direction of ϕn. Yet, in general all three plate quantities vn,
mnn and mns can occur at the edge and may be non-zero. In Section 4.4 we
have seen which relations exist between these three quantities and the two
edge loads. We repeat them here.

{
w

ϕn

}
→

{
f

tn

}
=

⎧⎨
⎩vn + ∂msn

∂s
mnn

⎫⎬
⎭ → vn �= f ; mns �= 0

mnn = 0
(15.2)

A zero edge load tn will lead to a zero bending moment mnn, however a zero
edge load f does not in general lead to a zero shear force vn and zero twist-
ing moment mns . At an unloaded free edge (f = 0, t = 0) there will be both
a twisting moment and a shear force. This phenomenon is closely related
with the concentrated edge shear force Vs in sections normal to the edge, as
we found in Section 4.4. This concentrated shear force in Kirchhoff theory
does not appear in Mindlin theory. That theory is able to compute distributed
shear forces vs in a narrow edge zone. In order to understand what makes the
difference, we repeat in Figure 15.7 the shear stress flow due to a twisting
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moment in a section normal to the free edge. At a sufficient distance from
the edge, the twisting moment causes a linear distribution of shear stresses
over the depth of the plate, with zero value in the mid plane. Close to the
edge, the shear flow must turn around within the section, because the edge
face is stress free. This happens over a plate part with a length of about plate
thickness t . We want to describe the stress state in this small end part of the
plate in terms of plate quantities vs and mns . At the mid plane of the plate the
shear stresses have a vertical direction, and a distribution which increases
from zero to a maximum value at the edge. The distribution is not linear.
At the edge, the shear stress is vertical over the full thickness of the plate,
with a distribution which is (close to) parabolic, becoming zero at the top
and bottom of the edge. Outside the mid plane and at some distance from the
edge we can decompose the shear stress into vertical and horizontal compo-
nents. The integral of the vertical components delivers a vertical shear force
vs , which is zero at a distance from the edge of about one thickness, and
becomes maximum at the edge. The integral of all horizontal components
leads to a twisting moment mns , which decreases in the opposite direction
and becomes zero at the free edge. Here the principal difference between
Mindlin theory and Kirchhoff theory becomes apparent. Mindlin is able to
describe the discussed distribution of the shear force and twisting moment
and Kirchhoff is not. In Mindlin theory we can handle the boundary con-
dition mns = 0, whereas we cannot in Kirchhoff theory. Instead, Kirchhoff
determines the integral of all the local vertical stress components and con-
centrates them into one shear force Vs located at the very edge. At the same
time, Kirchhoff is not able to have the twisting moment diminish to zero, and
instead keeps it constant up to the edge, see Figure 15.7.

Once more we want to stress the fact that these differences happen in
a plate length of about one plate thickness. In this domain a big gradient
occurs in the n-direction. To cover this in a FE analysis needs a big number
of elements over a short distance.

15.3 Supporting Side Study

What we have explained on the basis of the theory can be supported by a
case study. We computed a simply-supported square plate by both Kirchhoff
and Mindlin, each for a thin and a thick plate. The length l of the edges is
9 m. The thickness t is 200 mm for the thin plate, and 2,250 mm for the
thick plate. The span-thickness ratios are 45 and 4 respectively. The first is
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Figure 15.8 Mesh for thin plate analyses.

clearly a thin plate, and the second a thick plate. In all calculations the same
distributed load p = 3 kN/m2 is applied. In the plots to follow, Kirchhoff
is depicted on the left and Mindlin on the right. The chosen meshes are dis-
played in Figure 15.8. An element size of 570 mm is used over the main
area of the plate outside the edge zone. For the thin plate this is almost three
times the plate thickness and for the thick plate it is about a quarter of the
plate thickness. In the edge zone one element of 225 mm width is used in
the Kirchhoff analysis. A smaller element size has no effect because the lo-
calized shear force in the edge zone anyhow is replaced by a concentrated
shear force at the edge. This is different for the Mindlin analysis; there this
225 mm edge zone has been divided into 15 very small elements of 15 mm
width each. Usually we would avoid a large aspect ratio, but we can use it for
the purpose of this study, as no large gradients are expected in the direction
parallel to the edges.

15.3.1 Thin Plate Results

We start with the analysis for the thin plate. Figure 15.9 shows the displace-
ment and bending moment. The difference between Kirchhoff and Mindlin
is of the order of 2%, both for displacement and moment. A difference oc-
curs in the corners, where Mindlin leads to an isolated peak, which is absent
for Kirchhoff. The twisting moments and the shear forces are given in Fig-
ure 15.10. The twisting moment in the Kirchhoff-analysis is non-zero at the
edge, whereas the Mindlin analysis manages to make the twisting moment
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Figure 15.9 Deflection and bending moment in thin plate.

practically zero. However, this must be obtained in a very small edge zone.
The maximum value occurs very close to the corner and is only 3% smaller
than in the Kirchhoff analysis, where the maximum value is found exactly in
the corner. Remembering that the Mindlin analysis requires an impractically
fine mesh to provide the correct solution, our conclusion is justified that
Kirchhoff in combination with a practical mesh delivers a good result. The
shear force distributions are at first glance very different. However, we must
bear in mind that the Mindlin analysis is supposed to reproduce the local
shear force distribution at the edge due to the returning twisting moment
shear flow, and that these local shear stresses very much dominate the plot.

We have repeated the Mindlin analysis for the practical mesh (in fact still a
fine mesh) of the Kirchhoff analysis. The result is presented in Figure 15.11.
Now the maximum appears at a distance of about one tenth of the span from
the edge near the corner and is 9% smaller than the correct value. Mindlin in
combination with a practical mesh does apparently not offer an advantage,
but rather decreases the accuracy of the computation. As the saying goes, it
is ‘Neither fish, flesh nor good red herring’. We recommend using Kirchhoff;
this theory gives good results for both moments and shear forces. The struc-
tural engineer must be aware that there is a local concentrated shear force Vs

along the edge, and must be able accounting for it.
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Figure 15.10 Twisting moment and shear force in thin plate.

Figure 15.11 Mindlin analysis for thin plate with practical mesh. Neither fish, nor
flesh, nor good red herring.

We stress that there is no point in choosing smaller elements than plate
thickness. Edge zone effects are disturbed anyhow. At simple supports and
clamped edges, there is always an edge disturbance with a three-dimensional
stress state. The same holds at columns and at intermediate supports of con-
tinuous plates. Point loads actually apply over non-zero areas. Therefore,
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Figure 15.12 Mesh, deflection and bending moment for thick plate.

considering all these comments, we justify adopting the rule: never use an
element size smaller than the order of magnitude of the plate thickness.

Lesson

In a thin plate analysis we must use Kirchhoff. The Mindlin analysis
requires a senseless fine mesh to produce practically the same results.
Choosing Kirchhoff, we need never use element sizes smaller than the
plate thickness.

15.3.2 Thick Plate Results

We now turn to the results for the thick plate with slenderness 4. A mesh of
17 × 17 elements is used in the Kirchhoff analysis. The mesh in the Mindlin
analysis is 15 × 15 for the regular area outside the edge zones. In the edge
zones again a fine mesh is used. Displacements and bending moments are
presented in Figure 15.12. Now substantial differences are seen. The deflec-
tion in the Mindlin analysis is about 1.5 larger than in the Kirchhoff-analysis.
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Figure 15.13 Twisting moment and shear force in thick plate.

Moment values are 17% larger in the Mindlin analysis. A Kirchhoff analysis
would seriously underestimate the bending moment. Figure 15.13 shows the
results for the twisting moment and shear force. Now the edge zone in the
Mindlin analysis is a noticeable part of the plate and the peak value of the
twisting moment occurs at a point of the plate far away from the boundary.
The value is about three quarter of the corner value in the Kirchhoff analysis.
Apparently, a thick plate reduces the twisting moment at the cost of a higher
bending moment. The shear force plot in the Mindlin analysis is more regu-
lar than for the thin plate and needs no further explication. The concentrated
edge shear force Vs in a thin plate is nicely spread over a wide zone in a thick
plate and is just part of the overall distribution of the shear force.

Lesson

For thick plates we must use Mindlin. The mesh must be refined in an
edge zone of width equal to about the plate thickness. It is sufficient to
take five elements over the edge zone.
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Figure 15.14 For slender multi-cell plates Mindlin theory must be applied.

Thin Orthotropic Plates

All conclusions in this chapter refer to plates of isotropic homogenous mater-
ial. There is an exception, in which we always must analyze a thin plate with
Mindlin theory. That is for a plate of relative small depth and small shear
rigidity, like a multi-cell slab. The distortion of the cells in the x-direction,
as shown in Figure 15.14, is interpreted as a shear deformation γx . For the
shear rigidity of such plates, we refer to Section 21.3.

15.4 Comparison in Hindsight

The knowledge obtained in the preceding sections helps us understand why
there was so much scatter in the submitted results for the three different plate
analyses in Section 15.1. Return to Figure 15.4 for the twisting moment at
the free edge. In a Mindlin analysis the twisting moment must become zero.
In plate 1 the thickness is 160 mm and the element size 500 mm. There is
no chance at all that a Mindlin analysis will lead to a reasonable result. At
least five elements must be chosen in an edge zone of 160 mm. The value
of the twisting moment mxy at the ball support in a Kirchhoff analysis is
half the support reaction, so 2,025 N. In the Mindlin analysis of plate 1 we
should obtain mxy = 0, however the moment becomes 1,448 N. It is less
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than 2,025 N but not zero. Again, ‘neither one thing nor the other’. In plate
2 the element size is 250 mm, still about a factor 1.5 larger than thickness
(160 mm), instead of a factor five smaller. Plate 3 has a three times larger
thickness (480 mm). The edge zone in which we should refine the mesh
is about twice the element size (250 mm). We still must refine the row of
elements along the edge substantially in order to get reasonable results. As a
matter of fact, we must conclude that plate 3 is hardly a thick plate; the edge
zone of 480 mm is about one eighth of the span (4,000 mm), still a rather
small zone, the more so if one remembers that the concentration of the edge
shear force in fact occurs in the half of the disturbed edge zone. Mindlin has
no chance to perform well with the applied mesh, and the result proves it.
The corner value of the twisting moment, which should be zero for Mindlin
and 2,025 N for Kirchhoff, is somewhere in between (1,212 N). Again the
shear force is ‘neither one thing nor the other’.

The story for the shear force in the section x = 500 mm can be short. For
the explanation we refer to Figure 15.5. Near the free edge there is a con-
centrated shear force of the size of the twisting moment at that point. This
value will be a little smaller than the corner value 2,025 N. In the Mindlin
analysis this concentrated value is part of the smeared shear force vx . The
concentrated shear force acts in an edge zone of about 160 mm in plate 1 and
2 and in an edge zone of about 480 mm in plate 3. The Mindlin analysis can-
not predict these localized shear forces with the applied large element sizes.
Comparison of plate 1 to plate 2 shows immense element size dependence.
The smoothest result is reached in plate 3, but even this is misleading: the
computed maximum shear force has no physical meaning.

15.5 Message of the Chapter

Thin Plates

• Thin plates should preferably be calculated with Kirchhoff theory.

• If Mindlin theory is used for thin plates, this must be done at the
cost of a very fine mesh, with results hardly different from Kirchhoff.
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• Thin plates with Mindlin and a practical mesh are ‘neither fish, flesh
nor good red herring’.

• Application of Kirchhoff theory requires an element size not smaller
than about plate thickness.

• If Kirchhoff theory is chosen and the FE-program offers the option
of a graph for the shear force diagram across a section, also the
concentrated edge shear force should be shown.

• If Kirchhoff theory is chosen and the FE-program is able to deter-
mine the resultant of shear forces and twisting moments (total force,
total torque) over a section, also concentrated edge shear forces
must be accounted for. Otherwise equilibrium is violated. This also
holds at plate boundaries with edge beams.

• If Kirchhoff theory is chosen and edge beams are applied, the bend-
ing moment in the beam is correct, but the shear force must be ob-
tained as the sum of the concentrated edge shear force Vedge and the
beam shear force Vbeam.

Thick Plates

• A thick homogeneous isotropic plate must be analyzed by Mindlin
theory.

• An edge zone must be chosen of a width equal to about plate
thickness, in which a sufficiently fine mesh is applied.

• Sufficiently fine is five or more elements over the edge zone.



Chapter 16
Reinforcement Design Using Linear Analysis

Contributed by Paulo B. Lourenço, Minho University, Guimarães, Portugal

Design of reinforced concrete structures can be described by the following
consecutive steps:

1. Select the initial dimensions of all the structural elements using simple
rules of thumb or experience. These dimensions should be able to satisfy
the serviceability and ultimate limit states, and should fulfill the require-
ments for adequate site execution and any other applicable requirement
(e.g. acoustic isolation, fire protection, etc.).

2. Perform a global structural analysis to calculate the internal forces (or
stresses) due to the combination of loads defined in the codes. The method
almost used exclusively today is the finite element method and the behav-
iour of the structure is assumed to be linear elastic at this stage.

3. Verify concrete initial dimensions and calculate the reinforcement capable
of resisting the calculated internal forces. At this stage, the ultimate capac-
ity of the individual cross-sections is considered; this which is typically
associated with nonlinear constitutive laws.

The main advantage of the above process is that linear elastic finite ele-
ment analysis is well established and is straightforward to apply. In addition,

the locations where tensile stresses appear. These regions correspond to the
initial crack locations, helping to control crack propagation.

Of course there are also some disadvantages in the process described:
stress redistribution can be difficult to incorporate, providing more expen-
sive reinforcement arrangement; no real information is obtained about the
collapse load of the structure, even if a lower bound estimate is obtained
when ductility is enforced, and no real information is provided on inelastic
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multiple load cases can be easily incorporated and reinforcement is placed in

and Its Applications 171, DOI 10.1007/978-90-481-3596-7_16,



292 16 Reinforcement Design Using Linear Analysis

phenomena as crack width, crack spacing or maximum deflection, even if
they can be estimated for beam-type structural elements. A consequence of
the process is that detailing guidelines need to be used to ensure ductility and
serviceability demands.

Only in very few selected cases of structures with unusual size, shape, or
complexity, would a full nonlinear analysis of the previously designed struc-
ture be made for assessment, tracing out the entire behaviour through the
uncracked, cracked, and ultimate stages. Such an analysis generally requires
significant time for pre-processing, computation and post-processing, which
is not compatible with cost and time demands. Also, as nonlinear analysis
requires the definition of geometry and reinforcement, it should not be re-
garded as a design tool but, mostly, as an assessment tool.

The simulation of concrete walls, slabs, assemblages of walls and slabs
and shells using finite element analysis is becoming a standard in structural
analysis tools for building design, meaning that adequate methodologies for
the design of these elements are necessary.

In this chapter, we discuss design methods for membrane states (walls),
bending states (slabs) and combinations as may occur in spatial assemblages
of plates and in shells. Hereafter they are referred to as shells. Design
of reinforced concrete elements subjected to membrane states has been
developed since 1960s by authors like Baumann, Braestrup and Nielsen,
only to name of few. The book of Nielsen is a classical reference [19]. This
process resulted in formulas for reinforcement design and check of concrete
strength in the CEB-FIB Model Code 1990 for Concrete Structures [20].

Reinforcement design for slabs and shells has also received attention in the
Model Code 1990. For that purpose a three layer sandwich model was in-
troduced. Pioneers of this approach are Gupta and Marti. The introductory
version of Eurocode 2 suggested a different method based on the normal
yield criterion. That result is alternatively referred to as the Wood–Armer
equations [21]. It applies to slabs only and not for shells. The later version
EN 1992-1-1:2004 of Eurocode 2 [22] removed this method. The version
EN 1992-2:2005 of Eurocode 2 again included a solution in its appendices,
returning to the three layer sandwich model. This solution has received a
place in Part 2 of Eurocode 2 on Bridges [23]. fib has published in 2008 a
Practitioners’ guide to finite element modeling of reinforced concrete struc-
tures [24]. This document also presents the three layer sandwich model.
Readers interested in a more complete review of the historical development
of the different methods are referred to [25, 26].
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Figure 16.1 Model for membrane element: (a) applied forces; (b) reinforcement
contribution; (c) concrete contribution.

Here we will refer to the three layer sandwich model of Eurocode 2 and fib
practitioners’ guide as basic model. We call it basic because the concept is
very useful, but the working-out still requires improvement, because internal
lever arms are only approximated and some terms are neglected in the equi-
librium equations. After the presentation of the basic model, we introduce
an advanced method which is consistent with all terms in the equilibrium
conditions.

Both the basic and advanced model will first be discussed for cases of
moderate transverse shear forces which can be carried by the concrete. After
that we make the extension to slabs with larger transverse shear forces; these
require transverse shear reinforcement, an extension we owe to Marti [27].

16.1 Design of Membrane States

Consider a membrane element with a thickness h, subjected to applied in-
plane forces nxx , nyy and nxy , as shown in Figure 16.1a. The reinforcement
consists of two orthogonal sets of rebars parallel to the x, y-axes. asx and asy

are the needed reinforcement areas per unit length in this co-ordinate system.
They are calculated from forces nsx and nsy respectively. The purpose of this
section is to find formulas for nsx and nsy .

The applied forces will be resisted by the reinforcement and concrete con-
tributions. It is assumed that the concrete is subjected to uni-axial compres-
sion nc parallel to the cracking orientation, at an angle θ with the y-axis. The
two rebar sets in Figure 16.1b and the concrete struts of Figure 16.1c must
together carry the applied loads of Figure 16.1a. For the sign convention of
the applied nxx, nyy and nxy loads we refer to Chapter 1. The forces nsx and
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nsy are always positive or zero, and the membrane force nc in the concrete is
negative or zero.

