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A Multiple Criteria Group Decision Making
Model with Entropy Weight in an Intuitionistic
Fuzzy Environment

Chia-Chang Hung and Liang-Hsuan Chen

Abstract The theory of intuitionistic fuzzy sets (IFSs) is well-suited to dealing with
vagueness and hesitancy. In this study, we propose a new fuzzy TOPSIS group deci-
sion making model using entropy weight for dealing with multiple criteria decision
making (MCDM) problems in an intuitionistic fuzzy environment. This model can
measure the degrees of satisfaction and dissatisfaction of each alternative evaluated
across a set of criteria. To obtain the weighted fuzzy decision matrix, we employ
the concept of Shannon’s entropy to calculate the criteria weights. An investment
example is used to illustrate the application of the proposed model.

Keywords Entropy � Intuitionistic fuzzy sets (IFSs) � Multiple criteria decision
making (MCDM) � TOPSIS

1 Introduction

A number of multiple criteria decision making (MCDM) approaches have been
developed and applied to diverse fields, such as engineering, management, eco-
nomics, and so on. Among those approaches, TOPSIS (technique for order per-
formance by similarity to ideal solution), first developed by Hwang and Yoon [1],
is widely adopted by practitioners and researchers. The primary concept of the
TOPSIS approach is that the most preferred alternative should not only have the
shortest distance from the positive ideal solution (PIS), but also have the farthest
distance from the negative ideal solution (NIS) [1, 2]. The applications of TOPSIS
have some advantages, including (a) a simple, rationally comprehensible concept,
(b) good computational efficiency, and (c) being able to measure the relative perfor-
mance of each alternative in a simple mathematical form [3].
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In 1965, Zadeh [4] first introduced the theory of fuzzy sets. Later on, many
researchers have been working on the process of dealing with fuzzy decision mak-
ing problems by applying fuzzy sets theory. Zadeh’s fuzzy sets only assign a
single membership value between zero and one to each element. However, the non-
membership degree of an element to a fuzzy set may not always be just equal to one
minus the membership degree. In 1993, Gau and Buehrer [5] pointed out that this
single value could not attest to its accuracy and proposed the concept of vague sets.
Bustince and Burillo [6], however, pointed out that the notion of vague sets coin-
cides with that of intuitionistic fuzzy sets (IFSs) proposed by Atanassov [7] almost
10 years earlier. IFSs are represented by two characteristic functions expressing the
degrees of membership and non-membership of elements of the universal set to the
IFS. IFSs can cope with the presence of vagueness and hesitancy originating from
imprecise knowledge or information. In the last two decades, there have been many
studies on the theory and application of IFSs, including logic programming, medical
diagnosis, fuzzy topology, decision making, pattern recognition, and so on. Differ-
ent from other studies, in this work, the criteria weights are obtained by conducting
Shannon’s entropy concept; after that, a fuzzy TOPSIS method is employed to order
the alternatives. The proposed model can deal with uncertain problems and its cal-
culation is not difficult, so that it can provide an efficient way to help the decision
maker (DM) in making decisions.

2 Preliminaries

2.1 Intuitionistic Fuzzy Sets

Definition 1. [7]. An IFS A in the universe of discourse X is defined with the form

A D fhx; �A.x/; 
A.x/i jx 2 Xg ;

where
�A W X ! Œ0; 1�; 
A W X ! Œ0; 1�

with the condition
0 � �A.x/C 
A.x/ � 1; 8x 2 X:

The numbers �A.x/ and 
A.x/ denote the membership and non-membership de-
grees of x to A, respectively.

Obviously, each ordinary fuzzy set may be written as

fhx; �A.x/; 1 � �A.x/i jx 2 Xg :

That is to say, fuzzy sets may be reviewed as the particular cases of IFSs.
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Fig. 1 Membership,
non-membership, and
hesitancy degrees

1 0 

mA(x) mA(x) nA(x)

Note that A is a crisp set if and only if for8x 2 X , either�A.x/ D 0; 
A.x/ D 1
or �A.x/ D 1; 
A.x/ D 0.

For each IFS, A in X , we will call

�A.x/ D 1 � �A.x/ � 
A.x/

the intuitionistic index of x in A. It is a measure of hesitancy degree of x to A [7].
It is obvious that 0 � �A.x/ � 1 for each x 2 X . Figure 1 illustrates the three
degrees (membership, non-membership, and hesitancy).

