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Preface

Configurational mechanics has attracted quite a bit of attention from various re-
search fields over the recent years/decades. Having been regarded in its infancy of
the early years as a somewhat obscure and almost mystic field of research that could
only be understood by a happy few of insiders with a pronounced theoretical incli-
nation, configurational mechanics has developed by now into a versatile tool that
can be applied to a variety of problems.

Since the seminal works of Eshelby a general notion of configurational me-
chanics has been developed and has successfully been applied to many prob-
lems involving various types of defects in continuous media. The most promi-
nent application is certainly the use of configurational forces in fracture me-
chanics. However, as configurational mechanics is related to arbitrary mater-
ial inhomogeneities it has also very successfully been applied to many mate-
rials science and engineering problems such as phase transitions and inelastic
deformations.

Also the modeling of materials with micro-structure evolution is an important

processes going on within the material. Besides these mechanically, physically, and
chemically motivated applications, ideas from configurational mechanics are now
increasingly applied within computational mechanics.

In this regard, in particular the combination of configurational mechanics
and the finite element method has a notable impact to computational mechan-
ics. New methods based on configurational mechanics are developing in compu-
tational fracture mechanics, structural optimization and adaptivity. These meth-
ods include, for example, r- and h-adaptive methods for mesh optimization and
refinement.

The IUTAM Symposium on “Progress in the Theory and Numerics of Configu-
rational Mechanics” that took place at the University of Erlangen/Nuremberg, Ger-
many from October 20th to 24th, 2008, shed light on the most recent state of affairs
in configurational mechanics. As a result of the inspiring contributions and lively
discussions these proceedings emerged. They assemble a number of peer-reviewed

ix

field, in which configurational mechanics can provide a better understanding of



x Preface

articles that deal with the current developments in the already intriguing success
story of configurational mechanics.

I am convinced that this volume gives the reader an appropriate overview on
some of the fascinating applications of configurational mechanics.

Paul Steinmann
Erlangen, June 2009
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On Discontinuities of Material Momentum and
Eshelby Stress in Hyperelasticity and
Thermoelasticity

Manfred Braun

Abstract The balance of material momentum is applied to a propagating singular
surface at which velocity and displacement gradient are discontinuous. The resulting
jump condition contains an additional source term if the material is assumed purely
hyperelastic. In a thermoelastic material, this imbalance is compensated by an ap-
propriate jump of entropy such that, under adiabatic conditions, the strict balance is
retained even on a singular surface.

1 Motivation

The balance of material momentum usually is derived from the balance of physical
momentum by a pull-back onto the material manifold [4]. The transformation is
performed locally, i.e., on the basis of differential balance laws. The balance of
physical momentum, in its original form, represents a global balance, valid for an
arbitrary material volume B, from which the local version is obtained by use of
the divergence theorem. This localization process can be performed only if the field
quantities involved are differentiable. Therefore the local balance is less general than
the global balance from which it is derived.

The local balance of material momentum can be integrated, of course, over an
arbitrary material volume thus being converted to a global balance, as indicated in
Fig. 1. It should be kept in mind, however, that the process of globalization does
not render the result more general than the local balance from which it has been
generated.

The local balance equations of physical and material momenta exhibit a pro-
nounced symmetry as elaborated in great detail by Steinmann [5, 6]. Formally this
symmetry can be carried over to the global formulation. However, there is a great

Manfred Braun
Chair of Mechanics and Robotics, University of Duisburg-Essen, 47048 Duisburg, Germany;
e-mail: manfred.braun@uni-due.de

P. Steinmann (ed.), IUTAM Symposium on Progress in the Theory and Numerics of
Configurational Mechanics, 1–10.
© Springer Science+Business Media B.V. 2009



M. Braun

Fig. 1 Global and local balances of physical and material momentum.

difference in the validity of the global balance laws. While the balance of physical
momentum holds in general for arbitrary fields without any continuity requirements,
the validity of the global balance of material momentum is restricted to the regular-
ity conditions necessary to derive the local version from which it has been generated.
In this sense, the balance of material momentum does not represent a fundamental
law as opposed to the physical balance equations [3].

An important consequence of any global balance law, in addition to the local
version in differential form, is the so-called jump condition valid at a surface of dis-
continuity propagating through the material body. Here it is assumed that the fields
have a regular behavior in front of and behind the singular surface and approach
definite limit values from either side.

The balance of material momentum should be applicable also to a propagating
singular surface. The corresponding jump condition, however, must not be derived
from the “global” balance which, in this case, is valid only for continuously differ-
entiable fields thus excluding an application to discontinuous behavior. In order to
get the discontinuous version, i.e., a jump condition representing the balance of ma-
terial momentum at a singular surface, one has to start from the corresponding jump
condition of physical momentum and pull it back to the reference configuration.

The derivation and discussion of the jump condition representing the balance
of material momentum at a propagating singular surface is the principal goal of
this paper. It turns out that the discontinuous version of the balance contains an
“imbalance” term which does not necessarily vanish and which is not expected from
the continuous analogy. It is shown that the imbalance term depends on the specific
interpretation of strain energy. If the material is assumed purely hyperelastic without
any recourse to thermodynamic or other effects then the imbalance actually remains
nonzero. Thus a propagating shock in a hyperelastic material carries a concentrated
source of material momentum with it. If, on the other hand, the material is assumed
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Discontinuities of Material Momentum and Eshelby Stress

to be thermoelastic and a nonconductor of heat the strain energy can be identified
with internal energy. Then the imbalance vanishes due to the balances of physical
momentum and energy.

2 Notations

Since the Lagrangian description is used throughout this paper, all relevant quant-
ities are related to the reference configuration, without indicating it by a special
subscript. So the mass density ρ, the volume force f, and the distributed energy
source r are meant per unit reference volume. Also stress T and heat flux q are
understood in the sense of Piola, i.e., related to the vectorial surface elements in
reference configuration.

According to the Lagrangian description, all fields are considered as functions
of the material point X and time t . Derivatives with respect to time at fixed X are
indicated by D/ Dt , and differential operators with respect to the material coordin-
ates X are denoted by Div, Grad, etc. The motion of the continuum is described by
the function x = x(X, t) providing the position x attained by the material particle X
at time t . Its derivatives deliver the velocity vector v and the deformation gradient F.

A wave front, i.e., a propagating singular surface, is tracked in the reference con-
figuration. It is oriented by its unit normal vector N. Its normal speed of propagation
is denoted by UN. A discontinuous field ϕ is assumed to be regular on either side
of the singular surface and to approach limit values ϕ± at the surface, where ϕ+ is
attained on that side to which the normal vector is pointing. The jump and the mean
value of a quantity ϕ at the singular surface are defined as

[[
ϕ

]]= ϕ+ − ϕ− and
〈
ϕ
〉 = 1

2

(
ϕ+ + ϕ−)

, (1)

respectively. They satisfy the product rules

[[
ϕψ

]]= 〈
ϕ
〉[[

ψ
]]+[[

ϕ
]]〈

ψ
〉

and
〈
ϕψ

〉 = 〈
ϕ
〉〈
ψ

〉 + 1

4

[[
ϕ

]][[
ψ

]]
(2)

which can be directly verified from the definitions (1). Some further formulas for
manipulating jumps and mean values are given in [1].

3 Balances of Physical Momentum and Energy

Let ρ(X) denote the mass density in the reference state and v(X, t) the velocity
vector at a material point X at time t . The physical momentum per unit reference
volume is p = ρv. The global balance of physical momentum is expressed by the
equation

3



M. Braun

D

Dt

∫

B
p dV =

∫

∂B
Tn dA +

∫

B
f dV (3)

valid for any fixed material region B, where T and f denote the Piola stress and
the volume force density, respectively. The local versions of the balance of physical
momentum, valid for regular and for discontinuous fields, are represented by the
equations

Dp
Dt

= Div T + f and UN
[[

p
]]+[[

T
]]

N = 0, (4)

respectively. If polar effects are omitted the balance of angular momentum is re-
duced to the symmetry condition

TFT = FTT (5)

to be satisfied by the Piola stress.
Let E(X, t) denote the density, per unit reference volume, of the internal energy.

The global form of the energy balance reads

D

Dt

∫

B

(
E + 1

2
v·p

)
dV =

∫

∂B

(
TTv − q

) · da +
∫

B
(f·v + r) dV, (6)

where q and r denote the nominal heat flux and the internal heat production per
unit reference volume. The corresponding local versions of the energy balance can
be simplified by combining them with the momentum balance. To this end the local
balance of momentum (4) is multiplied by v or, in the discontinuous case, by 〈v〉 and
subtracted from the local energy balance. Eventually the local balances of energy
valid for regular and for discontinuous fields assume the forms

DE

Dt
= T· Grad v−Div q+r and UN

[[
E

]]+〈
T
〉· ([[

v
]]⊗N

)−[[
q

]]·N = 0, (7)

respectively. A single dot is used to indicate the scalar product whether between two
vectors, a·b = aib

i , or between two tensors, A·B = Ai
αBi

α .
The deformation gradient F and the velocity vector v satisfy a compatibility con-

dition whose continuous and discontinuous versions are

DF
Dt

= Grad v and UN
[[

F
]]+[[

v
]]⊗N = 0, (8)

respectively.

4 Material Momentum and Eshelby Stress

The material momentum p and the dynamic Eshelby stress E are defined as

p = −FTp and E = −LI + FT ∂L

∂F
, (9)
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Discontinuities of Material Momentum and Eshelby Stress

respectively, with L denoting the Lagrangian. The kinetic energy density is uniquely
defined as ρv2/2. Further we assume that the volume forces, if any, are conservative
and arise from an external potential U(x; X), such that

f = −∂U

∂x
. (10)

The gravity potential, for instance, has the form Ug = −ρ(X)g·x to yield the
volume force f = ρg.

The most important part of potential energy is the internal potential. It may be
identified with the strain-energy density which is due to deformation and is a func-
tion W(F; X) depending on the deformation gradient and, in non-homogeneous ma-
terials, also directly on the material coordinates. Strain energy might also depend on
other variables, especially thermodynamic variables, as will be considered below,
or on internal variables. Depending on the choice of thermodynamic variables the
internal potential allows still different interpretations. Common to all of them is the
property that the derivative with respect to the deformation gradient yields the Piola
stress, i.e.,

T = ∂W

∂F
. (11)

The Lagrange function is constituted from the kinetic-energy density and the inner
and outer potential-energy densities as

L(x, v, F; X) = 1

2
ρ(X)v·v − W(F; X) − U(x; X), (12)

its partial derivatives with respect to deformation and position being

∂L

∂F
= −∂W

∂F
= −T and

∂L

∂x
= −∂U

∂x
= f. (13)

It is assumed that these derivatives exist and have regular behavior.
The balance of material momentum in its continuous version is obtained by us-

ing, in addition to the definitions (9), (i) the balance of physical momentum (4)1,
(ii) the compatibility condition (8)1, and (iii) the geometric compatibility condition

F i
α,β = F i

β,α (14)

for the second deformation gradient. Eventually one arrives at the balance equation
of material momentum in its local form,

Dp

Dt
= Div E + f, (15)

where

f = ∂L

∂X
(16)

is interpreted as the material inhomogeneity force density.

5



M. Braun

The discontinuous case can be handled in an analogous way. In addition to the
definitions (9) of material momentum and Eshelby stress one needs the correspond-
ing discrete forms of (i) the balance of physical momentum (4)2, (ii) the compatib-
ility condition (8)2, and (iii) the geometrical compatibility condition

[[
F i

α

]]
Nβ = [[

F i
β

]]
Nα, (17)

which is the discontinuous analogue of the compatibility condition (14). Thus one
arrives at the discontinuous version of the balance of material momentum

UN
[[
p

]]+[[
E

]]
N = σN, σ = [[

W
]]−〈

T
〉·[[F

]]
, (18)

where the “imbalance” term σN on the right-hand side still has to be determined.
The continuous version of the balance of material momentum, (15), exhibits the

same appearance as the balance of physical momentum, (4)1. The corresponding
jump condition (18), however, as long as the imbalance factor σ does not vanish,
deviates from the expected form which should resemble (4)2. Whether this is the
case or not depends on the exact interpretation of the strain energy W .

5 Hyperelastic Material

Hyperelasticity is considered as a purely mechanical model of an ideally elastic
material for which the stress-strain relationship derives from a strain energy density
function

W = W(F; X). (19)

The dependence on the deformation gradient F must be consistent with the principle
of material frame indifference. In case of nonhomogeneity the strain-energy density
may also directly depend on the material point X, but not on any other quantities
like thermodynamic or internal variables.

Discontinuities of the strain-energy density and its derivatives are brought for-
ward by a discontinuity of the deformation gradient. Under suitable regularity con-
ditions, the function (19) may be expanded around the mean value 〈F〉 of the de-
formation gradient at the singular surface. Forming then the discontinuity leads to
an expansion with the leading terms

[[
W

]]= Ai
α
[[
F i

α

]]+ 1

24
Ai

α
j
β
k
γ [[

F i
α

]][[
F

j
β

]][[
Fk

γ

]]+ · · · , (20)

where

Ai
α = ∂W

∂F i
α

∣
∣∣
∣
F=〈F〉

and Ai
α
j
β
k
γ = ∂3W(F; X)

∂F i
α ∂F j

β ∂F k
γ

∣
∣∣
∣
F=〈F〉

(21)

6



Discontinuities of Material Momentum and Eshelby Stress

denote the elasticities of first and third order, respectively, evaluated at the mean
deformation gradient

〈
F
〉
. In a similar way, the mean value of the Piola stress (11)

can be represented by an expansion

〈
Ti

α
〉 = Ai

α + 1

8
Ai

α
j
β

k
γ
[[
Fj

β

]][[
Fk

γ

]]+ · · · , (22)

again with the elasticities (21) evaluated at the mean deformation gradient 〈F〉.
Using these expansions, the imbalance factor σ according to (18)2 is represented

by the expansion

σ = − 1

12
Ai

α
j
β
k

γ [[
F i

α

]][[
Fj

β

]][[
Fk

γ

]]− · · · . (23)

So the imbalance factor is at least of third order in the jump [[F ]] of the deformation
gradient, which is a measure of the strength of the discontinuity. The general form
of the expansion is provided in [1].

6 Thermoelastic Material

As soon as thermodynamics is included the exact meaning of strain energy becomes
relevant. The property of being a stress potential has to be retained, but it can be
identified either with the internal energy or with the free energy, depending on the
choice of the thermodynamical variable.

Since for the internal energy a balance equation has been formulated it might be
reasonable to identify strain energy with internal energy. Correspondingly, the en-
tropy S per unit reference volume should be chosen as the thermodynamic variable.
Thus the density of strain energy (or internal energy) is considered to be a function

W = E(F, S; X), (24)

whose partial derivatives

∂E

∂F
= T and

∂E

∂S
= 	 (25)

represent the Piola stress and the absolute temperature, respectively. The notation E

is kept for the internal energy in order to distinguish it from the strain energy W in
the hyperelastic case.

The discontinuous form of the energy balance (7)2 can be rewritten, using the
compatibility condition (8)2, as

[[
E

]]−〈
T
〉·[[F

]]= 1

UN
N·[[q

]]
. (26)

7



M. Braun

Since the strain energy W has been identified with the internal energy E the left
hand side is exactly the imbalance factor (18)2. Thus, in the thermoelastic case,
there is an imbalance factor

σ = 1

UN
N·[[q

]]
, (27)

i.e., the scalar product of the slowness vector (1/UN)N of the propagating surface
and the jump [[q ]] of the nominal heat flux vector.

If one assumes that heat flux is governed by a constitutive equation like Fourier’s
law with a finite conductivity, any discontinuity in temperature would be smoothed
out immediately. Therefore a sharp surface of discontinuity is possible only in the
absence of heat conduction. Under adiabatic conditions the heat flux vanishes and,
therefore, also the imbalance factor. Then the jump condition expressing the balance
of material momentum assumes the form

UN
[[
p

]]+[[
E

]]
N = 0 (28)

which could be expected from its continuous counterpart (15). It should be noted
that, in order to obtain the discontinuous version (28) of the balance of material
momentum, the energy balance has been used, while the continuous form (15) has
been derived without it. The latter holds independently of the thermodynamical in-
terpretation of strain energy and is obtained directly from the balance of physical
momentum [4]. The continuous form also holds independently of any assumption
about the heat flux while the discontinuous form (28) is restricted to the adiabatic
case.

On first sight, it seems strange that the material momentum exhibits an unbalance
at a singular surface if the material is assumed hyperelastic, while for a thermoelastic
material without heat conduction the unbalance vanishes. Carrying over the analysis
of Section 5 to the thermoelastic material one has to expand the internal energy
function

E = E(F, S; X), (29)

where both the deformation gradient F and the entropy S undergo discontinuities at
the singular surface. The formulas (20) and (22) have to be adjusted correspondingly
to include the additional argument. If the expansion is restricted to the very first
terms in [[S ]] and [[F ]] the imbalance factor is obtained as

σ = A′[[S
]]− 1

12
Ai

α
j
β
k

γ [[
F i

α

]][[
F

j
β

]][[
Fk

γ

]]+ · · · (30)

where

A′ = ∂E

∂S

∣
∣
∣
∣
S=〈S〉, F=〈F〉

and Ai
α
j
β
k

γ = ∂3E

∂F i
α ∂F

j
β ∂F k

γ

∣
∣
∣
∣
∣
S=〈S〉, F=〈F〉

(31)

are the absolute temperature and the third-order elasticities, taken at the mean values
of entropy and deformation gradient. Since the imbalance factor (30) according to

8



Discontinuities of Material Momentum and Eshelby Stress

(28) has to vanish the singular surface must be accompanied by a jump of entropy,
which is of third order in the strength of the discontinuity. This is a well-known
result in the theory of shock waves [7, p. 176]. If, as in hyperelasticity, the strain
energy does not depend on an additional argument that can exhibit a discontinuity
at the singular surface, there is no way to compensate these third and higher-order
terms in [[F ]], and the imbalance factor does not vanish.

7 Conclusion

The local balance of material momentum is expressed by the equation

Dp

Dt
= Div E + f, (32)

where p, E and f denote the material momentum, the dynamic Eshelby stress and
the inhomogeneity force, respectively. The equation can be integrated over a finite
domain B whence it assumes the form

D

Dt

∫

B
p dV =

∫

∂B
En dA +

∫

B
f dV. (33)

Despite its appearance as a global balance law this equation is not more general
than the local balance equation from which it has been generated by integration. In
particular the equation (33) must not be used to derive from it a corresponding jump
condition using the pill-box argument, since the local balance (32) from which it
has been derived does not hold at a surfaces of discontinuity. The jump condition
representing the balance of material momentum at a singular surface has to be de-
rived directly, namely from the jump conditions of the physical quantities. It turns
out that this jump condition is of the general form

UN
[[
p

]]+[[
E

]]
N = σN, σ = [[

W
]]−〈

T
〉·[[F

]]
(34)

with an imbalance factor σ which does not necessarily vanish. If the global form
(33) of the balance of material momentum would hold without restriction this factor
had to vanish.

Whether the imbalance factor vanishes or not depends on the specific interpret-
ation of the strain-energy density W . In hyperelasticity strain energy is assumed to
depend only on the deformation gradient F and, in case of nonhomogeneity, also dir-
ectly on the material point X. In this case, the imbalance factor at a singular surface
does not vanish, it is of third order in the strength of the discontinuity. If, on the other
hand, strain-energy is identified with the internal energy of a thermoelastic mater-
ial without heat conduction the imbalance factor vanishes due to the discontinuous
form of the energy balance. Unlike the strain energy of a hyperelastic material the
internal energy depends on an additional argument, namely the entropy which is
also discontinuous at a singular surface. The propagating shock is accompanied by

9



M. Braun

a jump in the entropy, [[S ]], which compensates the imbalance term originating from
the jump in the deformation gradient, [[F ]], such that the expected form

UN
[[
p

]]+[[
E

]]
N = 0 (35)

of the discontinuous balance of material momentum is established. Thus both the
continuous version (32) of the balance of momentum and its discontinuous counter-
part (35) are valid. This, however, does not mean that the global balance (33) holds
in general, since there might be other kinds of singular behavior that are not covered
by the jump condition (35). Therefore the validity of the global balance of material
momentum remains open.

This sheds some light on the role played by the balance of material momentum
within the framework of mechanics or, more general, of physics. Maugin [4] em-
phasizes that the balance of material momentum is a consequence of the balance
of physical momentum while Gurtin [2, p. 2] considers configurational forces “as
basic objects consistent with their own force balance.” In the present paper, the
continuous and discontinuous versions of the balance of material momentum has
been derived from the balance laws of physical momentum and energy, in accord
with Maugin’s point of view. This appoach also conforms to the work of Irschik [3].
On the other hand, the discontinuous version of the balance of material momentum
severely depends on the interpretation of the internal potential, i.e., the strain-energy
density W . While in a hyperelastic material a singular surface is accompanied by an
imbalance term the balance is restored by identifying the strain energy with the
internal energy of a thermoelastic material. Although the imbalance result of hyper-
elasticity is formally correct, one tends to abandon the idea of pure hyperelasticity in
favor of thermoelasticity, because it is more agreeable to retain the balance. In this
sense one is led by the desire for a general balance of material momentum which,
however, has to be derived from the physical balance laws.
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On a Constraint-Based Regularization
Technique for Configurational r-Adaptivity and
3D Shape Optimization

Michael Scherer, Ralf Denzer and Paul Steinmann

Abstract This contribution deals with a numerical regularization technique for con-
figurational r-adaptivity and shape optimization based on a fictitious energy con-
straint. The notion configurational refers to the fact that both r-adaptivity and shape
optimization rely on an optimization of the potential energy with respect to changes
of the (discrete) reference configuration. In the case of r-adaptivity, the minimization
of the total potential energy optimizes the mesh and thus improves the accuracy of
the finite element solution, whereas the maximization of the total potential energy
by varying the initial shape increases the stiffness of the structure. In the context
of r-adaptivity, the energy constraint sets the distortion of the mesh to a reasonable
limit and improves the solvability of the problem. The application of the energy
constraint to a node-based shape optimization is a remedy for well-known problems
of node-based shape optimization methods with maintaining a smooth and regular
boundary.

1 Introduction

The idea of improving the accuracy of the finite solution by minimizing the potential
energy with respect to the node positions of the mesh has already been investigated
in the seventies and eighties, see e.g. [3,13–15,23,29]. Whereas the relation between
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configurational mechanics and mesh optimization was first pointed out in [10] in the
late nineties. Then, with the growing interest in configurational mechanics, the topic
has recently been taken up again by several researchers, see e.g. [2, 20, 24, 25, 30].
In this contribution, we attempt to attack the problem of element distortion as a
consequence of r-adaptivity. Since a positive Jacobian at the Gauss points is a basic
requirement of each finite element analysis, an r-adaptive mesh optimization is al-
ways implicitly subject to constraints, which was to our knowledge first mentioned
in [15]. But this requirement can not avoid the occurrence of arbitrarily distorted
elements since the Jacobian is only a local measure for the physical volume. To
set the distortion of the entire mesh a more reasonable limit, we introduce an in-
equality constraint based on a fictitious energy. The fictitious energy measures the
distortional deformation of the adapted mesh with respect to the initial mesh. The
inequality constraint, the so-called energy constraint, sets an adjustable upper limit
to the fictitious energy and thus allows to control the distortion of the mesh.

Beside the application in r-adaptive mesh optimization, the potential energy of a
mechanical system can be used as an objective functional for a shape optimization
that aims to improve the stiffness of a structure. An almost equivalent approach, a
stiffness optimization based on the minimization of the total strain energy within
the framework of the nonlinear theory, is presented in [22]. If an energy constraint
similar to that that used for the r-adaptive mesh optimization is added to the shape
optimization, the coordinates of boundary nodes can directly be chosen as design
variables. The constraint eliminates well-known problems of node-based methods
with maintaining a smooth and regular boundary. Historically, the node-based ap-
proach was a common practice in early works on finite element based shape op-
timization [16], but the large number of design variables and, more important, the
above mentioned problems with the regularity of the boundaries led to the devel-
opment of other techniques. Well-established is for instance the coupling of a finite
element model with a geometry model based on B-splines, Bézier curves/surfaces,
or NURBS, see e.g. [8,9]. The main advantage of node-based methods compared to
an additional geometry model is the simplicity of model generation, including the
straightforward application of boundary conditions. This advantage motivated the
return to a node-based approach and the search for a regularization technique that
eliminates its main drawback. Recently, a regularization technique for the node-
based shape optimization of shell structures using filter techniques has been pro-
posed in [7]. Another concept that is related to the approach of this contribution is
introduced in [4]; fictitious forces acting on control nodes of a fictitious linear elastic
body are chosen as design variables. Provided that the energy constraint is active at
the optimal solution, the shape optimization method presented here can also be in-
terpreted as the deformation of a fictitious elastic body subjected to fictitious forces,
which are determined (a posteriori) by the Lagrange multipliers and the gradients of
the potential energy and the constraints.

Our contribution is structured as follows. In Section 2, we define the considered
class of mechanical problems and introduce the basic equations of the finite element
analysis. Sections 3 and 4 illustrate the concepts of the r-adaptive mesh and shape
optimization. Section 5 deals with the definition of the fictitious energies for both
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r-adaptivity and shape optimization. In Section 6, two numerical examples illustrate
the effectivity of the proposed regularization technique.

2 Mechanical Problem

We restrict ourselves to linear elastostatic problems that are characterized as follows.
A body occupying the open domain B ⊂ R

2 is subjected to conservative volume
forces b and surface tractions t. The deformation is described via the displacement
field u(x), x ∈ B, that is governed by a set of equations consisting of the balance of
momentum

divσ + b = 0 in B (1)

and the boundary conditions

u = 0 on ∂Bu,

σ · n = t on ∂Bt ,
(2)

where n denotes the outward normal to the boundary. Note that the Dirichlet bound-
ary conditions are assumed to be homogeneous. The relation between the Cauchy
stresses σ and the linear strain tensor ε is given by

σ = ∂ψ

∂ε
, (3)

where the free energy ψ does not depend on x, i.e. the material is homogeneous.
Since the mechanical system is conservative, the equations (1) and (2) are the Euler–
Lagrange equations of the principle of minimum potential energy

I (u) → Min, u = 0 on ∂Bu, (4)

where the total potential energy reads

I (u) =
∫

B
ψ dv −

∫

B
u · b dv −

∫

∂B t

u · t da. (5)

To solve the variational problem and the related boundary value problem numer-
ically, we apply a Ritz method using a finite element approximation. The domain B
is discretized by nel element domains Bh = ⋃nel

e=1 Be, and the geometry and dis-
placements are approximated elementwise by the shape function N(i) of a reference
element Bξ parameterized by natural coordinates ξ

x(ξ) =
nen∑

i=1

x(i)N(i)(ξ), uh(ξ) =
nen∑

i=1

u(i)N(i)(ξ), (6)
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where x(i) ∈ ∂Be are the position vectors and u(i) the nodal displacements. Substi-
tuting the approximation of the displacements uh into the energy functional I , we
obtain the discrete potential energy

Ih(u) = I (uh) =
∫

Bh

ψ dv −
∫

Bh

uh · b dv −
∫

∂Bh,t

uh · t da, (7)

which is a quadratic scalar function of the nodal displacements. For notational con-
venience, we have introduced the column vector u = [u(1), . . . , u(nu)]T that con-
tains the Cartesian coordinates of all unknown nodal displacements. The necessary
(and sufficiency) condition for a minimum of the discrete energy with respect to the
nodal displacements is a linear algebraic system of equations that can be stated in
the familiar matrix notation

r(u) = Ku − f = 0, (8)

where f denotes the load vector and K the stiffness matrix.

3 Configurational r-Adaptivity

If the Dirichlet boundary conditions are homogeneous, the discretization error of a
finite element solution to the variational problem (4) measured in the energy norm
can be expressed in terms of the potential energy as

‖uh − ue‖2
E = I (uh) − I (ue) ≥ 0, (9)

where ue is the exact solution to the problem. Hence, a reduction of the discrete po-
tential energy is equivalent to a reduction of the discretization error, and the discrete
potential energy can be considered as an error indicator. The concept of config-
urational r-adaptivity is to minimize this error indicator with respect to the node
positions of the mesh. r-Adaptivity is formulated as a problem of nonlinear pro-
gramming that can be attacked with various well-established tools provided by this
mathematical discipline. Further details of this concept are illustrated in the follow-
ing.