In the chosen x, y-coordinate system, the shear resistance of the reinforce-
ment is zero and the state of stress of the concrete is uni-axial. The first
principal membrane force is zero and the compressive force nc occurs in the
second principal direction. The stress state in Figure 16.1a is equivalent to
the combination of the states in Figures 16.1b and 16.1c when the following
equilibrium conditions are satisfied:

nxx = nsx + nc sin2 θ

nyy = nsy + nc cos2 θ (16.1)

nxy = −nc sin θ cos θ

The second principal stress σc must be smaller than the compressive strength
fc of concrete

nc ≥ −hfc (16.2)

The applied forces are in the left member of Eq. (16.1) and the internal forces
are in the right member. It should be remembered that nc is negative, so nsx

is not smaller than nxx and nsy is not smaller than nyy . The cases of θ = 0
and θ = π/2 are trivial, meaning that the principal directions are aligned
with axes x and y. If θ �= 0 and θ �= π/2, Eqs. (16.1) to (16.2) can be recast
such that the steel and concrete forces are in the left member and the applied
forces are in the right:

nsx = nxx + nxy tan θ

nsy = nyy + nxy cot θ (16.3)

nc = − nxy

sin θ cos θ

The third expression in Eq. (16.3) indicates that nxy and θ must have the
same sign, so that nc is negative, or in compression. The total amount of
reinforcement can be obtained from the first two expressions in Eq. (16.3),
and is

nsx + nsy = nxx + nyy + nxy(tan θ + cot θ) (16.4)

Note that the last term in this equation is always positive, as nxy and θ have
the same sign. Thus, the minimum amount of reinforcement corresponds to
θ = ±π/4. For these values of θ , noting that the reinforcement must be al-
ways subjected to tension, i.e. nsx ≥ 0 and nsy ≥ 0, the first two expressions
of Eq. (16.3) gives nxx ≥ −|nxy| and nyy ≥ | − nxy| respectively. Otherwise
the θ value must be changed. Therefore four different cases of reinforcement
have to be considered.
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Case 1: Reinforcement in X- and Y -Direction Needed

For this case it holds

nxx ≥ −|nxy|, nyy ≥ −|nxy|
nsx = nxx + |nxy|, nsy = nyy + |nxy|
θ = ±π

4
, nc = −2|nxy|

(16.5)

Case 2: Only Reinforcement in Y -Direction Needed

For this case the following equations hold:

nxx < −|nxy| → nsx = 0

tan θ = −nxx

nxy

nsy = nyy − n2
xy

nxx

, nsy ≥ 0 → nyy ≥ n2
xy

nxx

nc = nxx + n2
xy

nxx

(16.6)

Case 3: Only Reinforcement in X-Direction Needed

For this case the following equations hold:

nyy < −|nxy| → nsy = 0

tan θ = −nxy

nyy

nsx = nxx − n2
xy

nyy

, nsx ≥ 0 → nxx ≥ n2
xy

nyy

nc = nyy + n2
xy

nyy

(16.7)

Case 4: No Reinforcement Needed in Any Direction

No cracking occurs and the stress state is biaxial compression. In the con-
crete two principal membrane forces nc1 and nc2 are present:

Plates and FEM
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Figure 16.2 Overview of four cases for membrane reinforcement.

⎧⎪⎨
⎪⎩

nxx < −|nxy|

nyy <
n2

xy

nxx

or

⎧⎪⎨
⎪⎩

nyy < −|nxy|

nxx <
n2

xy

nyy

nsx = 0, nsy = 0

nc1,c2 = nxx + nyy

2
±

√(
nxx − nyy

2

)2

+ n2
xy

(16.8)

Rebar Design and Check on Concrete Stress

The four cases are summarized in Figure 16.2. The formulas correspond to
the optimum direction of concrete compression, i.e., the θ value leading to
the minimum amount of reinforcement. The reinforcement design is obtained
from

asx = nsx

fsyd

, asy = nsy

fsyd

(16.9)
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where asx and asy are steel areas per unit length and fsyd is the design yield
strength of the reinforcement. The concrete stress is given by

fc = −nc/h (16.10)

which must be checked against the design compressive strength fcd . For this
strength we can apply the Model Code 1990 or the Practitioners guide of fib.

Model Code 1990

The Model Code 1990 recommends

Case 1 to 3 fc ≤ fcd2

Case 4 fc ≤ K fcd1

(16.11)

where

fcd1 = 0.85

[
1 − fck

250

]
fcd

fcd2 = 0.60

[
1 − fck

250

]
fcd (16.12)

K = 1 + 3.65α

(1 + α)2
, α = σ2

σ1

Here fcd is the design strength of the concrete, fck is the characteristic
strength of the concrete, and σ1 and σ2 are the two principal compressive
stresses. These formulas are based on experimental studies on biaxial con-
crete behaviour of Kupfer.

fib Practitioners’ Guide

The practitioners’guide of fib recommends following planned changes to the
ACI code. The proposed formula for the concrete strength is

fcd = 0.85βfck/γc (16.13)

where the factor 0.85 accounts for the variation between the in-situ and cylin-
drical strengths, β accounts for influence of transverse tensile strain, fck is
the characteristic compression strength, and γc is the partial safety factor.
The formula for β is
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β = 1

0.8 + 170ε1
(16.14)

Herein ε1 is the major principal strain normal to the direction of the concrete
struts. For this strain, the yield strain of the steel reinforcement might be
chosen, so ε1 = fsyd/E, where E is the Young modulus of steel.

Remark

At this point, it should be pointed out that the discontinuous variation of con-
crete compressive strength between Cases 3 and 4, or between Cases 2 and
4 does not seem acceptable. This gains special relevance as the expression
for fcd2 in Eq. (16.12) corresponds practically to an absolute minimum of
cracked reinforced concrete. However, this seems to be the price to pay for a
simplified design approach.

16.2 Design of Slabs – Normal Moment Yield Criterion

As in an element in membrane state, dimensioning of slabs and shells
from internal forces obtained in a finite element analysis is based on an
equilibrium model at ultimate state. While careful consideration of the
limited ductility of concrete is important in the dimensioning of membrane
elements, such a concern is lower for slabs because such structures are
typically under-reinforced. Failure is usually governed by yielding of
reinforcement, with the exception of point loads, which may result in brittle
punching failures in slabs and in shells without transverse reinforcement.

The stress resultants acting in a slab are the bending moments mxx and myy

and twisting moments mxy . For the derivation of the design equations a set
of orthogonal axes is chosen in directions x and y, giving moments per unit
length mxx , myy and mxy , such that myy > mxx. The normal moment yield
criterion requires that at any point within the element under consideration the
moment capacity m∗

n is greater than the applied normal moment mn for all
values of θ , the orientation of the plane measured in the clockwise direction
from the x-axis. The resulting formulas for the design moments are presented
in Figure 16.4. Reinforcement is provided in the x- and y-directions to resist
design ultimate moments mxb, mxt , myb and myt . The subscripts b and t

indicate bending moments giving tension in the slab bottom and slab top,
respectively. The bottom is at the positive z-side of the slab middle plane, and
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Figure 16.3 Stress resultants acting in a slab.

Figure 16.4 Reinforcement for slabs according to ENV 1992-1-1.

the top at the negative side. The shown equations are used in many software
packages for slab reinforcement design. Often, only the top-left corner of the
figure is used.

Evaluation

The use of the equations of Figure 16.4 is discouraged for a number of rea-
sons. The equations are not able to take into consideration transverse shear
forces, do not check for concrete crushing, and do not fulfill equilibrium re-
quirements. We strongly recommend using the three layer sandwich model,
which applies for slabs and shells. This is the subject of Sections 16.3 and
16.4.
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Figure 16.5 Stress resultants acting on a shell element.

16.3 Slab and Shell Elements – Basic Model

The problem to be discussed in this section is the design of a shell element of
thickness h, subjected to combined membrane forces and bending moments
and where the directions of the principal flexural and membrane forces do
not, in general, coincide. A slab element is a special case of the stated prob-
lem. Figure 16.5 shows the applied forces and moments. These forces and
moments have to be in equilibrium with the tensile forces in the reinforce-
ment and the compressive forces in the concrete. We choose a set of x,y,z-
axes as we did in Chapters 3 and 4, where z is pointing downward, see Fig-
ure 16.5. The reinforcement consists again of a mesh of orthogonal rebars
parallel to the x,y-axes, now placed in a upper and lower layer. We refer to
the upper or top layer by the subscript t (negative z-side) and to the lower or
bottom layer by b (positive z-side).

The formulation of this problem is identical to that in Section 16.1 for
membrane states. Again, the total resistance of the element is obtained by
adding the concrete and reinforcement contributions. We model the shell
element as a three layer sandwich, shown in Figure 16.6. The outer layers
are covers of the sandwich and the inner layer is the core. The cover layers
provide resistance to the in-plane effects of flexure and membrane loading,
while the core provides a shear transfer between the covers. The thickness of
the covers is a and the distance between the middle planes of the covers is
dν .

Dependent on its size, the transverse shear force has an impact on the
amount of the reinforcement in the covers. Small values have no impact,
large values do, To decide whether the shear forces are small we must con-
sider the maximum shear force vo as specified in Eq. (4.24).

vo =
√

v2
x + v2

y (16.15)
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Figure 16.6 Sandwich model: (a) shell element; (b) layer forces; (c) transverse
shear transfer in uncracked and cracked concrete, Marti (1991).

which acts in the direction of an angle βo with the x-axis, defined by
Eq. (4.23).

tan βo = vy

vx

(16.16)

This shear force is small if it is below the shear cracking resistance dν , τc,red,
where τc,red is the nominal strength of the slab without transverse reinforce-
ment. Then the core will remain uncracked. For the value τc,red, we may
apply ENV 1992-1-1, which provides

τc,red = 0.25fctd(1.6 − dν)(1.2 + 40ρl) + 0.15σcp (16.17)

Here, fctd is the design tensile strength, dν is the internal lever arm in me-
ters, ρl is the percentage of longitudinal reinforcement, and σcp is the in-
plane normal compressive stress. If significant tensile membrane forces are
applied to the element, tc,red should be taken to be zero. Provided that no sig-
nificant tensile membrane forces exist, the expression in Eq. (16.17) can be
simplified to a lower bound, neglecting the positive effect of the longitudinal
reinforcement.

τc,red = 0.30fctd(1.6 − dν) (16.18)

16.3.1 Basic Model – No Cracking Due to Transverse Shear

We start with small shear forces. The core layer is supposed not to crack and
to be able to carry transverse shear forces. Figure 16.6b depicts the sandwich
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model for this case. The need for reinforcement needs to be investigated only
for the combination of membrane forces and bending and twisting moments.
It is important to decide what thicknesses are assigned to the top and bottom
layers. In the basic model these thicknesses are not explicitly considered.
It is assumed that all reinforcement layers coincide in each outer sandwich
layer, which also coincides with the resultants of the concrete compression
forces. Therefore one lever arm dν applies for both directions x and y. The
membrane forces in the external layers are given by

nxxt = mxx

dν

+ nxx

2
, nxxb = −mxx

dν

+ nxx

2

nyyt = myy

dν

+ nyy

2
, nyyb = −myy

dν

+ nyy

2
(16.19)

nxyt = mxy

dν

+ nxy

2
, nxyb = −mxy

dν

+ nxy

2

Using the expressions provided above for the cover membrane elements, we
can obtain the final expressions for the forces per unit width for the reinforce-
ment design in shells (assuming that all four reinforcements are needed).

nsxt = mxx

dν

+ nxx

2
+

∣∣∣∣mxy

dν

+ nxy

2

∣∣∣∣
nsyt = myy

dν

+ nyy

2
+

∣∣∣∣mxy

dν

+ nxy

2

∣∣∣∣
nsxt = −mxx

dν

+ nxx

2
+

∣∣∣∣−mxy

dν

+ nxy

2

∣∣∣∣
nsyt = −myy

dν

+ nyy

2
+

∣∣∣∣−mxy

dν

+ nxy

2

∣∣∣∣

(16.20)

From these forces we can derive reinforcement percentages:

ρxt = nsxt

hfsyd

, ρyt = nsyt

hfsyd

, ρxb = nsxb

hfsyd

, ρyb = nsyb

hfsyd

(16.21)

where fsyd is the design yield stress of steel.

16.3.2 Basic Model – Cracking Due to Transverse Shear

If the transverse shear forces are high enough to produce cracking of the
sandwich core, additional reinforcement is required. Here we follow the ap-
proach as proposed by Marti [27]. An alternative proposal can be found in



303

Eurocode 2 [23]. The core is treated like the web of a girder of a flanged
cross-section running in the βo-direction of the maximal shear force. Fig-
ure 16.6c shows that concrete struts in the core come into being at an angle
θ with the middle plane. To ensure equilibrium, additional membrane forces
must occur in the upper and lower cover. Choosing θ = 45◦ leads to addi-
tional membrane forces in both covers of size vo in the direction of the max-
imal shear force. The choice of 45◦ for the crack angle in the core conforms
to the traditional Morsch truss for reinforced concrete beams. Decomposing
the additional membrane force in the covers to membrane forces in the x-
and y-direction leads to the following expressions:

nxxt = mxx

dν

+ nxx

2
+ v2

x

2vo
, nxxb = −mxx

dν

+ nxx

2
+ v2

x

2vo

nyyt = myy

dν

+ nyy

2
+ v2

y

2vo
, nyyb = −myy

dν

+ nyy

2
+ v2

y

2vo
(16.22)

nxyt = mxy

dν

+ nxy

2
+ vxvy

2vo
, nxyb = −mxy

dν

+ nxy

2
+ vxvy

2vo

Using these expressions for membrane elements, we find the final expres-
sions for the design of reinforcement for shells (assuming that all four rein-
forcements are needed):

nsxt = mxx

dν

+ nxx

2
+ v2

x

2vo
+

∣∣∣∣mxy

dν

+ nxy

2
+ vxvy

2vo

∣∣∣∣
nsyt = myy

dν

+ nyy

2
+ v2

y

2vo
+

∣∣∣∣mxy

dν

+ nxy

2
+ vxvy

2vo

∣∣∣∣
nsxt = −mxx

dν

+ nxx

2
+ v2

x

2vo
+

∣∣∣∣−mxy

dν

+ nxy

2
+ vxvy

2vo

∣∣∣∣
nsyt = −myy

dν

+ nyy

2
+ v2

y

2vo
+

∣∣∣∣−mxy

dν

+ nxy

2
+ vxvy

2vo

∣∣∣∣

(16.23)

From these forces, we derive reinforcement percentages by using the formu-
las in (16.21). Transverse reinforcement is needed with a percentage ρz given
by

ρz = vo

dνfsyd

(16.24)

In practical problems we recommend increasing the slab or shell thickness
so that transverse reinforcement is avoided.

Plates and FEM



304 16 Reinforcement Design Using Linear Analysis

16.3.3 Evaluation

The basic sandwich model is simple to apply, but definitely is an approxima-
tion to reality. We mention the following:

• It is assumed that the core does not contribute to transferring membrane
forces. Compatibility requirements show that this cannot be correct.

It is assumed that both reinforcement layers in an outer layer are positioned
in the middle plane of the cover; this is physically impossible, and that this
middle plane coincides with the resultant of the respective compression force
in the concrete, which is not normally the case.

The angle βo for the cracks in the core due to the transverse shear force
has been tacitly assumed to be ± 45◦.

Even if global equilibrium is satisfied, several terms associated with dif-
ferent lever arms of all forces are not considered; this means that deviance
from reality tends to increase for higher reinforcement percentages or large
twisting moments. In these cases, the thickness of the concrete layer tends to
increase and the basic model is unsafe.

In Section 16.4 we present an advanced sandwich model. It also starts
from the supposition of a three layer sandwich model and division of force
transfer, such that the covers carry the membrane forces, bending and twist-
ing moments and the core carries the shear forces. For the rest the short-
comings of the basic model are fully repaired. We assign its own plane to
each reinforcement layer, permit the thickness of covers to be adequately
calculated and rigorously consider the missing terms. So a consistent set of
hypotheses lays the foundation of the advanced model.

16.4 Formulation of the Advanced Three-layer Model

In the consistent model, the internal lever dv is not assumed a priori and it is
not equal in all directions, being calculated using an iterative process. Four
different cases must be analyzed and treated separately: (a) reinforcement
needed in both outer layers; (b) reinforcement needed only in the bottom
layer; (c) reinforcement needed only in the top layer; (d) no need for rein-
forcement. The complete formulation of the problem, the software code and
validation can be found in [25,26]. The described phenomena are simple but
the resulting equations are reasonably complex, leading to an indeterminate
system of nonlinear equations.
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Figure 16.7 Definition of advanced sandwich model.

The geometry of the advanced model is shown in Figure 16.7. We in-
troduce different distances hxt , hyt , hxb and hyb for the four reinforcement
layers to the middle plane of the slab. The thicknesses of the outer layers are
at and ab, respectively. The core between these layers has thickness hc. As
for the basic model, we define resisting reinforcement forces nsxt , nsyt , nsxb

and nsyb. The two forces for the x-direction are summed to nsx and for the y-
direction to nsy . Correspondingly resisting reinforcement moments msx and
msy are defined. For the concrete top and bottom layer we introduce resist-
ing forces nct and ncb, respectively, and resisting concrete moments mct and
mcb. Here, subscripts s and c indicate steel and concrete, respectively, and
subscripts t and b indicate again top and bottom external layer, respectively.

Case 1: Reinforcement in Both Outer Layers

If reinforcement is needed in the outer layers, the resisting forces and mo-
ments for the reinforcement in the x- and y-directions are given by

nsx = nsxt + nsxb

nsy = nsyt + nsyb

(16.25)

msx = −nsxthxt + nsxthxb

msy = −nsythyt + nsythyb

(16.26)

and for the concrete by

nct = −atfc

ncb = −abfc

(16.27)
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mct = −1

2
(h − at ) nct

mcb = 1

2
(h − ab) ncb

(16.28)

Equations (16.25)–(16.27) provide the internal forces and moments. Equi-
librium with the applied set of forces and moments leads to

nxx = nsx + nct sin2 θt + ncb sin2 θb

nyy = nsy + nct cos2 θt + ncb cos2 θb (16.29)

nxy = −nct sin θt cos θt − ncb sin θb cos θb

mxx = msx + mct sin2 θt + mcb sin2 θb

myy = msy + mct cos2 θt + mcb cos2 θb (16.30)

mxy = −mct sin θt cos θt − mcb sin θb cos θb

Equation (16.29) correspond to the membrane forces, while Eq. (16.32) cor-
respond to bending equations. If θt �= 0, π/2 and θb �= 0, π/2, the previous
equations can be recast as

−nct = (h − at )nxy − 2mxy

hc sin 2θt

−ncb = (h − ab)nxy + 2mxy

hc sin 2θb

(16.31)

Reinforcement will be given upon solving Eqs. (16.25) to (16.30). The
objective is to calculate the forces in the reinforcement nsxt , nsyt , nsxb and
nsyb. The other unknowns are at , ab, θt and θb. Therefore the system of six
equations contains eight unknowns. This means that the values of θt and θb

should be chosen so that the total amount of reinforcement is minimized. The
values of θt = θb = π/4 and at = ab = 0.2h can be assumed as an initial
guess. Setting the values of θ to π/4 minimizes the total reinforcement in
membrane elements. Setting a = 0.2h is usual for beam sections. The values
are then adjusted by an iterative procedure until equilibrium is fulfilled.
The reader is referred to [25,26] for a full description of the iterative method.