For convenience of notation, IFSs(X ) is denoted as the set of all IFSs in X .

Definition 2. [8]. For every A 2 IFSs(X ), the IFS �A for any positive real number
� is defined as follows:

�A D
n
Kax; 1 � .1 � �A.x//�; .
A.x//� Qnjx 2 X

o
: (1)

2.2 Entropy of IFS

In 1948, Shannon [9] proposed the entropy function, H.p1; p2; � � � ; pn/ D
�
Pn
iD1 pi log.pi /, as a measure of uncertainty in a discrete distribution based on

the Boltzmann entropy of classical statistical mechanics, where pi .i D 1; 2; : : : ; n/
are the probabilities of random variable according to a probability mass func-
tion P . Later, De Luca and Termini [10] defined a non-probabilistic entropy
formula of a fuzzy set based on Shannon’s function on a finite universal set
X D fx1; x2; : : : ; xng. as follows:

ELT.A/ D �k

nX

iD1

Œ�A.xi / ln �A.xi /C .1 � �A.xi // ln.1 � �A.xi //�; (2)

where k > 0.
Szmidt and Kacprzyk [11] extended De Luca and Termini’s axioms to present

four definitions with regard to the entropy measure on IFSs(X ) as follows:

EI1: E.A/ D 0 iff A is a crisp set;
EI2: E.A/ D 1 iff �A.xi / D 
A.xi /, 8xi 2 X ;
EI3: E.A/ � E.B/ if A is less fuzzy than B , i.e., �A.xi / � �B.xi / and


A.xi / � 
B.xi / for �B.xi / � 
B.xi /; 8xi 2 X ;
or
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�A.xi / � �B.xi / and 
A.xi / � 
B.xi / for �B.xi / � 
B.xi /; 8xi 2 X ;
EI4: E.A/ D E.Ac/, where Ac is the complement of A.

Recently, Vlachos et al. [12] presented Eq. 3 as the measure of intuitionistic fuzzy
entropy which was proved to satisfy the four axiomatic requirements mentioned
above.

E IFS
LT .A/ D �

1

n ln 2

nX

iD1

Œ�A.xi / ln�A.xi /C 
A.xi / ln 
A.xi /

�.1 � �A.xi // ln.1 � �A.xi // � �A.xi / ln 2� : (3)

It is noted thatEIFS
LT .A/ is composed of the hesitancy degree and the fuzziness degree

of the IFS A.

3 Proposed Fuzzy TOPSIS Group Decision Making Model

The procedures of calculation for this proposed model can be described as follows:

Step 1 Construct an intuitionistic fuzzy decision matrix based on opinions of DMs.
An MCDM problem can be concisely expressed in matrix format as

D D

A1
A2
:::

Am

C1 C2 � � � Cn
2

6
6
6
4

x11 x12 � � � x1n
x21 x22 � � � x2n
:::

:::
:::
:::

xm1 xm2 � � � xmn

3

7
7
7
5

W D .w1;w2; : : : ;wn/T

(4)

Let A D fA1; A2; : : : ; Amg be a set of alternatives which consists of m non-
inferior decision-making alternatives. Each alternative is assessed on n criteria, and
the set of all criteria is denoted C D fC1; C2; : : : ; Cng. LetW D .w1;w2; : : : ;wn/T

be the weighting vector of criteria, where wj � 0 and
Pn
jD1 wjD 1:

In this study, the characteristics of the alternatives Ai are represented by the
IFS as:

Ai D
˚
hCj ; �Ai .Cj /; 
Ai .Cj /ijCj 2 C

�
; iD 1; 2; : : : ;m; (5)

where�Ai .Cj / and 
Ai .Cj / indicate the degrees that the alternativeAi satisfies and
does not satisfy the criterion Cj , respectively, and �Ai .Cj / 2 Œ0; 1�; 
Ai .Cj / 2
Œ0; 1�; �Ai .Cj / C 
Ai .Cj / 2 Œ0; 1�. The intuitionistic index �Ai .Cj / D

1 � �Ai .Cj / � 
Ai .Cj / has the feature that the larger �Ai .Cj / the greater the
hesitancy of the DM about the alternative Ai with respect to the criterion Cj .
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For a group decision making (GDM) problem, let E D fe1; e2; : : : ; elg be the
set of DMs, and � D .�1; �2; : : : ; �l /