The discrete potential energy is interpreted as a function of the nodal displace-
ments and the node positions

Ih = Ih(u, x), (10)

where the column vector x = [x(1), . . . , x(nx )]T contains all variable Cartesian node
coordinates. The nodal displacements u∗ that solve the discrete mechanical equilib-
rium condition (8) are considered as an implicit function of the node positions

u∗ = u∗(x). (11)
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Substituting this result into eq. (10), we obtain the objective function of configura-
tional r-adaptivity, the potential energy in the state of static equilibrium

Ih∗(x) = Ih(u∗(x), x), (12)

which is solely a function of the node coordinates. But Ih∗ is not minimized with
respect to all coordinates. Since every r-adaptivity has to conserve the mechanical
problem, the “motion” of boundary nodes is restricted to geometrical constraints.
Generally, all boundary nodes have to move along the continuous boundary, and
vertex nodes are fixed.

The computation of the gradient of Ih∗ is straightforward since the implicit de-
pendency of the displacements on the node positions drops out 1

R∗T = ∂Ih∗

∂u
= ∂Ih

∂u

∣
∣
∣
∣
u∗,x

·∂u∗

∂x
+ ∂Ih

∂x

∣
∣
∣
∣
u∗,x

= ∂Ih

∂x

∣
∣
∣
∣
u∗,x

. (13)

If the material is homogeneous and the body forces are zero, the components of R∗
that are associated with the nodes can be expressed in terms of the Eshelby stress
tensor as

R∗(i) =
∫

Bh

[
ψ1 − ht · σ

] · ∇xN(i) dv

∣
∣
∣
∣
u∗,x

, (14)

and thus are called discrete configurational forces, see e.g. [10, 25, 28].
Due to several reasons briefly addressed in the following, the minimization of

Ih∗ with respect to x is a challenging numerical problem. Since the Hessian of Ih∗
has in general negative eigenvalues, the objective function is usually nonconvex, and
a local minimum is not necessarily a global minimum. Numerical experiments with
examples characterized by inhomogeneous stress fields even suggest that a mesh
with completely vanishing discrete configurational forces, the necessary condition
for a strict (local) minimum, does often not exists. If, as discussed in [27], the op-
timization is explicitly subject to additional inequality constraints that restrict the
deformation of each element, the optimal mesh is usually situated on the boundary
of the feasible domain. Only for very coarse meshes, it is usually possible to determ-
ine a strict (local) minimum, characterized by inactive constraints and a completely
vanishing gradient R∗.

Additional constraints that restrict the distortion of the mesh improve the solv-
ability of the problem. Following this idea, we introduce an energy constraint that
sets an adjustable upper limit for a fictitious energy that measures the distortional
deformation of the entire adapted mesh with respect to the initial mesh. In contrast
to [27], only one constraint is introduced, which, according to our experience, again
improves the solvability of the problem. The optimization problem of the r-adaptive
mesh optimization including the energy constraint reads

1 In eq. (13), we exploit that in the state of static equilibrium ∂Ih

∂u

∣∣
u∗,x = 0.
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minimize Ih∗(x)

subject to Î h(x) − Îmax ≤ 0

h
geo
i (x) = 0, i = 1, . . . , neq ,

where Î h denotes the fictitious energy and Îmax its upper limit, and the geometrical
constraints h

geo
i ensure the conservation of the mechanical problem.

Because of the similarity of the considered mesh and shape optimization, both
problems have the same objective function and include an energy constraint, we
first explain the concept of shape optimization before elucidating the design of the
fictitious energies.

4 Configurational Shape Optimization

The (negative) potential of the external forces

−I ext∗ =
∫

B
u∗ · b dv +

∫

∂B t

u∗ · t da (16)

is a common objective functional in topology optimization, leading to the so-called
minimum compliance problem [6]. If the body forces are zero and the surface trac-
tions are fixed, a reduction of −I ext∗ with respect to a set of design variables cor-
responds to a reduction of the displacements in the direction of the forces and hence
a maximization of the stiffness. Moreover, if the Dirichlet boundary conditions are
homogeneous, the total potential energy is equal to one half the potential of the
external forces

I∗ = 1

2
V ∗ (17)

and a maximization of the potential energy is equivalent to a minimization of −I ext∗.
To improve the stiffness of a structure, we exploit this equivalence and maximize the
potential energy with respect to a set of design variables that control the shape of
the boundary. An advantage of the potential energy compared to the direct use of
the (negative) potential of the external forces as an objective functional is that the
computation of the discrete sensitivities is less expensive since, as shown by eq.
(13), the implicit dependency of the displacements on the node positions drops out.

The discrete shape optimization problem including the energy constraint reads
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maximize Ih∗∗(xd)

subject to Î h∗(xd) − Îmax ≤ 0

g∗∗
j (xd) ≤ 0, j = 2, . . . , niq

h∗∗
i (xd) = 0, i = 1, . . . , neq ,

(18)

where xd is a column vector that contains the design variables. The energy constraint
allows to control the admissible shape change of the design by varying the upper
limit Îmax of the fictitious energy Î h∗. Additional equality and inequality constraints
h∗∗

i = 0, g∗∗
j ≤ 0 describe design restrictions, as for instance a constant volume or

given stress limits.
So far, a star added as a superscript indicates the consideration of the implicit re-

lation between the node points and the displacements determined by the mechanical
equilibrium condition. The double star signifies that a second equilibrium condition
is incorporated that determines the relation between the design variables xd and all
so-called controlled node coordinates xc that are neither fixed nor assigned to the
design variables. All interior nodes, for instance, are assigned to the controlled node
coordinates xc since they have only a very small influence on the potential energy,
which is only caused by the discretization error. But fixing all interior nodes would
only allow for extremely small geometry changes. To overcome this conflict of ob-
jectives, it is a common practice in shape optimization to define a design velocity
field that relates the “motion” of the interior nodes to that of the design variables, see
e.g. [21,33]. In this contribution, the controlled node coordinates xc are determined
as the minimizers of the fictitious energy

x∗
c (xd) = arg min

xc

Î h(xc, xd ). (19)

Since the fictitious energy is a nonlinear counterpart to a mechanical energy, this
approach corresponds to a nonlinear version of the boundary displacement method
introduced in [32]. The necessary condition for a minimum of the energy with re-
spect to the controlled node coordinates

RT
c = ∂Î h

∂xc

= 0 (20)

can be interpreted as a fictitious equilibrium condition. To indicate that one or both
implicit relations defined by the mechanical and fictitious equilibrium condition are
incorporated, we add one or two stars as a superscript, i.e.

Ih∗∗(xd) = Ih(u∗(x∗
c (xd), xd ), x∗

c(xd), xd )

Î h∗(xd) = Î h(x∗
c(xd), xd ).

(21)
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φ̂h

êi

x̂(i)

ei

x(i)

f̂h

Bh
B̂h

Fig. 1 Kinematics of the fictitious energy approach.

Note that the fictitious energy constraint in the definition of the shape optimiz-
ation problem (18) sets an upper limit for the energy in the state of fictitious equi-
librium. This fact plays an important role for the regularizing effect of the energy
constraint, which is explained after the definition of the fictitious energy presented
next.

5 Fictitious Energies

In analogy to nonlinear hyperelasticity, the definitions of the fictitious energies are
based on an objective strain measure. Using scalar invariants of this objective strain
measure, we introduce a local energy that can be interpreted as a fictitious coun-
terpart to the specific free energy. Then, to define the global energies, we perform
either a summation of the local energy evaluated at discrete points or an integration
of the local energy over the initial design. The first approach yields a purely discrete
fictitious energy designed for r-adaptivity and the second approach an energy for
shape optimization that has really the character of a discrete total strain energy.

We start with a brief description of the kinematics, illustrated in Figure 1, that in
principle corresponds to an ALE kinematics, see e.g. [1,5], with the exception that a
third (spatial) configuration is not existent since the mechanical problem is based on
the linear theory. In addition to the current discrete domain Bh used for the analysis
of the mechanical problem, we introduce a fixed reference configuration B̂ that
corresponds to the initial mesh and design, respectively. Note that Figure 1 refers to
the shape optimization since the continuous domains corresponding to Bh and B̂h

do not coincide. Using a standard isoparametric finite element formulation for the
large strain theory, see e.g. [17, 31], we introduce the C0-continuous deformation
mapping φh : B̂h → Bh. The basic kinematic quantity for the definition of the
fictitious energies is the gradient of this deformation mapping with respect to the
coordinates of the initial mesh, which can be computed within each element using
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f̂e = ∇x̂φe =
nen∑

i=1

x(i) ⊗ ∇x̂N(i). (22)

To penalize distortional deformations, we define a fictitious local energy

ψ̂(ĉiso) = 1 : ĉiso − ndim, (23)

where
ĉiso = ĵ −2/ndim f̂t · f̂ with ĵ = det(f̂) (24)

is defined in analogy to the isochoric part of the usual right Cauchy–Green strain
tensor. The number of dimensions ndim is subtracted to normalize the energy, i.e.
to set ψ̂(1) = 0. Superimposed dilatational deformations are by intention allowed
and thus our penalizing fictitious energy ψ̂ does not depend on the volumetric part
cvol = ĵ 2/ndim1. The fictitious local energy takes its global minimum value if and
only if the deformation gradient is a scalar multiple of a rotation tensor, i.e. ψ̂ ≥ 0,
where ψ̂ = 0 if and only if f = αq with q ∈ SO(nd) and α > 0. Hence, the current
configuration is “stress free” if f̂ = αq.

The global energy for the r-adaptive mesh optimization has the general form

Ih =
nel∑

i=1

nξ∑

j=1

ψ̂(f̂e(ξ(j)
)), (25)

where ξ(j) are special evaluation points. To ensure that the energy constraint always
guarantees a feasible mesh with positive Jacobians, we use an energy that goes to
infinity if only one element within the mesh tends to invert. For the given local
energy, this property can be generated by a suitable choice of the evaluation points
ξ(j), at least for certain element types. For triangular and tetrahedral elements, one
arbitrary point within each element is sufficient since fe is constant. In the case of
bi- and trilinear quadrilateral and hexahedral elements, the local energy has to be
evaluated at all vertices of each element. Note that the global energy defined by
eq. (25) is closely related to objective functions designed for mesh smoothing, see
e.g. [18, 19, 26]. The main difference, apart form scaling and normalization, is that
the energy used here measures the deformation with respect to the (discrete) initial
configuration, and not with respect to a fictitious mesh consisting of ideal elements,
e.g. equilateral triangles or regular tetrahedrons.

Based on the local energy, the discrete global energy of the shape optimization is
defined as

Î h =
∫

B̂h

ψ̂(f̂h) dv̂ =
nel∑

i=1

∫

B̂e

ψ̂(f̂e) dv̂. (26)

This definition combined with the boundary displacement method described in Sec-
tion 4 allows to interpret the proposed shape optimization as the deformation of an
artificial body. To derive this interpretation, we consider the first order part of the
Karush–Kuhn–Tucker necessary conditions of the optimization problem (18) that
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reads

−∂I∗∗

∂xd

+ λ1
∂Î h∗

∂xd

+
niq∑

j=2

λj

∂g∗∗
j

∂xd

+
neq∑

i=1

λi

∂h∗∗
i

∂xd

= 0, (27)

where λi and λj denote the Lagrange multipliers. If the energy constraint is active
and λ1 > 0, which is usually the case in practice, the first equation of the necessary
conditions can be rearranged and divided by λ1 to obtain

∂Î h∗

∂xd

− 1

λ1

∂I∗∗

∂xd

+
niq∑

j=2

λj

λ1

∂g∗∗
j

∂xd

+
neq∑

i=1

λi

λ1

∂h∗∗
i

∂xd

= 0. (28)

This result can be interpreted as an equilibrium: the discrete configurational forces
and the gradients of the constraints scaled by the quotients of the Lagrange multipli-
ers play the role of discrete external surface forces that are in equilibrium with the
discrete forces of an artificial body with the fictitious total strain energy Î h. Note
that these forces act only on the design variables since all fictitious internal forces
associated with controlled nodes vanish due to the fictitious equilibrium condition
(27).

6 Numerical Experiments

In the following we present two numerical experiments that illustrate the effectiv-
ity of the proposed regularization technique. The mechanical problems of both ex-
amples are characterized by a homogeneous isotropic linear elastic material with a
Young’s modulus and a Poisson’s ratio of E = 200 000 N/mm2 and ν = 0.3.

To solve the constrained optimization problems of r-adaptivity and shape op-
timization numerically, we have applied the penalty-barrier algorithm described
in [11, 12].

6.1 Cracked Specimen

The mechanical problem of the first numerical example, a cracked plate subjected to
tension, is illustrated in Figure 2a. Exploiting the symmetry of the problem, we have
modeled only the upper half of the plate. The boundary conditions of the r-adaptive
mesh optimization are depicted in Figure 2b. All results presented in the following
refer to initial discretizations with regular meshes consisting of linear triangular
elements. The energy constraint was active in all performed optimizations.

Figures 3a and 3b show a mesh with 441 nodes before and after the r-adaptive
optimization of the node positions. As a result of our optimization strategy, nodes
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t = 200 N/mm2

100 mm
100 mm

100 mm

a) b)

Fig. 2 Cracked specimen: (a) mechanical problem, (b) boundary conditions of the r-adaptive mesh
optimization.

a) b)

Fig. 3 Cracked specimen: (a) initial discretization, (b) optimized discretization. The arrows in both
figures represent discrete configurational forces. Due to the active energy constraint, the configur-
ational forces of the optimized mesh do not completely vanish.

concentrate in the vicinity of the crack tip, where the inhomogeneous stress field of
the singularity causes a high discretization error and large (discrete) configurational
forces. The energy limit was set to Îmax = 0.8 nev, where nev is the total number of
evaluation points of the fictitious local energy, i.e. nev is the total number of terms
in the sum (25) that defines the fictitious global energy.

In the diagram 4a, the discretization error measured in the energy norm is plot-
ted versus the average global energy Îmax/nev. To compute the discretization error
based on formula (9), we have approximated the potential energy of the analytical
solution by a finite element analysis with a regular mesh consisting of 80000 ele-
ments. The qualitative behavior of the three curves representing three discretizations
with an increasing number of nodes is very similar. With an increasing energy limit,
the discretization error decreases monotonically, but a saturation effect is observed.
From a practical point of view, it makes no sense to choose Îmax/nev > 0.8 in the
given example. For comparison, the diagram also shows the discretization error of
an regular mesh with 10000 nodes which is higher than that of the adapted mesh
with 841 nodes. The relative decrease of the discretization error with respect to the
initial mesh is plotted in Figure 4b. For the finest discretization with 841 nodes, a
decrease of 83% is achieved.
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Fig. 4 Cracked specimen: (a) evolution of the energy error for increasing values of the energy
limit Îmax/nev, (b) evolution of the relative decrease of the energy error (with respect to the initial
meshes).

a) b)
t = 11 N/mm2

Fig. 5 Sheet metal part: (a) and (b) initial design with two different mechanical boundary condi-
tions.

6.2 Sheet Metal Part

The second numerical experiment is concerned with shape optimization and shows
that the energy constraint allows for an optimized design with a smooth shape
without the application of an additional geometry model.

Figures 5a and 5b illustrate the considered mechanical problems: a sheet metal
part clamped at the two horizontal straps is either subjected to one or three surface
loads. The part is discretized by two layers of 648 hexahedral elements with 1115
nodes. The coordinates of all boundary nodes except the nodes on the quadratic
areas where the Dirichlet boundary conditions and surface loads of the mechanical
problems are applied are chosen as design variables. The shape optimization aims
to maximize the stiffness of the part by maximizing the potential energy. Beside the
energy constraint, the optimization is subject to the volume constraints V ≤ V0,
where V0 denotes the initial volume.

Figures 6a–d show the von Mises stress distribution of the initial design and the
optimized design for both mechanical problems. The maximum von Mises stresses
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Fig. 6 Sheet metal part: (a) and (b) von Mises stress distribution of the initial and optimized design
corresponding to the mechanical problem illustrated in Figure 5a; (c) and (d) von Mises stress
distribution of the initial and optimized design corresponding to the mechanical problem illustrated
in Figure 5b.

decrease significantly since the optimization improves the equal distribution of the
free energy. Figure 6b shows an optimized design one would intuitively expect for
the given optimization problem; the improved stiffness is realized by transforming
the bending load into a tension load. In Figure 6d the improvement is realized by
ribs that increase the moment of inertia of the cross sectional area. The optimization
of the stiffness results in a 22 times increase for the design change 6a⇒6b and an
8 times increase for the design change 6c⇒6d. Note that these numerical values
refer to the inverse (negative) potential of the external forces as a measure for the
stiffness.

The upper limit of the fictitious energy was set to Îmax = 0.02 V0. Since the
fictitious global energy is defined by a volume integral over the initial design, it is
useful to determine the energy limit Îmax by prescribing the average value Îmax/V0,
where, according to our numerical experience, Îmax/V0 ≈ 0.01 is often a good
choice to start with. The energy constraint is active for both mechanical problems,
whereas the volume constraint is active only in the second example with 3 surface
loads.

7 Conclusions

A new regularization technique for r-adaptivity and shape optimization based on a
fictitious energy constraint has been presented. The focus was on the overall concept
of the r-adaptive mesh and shape optimization including the applied regularization.
Details concerning the the reliability of the algorithms or the numerical effort have
not been elucidated yet. Hence, some remarks on the two last named subjects. Ac-
cording to our experience, the reliability of the shape optimization algorithm based
on a penalty barrier method is high, whereas that of the r-adaptive mesh optimiza-
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tion needs further improvements. Concerning the numerical effort both algorithms
should be improved, especially the r-adaptive mesh optimization since it has to com-
pete against h-adaptive schemes.

Another interesting subject is the question whether the fictitious energy of the
shape optimization can be replaced by a linear energy, not in general but for certain
applications. The main argument for the nonlinear approach is that shape optimiza-
tion often goes along with large changes of the initial shape. Therefore, a geomet-
rically nonlinear objective strain measure for the definition of the fictitious energy
seems to be natural.
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Some New Properties of the Eshelby Stress
Tensor

Erwan Verron, Malik Aït-Bachir and Philippe Castaing

Abstract The Eshelby stress tensor is known to be an appropriate Continuum Mech-
anics quantity to capture singularities. Nevertheless, even if its use in the calculation
of configurational forces is well-established, its peculiar properties were investig-
ated only recently. Here, some new properties of this tensor are studied. In this way,
it is assumed that the evolution of microscopic defects in the material can be pre-
dicted at the macroscopic scale by examining the components of the Eshelby stress
tensor. More precisely, considering that defects can be modeled by material surfaces
oriented in all possible directions and assuming that they are able to evolve in every
possible directions, it is shown that the maximum amount of energy which can be
released by defects evolution is partially contained in the tensor. In the special case
of hyperelasticity, the corresponding optimization problem is established and solved
for both isotropic and anisotropic materials.

1 Introduction

The theory of Configurational Mechanics was introduced by Eshelby in [4] when
he proposed the concept of energy-momentum tensor and configurational forces
in continuum mechanics of solids by studying the driving force of a moving de-
fect. Twenty years later, both Eshelby [5] and Chadwick [2] extended the previous
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theory to finite strain. More recently some authors revisited these studies and estab-
lished the general framework of Configurational Mechanics also designated as the
Eshelbian Mechanics and Mechanics in the Material Space [6, 9, 11, 12].

In the majority of studies involving Configurational Mechanics, only configura-
tional forces are investigated through the calculation of path-independent integrals
around inhomogeneities, because these forces are recognized as the driving forces
of defect evolution. So, the Eshelby stress tensor only appears in the definition of
surface tractions, i.e. after contraction with the outward normal of the contour. Most
of these works focus on Fracture Mechanics (see for example [16] and the refer-
ences herein). Moreover, as proposed in [10], other problems can be analyzed with
the help of the Eshelbian framework: dislocations in metal, movement of interfaces
in two-phase bodies, etc. Opposite to the case of configurational forces, only few
studies are concerned with the peculiar properties of the Eshelby stress tensor. As
an example, for the linear theory, the physical significance of the Cartesian compon-
ents of this tensor were identified only recently by Kienzler and Herrmann [8]. More
recently, Verron and co-workers proposed to use some components of the Eshelby
stress tensor to predict fatigue damage in elastomers [1, 17, 18].

By generalizing and rationalizing the derivation proposed in [17], the present
paper will examine some properties of the Eshelby stress tensor. In this way, the
evolution of the microstructure of a given material will be studied by considering
the evolution of oriented material surfaces under loading. The approach will exhibit
the relevance of the polar decomposition of the tensor and define the significance of
this decomposition with regards to microstructural evolution. Finally, this work will
be illustrated by considering the extension of a transversely isotropic hyperelastic
strip.

2 Evolution of Microstructural Defects by Considering the
Eshelby Stress Tensor

2.1 Formulation of the Problem

Consider a body defined by its reference configuration (CR), i.e. a set of particles
in the material manifold M3; it is depicted in Figure 1. One particle P of this set is
located at X in the physical space E3. Under mechanical loading, the body deforms
and occupies a time sequence of physical configurations (in E3). Let (C) be the
body configuration at time t defined by the mapping x(X, t) and by its gradient
F(X, t). As shown in Fig. 1, when loading is removed the body will, in general,
occupy a new stress-free configuration (C ′

R) defined by the motion gradient f(x, t).
Both configurations (CR) and (C ′

R) represent natural configurations of the body
[14]. The physical reasons for a body to possess different natural configurations
can be very diverse. Indeed, it is the consequence of structural rearrangements at
the microscopic scale, e.g. movement of dislocations, cavitation, cleavage fracture,
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Fig. 1 Deformation of a
body: macroscopic scale.

Fig. 2 Idealized microstruc-
tural change in the RVE

which manifests in various ways at the mesoscopic scale, e.g. plasticity, damage;
or at the macroscopic scale, e.g. crack growth. If the material is perfectly elastic,
f = F−1 and the natural configurations (CR) and (C ′

R) are identical. Nevertheless,
if irreversible microstructural changes take place during the motion, the gradient f
can be considered close, but not equal, to F−1.

In the latter case, this slight change of configuration is the macroscopic counter-
part of a microstructural evolution. In order to illustrate this change, the Represent-
ary Volume Element (RVE) which is phenomenologically embedded in the particle
P should be considered. The following idealized representation of the RVE is ad-
opted: it contains both bulk material and various defects which are schematized by
oriented material surfaces as shown in Figure 2. These surfaces, which can repres-
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Fig. 3 Evolution of the de-
fects modeled by oriented
material surfaces.

ent for example microscopic cracks, are defined by their normal vector N and it is
assumed that their orientations are isotropically distributed. Under motion, the size
and shape of the RVE (see the grey square in Figure 2) do not change: the micro-
structural rearrangement does not change the definition of the RVE, i.e. at the Con-
tinuum Mechanics scale, the motion is reversible. Nevertheless, the defects deform
reversibly or irreversibly, and in the latter case the microstructural rearrangement
leads to the definition of the new reference configuration (C ′

R) in Figures 1 and 2.
As advocated in [3, 13], the Eshelby stress tensor � is the driving force which

governs local structural rearrangement. This tensor is defined by

� = WI − FtP , (1)

where W is the strain energy density per unit of undeformed volume which a priori
depends on both F and X, P is the Piola–Kirchhoff stress tensor and ·t denotes the
transposition. To quantify the energy change involved during the rearrangement, we
consider that a given material surface (defined by its unit normal vector N) is sub-
jected to a material unit translation θ between the natural configurations (CR) and
(C ′

R) as shown in Figure 3. In 1997, Kienzler and Herrmann identified the physical
significance of the components of the Eshelby stress tensor in the linear context [8]:
“[the ij -component] of the Eshelby tensor is the change in the total energy density
at a point of an elastic continuum due to a material unit translation in xj direction of
a unit surface with normal in xi-direction”. Extending this definition to finite strain
and to arbitrary direction, it can be established that the scalar θ · �N represents the
change of energy due to the evolution of the material surface defined by the unit nor-
mal vector N and the material unit translation θ between the natural configurations
(CR) and (C ′

R).
To go further in the derivation, a strong assumption is adopted: it is considered

that the microstructural change is only due to the evolution of only one set of sur-
faces (only one orientation of defects, i.e. only one vector N) in only one material
translation (only one vector θ ) such that the body reduces as much as possible its
total energy. Recalling that energy changes are defined positively in �, the problem
reduces to the following constraint optimization problem:

max
N,θ

θ · (−�) N (2)
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with two equality constraints

‖N‖ = 1, ‖θ‖ = 1, (3)

and two inequality constraints

N · θ ≥ 0, θ · (−�) N ≥ 0. (4)

The two equality constraints Eq. (3) specify that both the normal vector to the ma-
terial surface and the material translation vector are unit vectors. The inequality
constraints Eq. (4) express that the microscopic defects can only open: Eq. (4)1 en-
sures that N and θ are in the same semi-plan, Eq. (4)2 ensures that energy can only
decrease due to defects evolution. Finally, the scalar measure of the damage �∗ can
be chosen as the maximum of the function θ · (−�)N.

Remark. The quantity �∗ which solves the optimization problem represents the
energy involved in the evolution of the oriented material surface (with normal N).
The assumptions required to use the Eshelby stress tensor in this context are: (i) the
size of defects is very small compared with the size of the RVE, and (ii) the density
of defects is also very small, i.e. defects do not interact. It means that this approach
is able to localize the damage in the material, but can not be used to calculate the
energy release rate of defects because such a quantity obviously includes the size of
defects.

2.2 Mathematical Solution

2.2.1 Special Case of an Isotropic Elastic Material

As shown in [3], the Eshelby stress tensor satisfies the following symmetry condi-
tion:

�C = C�t , (5)

where C is the right Cauchy–Green strain tensor. Moreover, recalling that � can be
written in terms of C and of the second Piola–Kirchhoff stress tensor S,

� = WI − CS (6)

and noting that in the special case of isotropic elasticity C and S are coaxial and
commute, the Eshelby stress tensor is symmetric.

So, � being a symmetric tensor, it possesses three real eigenvalues denoted
(�i)i=1,3 and their corresponding eigenvectors (Vi )i=1,3 which are orthogonal one
to each other. In this case, the solution of the optimization problem reduces to:

�∗ = ∣
∣min

(
(�i)i=1,2,3 , 0

)∣∣ (7)
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and if �∗ �= 0,
N = θ = V∗, (8)

which is the eigenvector associated with −�∗. In this case, the defects with normal
V∗ will grow by extending in a plane orthogonal to V∗.

2.2.2 General Case

More generally, the Eshelby stress tensor is not symmetric, it only satisfies Eq. (5).
In order to solve the optimization problem, we consider the right polar decomposi-
tion of �:

� = �ϒ, (9)

where � is an orthogonal tensor (a reflection or a rotation tensor depending on the
sign of its determinant) and ϒ is a positive definite symmetric tensor (when � is
invertible). These tensors are defined by

ϒ =
√

�t � and � = �ϒ−1. (10)

In this case the solution vectors are

N = V∗ and θ = �V∗ (11)

where V∗ is the eigenvector associated with the largest eigenvalue of ϒ. If these
vectors are not in the same semi-plan, i.e. if they do not satisfy Eq. (4)1, the solution
of the whole optimization problem (with constraints) Eqs. (2-4) is equal to 0 sim-
ilarly to Eq. (7). Otherwise, the maximum of the function θ · (−�) N is the largest
eigenvalue of ϒ:

�∗ = max
(
(ϒi)i=1,3

)
. (12)

In this case, the defects with normal V∗ will grow by extending (and being distorted)
in a plane of normal �V∗.

3 Example

First, the case in which the Eshelby stress tensor is symmetric and which corres-
ponds to isotropic elasticity was recently examined in [17]. Authors applied this res-
ult to the problem of fatigue loading of rubber materials. Using Eq. (7), they derived
a new predictor for rubber fatigue and they demonstrated its ability to reproduce
multiaxial loading conditions and to predict macroscopic fatigue crack orientation.