Compressive crushing is checked by enforcing that at + ab ≤ h and tensile
reinforcement is calculated assuming yielding of the reinforcement.
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Case 2: Reinforcement in Bottom Layer Only

For biaxial compression in the top layer, reinforcement in the top layer is
not needed. We indicate the concrete top layer membrane forces by ncxxt ,
ncyyt and ncxyt . The forces and moments that the reinforcement resists in the
x, y-directions are given by

nsx = nsxb

nsy = nsyb

msx = nsxbhxb

msy = nsybhyb

(16.32)

and by the concrete bottom layer are

ncb = −abfc

mcb = 1

2
(h − ab)ncb

(16.33)

Equilibrium with the applied set of forces and moments yields

nxx = nsx + ncxt + ncb sin2 θb

nyy = nsy + ncyt + ncb cos2 θb (16.34)

nxy = ncxyt − ncb sin θb cos θb

mxx = msx + mcxt + mcb sin2 θb

myy = msy + mcyt + mcb cos2 θb (16.35)

mxy = mcxyt − mcb sin θb cos θb

with

mcxt = −1

2
(h − at ) ncxt

mcyt = −1

2
(h − at ) ncyt (16.36)

mcxyt = −1

2
(h − at ) ncxyt

In the current case there are still eight unknowns. However, one extra equa-
tion must be added to the six equations of equilibrium, representing the bi-
axial state of stress in the concrete top layer
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nct = −atfc = ncxt + ncyt

2
−

√(
ncxt + ncyt

2

)2

+ n2
cxyt (16.37)

Here, fc has a higher value than the uni-axial compressive strength of cylin-
ders due to biaxial confinement. Nevertheless there are eight unknowns and
seven equations, meaning that θb should be chosen so that the total amount
of reinforcement is minimized.

Case 3: Reinforcement in Top Layer Only

The case of biaxial compression in the bottom layer is identical to the case
of biaxial compression in the top layer, with a rotation of indices. Therefore
establishing the equilibrium equations requires no additional explanation.

Case 4: No Reinforcement at All

Finally, in the case of biaxial compression in top and bottom layers, there
is no need of reinforcement and the solution is unique. Assuming that the
concrete top layer membrane forces are ncxt,ncyt and ncxyt respectively in the
x, y-direction and as shear force, and the concrete bottom layer membrane
forces are ncxb, ncyb and ncxyb with a similar meaning, the equilibrium equa-
tions might be written as

nxx = ncxt + ncxb

nyy = ncyt + ncyb (16.38)

nxy = ncxyt + ncxyb

mxx = mcxt + mcxb

myy = mcyt + mcyb (16.39)

mxy = mcxyt + mcxyb

with

mcxt = −1

2
(h − at )ncxt mcxb = 1

2
(h − ab)ncxb

mcyt = −1

2
(h − at )ncyt mcyb = 1

2
(h − ab)ncyb (16.40)

mcxyt = −1

2
(h − at )ncxyt mcxyt = 1

2
(h − ab)ncxyt
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The principal concrete compression forces in each layer may be calculated
according to

nc,t = ncxt + ncyt

2
±

√(
ncxt − ncyt

2

)2

+ n2
cxyt

nc,b = ncxb + ncyb

2
±

√(
ncxb − ncyb

2

)2

+ n2
cxyb

(16.41)

and the layer thickness may be calculated according to the MC90 as

at = −nct,max

Kfcd1
, ab = −ncb,max

Kfcd1
(16.42)

As shown above, there are eight unknowns and eight equations (the six equi-
librium equations and two equations to check the maximum compressive
stress in the layers), meaning that the problem is determinate.

16.5 Applications on Element Level

In this section we illustrate the use of the basic and advanced model for two
elements. The first one is subjected to a combination of a membrane force
and bending moment. The second is a slab element subjected to a twisting
moment.

16.5.1 Element with Membrane Force and Bending Moment

An element is subjected to an applied set of a bending moment and mem-
brane shear force given by mxx = 235 kNm/m and nxy = 1,806 kN/m. The
material properties of concrete and steel are fc = 41.8 MPa and fsy = 492
MPa. The location of the reinforcement is given by hxt = hxb = 0.122 m
and hyt = hyb = 0.100 m. This element is chosen because an experimental
result of Kirsher and Collins is available for the purpose of comparison [28].
The bending moment and membrane shear force mentioned above are the
ultimate loads in the test. We will start from this load and determine how
much reinforcement is needed.

The top row in Table 16.1 shows that in total 111.4 cm2/m reinforcement
is applied in the element in the test. Not all the reinforcement yielded at
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Table 16.1 Reinforcement for membrane shear + bending moment.

Reinforcement areas (cm2/m)

Method x upper y upper x lower y lower Total

Experiment 41.8 13.9 41.8 13.9 111.4
Nonlinear 0.0 14.1 37.6 16.9 68.6
Basic method 0.0 15.7 39.9 18.4 74.0
Advanced method 0.0 16.6 36.8 17.9 71.3

failure. The second row in the table is the prediction of the needed reinforce-
ment on the basis of a nonlinear analysis by an iterative computer program
with optimization [29]. This provided a minimum amount of reinforcement
equal to 68.6 cm2/m. The third row presents the results of the basic sand-
wich model and the fourth row of the advanced model. So we use the two
rows ‘Experiment’ and ‘Nonlinear’ are benchmark references for the basic
and advanced method.

Basic Model

For the basic model an average distance of layer centres to the middle plane
of the element of 0.111 m is chosen. Therefore dν = 0.222 m. On the basis
of Eq. (16.19) we find the following

nxxb = 235/0.222 = 1,059 kN/m,

nxxt = −235/0.222 = −1,059 kN/m,

nyyb = 0,

nyyt = 0,

nxyb = 1,806/2 = 903 kN/m,

nxyt = 1,806/2 = 903 kN/m.

Using the expressions for membrane elements it is possible to obtain, for the
top layer (x reinforcement not needed)

nsxt = 0,

nsyt = nyyt − n2
xyt

nxxt

= 0 − 9032

−1,059
= 770 kN/m
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nct = −1,059 + 9032

−1,059
= −1,829 kN/m

asxt = 0

asyt = nsyt

fsy

= 770

492 × 103
× 104 = 15.7 cm2/m

at = − nct

f eff
c

− −1,829

0.6 × 41.8 × 103
= 0.073 m

Note that the value of the effective compressive strength was here assumed
as 0.6fc. Similarly, for the bottom layer

nsxb = nxxb + ∣∣nxyb

∣∣ = 1,059 + 903 = 1,962 kN/m

nsyb = nxyb + ∣∣nxyb

∣∣ = 0 + 903 = 903 kN/m

ncb = −2
∣∣nxyb

∣∣ = −2 × 903 = 1,806 kN/m

asxb = nsxb

fsy

= 1,962

492 × 103
× 104 = 39.9 cm2/m

asxt = nsxt

fsy

= 903

492 × 103
× 104 = 18.4 cm2/m

ab = − −1,806

0.6 × 41.8 × 103
= 0.072 m

Advanced Model

The advanced sandwich model requires five iterations, provides the thickness
of the layers equal to 0.072 m and 0.075 m for the top and bottom respec-
tively, and the reinforcement results as given in the third row of Table 16.1. It
can be seen that the results are almost the same as the basic sandwich model.
If the results of the nonlinear analysis are assumed as reference values, the
basic sandwich model provides +8% and the advanced sandwich model pro-
vides +4% of the total reinforcement.

16.5.2 Slab Element with Twisting Moment

A slab element is subjected to pure torsion by an applied twisting moment.
The value of the twisting moment is one time chosen mxy = 42.5 kNm/m
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Table 16.2 Reinforcement for small twisting moment.

Reinforcement areas (cm2/m)

Method x upper y upper x lower y lower Total

Experiment 5.0 5.0 5.0 5.0 20.0
Normal moment 5.0 5.3 5.0 5.3 20.6
Basic model 5.6 5.6 5.6 5.6 23.4
Advanced model 5.0 5.0 5.0 5.0 20.0

and one time mxy = 101.5 kNm/m. These values are chosen because results
of a test. Marti, Leesti and Khalifa obtained them for a lightly reinforced
(0.25%) and a severely reinforced (1.0%) element, respectively [30]. We
will use these moments as load and determine the needed reinforcement.
The material properties are fc = 44.4 MPa, and fsy = 479 MPa for the
light reinforcement and fsy = 412 MPa for the severe reinforcement.
The location of the reinforcement is given by hxt = hxb = 0.073 m and
hyt = hyb = 0.084 m, for the light one, and hxt = hxb = 0.066 m and
hyt = hyb = 0.082 m, for the severe one.

Table 16.2 regards the small twisting moment. The line ‘Experiment’ lists
the reinforcement existing in the tested element, which is the same in x- and
y-direction, and in the top and bottom layer (5 cm2/m). The second line in the
table regards the normal moment method. This violates equilibrium as dif-
ferent reinforcements are calculated for each direction. This is in agreement
with the formulation, as different lever arms are found for each reinforce-
ment direction, but equilibrium requires the forces in all reinforcements to
be the same. The basic and advanced sandwich models fulfill equilibrium
correctly. The normal moment method provides a reasonable (conservative)
value of reinforcement for the small twisting moment. The reinforcement
is in x-direction about 27% less than the required value and 19% less
in y-direction. The basic model is very safe for the small moment. The
prediction by the advanced sandwich model is exact for the small moment.

Table 16.3 shows the result for the large twisting moment. In the experi-
ment 20 mm2/m was used for all four reinforcements. The normal moment
method leads to different amounts in x- and y-direction, underestimates the
reinforcement in x-direction by 27% and the total by 24%. The basic sand-
wich model leads to equal amounts, however 19% too small. The advanced
sandwich model performs very satisfactory with only 3% difference with the
amounts in the test.
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Table 16.3 Reinforcement for large twisting moment.

Reinforcement areas (cm2/m)

Method x upper y upper x lower y lower Total

Experiment 20.0 20.0 20.0 20.0 80.0
Normal moment 14.6 16.3 14.6 16.3 61.8
Basic model 16.2 16.2 16.2 16.2 64.8
Advanced model 19.4 19.4 19.4 19.4 77.6

The reason for the bad predictions is that the location of the resultant
for the forces in the concrete are incorrectly calculated and the interaction
between the different forces in reinforcement and concrete are neglected.
Therefore, the equations on basis of the normal moment yield criterion and
the basic sandwich model should be used with much precaution, or not used
at all. Obtained results from these models must be distrusted if high rein-
forcement ratios are obtained.

16.6 Applications on Structural Level

16.6.1 Deep Beam

We study the one-span deep beam with the geometry and loading illustrated
in Figure 16.8(a), borrowed from the special report ‘Toward a Consistent
Design of Structural Concrete’ of the PCI Journal [31]. The 0.4 m thick
beam carries the axial load of two columns, with 0.5 by 0.4 m2 cross-section.
The span exhibits an opening that modifies the normal deep beam behaviour.
The loads specified in Figure 16.8(a) are design loads and the materials em-
ployed are concrete class C25/30 (fcd = 16.67 MPa) and the steel S500
(fsyd = 435 MPa).

We discretized the deep beam into eight-noded quadrilateral elements
with the mesh schematically illustrated in Figure 16.8(b). We performed the
linear-elastic FEM analysis of the deep beam subjected to the design loads,
and obtained the in-plane forces nxx, nyy and nxy in each element sampling
point (2×2 in-plane integration). Defining the horizontal (x) and the vertical
(y) directions as the two orthogonal reinforcement directions, we apply the
design giving the amount of steel necessary to resist the calculated forces
at each sampling point. Figure 16.9 illustrates the reinforcement needs in

Plates and FEM



314 16 Reinforcement Design Using Linear Analysis

Figure 16.8 Deep beam: (a) geometry and loading (structure from PCI Journal,
Vol. 32, No. 3); (b) mesh discretization, tension and compression forces and trajec-
tories.

Figure 16.9 Deep Beam: reinforcement needs in the x- and y-directions.

Figure 16.10 Deep beam. Diagrams of horizontal reinforcement at the critical sec-
tions.
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Figure 16.11 Slab: (a) geometry and loading; (b) vertical displacement (m).

the x- and y-directions, respectively. We can easily define the amount and
distribution of the reinforcement to be employed by tracing out diagrams of
reinforcement at the critical sections as illustrated in Figure 16.10 for the
vertical and horizontal reinforcement.

16.6.2 Slab

The L slab, studied in Chapter 12, with the geometry and loading presented
in Figure 16.11(a) is now analyzed. This slab has the support conditions

Figure 16.12 Bending moments in the x- and y-directions (kNm/m), respectively.
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Figure 16.13 Twisting moment (kNm/m) and shear force in x-direction (kN/m).

Figure 16.14 Bottom and top reinforcement needs in the x-direction, respectively
(cm2/m).

presented in the Figure 16.11(a) and has a thickness of 0.24 m. The load
presented is the design load and the materials are concrete class C25/30
(fcd = 16.67 MPa) and the steel S500 (fsyd = 435 MPa).

We discretize this slab into eight-noded quadrilateral elements with the
mesh presented in Figure 16.11(b). We performed the linear-elastic FEM
analysis of the slab, and obtained mxx , myy , mxy , vx and vy for all the 2 × 2
integration points. We can see in Figure 16.12 the bending moments in the x-
and y-directions. We illustrate the twisting moment and the shear force in the
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Figure 16.15 Bottom and top reinforcement needs in the y-direction, respectively
(cm2/m).

x-direction in Figure 16.13. Defining the x- and the y-directions as the two
orthogonal reinforcement directions, we applied the design model giving the
amount of steel necessary to resist the calculated forces at each integration
point. Figure 16.14 shows the required reinforcement.

16.7 Message of the Chapter

• Reinforcement in a membrane state (wall) can be designed including
the effect of shear forces. Four different cases must be considered,
ranging from the need to apply reinforcement in two directions to
no reinforcement at all.

• Design of reinforcement in a slab on the basis of the normal moment
yield criterion leads to simple, easy to apply formulas. However, we
cannot check on concrete crushing, and equilibrium is not satisfied.

• The three layer sandwich model for slabs and shell elements leads to
design of reinforcement, a check on concrete crushing, and includes
a reinforcement design method for transverse shear forces.

Plates and FEM



318 16 Reinforcement Design Using Linear Analysis

• Two variants of the sandwich model are known, basic and advanced.
The basic model is easy to apply. However, it is an unsafe approx-
imation when large twisting moments occur or high percentages of
reinforcement are found. The advanced model consistently accounts
for the real geometry of the element and yields adequate results.



Chapter 17
Special Slab Systems

17.1 Wide-Slab Floor

A wide-slab floor consists of a prefabricated and a cast-in-situ component.
The prefabricated component is a thin floor unit of 2.4 m width. This
is the dark shaded part in Figure 17.1. The thickness is between 50 and
70 mm. These wide elements are placed side by side without connection
and are supported by scaffolding. They are the formwork for the second
component, concrete which will be cast in situ on top of these floor units.
This is the light shaded part in Figure 17.1. The total slab thickness is
between 150 and 250 mm. On top of the prefabricated floor units there is

unit and reinforcement truss act as an integrated girder to provide sufficient
stiffness during transport. Furthermore, the truss reinforcement assures
sufficient interlock with the concrete above the floor units. The units are
either reinforced by mild steel (passive reinforcement) or pre-tensioned.

We first describe the type with passive reinforcement. Apart from the truss-
shaped reinforcement for transport purposes and bond, there are two layers of
reinforcement in the floor unit, one to function as longitudinal reinforcement
after completion of the slab, and one for flexural strength and stiffness in

Figure 17.1 Slab with reinforced floor units.
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the lateral direction. After the floor units have been put in place, additional
coupling reinforcement is placed above the seams in order to assure lateral
flexural stiffness. This reinforcement must deliver the same flexural strength
as the slab between the seams, so this reinforcement area is larger than in
the floor units, because the lever arm in the effective depth is shorter. Where
top reinforcement is needed in the slab, it is placed on top of the hat-shaped
trusses.

The prefabricated floor units can also be placed as continuations of
each other. Then there are not only longitudinal seams, but also lateral.
Again coupling reinforcement is applied, now in the longitudinal direction.
Normally the workmanship of these joints receives little attention.

In pre-tensioned floor units, the pre-stressing wires are put in the longitudinal
direction. Dependent on national codes of practice, passive reinforcement in
lateral direction may be required. In practice, this will be grid reinforcement,
both longitudinal and lateral. If needed, longitudinal bar reinforcement can
be added. Such floor units demand passive coupling reinforcement above
the seams. The thickness of pre-tensioned floor units is of the order of
70 mm. If no lateral reinforcement in the floor unit is applied, then lateral
reinforcement is placed above the floor unit, see Figure 17.2. Need for
separate coupling reinforcement does not arise in this case.

In FE-based analyses, questions arise as to whether or not to account for the
seams, and if so, in what way. This chapter intends to be a helping hand.
It will appear that flexural rigidities in longitudinal and lateral direction can
differ so much that orthotropic flexural properties may be considered. This
chapter is intended for analyses with common FE codes which do not auto-
matically adapt rigidities in an iterative way.

Figure 17.2 Slab with pre-tensioned floor units.
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17.2 Reinforced Floor Unit

We suppose that the floor units are supported during construction such that
no bending moments come into being in the curing phase of concrete. After
hardening of the cast-in-situ concrete and removal of the provisional sup-
ports, the combination of floor units and cast-in-situ concrete act as one slab.
Hereafter, we assume an x-axis in the longitudinal direction of the floor unit,
and a lateral y-axis. Further we expect that the structural engineer has access
to a FE code, which accommodates both isotropic and orthotropic calcu-
lations based on Kirchhoff theory. As explained in Chapter 4, the flexural
rigidity relation for isotropic plates is

⎧⎨
⎩

mxx

myy

mxy

⎫⎬
⎭ = Et3

12
(
1 − ν2

)
⎡
⎣ 1 ν 0

ν 1 0
0 0 1

2(1 − ν)

⎤
⎦

⎧⎨
⎩

κxx

κyy

ρxy

⎫⎬
⎭ (17.1)

and the plate response is governed by the bi-harmonic differential equation

D

(
∂4

∂x4
+ 2

∂4

∂x2∂y2
+ ∂4

∂y4

)
w = p (17.2)

Here D is the flexural rigidity of the plate and p the distributed load. For
orthotropic plates a generalized constitutive relationship between moment
and curvature applies

⎧⎨
⎩

mxx
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mxy

⎫⎬
⎭ =

⎡
⎣ Dxx Dν 0

Dν Dyy 0
0 0 Dxy

⎤
⎦

⎧⎨
⎩

κxx

κyy

ρxy

⎫⎬
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as discussed before in Section 14.7. Now the differential equation becomes

(
Hxx

∂4

∂x4
+ 2Hxy

∂4

∂x2∂y2
+ Hyy

∂4

∂y4

)
w = p (17.4)

The derivation of this equation proceeds along the same lines as for isotropic
plates. Then the kinematic relations (17.2), the constitutive relations (17.3),
and the equilibrium relations (17.5) apply, and substitution from the one in
the other is done. The only difference is the replacement of the constitutive
relations (17.3) by the new relations (17.3). We will find that Hxx coincides
with Dxx and Hyy with Dyy , and the middle term becomes Hxy = 2Dxy+Dν .
Standard FE codes with the option of orthotropic slab analyses require the in-
put data Dxx , Dyy , Dν and Dxy . Some codes treat orthotropic properties with

Plates and FEM



322 17 Special Slab Systems

Figure 17.3 Moment-curvature diagrams for slabs with reinforced floor units.

constant thickness in combination with orthotropic material properties. Oth-
ers may keep the material isotropic and introduce orthotropic cross-section
second moments of area.