T be the weighting vector of DMs, where
�k � 0; k D 1; 2; : : : ; l and

Pl
k �k D 1. Let QDk D Œ Qxkij �m	n be an intuitionistic

fuzzy decision matrix of each DM, where i D 1; 2; : : : ; mI j D 1; 2; : : : ; n. In the
process of GDM, all the individual decision opinions need to be aggregated into a
group opinion to conduct the collective decision matrix QD D Œ Qxij�m	n. In order to do
this, an IFWA (intuitionistic fuzzy weighted averaging) operator [13] is used. Here,

Qxij D IFWA�. Qx1ij ; Qx
2
ij ; : : : ; Qx

l
ij / D �1 Qx

1
ij ˚ �2 Qx

2
ij ˚ � � � ˚ �1 Qx

l
ij

D

*

1 �

lY

kD1

.1 � �kij /
�k ;

lY

kD1

.
kij /
�k

+

(6)

Step 2 Determine the criteria weights using the entropy-based method.
The well-known entropy method [1, 2] can obtain the objective weights, called

entropy weights. The smaller entropy value reveals that the evaluated values of
all alternative Ai .i D 1; 2; : : : ; m/ with respect to a criterion are less similar.
Consequently, for the decision matrix QD D Œ Qxij �m	n in an intuitionistic fuzzy en-
vironment, the expected information content emitted from each criterion Cj can be
measured by the entropy value, denoted as EIFS

LT .Cj /; as

EIFS
LT .Cj / D �

1

m ln 2

mX

iD1

�
�ij.Cj / ln�ij.Cj /C 
ij .Cj / ln 
ij .Cj /

� .1 � �ij.Cj // ln.1 � �ij.Cj // � �ij.Cj / ln 2
�
: (7)

where j D 1; 2; : : : ; n and 1=.m ln 2/ is a constant to ensure 0 � EIFS
LT .Cj / � 1.

Therefore, the degree of divergence .dj / of the average intrinsic information
provided by the corresponding performance ratings on criterionCj can be defined as

dj D 1 �E
IFS
LT .Cj /; jD 1; 2; : : : ; n: (8)

illustrated as Fig. 2. The value of dj represents the inherent contrast intensity of
criterion Cj , and thus the entropy weight of the j th criterion is

wj D dj

,
nX

jD1

dj : (9)

It should be noted that wj is a crisp weight.

Fig. 2 The divergence
degree of information on each
criterion

1

0

IFS
ELT (Cj)

dj



22 C.-C. Hung and L.-H. Chen

Step 3 Construct the weighted intuitionistic fuzzy decision matrix.
A weighted intuitionistic fuzzy decision matrix QZ can be obtained by aggregating

the weighting vector W and the intuitionistic fuzzy decision matrix QD as:

QZ D W ˝ QD D W ˝
�
Qxij
�
m	n
D
�
Oxij
�
m	n

: (10)

where

W D
�
w1;w2; : : : ;wj ; : : : ;wn

�T
I

Oxij D
˝
O�ij ; O
ij

˛
D
D
1 � .1 � �ij /

wj ; 

wj
ij

E
; wj > 0:

Step 4 Determine the intuitionistic fuzzy positive-ideal solution .IFPIS; AC/ and
intuitionistic fuzzy negative-ideal solution (IFNIS, A�/.

In general, the evaluation criteria can be categorized into two kinds, benefit and
cost. Let G be a collection of benefit criteria and B be a collection of cost criteria.
According to IFS theory and the principle of classical TOPSIS method, IFPIS and
IFNIS can be defined as:

AC D

	


Cj ;

�

.max
i
O�ij.Cj /jj 2 G/; .min

i
O�ij.Cj /jj 2 B/

�

;

�

.min
i
O
ij.Cj /jj 2 G/; .max

i
O
ij.Cj /jj 2 B/

��ˇ
ˇ
ˇ
ˇ i 2 m

�

: (11a)

A� D

	


Cj ;

�

.min
i
O�ij.Cj /jj 2 G/; .max

i
O�ij.Cj /jj 2 B/

�

;

�

.max
i
O
ij .Cj /jj 2 G/; .min

i
O
ij .Cj /jj 2 B/

��ˇ
ˇ
ˇ
ˇ i 2 m

�

: (11b)

Step 5 Calculate the distance measures of each alternative Ai from IFPIS
and IFNIS.