So, the following example will focus on the second result derived in Sec-
tion 2.2.2, Eqs (11–12). We consider the simple problem of uniaxial extension of
a transversely isotropic hyperelastic strip. More precisely, the problem consists in
extending a rubber-like thin strip reinforced with long fibers oriented in a given
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Fig. 4 Extension of a rein-
forced fiber elastic strip.

direction a0, as shown in Figure 4. The angle between the fiber direction, i.e. a0,
and the loading direction, i.e. e1, is denoted α. Following the work of Spencer [15],
the strain energy density per unit of undeformed volume for a homogeneous trans-
versely isotropic material W can be written as a function of five invariants: the three
classical isotropic invariants

I1 = trC, I2 = 1

2

[
(trC)2 − trC2

]
, I3 = detC, (13)

and two additional invariants

I4 = tr (C : A) , I5 = tr
(

C2 : A
)

, (14)

where A is the orientation tensor a0 ⊗ a0. Here, the simplest transversely isotropic
rubber-like constitutive equation is adopted: the material is considered incompress-
ible (I3 = 1) and the strain energy density is assumed to only depends on I1 and
I4

W (C, a0) = C1 (I1 − 3) + C4 (I4 − 1)2 , (15)

where the two material parameters were set to C1 = 1 and C4 = 2 in order to
emphasize the effect of fibers. In the special cases for which the loading direction
is parallel (α = 0◦) or perpendicular (α = 90◦) to the fiber direction, a given
extension can be prescribed and the problem can be solved analytically (see for
example [7]). Nevertheless, for other fiber orientations the finite element method
should be considered; here we used the software COMSOL Multiphysics. Compu-
tations are performed by considering only half of the strip (symmetry with respect
to the x1 = 0-axis), the plane stress assumption is adopted (the incompressibility
constraint leads to a change in thickness of the strip) and the strip is extended by
prescribing the force f in order to obtain an uniform deformation gradient in the
whole strip.

Practically, for a given extension ratio λ, simulations with prescribed force f

are conducted to determine the value of the force such that F11 = λ. To show
quantitative results we plot the evolution of the directions of V∗ (normal vector to
the critical material plane) and �V∗ (material direction of evolution) with respect
to the fiber directions in Figure 5. It is to note that for both α = 0◦ and α = 90◦,
even if the material is not isotropic, the deformation gradient is diagonal and then
the Eshelby stress tensor is symmetric. Thus the problem reduces to the special case
studied in Section 2.2.1; the normal vector to the material surfaces and the normal
to the plane in which they will grow are identical. In other cases, they are different.
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Fig. 5 (•) Orientation of the critical material plane which could release the maximum of en-
ergy: ̂(e1, V∗). (�) Orientation of the corresponding material translation ̂(e1,�V∗). Left-hand side
graph: λ = 2; right-hand side graph: λ = 4.

Fig. 6 λ = 4-extension
of a transversaly isotropic
hyperelastic strip: (a) α = 0◦,
(b) α = 30◦, (c) α = 60◦ and
(d) α = 90◦.

Finally, Figure 6 shows some qualitative results obtained for four fiber orienta-
tions. This figure illustrates with simple sketches four particular quantitative results
given in Figure 5: for λ = 4, it exhibits the orientation of the critical material sur-
faces (V∗) and the direction of the material translation (�V∗) for four fiber orienta-
tion angles.

4 Discussion

The present paper is only a second step towards the understanding of the physical
significance of the Eshelby stress tensor components, after the one of Kienzler and
Herrmann. The relevance of the polar decomposition of the Eshelby stress tensor
was demonstrated by considering that this tensor is the driving force of microstruc-
tural evolution. For an idealized RVE, it was shown that the “pure material stress
tensor” ϒ can be considered as a measure of the microstructural damage and of
the direction of defects that will grow, and also that the “rotational material stress
tensor” � contains the way these defects will evolve.
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On Configurational Aspects of Finite
Deformation Inelasticity: A Variational
Approach Versus the Transformation of
Balance of Momentum

A. Menzel and B. Svendsen

Abstract The main goal of this contribution consists in reviewing two different ap-
proaches that both account for the so-called material or rather configurational bal-
ance of linear momentum representation. One formulation considered is based on
variational strategies, the other framework studied makes use of transforming the
standard spatial balance of linear momentum relation. While the similarity of both
approaches is obvious for the purely elastic case – in other words, when all quant-
ities of interest are derived from potentials – inelastic response requires, in view
of the variational formulation, incremental strategies and, moreover, renders addi-
tional contributions to the volume forces that reflect the material’s inhomogeneity.
The general kinematics framework is kept as simple as possible but embedded into
a large strain setting, i.e. a simple continuum is considered, the multiplicative de-
composition or rather the introduction of a material isomorphism is adopted, and
further hardening effects are neglected.

1 Introduction

Engineering materials are nowadays often designed for particular advanced applica-
tions in the various fields of modern technology. Commonly, it is the specific sub- or
micro-structure of the material that is shaped and used to influence the overall prop-
erties of, for instance, a high-performance composite or metal structure. Either the
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production process itself or the deformation of the specimen – to give an example,
think of a forming process of a rolled sheet metal – renders the material body con-
sidered to possess so-called inhomogeneities, which furthermore also evolve.

The sound modelling and description of such material inhomogeneities as well
as heterogeneities dates back to the pioneering work by Eshelby; see the collected
papers in [10]. Related forces that drive the evolution of these inhomogeneities have
been variously designated in the literature, for example as pseudo forces, material
forces, configurational forces, and so forth; for an overview, the reader is referred
to the monographs by Hanyga [8], Maugin [11], Šilhavý [22], and Gurtin [4]. The
derivation of, for instance, configurational forces can be based on either transform-
ation operations – see, among others, [24] – or variational strategies as discussed
in [19,21]. As shown, for example, in [29], the variational formulation of configura-
tional fields and balance relations can be extended to inelastic effects by making use
of incremental variational formulations as proposed and elaborated by Hackl [7],
Ortiz and Repetto [20], Miehe [17], and Carstensen et al. [1].

A general and well-established continuum approach to model local inelastic de-
formation in crystalline metals is based on incorporating these inelastic effects by
means of an elastic material isomorphism. In the configurational context, this de-
formation may also locally embody the materials inhomogeneity; see [25, 26] and
references cited therein. In this regard, the pioneering contribution by Noll [18]
already emphasises that, in case of inhomogeneities being present in the body con-
sidered, the standard balance of linear momentum relation does not directly capture
these material properties. Furthermore, a framework accounting for the related ma-
terial forces within this nowadays classical inelasticity approach has been proposed
in [3, 12], or similarly in [13]. Due to the overall incompatibility of the locally
defined material isomorphism, dislocation structures are included in these model-
ling approaches – either in terms of the corresponding inelastic connection, or in
terms of the corresponding dislocation density tensor; see, for example, [15, 23]. In
general, such dislocation-related quantities can be used to enhance field or evolu-
tion equations for the underlying material isomorphism, or additionally be incor-
porated as arguments into energy potentials; see, for instance, [14] and references
cited therein, or [5, 6, 9, 27].

The main purpose of this contribution is to review some essentials of the two dif-
ferent approaches to the formulation of configurational fields and balance relations
mentioned above, namely the variational and a transformation-based formulation. In
order to simplify the subsequent investigations, we restrict ourselves to simple con-
tinua and, moreover, neglect any further hardening mechanisms. It turns out that the
two configurational balance of linear momentum relations share common character-
istics even for the inelastic case and, concerning future research, a numerical finite-
element-based study is of particular interest in order to compare both strategies in
more detail. Additional background information on the subsequent outline can also
be found in [16, 28, 30].
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Fig. 1 Essential kinematics: mappings and local transformation quantities.

2 Basic Considerations

To introduce notation and in order to summarise the kinematics background es-
sential to the subsequent elaborations, this section reviews fundamental concepts
nowadays well-established in continuum inelasticity. To be specific, we make use of
what commonly is denoted as the multiplicative decomposition of the deformation
gradient or rather introduce a material isomorphism.

Let the sufficiently smooth motion of a body B be characterised by the mapping
x = ϕ(X, t) : B0 × T → Bt . Here, the referential position of a material particle is
represented by X ∈ B0, and its spatial or current position at time t by x ∈ Bt . Apart
from the deformation gradient F = ∇Xϕ, the material behaviour is determined here
by the local inelastic deformation Fp. Assuming as well from the configurational
point of view that the material behavior is inhomogeneous, the stored energy is
given by

ψ = ψ0(F, Fp; X) . (1)

In the current work, Fp is modeled in particular as an elastic material isomorphism.
In this case, there exists a reduced form W0 of the stored energy such that
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ψ0(F, Fp; X) = W0(F · F−1
p ; X) = W0(Fe; X) (2)

holds. This in turn implies a direct coupling of both deformation measures as shown
in Figure 1. Representing an energy density, we have

W0 = Jp Wp = J Wt , (3)

with Jp = det(Fp) and J = det(F) = Je Jp. Besides Fp being such an isomorphism,
two further assumptions about its constitutive nature are considered. In the first case,
Fp is assumed to be a material uniformity, i.e.,

ψ0(F, Fp; X) = ψ̄0(F, Fp(X)) . (4)

Here, further material inhomogeneities are excluded. Alternatively, consider the
case that Fp is materially constant, but the material properties may be heterogen-
eous, i.e.,

ψ0(F, Fp; X) = ψ̃0(F, Fp
∣
∣
const inX; X) . (5)

For the moment, attention is focused on equation (2); later, we come back to equa-
tions (4) and (5). In what follows, similar restrictions on Fp will also be made for
the dissipation potential.

Besides these basic assumptions on the nature of Fp, the particular form of the
strain energy function is restricted by the principle of material frame-indifference
and the material’s symmetry properties. To be specific, W0 must remain invari-
ant under the spatial action of the orthogonal group on the deformation gradient,
W0(Fe; X) = W0(q · Fe; X) with qt = q−1, so that the related directional derivative
with respect to qε = exp(ε w) · q results in

[ ∂FeW0 · Ft
e ] : w = 0 ∀ w = − wt . (6)

When assuming the material body to be isotropic, we similarly obtain the relation
that the strain energy function does not sense any material action of the orthogonal
group on Fe, i.e. W0(Fe; X) = W0(Fe · Q; X) with Qt = Q−1. Consequently, the
directional derivative as based on Qε = exp(ε W) · Q yields

[ Ft
e · ∂FeW0 ] : W = 0 ∀ W = −Wt . (7)

Please note that equation (6) and equation (7) render – when adopting a hyper-elastic
stress form – the Kirchhoff and Mandel stresses to be symmetric. Moreover, the
kinematics framework reviewed in this section can straightforwardly be extended to
so-called higher-gradient continua, which is not discussed in this contribution.

The particular representation of the material isomorphism Fp is here assumed to
be determined by means of an appropriate evolution equation, the particular form of
which is not specified in this work. Hence, Fp may in general depend on the material
placement X but – as a consequence of being constrained by the evolution equation
itself – cannot be varied independently.
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3 Variational Approach

The variational approach adopted in the following captures the material’s properties,
inhomogeneities, and hereogeneities by means of a so-called incremental potential.
As point of departure we start with the balance of entropy, from which field equa-
tions in local form can be derived. By introducing the dissipation rate density D0 as
well as the traction vector t we recall for an isothermal and quasi-static setting that

∫

B0

Ẇ0 + D0 dV =
∫

∂B0

t · ϕ̇ dA , (8)

wherein contributions stemming from additional volume forces as well as singular
surfaces are not considered and the notation •̇ = ∂t • |X characterises the material
time derivative. Since the kinetics of dislocation activation and motion are dissipat-
ive, the evolution of Fp is determined via a dissipation potential

P = P0(Ḟp; X) (9)

via the evolution-constitutive relation

∂Ḟp
R0 = 0 (10)

for Fp in terms of the rate potential

R0 = Ẇ0 + P0 . (11)

In order to satisfy the dissipation principle sufficiently, D0 is assumed convex in Ḟp,
such that D0 = ∂Ḟp

P0 : Ḟp ≥ P0 (and D0 = P0 in case of rate-independence).
Similarly to the assumptions on the stored energy, the dependency of the dissipation
potential on Ḟp maybe further reduced to

P0(Ḟp; X) = P̄0(Ḟp(X)) or P0(Ḟp; X) = P̃0(Ḟp
∣
∣
const in X; X) . (12)

In analogy to equation (8) we now compute the variation of the bulk contribution,
namely

δ

∫

B0

R0 dV =
∫

B0

∂ḞR0 · δḞ dV =
∫

∂B0

t · δϕ̇ dA , (13)

via (10). Because Fp is assumed to vary constitutively with F, it is implicitely in-
cluded in the variation with respect to F in equation (13). By making use of the
identity

∂ḞR0 : δḞ = ∇X · [ δϕ̇ · ∂ḞR0 ] − [ ∇X · ∂ḞR0 ] · δϕ̇ (14)

together with the divergence theorem, one obtains
∫

B0

[∇X · ∂ḞR0] · δϕ̇ dV +
∫

∂B0

[t − ∂ḞR0 · N] · δϕ̇ dA = 0 (15)
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with N denoting the outward surface unit normal vector. Accordingly, the corres-
ponding local form reads

∇X · ∂ḞR0 = 0 in B0 and t = ∂ḞR0 · N on ∂Bt
0 . (16)

Together with the local variational constitutive form (10) for Fp, this last relation
represents the principle result of the current approach at the rate level.

The incremental form of the field relation (16) is referred to a finite interval in
time, i.e. �t = tn+1 − tn ≥ 0. In this regard, consider the integration in time of the
bulk contribution R0, which – based on the review summarised above – takes the
representation

w0 =
∫ tn+1

tn

R0 dt = W0 n+1 − W0 n +
∫ tn+1

tn

P0 dt . (17)

The simplest approach to computationally integrate P0 in time is provided by an
Euler-forward-type scheme, i.e.,

∫ tn+1

tn

P0 dt ≈ �t P0(�Fp/�t; X) = p0(Fp n+1,�t; X) . (18)

In this case, one obtains the incremental form

∂Fp n+1
w0 = ∂Fp n+1

W0 n+1 + ∂Fp n+1
p0 = 0 (19)

of equation (10) for the algorithmic evolution of Fp as well as the field relation

∇X · ∂Fn+1w0 = 0 in B0 and t = ∂Fn+1w0 · N on ∂Bt
0 (20)

by analogy with equation (16). Obviously, ∂Fw0 represents the Piola-type stresses.

4 Two Configurational Field Formulations

In this section, we formulate configurational fields and balance relations using two
approaches, i.e., the variational approach sketched in the previous section, and an
alternative approach as based on the transformation of configurational relations to
established balance relations.

4.1 Variational Approach

In the context of the incremental variational formulation of the last section, config-
urational fields and relations can be obtained by means of (i) superposing a com-
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patible deformation-type mapping onto the reference configuration, and (ii) com-
puting the related derivative of the modified field equations for the mapping coin-
ciding with the identity. A graphical representation of the kinematics at hand is dis-
played in Figure 1. According to this, we introduce the sufficiently smooth mapping
xλ = λ(X, t) : B0 × T → Bλ with L = ∇Xλ and Jλ = det(L). The incremental
potential energy of the body considered is now referred to this mapping and takes
the form

w0 = Jλ wλ(F · L−1, Fp(λ(X)),λ(X)) such that

δ

∫

Bλ

w0 dV =
∫

Bλ

wλ∂LJλ : δL + Jλ∂F·L−1wλ : δ[ F · L−1 ]

+ Jλ∂λwλ · δλ dV =
∫

∂Bλ

T · δλ dA .

(21)

As mentioned in Section 2, the internal variable Fp is included as a quantity con-
strained by an evolution equation, respectively a variational constitutive form, so
that we here do not vary Fp independently. Its variation in the reference configura-
tion B0, however, accounts for the inhomogeneity of the material behaviour.

Based on ∂LJλ = cof(L) and δL−1 = − L−1 ·δL ·L−1, one obtains – by analogy
with equation (15) and equation (16) – for λ coinciding with the identity mapping
the following expression

∫

∂B0

T · δλ dA =
∫

B0

[
w0 I − Ft · ∂Fw0

] : ∇Xδλ

+ [
∂Fpw0 : ∇XFp + ∂Xw0 ] · δλ dV ,

(22)

respectively the local form

∇X · [ w0 I − Ft · ∂Fw0 ] − ∂Fpw0 : ∇XFp − ∂Xw0 = 0 in B0

and T = [ w0 I − Ft · ∂Fw0 ] · N on ∂BT
0 .

(23)

Apparently, the contribution of which the divergence is computed represents the
Eshelby-type stresses and the remaining part of equation (23)1 are the related
volume forces. It is also interesting to note that this volume force takes the reduced
forms

∇X · [ w0 I − Ft · ∂Fw0 ] = ∂Fpw0 : ∇XFp for R0 = ˙̄ψ0 + P̄0 ,

∇X · [ w0 I − Ft · ∂Fw0 ] = ∂Xw0 for R0 = ˙̃ψ0 + P̃0 ,

(24)

in B0, in case the underlying potentials are additionally restricted, compare equa-
tions (4,5,12). In the first case, i.e., when Fp represents a material uniformity, its
material variation ∇XFp results in an additional configurational body-force. On the
other hand, if it is materially constant, and for example the material properties are
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heterogeneous, no translation invariance of the material behaviour is present, and
∂Xw0 represents an additional configurational body force density.

4.2 Transformation-Based Approach

We turn now to the alternative approach as based on the application of transforma-
tion relations to standard balance relations. Consider the quasi-static standard local
balance of linear momentum representation for vanishing spatial volume forces,
∇X · P = 0 in B0 and t = P · N on ∂Bt

0, with the Piola stresses being defined
in terms of the hyper-elastic form P = ∂FW0. The material version of this balance
of linear momentum representation is well-established and can be derived from the
identification

− Ft · [ ∇X · P ] = ∇X · Σ + B0 in B0 and T = Σ · N on ∂BT
0 , (25)

wherein Σ denotes the Eshelby stresses, B0 is the related material volume force,
and ∇X · cof(F) = 0. The particular energy momentum representation of Σ stems
from a Piola transformation

Σ = p · cof(F) = W0 I − Ft · P with p = ∂F−1Wt (26)

and the volume forces additionally account for the material’s inhomogeneity as well
as heterogeneity, namely

B0 = − Pp : ∇XFp − ∂XW0 with Pp = ∂FpW0 . (27)

Similar to equation (24), the two particular representations of the stored energy as
highlighted in equations (4) and (5) render reduced forms for the configurational
volume forces, i.e.,

B0 = − Pp : ∇XFp for W0 = ψ̄0 ,

B0 = − ∂XW0 for W0 = ψ̃0 .
(28)

Even though this framework renders one and the same balance law to be repres-
ented in different forms, its configurational version just derived provides additional
insight on the forces driving the material’s inhomogeneities. The derivation followed
here is direct and so independent of any variational approach. If a variational for-
mulation is available, however, any such framework is particularly attractive from
the computational point of view.

44



On Configurational Aspects of Finite Deformation Inelasticity

5 Comparison and Discussion

The two different approaches to derive the material or rather configurational rep-
resentation of balance of linear momentum, namely the incremental variational for-
mulation and the transformation-based framework, are related via the formal iden-
tification of w0 with W0. However, it is important to recall that w0 does not only
represent the incremental part of the strain energy function but also the correspond-
ing dissipation-related contribution. In this regard, the flux term ∂Fw0 formally cor-
responds to the Piola stresses P and ∂Xw0 can directly be referred to ∂XW0. For
the particular model at hand, these respective quantities actually are identical, i.e.
∂Fw0 = P and ∂Xw0 = ∂XW0, as the dissipation potential P0 has been assumed to
depend only on Ḟp and not on Ḟ or ϕ̇. The stresses conjugate to Fp, however, are
different for both models so that ∂Fpw0 �= Pp.

While this contribution aimed at comparing the two different configurational ap-
proaches for the simplest large strain inelastic case, one could also extend these
investigations towards more advanced modelling approaches. Apart form elaborat-
ing a variational approach with respect to the so-called intermediate configuration
– and comparing the results to the transformation of balance of linear momentum,
this intermediate configuration – further internal variables and hardening mechan-
ism can be considered. Moreover, the incorporation of Fp as a field variable, the
extension towards non-simple continua as well as neglecting the ansatz of the here
assumed kinematic coupling, Fe = F · F−1

p , are of special interest for future re-
search. As previously mentioned in the introduction, a detailed finite-element-based
comparison of both configurational frameworks would provide further inside into
the computational advantages and properties of the two formulations.
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Configurational Forces Derived from the Total
Variation of the Rate of Global Dissipation

Fredrik Larsson, Kenneth Runesson and Johan Tillberg

Abstract Based on the thermodynamic framework for combined configurational
and deformational changes, recently discussed in [1], we consider dissipative ma-
terial response and emphasize the fact that it is possible to identify explicit energetic
changes due to configurational changes for “frozen” spatial configuration and, in
addition, the configuration-induced material dissipation. The classical assumption
(previously adopted in the literature) is to ignore the latter. In this paper, however,
we define configurational forces by considering the total variation of the total dis-
sipation with respect to configurational changes. The key task is then to compute
the sensitivity of the internal variable rates to such configurational changes. We re-
strict to quasistatic loading under isothermal conditions and elastic-plastic response,
and we apply the theory to the simplest possible case of an interface of dissimilar
materials in a single bar.

1 Introduction

An important class of configurational changes is defined by the motion/evolution
of “singular surfaces” representing discontinuities in the material properties and,
consequently, in the state variables when the body is loaded. Typical examples of
internal processes are the evolution of defects, phase transformation (microstruc-
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tural changes that are mostly accompanied by change of volume and mechanical
properties), and internal cracks. Since the literature on configurational mechanics is
very rich, we do not intend to give a comprehensive account. We only mention the
pioneering work in [2] and the contributions in [3–14]. Some of these works also
contain comprehensive overviews with a discussion of various aspects of configura-
tional mechanics (“material” mechanics in Maugin’s terminology). A major applic-
ation is the “driving force” on singular surfaces. A recent comprehensive treatment
of “surface energies” is given in [15].

Most studies so far are explicitly confined to elastic material response. While
the state of affairs seems to be quite clear in this case, it is not so in the case (local)
material dissipation occurs as a result of the configurational change. The formulation
of the crack-driving force in such a case and the computational aspects have been
discussed in [10, 16–20].

In this contribution we aim at shedding some further light on the energetic con-
sequences of configurational changes for rate-independent dissipative material re-
sponse. More specifically, we put forward the idea that it is the total variation of the
appropriately defined dissipation functional for the whole body that represents the
“driving force”.

The paper is organized as follows: Section 2 introduces definitions and prelim-
inaries related to the unified representation of configurational (material) and de-
formational (spatial) motions. In Section 3, we establish the pertinent dissipation
functional due to imposed configurational changes, and we define generalized con-
figurational forces from the “total variation of the global dissipation”, which is the
main novel result of the paper. This result is applied in Section 4 to a material sin-
gular surface in a simple bar with dissimilar elastic-plastic material properties, and
explicit computational results are given in Section 5. Finally, conclusions are given
in Section 6.

2 Representation of Configurational and Deformational Motions

2.1 Preliminaries

The spatial (deformational or direct) motion problem (SMP) is expressed in terms
of a spatial motion map x = ϕ(X, t), BX �→ Bx(t). In this paper, we generalize
the classical view of motion slightly, cf. Figure 1, since the material configuration
is allowed to change with time in the sense that the boundary ∂BX of the body
BX may change with time. It is then convenient to take the view that both the “un-
deformed” (material) and “deformed” (spatial) configurations will undergo time-
dependent changes with respect to an absolute (fixed, time-invariant) configuration
Bξ . We may then introduce the map X = �̌(ξ , t) for the time-dependent “motion”
of BX(t) w.r.t. Bξ , and we introduce the absolute spatial motion map x = ϕ̂(ξ , t)

for the time-dependent motion (including deformation) of Bx(t) w.r.t. Bξ .
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Fig. 1 Spatial (current) configuration, Bx(t), material configuration, BX(t), and absolute (fixed)
configuration, Bξ .

The gradients corresponding to the introduced mappings are F
def= ϕ ⊗ ∇X,

F̂
def= ϕ̂ ⊗ ∇ξ , and f̌

def= �̌ ⊗ ∇ξ .

2.2 Absolute and Material Time Differentiation

We introduce absolute and material time derivatives of a field f , parametrized in
BX or Bξ , as follows:

�tf
def= ∂tf |ξ , Dt f

def= ∂tf |X (1)

where ∂t[•] def= ∂[•]/∂t denotes the ordinary partial time derivative. In particular,
the material velocity, v, the absolute velocity, ẋ, and the (absolute) configurational
rate, Ẋ, are defined as

v
def= Dtx = ∂tϕ(X, t), ẋ

def= �tx = ∂t ϕ̂(ξ , t), Ẋ
def= �tX = ∂t�̌(ξ , t) (2)

Using the chain rule, we obtain the relation

v = ẋ − F · Ẋ (3)

We shall later make use of the absolute and material time derivatives of a (tensor-
valued) operator field y(X(ξ , t), x(ξ , t), α1(ξ , t), α2(ξ , t), . . . , t).1 Let us, for ex-
ample, consider a volume-specific field, y(•, t) for X ∈ BX(t), for which the fol-
lowing relation holds:

1 An example is the deformation gradient F (X, x) = x ⊗ ∇X.

49



F. Larsson et al.

Dt y(•, t) = �ty(•, t) − [y(•, t) ⊗ ∇X] · Ẋ (4)

Remark. It is also possible to establish a similar relation for a surface-specific field,
ŷ(•, t) for X ∈ ∂BX(t); however, it is more involved and will be omitted here. �
Suppose that fX(X, x, α, t), for X ∈ BX(t), is a volume-specific quantity and con-
sider a typical conservation quantity F

F
def=

∫

BX

fX dVX (5)

The time-derivative of F for time-dependent BX is then given as

d

dt
F =

∫

BX

[
�tfX + fXẊ · ∇X

]
dVX

=
∫

BX

[
Dt fX + [

fXẊ
] · ∇X

]
dVX

=
∫

BX

Dt fX dVX +
∫

∂BX

fXẊ · N dSX (6)

Further details are given in [1]. It must be noted that (6) holds under the assump-
tion of sufficient smoothness, i.e. material interfaces are introduced at a later stage
whereby (6) is valid for each smooth region.

2.3 Global and Localized Dissipation Inequality

The global free energy is given as

�
def=

∫

BX

ψX dVX (7)

where ψX is the volume-specific free energy. The “configurational flux” of free
energy across the boundary due to the configurational motion is given as

�CONF =
∫

∂BX

ψCONF
X Ẋ · N dSX (8)

Moreover, the total mechanical power supply, W , is given as

W =
∫

BX

bX · v dVX +
∫

∂BX

tX · v dSX =
∫

BX

P : DtF dVX (9)
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In order to obtain the last expression in (9), the momentum balance P ·∇X+bX = 0,
was used, where P is the 1st Piola–Kirchoff stress, and bX is the volume-specific
load.

It is proposed that the total mechanical dissipation is expressed as

D = W − d

dt
� + �CONF ≥ 0 (10)

The localized form of (10), in terms of the volume-specific mechanical dissipation
rate dX, becomes the standard expression

dX = P : DtF − DtψX ≥ 0 (11)

Next, we introduce the parametrization of the free energy density, ψX(F , θ, k; X),
pertinent to a dissipative material response, where k represents a set of internal vari-
ables. It is noted that a possible explicit dependence of X is included as argument
in ψ (representing inhomogeneous variation of material parameters in BX). Upon
evaluating the material time derivative DtψX, and using standard arguments of the
Colemann–Noll type, we obtain the constitutive state equation P = ∂ψX/∂F , such
that (8) reduces to

dX = K � Dt k ≥ 0 with K
def= −∂ψX

∂k
(12)

where we introduced dissipative stresses K that are energy-conjugated to the in-
ternal variables k.2

3 Dissipation Functional for Changing Material Configuration

3.1 Preliminaries

We consider the global (mechanical) dissipation inequality for a given finite body
occupying the current material domain 	X with external boundary ∂	X. It is as-
sumed that the body undergoes configurational changes, expressed as Ẋ �= 0, while
it is subjected to prescribed loading. For simplicity, we restrict to isothermal con-
ditions henceforth. The resulting thermodynamic process is then characterized by
time-changes of all the independent thermodynamic fields, F and k, since they are
solutions of the pertinent balance and state equations (equilibrium and constitutive
equations) and thus depend on the configurational motion X = �(ξ , t) in an im-
plicit manner. As a result, the global dissipation functional D depends, apart from
Ẋ, potentially on the fields ẋ and k̇ in the most general case of combined configur-

2 The “scalar star product” has the appropriate interpretation depending on the tensorial order of
variables in the column vector k.
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ational and deformational motion for general loading; hence we denote D(Ẋ, ẋ, k̇)

the global dissipation functional.