As stated, the question is whether or not we must account for the seams,
and if so, how. It makes sense to consider the influence of seams on the
moment-curvature diagram of the slab, see Figure 14.3. Between the seams,
the depth of the slab is ho, and at the seam ds . For a thickness ho of
about 150 mm, thickness ds is about 100 mm. A difference of factor 1.5
in thickness, leads to a difference of factor 3.4 in flexural rigidity in a linear-
elastic analysis; then moments must be small enough to have a stress state
which refers to the uncracked branch in the moment-curvature diagram. For
strength reasons the lateral yield moment at the seam must be equal to the
yield moment in the slab, so the reinforcement ratio of the coupling rein-
forcement will be larger than in the slab. Therefore, the third branch in the
moment curvature (a horizontal one) is at the same moment value for the
slab at the seam and slab between seams. The second branch in the moment-
curvature diagram holds when cracking has developed. The moment at which
the cracking branch starts is dependent on the square of the depths, there-
fore the cracking branch starts at a lower moment at the seams. The slope
of this branch is highly dependent on the reinforcement ratio and the ef-
fective depth, however in a reversed way. Therefore, the branch stiffness is
not expected to depend very much on their product, and the branches in
the moment-curvature diagram may be more or less parallel for the slab at
the seam and the normal slab between seams. Everything considered, we
arrive at moment-curvatures as shown in Figure 17.3. In the Serviceability
Limit State the difference between the curvatures at the seam and in between
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Figure 17.4 Geometry of seam in sensitivity analysis.

seams can easily surpass a factor two or three. The secant stiffness at the
seam therefore is much smaller than for the normal slab. We will make use
of this hereafter. For the Ultimate Limit State the difference is smaller, much
closer to one.

17.2.1 Serviceability Limit State

We consider the slab near the seam, as depicted in Figure 17.4. Drawing
inclined lines with angles of 45 degrees from the top of the seam downward,
we expect that the slab material below these two inclined lines is almost
stress-less. As an approximation, we assume the slab to consist of zones
of constant depth, one of width b1 at the seams, and one of width b − b1

between seams. The depths are ds and ho, respectively. Note that the figure
is not drawn to scale.

In order to determine the stiffness reduction due to the seams, we submit a
slab part of width b to a constant bending moment m in the lateral direction.
We determine the change of rotation between the two slab ends for the case
with seam and the case without. The ratio is a measure for the stiffness re-
duction. The lateral flexural rigidity of the slab part with depth ho is D, and
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for the slab part with depth ds is D1. The change of rotation over the width b

is called �ϕ if the effect of the seam is neglected and �ϕseam if the effect of
the seam is included. For �ϕseam and �ϕ we calculate

�ϕseam =
1
2b1m

D1
+ (b − b1)m

D
+

1
2b1m

D1

= 12(1 − ν2)
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d3
s
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h3
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)
m
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Here E is Young’s modulus for uncracked concrete, and E1 a reduced
Young’s modulus due to cracking in the seam zone. The ratio of the two
rotation changes is
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− 1

}
b1

b
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Realistic data are

b = 2,400 mm
b1 = 50 mm
ho = 150 mm
ds = 100 mm
E/E1 = 2 (estimate for average over width b1)

On this basis we calculate

�ϕseam

�ϕ
= 1 +

{
2 ×

(
150

100

)3

− 1

}
50

2,400
= 1.12

The ratio of the flexural rigidities is the reciprocal

Dseam

D
= 1.12−1 = 0.89

We conclude that due to the seam the deformation increases 12%, and the
stiffness decreases 11%. In a similar way we may make an estimate for the
torsional rigidity. We again expect 11% stiffness reduction. These amounts
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of reduction do not really justify accounting for the seam by making an or-
thotropic computation. Other suppositions in the mechanics model for slabs
are of the same order of magnitude. The modulus of elasticity of concrete
is just a guess, and differences in the position of the middle surface of the
slab between seams and at the seam are not taken into account, not to men-
tion more. The final conclusion is that we neglect the seam in the calculation
of the moments and shear forces. We account for it only when designing
reinforcement on the basis of the computed stress forces and moments.

17.2.2 Ultimate Limit State

In the Ultimate Limit State cracking will be fully developed. The lateral
bottom reinforcement in the floor unit will become stressed; however this
requires sufficient bond length. This length now determines the size of b1.
Codes of practice will give indications for the bond length. Often they in-
dicate a length in the order of 20 to 30 times the rebar diameter. It must be
reminded that such rules are intended for strength safety and not for stiff-
ness. For strength a substantial safety margin is taken into account, whereas
we now want to know reality. We rather should work with a bond length of
about 10 times the diameter φ. Therefore

b1 ≈ 10 φ (17.8)

For a diameter 16 mm, we obtain b1 = 160 mm, the order of the slab thick-
ness. Because we consider the ultimate limit state, we may assume that the
slab will be also cracked in the thicker part remote from the seams. The ratio
E/E1 will be closer to 1. This leads to

�ϕseam

�ϕ
= 1 +

{(
150

100

)3

− 1

}
× 160

2,400
= 1.16

The reciprocal value 0.86 is the ratio of the stiffnesses. So, the lateral stiff-
ness decreases by 14%, again not really a reason to introduce orthotropic
rigidities.

We will examine the stiffness loss in an alternate manner. We have per-
formed a FE analysis for a square simply-supported slab with one seam as
shown in Figure 17.5. In this slab we have used two floor units. The edges
of the slab are 5 m long. The slab thickness is 200 mm. The seam is mod-
elled by a row of elements of width 0.2 m. These elements are considered as
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Figure 17.5 Computation of seam influence on bending moments.

isotropic elements of thickness 140 mm. A homogeneously distributed load
is applied. Compared to a seamless slab the deflection increases 7%, and the
moment in the lateral direction (y-direction) decreases 11%. This is reason-
ably in agreement with the above estimate of stiffness reduction of 14%. The
increase of the deflection is half this decrease, which is understood, because
the stiffness in the x-direction hardly changes. The decrease of the moment
(11%) in the lateral direction is not exactly equal to the stiffness reduction
(14%), however the order of magnitude is the same. This FE analysis sup-
ports the opinion that accounting for the stiffness change does not lead to
noticeably different moments.

17.3 Pre-stressed Floor Unit without Lateral Reinforcement

We investigate in this Section slabs with pre-stressed floor units in combi-
nation with passive lateral reinforcement which is not in the floor unit. The
passive reinforcement of the slab is a layer above the floor units.

17.3.1 Serviceability Limit State

No cracking will occur in the pre-stressed direction in the serviceability limit
state (SLS), represented by the bold straight line in the moment-curvature di-
agram of Figure 17.6. For the passive lateral reinforcement another diagram
applies, representing cracking and yielding, the dashed line in the figure.
For SLS, the curvature κ at a moment M of the same size will differ substan-



327

Figure 17.6 Moment-curvature diagrams for slab with pre-tensioned floor units.
No lateral reinforcement in unit.

tially for the pre-stressed direction and the lateral direction. A factor two may
easily occur in the secant stiffness (dotted line in the figure) and including
orthotropic analysis starts making sense.

17.3.2 Ultimate Limit State

We may assume that cracking in the lateral direction has fully developed in
the ultimate limit state (ULS). The difference in stiffnesses for the longitu-
dinal direction and lateral direction will have become much larger. Introduc-
tion of orthotropic material properties is even more justified. There can be a
factor of 5 difference, or even larger, between the bending stiffnesses in the
x- and the y-direction. We conclude that the difference between the flexural
rigidity Dxx in pre-stress direction and Dyy in lateral direction is due to dif-
ferent thickness and different Young’s modulus. The ratio of Dxx and Dyy

is

Dyy

Dxx

= E1

E

(
dS

ho

)3

(17.9)

Here E1 is the secant Young’s modulus in the cracked lateral direction, and
E in the pre-stressed longitudinal direction. Choosing ho = 150 mm, ds =
100 mm and (cautiously supposed) E/E1 = 2.0 we obtain

Dyy

Dxx

= 0.5 ×
(

100

150

)3

= 0.15
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Indeed, we have every reason to perform an orthotropic analysis. In fact we
can conclude that the slab predominantly carries load in one direction. This
supports engineering practice to consider this type of floor systems as one-
way slabs.

Example

An example may clarify the impact of the difference in rigidities. We
consider a square slab, simply-supported at all edges. The edges are 5 m
long, the flexural rigidity in the pre-stress direction is 0.1 × 107 kNm,
Poisson’s ratio is 0.2 and the load 10 kN/m2. An analysis as isotropic plate
leads to the following maxima:

w = 0.0253 mm
mxx = 11.0 kNm/m
myy = 11.0 kNm/m
mxy = 9.2 kNm/m

If we reduce the lateral flexural rigidity and torsion rigidity to 15% of
the isotropic value the maximum values become

w = 0.0691 mm
mxx = 27.0 kNm/m
myy = 4.2 kNm/m
mxy = 3.9 kNm/m

The deflection and moment in the pre-stress direction have increased
by a factor two and a half, and the lateral moment and twisting moment are
more than halved. The ratio of longitudinal and lateral moment is more than
six. The effect of orthotropy is clearly very large. For this orthotropic plate
the reinforcement scheme will be very different from the scheme which
would apply for isotropic properties.

In zones of negative bending moment at inner supports of continuous slabs
the pre-stressing is not active, because will be in the compression zone of the
cross-section. This situation is depicted in Figure 17.7. There is no specific
reason for the introduction of orthotropy. However, note that the isotropic
flexural rigidity is far less than the flexural rigidity in the pre-stress direction
in the domain of positive moments.
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Figure 17.7 Continuous slab on beam support.

17.4 Pre-stressed Floor Unit with Lateral Reinforcement

In this section the passive lateral reinforcement is in the floor unit. Coupling
reinforcement must be applied above the seams.

17.4.1 Serviceability Limit State

For the serviceability limit state we expect little cracking in the lateral di-
rection, see also Figure 17.8. We have no reason to introduce orthotropic

Figure 17.8 Moment-curvatures for slab with pre-tensioned floor units. Lateral re-
inforcement in unit.

Plates and FEM
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behaviour. The reduction in lateral direction in the order of 10% is ignored
again. It is justified to compute the floor as isotropic slab.

17.4.2 Ultimate Limit State

For the lateral reinforcement in the floor unit, the slab thickness is the same
as for the pre-stressed direction. The only difference is now in the value of
Young’s modulus; a (cautious) guess is a factor of two. The ratio of stiffness
becomes

Dyy

Dxx

= El

E
(17.10)

where El is the secant modulus of elasticity for the cracked lateral direction
and E for the pre-stressed longitudinal direction. Choosing E/El = 2.0 we
find

Dyy

Dxx
= 0.5

The difference between the lateral and longitudinal rigidity is much smaller
than in the reinforced slab, however, still sufficient large to justify orthotropic
computation. The moments in the longitudinal and lateral directions in a
square simply-supported slab will be in the proportion of about 2 to 1.

17.5 Strengthened Strip Floor

A strengthened strip floor is a special case of a wide-slab floor. The floor is
supported by a grid of columns. In one direction prefabricated strengthened
strips are placed from one column to the other. In Figure 17.9 they are placed
in the y-direction. The width of these strips is bo. The strips are supports for
wide-slab floor units in the other direction (x-direction). After the concrete
has been poured, the thickness of the slab is h1 at the strengthened strip, and
ho at the wide-slab.

If the strengthened strip and wide-slab floor units are pre-tensioned, we
are justified in assuming that the wide-slab floor carries load in one direction.
In that case no FE analysis is needed. If just mild steel reinforcement is
applied, a FE-based analysis makes sense. Then more than one way is open
for the analysis:
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Figure 17.9 Strengthened strips over columns.

1. We may model the slab with just plate bending elements neglecting that
the middle planes of the slab part with thickness ho and the slab part with
thickness h1 do not coincide. The output consists of moments and trans-
verse shear forces.

2. We may model the slab with membrane-bending elements (in FE codes
named shell elements). Now we automatically account for the different
positions of middle planes. The output will consist of moments, transverse
shear forces and membrane forces.

3. We may apply three-dimensional volume elements. Now we are able to
describe the geometry most truthfully, however receive the output in terms
of stresses at nodes or Gaussian points.

Plates and FEM
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Figure 17.10 Effective width of strengthened strip.

The third way is not practical for structural engineers. They are not used
to determine reinforcement on the basis of a spatial distribution of stresses,
rather they prefer forces and moments per unit slab width, which are stress
resultants and stress couples over thickness. If codes of practice provide rules
for designing reinforcement, they always refer to forces and moments. The
structural engineer first has to determine stress results, before calculating the
required reinforcement. In that respect, the second way is more convenient,
for then the stress resultants are produced by the FE code. The structural en-
gineer can immediately apply the rules for designing reinforcement on the
basis of a set of membrane forces, bending and twisting moments and trans-
verse shear forces, as explained in Chapter 16. The first way of analysis is
clearly the simpler one. In this chapter we restrict ourselves to this approach,
because it is practical and is not expected to lead to results which are very
different from the second way of analysis. Later we will justify this state-
ment.

To some extent we can account for the different positions of the middle
planes in the first way of analysis, where we just use flexural plate elements.
This may be done by assigning the strengthened strip a larger thickness than
h1 or an adapted modulus of elasticity, here called he and Ee respectively.
Because of the different positions of the middle planes, part of the slab with
thickness ho will act as a flange for the strengthened strip with thickness h1.
Let us call the width of the flange bf . This extension occurs at both sides of
the strengthened strip, see Figure 17.10. A cross-section is obtained of width
be = bo +2bf . National codes of practice provide rules for calculation of the
effective width be. We call the second moment of area of the extended cross-
section Ie, and if the flanges are not included, Io. The ratio Ie/Io determines
the multiplication factor for either the thickness of the strengthened strip or
its elasticity modulus.
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We must take care not to duplicate the contribution of the slab parts of
width bf . If calculating Ie for the strengthened strip we must leave out the
part 2bf (ho)

3/12. Otherwise it occurs twice, both in the flexural rigidity of
the elements in the strengthened strips and in the elements in the slab adja-
cent to the strengthened strip.

Example

We consider a floor and strengthened strip for which the following data hold:

ls = 10 m, lf = 10 m, E = 30,000 N/mm2,

bo = 2,400 mm, ho = 300 mm, h1 = 450 mm.

The assumed value bf from the code of practice is 1,000 mm. Therefore

be = bo + 2bf = 2,400 + 2 × 1,000 = 4,400 mm.

The position z of the neutral line is calculated from the formula

z = 2bf ho(h1 − 1
2ho) + boh1(

1
2h1)

2bf ho + boh1

z = (6.0 × 105)(300) + (10.8 × 105)(225)

6.0 × 105 + 10.8 × 105
= 251.8 mm

(17.11)

Calculation of Ie

Ie = 2bfho

((
h1 − 1

2
ho

)
− z

)2

+ boh1

(
1

2
h1 − z

)2

+ 1

12
boh

3
1 (17.12)

Ie = (6.00 × 105) (300 − 251.8)2

+ (10.8 × 105) (225 − 251.8)2 + 1

12
× 2,400 × 4503

Ie = 1.39 × 109 + 0.78 × 109 + 18.23 × 109 = 20.40 × 109 mm4

The last of the three terms is the second moment of area for the strengthened
strip without the flanges

Io = 18.23 × 109 mm4

Plates and FEM
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The ratio is of Ie and Io is

Ie

Io
= 20.40

18.23
= 1.119

Therefore, we either work with

he = 3
√

1.119 h1 = 1.038 h1 = 1.038 × 450 = 467 mm

or with equal depths and

Ee = 1.119 E = 1.119 × 30,000 = 33,570 N/mm2

Remark 1

Accounting for different positions of the middle plane implies a stiffness
change of the strengthened strip in the order of 10%. This is of the same size
as the margin in which we anyhow know the stiffness of cracked concrete,
as said earlier in this chapter. There is not much reason to exert the extra
effort for flange contribution. One more reason to neglect the difference in
middle plane position is the consideration that the increase of rigidity holds
only for the longitudinal direction of the strengthened strip and not for the
lateral direction. If one would be precise, in fact orthotropic behaviour should
be introduced. We conclude that it is not worth accounting for the different
middle plane positions. Of course, the difference between the strengthened
strips and the slabs between the strips is very relevant. In the example the
thickness is 450 mm and 300 mm, respectively, a factor of 1.5. Then the
flexural plate rigidity of the strengthened strip is 1.53 which is 3.4 times the
rigidity of the slab between the strips. This difference will have a serious
impact.

Remark 2

For designing the reinforcement scheme of this type of floor, we refer to
the message of Chapter 14. We can plot the diagram of bending moment
mxx in a line of constant x over the columns and at mid-span between two
rows of columns. This moment distribution may be smeared over two zones,
one which is called the column zone and the other the middle zone. National
codes of practice may specify additional conditions with respect to redistri-
bution and size of the compression zone in the cross-section.
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17.6 Message of the Chapter

Wide-Slab Floor

• If wide-slab floor units are reinforced by mild steel only, seams can
be neglected and the analysis may be done with isotropic flexural
properties, both for SLS and ULS.

• If pre-stressed wide-slab floor units are used, we may distinguish
between the cases when the floor unit has lateral mild steel rein-
forcement, and the cases that it has not. If mild steel is included in
the floor unit and coupling reinforcement is placed above the seams,
the FE-based analysis can be done with isotropic flexural proper-
ties for SLS. Orthotropic flexural properties should be used for ULS.

• For pre-stressed floor units without lateral mild steel, the lateral
reinforcement is placed above the floor unit, which justifies com-
puting with orthotropic flexural properties for both SLS and ULS.

• If the applied FE code is able to adapt the flexural stiffness in an iter-
ative procedure, no choice about isotropic or orthotropic flexural be-
haviour needs to be made. Then we always may start with isotropic
properties, and the program will gradually adapt them to orthotropic
ones.

Strengthened Strip Floor

• The effect of different positions of the middle planes is negligible. It
is not worth accounting for it, neither if just bending plate elements
are used, nor for membrane-bending elements (called shell elements
in FE codes).

• Of course, the difference in thickness between the stiffened strip
and the rest of the floor is of important.

Plates and FEM
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• The difference between pre-stressed and passive reinforced ele-
ments may be accounted for in the flexural rigidities, as explained
for wide-slab floors.

• If the applied FE code is able to adapt the flexural stiffness in an iter-
ative procedure, no choice about isotropic or orthotropic flexural be-
haviour needs to be made. Then we always may start with isotropic
properties, and the program will gradually adapt them to orthotropic
ones.



Chapter 18
Special Topics and Trends

We devote this chapter to four special subjects, two for membrane plates
and two for plates in bending. In Section 18.1 we address the stringer-panel
model for membrane calculations, and in Section 18.2 we show provisional
results of membrane calculations with concrete compression stresses only.
An advanced approach for orthotropic plate bending is the subject of Sec-
tion 18.3. Finally, we discuss plates on soil foundations in Section 18.4.