We use the measure of intuitionistic Euclidean distance (refer to Szmidt and
Kacprzyk [14]) to help determine the ranking of all alternatives.

dIFS.Ai ; A
C/

D

v
u
u
t

nX

jD1

h�
O�Ai .Cj /� O�AC .Cj /

�2
C
�
O
Ai .Cj /� O
AC .Cj /

�2
C
�
O�Ai .Cj /� O�AC .Cj /

�2
i

(12a)
dIFS.Ai ; A

�/

D

v
u
u
t

nX

jD1

h�
O�Ai .Cj /� O�A� .Cj /

�2
C
�
O
Ai .Cj /C O
A� .Cj /

�2
C
�
O�Ai .Cj /� O�A� .Cj /

�2
i

(12b)

Step 6 Calculate the relative closeness coefficient (CC ) of each alternative and
rank the preference order of all alternatives.
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The relative closeness coefficient (CC ) of each alternative with respect to the
intuitionistic fuzzy ideal solutions is calculated as:

CCi D dIFS.Ai ; A
�/
.�
dIFS.Ai ; A

C/CdIFS.Ai ; A
�/
�
; (13)

where 0 � CCi � 1; i D 1; 2; :::; m:
The larger value of CC indicates that an alternative is closer to IFPIS and farther

from IFNIS simultaneously. Therefore, the ranking order of all the alternatives can
be determined according to the descending order of CC values. The most preferred
alternative is the one with the highest CC value.

4 Illustrative Example

An example is provided [15] in this section in order to demonstrate the calcula-
tion process of the proposed approach. An investment company wants to invest
an amount of money. There are five possible companies Ai .i D 1; 2; : : : ; 5/ in
which to invest: (1) A1 is a car company; (2) A2 is a food company; (3) A3 is a
computer company; (4) A4 is an arms company; and (5) A5 is a TV company. An
expert group is formed of three experts ek.k D 1; 2; 3/ with the weighting vector
� D .0:4; 0:3; 0:3/T : Each possible company will be evaluated across three criteria
with regard to the: (1) economic benefit (C1); (2) social benefit (C2); and (3) en-
vironmental pollution (C3), where C1 and C2 are benefit criteria, and C3 is a cost
criterion.

The proposed fuzzy TOPSIS GDM model is applied to solve this problem, and
the computational procedure is described in a step-by-step way, as below:

Step 1 The ratings for five possible companies with respect to the three criteria are
represented by IFSs, and the three experts construct the intuitionistic fuzzy decision
matrices QDk.k D 1; 2; 3/, as listed in Tables 1–3. The three individual decision
matrices are then fused into a collective intuitionistic fuzzy decision matrix QD in
Table 4.

Step 2 Determine the criteria weights. Using Eq. 7, the entropy values for criteria
C1, C2 and C3, respectively, are: 0.4477, 0.4985, and 0.9679. The degree of diver-
gence dj on each criterion ‘Cj .j D 1; 2; 3/ may be obtained by Eq. 8 as 0.5523,
0.5015, and 0.0321, respectively. Therefore, the criteria weighting vector can be
expressed as W D .0:509; 0:462; 0:030/T by applying Eq. 9.

Step 3 After determining the criteria weighting vector, using Eq. 10, the weighted
intuitionistic fuzzy decision matrix QZ is then obtained as Table 5.

Step 4 In this case, criteria C1 and C2 are benefit criteria, while C3 is a cost cri-
terion. Using Eq. 11a and b, each alternative’s IFPIS (AC) and IFNIS (A�) with
respect to the criteria can be determined as
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Table 1 Intuitionistic fuzzy
decision matrix QD1