3.2 Basic Format of the Dissipation Functional – Configurational
and Material Parts

It was shown in [1] that (i) the dissipation functional D does not depend explicitly
on ẋ, i.e. the parametrization D(Ẋ, k̇) suffices, and (ii) it is natural to split D(Ẋ, k̇)

as
D(Ẋ, k̇) = D̄CONF(Ẋ) + D̄MAT(Ẋ, k̇) (13)

where we introduced

D̄CONF(Ẋ) = −
∫

∂	X

[
ψX − ψCONF

X

]
N · Ẋ dSX (14)

and

D̄MAT(Ẋ, k̇) =
∫

	X

K � Dt k dVX =
∫

	X

K �
[
k̇ − [

k ⊗ ∇X
] · Ẋ]

dVX (15)

It appears readily that D̄MAT(Ẋ, k̇) represents precisely the ordinary material dis-
sipation.

3.3 Total Variation of the Rate of Global Dissipation Due to
Configurational Changes

Henceforth, we shall restrict our attention to the situation that a physical process is
manifested by fields Dtx and Dt k that are brought about solely by configurational
changes. In other words, for a given field Ẋ(ξ , t), it is possible to solve for all other
fields, ẋ{Ẋ} and k̇{Ẋ}, as (implicit) functions of Ẋ from the momentum equation
and the pertinent constitutive relations. It is noted that the actual physical problem
involves Ẋ(ξ , t) as part of the total solution, which requires a constitutive relation
for Ẋ in terms of a suitably defined field of “driving forces”. However, these driving
forces will be of such nature that they can only be determined when the solutions
ẋ{Ẋ} and k̇{Ẋ} are known; hence, the problem of computing the driving forces is
indeed nonlinear and must be solved by some sort of iterative procedure in practice.

Next, we shall be concerned with the issue of defining the field of thermody-
namically consistent generalized configurational forces that are energy-conjugated
to a given differential change (variation) of the field Ẋ, henceforth denoted dẊ, in
the sense that they represent the total variation of D with respect to Ẋ. The total

differential of D
def= D(Ẋ, k̇{Ẋ}) can be expressed as
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dẊD = D̄CONF( dẊ) + D̄MAT( dẊ, 0) + D̄MAT(0, k̇
′{Ẋ; dẊ}) (16)

where it was used that both D̄CONF and D̄MAT are linear in their arguments (Ẋ and
k̇ respectively). In order to carry out the total variation, it is necessary to compute
the sensitivity fields:

dẋ = ẋ ′{Ẋ; dẊ}, dk̇ = k̇
′{Ẋ; dẊ} (17)

which are directional (or Gateaux) derivatives in the classical sense.3 The sensitivity
fields ẋ ′ and k̇

′
must satisfy global tangent (or sensitivity) relations, which are deriv-

able from linearization of the equilibrium equation together with the constitutive rate
equations for k̇. It is emphasized that the sensitivity fields, say k̇

′{Ẋ; dẊ}, are lin-
ear in dẊ; however, they represent “spatially global” relations in 	X. This means,
in particular, that the configurational dissipation is not necessarily confined to the
(possibly small) part of 	X where dẊ �= 0 has been assumed.

4 Model Problem: Bar with Interface Separating Parts with
Dissimilar Material Properties

4.1 Problem Formulation – Preliminaries

Consider a bar in a state of unixial stress, with undeformed length L (such that
	X = [0, L]) and with unit cross-sectional area (for simplicity), which is subjected
to prescribed end displacement at the right end, as shown in Figure 2(a). This is
the sole type loading. The material properties (which are assumed elastic-plastic)
vary smoothly along the bar with the exception that they may be discontinuous at
the “singular” cross-section located at X = L1. Since the state variables (such as
F = x/X and k) are generally discontinuous across the singular cross-section, so is
the volume-specific free energy ψX. The normal on the left part of the bar at X = L1
is denoted N−(= N) = 1; hence, we use the notation N+(= −N) = −1 for the
normal in the opposite direction.

4.2 Elastic-Plastic Model – Linearized Format

We adopt a simple elastic-plastic model with isotropic hardening. A linearization of
the spatially objective large deformation formulation is obtained by introducing the
volume-specific free energy as

3 A more explicit definition of sensitivities is possible if we define the “unit sensitivity” fields ẋ ′(i),
i = 1, 2, . . . , NDIM, via the identity dẋ = ∑NDIM

i=1 ẋ ′(i) d(Ẋi ).
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ψX
(
F , εp, k

) = ψe
X

(
F , εp) + ψ

p
X(k) = 1

2
E

[
F − F p (

εp)]2 + 1

2
Hk2 (18)

where the parts ψe
X (F , εp) and ψ

p
X(k) represent linear elasticity and isotropic

hardening, respectively, with F p (εp)
def= 1 + εp. The material parameters are E

(elasticity modulus) and H (hardening modulus). The thermodynamically consist-
ent stresses are

P = ∂ψX

∂F
= E

[
F − F p (

εp)] = −∂ψX

∂εp , K = −∂ψX

∂k
= −Hk (19)

We may thus express the (local) volume-specific material rate of dissipation dX =
K � Dt k according to (12) with the matrices k and K defined as

k
def=

[
εp

k

]
, K

def=
[

P

K

]
(20)

The yield criterion with isotropic hardening is expressed as


 (P ,K) = |P | − [Y + K] = 0 (21)

where Y is the uniaxial yield stress. We also adopt the (material) evolution rules

Dtε
p = ∂


∂P
= λ

P

|P | , Dt k = ∂


∂K
= −λ (22)

where λ is the plastic multiplier.
The continuum tangent relation for P in terms of F and k can be written as

DtP = ∂P

∂F
|k,X DtF +

[
∂P

∂k
|F,X

]T

Dt k = E
[
DtF − Dtε

p] (23)

The consistency condition Dt
 ≤ 0 at a plastic state gives

λ = E

h

〈
P

|P |DtF

〉
, h

def= E + H (24)

Now, taking the total variation of Dt k with respect to variation of Ẋ, while using
(22) and (24), we obtain the sensitivity relation

(Dt k)′ = RT(DtF )′ with RT
def= E

h

〈 P
|P | DtF 〉

| P
|P |DtF |

[
1

− P
|P |

]
(25)

which is linear in the sensitivity (DtF )′. The expression in (25) is well-defined for
all solutions except at neutral loading defined by P

|P |DtF = 0. In particular, it can

be evaluated for the situation Ẋ = 0, corresponding to vanishing configurational
motion.
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Finally, we take the variation of DtP upon using (23) and (25) to obtain

(DtP )′ = ET(DtF )′ with ET
def= E

[

1 − 1

h

〈 P
|P | DtF 〉

| P
|P |DtF |

]

(26)

where ET is the tangent stiffness tensor.

4.3 Explicit (Classical) Configurational Forces at the Material
Interface

The explicit expression for DCONF was discussed in some detail in [1]. Upon in-
troducing the assumption of vanishing material motion at the exterior boundary, i.e.
Ẋ = 0 on X = 0, L, we obtain the classical representation

GCONF def= [|�|]|X=L1 = [|�X|]|X=L1 − [|F |]|X=L1P (27)

Remark. In the special case of linear elasticity, defined by F p = 1, we obtain
GCONF = −[|�X|]|X=L1 . �

4.4 Implicit (Configurational-Induced) Configurational Forces at
the Material Interface – Tangent Problem

The weak format of the (quasistatic) equilibrium equation for the bar under consid-
eration is

a(x, k; δx)
def=

∫

	X

dδx

dX
P (F , k; X) dX = 0, ∀δx ∈ V

0 (28)

Since 	X = [0, L] (or, more precisely, the location of the singular section) is not
time-invariant at configurational changes, the admissible test functions δx ∈ V

0

are time-dependent in the parametrization δx(X, t); however, this relation is con-
strained by the condition that δx(X, t) is stationary in the absolute configuration,

i.e. δx(X(ξ , t), t)
def= δx(ξ , t) = δx(ξ ). In particular, this means that

�tδx = 0, Dt δx = − dδx

dX
Ẋ (29)

�t

(
dδx

dX

)
= −

(
dδx

dX

)
dẊ

dX
, Dt

(
dδx

dX

)
= (Dt δx)

dX
(30)

The purpose is to first solve for the sensitivity field ẋ′{•, dẊ} ∈ V
0 from the tangent

problem
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dẊ

[
d

dt
a(•; δx)

]
= 0, ∀δx ∈ V

0 (31)

for given variations4 dẊ ∈ X
0, and then to compute k̇

′{•, dẊ}. It can be shown
(whereby (6) is used) that the tangent relation becomes

aT(•; δx, ẋ ′) = lT(•; δx, dẊ), ∀δx ∈ V
0 (32)

where the pertinent tangent forms are defined as

aT(•; δx, ẋ ′) def=
∫

	X

dδx

dX
ET

dẋ ′

dX
dX (33)

lT(•; δx, dẊ)
def=

∫

	X

dδx

dX

[
ETF

dẊ

dX
+ rX dẊ

]
dX (34)

where rX is defined as follows:

rX = �ET
dF

dX
+ E

dεp

dX
− ∂P

∂X
|F,k, �ET

def= ET − E (35)

When the field ẋ ′ has been computed, we obtain v′ = ẋ′ − F dẊ that is discontinu-
ous across the singular surface. Finally, we compute the field (DtF )′ = dv′/ dX

and use (25) to obtain

GMAT =
∫

	
p
X

KT(Dt k)′ dX =
∫

	
p
X

KTRT(DtF )′ dX

=
∫

	
p
X

EY

h

〈 P
|P | DtF 〉

| P
|P |DtF |

P

|P | (DtF )′ dX (36)

In order to obtain the last expression in (36), we used that |P |−K = Y in the plastic
domain 	

p
X, defined by the current state satisfying the yield criterion, 
 = 0.

5 Numerical Example

5.1 Problem Characteristics

The bar in Figure 2(a) is henceforth assumed to have homogeneous material prop-
erties in the subdomains (on each side of the singular section). As a consequence
F and εp will become p.w. uniform and, hence, rX = 0. Moreover, linear shape

4 The required regularity of X
0 depends on the chosen format; here, we assume that dẊ is con-

tinuous and that dẊ = 0 on ∂	X,D for any dẊ ∈ X
0.
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Fig. 2 (a) Bar in uniaxial stress with discontinuity in material properties at interface, (b) linear
elastic-hardening stress-strain response curves.

and test functions are chosen for the two elements (indicated in Figure 2(a)) for
the material and spatial motions (Ẋ(X), ẋ(X)), whereby (DtF )′ becomes p.w. uni-
form. The maximal displacement is ūmax/L = 0.5 · 10−3. We choose L1/L =
L2/L = 0.5. The material parameters for the elastic-plastic model are: E,H with
Eref, Yref = 0.001Eref,Href = 0.2Eref. They assume different values on each side
of the interface, as shown schematically in Figure 2(b).

5.2 Numerical Results

A series of computations were carried out to study the development of GCONF and
GMAT with increasing (prescribed) displacement, while it was assumed that there is
a mismatch across the interface of (a) elastic and (b) plastic (hardening) properties.
In case (a) H1 = H2 = Href, whereas in case (b) E1 = E2 = Eref. These results are
shown in Figure 3.

For case (a) the following observations are made: Before plastic yielding the only
contribution to G is from the missmatch of the elastic properties. This contribution
vanishes, of course, in case (b). In both cases, the contribution from GMAT is pos-
itive (while GCONF is negative); however, this is not a general property since GMAT

represents the variation of the dissipation rate due to configurational changes.

6 Discussion and Conclusions

We have presented a novel investigation in the context of configurational changes for
a rate-independent dissipative material; namely, we considered the total variation of
the rate of global dissipation with respect to the rate of configurational motion. Such
a variation may, alternatively, be considered as the evaluation of the total sensitiv-
ity due to configurational changes, which may be brought about (in their turn) by
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Fig. 3 Development of components GCONF, GMAT and G = GCONF + GMAT with increasing load-
ing (prescribed displacement) for (a) mismatch of elasticity: E2 = 0.5Eref, and (b) mismatch of
hardening: H2 = 0.5Href.

physical changes. It is then clear that the material part of the dissipation is indeed
coupled (and sensitive) to configurational changes. However, it is not at all clear
how to use this information. The classical approach in defining the “driving force”
for configurational changes, advocated in the current literature, is to account only
for the explicit part of the total configurational force, denoted GCONF in this paper.

The paper discussed essentially two aspects: (1) how to formulate (or construct)
the total dissipation in the presence of configurational changes, and (2) how to com-
pute the total sensitivity of the global dissipation via the appropriate formulation of
a tangent problem for the standard equilibrium equation. The numerical results ob-
tained for dissimilar material properties across the singular surface in a simple bar
showed that a misfit in the elasticity modulus resulted in larger value of GMAT than
did a misfit in the hardening modulus.
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On Crack Analysis of Functionally Graded
Materials with Material Forces

Rolf Mahnken

Abstract Functionally Graded Materials (FGMs) are advanced materials that pos-
sess continuously graded properties. Applications of FGMs are on composites,
ceramics, alloys and coatings. This work is concerned with the crack analysis of
FGMs. To this end we exploit a Clausius–Planck inequality to a migrating con-
trol volume. As a consequence of the principle of maximum dissipation the dir-
ection of crack propagation is obtained in terms of material forces. In the numer-
ical implementation a staggered algorithm – deformation update for fixed geometry
followed by geometry update for fixed deformation – is employed. The corres-
ponding finite element mesh is generated by combining Delaunay triangulation
with local mesh refinement. In a numerical example the brittle crack propagation
in an FGM is investigated for varying directions of strength gradation within the
structures.

1 Introduction

During the past two decades much research of Functionally Graded Materials
(FGMs) has been focused on manufacturing, material design and property estim-
ation as well as thermal and structural analysis [24]. Applications of FGMs are
on composites, ceramics, alloys and coatings. Compared to conventional materials
FGMs have the possibility of tailoring its gradation to maximize its performance.

This work is concerned with the simulation of brittle crack growth in FGMs. On
the analysis of stationary cracks for FGMs we refer to the comprehensive review
in [21]. The analytical investigations in [3] showed that the asymptotic crack-tip
stress field possesses the same square root singularity as in homogeneous materials.
Furthermore, Eischen [5] used the traditional eigenfunction expansion technique

Rolf Mahnken
Chair of Engineering Mechanics (LTM), University of Paderborn, Germany;
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P. Steinmann (ed.), IUTAM Symposium on Progress in the Theory and Numerics of
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of Williams to show, that the leading term in 2D crack-tip elastic fields remain
square-root singular, which allows to express the stress fields in terms of stress in-
tensity factors (SIFs). Further analytical results for SIFs for some typical fracturing
modes in FGMs are presented in [6, 7]. Numerical methods for fracture analysis of
FGMs in stationary cracks are presented in [1]. Additional references are given e.g.
in [11]. In [15] the concept of material forces is applied to FGMs and the accuracy
of the method is discussed for two examples based on comparison with available
theoretical and numerical solutions. Concerning the numerical treatment of crack
propagation with finite elements in homogeneous structures different possibilities
can be distinguished, e.g. insertion of interface elements between existing bulk ele-
ments [20], alignment of critical element segments [18], extended finite element
method (XFEM) [19] and and meshfree methods [14].

The simulation of crack propagation depends strongly on the three aspects
of (1) initiation of crack growth, (2) direction of crack growth and (3) length
of crack growth. In this work a Griffith-type crack criterion function is used to
account for the first aspect. Furthermore, we employ a dissipation inequality to a
time dependent migrating control volume, introduced in [9]. Then, a constitutive
equation for crack tip evolution is obtained in terms of material forces from
the principle of maximum dissipation, thus rendering the direction of crack
growth [18]. The final system of partial differential equations is summarized,
and the numerical implementation is briefly outlined. In this way the length of
crack growth is a result of a staggered algorithm – deformation update for fixed
geometry followed by geometry update for fixed deformation. The corresponding
mesh is generated at fixed deformation by combining Delaunay triangulation with
local mesh refinement. In a numerical example the brittle crack propagation in
an FGM is investigated for varying directions of strength gradation within the
structure.

Notations: Square brackets [•] are used throughout the paper to denote ‘function of’
in order to distinguish from mathematical groupings with parenthesis (•).

2 Kinematics and Balance Equations

2.1 Parameterization of Geometry and Displacement

In Figure 1a we consider a body B with reference configuration B ⊂ IEndim , where
IEndim denotes the Euclidean space with dimension ndim = 2 or ndim = 3. The
boundary has an exterior part ∂Bu ∪ ∂Bσ with ∂Bu ∩ ∂Bσ = ∅ and the crack is
represented by a surface �+ ∪ �−. In order to take into account the peculiarity of
singular stresses at the crack tip, a cut along a boundary �+

ε is introduced in Fig-
ure 1a. Then we concentrate on the reference configuration B̄ = B\Bε ⊂ IEndim

as introduced in Figure 1b, where singular stresses are assumed not to occur. A ma-
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Figure 1 Configurations of body B with a crack: (a) reference configuration B with sharp
crack at time t , (b) reference configuration B̄ with cut at time t , (c) time independent reference
structure �̄, (d) deformed configuration at time t .

terial point of the structure has a position x ∈ B̄. Since during crack propagation
the reference configuration B̄ ⊂ IEndim is changing with time t ∈ I = IR+, adi-
tionally, in Figure 1c we consider the region �̄ of a reference structure, which is not
dependent on time t . Here a material point has a position θ ∈ �̄. Additionally, in
Figure 1d we have the time dependent current configuration, which is deformed due
to loading. By denoting u ∈ IEndim as the displacement a material point at time t has
position x + u ∈ IEndim .

With reference to all three configurations in Figure 1, analogously to the ap-
proach in [18], we introduce the following three mappings

1. t, θ �→ x(t, θ), 2. t, x �→ u(t, x), 3. t, θ �→ U(t, θ). (1)

As outlined in the mapping (1.1) represents a parameterization of the medium in
terms of the time t and the time independent position θ ∈ �̄. In this way it accounts
for geometry changes due to crack propagation. The mapping (1.2) represents the
time dependent displacement u parameterized by the time t and the time dependent
position x ∈ B̄, whereas the mapping (1.3) represents the time dependent displace-
ment U parameterized by the time t and the time independent position θ ∈ �̄.
Furthermore, we introduce the following time derivatives of Eqs. (1)1 and (1)2

1.
o
x = ∂x

∂t
= V 2. u̇ = ∂u

∂t
. (2)

As explained in [16] the symbols (◦) and (·) refer to time derivatives w.r.t. to fixed
positions θ and x, respectively. In this way, the vector V is the material velocity
and represents the rate of geometry change w.r.t. to the fixed reference structure �̄,
whereas the vector u̇ represents the velocity of a material point w.r.t. to the non-fixed
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Figure 2 Time dependent
migrating control volume
R[t] with material velocity
V.

V

R[t]nσ .
Γε

R[t]

Γ

Γ
+

-

ε

ε

reference configuration B̄. Then in summary we have the relations

1. v = u̇ + h · V, 2. v ⊗ ∇ = ḣ + (h · V) ⊗ ∇, 3.
d

dt
dV = (1 : V)dV, (3)

where h = u ⊗ ∇ is the displacement gradient and dV is a differential volume
element [18]. A further fundamental ingredient of a geometrically linear theory is
the strain-displacement relation ε = 1/2 (h + hT ). The spatial and the material
velocities are restricted by Dirichlet boundary conditions as v = v̄ on ∂Bu, V = 0
on ∂B̄\�ε . The geometry can change only along the boundary �ε due to crack
propagation. As indicated in Figures 1a and 1b, the corresponding rate of crack

extension at the crack tip boundary is denoted as V = o

A on �ε .

2.2 Time Dependent Migrating Control Volume

Balance and state equations of continuum mechanics typically are formulated for
control volumes. In order to consider possible geometry changes we follow an ap-
proach by Gurtin and Podio-Guidugli [9] using a migrating control volume. As in-
dicated in Figure 2 it is a closed subregion R[t] for which ∂R[t] evolves smoothly
with time t . Following Gurtin and Podio-Guidugli [9] we view the dependence of
R[t] on t as resulting from the addition and removal of material points. This view-
point has important consequences for the formulation of balance and state equations
in the next section.

2.3 Dissipation Inequality

As noted in [9] the power of the distributed reaction forces σ ·n on ∂R[t] in Figure 2
should account for the power performed in the addition and removal of material
at the boundary ∂R[t] and for the change in material structure as the crack tip
evolves. Classically, the standard stress σ expends power over the material velocity
u̇. But when the control volume migrates, there is no intrinsic material description
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of the deformed boundary x[t] ∈ ∂R[t], since material is being added and removed.
Therefore, following Gurtin and Podio-Guidugli [9] as a velocity for x[t] ∈ ∂R[t]
we use the total velocity v[x ∈ ∂R[t], t] by fixing the structural coordinate θ and
write the boundary power of σ in the form (σ · n) · v.

Since material is neither added nor removed from interior points of R[t], and
since there is no change in material structure away from the crack tip, the power
of the body force b has the standard form b · u̇ [9]. In summary, the power of the
mechanical forces is

P =
∫

∂R[t ]
(σ · n) · v dA +

∫

R[t ]
b · u̇ dV. (4)

Let us assume the following functional relationship for the bulk free-energy function
with respect to a unit volume:

ψ = ψ[ε[x[t], t], x[t]], (5)

where ψ is the strain energy function with respect to a unit volume. Note that for
a functionally graded material ψ is also explicitly dependent on the position x.
The principle of positive dissipation for the migrating control volume is postulated
as

D = P − d

dt
� ≥ 0. (6)

In [16] the above dissipation inequality is rewritten after some algebric manipula-
tions as

D = −
∫

�ε

(� · n) · V dA ≥ 0. (7)

Here, we define the energy momentum tensor or Eshelby tensor, respectively, intro-
duced by Eshelby [8]

� = ψ1 − hT · σ . (8)

In the limit �ε → 0 the dissipation in Eq. (7) reads as

1. D = J · o

A≥ 0, where 2. J = − lim
�ε→0

∫

�ε

� · n dA. (9)

Therefore, we can interpret J in Eq. (9)2 as a material force vector (in the sense of

Eshelby), which is work-conjugate to the material velocity
o

A at the crack tip.
We remark that in [16] the constitutive relation

σ = ∂εψ (10)
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is derived from the global dissipation inequality. Furthermore, the balance law of
material forces

� · ∇ + B = 0 ∀ x ∈ B̄, B = −hT · b − ∂xψ. (11)

is a consequence of the balance law σ · ∇ + b = 0 and the constitutive relation (10).
This is conceptually different to approaches in the literature, where the constitutive
relation (10) or the balance law of material forces are introduced as a postulate, see
e.g. [12, 17, 18] for different approaches.

2.4 Evolution Equation for Crack Propagation

In order to formulate a constitutive equation for the crack growth vector
o

A in Eq. (9)1
we follow the approach of [18] by using the principle of maximum dissipation.
A Griffith-type crack criterion function is introduced as �[J] = ||J|| − �c ≤
0, where �c is the critical energy release. Next, a Lagrangian is introduced as

L[J,
o

λ] = −D+ o

λ �[J]. Then, the necessary conditions for a stationary point

of the Lagrangian, L[J,
o

λ] → stationary, renders the evolution vector of crack
propagation

o

A= o

λ ∂J�[J] = o

λ
J

||J|| (12)

along with the crack loading-unloading conditions in Kuhn–Tucker form
o

λ≥ 0,

�[J] ≤ 0,
o

λ �[J] = 0.
Since the vector J/||J|| in Eq. (12) has a unit length, it follows that the mul-

tiplier
o

λ in Eq. (12) has the interpretation of the rate of crack growth, i.e.
o

λ =
o

A= dA/dt . As pointed out in [18], the above constitutive equations determine the

direction of crack propagation at a point x ∈ B̄. However the specific value of
o

λ is
undetermined.

2.5 Summary of Coupled Initial-Boundary Value Problem

From the above derivations we can formulate an initial-boundary value problem for
the coupled deformation/crack propagation problem as follows:
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1. ε = 1
2

(
h + hT

)
2. h = u ⊗ ∇

3. σ = ∂εψ 4. σ · ∇ + b = 0

5. � = ψ1 − hT · σ 6. � · ∇ + B = 0

7.
o
x = ∂x

∂t
= V 8. u̇ = ∂u

∂t

9. v = u̇ + h · V

10.
o

A = o

λ
J

||J|| 11. �[J] = ||J|| − �c ≤ 0

12.
o

λ ≥ 0 , �[J] ≤ 0,
o

λ �[J] = 0 13. J = − lim
�ε→0

∫

�ε

� · n dA.

(13)

Here we have the strain-displacement relation (13)1, where the displacement gradi-
ent is defined in (13)2. Equation (13)3 is the elastic constitutive relation for the
Cauchy stress tensor satisfying the balance equation Eq. (13)4. Equation (13)5 is the
definition for the Eshelby stress tensor satisfying the balance equation Eq. (13)6.
Equation (13)9 expresses the spatial velocity v in terms of the material velocity V
Eq. (13)7 and the displacement velocity u̇ Eq. (13)8. The vector of crack propagation
is defined in Eq. (13)10 in terms of the material force vector defined in Eq. (13)13,
and a Griffith-type crack criterion function is formulated in Eq. (13)11, along with
the crack loading-unloading conditions (13)12. Additionally, appropriate Neumann
and Dirichlet boundary conditions have to be formulated for the Cauchy stress tensor
σ and the spatial and material velocity v and V. Furthermore initial conditions
v(t = 0) = v0, V(t = 0) = V0 are prescribed.

2.6 Solution of Coupled Initial-Boundary Value Problem

The initial-boundary value problem (13) accounting for both, evolution of deforma-
tion and evolution of crack propagation, in practice can hardly be solved in a mono-
lithic way. Therefore, following Miehe and Gürses [18] a staggered algorithm – de-
formation update for fixed geometry followed by geometry update for fixed deform-
ation – is employed within each time increment, 
n+1t = n+1t − nt , n = 1, . . . , Nt .
On the numerical treatment of the deformation problem and determination of ma-
terial forces as post-processing we refer to [2, 23]. The domain integral method is
used for efficient evaluation of the J -integral vectors, see [4, 13, 15]. Let α denote
the relaxation counter for the staggered algorithm, then, the crack propagation cri-
terion �[n+1

α J] = ||n+1
α J|| − �c ≤ 0 is checked at the crack tip. For � > 0 a crack

relaxation step is performed, based on the evolution vector of crack propagation (12)

n+1
α 
A = 
λ

n+1
α J

||n+1
α J|| . (14)

67



R. Mahnken

Β

Β

J
A

Β
n+1

Β
n+1

∆

h

Β
n+1 h

Β
h

Β
n+1 h

α

n+1

α+1

α+1

n+1

n+1

n+1

α

α

α

n+1
α

α +1

α+1

a) b) c)

Figure 3 Geometry update for fixed deformation: (a) material force n+1
α J at crack tip, (b) crack

propagation n+1
α 
 A and update of boundary n+1

α+1∂B, (c) discretization n+1
α+1B

h = ∪
n+1
α+1Nel

e=1 Be

after remeshing.

Figure 4 Compact tension
specimen: geometry and
loading, rotated coordinate
x∗

1 representing the gradation
with angle θ .

H
=

1
0

L = 20

B
=

4
a=0.5

H
=

1
0w

w

[mm]

x

x
θ

x*
x*

1

1

2

2

Then, as illustrated in Figure 3 the crack propagates by an increment n+1
α 
A. This in

turn renders an update of the geometry n+1
α+1B. The corresponding mesh is generated

by combining Delaunay triangulation with local mesh refinement, [10, 16, 22].