18.1 Stringer-Panel Method

In Chapter 8 we discussed a discrete model for the analysis of membrane
plates with truss elements and shear panels. There is a more accurate model

ments carry normal forces and the panels shear forces. This model goes back
to the work of Nielsen [19]. Stringers are put in positions where we expect
a compression zone or a tension band. In the tension band, we concentrate
the main reinforcement. The shear panels require distributed reinforcement
in two directions. This fits with practice, in which mesh reinforcement will
always be applied, even when it is not required by the chosen calculation
method.

The basic concept is that equilibrium is required between stringer and
panel along their full boundary. The shear force in the panel is constant.
This distributed shear force is the load for the stringer, therefore the normal
force must vary linearly along the stringer. The method is not restricted to
orthogonal grids, but is applicable to grids with quadrilateral panels as well.

©  Springer Science+Business Media B.V. 2010
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with stringers and panels. In the most elementary version the stringer ele-
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Figure 18.1 Shear panel with surrounding stringer elements.

Hoogenboom has even extended the method to cracked stringers and panels
and yielding reinforcement [32]. However, then the stress state of the panels
must then be enriched with distributed normal forces.

We restrict ourselves to applications with an orthogonal grid and constant
shear panels. Figure 18.1 shows two exploded views of a single panel and
the four stringer elements that surround the panel. The left part of the figure
shows forces; the right part shows degrees of freedom. We call the boundary
between stringers and panels the interface. The constant shear in the interface
leads to a linear normal force in the stringer and therefore to end forces which
are not equal. If a stringer lies between two panels, there is an interface at
both sides of the stringer and it is loaded by two distributed shear forces, one
in each interface. Stringers are pin-connected to each other in nodes at their
ends. Because stringers occur in two directions, the nodes have two degrees
of freedom, one in the x- and one in the y-direction. There is an additional
degree of freedom at each interface between a stringer and a panel. This
degree of freedom is of another type: it is the weighted average displacement
in the direction of the interface. The stringer-panel model fits in the scheme
of the stiffness method, but with two differences: first, the degrees of freedom
are defined at uncommon positions; second, the stiffness matrices are derived
on the basis of alternative work considerations [32], which falls out of the
scope of this book.

For a statically determinate stringer-panel model, we can find the forces
on the basis of equilibrium. For statically indeterminate models we need
a program, because then compatibility starts playing a role. We show an
example of each category, a beam with ends of a special shape and a shear
wall, respectively.



Plates and FEM 339

Figure 18.2 Beam with dapped ends.

18.1.1 Beam with Dapped Ends

Figure 18.2 shows a reinforced concrete beam with a special shape near the
supports. The end parts of the beam have a smaller depth. We call this a
structure a beam with dapped ends. It is loaded by two point loads F . There
is a state of homogeneous bending moment with zero shear force between
the point loads, and a disturbed stress state between the supports and the
applied loads. In Figure 18.2a we show the enlarged left beam end with
the forces acting on it. These forces are in equilibrium. The stringer-panel
model for this structural part is shown in Figure 18.2b. We need three shear
panels, and the shear forces in the panels are na, nb and nc, respectively. The
model is statically determinate, so the shear forces in the panels and normal
forces in the stringers can be calculated from equilibrium. Figure 18.3 shows
the result of the analysis. Note that the shear forces in the figure are the total
shear force along a panel edge, so they have the dimension kN. Surprisingly,
the shear force nb is zero. The transverse shear force in panel (a) is not
transferred horizontally to the upper panel (b), but instead to the lower panel
(c). The shear force in panel (b) is exactly zero due to the chosen geometry
of the beam end. For other geometries, the panel may get a non-zero shear
force, however always small compared to the shear force in panel (c).

The corresponding stringer forces are shown in Figure 18.3b. Tensile forces
are red and compressive forces green. The width of the red and green lines



340 18 Special Topics and Trends

Figure 18.3 Forces in stringers and panels of beam with dapped end.

is a measure of the size of the normal force, and shows the linear variation
of the normal force. The vertical stringers at the application point of the load
and at the support are compressive struts. The vertical stringer that separates
panel (a) from panel (c) is a tensile chord. This chord connects panel (c) to
panel (a). The force in this chord has the size of the support reaction F . The
horizontal tensile force above the support connects the panels (a) and (c) in
the horizontal direction. The result makes clear that this reinforcement must
at least be extended to the cross-section where the load is applied.

Figure 18.4a shows theoretically how the beam should be reinforced. The
lower main beam reinforcement is bent up vertically and continues horizon-
tally as an upper reinforcement in the support zone. Theoretically, distributed
shear reinforcement is theoretically only required in the panels (a) and (c); in
practice stirrups and hair pin reinforcement may be placed over the full depth

Figure 18.4 Reinforcement options for beam with dapped end.
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Figure 18.5 Shear wall (structure from PCI Journal, Vol. 32, No. 3).

of the beam in the disturbed zone. Further, Figure 18.4 shows two alternative
ways of reinforcement detailing. Figure 18.4b is a solution with closed stir-
rups as hanging-up reinforcement. Figure 18.4c is the same as Figure 18.4a,
however with a T-end anchoring. In these alternative solutions we omitted
the distributed shear reinforcement for reasons of convenience.

will obtain similar results. In their solution compressive diagonals replace
the panels (a) and (c). These diagonally struts are directed from bottom left
to top right.

18.1.2 Shear Wall with Opening

In Section 16.6.1 Lourenço referred to the publication of the special report
‘Toward a Consistent Design of Structural Concrete’ of the PCI Journal [31].
We again use the shear wall with opening in Figure 18.5a, one of the exam-
ples in the report. There it was used for strut-and-tie modelling, here as an
example for the stringer-panel method. The wall area is 7.0 × 4.7 m2 and the
thickness is 0.4 m. It is decided to apply an orthogonal reinforcement scheme
in x- and y-direction so a stringer-panel model with rectangular panels is
used. Figure 18.5b shows the model with the minimum possible number of
panels. This model is statically indeterminate of the order one, so deforma-
tion considerations must play a role. Therefore we use a program, and we
must input the cross-section areas of the stringers. We base the area of outer
stringers on the distance between the wall edge and the centre of the adjacent

Structural engineers who design the beam end with a strut-and-tie model

Plates and FEM
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Figure 18.6 Stringer-panel results for shear wall.

panel; for inner stringers we use the centre to centre distance between panels.
Young’s modulus is 3.0 × 107 kN/m2 and Poisson’s ratio 0.2.

Figure 18.6 shows the results. We see similarity with the results for the
beam with dapped ends. The shear force in the lower left panel is higher
than in the panel on top of it. Note that shear forces in this figure have the
dimension force per unit length. Two-third of the transverse shear force (size
1,071 kN) in the wall is transferred in the lower panel and one-third in the
upper. Hanging-up reinforcement is again required; the maximum force in
this hanger is 721 kN, two-third of the reaction force 1,071 kN. For the rest,
it is instructive that the horizontal main reinforcement above the wall opening
should stretch out to the very opposite edge of the wall.

18.2 Membrane Plates with Concrete Pressure Only

We have shown in this book that membrane analyses support choosing an ef-
ficient scheme in the strut-and-tie design of concrete walls and deep beams.
There is an interesting development in which the program generates the strut-
and-tie scheme itself. Though it is only a starting development, we pay at-
tention to it because of its promising character. The idea is to choose the
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position of main reinforcement bundles and have the program generate the
compressive struts. In the first run, a standard linear-elastic FE analysis is
made. The principal stresses and their direction are determined in the centre
of each element. If one of the principal stresses is tensile, we choose a set of
local axes, such that x is the principal tensile direction, and y is the princi-
pal compressive direction. Then we omit the stiffness in the x-direction, no
longer allowing for tensile stresses in that direction. Lateral contraction need
no longer be considered. We replace the constitutive relationship (1.13) for
isotropic behaviour by an orthotropic one:

⎧⎨
⎩

nxx

nyy

nxy

⎫⎬
⎭ = Et

⎡
⎣ 0 0 0

0 1 0
0 0 1

2

⎤
⎦

⎧⎨
⎩

εxx

εyy

γxy

⎫⎬
⎭ (18.1)

We repeat the linear-elastic analysis with these orthotropic, pressure-only,
properties and find new principal stresses and directions. We recompute the
rigidity matrix and make a new iteration. We do it until changes become
smaller than a specified tolerance.

18.2.1 Shear Wall with Opening

Figure 18.7 shows a strong example of the program Scia Engineer
(Nemetschek-Scia, Netherlands). It shows the shear wall with the opening
used in Section 18.1. The red lines in Figure 18.7 are the inputted reinforce-
ment bundles, and the green trajectories are the obtained compressive trajec-
tories. These trajectories show up in narrow zones which appear as struts,
so the strut-and-tie scheme emerges naturally. The lower part of Figure 18.7
shows the force distribution in the reinforcement bundles.

The shear forces in the panels are used to design distributed mesh re-
inforcement. In practice, structural engineers always apply minimum rein-
forcement as required by codes of practice. Often, this is sufficient; if not,
we have to strengthen the mesh.

18.3 Advanced Orthotropy

Plates in bending often have orthotropic properties. Examples are stiffened
steel bridge decks and concrete bridges composed of girders. In earlier times
of hand calculations the method of Guyon–Massonnet–Bares [32] would be

Plates and FEM
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Figure 18.7 Results for pressure-only properties.

applied. Today, FE codes are available for orthotropic plate bending. Struc-
tural engineers must input bending and torsion rigidities for thin plate theory.
For thick plate theory they must also input rigidities for transverse shear. It
is important to remind that both theories start from the assumption that the
middle planes coincide for bending in span direction, bending in lateral di-
rection and torsion. However, this is not true in general; in fact there are
not only bending and torsion moments, but also membrane forces. Bending,
shearing and stretching are coupled, so the structural engineer should choose
FEM software, which includes coupling of plate membrane action and bend-
ing. An example for teaching purposes is Kola (TU Delft, the Netherlands).
We call the coupled action advanced orthotropy in order to distinguish it
from the classical orthotropy which neglects membrane action.

The classical constitutive law for orthotropic membrane action is
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and for orthotropic bending
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The torsion moment mav is the average of mxy and myx and the torsion rigid-
ity Dav the average of Dxy and Dyx . In classical orthotropic bending analysis
the deformation due to transverse shear forces is neglected. Yet we recall the
constitutive law for reasons of completeness

vx = Dsx γx, vy = Dsy γy. (18.4)

To define the constitutive law for coupled membrane action and bending
we choose a common reference plane R. Because we also will account for
shear deformation, we start from Mindlin theory and extend it for coupling
with membrane action. We obtain
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(18.5)
where all zij are distances to the reference plane R. The strains and bending
moments are defined with respect to the reference plane. This is indicated
in Eq. (18.5) by the subscript R. If there is no difference between the refer-
ence planes for membrane action and bending then the reference plane R is
chosen as the common reference plane. All z-values are zero, and membrane
action, bending and transverse shear are fully uncoupled. In this limiting
case Eq. (18.5) is the composition of Eqs. (18.2), (18.3) and (18.4). We refer
to [33] for the working out of the advanced theory, and restrict ourselves to
an example in next section. It suffices to note that the program calculates the
rigidity matrix, and after that makes the FE analysis of the bridge.
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Figure 18.8 Rectangular orthotropic bridge slab.

Figure 18.9 Comparison of isotropic and orthotropic deflection.

Table 18.1 Rigidity properties of T-shaped cross-section.

kN/m kNm m

dxx = 0.61697 × 107 Dxx = 0.16217 × 106 zxx = 0.40270
dv = 0.84860 × 106 Dv = 0.29360 × 104 zv = 0.49804
dyy = 0.42430 × 107 Dyy = 0.14896 × 105 zyy = 0.49804
dxy = 0.17362 × 107 Dav = 0.91673 × 104 zxy = 0.49363
Dsx = 0.10873 × 107

Dsy = 0.14538 × 107

18.3.1 Bridge with Point Load

We study the bridge in Figure 18.8 to show the effect of advanced orthotropy.
The simply-supported rectangular bridge with a span of 12.0 m and width of
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Figure 18.10 Membrane force in section at mid-span of bridge. Difference in peak
moment for classical and advanced orthotropy.

11.2 m consists of 14 girders with a T-shaped cross-section. The structure is
a slab with ribs. The structure is supposed to be monolithic. The bridge is
subjected to a point load of 100 kN at its centre. A 25 × 25 element mesh
is used, and the load is spread over the central element. The reference plane
is chosen at the lower edge of the ribs. For this cross-section, the rigidity
properties are assembled in Table 18.1. Rounded off, zxx = 0.4 m and zyy =
zv = 0.5 m. So the middle plane in the x-direction is at the boundary of the
ribs and the slab, and the middle plane in the y-direction is in the middle of
the slab, as we expect. The middle plane for the lateral direction is also in
the middle of the slab, again agreeing with expectation. For membrane shear
and torsion, the middle plane is in the lower half of the slab.

Plates and FEM
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Figure 18.11 Different stresses over depth for classic and advanced orthotropy.

In Figure 18.9 we show the large difference in deflections between
isotropic theory and orthotropic theory. In an isotropic plate the point load
activates a wide zone of the plate; in the orthotropic plate, the deflection is
localized at the plate centre. There is a large difference between isotropy
and orthotropy, however not between classical orthotropy and advanced
orthotropy. Therefore, just the advanced results are shown. Figure 18.10
shows distributions of the membrane force and bending moment in the
section halfway across the span. The membrane force nyy is tensile at the
centre of the plate, and compressive at the bridge edges. The integral of
nyy over the section must be zero. The bending moment myy is shown for
classical and advanced orthotropy. With the advanced theory a reduction
from 75.1 to 59.2 kNm/m is obtained, about 20%. For classical orthotropy
only the bending moment raises stresses; for advanced orthotropy we must
account for both the membrane force and the bending moment. Figure 18.11
shows that the stress distributions over the depth are different. The tensile
stress for the advanced theory is about 20% smaller than for the classical
theory. In othe wors, the classical theory overestimates the tensile stress by
about 20%.

The measure of differences between the classical and advanced theory de-
pends on the shape of the cross-section of the bridge girders. In the example
the bridge girders have a T-shape. For I-section girders, the difference be-
tween the moments for both theories is smaller, but the membrane forces are
more pronounced in the advanced theory. Figure 18.12 shows the results for a
square bridge with a span of 20 m and a point load of 100 kN. In this case we
find relative large stress differences in the compressive zone and practically
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Figure 18.12 Results for bridge with I-sections.

no difference in the tensile zone. The figure includes the bending moments
for isotropic properties. These are much smaller than the orthotropic ones,
because more plate in the width direction is mobilized to carry the point load.
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18.4 Plates on Soil Foundation

Concrete slabs on a soil bedding may be calculated as plates on an elastic
foundation, which is known in literature as a Winkler foundation. In this
model the soil pressure ps is proportional to the deflection w

ps = kw (18.6)

where k is the spring constant (modulus of subgrade reaction; units kN/m3).
The model has many disadvantages. It is a difficulty that the determination
of k depends on the size of the slab. Further, soil outside the slab remains
stress-less, in contrast with physical reality. Due to shear stresses, surround-
ing soil will settle, which implies increase of the vertical soil pressure at
the edge of the slab. Applying the Winkler foundation we never will find
interaction between the settlements of adjacent plates, which is there in
reality. Another drawback is that the model cannot account for the influence
of the pore pressure of groundwater.

Many theories have been proposed to eliminate one or more omissions of
the Winkler foundation. A well-known solution is the Pasternak foundation;
springs cannot deflect independently on each other, but a vertical shear
force between the springs comes into being when the springs have different
deflections. This model is able to overcome many drawbacks of the Winkler
foundation, but cannot account for the influence of groundwater, and a
new soil mechanics property is introduced. Another theory introduces
concentrated springs at the edge of the slab to account for surrounding soil
stiffness; this again introduces a second soil mechanics parameter.

A good solution is to combine FEM software and classical knowledge from
solid mechanics and geotechnics. This procedure needs a number of iter-
ations. The analysis starts with a constant spring constant k and leads to
vertical displacements w of the slab and a distribution of the soil reaction
ps . These reaction forces are lumped to point loads P(i) in all N nodes i of
the slab. Next, a two-step analysis is made. The solid mechanics formula of
Boussinesq (or more generally Fröhlich) is used to find the change of the ver-
tical soil stress σzz(i) through the depth of the soil at each node iof the slab
due to the point load P(j) at node j . This is done for the point loads in all
N nodes. Second, the geotechnical Terzaghi formula is applied at each node
i to calculate the total settlement s(i) from the distribution of stresses σzz(i)

through the depth. We stop the iteration when s(i) is equal to the deflection
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w(i) of the slab. Otherwise we change the spring constant k. The new value
is chosen so that s(i)k(i) = ps(i), and we repeat the procedure with the
new set of spring constants. The procedure can incorporate the effect of pore
water pressure: we use the effective stress σeff in stead of the stress σzz.

The Fröhlich formula for the change of the vertical stress at a depth z in
point i is

�σzz(i) =
N∑

j=1

fij P (j) (18.7)

where the influence function fij is

fij = µ

2πz2 cosµ+2
θij (18.8)

The angle θij is defined by the line which connects node j with the point on
a depth z at node i. The angle of this line with the vertical is θij . The order
number µ is defined by

µ = 1/ν + 1 (18.9)

where ν is Poisson’s ratio. For ν = 0.5 the Fröhlich formula is the same
as the Boussinesq formula. This Poisson’s ratio is appropriate for undrained
soil states. The value ν = 0.33 fits normal consolidated soil with pronounced
sand properties.

The Terzaghi formula for settlement is

s(i) =
∑
layers

�h

C
ln

σzz(i) + �σzz(i)

σzz(i)
(18.10)

This formula accounts for different soil layers of thickness �h. The stress
σzz(i) is the existing vertical soil pressure; one may account for the reduction
due to earth cutting, or do that partially. C is the dimensionless compression
constant which is determined from the geotechnical cone penetration test

C = α
qcone

σeff
(18.11)

where qcone is the cone resistance and α is a constant between 1 and 10,
dependent on the soil type of the layers. The reader is referred to Eurocode
7 Geotechnics [34].
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Figure 18.13 Two slabs on soil foundation on small distance of each other.

18.4.1 Two Close Slabs

We consider an application with the program Diamonds (Buildsoft, Bel-
gium). Two identical square plates of 10 × 10 m2 are placed at a distance
of 1 m. The thickness is 0.2 m, the distributed load 25 kN/m2, Young’s mod-
ulus 30.5 kN/mm2, Poisson’s ratio 0.2 and the compression constant 10. Fig-
ure 18.13 shows the contour plot for the bending moments mxx and myy in
the plates. These plots would have a vertical line of symmetry per plate if
there is no interaction. We see that interaction does take place. One single
plate would lead to a settlement of 311 mm at the centre of the slab and
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282 mm at the corners. The settlements are larger for two slabs: 334 mm in
the corner closest to the other plate, 277 mm in the corner most remote from
the other plate, and 350 mm halfway along the edge close to the other plate.
Compared to the single plate the corner settlements are in the order of 20%
larger.