C1 C2 C3

A1 h0:70; 0:20i h0:85; 0:10i h0:30; 0:50i

A2 h0:90; 0:05i h0:70; 0:25i h0:40; 0:50i

A3 h0:80; 0:10i h0:85; 0:10i h0:30; 0:60i

A4 h0:90; 0:00i h0:80; 0:10i h0:20; 0:70i

A5 h0:80; 0:15i h0:75; 0:20i h0:50; 0:40i

Table 2 Intuitionistic fuzzy
decision matrix QD2

C1 C2 C3

A1 h0:80; 0:15i h0:90; 0:05i h0:35; 0:55i

A2 h0:90; 0:05i h0:80; 0:15i h0:35; 0:60i

A3 h0:80; 0:10i h0:70; 0:20i h0:40; 0:55i

A4 h0:85; 0:05i h0:80; 0:15i h0:30; 0:50i

A5 h0:85; 0:90i h0:80; 0:10i h0:55; 0:35i

Table 3 Intuitionistic fuzzy
decision matrix QD3

C1 C2 C3

A1 h0:90; 0:05i h0:85; 0:05i h0:30; 0:35i

A2 h0:85; 0:10i h0:90; 0:00i h0:30; 0:60i

A3 h0:85; 0:05i h0:75; 0:15i h0:45; 0:50i

A4 h0:90; 0:05i h0:80; 0:10i h0:35; 0:55i

A5 h0:80; 0:05i h0:80; 0:15i h0:45; 0:50i

Table 4 Intuitionistic fuzzy
decision matrix QD

C1 C2 C3

A1 h0:81; 0:12i h0:87; 0:07i h0:32; 0:46i

A2 h0:89; 0:06i h0:81; 0:00i h0:36; 0:56i

A3 h0:82; 0:08i h0:78; 0:14i h0:38; 0:55i

A4 h0:89; 0:00i h0:80; 0:11i h0:28; 0:59i

A5 h0:82; 0:18i h0:78; 0:15i h0:50; 0:41i

Table 5 Weighted
intuitionistic fuzzy decision
matrix QZ

C1 C2 C3

A1 h0.5706, 0.3399i h0.6104, 0.2927i h0.0115, 0.9770i
A2 h0.6749, 0.2388i h0.5357, 0.0000i h0.0133, 0.9828i
A3 h0.5822, 0.2765i h0.5032, 0.4032i h0.0142, 0.9822i
A4 h0.6749, 0.0000i h0.5246, 0.3607i h0.0098, 0.9843i
A5 h0.5822, 0.4178i h0.5032, 0.4162i h0.0206, 0.9736i

AC D .Ka0:6749; 0:0000Qn Ka0:6104; 0:0000Qn Ka0:0098; 0:9843Qn/
A� D .Ka0:5706; 0:4178Qn Ka0:5032; 0:4162Qn Ka0:0206; 0:9736Qn/

Step 5 Calculate the distance between alternatives and intuitionistic fuzzy ideal
solutions (IFPIS and IFNIS) using Eq. 12a and b.

Step 6 Using Eq. 13, the relative closeness coefficient (CC ) can be obtained.
The distance, relative closeness coefficient, and corresponding ranking of five

possible companies are tabulated in Table 6 Therefore, we can see that the order of
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Table 6 The distance measure, relative closeness coefficient and
ranking of the five alternatives
Alternatives dIFS.Ai ; A

C/ dIFS.Ai ; A
�/ CCi Rank

A1 0.8498 0.2858 0.2517 3
A2 0.4476 0.7991 0.6409 1
A3 0.8617 0.2215 0.2045 4
A4 0.4616 0.6165 0.5718 2
A5 1.0820 0.0165 0.0150 5

ranking among the five alternatives is A2 � A4 � A1 � A3 � A5; where “�”
indicates the relation “preferred to”. Therefore, the best choice would be A2 (food
company). From the above processes, we can conclude that the proposed approach
is suitable for dealing with fuzzy MCDM problems in GDM by using IFSs.

5 Conclusion

In this work, we propose an entropy-based multiple criteria GDM model, in which
the characteristics of the alternatives are represented by IFSs. In information the-
ory, the entropy is related to the average information quantity of a source. Based
on this principle, the optimal criteria weights can be obtained by the proposed
entropy-based model. The main difference between this method and the classical
TOPSIS is the introduction of objective entropy weight in an intuitionistic fuzzy
environment with the former. Although the example provided here is for selecting
an optimal investment company, the proposed approach can be applied to many dif-
ferent fields. However, this proposed model considers using only objective criteria
weights. To overcome this limitation, future work will examine situations in which
the DMs can provide and modify their preferences with regard to the criteria weights
incorporated in the proposed model.
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