3 Compact Tension Specimen with Graded Material

We consider a compact tension specimen. with geometry according to Figure 4.
The applied loading corresponds to a vertical displacements ±w at the boundary
x1 = 0.5. The material gradation within the structure is expressed by the coordinate
x∗

1 , which is rotated by an angle θ relative to the coordinate x1 as shown in Figure 4.
Then the corresponding Young’s modulus is an exponential function of the form
E[x∗

1 ] = E1e
βx∗

1 . Further details on the material parameters are given in [16].
Two different angles for θ have been investigated: θ = 0◦ and θ = 90◦. For

the case θ = 0◦ the material is symmetric with respect to the horizontal x1-axes,
such that a crack starting from the notch propagating horizontally through the ct-
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Figure 5 Compact tension specimen: crack propagation for θ = 0◦ (left) and θ = 90◦ (right).

specimen is expected theoretically. Tetrahedral elements with linear shape functions
have been used.

The results of both simulations are shown in Figure 5 for the cases θ = 0◦ and
θ = 90◦. From Figure 5, left, it is observed, that the algorithm captures the the-
oretical horizontal crack pattern very well. Furthermore the illustration in Figure 5
renders a strong upwards crack for gradation with angle θ = 90◦. More results con-
cerning the robustness of the algorithm with respect to spatial and time discretization
are presented in [16].
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Momentum and Material Momentum in
Superconductors

C. Trimarco

Abstract The electric current of a superconducting solid can be associated with the
flow of an ideal compressible fluid. A momentum density can be naturally associated
with this flow. In deformable superconductors, the presence of finite deformations
affects the electromagnetic fields and possibly the flow of the fluid. One of the result
is that to the supercurrent in the undeformed configuration of the solid is associated
the material (or configurational) momentum rather than the momentum density.

1 Introduction

Superconductivity is still a challenge for theoreticians and experimentalists after al-
most 100 years from its discovery. The main features of a superconductor can be
summarised in two. First, an electric current can last theoretically for thousands
years without any voltage applied. Second, the magnetic flux is fully ejected from
a material in a superconducting state (Meissner effect). This effect leads to strong
magnetic interactions: levitation is one of the most impressive examples. Unfortu-
nately, these phenomena occur at very low temperature and one of the challenges is
to reproduce them at room temperature, in order to exploit their great potentiality
in technological applications. Warm superconductors (at 35◦Kelvin degrees) have
been discovered recently (Bednortz and Müller, Nobel prize in 1986). Nowadays,
the upper limit for temperature is estimated around 195◦K. However, the micro-
scopic mechanism for superconductivity proposed by Bardeen, Cooper and Schri-
effer (Nobel prize in 1972) apparently does not describe satisfactorily this second
generation of warm superconductors. Thus, these aspects still represent a theoretical
challenge for future research.
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The successful explanation of the classical superconductivity provided by
Bardeen, Cooper and Schrieffer [3] essentially relies on Fröhlich ideas, according
to which elastic wave interactions (phonons) favour the flow of an electric current
in some circumstances [6–8, 13, 15]. The mechanism is usually described by the
following oversimplified argument. A local polarisation of the lattice cell, due to the
passage of an electron, favours the passage of a second electron, which is accelerated
by the electric field generated by this polarisation. In all other circumstances, elastic
waves are responsible for the resistivity of the conductor. The aforementioned pairs
of electrons, the Cooper pairs, are responsible for the supercurrents. These electron
pairs, whose total spin is zero, behave statistically as bosons, which are known to
condensate at low temperatures. Thus, quantum mechanics is the proper framework
of the microscopic theories of superconductivity [5–10, 13, 15, 16].

In this framework, a complex-valued function of space and time is associated
with a charged particle. This function, in fact the wave function of quantum me-
chanics, is governed by the Schrödinger equation. This equation is derived from a
classical Hamiltonian formulation after a preliminary introduction of the canonical
momenta of the particle and of the electromagnetic fields [5, 11, 15, 16]. Surpris-
ingly, the Schrödinger equation addresses known equations of continuum mechanics
for ideal compressible fluids, whose density and velocity fields are defined through
the amplitude and phase of the wave function. Due to the presence of the electro-
magnetic fields, the velocity field of the introduced fluid turns out to depend on the
vector potential in such a way that the flow is an irrotational flow in the absence
of the magnetic induction. These results do not hold generally for large number of
particles. However, in some circumstances and at very low temperatures, groups of
charged particles like the aforementioned Cooper pairs behave as indistinguishable
particles that are governed by the Bose–Einstein Statistical laws [6] and a single
wave function can be associated with all of them, in accordance with the principles
and rules of quantum mechanics [5–10, 13–16].

The Ginzburg–Landau (GL) theory of superconductors provides an equation that
is essentially a nonlinear Schrödinger equation for this macroscopic wave function
[10, 13–16]. The latter plays the role then of an order parameter in the phase transi-
tion from the normal to the superconductive state. The GL equation can be extended
to the dynamical case and eventually leads to the aforementioned Eulerian com-
pressible fluid, which is now associated with the supercurrent [8, 13, 26]. In this
context, the electromagnetic vector potential, which is usually regarded as an aux-
iliary field, acts as a primary field [1, 14]. This role of primary field persists in the
macroscopic framework. In fact, the London’s law for electric currents in supercon-
ductors, according to which the supercurrent is proportional to the vector potential,
naturally emerges if the supercurrent is associated with the momentum of the fluid
[13, 15–18].

In deformable bodies, the vector potential combines with the deformation gradi-
ent in such a way that the form invariance of the Maxwell equations is preserved in
any configuration of the solid body [19–21, 23–27]. With reference to the flow of the
aforementioned Eulerian fluid, the supercurrent in the undeformed configuration of
the body turns out to be associated with the material or configurational momentum
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of the flow, rather than with its momentum in this configuration. This remark sug-
gests a proper reformulation of London’s equation in deformable superconductor.

2 Electric Currents

The persistency of the flow of an electric current in a superconductor in the absence
of electric fields conflicts with the Ohm’s law, but is consistent with the following
law suggested by Becker et al. [4] and known as the acceleration equation for point
wise charged particles:

∂

∂t
js = Nq2

m
E. (1)

js denotes the supercurrent density, E the electric field, N the number of particles in-
volved, q and m the electric charge and the mass, respectively, of each particle. The
reader is addressed to [26] for notation and further details. Consider the following
equation:

∂

∂t
(� curljs + B) = 0. (2)

where � is a phenomenological quantity and B the magnetic induction, which sat-
isfy the Maxwell equation

div B = 0, (3)

This equation introduces the vector potential through the equation

curl A = B. (4)

Equations (1) and (2) are similar the one another, if we assume that Nq2/m ≡ �−1.
This can be readily checked through the curl of Equation (1) and by exploiting the
Maxwell equation

curl E + ∂

∂t
B = 0. (5)

However, there is a remarkable difference between (1) and (2), which is pointed out
hereafter. Integration in time of Equation (2) entails the equation

� curl js + B = c. (6)

where c is a vector-valued constant in time. London’s conjecture can be summarized
in assuming c = 0, whence the two London laws follow straightforwardly

� js = −A + ∇g, (7)

�
∂

∂t
Js = −E + ∇f, (8)

g and f represent arbitrary functions of the position x and time. x ∈ V ≡
V {simply connected open set} ⊂ E3 ≡ {Euclidean space}, t ∈ R
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A further London’s conjecture is to identify f with the electromagnetic scalar
potential ϕ. According to this conjecture, the right hand side of Equation (8) iden-
tically vanishes in the presence of electrostatic fields. As a result, a supercurrent
cannot be accelerated by electrostatic fields, differently from what is predicted by
the Becker’s acceleration Equation (1) [18]. It will be shown in the next section that
the identification f ≡ ϕ is hinted by the wave solution of the Maxwell equations.

3 Maxwellian Fields and London’s Conjectures

The Maxwell equations in S.I. units are found in classical textbooks [4, 11]. Here,
we only recall the relationships between the electric field and the electromagnetic
potentials ϕ and A, which stem from Equations (3–5)

E = −∇ϕ − ∂

∂t
A. (9)

The Maxwell equations can be uniquely written in terms of these potentials if addi-
tional conditions are introduced, the gauge conditions. Here, we refer to the classical
Lorenz–Lorentz gauge condition [4, 11, 12]

div A − 1

c2

∂

∂t
ϕ = 0, (10)

which addresses the uncoupled wave equations in a vacuum
(

� − 1

c2

∂

∂t

)
ϕ = − 1

ε0
ρe, (11)

(
� − 1

c2

∂

∂t

)
A = −µ0 j. (12)

The symbol � denotes the Laplace operator, ρe and j are the electric charge and
the electric current, respectively, ε0 and µ0 the electric permittivity and the magnetic
permeability of a vacuum. c−2 = ε0µ0.

Analogous equations hold true for the Maxwellian fields [4, 11]. For a point wise
moving electric charge, whose velocity is v, Equation (12) reads

(
� − 1

c2

∂

∂t

)
A = −µ0ρe v, (13)

where ρe denotes here the charge density (in distributional sense) of the charged
particle of interest. Equations (11) and (12) entail the solution

A = c−2ϕv. (14)
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In this context, the following London further assumption for supercharges is en-
lightening:

�ρs = −c−2ϕ, (15)

ρs being the supercharge density. This assumption provides a link between the vec-
tor potential and the momentum of the particle, through Equation (14). Permittivity
and permeability of the superconductor are assumed here to coincide with those of a
vacuum. In accordance with these assumptions, the following decoupled equations
for ϕ, A, E, ρs, js , and for the magnetic field H ≡ (µ−1

0 )B stem from Equations (11)
and (13): (

� − 1

c2

∂

∂t
− 1

λ2

)
(ϕ, A, E, H, ρs , js) = 0. (16)

λ ≡ (µ0�)1/2 represents London’s penetration depth.
It is worth recalling that in the mixed regime of coexistence of normal charges

ρn and currents jn = j − js with supercharges and supercurrents, from the Maxwell
equations a conservation law can be derived only for the total charge ρ = ρn + ρs

[17]. A conservation law for supercharges is in principle an additional assumption,
which can be stated as

∂

∂t
ρs + div js = 0. (17)

Eventually, note that in the stationary case, Equation (16) for H reduces to
(

� − 1

λ2

)
H = 0. (18)

This equation accounts for the celebrated Meissner–Ochsenfeld effect [6, 13, 15,
18].

4 Time Dependent Ginzburg–Landau Equation: Variational
Approach

According to Ginzburg and Landau’s view, a second order thermodynamical phase
transition drives a material from the normal to the superconductive state. In this re-
spect, these authors introduce a complex-valued order parameter ψ(x), which gov-
erns the phenomenon around the zero transition point, and a free energy density
that depends on ψ and on its spatial gradient [2, 6–10, 15, 19, 25–27]. Here, this
description is extended to the dynamical case, in which dissipation is ignored. In
this dynamical framework, a Lagrangian density replaces the free energy density
and this Lagrangian is assumed to depend on ψ(x, t) and on its space and time
derivatives as follows:

Lem = γ 2

2
(∇Aψ) ◦ (∇A ψ)
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+ γ

2i

⎡

⎣ψ

(
∂ψ

∂t

)

ϕ

−
(

∂ψ

∂t

)

ϕ

ψ̄

⎤

⎦ + F̂ [(ψ, ψ̄, (curl A)], (19)

where the over bar denotes the complex conjugate of the quantity of interest. Specif-
ically,

(∇Aψ) ≡
(

∇ − ι
δ

γ
A

)
ψ̄, (20)

(∇Aψ) ≡
(

∇ + ι
δ

γ
A

)
ψ̄, (21)

(
∂ψ

∂t

)

ϕ

≡
(

∂

∂t
+ ι

δ

γ
ϕ

)
ψ, (22)

and (
∂ψ

∂t

)

ϕ

≡
(

∂

∂t
− ι

δ

γ
ϕ

)
ψ̄. (23)

ι denotes the imaginary unit. δ and γ are phenomenological constants. If the de-
pendence of F̂ on (curl A) is quadratic, such as assumed in the GL theory, the
Euler–Lagrange (EL) equations associated with the Lagrangian (19) are

1

µ0
curl(curl A) = ∂F̂

∂A
≡ δγ

2ι
(ψ̄∇ψ − ψ∇ψ̄) − (ψψ̄)Aδ2, (24)

γ 2

2
(∇A) ◦ [(∇Aψ)] − ∂F̂

∂ψ̄
= γ

ι

(
∂ψ

∂t

)

ϕ

. (25)

Note that Equation (24) corresponds to one of the Maxewll equations. Henceforth,
its right hand side represents an electric current, in fact the supercurrent

js = δγ

2ι
(ψ̄∇ψ − ψ∇ψ̄) − (ψψ̄)Aδ2 (26)

upon which we will comment in the next sections. Equation (25) represents a time
dependent version of the GL equation if F̂ is replaced by its polynomial expansion

F̂ ≈ −c(ψψ̄)2 + d

2
(ψψ̄)4 + 1

2µ0
(curl A)2 (27)

and if the coefficients c and d are understood as depending on the temperature and
possibly on the infinitesimal strain [2]. The extended GL Equation (25) can be also
viewed as a nonlinear Schrödinger equation [8, 15, 26].
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5 Euler Equations for Compressible Fluids: Momentum of the
Supercurrent

Look for a solution of the following form for Equation (25):

ψ = ρ1/2(x, t) exp[(ι/γ )θ(x, t)] (28)

so that ρ = (ψψ̄) represents the mass density of the supercurrent. Substitution of ψ

into Equation (25) leads to the following equations, which are the real and imaginary
part of this equation, respectively:

∂ρ

∂t
+ div (ρν) = 0, (29)

∂ν

∂t
+ (∇ν)ν = −

(γ

2

)2
(∇) + δ(E + νxB), (30)

where
ν ≡ (∇θ − Aδ) (31)

and

 ≡ 1

2

(
ρ∇

(
1

ρ

))2

+ div

(
ρ∇

(
1

ρ

))
+ (c − dρ). (32)

Details for the derivations of these equations are found in [26]. One can easily recog-
nise in Equations (29) and (30) the Euler equations of an ideal compressible fluid,
whose density is ρ and the velocity ν. Note that the quantity  plays the role of the
enthalpy.

It is worth remarking that Equations (29) and (30) are coupled with the Maxwell
equations. Specifically, Equation (31) leads to

curl ν = B. (33)

The latter shows in evidence that the flow is an irrotational flow only in the absence
of electromagnetic fields, in which case θ plays the role of a velocity potential.

Substitution of expression (28) into Equation (26) leads to the following explicit
formula for the supercurrent:

js = δρ((∇θ − δA). (34)

Equation (34), which is reminding of London’s law such as expressed by Equa-
tion (7), establishes a link between the supercurrent with the momentum density of
the fluid

p ≡ ρν = ρ(∇θ − δA). (35)

All this reasoning is expounded for a rigid superconductor at rest.
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6 Material (or Configurational) Momentum of the Supercurrent

Assume now that the superconducting material is a deformable, possibly moving
solid. In this case, it is suitable to write all equations and fields of interest (the
mechanical and the electromagnetic ones) in the undeformed reference configura-
tion of the material, which is denoted hereafter by VR. The related current config-
uration is denoted by V . If X ∈ VR and x ∈ V, x = χ(X, t) is the motion of
a material point. As usual, F denotes the deformation gradient, FT its transpose,
J = (det F) > 0, v ≡ ẋ the velocity of the material point. B = FFT is the left
Cauchy–Green deformation tensor [22, 28]. The electromagnetic potentials in VR
are

AR(X, t) = FT A(x(X, t), t) (36)

and
�(X, t) = ϕ(x(X, t), t) − v ◦ A. (37)

These potentials satisfy the following equations that correspond to Equations (4)
and (9) properly written in the reference configuration:

BR = Curl AR, (38)

ER = −ȦR − ∇R�. (39)

Curl and (∇R) are the differential curl and gradient operator in VR. The superposed
dot denotes the material (or Lagrangian) time derivative.

Introduce the order parameter �(X, t) in the undeformed configuration and as-
sume that

� = ψ̂ J 1/2, (40)

where ψ̂ = ψ̂(x(X, t), t). In the following, the symbol ψ will denote both ψ̂ and ψ

by abusing notation. In analogy with Equation (28), we can express � in polar form
as

�(X, t) = ρ
1/2
0 (X, t) exp [(ι/γ )�(X, t)]. (41)

According to these assumptions, the quantity ��̄ = ρ0 = Jρ possibly repre-
sents the density of the supercharges in the reference configuration.

Taking into account Equation (36) and recalling that ∇R = FT ∇, Equation (26)
can be written in terms of � as

js = δγ

2ι
J−1/2 F−T

[
�̄∇R

(
�J−1/2

)
− �∇R

(
�̄J−1/2

)
− AR ��̄δ2

]
, (42)

which simplifies as follows:

js = δγ

2ι
J−1 F−T

[
�̄∇R� − �∇R �̄ − AR ��̄δ2

]
. (43)

Substitution of Equation (41) into Equation (43) provides the equation
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JFT js = δρ0(∇R� − ARδ). (44)

As �(X, t) = θ [x(X, t), t) and ∇R� = FT (∇θ), Equation (44) also reads

JFT js = δρ0 FT (∇θ − δA) ≡ δρ0 FT ν, (45)

where ρ(≡ J−1ρ0) and ν satisfy Equations (29–31), as ψ(x, t) satisfies (24) and
(25). These results encourage to identifying the supercurrent in the undeformed con-
figuration as

Js ≡ δγ

2ι

[
�̄∇R� − �∇R�̄ − AR��̄δ2

]
= δρ0(∇R� − δAR). (46)

Accordingly, as Js ≡ JFT js , the following material momentum of configurational
mechanics is associated with Js in a natural way:

pR = JFT p ≡ JFT ρν = ρ0(∇Rθ − ARδ). (47)

Equation (47) shows in evidence that the quantity (∇R� − ARδ), differently from
the quantity (∇θ − δA) ≡ ν, cannot be regarded as a velocity field of an Eulerian
fluid. In addition, if we assume that in a deformable and moving superconductor
London’s law (7) holds true in the undeformed configuration, then the supercurrent
in the actual configuration is

�js = J−1
B

(
−A + ∇Ĝ

)
. (48)

This formula is based on the general transformation rule for the electric current in
the reference configuration of the body

J ≡ JFT (j + ρev),

which satisfies the related Maxwell equation in this configuration [21–23, 25–29].

7 Concluding Remarks

London’s relation between the supercurrent and the electromagnetic vector potential
survives in a deformable superconductor. Specifically, for a given deformation the
supercurrent is linearly related with the vector potential through the left Cauchy–
Green deformation tensor.

It is also worth remarking that, in an extended time-dependent GL theory for
superconductors, the vector potential plays the role of a velocity field of an Euler
compressible fluid. This occurrence allows attributing a momentum and a mater-
ial momentum density to the supercurrent. The latter result suggests that possible
interactions of the supercurrent with electromagnetic waves or light should occur
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through their material momentum or pseudomomentum (P × B), rather that through
the momentum (ε0E × B) [20, 23, 24].
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Dislocations, Microforce and Micromomentum
in Second Order Finite Elasto-Plasticity

Sanda Cleja-Ţigoiu

Abstract The paper deals with thermodynamic restrictions for physical force, mi-
croforce and micromomentum, compatible with the imbalanced free energy condi-
tion, written for isothermal processes, within the constitutive framework of elasto-
plastic materials with continuously distributed dislocations, which are mathematic-
ally modeled by the existence of the plastic connection with non-zero torsion and
non-zero curvature.

1 Introduction

The paper deals with macroscopic constitutive description for elasto-plastic mater-
ials with continuously distributed dislocations, involving physical quantities such
as disclination and couple forces. There is an extensive literature devoted to the
theories of continuous distributions of dislocations, proposed in different mod-
els [2,6,8,10]. The exposure of coordinate-free differential geometry concepts, like
connection, torsion, curvature, appropriate for the material uniformity is presented
by Noll in [12].

In our description three configurations will be considered:

• k a fixed, initial (reference) configuration of the body B,
• χ(·, t) the actual configuration at time t, related to the motion function χ of the

continuous body,
• Kt an anholonomic configuration, the so called configuration with torsion,

defined through the second order plastic deformation (Fp,
(p)

� k), the plastic dis-
tortion and plastic connection with non-zero torsion. Here Fp is an invertible

second order tensor, while
(p)

� k is a third order field.

Sanda Cleja-Ţigoiu
University of Bucharest, Faculty of Mathematics and Computer Science, 14 Academiei,
010014 Bucharest, Romania; e-mail: tigoiu@fmi.unibuc.ro
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In the proposed framework the presence of continuously distributed dislocations are
described either by

(a) a plastic connection with non-zero torsion, but with zero curvature ( a Bilby’s
connection in [1]), i.e. the non-zero Burgers vector exists (see for instance in
Teodosiu [16]), since the first order compatibility condition is not satisfied, or
by

(b) a plastic connection with non-zero torsion, as well as with non-zero curvature (a
Kondo’s connection, see [9]), which means also the presence of the disclination.

The kinematics of the elasto-plastic processes involve non-local effects and rise
from the decomposition rule of the second order pair (F,�), defined for any motion
by F = ∇χ and � = F−1∇F. � has zero torsion and could be considered to be a
measure of the gradient of the deformation gradient, ∇F.

The decomposition rule

(F,�) := (Fe,
(e)
�K) ◦ (Fp,

(p)

� k), ⇐⇒

F = FeFp, � = (Fp)−1
(e)
�K [Fp, Fp]+ (p)

� k, (1)

means multiplicative decomposition of the deformation gradient into elastic and
plastic distortions, and the relationship between connections (see also Cross [4]).
Here the following notation for a third order field generated by a connection, say �,

and by second order tensors, for instance F1, F2,

(�[F1, F2]u)v = (�(F1u)) F2v, ∀u, v ∈ V, (2)

has been introduced for vectors u, v.

In our notation � represents the matrix of the coefficients in a coordinate system
for the connection. We make the difference between ∇�F, the covariant derivative
of F, say F = F i

j ii ⊗ ej ({ij } is a Cartesian basis), calculated with respect to the
connection � with metric property, instead of the Chistoffel symbol used in the
Riemannian geometry,

∇�F =
(

∂F i
j

∂xk
+ F i

m�m
jk

)

ii ⊗ ej ⊗ ek, (3)

and the derivative of F in a coordinate system xi, in the direction u

(∇F)u = ∂F i
j

∂xk
ukii ⊗ ej . (4)

Here the rule of derivation with respect to the configuration with torsion is given,
for a field F, by

∇KF = ∇F(Fp)−1. (5)
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2 Plastic Connection

First a new representation theorem for the plastic connection with metric property
is proved, certain incompatibility tensors being involved.

Let us remark that two geometrical structures have been introduced on the an-
holonomic configuration K

((Fp)−1,
(p)

� K), with a metric tensor cp := (Fp)−T (Fp)−1

(Fe,
(e)
�K), with a metric tensor Ce := (Fe)T (Fe). (6)

The connections
(p)

� K and
(p)

� k are related through

(p)

� K := −Fp
(p)

� k [(Fp)−1, (Fp)−1]. (7)

Ax. The connection
(p)

� K has metric property (see Schouten [13]), with respect

to the metric tensor cp, i.e. (∇K cp)u = (
(p)

� K u)T cp + cp(
(p)

� K u), ∀u.

Theorem 1. Under the hypotheses: plastic connection has metric property and the
composition rule for second order elastic and plastic deformations,

(1) The plastic and elastic connections are represented through

(p)

� K ũ = Fp(∇K(Fp)−1)ũ + (cp)−1(�ũ × I)

(e)
� K ũ = (Fe)−1(∇K(Fe))ũ + (cp)−1(�ũ × I). (8)

with � a second order tensor.
(2) The non-metricity measure Qe

K, of the elastic connection is given by

Qe
K ũ = −Ce(cp)−1(�ũ × I) − [(�ũ × I)]T (cp)−1Ce, (9)

starting from the definition

Qe
Ku ≡ (

(e)
�K u)T Ce + Ce(

(e)
�K u) − (∇K Ce)u.

(3) The second order torsion tensor N
p
K (≡ N e

K ) is expressed by

N
p
K = FpcurlK(Fp)−1 + (cp)−1

(
tr �I − (�)T

)
, (10)

with Cartan torsion SK and N
p
K related by (Sp

K ũ)ṽ = N
p
K(ũ × ṽ).

We use the following notations
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(p)

AK ũ := Fp(∇K(Fp)−1)ũ,
(e)
AK ũ := (Fe)−1(∇K(Fe))ũ, (11)

for the so called Bilby’s connections.

Let a connection, say for the elastic connection
(e)
�K , be given. The torsion is

defined as the skew-symmetric part of the connection

(Se
Kv)u ≡ (

(e)
�K v)u − (

(e)
�K u)v. (12)

Remarks 1. In the case of small plastic distortion, i.e. Fp = I+βp, with |βp| � 1,
formula (10) is reduced to the expression proposed by Nye for the torsion-curvature
tensor. � measures the influence of the non-zero curvature.

2.
(p)

� K and
(p)

� k, both of them have metric property if and only if Fp ∈ Orth.

3. If
(p)

� k has zero Riemann curvature, then it has metric property. Thus all other
appropriate configurations have metric properties.

As a consequence of the adopted definitions in (1), the kinematic relationships
between the rates of the elastic and plastic distortions and the velocity gradient L

L = Le + FeLp(Fe)−1, L = ∇v

Le = Ḟe(Fe)−1, Lp = Ḟp(Fp)−1. (13)

3 Balance Equations

Two types of forces are involved in the model, physical forces represented by on
one hand by T, non-symmetric Cauchy stress and µ, the stress momentum and on
the other hand by microforces ϒ

p
K and micromomenta µ

p
K .

We introduce the relationship between the stress momentum µ, written with re-
spect to the actual configuration and those represented in the configuration with
torsion, µK ,

µK = (det Fe)(Fe)T µ[(Fe)−T , (Fe)−T ]. (14)

Based on the adopted kinematics and power conjugated forces, we introduce the
following assumption:

Ax. The expression of the internal power is postulated to be given in terms of phys-
ical and micro forces and their appropriate conjugated rates
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(Pint )K = 1

ρ
(T + T∗) · Le + 1

ρK
ϒ

p
K · Lp + 1

ρK
µ

p
K · ∇KLp+

+ 1

ρK
µK · LLp

( (e)
AK

) + 1

ρK
µλ

K ·
(

d

dt
(�) × I

)
. (15)

Here

LLp

( (e)
AK

) = d

dt

(e)
AK −Lp

(e)
AK + (e)

AK [I, Lp]+ (e)
AK Lp =

= (Fe)−1∇χ L[Fe, Fe] − ∇KLp, (16)

and represents the elastic contribution at the second order velocity gradient, while
the rate of elastic distortion Le is replaced from the kinematic relationship (13).

Based on the principle of the virtual power appropriate to finite elasto-plastic
models, formulated by Cleja-Tigoiu in [3], the balance equations for macro and mi-
cro forces have been derived within the second order theory, when the plastic con-
nection is flat, i.e. the Riemann curvature tensor is vanishing. The plastic connection
expressed through the formula (8) becomes flat when � = 0.

(1) The macro (local) balance equations

ρa = div T + ρbf , in χ(P , t) ≡ Pt ,

T∗ = div µ + ρBm, (17)

with the boundary condition Tn = t, µn = M on ∂Pt , where n is the unit nor-
mal vector. ρ and ρK are the mass densities in the actual configuration and in the
configuration with torsion, respectively.

(2) The microbalance equations

ϒ
p
K = div (µ

p
K) + ρKBp

m, in K(P , t), (18)

with µ
p
Kn = Mp on ∂K(P , t), have to be satisfied by the forces, in any de-

formation process.
If the curvature tensor associated with the plastic connection is non-zero, then

variation of the internal power is produced also by the non-zero rate of �, as it has
been postulated via the formula (15). Thus the microbalance equations have to be
completed by

div (µλ
K) + ρKBλ

m = 0, in K(P , t), (19)

µλ
Kn = Mλ on ∂K(P , t).

Following Gurtin’s idea in [7, 8], the second law of thermomechanics is formal-
ized for any deformation process, through the free energy imbalance

(Pint )K − ψ̇K ≥ 0, (20)
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with respect to the configuration with torsion, where ψK is the free energy density.