The difference between the bending moments is small. The maximum
bending moments in a single plate occur at the centre of the plate. They
are mxx = myy = 35.1 kNm/m. The maximum moment for two plates is
in the y-direction: myy = 35.2 kNm/m. This is hardly different from that
for the single plate. In the x-direction a noticeable reduction takes place:
mxx = 25.6 kNm/m, the order of 30%.

• The stringer panel model for membrane analysis is a special
design tool based on both equilibrium and compatibility. It helps
understanding the force transfer in a beam with dapped ends and
shear walls.

• A new trend in the design of concrete walls and deep beams is
the iterative analysis on the basis of concrete pressure only. Then
strut-and-tie schemes emerge automatically.

• Advanced orthotropy, coupling membrane action, bending and
transverse shear, shows that stresses are overestimated with the
classical orthotropic theory. The error is larger in the compressive
zone than in the tensile zone.

• For slabs on soil foundations a combination of current FEM, classi-
cal solid mechanics and classical geotechnical knowledge leads to a
convenient design tool which also accounts for the stiffness of sur-
rounding soil.

Plates and FEM
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Chapter 19
Case History of Cable-Stayed Wide-Box Bridge

In this book we focus on two-dimensional plate structures. In Chapter 10 we
already stated that plate elements also may be assembled spatially. Here an
example of such structure will be discussed. We consider a critical erection

membrane plate elements. The case study is included in the book with the
consent of Rijkswaterstaat, the national governmental agency in the Nether-
lands responsible for infrastructural works [35].

19.1 Introduction

In this chapter we consider a construction phase during the erection of a
cable-stayed steel bridge across the river Waal, a branch in the river Rhine
delta. The bridge is shown in Figure 19.1. The cross-section is a box with

Figure 19.1 Photo of the cable-stayed bridge.
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phase of a cable-stayed steel bridge, and will model the structure with only
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Figure 19.2 View of the bridge (dimensions in mm).

flanges. A longitudinal profile and a cross-sectional profile are shown in
Figure 19.2. The pylons are in the centre of the cross-section, so the bridge
has just one plane of cables. To obtain sufficient torsion stiffness the designer
chose a box structure. The ratio of width and height of the box is over seven,
so we consider it as a wide box. The pylon distance is 270 m. The span
on the outside of the pylons at both ends is 105 m. The structural height
of the box girder is 3.50 m and the width approximately 26 m. Together
with the flanges, the width is about 36 meters. No longitudinal inner web
is applied in the box girder, except where the stay cables are fixed. The
shape of the box girder is determined partly by aerodynamic considerations.
Figure 19.3 shows the box girder that is composed of diaphragms and plate
panels stiffened by hat sections (prefabricated). Every 5 m there is a cross
diaphragm. In Figure 19.4 the situation at an end partition above the support
is drawn on a larger scale. The bridge is extended at the front. Sections of
15 m in length are added one by one using a specially developed auxiliary
structure. The most dangerous erection phase occurs when the third section
of 15 m is put in place. After that the first stay cable is fixed and stresses
will reduce substantially. This most dangerous phase is the subject of this
chapter. We study particularly the stresses in the cross-section at the pylon.

If all parts of the bridge were subdivided into membrane elements, a very
large system of equations would arise. Using three degrees of freedom per
node, a cross-section would have about 200 nodes when taking into account
all the hat sections. This delivers about 600 degrees of freedom per cross-
section. Lengthwise we can think of elements of 5 m long (we will get elon-
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Figure 19.3 Assemblage of box girder sections (dimensions in mm).

Figure 19.4 End partition and diaphragm above the support.

gated elements). The total bridge would make for approximately 100 cross-
sections and therefore 50,000 degrees of freedom with half a bandwidth of
about 600. In practice, this is a large system, even for high-speed computers.
Such a detailed overall calculation, however, is not very useful for a bridge
like this one. In the design stage a calculation with a program for 2D frame
structures is sufficient. Bridge parts of a limited size can be calculated with a
finite element program, for example for a critical extension phase. The pan-
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els with hat-shaped stiffeners may be considered as orthotropic plates loaded
in their plane, as if the contribution of the hat sections is smeared out. Only
for smaller details is a very fine mesh meaningful.

19.2 Calculation of a Construction Phase

First we state the problem in Section 19.2.1 and present a solution obtained
from classical beam theory. Then, the result of the finite element calculation
is presented in a number of figures in Section 19.2.2. Because surprising un-
expected stress concentrations appeared and the FE code was a new tool at
the time of this bridge design (1971), it was then decided to do a verifying
test. So we can compare the analysis results with the outcome of a model
test. An elastic model of perspex material on a scale of 1 to 50 was built
by the TNO Institute for Building Research. For the sake of simplicity, the
model was made of isotropic plates, after a FE analysis revealed that all the
surprising outcomes appeared in that case as well. The model was subjected
to strain gauge measurements and the deflection curve was measured. Here-
after the result of the isotropic FE analysis and the outcome of the test are
depicted in the same figure. Such comparisons have been a substantial con-
tribution to the acceptance of FE codes by responsible structural designers,
making FE analyses a generally accepted tool. Section 19.3 is a review of
the results; Section 19.4 summarizes the message of the chapter.

19.2.1 Problem Definition and Results of Beam Theory

We consider a bridge part of length 30 m which is clamped at one end. The
load consists of a new bridge section of 15 m. Figure 19.5 shows how the load
case is simplified to a point load causing a constant shear force. We can do
this because the dangerous stresses are expected at the clamped end. Because
the load is applied above the vertical box walls, a calculation with elements
that are loaded only in their plane is possible. The orthotropic membrane
constitutive relation reads⎧⎨

⎩
nxx

nyy

nxy

⎫⎬
⎭ =

⎡
⎣ dxx dν 0

dν dyy 0
0 0 dxy

⎤
⎦

⎧⎨
⎩

εxx

εyy

γxy

⎫⎬
⎭ (19.1)
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Figure 19.5 Loading in critical construction phase.

Figure 19.6 Details of hat-stiffened sections.

The calculation of the orthotropic rigidity coefficients is explained in Chap-
ter 20. The reader is encouraged to derive these coefficients on the basis of
the dimension data in Figure 19.6. The result of the derivation is

dxx = Et

1 − ν2
+ Et ′

l

b
, dν = Et

ν

1 − ν2

dyy = E t

1 − ν2
,

1

dxy

= 1

Gt

{
b − e

b
+ e

b

1

1 + α

}
(19.2)

As stated, the model of perspex was made of isotropic plates, so from here
on also the analyses regard isotropic plates. All box plates are 16 mm thick
and the end diaphragm is 24 mm thick. The initial analysis is a calculation of
the stresses based on classical beam theory. These stresses have been drawn
in Figures 19.7 and 19.8.
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Figure 19.7 Stress σxx in top and bottom plate according to beam theory.

Figure 19.8 Stress σxy in top and bottom plate at clamped end according to beam
theory.
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Figure 19.9 Finite element mesh displaying shrunken elements.

Figure 19.10 Comparison of bending stress σxx at clamped end with experiments.
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Figure 19.11 Comparison with experiments of σxx in length direction.

19.2.2 Results of the FE Analysis and the Model Test

The finite element mesh is shown in Figure 19.9. At the position where the
vertical web meets the clamped end, stress concentrations were expected due
to shear lag and the mesh was refined. We will review the next four figures
twice. First, we discuss what FE results are found, and to what extent the
model test results confirm the computation. The full lines are the FE results.

FE Results

If the box girder were subjected to a constant moment over the length, the fi-
nite element method would deliver results that correspond closely with clas-
sical beam theory. For a linearly varying moment, this is not the case. The
distribution of the stress σxx at the clamped end in Figure 19.10 shows large
peaks close to the connections with the vertical and the sloping webs. The
amplification factor is unexpectedly large, almost 3. The effective plate width
to be chosen in an analysis-as-beam is apparently much smaller than the box
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Figure 19.12 Comparison of lateral stress σyy with experiments.

girder width. Figure 19.11 displays the variation of σxx in the length direc-
tion. It shows that the peak drops off rapidly. The stress σyy in the circumfer-
ential direction is given in Figure 19.12. At the centre of the cross-section,
these stresses are of the same order of magnitude as σxx . According to beam
theory, they would be zero. A striking finding is the large peak close to the
kink in the bottom plate. The distribution of the shear stress σxy is drawn
in Figure 19.13. The deviation from the results according to beam theory is
even larger now. Both in the upper plate and in the bottom plate the sign of
the FE result is opposite to the sign according to beam theory. In the bottom
plate the sudden change of sign and the large peak values at the kink in the
bottom plate attract attention.

Model Test Results

As we said before, Figures 19.10, 19.11, 19.12, and 19.13 also include the
model measurements. These are the dashed lines. We found consistent results
for all the stresses. The largest difference occurs for σxy in the horizontal and
sloping bottom plates, but the measured gauge values for σxy do not turn
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Figure 19.13 Comparison of shear stress σyy with experiments.

out to be very reliable at the kink in the plates. The vertical resultant of all
measured shear stresses is not in equilibrium with the applied point load. In
the finite element calculation this equilibrium is satisfied.

19.3 Review of the Results

Now that the results of the calculation have been proved reliable, it is de-
sirable to see if the results can be explained. Perhaps it may be possible to
reduce the stress peaks by making local adaptations.

19.3.1 Stress σxx in Span Direction

The stresses σxx are the bending stresses of the box-shaped cantilever beam.
Their distribution does match the expectation according to the beam theory
when the box girder is subjected to a constant moment, but appears not
to do so when the moment varies linearly. This indicates the influence
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Figure 19.14 Shear stress σxy and shear strain γxy according to beam theory.

of the deformation due to the shear force. The outcomes of beam theory
are possible only when the associated deformations can take place. The
distribution of the shear stresses over the cross-section involves a warping
of this cross-section. On the spot of the restraint above the pylon there is a
vertical plane of symmetry in which warping cannot occur (clamped end in
the analysis). Therefore, a local disturbance system of stresses σxx occurs
to prevent the warping. In Figures 19.14, 19.15 and 19.16 we determine
the warping that will occur according to beam theory for unconstrained
warping. It shows how the equilibrium system of extra stresses σxx will
look, if it is to bring back the warped section to a plane surface; in the
side view of Figure 19.17, this surface is the straight line under angle γ .

Figure 19.15 Deformation of unfolded box beam due to shear stresses in beam
theory.
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Figure 19.16 Perspective view of warping according to beam theory.

In the top horizontal plate, compression is needed in point A and tension
in point B. Therefore, the constant tensile stress in the upper plate accord-
ing to the beam theory will be reduced at point A and increased at point
B. This corresponds with the findings for σxx in the top plate in Figure 19.10.

In the bottom plate according to Figure 19.17, tension is needed in point E

and compression in point D. Compared to beam theory, the magnitude of
the constant compressive force gets smaller in point E and larger in point
D. This also corresponds with the calculations for the bottom plate in Fig-
ure 19.10.

Figure 19.17 Side view of warping due to shear deformation in beam theory.
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19.3.2 Stress σyy in Transverse Direction

Because the supports of the box girder are positioned relatively far inside,
the end diaphragm starts to act as a cross-girder. This cross-girder has
co-acting flanges, the top and bottom plates of the box. At the ends of
this cross-girder, vertical forces act. These are the vertical resultants of the
shear stresses in the webs of the box. The cross-girder is bent upwards
between the supports. This delivers extra tensile stresses at the top, and
extra compressive stresses at the bottom. This way stresses σyy can arise
in the lateral direction, which are in the same order of magnitude as the
longitudinal stresses.

The warping does not explain the peak for stress σyy in the bottom plate
depicted in Figure 19.12. We already mentioned that the cross-girder has co-
acting flange parts from the top plate and bottom plate. A kink occurs at the
bottom between the horizontal flange and the sloping flange. There the flange
of the cross-girder abruptly changes slope. We have already discussed this
kink problem in Section 11.1.2. There we explained why the flange cannot
contribute locally to the force transfer, and that the stresses σyy in the flanges
have to be zero at the kink. The active width of the flange is subsequently
zero, so the stresses σyy rise sharply in that section of the cross-girder. This
understanding has led to the addition of a small local vertical plate parti-
tion in the longitudinal direction at this kink. In Figure 19.4, this is the part
carrying the letter A. This addition halved the peak stress, a very welcome
result with respect to buckling, because the bottom plate is compressed in
two directions there.

19.3.3 Shear Stress σxy

If no end diaphragm were present and the stress distribution of beam theory
held, the top plate would shorten in the cross direction due to lateral contrac-
tion, and the bottom plate would widen in cross direction. However, there
is an end diaphragm and it is attached to the plates. So, a shear stream σxy

has to act outwards along the upper plate and inwards on the lower plate.
This acts against the direction of the shear stresses according to beam theory
for the box bridge. In addition, this effect is amplified by the fact that the
supports under the cross beam (and diaphragm) have been placed inwards.
In order to get the co-acting top flange under tension and the co-acting bot-
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Figure 19.18 Deflection curve for a constant moment.

tom flange under compression, the shear stresses are even more opposed to
the direction of beam theory for the box bridge. The final result indeed is
a situation with shear stresses that have a different sign than initially found
according to beam theory.

Another thing happens close to the kink in the bottom plate. There, we saw
that the active flange width of the cross beam abruptly drops to zero. In Sec-
tion 11.1.2 we explained that the sudden drop of stress σyy is accompanied
by a large gradient in the shear stress σxy , and that the shear stress changes
sign at the kink. This explains what we have seen for the shear stresses in
Figure 19.13. By applying the previously mentioned local vertical plate part
in the longitudinal direction at the kink, the large discontinuity in the shear
stress disappears.

19.3.4 Deflection Diagram

To explain the calculated deflection curve, we first investigate the case of
pure bending. If no shear force occurs, beam theory is in very good agree-
ment with the finite element method, as appears from Figure 19.18. Only
at the free end of the cantilever box do differences occur, but these can be
explained by the way the constant moment is applied to the box bridge. Fig-
ure 19.19 shows the deflection curve for the constant shear force due to a
point load. The model measurement is once again in good agreement with
the finite element calculation.
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Figure 19.19 Deflection curve for an end point load.

Beam theory, taking into account only bending, delivers a deflection δB

that is much smaller. At the end this is FL3/(3EI). This leads to 0.10 m.
The difference with the finite element method result has to be due to the shear
force deformation. If we use the average γ from Section 19.3.1 the δS can be
calculated. From Figure 19.15 we know that γ = 6.8/3,250 = 2.1 × 10−3.
Therefore, δS = γ L = (2.1 × 10−3) × 30 = 0.06 m. The total displacement
is δtotal = 0.10 + 0.06 = 0.16 m. It appears that the measured end value
0.167 m does correspond quite well with the sum of δB and δS .

Usually the average γ will be calculated in a different manner, not graph-
ically as we did here, rather by the well-known formula γ = V/GAs in
which G is the shear modulus and As is the reduced cross-sectional shear
area, written as As = A/η, where A is the actual cross-section area and η a
shape factor (6/5 for a solid rectangle). The shear area As can be determined
by equating the expressions for the work

1

2

�
A

σ 2
xy

G
dA = 1

2

V 2

GAs

(19.3)

in which σxy is the shear stress according to beam theory for a shear force
V. See also Figure 19.20. The procedure is to calculate the shear distribution
according to classical beam theory and insert these stresses in Eq. (19.3). If
done we find As = 0.032 m2, which leads to a shear angle γ = 2.1 × 10−3,
the same value which is obtained from Figure 19.15.
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Figure 19.20 Equalizing work done by stress and force leads to the shape factor η.

19.3.5 Evaluation

We can learn two important lessons from the calculation and the interpre-
tation. The first lesson is that the shear deformation is unexpectedly large.
If a cable-stayed bridge with this cross-sectional shape is designed using a
computer program for beam structures, the program must be able to take
into account the shear deformation. The longitudinal profile in Figure 19.1
is deceiving in this respect. At a first glance it would seem to be a slender
beam. The distance from the pylon to the first stay cable is 45 m. If the
height of the structure is 3.25 m, the ratio span to height is equal to 14.
For the calculation of a solid rectangular cross-section, only the bending
deformation would be required. This is not true for this wide box girder.

The second lesson is that stress concentrations are important. The considered
case is actually a symmetrical problem, in which the shear forces left and
right of the support are of the same magnitude but opposite sign, as shown in
Figure 19.21. Actually there is a shear force jump �V . At every place where

Figure 19.21 Shear force discontinuities cause shear lag disturbances.
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a discontinuity in V occurs, extra stresses have to be expected. So, this takes
place at each fixing point of stay cables.

19.4 Message of the Chapter

• The analysis of a wide-box bridge as a spatial assemblage of
membrane elements reveals surprising stress details, which remain
hidden when the structure is handled as a single beam.

• The statement, that shear deformation can be neglected in slen-
der structures, needs refinement. The statement holds true for a
derivation on the basis of a rectangular solid cross-section, of which
the height is large compared to the width. In a wide-box structure
(without intermediate webs in span direction) the shear deformation
of the horizontal top and bottom deck can be dominant compared
to the shear deformation of the vertical webs. If we want to analyze
such a structure with a beam program, we must include shear
deformation, even if the structure is slender.

• Restraining of warping occurs in each cross-section where the shear
force is discontinuous. In the cable-stayed wide-box bridge, this is
the case in each section where a cable is fixed to the bridge.

• Finally, the case study shows that ‘the devil is in the detail’. Addition
of a really negligibly small steel partition makes high stress melt
away like snow in summer.

Plates and FEM



Part 4
Shape Orthotropy



Chapter 20
Shape-Orthotropic Membrane Rigidities

20.1 Problem Statement

Many plate structures in buildings and bridges cannot be handled as isotropic
plates. Stiffeners may occur, and can be different in two orthogonal direc-
tions. The multi-cell plate in Figure 20.1 is an example. The figure shows
that FE models are possible on different detailed levels. Model 1, consisting

best. However, the input is complicated and the output massive and complex.
The calculation results appear as stresses at nodes and are not easy to inter-
pret or to translate into dimensioning of pre-stressing and reinforcement.

Figure 20.1 Three different levels of FE model for the same structure.
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of a spatial assemblage of isotropic volume elements, explains the behaviour
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Model 2 is less detailed. Here plane isotropic elements are used, which
are appropriate for both membrane action and bending. The output consists
of membrane forces and bending moments in each plate part. This output is
less laborious for the structural engineer, but still awkward, because codes
of practice usually refer to combinations of normal force, shear force, bend-
ing moment and/or twisting moment of total beam cross-sections (I-sections,
box sections and others).

As stated earlier, FE codes refer to this element type by the name shell
element, which suggests that the structure is curved and that coupling be-
tween the membrane state and bending state is at stake; neither is the case.
We repeat: structural engineers should refuse to use the term shell element.
We suggest the name membrane-bending element.

In model 3 of Figure 20.1 we no longer recognize the real shape of the struc-
ture. We replace it by a flat plate and model it with elements with orthotropic
properties. These must be determined on the basis of the geometry of the
cross-section and isotropic properties of the material used. We refer to it as
shape-orthotropy. We can work with this model if stiffeners occur with reg-
ular spacing and there is repetition of components. We determine the rigid-
ity properties of repeating parts of the cross-section and smear them over
the width of the part. In this chapter we focus on membrane orthotropy. In
Chapter 21 we discuss bending orthotropy.

20.2 Occasion of the Chapter

Commercial software with orthotropic features usually offers user-friendly
formulas for a number of frequently occurring cross-sections. If the formu-
las do not apply for the cross-section under consideration, the client has to
determine the rigidity data. To do so for shape-orthotropic plates appears to
be difficult. We demonstrate this by a practical test. On our invitation three
structural engineers determined the rigidity data for the two cross-sections of
Figure 20.2, both for membrane action and bending. One structure consists
of parallel I-sections which are connected to each other at their top flanges
only, and the other of flanged box sections. All three participants are mature
and experienced professionals in a consulting engineering bureau, a contrac-
tor engineering department and a state government engineering agency, re-
spectively. Commercial FE packages require rigidity matrices for membrane
action, bending and shear. Here they are defined in Eqs. (20.1), (20.2) and
(20.3), respectively.
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Figure 20.2 Two shape-orthotropic cross-sections.
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The submitted results for structure 1 are displayed in Figure 20.3. They are
normalized by the correct value. The green colour means fine and red wrong.

Figure 20.3 Submitted results for structure 1 (I-sections).
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Figure 20.4 Submitted results for structure 2 (box sections).

The rigidity for normal forces and bending moments seems no problem. The
rigidity for membrane shear, twisting moment and transverse shear easily is
wrong by a factor two.

The results for structure 2 are displayed in Figure 20.4. Again the mem-
brane shear and twisting rigidities are the problem. The shear rigidity for the
weak direction is an order of magnitude out of the range. We conclude that it
is not clear how to handle rigidities, particularly when shear is involved. We
said that providers of FE software may offer user-friendly formulas for fre-
quently occurring cross-section profiles. Experience teaches that even those
formulas must be watched critically.

20.3 Membrane Plate with Stiffeners

Equation (20.1) is the constitutive law for membrane plates. The homoge-
neous isotropic plate is a special case for which Eq. (20.1), according to
Section 1.2.2, becomes
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Figure 20.5 Example of orthotropic membrane plate.

D = Et

1 − ν2

⎡
⎣ 1 ν 0

ν 1 0
0 0 1

2 (1 − ν)

⎤
⎦ . (20.4)

Figure 20.5 shows an orthotropic plate with stiffeners. The structure is an
isotropic top plate with added stiffeners, ribs in the x-direction and T-sections
in the y-direction. All the material is linear-elastic with Young’s modulus E

and Poisson’s ratio ν. The top plate has thickness t . The cross-sectional area
of the stiffeners in the x-direction is Aa and in the y-direction Ab. The stiff-
ener spacings in the x- and the y-direction are a and b respectively. In reality
the stiffeners are connected eccentrically, but in the analysis it is assumed
that the centre line of the stiffeners coincides with the middle plane of the
top plate. For this orthotropic plate we can make a simple parallel chain of
the isotropic plate and the stiffeners.

D = Et

1 − ν2

⎡
⎣ 1 ν 0

ν 1 0
0 0 1

2 (1 − ν)

⎤
⎦+

⎡
⎣ EAa/a 0 0

0 EAb/b 0
0 0 0

⎤
⎦ (20.5)

This expression, if summed, reads

D =

⎡
⎢⎢⎢⎣

Et

1 − ν2
+ EAa

a
ν

Et

1 − ν2
0

ν
Et

1 − ν2

Et

1 − ν2
+ EAb

b
0

0 0 Gt

⎤
⎥⎥⎥⎦ (20.6)
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Figure 20.6 Membrane plate strips of different thickness.

After the FE analysis of the plate structure is completed, we will know the
strains and can compute the membrane forces in the top plate form the first
part of Eq. (20.5) and the forces in the stiffeners from the second part.

20.4 Plate Strips of Different Thickness

The plate of Figure 20.6 consists of plate strips of different thickness. Peri-
odically the strip width is a1 and a2 and the thickness t1 and t2, respectively.
Plate parts of width a repeat continuously. Admittedly, such plates do not
arise in reality, but we need one as a stepping stone for membrane orthotropic
plates that do occur.

20.4.1 Extensional Rigidity

First we consider the extensional rigidity for normal strains in the x- and
the y-direction. The plate parts are chained in parallel in the x-direction and
serially in the y-direction. Therefore, the plate parts share the strain in the
x-direction, but have different strains in y-direction. At the intersection of
two plate parts, nyy1 = nyy2, and for the two parts together, aεyy = a1εyy1 +
a2εyy1. On this basis we can calculate an ‘average’ εyy and rigidities dxx , dyy

and dν . It is convenient to introduce fractions f1 and f2 defined as follows:

f1 = a1

a
, f2 = a2

a
(20.7)

and auxiliary thicknesses tserial and tparallel. The sum of the fractions is always
1. Using this, we obtain simple expressions for the rigidities
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Figure 20.7 Membrane plate strips of different thickness subjected to shear.

f1 = a1

a
, f2 = a2

a
(20.7)

and auxiliary thicknesses tserial and tparallel. The sum of the fractions is always
1. Using this, we obtain simple expressions for the rigidities

dxx = Etparallel

1 − ν2
, dyy = Etserial

1 − ν2
, dν = ν

Etserial

1 − ν2
(20.8)

where

tparallel = f1t1 + f2t2,
1

tserial
= f1

1

t1
+ f2

1

t2
(20.9)

To obtain these formulas we just neglect a small contribution proportional to
Poisson’s ratio in the formula for dxx .

After completion of the FE analysis, the stresses are computed in the fol-
lowing way. In each plate strip we know the strain εxx and the membrane
force nyy; the strain εxx is the same in all plate strips, and so is the mem-
brane force nyy. Then we can compute εyy and nxx from Eq. (1.13). From
nxx and nyy we find the normal stresses after division by the thickness of the
plate strip.

20.4.2 Shear Rigidity in the y-Direction

We determine the shear rigidity dxy on the basis of Figure 20.7. If subjected
to a homogeneous field of membrane shear forces, the plate strips will ex-
perience different shear deformation γxy1 and γxy2. Again serial chaining
occurs and we can define an average shear deformation γxy with aid of the
condition a γxy = a1γxy1+a2γxy2. The fictitious thickness tserial of Eq. (2.10)
plays a role again. The shear rigidity becomes
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Figure 20.8 Membrane plate with hat stiffeners.

20.5 Plate with Hat Stiffeners

Decks in steel bridges may consist of a top plate stiffened by hat sections as
shown in Figure 20.8. We have seen this before in Chapter 19. The exten-
sional rigidity for normal strains is briefly addressed in Section 20.5.1. The
shear rigidity needs more attention, which is paid in Section 20.5.2.

20.5.1 Extensional Rigidity

The rigidity terms dxx , dyy and dν for normal strains in the x- and the y-
direction cannot cause difficulties after the discussion in Section 20.3. What
holds for the rib sections there, applies for the hat sections here. The axial
stiffness EAa of the hat stiffener is smeared over the width a and added to
the rigidity matrix of the top plate as in Eq. (20.6). In the y-direction the
contribution of the hat section can be neglected. It has no noticeable stiffness
against membrane forces in that direction.

20.5.2 Shear Rigidity

To determine the shear rigidity of the hat-stiffened plate we distinguish two
plate strips of width a1 and with a2. The problem to be solved has something
in common with the plate of Section 20.4. We can use the solution of that
section if we are able to replace the strip with hat section by a single plane
strip of fictitious thickness t2.
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Figure 20.9 Parallel chain of plate parts under shear.

Strip 1 causes no problems; the thickness t1 is the thickness of the top
plate. The fictitious thickness t2 of the hat-stiffened strip must be calculated
from the parallel chain of two parts, the top plate and the hat section. In
order to be as general as possible, we start from Figure 20.9 with two plates
of developed lengths a′ and a′′ and thicknesses t ′ and t ′′, respectively. The
two plates are welded to each other at both ends of the strip. The shear force
nxy spreads over the two plates in parts n′ and n′′, respectively. We induce a
shear deformation γ2 to the combination of the two plates; therefore the one
weld will shift with reference to the other over a distance a2γ2. Because of
compatibility both plates experience the same shift, however, they spread it
over different lengths a′ and a′′. Therefore it holds a′γ ′ = a2γ2 and a′′γ ′′ =
a2γ2. From these relations we solve for the shear deformation of the two
parallel plates

γ ′ = a2

a′ γ2, γ ′′ = a2

a′′ γ2 (20.11)

It is helpful to introduce auxiliary quantities g′ and g′′

g′ = a2

a′ , g′′ = a2

a′′ (20.12)

which look like fractions but will in general not sum to 1. In a parallel chain,
strains are common and forces must be added. Therefore

nxy2 = n′ + n′′ (20.13)

From this equation we obtain, accounting for Eqs. (20.10) and (20.11), a
simple formula for t2:

t2 = g′t ′ + g′′t ′′ (20.14)

The last step in the analysis is to execute the serial chaining of plate strip 1
and the (fictitious) plate strip 2. For that purpose we make use of the formula
for tserial in Eq. (20.9)

Plates and FEM
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1

tserial
= f1

1

t1
+ f2

1

t2
, f1 = a1

a
, f2 = a2

a
(20.15)

So we end up with the formula for the shear rigidity dxy for the hat-stiffened
plate

dxy = Gtserial (20.16)

20.6 Message of the Chapter

• Plates which are stiffened by ribs, T-sections or hat-sections
show shape-orthotropic behaviour. They can be calculated by
commercially available FE codes, offering the option of orthotropic
rigidities.

• Input data for shear rigidities need special attention.

• Two main schemes apply, one for serial chaining of components
and one for parallel chains.

• Formulas are derived for a number of frequently occurring plate
topologies. The strategy is explained for cases that are not discussed
in user manuals of commercial codes.



Chapter 21
Orthotropic Plates in Bending and Shear

21.1 Problem Statement

The constitutive laws for bending and transverse shear in isotropic homo-
geneous plates were discussed in Chapter 3. We refer to this chapter for
definitions of moments and curvatures. There bending moments mxx and
myy occur, and equal twisting moments mxy and myx, all defined per unit
length (therefore have unit of force). The constitutive relationship between
moments and curvatures is⎧⎨

⎩
mxx

myy

mxy

⎫⎬
⎭ = Et3

12(1 − ν2)

⎡
⎣ 1 ν 0

ν 1 0
0 0 1

2 (1 − ν)

⎤
⎦

⎧⎨
⎩

κxx

κyy

ρxy

⎫⎬
⎭ (21.1)

If the structure has orthotropic properties, we again have bending mo-
ments mxx and myy and twisting moments mxy and myx , but now the latter
two need not be equal. The twisting deformation ρxy (which is twice the

xy) is symmetric, but the torsion rigidities may differ
in the x-direction and y-direction: Dxy �= Dyx . As stated in Section 3.5
we now must replace mxy in Eq. (21.1) by the average value of the two
twisting moments, for which we have introduced the name mav. Therefore
mav = 1

2 (mxy + myx), and the constitutive relationship for the general case
of bending of shape-orthotropic plates is

⎧⎨
⎩

mxx

myy

mav

⎫⎬
⎭ =

⎡
⎣ Dxx Dν 0

Dν Dyy 0
0 0 Dav

⎤
⎦

⎧⎨
⎩

κxx

κyy

ρxy

⎫⎬
⎭ (21.2)

The rigidity Dxx represents the bending stiffness in the x-direction and
Dyy in the y-direction. The off-diagonal term Dν is due to Poisson’s ratio; it
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is zero if no lateral contraction is considered. The torsion rigidity is called
Dav because it is related to the average moment mav.

Pitfall for torsion rigidity

At this place it is necessary to draw the attention to a tricky pitfall.
Many classical text books on bending of isotropic plates deal with the
subject matter on the basis of the theory for thin plates and define a
relation between the twisting moment mxy and twisting curvature κxy

instead of between the moment mxy and the twisting deformation ρxy.
The latter is used in FE programs and is twice κxy . The relation in
the classic text books for an isotropic plate reads mxy = Dclassicκxy ,
where Dclassic = (1 − ν)D. In the context of FEA we must use mxy =
DFEAρxy , where DFEA = 1

2 (1 − ν)D. A factor two occurs between
the two definitions of the rigidity: Dclassic = 2DFEA. Therefore, if one
is not aware of this difference, an error of factor two is easily made.
This is in fact the reason why two of three submissions in Figure 20.3
overestimated the torsion rigidity D33 by a factor of two.

In thick isotropic plate we must take into account transverse shear deforma-
tion. The constitutive law between shear forces vx and vy on the one hand
and the shear angles γx and γy on the other is

{
vx

vy

}
=

[
Ds 0
0 Ds

] {
γx

γy

}
(21.3)

where Ds = Gts and ts = t/η. The shape factor η accounts for the shear
distribution over the cross-section, and is 6/5 for rectangular cross-sections.
Note that the same rigidity Ds holds for both directions x and y. For an
orthotropic plate this is no longer the case and different rigidities Dsx and
Dsy are defined for the x- and y-direction, respectively. Now the rigidity
relation reads

{
vx

vy

}
=

[
Dsx 0

0 Dsy

] {
γx

γy

}
(21.4)
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Special case: Mindlin theory for slender structure

We again stress that transverse shear distortion is usually taken into ac-
count for only thick plates. Then the thickness of the plate is no longer
small compared to the span. Speaking about thick plates is correct for
solid slabs, with material over the full depth. However, some slender
structures also need inclusion of shear distortion and therefore appli-
cation of Mindlin theory. An example is the multi-cell bridge without
lateral diaphragms. Vierendeel-like cross-sections are sensitive to shear
distortion and must be dealt with as thick plates, even when the struc-
ture depth is small and the structure is in fact slender.

21.2 Plate with I-Sections

The plate structure in Figure 21.1 consists of I-sections in the x-direction
and a thin upper deck in the x–y plane. All material has Young’s modulus E

and Poisson’s ratio ν. The upper deck is common for the x- and y-directions,
therefore we must account for lateral contraction in this component of the
cross-section.

Figure 21.1 Plate with T-stiffeners (I-sections).
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21.2.1 Flexural Rigidity

We start with the rigidities for bending and torsion. To determine Dxx we cal-
culate the bending stiffness EIx of the I-section of width a, and smear it over
the width. Strictly speaking the I-section is composed of two different mate-
rials, because the upper flange experiences the influence of Poisson’s ratio,
whereas the web and bottom flange do not. So Young’s moduli E/(1 − ν2)
and E apply, respectively. Poisson’s ratio for concrete is about 0.2, therefore
the elasticity modulus of the upper plate is only 4% larger. If we keep in
mind that we know the elasticity modulus E at the best with this accuracy,
we may neglect the influence of ν on Dxx.

For Dyy in the lateral y-direction only the upper deck plays a role. The
same applies for the off-diagonal rigidity Dν . Because lateral contraction
only occurs in the upper deck we obtain Dν through multiplication of Dyy

by Poisson’s ratio. The result of all these considerations is

Dxx = EIx

b
, Dyy = Et3

12(1 − ν2)
, Dν = ν

Et3

12(1 − ν2)
(21.5)

21.2.2 Torsional Rigidity

The torsional rigidity needs special attention, because slips are easily made.
We start by considering twisting of an isotropic plate. For that purpose we
first call to mind how a straight bar is deformed by a twisting moment Mt .
We assume an x-axis along the centre line of the bar, call the rotation about
this x-axis ϕ and the twisting (distortion) of the bar θ . The kinematic relation
between distortion and rotation is θ = dϕ/dx. The rigidity relation between
the twisting moment mt and the twisting θ is

Mt = GIt θ (21.6)

Here G is the shear modulus, and It the polar moment of inertia. Equa-
tion (21.6) is the constitutive law for torsion, as is M = EIκ for bending.
Figure 21.2 shows classic formulas for the calculation of It : for a strip, an
I-section and a box section. All formulas hold true for cross-section parts in
which the thickness t is small compared to the width b. In the formula for the
box section, A is the area enclosed by the centre lines of the four composing
walls. For equal wall thicknesses the formula becomes simpler. Here B is the
circumference, the sum of all wall lengths b.
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Figure 21.2 Formulas for twisted straighth bars

We repeat the strip of Figure 21.2 in Figure 21.3 and include the flow of
stress. The distribution of the shear stress is linear over the thickness over
almost the full width b. The resultant per unit length of these shear stresses
is a moment, which we here call mt . The stresses return at the left end with
a downward shear flow and at the right end with an upward flow. The return
occurs within a strip part of length which is about the strip thickness. If the
thickness t is sufficient small compared to the width b then we can concen-
trate the resultant of all vertical stresses at both strip ends as one vertical

Figure 21.3 Shear stress in cross-section of strip-shaped bar.
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force V at the end face. This force has the value mt , fully comparable with
that found from the theory of thick plates as discussed in Section 3.6 and
thin plates as discussed in Section 4.4.2. The horizontal stresses occur over
a long length, but have a very short lever arm, whereas the vertical stresses
occur over a small length, but have a long lever arm. The effect is that the
total moment Mt is carried half by the horizontal shear stresses and half by
the vertical ones. The polar moment of inertia for the strip is It = 1

3bt3 and
is due to both the horizontal and vertical stresses. The horizontal stresses
are responsible for the half of It , so for the contribution it = t3/6 per unit
length.

In the bottom part of Figure 21.3 a square part is drawn, which occurs
inward a homogeneous isotropic plate, subjected to a constant twisting mo-
ment mxy . Each side of the part has unit length, and there are horizontal
shear stresses on all four faces. If we consider this part as an element which
is extracted from the strip in the top part of the figure, it immediately is un-
derstood that the torsional rigidities per unit length ixy in the face normal to
the x-axis and iyx in the face normal to the y-axis are

ixy = 1

6
t3, iyx = 1

6
t3 (21.7)

Let us consider the square element as a bar in the x-direction with torsional
rigidity ixy . For this bar it holds mxy = Gixyθ . We also know θ = dϕ/dx

and ϕ = −dw/dy, so we arrive at the expression

mxy = −Gixy

∂2w

∂x∂y
(21.8)

The mixed second derivative with negative sign is the plate torsional cur-
vature κxy which in turn is ρxy/2. Therefore, Eq. (21.8) transforms into

mxy = G
ixy

2
ρxy (21.9)

In an isotropic plate there is no difference between the x- and the y-
directions, so the same equation applies for myx . Summing up for an
isotropic plate, we define the rigidities by

mxy = Dxyρxy, myx = Dyxρxy (21.10)

Here the rigidities are

Dxy = G
ixy

2
, Dyx = G

iyx

2
(21.11)
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They are equal for isotropy, but they become different for orthotropic plates.
On the basis of our discussion of isotropic plates, we can quickly clarify
how to deal with orthotropic properties. It still holds true that one torsional
deformation ρxy occurs, but the twisting moments and torsional moments
of inertia are different: mxy �= myx and ixy �= iyx . Now we have different
relations mxy = Dxyρxy and myx = Dyxρxy . The constitutive relation for
orthotropy is mav = Davρxy in which mav = 1

2(mxy + myx). From this we
derive the definition for the rigidity Dav and the torsional moment of inertia
iav:

Dav = G
iav

2

iav = 1

2
(ixy + iyx)

(21.12)

We can check if this definition leads to the correct result for an isotropic
plate. In that case ixy = iyx = t3/6 and iav = 1

2(ixy + iyx) = t3/6.
Remembering G = 1

2E/(1 + ν), we find Dav = Et3/(24(1 + ν)).
This outcome is equivalent to the product of Et3/12(1 − ν2) and
1
2 (1 − ν) in Eq. (21.1). The definition in Eq. (21.12) leads to the correct
torsional rigidity in an isotropic plate and is a quick guide for the determi-
nation of the rigidity in case of orthotropy.