4 Free Energy Imbalance. Thermodynamic Restrictions

The thermodynamic restrictions within the constitutive framework can be derived,
starting from different forms postulated for the free energy density function. We
account for the dislocation and disclination by considering the free energy function
in K in the form

ψ = ψK (Ce, S̃e
K , (Fp)−1, sym

(p)

AK ,� × I), (21)

here ((� × I)u)v := �u × v and

(S̃e
K ũ)ṽ = (

(e)
AK ũ)ṽ − (

(e)
AK ṽ)ũ = (Fe)−1curlKFe(ũ × ṽ),

(e)
AK= 1

2
S̃e

K + symR

(e)
AK , (22)

with the last third order field defined by

(symR

(e)
AK ũ)ṽ := 1

2

(
(
(e)
AK ũ)ṽ + (

(e)
AK ṽ)ũ

)
. (23)

In our constitutive framework we consider the relationships

Ce = (Fp)−T C(Fp)−1, C = FT F,

(p)

AK= −Fp
(p)

Ak [(Fp)−1, (Fp)−1], (e)
AK= Fp(�k−

(p)

Ak)[(Fp)−1, (Fp)−1],

S̃e
K = S̃p

K = −FpS̃p

k [(Fp)−1, (Fp)−1], (24)

as well as

symR

(p)

AK = −Fp(sym
(p)

Ak)[(Fp)−1, (Fp)−1], (25)

that allow us to pass to the constitutive representation for the free energy density,
written with respect to the reference configuration

ψ = ψK (Ce, S̃e
K , (Fp)−1, sym

(p)

AK ,� × I),

= ψ̄k(C, S̃p

k , Fp, symR

(p)

Ak,� × I), (26)
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Proposition 1. The rate of stress free energy density is calculated from (21) as fol-
lows

ψ̇K = ∂CeψK · Ċe + ∂S̃e
K

ψK · d

dt
S̃e

K − (Fp)−T ∂(Fp)−1ψK · Lp+

+ ∂
symR

(p)

AK

ψK ·
(

d

dt
symR

(p)

AK

)
+ ∂�×IψK · (�̇ × I), (27)

in terms of rate of kinematic quantities, which have to be replaced by their appro-
priate expressions.

First of all we recall the formula

d

dt

(p)

AK= −∇KLp + Lp
(p)

AK − (p)

AK [I, Lp]− (p)

AK Lp, (28)

and thus the rate of S̃e
K can be derived

d

dt
(S̃e

K ) = −2skwR{∇KLp} + 2skwR{Lp
(p)

AK − (p)

AK [I, Lp]− (p)

AK Lp}.(29)

The time derivative of the elastic strain, defined in (24) and which appears in (27),
is replaced by

Ċe = 2 (Fe)T {L}sFe − 2 {CeLp}s, (30)

in terms of the velocity gradient and the rate of plastic distortion.

Remark. When we eliminate the rate of the elastic distortion from (27) via (30),
then only L and Lp and their appropriate differentials, ∇χ L and ∇KLp, enter the
internal power and the rate of the free energy density.

Proposition 2. The free energy imbalance yields for any virtual process, if the in-
equality written below

(Pint )K − ψ̇K = 2∂S̃e
K

ψK · skwR{(p)

AK [I, L̃p] + (p)

AK L̃p − L̃p
(p)

AK} +

+
{

1

ρ
(Fe)−1{T + T∗}s(Fe)−T − 2∂CeψK

}
· [(Fe)T {L̃}sFe − {Ce · L̃p}s] +

+ 1

ρ
{T + T∗}a · {L̃ − FeL̃p(Fe)−1}a +

{
1

ρK
ϒ

p
K + (Fp)−T ∂(Fp)−1ψK

}
· L̃p +

+ 1

ρK
µK · (Fe)−1(∇χ L̃)[Fe, Fe] − ∇K L̃p] + 1

ρK
µ

p

K · ∇K L̃p +

+
(

1

ρK
µλ

K − ∂�×IψK

)
· (δ� × I) + 2∂S̃e

K
ψK · skwR{∇K L̃p} +
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+ ∂
symR

(p)

AK

ψK · symR{∇K L̃p + (p)

AK [I, L̃p] + (p)

AK L̃p − L̃p
(p)

AK} ≥ 0 (31)

holds for any L̃ ≡ ∇χ ṽ, ∇χ L̃, and for given L̃p, ∇K L̃p, δ� restricted to certain
admissibility conditions.

The following notation, similar to (23), can be introduced for a third order field

(skwR

(e)
AK ũ)ṽ := 1

2

(
(
(e)
AK ũ)ṽ − (

(e)
AK ṽ)ũ

)
. (32)

We consider that it is possible to have Lp, ∇KLp and δ� vanishing, while the
virtual velocities L̃, ∇χ L̃ are arbitrarily given, then from (31) it follows that:

Proposition 3. Constitutive equations for macroforces (physical forces) are ex-
pressed through free energy density function ψK ,

1

ρK
�K = 2 ∂CeψK , or {T}s = 2ρFe ∂CeψK (Fe)T , {T}a = −T∗,

symR

{
1

ρK
µK

}
= 0, (33)

under the supposition that T∗ is a skewsymmetric tensor.

Here the (symmetric) Piola–Kirchhoff stress tensor with respect to the configuration
with torsion was introduced

1

ρK
�K = 1

ρ
FeT(Fe)T . (34)

Proposition 4. When we introduce (33) into (31), the dissipation inequality is de-
rived, i.e.

{
1

ρK
ϒ

p
K + (Fp)−T ∂(Fp)−1ψK

}
· L̃p +

(
1

ρK
µλ

K − ∂�×IψK

)
· (δ� × I)

+
(

1

ρK
µ

p
K − skwR

{
1

ρK
µK

})
· ∇K L̃p + 2∂S̃e

K
ψK · skwR{∇K L̃p}+

+2∂S̃e
K

ψK · skwR{(p)

AK [I, L̃p] + (p)

AK L̃p − L̃p
(p)

AK}+

+∂
symR

(p)

AK

ψK · symR{∇K L̃p + (p)

AK [I, L̃p] + (p)

AK L̃p − L̃p
(p)

AK} ≥ 0. (35)

Now we pass to the constitutive equations written with respect to the reference
configuration k. We use the relationships between the partial derivatives of the free
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energy expressed relative to the initial configuration k, and to the configuration with
torsion K, which are derived by applying the chain rule to (26).

∂Cψ̄k = (Fp)−1∂CeψK(Fp)−T

∂
symR

(p)

Ak

ψ̄k = −(Fp)T ∂
symR

(p)

AK

ψK [(Fp)−T , (Fp)−T ],

∂(e)

S̃ k

ψ̄k = −(Fp)−T ∂(e)

S̃ K

ψK [(Fp)T , (Fp)T ]. (36)

In order to avoid certain indeterminacy looking at the dissipation inequality (35),
we assume that

Ax. The stress momentum is derived from the free energy function via the con-
stitutive relation

1

ρK
µK = 2∂(e)

S̃ K

ψK . (37)

Obviously, (33) holds.
As a consequence of (37) together with (36) we get from (14)

µ

ρ
= −2 F−T ∂(e)

S̃ k

ψ̄k[FT , FT ]. (38)

Similar, from (33) together with (36), the constitutive equation to determine the
Cauchy stress in terms of the potential yields

1

ρK
�K = 2 ∂CeψK , or {T}s = 2F ∂Cψ̄kFT . (39)

The dissipation inequality (35) suggests the adoption of the constitutive visco-
plastic relationships for the microforces.

Ax. Constitutive equations for microforces and micromomenta contain dissipat-
ive and non-dissipative parts, the so-called energetic microforces,

ϒ
p
K = 2ρK Ce∂CeψK + ρK∂Fp ψ̄k(Fp)T + Yf Lp

µ
p
K = ρK∂

symL

(p)

AK

ψK + Ym∇KLp,

µλ
K = ρK∂�×IψK + Yλ(�̇ × I). (40)

In (40) the partial derivatives of the potential ψK have to be replaced by those
corresponding to ψ̄k, via the formulae (36). To ensure the positivity of the dissipated
power we add another constitutive restriction.

Ax. The scalar constitutive functions Yf , Ym, Yλ are defined in such a way to be
compatible with the dissipation inequality
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Yf Lp · Lp + Ym∇KLp · ∇KLp + Yλ(�̇ × I) · (�̇ × I) ≥ 0. (41)

5 Conclusions

1. A non-Cosserat kinematics has been developed, but the stresses and couple
stresses are involved, apart from Forest et al. [6], Teodosiu [15], and so on.

2. Not only physical forces are presented in our model, but also microforces and
micromomenta, which should be consistent with their microbalance equations,
like in the theories developed by Gurtin in [8], and Stumpf and Hackl in [14].
Here we distinguish between the microforces and the material forces in the sense
well defined by Maugin, see [11].

3. The kinematics of the elasto-plastic processes involve non-local effects and rise
from the decomposition rule of the second order pair of deformations, which
involve connection with non-zero torsion and non-zero curvature, apart from the
models with connection without torsion but having non-zero curvature, see [5].
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A Variational Framework for Dual Solutions
in the Physical and Material Space

Daniel Materna and Franz-Joseph Barthold

Abstract This contribution is concerned with duality techniques in the physical and
material spaces. Variational formulations for the primal physical and primal material
problem are derived and we introduce the corresponding dual problems. The dual
solutions in the physical and material spaces can be used to compute the changes in
a certain quantity of interest for arbitrary given changes in the physical and material
residual, respectively.

1 Introduction

A variational framework is a common approach for deriving the equilibrium re-
lations of the classical physical motion problem as well as for the corresponding
material motion problem in elasticity, see e.g. the monographs [3, 8]. Besides the
primal physical and the primal material problem we investigate duality techniques
based on variational arguments for both problems. The concept of duality plays an
important role in many fields, e.g. in structural mechanics, physics, optimization,
control theory, computational methods and goal-oriented error estimation.

In the context of structural mechanics and mechanics in the physical space, du-
ality relations are well-known as Betti’s principle, also known as the reciprocity
theorem. The corresponding dual solutions are Green’s functions or influence func-
tions, see e.g. [1].

In the context of configurational mechanics or mechanics in the material space, a
reciprocity relation in the material space similar to the reciprocity relation for point
loads in the physical space was proposed in [2]. We investigate a general variational
approach for dual solutions in the physical and material space.
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We consider for motivation a linear problem. Let for instance u ∈ V be the
solution of the so-called primal problem in the variational form

a(u, η) = F(η) ∀ η ∈ V, (1)

where a(·, ·) : V ×V → R denotes a bilinear form corresponding to the considered
differential operator and F(·) : V → R is a linear functional associated with the
given external loads in a given space V.

In duality techniques we are concerned with a certain quantity of interest or gen-
eral output or cost functional J (u), which can be every functional value which
corresponds in some sense to the solution u. The quantities of interest can be rep-
resented as linear or nonlinear functionals J (·) : V → R of the solution. This could
be point values, e.g. a component ui or the derivatives ∂kui at some given point Xp,
i.e.

J (u) = ui(Xp) or J (u) = ∂kui(Xp). (2)

For a chosen quantity of interest J (u), the corresponding dual or adjoint solution or
generalized Green’s function z ∈ V is determined by the dual or adjoint problem

a(η, z) = J (η) ∀ η ∈ V. (3)

By using (1) and (3) as well as the symmetry of a(·, ·) follows

J (u) = a(u, z) = F(z). (4)

If the dual solution z is known, the quantity of interest J (u) can be computed for
arbitrary functionals F(·), i.e. J (u) = F(z). In structural mechanics this relation is
well-known as Betti’s principle, see e.g. [1].

The relation (4) holds in the exact form only for linear problems. Nevertheless,
the duality approach can be extended to general nonlinear problems. Furthermore,
the concept is more general and not restricted to mechanical problems. In general,
every quantity of interest can be associated with a functional J (·).

2 A General Optimal Control Approach

We consider an abstract optimal control approach, which yields a general framework
for duality relations of variational problems, see e.g. [4]. Let x ∈ X be the solution
of a given (nonlinear) variational problem

B(x; η) := a(x; η) − F(η) = 0 ∀ η ∈ X (5)

in a space X. Here, a(x; ·) is a semilinear form, i.e. only linear with respect to all
arguments right from the semicolon and F(·) is again a linear functional. Further-
more, let J (x) : X → R be the (possible nonlinear) quantity of interest with respect
to the solution x.
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An optimal control approach ends in the following constraint optimization prob-
lem:

min
x∈X

J (x) subject to B(x; η) = 0 ∀ η ∈ X. (6)

The constraint is just the variational problem (5). The corresponding Lagrangian
functional reads

L(x,g) = J (x) + F(g) − a(x; g) = J (x) − B(x; g) (7)

and the first-order optimality condition follows in the form

L′(x,g)(ν, η) =
{

L′
x(x,g)(ν)

L′
g(x,g)(η)

}

=
{

J ′
x(x; ν) − B ′

x(x; g, ν)

− B(x; η)

}

= 0 (8)

for all {ν, η} ∈ X × X. Here, g ∈ X denotes the dual or adjoint variable. The first
equation in (8) is the dual or adjoint problem and reads: Find g ∈ X such that

B ′
x(x; g, ν) = J ′

x(x; ν) ∀ ν ∈ X, (9)

with the tangent operator B ′
x(x; ·, ·) and the linearized functional J ′

x(x; ·), i.e.

B ′
x(x; g, ν) := d

dε
B(x + ε ν; g)

∣
∣
∣
∣
ε=0

, J ′
x(x; ν) := d

dε
J (x + ε ν)

∣
∣
∣
∣
ε=0

. (10)

The dual problem is a linear problem and is formulated at the current linearization
point, i.e. at a given solution x.

The second equation in (8) is just the variational equation of the primal problem
(5). In the general nonlinear case, the solution of this equation within a Newton
scheme requires the linearization B(x; η) + DxB(x; η) · �x + O = 0. The tan-
gent operator is given in (10) and denoted by t (x; η,�x) := DxB(x; η) · �x =
B ′

x(x; η,�x). The term O denotes a reminder of higher-order and can usually be
neglected. Hence, the solution of the nonlinear primal problem (5) requires the solu-
tion of the linear equation

t (x; η,�x) = −B(x; η) ∀ η ∈ X (11)

in every Newton step in order to find the new increment �x.
By using (9) and (11) as well as the symmetry of the bilinear form B ′

x(x; ·, ·) =
t (x; ·, ·), i.e. B ′

x(x; η,�x) = B ′
x(x; �x, η), we have

J ′
x(x; �x) = t (x; g,�x) = −B(x; g). (12)

If the dual solution g is known, the change in the quantity of interest J (x) can be
computed for arbitrary functionals B(x; ·), i.e. J ′

x(x; �x) = −B(x; g).
In order to make this relation more transparent we consider a discrete formu-

lation. Let J (x) = xi be the quantity of interest and let g ∈ R
n be the discrete

dual solution according to xi as well as J x ∈ R
n be a discrete vector which corres-
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ponds to J ′
x(x; ·). Furthermore, let T ∈ R

n×n be the tangent matrix and let B ∈ R
n

be a discrete vector corresponding to the bilinear form t (x; ·, ·) and the functional
B(x; ·), respectively. With these, the discrete versions of (11) and (9), i.e. the dis-
crete primal problem and the discrete dual problem are given as

T �x = −B and T T g = J x, (13)

respectively. Due to the symmetry of the tangent form B ′
x(x; ·, ·), we have T =

T T . Then, the change in the quantity of interest J ′
x(x; �x) = �xi at the current

linearization point x is given from the discrete version of (12) in form of

�xi = �xT J x = �xT T T g = gT T �x = −gT B. (14)

3 Variational Balance Laws in the Physical and Material Spaces

Let E(v, s) be the total potential energy of a hyperelastic body. The energy depends
on the generalized state function v ∈ V and on a generalized design or control func-
tion s ∈ S, which specifies in an abstract sense the current reference configuration
�R , i.e. �R = �R(s). The space V denotes the usual Sobolev space and S the space
with all admissible design functions. The total potential energy is given by

E(v, s) :=
∫

�R

WR d� − F(s; v), (15)

where WR denotes the strain energy function and F(s; ·) is a functional associated
with the external potential.

The partial variation of E with respect to v yields the primal physical residual

R(v, s; η) := E′
v(v, s; η) =

∫

�R

P : Grad η d� − F(s; η) = 0 ∀ η ∈ V. (16)

In the same manner, variation with respect to s leads to the primal material residual

G(v, s; ψ) := E′
s (v, s; ψ) =

∫

�R

� : Grad ψ d� − F ′
s (s; v,ψ) = 0 ∀ ψ ∈ S.

(17)
Both residuals are written in terms of the reference configuration �R in which P

is the first Piola–Kirchhoff stress tensor and � = WRI − Grad vT P denotes the
energy-momentum tensor. Using standard pull back and push forward operations
we can transform all quantities into different configurations, see e.g. [8].

Let Y := V ×S be a product space and set y = {v, s} ∈ Y, �y = {�v,�s} ∈ Y
as well as ϕ = {η,ψ} ∈ Y. The simultaneous solution of the coupled physical (16)
and material problem (17) ends in the linearized equation

H (y; ϕ,�y) = −L(y; ϕ) ∀ ϕ ∈ Y, (18)
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H (y; ϕ,�y) :=
{

k(v, s; η,�v) + p(v, s; η,�s)

p(v, s; �v,ψ) + d(v, s; ψ,�s)

}
,L(y; ϕ) :=

{
R(v, s; η)

G(v, s; ψ)

}

,

which has to be solved in each Newton step. The Hessian operator H (y; ϕ,�y)

contains the partial variations of R and G, respectively, i.e. the second and mixed
variations of the energy functional. The variations are given as

k(v, s; η,�v) := R′
v(v, s; η,�v) = E′′

vv, (19)

p(v, s; η,�s) := R′
s (v, s; η,�s) = E′′

vs, (20)

d(v, s; ψ,�s) := G′
s (v, s; ψ,�s) = E′′

ss, (21)

p(v, s; �v,ψ) := G′
v(v, s; ψ,�v) = E′′

sv, (22)

where k(·; ·) is the tangent physical stiffness operator and d(·; ·) is the tangent ma-
terial stiffness operator. Due to symmetry and permutableness of variations, the
problem is coupled by the tangent pseudo load operator p(·; ·) := R′

s (·; ·) = E′′
vs =

E′′
sv = G′

v(·; ·), see [5] for explicit formulations of the tangent operators.

4 Duality Techniques for the Physical Problem

4.1 The Primal Physical Problem

The variational equation of the primal problem is given in Eq. (16). The solution
within a Newton scheme requires the linearization R(v, s; η)+DvR(v, s; η) ·�v+
O = 0. The tangent operator DvR(v, s; η) ·�v = R′

v(u, s; η,�v) = k(v, s; η,�v)

is the tangent physical stiffness operator (19). Hence, the solution of (16) requires
the solution of the linear equation

k(v, s; η,�v) = −R(v, s; η) ∀ η ∈ V (23)

in every Newton step in order to compute the increment �v.

4.2 The Dual Physical Problem

Let J (·) : V → R be a (possible nonlinear) quantity of interest for a given fixed s.
We use the optimal control approach from Section 2 with x = v as the considered
variable and we set X = V. Then, the corresponding dual physical solution z ∈ V
is determined by

k(v, s; z, η) = J ′
v(v; η) ∀ η ∈ V. (24)

The variation of J according to (10) is given from
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J ′
v(v; η) = d

dε
J (v + ε η)

∣
∣
∣
∣
ε=0

.

The explicit form of J ′
v(v; ·) depends on the chosen quantity of interest J .

With (23) and (24) and by using the symmetry of k(v, s; ·, ·) we have

J ′
v(v; �v) = k(v, s; z,�v) = −R(v, s; z). (25)

Finally, if the dual solution z is known, the change in the quantity of interest can be
computed for arbitrary functionals R(·).

We consider the discrete case. Let J (vh) = vi be the quantity of interest and let
z ∈ R

n be the vector with the discrete dual solution corresponding to vi . Then, the
discrete form of (25) for the change in the quantity of interest reads

�vi = −zT R, (26)

where R ∈ R
n is the physical residual vector corresponding to R(v, s; ·).

4.3 Sensitivity Relation Using the Dual Solution

We consider a variational sensitivity relation for the change in the state v due to
changes in the material configuration s. This reads: Find δv ∈ V for a given fixed
design variation δŝ ∈ S such that

k(v, s; η, δv) = −Qp(v, s; η) ∀ η ∈ V, (27)

where Qp(v, s; ·) := p(v, s; ·, δŝ) = R′
s (v, s; ·, δŝ) is the pseudo load of the phys-

ical problem for the variation δŝ, see [5] for details. The variation in the state δv ∈ V
due to a variation in the design δs ∈ S is given in (27). The dual solution z is given
from (24). From this, we obtain a sensitivity relation for the change in the quantity
of interest

J ′
v(v; δv) = k(v, s; z, δv) = −Qp(v, s; z). (28)

If the dual solution z is known, Eq. (28) can be evaluated for arbitrary pseudo loads
Qp(u, s; ·), i.e. for arbitrary admissible design variations δs [7].

We consider the discrete case. Let again J (vh) = vi and z ∈ R
n be the vector

with the discrete dual solution. Furthermore, let δŝ ∈ R
m be a discrete vector with

the changes in the design variables. Then, the discrete form of (28) is given as

δvi = −zT Qp, (29)

where Qp = P δŝ ∈ R
n is the pseudo load vector and P ∈ R

n×m is the pseudo load
operator matrix corresponding to Qp(v, s; ·) and p(v, s; ·, ·), respectively.
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4.4 The Material Residual of the Dual Problem

The dual solution z ∈ V is determined by the linear equation (24). We assume, that
J (v) is a regularized functional and well defined on V . Then, the dual solution z is
a minimizer of the corresponding energy functional of the dual problem

E∗(v)(z, s) := 1

2
k(v, s; z, z) − J ′

v(v, s; z). (30)

By means of the tangent operator k(v, s; ·, ·), we introduce the strain energy func-
tion of the dual problem W∗

R(v, z) such that the internal energy of the dual problem
reads

1

2
k(v, s; z, z) =

∫

�R

W∗
R(v, z) d�. (31)

With this, the total potential energy of the dual problem can be written as

E∗(v)(z, s) =
∫

�R

W∗
R(v, z) d� − J ′

v(v, s; z). (32)

The dual energy functional E∗(v)(z, s) is constructed at a given deformed state v

and describes an energy quantity due to the linear dual solution z at this point [7].
The variation of E∗ with respect to z yields the dual physical residual

R∗(v, s; z, η) := E∗
z
′
(v)(z, s; η) = k(v, s; z, η)−J ′

v(v, s; η) = 0 ∀ η ∈ V. (33)

This is just the dual problem (24). A variation of E∗ with respect to s leads to the
dual material residual

G∗(v, s; z; ψ) := E∗
s
′
(v)(z, s; ψ)

= 1

2
k′
s(v, s; z; ψ) − J ′′

vs(v, s; z,ψ) = 0 ∀ ψ ∈ S. (34)

The variation of the internal energy of the dual problem (31) is given by

1

2
k′
s(v, s; z; ψ) =

∫

�R

�∗(v, z) : Grad ψ d�. (35)

Here, we have introduced an energy-momentum tensor of the dual problem

�∗(v, z) := W∗
R(v, z)I − Grad zT ∂W∗

R(v, z)

∂ Grad z
− Grad vT ∂W∗

R(v, z)

∂ Grad v
. (36)

The dual material residual G∗ represents the sensitivity of the energy functional
E∗(v)(z, s) with respect to changes in the design s, see [7] for details. It is well-
known that the material residual of the primal problem G is an error indicator for
a non-optimal finite element discretization of the primal solution v and used within
global mesh optimization algorithms. The material residual of the dual problem
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G∗ is an error indicator for a non-optimal finite element discretization of the dual
solution z and can be used within a goal-oriented r-adaptivity algorithm [6].

5 Duality Techniques for the Material Problem

5.1 The Primal Material Problem

The variational equation of the material problem is given in Eq. (17) and reads
G(v, s; ψ) = 0. In order to solve this nonlinear problem in a staggered way, we use
the linearization G(v, s; ψ) + DsG(v, s; ψ) · �s + O = 0, see [5] for details. The
material tangent operator is introduced as m(v, s; ψ,�s) := DsG(v, s; ψ) · �s.
This is a bilinear form m : S × S → R, which has to be evaluated for the current
{v, s}. Hence, we have to solve the linear equation

m(v, s; ψ,�s) = −G(v, s; ψ) ∀ ψ ∈ S (37)

in every Newton step in order to compute the increment �s.

5.2 The Dual Material Problem

Let J (·) : S → R be a quantity of interest for a given fixed v. We use the op-
timal control approach from Section 2 and we set x = s and X = S. Then, the
corresponding dual material solution q ∈ S is determined by the linear equation

m(v, s; q,ψ) = J ′
s (s; ψ) ∀ ψ ∈ S. (38)

The variation of J according to (10) is given from

J ′
s(s; ψ) = d

dε
J (s + ε ψ)

∣
∣∣
∣
ε=0

.

By using (37) and (38) as well as the symmetry of m(v, s; ·, ·) we have

J ′
s (s; �s) = m(v, s; q,�s) = −G(v, s; q). (39)

If the dual solution q is known J ′
s (s; �s) can be computed for any functionals G(·).

We consider the discrete case. Let J (sh) = si be the quantity of interest and let
q ∈ R

m be the vector with the discrete dual solution corresponding to si . Then, the
discrete form of (39) for the change in the quantity of interest reads

�si = −qT G, (40)
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where G ∈ R
m is the material residual vector corresponding to G(v, s; ·).

5.3 Duality Relation for the Coupled Problem

We consider the solution of the coupled physical and material problem given in
Eq. (18). Let J (v, s) : V × S → R be a differentiable quantity of interest. The dual
solution y∗ := {zc, qc} ∈ Y is determined by the dual problem

H (y; y∗,ϕ) = J ′(y; ϕ) ∀ ϕ ∈ Y, (41)

H (y; y∗,ϕ) :=
{

k(v, s; zc, η) + p(v, s; η, qc)

p(v, s; zc,ψ) + d(v, s; qc,ψ)

}
, J ′(y; ϕ) :=

{
J ′

v(v, s; η)

J ′
s(v, s; ψ)

}

.

Due to the symmetry properties of H , i.e. H (y; ϕ,�y) = H (y; �y,ϕ), we have

J ′(y; �y) = H (y; y∗,�y) = −L(y; y∗). (42)

This equation can be evaluated for arbitrary residuals L(y; ·) if the dual solutions
y∗ = {zc, qc} are known. The result is the total change in the quantity of interest
with respect to v and s. The index c indicates that the dual solutions are obtained
using the coupled system. Note, that these dual solutions differ in general from the
results which are obtained with (24) and (38), respectively. Because the consecutive
solution of (24) and (38) is part of a staggered solution scheme, i.e. a decoupled
algorithm, and the increments {�v,�s} differ from the results of (18).

6 Conclusions

We have considered duality techniques for the physical and material problem based
on variational principles. A general optimal control approach yields the framework
for duality relations of variational equations. The dual solution depends on the kind
of the considered variational problem. For the physical and material problem the
duality relations are summarized in the following table:

linearized primal problem dual problem
physical problem: R = 0 k(η,�v) = −R(η) k(z, η) = J ′

v(η)

material problem: G = 0 m(ψ,�s) = −G(ψ) m(q,ψ) = J ′
s (ψ)

The dual problems in the physical and material spaces are linear problems and for-
mulated at the current linearization points {v, s}, i.e. at a given deformed state. If
the dual solutions are known, a quantity of interest can be computed for arbitrary
physical and material residuals, respectively.

An example for a dual physical solution z and a dual material solution q is given
in Fig. 1 (the vertical components). The approximate dual solutions zh and qh are
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Fig. 1 Plate with a slit loaded by a body force bR : the dual physical solution zh and the dual
material solution qh in vertical direction.

computed using the finite element method and the shown mesh by solving (24) and
(38), respectively. The physical quantity of interest is the vertical component of the
nodal displacement at a given point P , i.e. J (vh) = u2(P ). The material quantity of
interest is the vertical component of the nodal coordinate at P , i.e. J (sh) = X2(P ).
The dual solutions reflect the influence of the considered residual on the change
in the physical and material quantity of interest, respectively. For instance, a large
value of z in a certain domain �i indicates that a physical residual in �i causes
a large change in u2. In the same manner, a large value of q in �i indicates that a
material residual in �i causes a large change in X2. Hence, the dual solutions are the
influence functions for the considered physical and material quantity, respectively.