After a FE analysis is completed, the output consists of mav values, which
are the average of the twisting moments mxy and myx. The values mxy and
myx can be solved from two equations. The first equation tells us that the
sum of the two moments is 2mav. The second equation tells that the quotient
of the moments is ixy/iyx . The solution of the two equations is

mxy = 2ixy

ixy + iyx

mav, myx = 2iyx

ixy + iyx

mav (21.13)

Example

We apply the derived equations to the structure with I-sections in Figure 21.1
and consider a section of width b. The continuous top deck has thickness t ;
the web is a strip with thickness tw and width bw; the bottom flange is a strip
with thickness tf and width bf . The continuous top deck is in the state of
the plate element in Figure 21.3 and therefore will contribute t3/6 to both ixy

and iyx . The web and flange contribute only to ixy . Their full strip rigidities
bwt3

w/3 and bf t3
f /3, respectively, are assigned to the x-direction and must be

Plates and FEM
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Figure 21.4 Multi-cell bridge.

smeared out over the section width b. In this way we obtain the following
result:

ixy =
(

1

3
bwt3

w + 1

3
bf t3

f

)
1

b
+ 1

6
t3, iyx = 1

6
t3 (21.14)

These must be substituted in Eq. (21.12) to find the rigidity Dav.

21.2.3 Shear Rigidity

A plate which consists of I-sections in the x-direction is not sensitive to
transverse shear distortion. Just for completeness, we treat the shear rigidities
here. If we call the shear area of the I-section Asx , then the rigidities are

Dsy = 5

6
Gt, Dsx = GAsx/a (21.15)

The shear area Asx is the real cross-section area A divided by the shape fac-
tor η. Engineering handbooks provide tables with values for various section
shapes.

21.3 Multi-Cell Bridge

We consider the concrete plate of Figure 21.4, a chain of box cells. The x-
axis is in the lateral direction of the plate. The y-axis is normal to the plane
of drawing. No diaphragms have been placed in the lateral direction. Each
box has the width b.
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21.3.1 Flexural Rigidity

Strictly speaking we should use the elasticity modulus E/(1 − ν2) for the
horizontal top and bottom walls, and E for the vertical walls. Since ν2 is
small for concrete, we will work with one elasticity modulus E when de-
termining Dyy . The determination of the flexural rigidity EIy is straightfor-
ward. The flexural rigidity Eix in the x-direction will be smaller than in the
y-direction, because no vertical walls occur in that direction. The determina-
tion of Dν must be based on the flexural rigidity in which the vertical webs
play no role, so Dν depends on Eix . We obtain

Dxx = Eix, Dyy = EIy

b
, Dν = νDxx (21.16)

21.3.2 Torsion Rigidity

Box girders have large torsional stiffness. The inner vertical webs have some
influence on the stiffness but not much; the flow of shear stresses in the outer
vertical walls and the two horizontal decks determines the torsional stiffness
to a large extent. We make only a little error if we set the inner walls aside.
So we calculate the polar moment of inertia It of the complete wide box
of n cells with the box formula in Figure 21.2. We assign half of this polar
moment of inertia to the x-direction and half to the y-direction. This leads to
the result

ixy = 1

2

It

nb
, iyx = 1

2

It

nb
, iav = 1

2
(ixy + iyx) (21.17)

Substitution in Eq. (21.12) leads to the required torsional rigidity Dav. For
regular structures such as the plate under consideration, we could have made
a short cut and obtained the same result. We could have computed It of the
complete wide box, divided this by the total width nb and taken half the
value of it. Experienced engineers who often make this type of calculations
will recognize a pattern and can make use of gained insight.

Example

A multi-cell bridge as shown in Figure 21.4 has eight rectangular cells of
height h = l and width b = 2l. All walls have thickness t . From this data it
follows

Plates and FEM
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A = (8 × 2l)l = 16l2, B = 16 × 2l + 2 × l = 34l

It = 4A2t

B
= 4(16l2)

2
t

34l
= 512

17
t l3

(21.18)

ixy = iyx = It/2

8 (2l)
= 16

17
t l2

iav = 1

2
(ixy + iyx) = 16

17
t l2

(21.19)

The length l is equal to b/2, therefore the expression transforms into

iav = 16

17
t

(
b

2

)2

= 4

17
tb2 (21.20)

This must be introduced into Eq. (21.12) to find Dav.

21.3.3 Shear Rigidity

X-Direction

The transverse shear stiffness in the x-direction is very limited. Figure 21.5
shows the distortion due to a shear force. We want to determine Dsx in the
shear relation

vx = Dsx γx (21.21)

We can make an analysis with a frame program to determine the deflection δ

due to a given shear force vx , from which we find the relation vx = Ksxδ. The
shear angle γx over the considered box is γx = δ/b. Therefore Dsx becomes

Figure 21.5 Shear distortion of one cell in a multi-cell bridge.
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Dsx = bKsx (21.22)

The axial strain of the members of the box frame is formally taken into
account, but its influence is in fact small. This means that the deformation
due to a bending moment in the lateral x-direction of the orthotropic plate is
very small compared to the distortion due to a shear force.

Usually the depth of the multi-cell plate is smaller than the length b of the
cells and the thickness of the vertical walls thicker than the thickness of the
horizontal walls. Therefore, the bending deformation of the vertical walls
in Figure 21.5 is negligible compared to the deformation of the horizontal
walls. Then we need no frame program and obtain for equal thickness t of
the two horizontal walls

Ksx = 2

{
12

EI

b3

}
= 2

{
12 × Et3/12

b3

}
= 2E

t3

b3
(21.23)

Substitution in Eq. (21.22) leads to the shear rigidity

Dsx = bKsx = 2Et

(
t

b

)2

(21.24)

Structural engineers may just sum the shear rigidities of the top and bottom
wall. For a the top plate they would find Dsx = Gt/η with η = 1.2. For
ν = 0.2 this leads to Dsx = 0.35Et , which becomes Dsx = 0.7Et for the
top and bottom plate together. This is of the order Et . In Eq. (21.24) the
order is a factor (t/b)2 different. Because t/b � 1, we find that Eq. (21.24)
leads to a substantially smaller Dsx than 0.7Et .

Pitfall for shear rigidities

Structural engineers may get in the pitfall in summing the shear rigidi-
ties of the top and bottom wall of a multi-cell bridge. Merely summing
shear rigidities is very misleading. It leads to a shear rigidity which is
an order of magnitude too large.

Y -Direction

The shear rigidity in the y-direction is large. It must be computed as dis-
cussed for the I-section in Section 21.2.3. The formula is
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Dsy = GAsy. (21.25)

Here Asy is the real cross-section area A divided by the shape factor η. If
the vertical walls have thicknesses of about the size t , the value of Dsy will
be of the order Gt . The size of η is much larger than 1, for instance 5 or
more. Structural engineers may prefer to relate the shape factor to the web
area because that member must in fact carry the shear force. If related to the
cross-section area of only the vertical web the factor decreases to a value
only little more than 1, which will appeal to structural engineers.

21.3.4 Combination of Shear Force and Twisting Moment

After completion of the FE analysis the structural engineer wants to know
the shear force in the vertical webs of the multi-cell plate. Is the definition
of Eq. (3.41), with reference to Figure 21.4, still valid? And can we multiply
this by the spacing of the vertical webs to obtain the shear force in the web?

The shear force vy consists of two contributions vyb and vyt , due to the
bending moment myy and the twisting moment mxy , respectively. The first
contribution vyb = ∂myy/∂y needs no further explanation. Therefore we will
focus on the term vyt = ∂mxy/∂x. We suppose a diagram for the twisting
moment as depicted in Figure 21.6. In general, the moment has different
values at the various cells. In the special case that the moment is equal in all
cells, a constant shear flow n occurs in the horizontal top plate and bottom
plate with size

n = mxy

h
(21.26)

Figure 21.6 Shear force in web due to twisting moment.
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where h is the distance between the middle plane of the top and bottom
plate. The constant twisting moment does not raise a vertical shear force in
the webs, which is in conformance with the supposition that we neglect the
inner vertical webs when we determine the rigidity. In the general case of a
varying twisting moment, the value of n will be different for each cell. The
formula in (21.26) is now applied to each cell. The twisting moment will
evoke a vertical shear force s in the inner webs of the size

s = nII − nI (21.27)

This follows from equilibrium of the joint between the vertical web and
the two adjacent horizontal plate parts in the top plate or bottom plate. The
analogy of a fluid flow is helpful in understanding this. We call the spacing of
the vertical webs �x and will edit Eq. (21.27) by multiplying both members
of the relationship by h

hs = hnII − hnI (21.28)

The left-hand member is the shear force V in the web due to the twisting mo-
ment. The right-hand member is the difference of mxy II and mxy I, so �mxy .
We can write Eq. (21.28) as

V = �mxy (21.29)

We smear out V over the width �x and replace it by vyt�x. This transfers
Eq. (21.29) into

vyt = �mxy

�x
(21.30)

Together with vyb = ∂myy/∂y and if �x is small compared to the width of
the slab we obtain

vy = ∂myy

∂y
+ ∂mxy

∂x
(21.31)

We conclude that the equation for the shear force vy is still fully valid for
the multi-cell bridge. After completion of the FE analysis we multiply the
outputted vy by the spacing �x to obtain the transverse shear force in the
vertical web.

21.4 Plate with Separate Boxes

21.4.1 Flexural Rigidity

The cross-section shown in Figure 21.7 consists of individual flanged box
sections of width b. The x-axis is in the plane of the paper and the y-axis
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Figure 21.7 Plate of box sections with flanges.

is perpendicular to it. We determine the flexural rigidity Dxx by subjecting
one box section to a bending moment mxx , as shown in Figure 21.8, and
compute the rotation ϕ at each end. The stiffness relation is C = mxx/2ϕ.
Because of the relation mxx = Dxxκxx we find

Dxx = C

b
(21.32)

The flexural rigidity Dyy in the y-direction is calculated as discussed for
the plate with I-sections. We calculate EIy of the box beam, including the
flanges, and find

Dyy = EIy

b
(21.33)

The off-diagonal term Dν in the rigidity matrix is related to the stiffness of
the top plate only. Application of a moment mxx , as shown in Figure 21.8,
leads to a smaller moment mxx1 in the top wall of the box. A moment myy =
νmxx occurs in the flanges of the box beam and a moment myy1 = vmxx1 in
the top wall of the box. We define a reduced rigidity Dxx,red in order to define
Dν

Dν = νDxx,red

Dxx,red = bomxx + b1mxx,1

bmxx

Dxx. (21.34)

Figure 21.8 The lateral bending stiffness is determined by the relation between mxx

and ϕ.
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21.4.2 Torsional Rigidity

In Figure 21.2 we have given formulas for the calculation of the torsional
moment of inertia It of box girders with thin walls. If the wall thickness
is not small compared to the width and depth of the box girder, then the
contribution bt3/3 or bt3/6 of the individual box-sections must be added to
It . For steel boxes this is never necessary, for boxes of reinforced concrete
it may be. Defining ixy for the section normal to the x-axis halfway between
two boxes, and iyx for the section normal to the y-axis, we find

ixy = 1

6
ttop

3,

iyx = 1

b

{
It + t3

topb/6 + t3
bottombbottom/3 + 2

(
t3
webbweb/3

)}
(21.35)

This we must substitute in Eq. (21.12).

Example

We apply Eq. (21.35) to the structure in Figure 21.7. In this example we
choose all wall lengths l = b/2. All thicknesses are t . Then

A = l2, B = 4l → It = 4A2t

B
= 4(l2)2t

4l
= t l3 (21.36)

Working out of Eq. (21.35) now leads to

ixy = 1

6
t3

iyx = 1

2l

{
t l3 + (2l) t3/6 + 3

(
t3l/3

)} = 1

2
t l2 + 2

3
t3 (21.37)

= 1

2
t l2

{
1 + 3

4

(
t

l

)2
}

We can assume that the ratio t/ l will be about 0.2. Therefore the term be-
tween braces is practically equal to 1 and iyx = t l2/2. This has the conse-
quence that ixy will be negligible with respect to iyx . Finally we can make
the transformation from an expression in l to an expression in b, which leads
to
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ixy = 1

6
t3

iyx = 1

8
tb2

{
1 + 3

(
t

b

)2
}

(21.38)

The average value of ixy and iyx , to be substituted in Eq. (21.12) is

iav = 1

16
tb2 + 13

48
t3 (21.39)

After the FE analysis has been done, we find one value mav, from which
we can calculate separate values mxy and myx . The twisting moment mxy

will be small compared to myx , but acts in the thin flange where it must
be combined with the lateral bending moment mxx . This combination must
be included in the consideration when designing reinforcement. In the span
direction we must, strictly speaking, consider a combined state of forces and
moments in each separate wall of the box. The flexural rigidity EIy leads
to both a membrane force nyy and a plate bending moment myy in the top
and bottom wall. Apart from this, due to Giyx we get a membrane shear
force nyx and a plate twisting moment myx. Reinforcement in an individual
wall therefore must be designed for a combination of membrane forces and
bending moments, for which we refer to Chapter 16. The structural engineer
has to decide whether or not to refine the calculation to this level.

21.4.3 Shear Rigidity

X-Direction

Compared to the preceding cases of I-sections and a multi-cell bridge, the
case under consideration is more complicated. In the preceding two cases
the shear stiffness was either very large or very small. In the plate with
I-sections, the shear rigidity is so large that shear distortion can be neglected.
In the multi-cell bridge, the opposite is true; the shear distortion is so domi-
nant that an infinitely large flexural rigidity can be assumed. The structure in
Figure 21.7 is somewhat in between. It will appear that the flexural and shear
deformation are of the same order. In Figure 21.8 we have already consid-
ered the case of a constant bending moment mxx . A state of constant shear is
not possible; it will always be accompanied of a linear distribution of bend-
ing moment, as depicted in Figure 21.9. Therefore, shear distortion in general
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Figure 21.9 Two basic deformation states.

always interacts with flexural deformation. Returning to the box girder with
flanges, we have to investigate two different cases as shown in Figure 21.10:
in one case two rotations are enforced (left) and in the other a vertical shift
of the one end with respect to the other (right). We search for a replacing
homogeneous plate of flexural rigidity Dxx and shear rigidity Dsx. We have
two unknowns and have two independent states at our disposal to determine
them. The flexural rigidity has already been dealt with in Section 21.4.1 on
the basis of the left deformation state of Figure 21.10. We now concentrate
on the right one. We can do a frame analysis for the box girder cross-section,
in which we force the right support to shift over the distance δ vertically, and
calculate the evoked support reaction vx . From the relation vx = Ksxδ we
calculate the stiffness Ksx . For the replacing homogeneous plate the relation

Figure 21.10 Example of square box section with flanges.
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between shift and support reaction is δ = vxb
3/12Dxx +vxb/Dsx , where the

right-hand term contains both the bending deformation and the shear defor-
mation. Equalizing this δ with vx/Ksx from the frame analysis we obtain the
equation

b3

12Dxx

+ b

Dsx

= 1

Ksx

(21.40)

Summarizing, we must perform two frame analyses, one for the moment
and one for the shear force. From the first we derive Dxx and from the second
Dsx .

Example

If a structure is not too complicated the frame analyses can be done by hand
calculation, and the rigidities can be obtained in closed form. In the case of
Figure 21.10 with a square box of sizes l, we find from the bending analysis

Dxx = 4

33
Et3 (21.41)

From the shear force analysis we obtain

Ksx = 8

61

Et3

l3
(21.42)

Substitution of Dxx and Ksx in Eq. (21.40) leads to

(2l)3

12
{

4
33Et3

} + 2l

Dsx

= 1{
8

61
Et3

l3

} (21.43)

from which we solve

Dsx = 16

17
Et

{
t

l

}2

(21.44)

If we want to compare the rigidities Dxx and Dsx , the latter must be mul-
tiplied by the square width of the considered element in order to obtain
quantities with the same units. Therefore, we must compare Dxx and b2Dsx.
We have obtained the following order of magnitude for the three considered
plates
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Overview of three characteristic cases

We have obtained different orders of magnitude for three plate types

I-section plates:
Dxx

Dsxb
2

= O

(
t

b

)2

Flanged boxes:
Dxx

Dsxb2
= O(1)

Multi-cell bridge:
Dxx

Dsxb2
= O

(
b

t

)2

Because t/b � 1, in the plate with I-sections the denominator is dominant
(the shear rigidity), in the multi-cell bridge the numerator is dominant (the
flexural rigidity) and in the plate with flanged boxes numerator and denom-
inator are of the same order of magnitude (flexural and shear rigidity of the
same order of size).

Y -direction

In the y-direction the shear rigidity is large as we have seen for the plate with
I-sections, and the multi-cell plate. The structural engineer must choose the
relevant value of the shape factor η and apply the formula

Dsy = G
Asy

b
(21.45)

where Asy is the real cross-section area A divided by the shape factor η. This
factor will be substantial larger than 1. If related to the area of only the two
webs the value will be close to 1, which will appeal to structural engineers.

21.5 Message of the Chapter

• A structural engineer will sometimes severely overestimate the
torsional rigidity by not recognizing the difference in definition
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between classical books on plate theory and Finite Element user
manuals.

• In plates with longitudinal stiffeners the torsional rigidity in the
span direction is different from the rigidity in the lateral direc-
tion. The contribution of the upper plate to the plate torsional
rigidity must be split into a part related to the span direction
and a part related to the lateral direction. Longitudinal stiffeners
of the upper plate contribute only to the rigidity in the span direction.

• For the determination of the plate torsional rigidity the average
rigidity of span and lateral direction must be used, and the outputted
twisting moment will be the average moment for both directions.
After completion of the FE analysis, we can calculate the twisting
moments in the span and lateral directions on the basis of the ratio
of the rigidities in both directions.

• The plate torsional rigidity of multi-cell bridges may be calculated
with neglect of the intermediate vertical webs.

• After completion of the FE analysis, the shear force in vertical webs
can be determined by the plate formula for the distributed shear
force. This distributed shear force must be multiplied by the spacing
of the webs.

• The shear rigidity in the lateral direction needs special attention. A
safe method of deriving it is to consider two independent states, one
constant moment and one constant shear force. This leads to two
equations for the required flexural and shear rigidities.
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