Furthermore, we have investigated the material residual of the dual physical
problem G∗(v, s; z; ·). In the context of the finite element method, the residual
G∗(vh, sh; zh; ·) is an error indicator for a non-optimal finite element mesh for the
dual solution zh and can be used within a goal-oriented r-adaptive mesh optimiza-
tion algorithm.
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On the Nonlocal Symmetries, Group Invariant
Solutions and Conservation Laws of the
Equations of Nonlinear Dynamical
Compressible Elasticity

G.W. Bluman, A.F. Cheviakov and J.F. Ganghoffer

Abstract A family of new PDE systems of one-dimensional nonlinear elastodynam-
ics, which are nonlocally related to the classical Lagrange and Euler formulations, is
derived. These new PDE systems provide alternative equivalent descriptions of the
one-dimensional nonlinear elasticity model. In particular, nonlocally related sys-
tems are used to find nonlocal symmetries of the Euler system for various forms
of constitutive and loading functions. Examples of new dynamical solutions arising
as group invariant solutions with respect to such nonlocal symmetries are construc-
ted. Another application of nonlocally related systems considered in this paper is
the construction of nonlocal conservation laws. Examples of nonlocal conservation
laws are derived for several classes of stress-strain relations and loading functions.

1 Introduction

Analytical studies of nonlinear dynamical elasticity models, and especially, the
problem of finding exact solutions, have attracted significant attention of researchers
in recent years. Lie symmetries are widely used in the analysis of contemporary non-
linear elasticity models, especially for the calculation of similarity (invariant) solu-
tions, arising from symmetry reduction (see [1–4] and further references in [7]). Fo-
cusing on nonlinear elasticity, it is well known that very few closed-form solutions
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of BVPs for compressible elasticity have been obtained in the literature (contrary
to incompressible elasticity), due to the absence of the kinematic incompressibility
constraint, as pointed out in [8,9]. Lie group analysis is of further interest in setting
up numerical schemes preserving the group properties of an initial boundary value
problem (BVP) [5].

The problem of finding conservation laws (full divergence expressions) that hold
for a system of partial differential equations (PDEs) is an important counterpart to
symmetry analysis. In elasticity theory, one well-known application of conservation
laws is the Eshelby energy-momentum tensor, and a related path-independent in-
tegral, which governs the energy release rate at a singularity [10]. Symmetries play
moreover an important role in Eshelbian mechanics, since invariance of a suitable
functional under translations in material space (corresponding to horizontal vari-
ations) highlights the Eshelby tensor in the resulting equilibrium equation [6]. In a
series of papers, Olver studied conservation laws and related path-independent in-
tegrals in linear elastostatics within the framework of hyperelasticity (see [11] and
references therein). Mathematically, conservation laws can be systematically cal-
culated, both for variational problems (Noether’s theorem) and for non-variational
problems [13, 14].

The present contribution is organized as follows. In Section 2, the Euler and
Lagrange PDE systems of one-dimensional systems of nonlinear elastodynamics
are presented. In Section 3, a nonlocal relation between the Euler and Lagrange
PDE systems is derived, and using conservation laws of the Euler system, a set
of additional PDE systems, equivalent but nonlocally related to both the Euler and
Lagrange PDE systems, is constructed. In Section 4, nonlocal symmetries of the
Euler system are classified, arising as point symmetries of its nonlocally related
systems. Such nonlocal symmetries are used in Section 5 to derive an example of
an exact invariant solution of a nonlinear elastodynamics BVP, corresponding to a
nonlinear stretching. In Section 6, one of the considered nonlocally related PDE
systems is used to derive new nonlocal conservation laws of the Euler equations of
nonlinear elastodynamics.

2 Nonlinear Elasticity: Boundary Value Problems in 1D

In the one-dimensional situation, since the transformation gradient is the ratio of
initial to actual density, F = q = ρ0/ρ, the Cauchy stress is given by σ = σ(ρ).
The 1D Euler system is given by [7]

E{x, t ; v, σ, ρ} :
⎧
⎨

⎩

ρt + (ρv)x = 0,

σx + ρf (x, t) = ρ(vt + vvx),

σ = K(ρ).

(1)

In this paper we will only consider conservative forces f (x, t) = f (x).
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The independent variables are the Eulerian coordinates (x, t), the dependent vari-
ables are (ρ, v, σ ), and some freedom of choice is allowed for the possible forms
of the load per unit mass f = f (x) and the material’s constitutive response, i.e.
the function K = K(ρ). Dimensionless variables are adopted in the sequel, follow-
ing [7].

The relationship between the first Piola–Kirchhoff stress and the Cauchy stress
leads in 1D to σ = T . Therefore, the 1D Lagrange system in dimensionless vari-
ables is given by

L{y, s ; v, σ, q, x} :

⎧
⎪⎪⎨

⎪⎪⎩

q = xy,

v = xt ,

vt = σy + f (x),

σ = K(1/q).

(2)

In the Lagrange system, the independent variables are the Lagrangian coordinates
(y, t), the dependent variables are (x, v, q, σ ), and the free functions are f = f (x)

and K1(q) ≡ K(1/q).

3 Nonlocally Related Systems of 1D Nonlinear Elasticity

Consider a PDE system R{x ; u} of N PDEs of order k with n independent variables
x = (x1, . . . , xn) and m dependent variables u(x) = (u1(x), . . . , um(x)), given by

Rσ [u] ≡ Rσ (x, u, ∂u, . . . , ∂ku) = 0, σ = 1, . . . , N. (3)

PDE systems nonlocally related to R{x ; u} arise in the following two simple ways
[12].

(a) If the system R{x ; u} has a conservation law

Di�
i [u] = 0, (4)

then one may accordingly introduce nonlocal (potential) variable(s) v, satisfying
corresponding potential equations. The union of the set of equations of R{x ; u}
and the potential equations yields a potential system S{x ; u, v}.

(b) Exclusion of one of the dependent variables of R{x ; u} by differential com-
patibility relations (e.g. vxt = vtx) yields a nonlocally related subsystem.
For example, if u1 can be excluded, the corresponding subsystem is denoted
R{x ; u2, . . . , un}.

Combinations of the above two constructions, including their use in combination
with interchanges of dependent and independent variables, may be used to obtain
further nonlocally related PDE systems.

Solution sets of nonlocally related PDE systems are equivalent, in the sense that
the solution set of one such system can be found from the solution set of of any
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other one. Therefore any method of analysis (qualitative, perturbation, numerical,
etc.) that fails to work for a given PDE system, especially a method that is not
coordinate-dependent, could turn out to be successful when applied to such a non-
locally related PDE system. In particular, for a given PDE system, through Lie’s
algorithm applied to a nonlocally related system, one can systematically calculate
nonlocal symmetries (which in turn are useful for obtaining new exact solutions
from known ones), construct (further) invariant and nonclassical solutions, as well
as obtain linearizations (see e.g. [7, 12]). One could also obtain nonlocal conserva-
tion laws of a given PDE system, through the application of a standard procedure
for finding local conservation laws to a nonlocally related system (see Section 6).

We now construct a tree of nonlocally related systems for 1D nonlinear elasto-
dynamics, starting with the Euler system E{x, t ; v, σ, ρ} (1).

The first equation of the system E{x, t ; v, σ, ρ} (1) is in the form of a conser-
vation law (mass conservation) as it stands; hence a potential w can be introduced.
The corresponding potential system takes the form

EW{x, t ; v, σ, ρ,w} :

⎧
⎪⎪⎨

⎪⎪⎩

wx = ρ,

wt = −ρv,

σx + ρf (x) = ρ(vt + vvx),

σ = K(ρ).

(5)

It is remarkable that a local 1:1 point transformation (an interchange of a de-
pendent and independent variable) of the system EW{x, t ; v, σ, ρ,w} with w = y

and t treated as independent variables, and x, v, σ, q = 1/ρ as dependent vari-
ables, directly yields the Lagrange system L{y, s ; v, σ, q, x} (2). Hence, the sys-
tems EW{x, t ; v, σ, ρ,w} (5) and L{y, s ; v, σ, q, x} (2) are locally related to
each other (by a point transformation), but nonlocally related to the Euler system
E{x, t ; v, σ, ρ} (1). A similar connection exists in higher dimensions, expressed by
the kinematic relation from configurational mechanics given by

y,t + F−1.x,t = 0

In the Lagrange system L{y, s ; v, σ, q, x} (or EW{x, t ; v, σ, ρ,w}), the inde-
pendent variable y = w = ∫

ρ(x, t)dx is a mass coordinate.
Note that in the case of linear elastodynamics, σ = K(ρ) = ρ0/ρ with lin-

ear loading f (x), the system EW{x, t ; v, σ, ρ,w} (5) is a nonlinear PDE system,
whereas the locally equivalent system L{y, s ; v, σ, q, x} (2) becomes linear.

To further extend the tree of nonlocally related systems of one-dimensional non-
linear elasticity equations, one can use additional conservation laws and consider
potential systems of the PDE systems E{x, t ; v, σ, ρ}, EW{x, t ; v, σ, ρ,w} and/or
L{y, s ; v, σ, q, x}. In particular, the Euler system E{x, t ; v, σ, ρ} (1) has the con-
servation law

Dt(v − f (x)t) + Dx

(
v2

2
− M(ρ)

)
= 0, (6)
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where M(ρ) = ∫
K ′(ρ)

ρ
dρ. Introducing a potential variable r(x, t), one obtains the

potential equations

rx = v − f (x)t; rt = M(ρ) − v2

2
(7)

The Euler system E{x, t ; v, σ, ρ} (1) also has a conservation law corresponding
to the conservation of energy:

Dt

(
ρ

v2

2
−

∫
M(ρ)dρ − ρ

∫
f (x)dx

)
+Dx

(
ρv

[
v2

2
− M(ρ) −

∫
f (x)dx

])
= 0,

(8)
which yields the potential equations

sx = ρ
v2

2
−

∫
M(ρ)dρ − ρ

∫
f (x)dx; st = −ρv

[
v2

2
− M(ρ) −

∫
f (x)dx

]
.

(9)
The nonlocal variable

s(x, t) =
∫ (

ρ
v2

2
−

∫
M(ρ)dρ − ρ

∫
f (x)dx

)
dx

is an “energy coordinate", analogous to the mass coordinate w and the “velocity co-
ordinate" r . The three conservation laws (mass, average velocity and energy) yield
the following seven distinct nonlocally related (potential) systems of the Euler sys-
tem E{x, t ; v, σ, ρ} [12]:

• Three singlet potential systems: EW{x, t ; v, σ, ρ,w} (5),

ER{x, t ; v, σ, ρ, r} :

⎧
⎪⎪⎨

⎪⎪⎩

ρt + (ρv)x = 0,

rx = v − f (x)t,

rt = M(ρ) − v2/2,

σ = K(ρ).

(10)

and

ES{x, t ; v, σ, ρ, s} :

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

ρt + (ρv)x = 0,

sx = ρv2/2 −
∫

M(ρ)dρ − ρ

∫
f (x)dx,

st = −ρv

[
v2/2 − M(ρ) −

∫
f (x)dx

]
,

σx + ρf (x) = ρ(vt + vvx),

σ = K(ρ).

(11)

• Three couplet potential systems:
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ERW{x, t ; v, σ, ρ, r,w} :

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ρt + (ρv)x = 0,

rx = v − f (x)t,

rt = M(ρ) − v2/2,

wx = ρ,

wt = −ρv,

σ = K(ρ).

(12)

ESW{x, t ; v, σ, ρ, s,w} :

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρt + (ρv)x = 0,

sx = ρv2/2 −
∫

M(ρ)dρ − ρ

∫
f (x)dx,

st = −ρv

[
v2/2 − M(ρ) −

∫
f (x)dx

]
,

wx = ρ,

wt = −ρv,

σx + ρf (x) = ρ(vt + vvx),

σ = K(ρ).

(13)
and

ERS{x, t ; v, σ, ρ, r, s} :

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρt + (ρv)x = 0,

rx = v − f (x)t,

rt = M(ρ) − v2/2,

sx = ρv2/2 −
∫

M(ρ)dρ − ρ

∫
f (x)dx,

st = −ρv

[
v2/2 − M(ρ) −

∫
f (x)dx

]
,

σx + ρf (x) = ρ(vt + vvx),

σ = K(ρ).

(14)
• One triplet potential system

ERSW{x, t ; v, σ, ρ, r, s,w} :

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρt + (ρv)x = 0,

rx = v − f (x)t,

rt = M(ρ) − v2/2,

sx = ρv2/2 −
∫

M(ρ)dρ − ρ

∫
f (x)dx,

st = −ρv

[
v2/2 − M(ρ) −

∫
f (x)dx

]
,

wx = ρ,

wt = −ρv,

σx + ρf (x) = ρ(vt + vvx),

σ = K(ρ).

(15)

(For f (x) = const, one can obtain additional nonlocally related PDE sys-
tems, as discussed in [7].) Hence, for arbitrary forms of the constitutive
functions K(ρ) and f (x), one has a tree of equivalent and nonlocally
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Fig. 1 Tree of nonlocally-
related systems of nonlinear
elasticity. (The dotted box
corresponds to nonlocally
related systems that arise for
the case f (x) = const [7].)

related systems of nonlinear elasticity, consisting of eight PDE systems
E{x, t ; v, σ, ρ}, L{y, s ; v, σ, q, x} ⇔ EW{x, t ; v, σ, ρ,w}, ER{x, t ; v, σ, ρ, r},
ES{x, t ; v, σ, ρ, s}, ERW{x, t ; v, σ, ρ, r,w}, ESW{x, t ; v, σ, ρ, s,w},
ERS{x, t ; v, σ, ρ, r, s}, and ERSW{x, t ; v, σ, ρ, r, s,w} (Figure 1). All non-
locally related PDE systems in the tree provide equivalent descriptions of nonlinear
1D elastodynamics, and thus naturally extend the traditional Lagrangian and
Eulerian viewpoints.

4 Point and Nonlocal Symmetry Classification of the Lagrange
System EW{x, t ; v, σ, ρ, w} ⇔ L{y, s ; v, σ, q, x}

A symmetry of a system of PDEs is any transformation of its solution manifold
into itself (i.e., a symmetry transforms any solution to another solution of the same
system).

Lie’s algorithm is used to find one-parameter (ε) Lie groups of point transform-
ations (point symmetries)

(x∗)i = f i(x, u; ε), i = 1, . . . , n,

(u∗)j = gj (x, u; ε), j = 1, . . . ,m,
(16)

that leave invariant a given system of N partial differential equations R{x; u} [1–4]
such that Rρ [u∗] = 0, ρ = 1, . . . , N , if and only if Rσ [u] = 0, σ = 1, . . . , N .

Global Lie transformation groups (16) are in one-to-one correspondence with
local transformations

(x∗)i = xi + εξ i(x, u) + O(ε2), i = 1, . . . , n,

(u∗)j = uj + εηj (x, u) + O(ε2), j = 1, . . . ,m,
(17)
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where ξ i, ηj are components of a vector field (infinitesimal generator)

X = ξ i(x, u)
∂

∂xi
+ ηj (x, u)

∂

∂uj
(18)

tangent to the solution manifold of the given PDE system.
For a given PDE system, nonlocal symmetries called potential symmetries can

arise naturally by applying Lie’s algorithm to a related potential system. Such a
symmetry is a nonlocal symmetry when at least one component of the symmetry
generator has an essential dependence on a nonlocal variable. The complete point
symmetry classification for the potential system EW{x, t ; v, σ, ρ,w} (5) in terms
of its constitutive and loading functions was presented in [7]. In particular, it was
found that in the cases

K(ρ) = 1

2

(
arctan

1

ρ
+ ρ

ρ2 + 1

)
or K(ρ) = 1

4
ln

ρ − 1

ρ + 1
− 1

2

ρ

ρ2 − 1
,

for a linear body force f (x) = x, the potential system EW{x, t ; v, σ, ρ,w} (5)
has two point symmetries which are nonlocal symmetries of the Euler system
E{x, t ; v, σ, ρ} (1). One of these nonlocal symmetries is used in the following
section to construct a corresponding exact invariant solution of the Euler system
E{x, t ; v, σ, ρ} (1).

5 Calculation of Group Invariant Solutions Arising from the
Lagrange System EW{x, t ; v, σ, ρ, w} (5)

The general method for finding invariant solutions following from local symmetries
is presented in detail in [1, 4]. For invariant solutions arising from nonlocal (poten-
tial) symmetries, see also [15].

Let G be a one-parameter Lie group of point symmetries of the potential system
EW{x, t ; v, σ, ρ,w} (5), with an infinitesimal generator

X = ξ
∂

∂x
+ τ

∂

∂t
+ ηv ∂

∂v
+ ηρ ∂

∂ρ
+ ηw ∂

∂w
. (19)

Here ξ, τ, ηv, ηρ and ηw are functions of x, t, v, σ, ρ and w. The corresponding
invariant solutions

(v, ρ,w) = (V (x, t), R(x, t),W(x, t)) (20)

of the potential system EW{x, t ; v, σ, ρ,w} satisfy

X ·
⎡

⎣
v − V (x, t)

ρ − R(x, t)

w − W(x, t)

⎤

⎦

∣
∣
∣∣
∣
∣
(v,ρ,w) = (V (x,t),R(x,t),W(x,t))

= 0 (21)
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Fig. 2 Stress-strain curve
for the constitutive relation
σ = K(ρ) given by (22).
Here q = 1/ρ.
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as well as the system EW{x, t ; v, σ, ρ,w} (5). We now calculate specific invariant
solutions of the potential system EW{x, t ; v, σ, ρ,w} (5) arising as reductions from
a point symmetry that is a potential symmetry of the Euler system E{x, t ; v, σ, ρ}
(1).

We choose the constitutive relation σ = K(ρ) given by

σ = K(ρ) = 1

2
arctan

1

ρ
+ 1

2

ρ

ρ2 + 1
, (22)

(see Figure 2), and a linear body force f (x) = x. In this case, the potential Euler
system EW{x, t ; v, σ, ρ,w} (5) has the point symmetry

Y4 = et

ρ

[
∂

∂t
+ (v + ρw)

∂

∂x
+ (x + ρw)

∂

∂v
− ρ(ρ2 + 1)

∂

∂ρ
− ρ(x − v)

∂

∂w

]
,

which is clearly a nonlocal symmetry of the Euler system E{x, t ; v, σ, ρ} (1), since
its x- and v-components depend on the potential variable w.

The physical dependent variables ρ, v,w, σ are found as functions of x and t .
The velocity v(x, t) solves the implicit equation:

v(x, t) = et

(
C(U)

A(U)
− U

A2(U)

)
(23)

where A(U) and C(U) are given by

A(U) =
√

U2 + α2, C(U) = 1

2

αU + (U2 + α2)
(
β − arctan U

α

)

α(U2 + α2)
, (24)

with α, β constants of integration, and the similarity variable given by U = et(x −
v(x, t)).

For every value of x and t , the solution v(x, t) of (23) can be found numerically.
After v(x, t) (and thus the similarity variable U ) is determined, the density and the
mass coordinate are obtained from the formulas
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Fig. 3 Solution curves of
the implicit equation (23)
defining the material ve-
locity v(x, t) (α = 2;
t = 1, 1.2, 1.4, 1.6).
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ρ(x, t) =
√

U2 + α2
√

e2t − U2 − α2
, w(x, t) = v(x, t) − x

ρ(x, t)
.

We seek a solution describing a nonlinear deformation of an elastic slab x0 <

x < L(t), attached at x = x0 (i.e., subject to the boundary condition v (x0, t) = 0).
We use the boundary conditions

v (x0, t) = 0, ρ (x0, t) = R(t), w(x0, t) = 0. (25)

The latter boundary condition is due to the definition of the mass coordinate (po-
tential variable): w(x, t) = ∫ x

x0
ρ(s, t)ds. When substituted into equation (23), this

boundary condition yields β = 0, x0 = 0.

The velocity v(x, t) following from equation (23) turns out to be a three-valued
function for 0 ≤ x < x∗(t), where x∗(t) is a bifurcation point. Sample curves of
v(x, t) for α = 2 and times t = 1, 1.2, 1.4, 1.6 are shown in Figure 3.

From the three possible values of v(x, t) that arise from the implicit equation
(23), only one branch is physical. Indeed, one may check that only the middle branch
(the one closest to v(x, t) = x) yields a real-valued density function [7].

It is also important to note that the geometrical velocity of the bifurcation point
v∗(t) = dx∗(t)/dt is always greater than the physical velocity v(x∗(t), t) at the bi-
furcation point. The expression for the total mass between x = 0 and the bifurcation
point x∗(t) (per unit area of the slab cross-section) is given by

w(x∗(t), t) = 1 − αe−t , (26)

which is an increasing function of time, in agreement with the previous remark. The
invariant solutions are defined for 0 < x < x∗(t). If the initial length of the slab
L(t0) is chosen (0 < L(t0) < x∗(t0)), then the solution is regular for all times.

The family of invariant solutions presented in this section describes the nonlinear
deviation of a trivial “homogeneous stretching" solution v(x, t) = x, ρ(x, t) = e−t
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of the Euler system E{x, t ; v, σ, ρ} (1). A specific numerical example of such an
invariant solution was constructed in [7].

6 Conservation Laws of Dynamical Nonlinear Elasticity

For a PDE system R{x ; u} (3), one can consider the problem of finding local conser-
vation laws of the form (4). The fluxes �i[u] may depend on x, u and derivatives of
u up to an arbitrary order. In practice, conservation laws are used for direct physical
interpretation, analysis, and development of efficient numerical methods.

The direct method of finding conservation laws involves considering a linear
combination of equations of a given PDE system (3) with a set of multipliers {�σ },
which may depend on independent and dependent variables and their derivatives. A
linear combination yields a conservation law (4) if and only if

�σ [U ]Rσ [U ] ≡ Di�
i[U ] (27)

for some fluxes {�i[U ]} (here U denotes a vector of arbitrary functions of x). Then
the conservation law Di�

i[u] = 0 holds on the solutions U = u(x) of the system
(3).

In the direct method, the determining equations that yield sets of multipliers
{�σ [U ]} are found from the known fact: an expression is a divergence expression
if and only if it is annihilated by Euler operators with respect to all dependent vari-
ables [2, 13, 14]:

EUk

(
�σ [U ]Rσ [U ]) = 0, k = 1, . . . ,m. (28)

Here U = (U1(x), . . . , Um(x)) is a set of arbitrary functions, and EUk is the Euler
operator with respect to Uk , given by

EUk = ∂

∂Uk
− Di

∂

∂Uk
i

+ · · · + (−1)jDi1 · · · Dij

∂

∂Uk
i1···ij

+ · · · .

Symbols Uk
i1···ij denote partial derivatives ∂j Uk

∂xi1 ...∂x
ij

.

Equations (28) are linear determining equations for the multipliers {�σ [U ]}. In
practice, to perform a computation, one chooses the maximal order of derivatives
q ≥ 0 in the dependence of multipliers �σ [U ]. When the multipliers are determ-
ined, one finds the corresponding set of fluxes of the conservation law (4) either by
solving (27) directly, or using integral homotopy operators [13, 14].

Note that the direct method does not require the PDE system to have a variational
formulation, and does not use any version of Noether’s theorem.

Now our goal is to construct examples of nonlocal conservation laws of the Euler
system E{x, t ; v, σ, ρ} (1) of nonlinear elastodynamics, which arise as local con-
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servation laws of a potential system of E{x, t ; v, σ, ρ}. The following important
theorem holds [16].

Theorem 1. Let S{x ; u, v} given by

Sµ[u, v] ≡ Sµ(x, u, v, ∂u, ∂v, . . . , ∂ku, ∂kv) = 0, µ = 1, . . . ,M (29)

be a potential system of a PDE system R{x ; u} (3), where v = (v1, . . . , vl ) are
nonlocal (potential) variables. A local conservation law

�̃µ[u, v]Sµ[u, v] = Di�
i[u, v] = 0 (30)

of the potential system S{x ; u, v} (29) yields a nonlocal conservation law of R{x ; u}
(3) if and only if the multipliers �̃µ[u, v] essentially depend on the nonlocal vari-
able(s) v.

We now seek local conservation laws of the potential system EW{x, t ; v, σ, ρ,w}
(5) that yield nonlocal conservation laws of the Euler system E{x, t ; v, σ, ρ} (1),
i.e., conservation laws of the potential system EW{x, t ; v, σ, ρ,w} (5) arising from
one or more of multipliers with an essential dependence on the potential variable w.
One may write

EW{x, t ; v, σ, ρ,w} :

⎧
⎪⎪⎨

⎪⎪⎩

wx − ρ = 0,

wt + ρv = 0,

K ′(ρ)

ρ
ρx + f (x) − (vt + vvx) = 0.

(31)

For the conservation law multipliers, we use the ansatz

�̃µ = �̃µ(x, t, V ,R,w, Vx, Vt ), µ = 1, 2, 3,

and require that for arbitrary functions V (x, t), P(x, t), W(x, t), one has

�̃1(x, t, V , P,W,Vx, Vt )(Wx − R) + �̃2(x, t, V , P,W,Vx, Vt )(Wt + RV )

+�̃3(x, t, V , P,W,Vx, Vt )

(
K ′(R)

R
Rx + f (x) − (Vt + V Vx)

)
≡ Di�

i[U,V ].
(32)

Then on solutions V = v, P = ρ,W = w of the PDE system EW{x, t ; v, σ, ρ,w}
(5), the expression (32) becomes a conservation law.

Subsequent application of the Euler operators with respect to V,P and W to
the left-hand side of (32) yields determining equations for the multipliers �̃µ,
µ = 1, 2, 3. From the determining equations, it follows that one or more of the
multipliers essentially depend on W , and thus a nonlocal conservation law of the
Euler system E{x, t ; v, σ, ρ} (1) arises in the following cases.

Case 1: f (x) = f1 = const, K(ρ) = ρ1/3

(Aρ+B)1/3 + C, A,B �= 0. In this case, the
multipliers are given by
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�1 = V − f1t + Vx

(
f1

t2

2
− x − 3AW

B

)
,

�2 = V 2 + xVt + f1

[
t2

2
(1 − Vt) − x − tV

]
+ 3AW

B
(Vt − f1) + P−2/3

(AP + B)1/3
,

�3 = P

(
f1

t2

2
− x − 3AW

B

)
− 2W.

(33)
Case 2: f (x) = f0x+f1, K(ρ) = Aρ1/3+B, A, B, f0, f1 = const. The multipliers
are given by

�1 = f0(V − xVx) − f1Vx,

�2 = −f 2
0 x2 + f0(x(Vt − 2f1) + V 2) + f1(Vt − f1) + Af0P

−2/3,

�3 = −f0(xP + 2W) − f1P.

(34)

Case 3: f (x) = f1, K(P) = Aρ1/3 + B. The multipliers are given by

�1 = −f1t + V − Vx

(
x − f1

t2

2

)
,

�2 = f 2
1 − f1

(
x + tV + t2

2
Vt

)
+ V 2 + xVt + AP−2/3,

�3 = −
(

x − f1
t2

2

)
P − 2W.

(35)

Case 4: f (x) = f0x + f1, K(ρ) = ρ0/ρ, ρ0 = const. This case corresponds
to linear elasticity with linear loading. Here one finds that the potential system
EW{x, t ; v, σ, ρ,w} (5) has an infinite number of conservation laws corresponding
to nonlocal conservation laws of the Euler equations E{x, t ; v, σ, ρ}. This reflects
the fact that for linear elasticity with linear loading, the system EW{x, t ; v, σ, ρ,w}
(5) can be linearized by a point transformation [17]. Indeed, this transformation is
the interchange of dependent and independent variables that transforms the system
EW{x, t ; v, σ, ρ,w} (5) to the Lagrange system L{y, s ; v, σ, q, x} (2) (see Sec-
tion 3).

7 Conclusions

In this paper, we presented the complete set of dynamic nonlinear elasticity equa-
tions in Lagrangian and Eulerian formulations, as well as in several other equivalent
formulations. The corresponding nonlocally related systems were used for the clas-
sification of nonlocal symmetries and construction of examples of invariant solu-
tions of the Euler system E{x, t ; v, σ, ρ} (1). Moreover, we demonstrated how non-
local conservation laws can be obtained for the Euler system through consideration
of local conservation laws of its potential system.
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Future work will include flux computation, interpretation and applications of the
nonlocal conservation laws of the Euler system E{x, t ; v, σ, ρ} (1) obtained in this
paper, and also the study of conservation laws of two-dimensional models of non-
linear elasticity.
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Configurational Forces in the Theory of
Two-Phase Plates

Victor A. Eremeyev and Holm Altenbach

Abstract Within the framework of the direct approach to the theory of plates the
configurational forces are introduced taking into account the transverse shear stiff-
ness. Their applications to plates made of non-homogeneous materials such as lam-
inates, functionally graded materials, two-phase materials, etc., are discussed. The
basic items of the applied theory of plates are related to the formulation of all bal-
ances for a deformable directed surface and to the specification of the constitutive
equations. The variational principle of the total energy is established for plates as-
suming the presence of a variable surface singular curve. The surface singular curve
separates the parts of the plate with different material properties. The continuity
conditions at the singular curve are obtained. The energy-momentum tensor is con-
structed. Equilibrium and quasistatic motion of the surface singular curve are invest-
igated on the base of the proposed kinetic equation. As an example of application of
configurational forces we present the model of the deformation of a plate made of a
material undergoing phase transitions (e.g., a shape memory alloy).

1 Introduction

The concept of the configurational force is useful in continuum mechanics as was
shown in [13, 18, 20, 26, 29] among others. Configuration forces arise from the con-
sideration of motion of defects in the continuous medium. Generally, the nature of
defects may be different. Here we consider a defect as a singular curve which sep-
arates the parts of a plate consisting of different phases that means, we consider the
equilibrium of plates made of materials undergoing phase transitions.
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The phase transitions (PT) of martensitic type are very important in the mech-
anics of materials. In particular, PT are responsible for the shape memory effect in
some materials, see, e.g., [8, 23]. Mechanics of solids with PT has been developed
in a number of papers and books, see for instance [1, 7, 8, 16–18, 23, 24].

The growing interest to understanding of the behavior of such two-dimensional
structures as thin films, plates and shells made of shape memory alloys and other ma-
terials undergoing PT is based on the perspective applications of these structures for
design of microelectromechanical systems (MEMS). The mechanics of martensititic
thin films was discussed, for example, in [8, 9, 19]. Let us note that experiments on
shape memory alloys are usually performed with thin-walled samples, for example
rectangular plates [8, 12, 27].

Within the dynamically and kinematically exact theory of shells presented in
[11, 25], the equilibrium conditions as well as the continuity conditions for quasi-
static deformations of elastic thin-walled structures (plates and shells) undergoing
PT of the martensitic type were formulated in [14, 15, 28]. By analogy to the three-
dimensional case, in the two-dimensional theory of shells a singular surface curve
was taken as the phase boundary in the shell. For the two-phase shells the Eshelby’s
(energy-momentum) tensor was introduced in [14]. From the point of view of con-
figurational mechanics this tensor represents the configurational (or driving) force
acting on the phase interface. Thus, the tensor is responsible for its motion. The
configurational forces were investigated considering the theory of elastic beams
in [20–22] while for the elastic plates in [10, 20], respectively.

Following [14, 28] we obtain here the equilibrium conditions at the phase inter-
face applying the 5-parametric theory of plates presented in [4–6]. The two-phase
plate is considered as some material surface consisting of two material phases di-
vided by a sufficiently smooth surface curve. Below the following items are dis-
cussed. Considering [4–6, 30, 31] in Section 2 we recall the governing equations of
the linear theory of plates based on the direct approach. Here we also introduce both
the static and the kinematic compatibility conditions at the curvilinear phase bound-
ary. In Section 3 we formulate the variational principle of stationarity of the total
energy functional taking into account the variable surface singular curve. From the
variational principle we deduce the additional thermodynamic equilibrium continu-
ity condition satisfied at the phase interface curve. This condition is written using the
energy-momentum tensor µ. In Section 4 we assume the kinetic equation describing
the motion of the phase interface curve during the quasistatic deformation processes
of the two-phase plate. As an example the tension of a two-phase rectangular plate
is briefly discussed in Section 5.

2 Basic Equations of the Direct Theory of Plates

Let us assume the geometrically and physically linear plate theory based on the so-
called direct approach. In this case one states a two-dimensional deformable surface.
On each part of this deformable surface forces and moments are acting – they are
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Fig. 1 Two-phase plate
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the primary variables. The next step is the introduction of the deformation measures.
Finally, it is necessary to interlink the forces and the moments with the deformation
variables (constitutive equations). Such a plate theory is formulated by a more nat-
ural way in comparison with the other approaches because it is so strong and so
exact as the three-dimensional continuum mechanics. But the identification of the
stiffness and other parameters is a non-trivial problem and must be realized for each
class of plates individually.

In the considered theory of plates we make two basic assumptions:

Assumption 1: The plate (homogeneous or inhomogeneous in transverse direc-
tion) can be represented by a deformable surface M (Figure 1).

Assumption 2: Each material point is an infinitesimal rigid body with 5 degrees
of freedom (3 translations and 2 rotations).

In addition, the theory presented here is limited by small displacements and rotations
and the quadratic strain energy density assumptions.

The equilibrium equations and the kinematic equations are given by the relations
[4–6, 30, 31]

∇ · T + q = 0, ∇ · M + T× + m = 0, (1)

ε = 1

2

[∇v + (∇v)T]
, γ = ∇w + c · ϕ, κ = ∇ϕ. (2)

Here T, M are the tensors of forces and moments, q, m are the surface load vectors
(forces and moments), T× is the vector invariant of the force tensor, ∇ is the nabla
operator, v = u · a, w = u · n, u, ϕ are the vectors of displacements and rotations,
and (. . .)T denotes transposed. a is the first metric tensor, n is the unit normal vector,
c = −a × n is the discriminant tensor, ε, γ and κ are the tensor of in-plane strains,
the vector of transverse shear strains and the tensor of the out-of-plane strains, re-
spectively. In the case of an orthotropic material behavior and a plane mid-surface
we assume the following strain energy and constitutive equations

W(ε, γ , κ) = 1

2
ε··A··ε + ε··B··κ + 1

2
κ ··C··κ + 1

2
γ · Γ · γ

+ N0··ε + MT
0 ··κ + Q0·γ + W0,

(3)

N ≡ T · a = ∂W

∂ε
, Q ≡ T · n = ∂W

∂γ
, MT = ∂W

∂κ
. (4)

A, B, C are 4th rank tensors, Γ is a 2nd rank tensor expressing the effective stiffness
properties. They depend on the material properties and the cross-section geometry
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and given by the relations [31]

A = A11a1a1 + A12(a1a2 + a2a1) + A22a2a2 + A44a4a4,

B = B13a1a3 + B14a1a4 + B23a2a3 + B24a2a4 + B42a4a2,

C = C22a2a2 + C33a3a3 + C34(a3a4 + a4a3) + C44a4a4,

Γ = Γ1a1 + Γ2a2,

(5)

where a1 = a = e1e1 + e2e2, a2 = e1e1 − e2e2, a3 = c = e1e2 − e2e1, a4 =
e1e2 + e2e1, and e1, e2 are unit basis vectors of an orthonormal coordinate system.
In addition, one obtains the orthogonality condition for the ai (i = 1, 2, 3, 4)

1

2
ai ··aj = δij ,

where ·· is the double inner (dot) product. N0, M0 are the tensors of the initial in-
plane forces and moments, Q0 is the vector of the initial shear forces, while W0 is
the initial value of the strain energy.

The identification of the effective stiffness tensors A, B, C and Γ should be per-
formed on the base of the properties of the real material. Let us assume the Hooke’s
law with material properties which depend on the normal coordinate z. The identi-
fication of the effective properties can be performed with the help of static boundary
value problems (two-dimensional, three-dimensional) and the comparison of the
forces and moments (in the sense of averaged stresses or stress resultants). Finally,
we get the following expressions for the classical stiffness tensor components [2–4]

(A11; −B13; C33) = 1

4

〈
E1 + E2 + 2E1ν21

1 − ν12ν21
(1; z; z2)

〉
,

(A22; B24; C44) = 1

4

〈
E1 + E2 − 2E1ν21

1 − ν12ν21
(1; z; z2)

〉
,

(A12; −B23 = B14; −C34) = 1

4

〈
E1 − E2

1 − ν12ν21
z(1; z; z2)

〉
,

(A44; −B42; C22) = 〈G12(1; z; z2)〉,

(6)

where 〈. . .〉 is the integral over the plate thickness h, while E1, E2, ν12, ν21, G12 are
the elastic moduli of the orthotropic bulk material. In addition, two non-classical
stiffness are obtained

Γ1 = 1

2
(λ2 + η2)

A44C22 − B2
42

A44
, Γ2 = 1

2
(η2 − λ2)

A44C22 − B2
42

A44
. (7)

Here η2 and λ2 are the smallest non-zero eigen-values of Sturm–Liouville problems

d

dz

(
G1n

dZ

dz

)
+ η2G12Z = 0,

d

dz

(
G2n

dZ

dz

)
+ λ2G12Z = 0,

dZ

dz

∣
∣
∣∣
∣|z|=h/2

= 0.

The boundary conditions are given by
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ν · T = f, ν · M = l, (l · n = 0) along Sf , (8)

and
u = u0, ϕ = ϕ0 along Su. (9)

Here f and l are external force and couple vectors acting along the part Sf of the
boundary of the plate S = Sf ∪ Su ≡ ∂M, while u0 and ϕ0 are given functions
describing the displacements and rotation of the plate boundary Su, respectively. ν

is the unit normal vector to S (ν · n = 0). The relations (8) and (9) are the static
and kinematic boundary conditions, respectively. Other mixed types of boundary
conditions are possible. For example, the simple support boundary conditions cor-
responding to a hinge are given by

ν · M · τ = 0, u = 0, ϕ · τ = 0.

Here τ is the unit tangent vector to S (τ · n = τ · ν = 0).
Let us consider the two-phase plate consisting of a material undergoing the phase

transformations. In this case the plate is modeled by the surface M = MA ∪ MB ,
where MA,B are surfaces consisting of phases A and B, respectively. The phase
interface is a smooth curve C separating the surfaces MA,B (Figure 1).

The curvilinear phase interfaces in plates can be either coherent or incoherent in
rotations, see [14]. For the coherent interface both fields u and ϕ are supposed to be
continuous at C

[[u]] = 0, [[ϕ]] = 0, (10)

where double square brackets denote a jump of discontinuity across C: [[(. . .)]] =
(. . .)B − (. . .)A.

The phase interface is called incoherent in rotations if only u is continuous at
C but the continuity of ϕ may be violated. In this case the condition (10)1 is still
satisfied, but (10)2 may be violated.

3 Variation Principle of Total Energy

Following [14] we obtain the phase equilibrium conditions along the phase interface
curve C using the variational principle

δE = 0, E =
∫

MA

WA da +
∫

MB

WB da − Aext, (11)

where E is the functional of the total energy, WA,B are the strain energies corres-
ponding to the phases A,B , and Aext is the functional of external loads. We assume
that δAext is given by the relation

δAext =
∫

M\C
(q · δu + m · δϕ) da +

∫

Sf

(f · δu + l · δϕ) ds, (12)
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where δu and δϕ are variations of u and ϕ, respectively. Let us note that δu and δϕ

satisfy the kinematic relations

δu = 0, δϕ = 0 along Su, (13)

as well as the continuity conditions along C. For the coherent interface the continu-
ity conditions are

[[δu]] + V [[ν · ∇u]] = 0, [[δϕ]] + V [[ν · ∇ϕ]] = 0. (14)

where V is the virtual velocity of C, see [14], while for the phase interfaces inco-
herent in rotations the continuity conditions reduce to the relation (14)1.

The variation of E is given by

δE =
∫

M\C
δW da −

∫

C
V [[W ]] ds − δAext, (15)

where

δW = ∂W

∂ε
· ·δεT + ∂W

∂γ
· δγ + ∂W

∂κ
· ·δκT.

Using Eqs (13), (14) from Eq. (11)1 one obtains the equilibrium equations (1), the
static boundary conditions (8) as well as the following general continuity condition
to be satisfied at the interface C:

∫

C
{V [[W ]] + [[ν · T · δu]] + [[ν · M · δϕ]]} ds = 0. (16)

The balance equation on the phase interface C following from Eq. (16) consist of
both the static balance equations and the so-called thermodynamical balance equa-
tion which is necessary for the determination of C. For the coherent interface the
static balance equations are

ν · [[T]] = 0, ν · [[M]] = 0, (17)

while the thermodynamical balance equation is given by

ν · [[µC]] · ν = 0. (18)

For the phase interface incoherent in rotations from the variational principle we
obtain the following continuity conditions along C:

ν · [[T]] = 0, ν · MA,B = 0, ν · [[µI]] · ν = 0

Here

µC = Wa − N · (∇v)T − Q∇w − MT · (∇ϕ)T, µI = Wa − N · (∇v)T − Q∇w.
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µC and µI are the Eshelby’s tensors (the energy-momentum tensors) for the coherent
interface and the incoherent one in the two-phase plate, respectively. The condition
ν ·[[µ]]·ν = 0 should be satisfied, where µ = µC for the coherent phase interface and
µ = µI for the incoherent in rotations one. From the point of view of configurational
mechanics the quantity ν · [[µ]] · ν represents the configurational (or driving) force
acting on C and responsible for its motion for non-equilibrium deformations.

4 Kinetic Equation

Let us consider quasistatic deformation process, where the equilibrium conditions
(1), (8) and (17) are satisfied while the ν · [[µ]] · ν = 0 is not. For the quasi-static
process we obtain the formula

dE

dt
= −

∫

C
V F ds, F = ν · [[µ]] · ν. (19)

Here F is the configurational force acting on the phase boundary, while V is the
velocity of C. By analogy to three-dimensional case [1] Eq. (19) leads to the kinetic
equation describing the propagation of C

V = k(F )

with a non-negative definite kinetic function k. In the theory of elasticity the kinetic
equations of the type (19) were discussed in a number of papers and monographs,
see for example [1, 7, 8, 17, 18, 24]. The equation (19) can also be regarded as a
constitutive relation consistent with the thermodynamic requirement dE/dt ≤ 0.

Following [1], let us assume k(ς) in the form

k(F ) =
⎧
⎨

⎩

K(F − F0), F ≥ F0,

0, −F0 < F < F0,

K(F + F0), F ≤ −F0.

(20)

Here F0 describes effects associated with the nucleation of the new phase and action
of the surface tension, see [1], and K is a positive kinetic factor. If F0 = 0 then the
function (20) reduces to the linear kinetic function k(F ) = KF .

5 Tension of Two-Phase Rectangular Plate

As an example let us consider tension of an isotropic rectangular plate undergo-
ing PT. The forces p uniformly distributed at the left and right plate boundaries
are applied (Figure 2). We assume that in the undeformed state the plate con-
sist of the phase B. Under such loading there is an plane deformation state with
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Fig. 2 Tension of a two-phase
rectangular plate
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u = u1i1 + u2i2, ϕ = 0, where i1, i2, i2 are the Cartesian base vectors. Accord-
ing to the assumption of the plane deformation, we search for the phase interface
C in the form of the line, which position on M is given by the equation x1 = �(t),
0 ≤ �(t) ≤ L. Hence, V = d�(t)/dt .

For the one-phase plate there is the following solution

u1 = p

Eh
x1 + const,

where E and h are the Young’s modulus and the plate thickness respectively. In
the two-phase plate such solution is possible only when νA = νB = 0, where νA

and νB are the Poisson ratios for the bulk material. For the sake of simplicity we
follow [15] and assume that νA = νB = 0. In this case the problem reduces to an
one-dimensional problem which is similar to the considered one in [1] or [15].

For F0 = 0, the equilibrium deformation process is described by the path
OABC, Figure 3(a). The segment AB describes two-pase state of the plate cor-
responding the force p	. If we take into account the kinetic equation then in the
process of loading the plate deforms according to the path OAB ′C while for the
unloading the plate deforms according to the path CBA′O. The size of the hyster-
esis loop AB ′A′ depends on K and the loading/unloading velocity. When K → ∞
the hysteresis loop reduces to the segment AB.

When F0 �= 0, the plate deforms according to the path OA+B+C while for
unloading we have the path CB−A−O, Figure 3(b). The size of hysteresis loop
becomes larger with the growing value of F0. Here growing values of K also lead
to decreasing area of the hysteresis loop. For K → ∞ the limiting paths reduce to
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Fig. 3 p − ε curves: a) F0 = 0, b) F0 �= 0.
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two different respective segments A+B∞ and B−A∞. Such limit case describes the
so-called rate-independent phase transitions [1, 23].

Let us note that in the general case νA �= νB the deformation of the two-pase
plate is described by two-dimensional problem. In this case some boundary-layer
type solutions may appeared.

6 Conclusion

Here we introduced the configurational forces for the plate undergoing phase trans-
formations. These expressions may be also used in the global analysis of a plate
with a singular curves of another nature. For example, these approach may be used
for modeling of delamination process in a sandwich plate, crack propagation, etc.
Indeed, we postulate here the kinetic equation describing the quasistatic motion of
singular curve on the base of the consideration of the total energy rate. For example,
if one consider a sandwich plate consisting of two parts, delaminated part and un-
damaged one, then one can introduce a singular curve which separates these parts.
Using the concept of the configurational force one may assume the kinetic equation
describing the propagation of the delamination curve in the plate.
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On Configurational Formulations in the
Director Theory of Rods

Hans Irschik

Abstract It is shown how the configurational laws of balance and jump for the di-
rector theory of rods can be derived as consequences of the fundamental rod laws
of balance of linear, director and angular momentum, and of energy. The configura-
tional relations so derived are independent from constitutive relations.

1 Introduction

Recently, a material momentum balance law (a relation of balance of pseudomo-
mentum) and a corresponding configurational jump condition have been presented
by O’Reilly [1] in the framework of a director theory of elastic rods. The config-
urational formulations presented in [1] have been applied by Majidi [2], who has
discussed adhering of an elastic rod to a flat rigid surface, the rod being composed
of a non-contacting and contacting portion, where singular supply and production
terms have to be taken into account at the cross-section between the two rod por-
tions. A non-conventional aspect of this problem consists in finding an additional
relation for computing the place of the interface. In particular, Majidi [2] has shown
that applying the configurational jump condition presented by O’Reilly [1] to the
singular cross-section is equivalent to alternative solution methods, see [2]. Not only
that the practical applicability of the configurational formulations given in [1] has
become evident from the study given in [2], further theoretical advantages have been
pointed out by O’Reilly [1]. However, a believe has been expressed in [1] that the
configurational relation of jump for the elastic director theory of rods would repre-
sent an extra law. In the present paper, we demonstrate that both, the configurational
laws of balance and jump for rods can be derived as consequences of the rod laws
of local balance and jump of linear, director and angular momentum, and of total

Hans Irschik
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energy, simply by performing straight-forward mathematical manipulations. Thus,
the configurational formulations have a role similar to the derived relations of lo-
cal balance and jump of moment of momentum, kinetic energy and free energy. In
showing this, a systematic strategy developed and discussed by the present author in
[3] for three-dimensional problems of continuum mechanics is applied and extended
to the director theory of rods. We particularly show how the configurational local
rod laws of balance and jump can be derived without reference to elastic constitutive
relations, which should be of interest in case of inelastic rod problems, and which
extends the relations presented by O’Reilly in [1]. Last not least, we point out that
that assigning a constitutive relation to the singular supply of material momentum at
a singular cross-section is equivalent to assign constitutive relations to the singular
supply of total energy.

2 Fundamental Relations of Balance and Jump

The present contribution is based on the Green and Naghdi director theory of rods,
see [1] for a recent presentation. The local forms of the equations of balance of
linear momentum, director momentum, angular momentum and total energy for this
theory read:

J̇ = ρ0f + n′, (1)

J̇ α = ρ0 lα − kα + mα′
, (2)

Ḣ = r × ρ0f + dα × ρ0 lα + (r × n + dα × mα)′, (3)

Ė = ṙ · ρ0 f + ḋα · ρ0 lα + (ṙ · n + ḋα · mα)′ . (4)

The material time derivative of some entity g is indicated by a superimposed dot:

ġ = ∂

∂t
g(ξ, t). (5)

A prime stands for the spatial derivative with respect to the coordinate ξ of the
(possibly curved) rod axis in the undeformed reference configuration

g′ = ∂

∂ξ
g(ξ, t). (6)

Linear momentum, director momentum, angular momentum and total energy are

J = ρ0 ṙ + ρ0 y0α ḋα, (7)

J α = ρ0 y0α ṙ + ρ0y
αβ ḋβ, (8)

H = r × J + dα × J α, (9)

E = ρ0ψ + T . (10)
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The reference mass density is ρ0, the position vector of a point of the rod axis in the
deformed configuration is denoted by r , and dα, α = 1, 2, are the direction vectors,
which span the rod cross-sections in the deformed configuration. Cross-sectional
moments are denoted by y0α and yαβ , respectively, where

yαβ = yβα. (11)

Summation upon properly repeated indices is understood. The theory under consid-
eration is considered as a purely mechanical one, ψ in Equation (10) thus being the
free energy per unit mass. The kinetic energy T is given by

2T = ṙ · J + ḋα · J α. (12)

In Equations (1–4), f is the external force per unit mass, and lα are the external
director forces per unit mass. These supplies are given in advance. The so-called
influx terms, which appear as spatial derivatives in Equations (1–4), are associated
with the axial contact force n, and with the contact director forces mα. For the
latter forces, constitutive relations are needed in order to close the problem. When a
singular cross-section is present within the rod, across which some of the balanced
entities do suffer jumps, the following relations of jump are to be stisfied:

[[J ]]γ̇ = −[[n]] − F, (13)

[[J α]]γ̇ = −[[mα]] − Lα, (14)

[[H ]]γ̇ = −[[r × n + dα × mα]] − M, (15)

[[E]]γ̇ = −[[ṙ · n + ḋα · mα]] − � . (16)

In Equations (13–16), the singular supplies of linear momentum, director momen-
tum, angular momentum and total energy are denoted as F,Lα,M and �, respec-
tively. The jump of some entity g, say, is indicated by

[[g]] = g+ − g− . (17)

The corresponding mean value across the singular cross-section follows from

2〈g〉 = g+ + g−. (18)

The general decomposition

[[g ◦ h]] = 〈g〉 ◦ [[h]] + [[g]] ◦ 〈h〉 (19)

is used frequently in the sequel. In addition to Equations (13) and (14), the following
conditions of compatibility are required to hold across a singular cross-section:

[[r]] = 0, (20)

[[dα]] = 0, (21)
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νγ = ṙ+ + r
′+ γ̇ = ṙ− + r

′− γ̇ , (22)

νγα = ḋ+
α + d

′+
α γ̇ = ḋ−

α + d
′−
α γ̇ , (23)

such that
[[r ′]]γ̇ = −[[ṙ]], (24)

[[d ′
α]]γ̇ = −[[ḋα]]. (25)

The coordinate of the place of the singular cross-section in the reference configu-
ration is denoted by γ , and νγ is the velocity of the singular cross-section in the
deformed configuration, with an analogous meaning of νγα . The above relations
of jump do indicate, which of the entities under consideration are supposed to suf-
fer jumps across a singular cross-section. We subsequently assume that mass and
cross-sectional moments are continuous along the rod.

3 Classical Derived Relations of Balance and Jump

The local relations of balance of linear momentum, director momentum, angular
momentum and total energy, Equations (1–4), are considered as fundamental rela-
tions, since no terms do appear, which are formed by the product of an entity which
may suffer a jump and the derivative of an entity that also may suffer a jump at
the same singular cross-section. We thus talk about integrable local relations in the
following. Indeed, the fundamental relations of balance are the consequence of cor-
responding integral statements over some part of the reference configuration, which
are assumed to hold also when a singular cross-section is present within that part,
which requires integrability. The fundamental jump relations, Equations (13–16),
are then obtained by what nowadays is called a pill-box procedure, namely by let-
ting the considered part of the reference configuration shrink down to the singular
cross-section, see [4]. One also may state that any one of the above four fundamental
balance equations does include new physically meaningful entities, or at least some
new information.

The above fundamental relations of balance and jump however may be mathe-
matically manipulated in order to obtain derived forms. Particularly, noting that

ṙ × J + ḋα × J α = 0, (26)

see Equations (7) and (8), we can derive the relation of balance of moment of mo-
mentum as a consequence of proper vectorial multiplications of the relations of
linear and director momentum balance, Equations (1) and (2):

Ḣ = r ×ρ0 f +dα × (ρ0 lα − kα)− r ′ ×n−d ′
α ×mα + (r ×n+dα ×mα)′. (27)

Note that in the present theory the notions of angular momentum and moment of
momentum do coincide. Subtracting Equation (27) from Equation (3), we obtain
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dα × kα + r ′ × n + d ′
α × mα = 0, (28)

which can be used to replace the relation of balance of angular momentum, Equa-
tion (3), see [1, equation (16.3)]. Hence, the intrinsic director forces kα in Equa-
tion (2) are related to the influxes for n and mα. Analogously, crossing Equa-
tions (13) and (14) by r and dα, respectively, and using Equations (19–21), yields
the following relation of jump of moment of momentum

[[H ]]γ̇ = −r × [[n]] − dα × [[mα]] − r × F − dα × Lα, (29)

such that that the relation of jump of angular momentum, Equation (15), proves that

r × F + dα × Lα − M = 0. (30)

This can be used to replace the original relation of jump of angular momentum,
Equations (15), see [1, equation (18.3)].

We also may operate on the relations of balance and jump of linear and director
momentum by scalar multiplications. Particularly, noting that

r̈ · J + d̈α · J α = ṙ · J̇ + ḋα · J̇ α, (31)

we obtain the relation of balance of kinetic energy, see Equations (7), (8) and (12):

Ṫ = ṙ · ρ0 f + ḋα · ρ0 lα − ḋα · kα − ṙ ′ · n − ḋ ′
α · mα + (ṙ · n + ḋα · mα)′, (32)

which is a consequence of proper scalar multiplications of the relations of linear and
director momentum, Equations (1) and (2). Substituting into the relation of balance
of total energy, Equation (4), gives the relation of balance of free energy, see also
[1, equation (16.4)]:

ρ0
̇ = ḋα · kα − ṙ · n′ − ḋα · mα′ + (ṙ · n + ḋα · mα)′. (33)

In our present derivation, the relations of balance of kinetic and free energy, Equa-
tions (32) and (33), have been derived from the relations of balance of linear and
director momentum and total energy, Equations (1), (2) and (4). In contrast to the
latter three relations, however, Equations (32) and (33) cannot be considered as be-
ing fundamental, in the sense of representing integrable relations. Nevertheless, cor-
responding jump conditions can be derived from the relations of balance of linear
momentum by a scalar multiplication with the mean values and 〈ṙ〉 and 〈ḋα〉. From
the definitions in Equations (7) and (8), and using (12) and (19), we find that

[[T ]= 〈J 〉 · [[ṙ]] + 〈Jα〉 · [[ḋα]] = 〈ṙ〉 · [[J ]] + 〈ḋα〉 · [[J α]]. (34)

Multiplication by γ̇ and substituting Equations (13) and (14) results in the relation
of jump of kinetic energy

[[T ]]γ̇ = −〈ṙ〉 · ([[n]] + F) − 〈ḋα〉 · ([[mα]] + Lα
)

(35)
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from which Equations (10, 16) and (19) yield the jump relation of internal energy
as

[[ρ0
]]γ̇ = −[[ṙ]] · 〈n〉 − [[ḋα]] · 〈mα〉 + 〈ṙ〉 · F + 〈ḋα〉 · Lα − �. (36)

4 Derivation of the Configurational Formulations of Balance and
Jump

Based partially on the works of Maugin [5], Gurtin [6] and their coworkers on ma-
terial and configurational forces in mechanics, an additional balance law denoted as
balance of material momentum has been presented by O’Reilly [1]. It is the scope
of the present section to demonstrate that this relation of balance of material mo-
mentum and the corresponding jump relation can be derived as a consequence of
the fundamental local relations of balance and jump, and thus have a role similar
to the above derived relations of moment of momentum, kinetic energy and free
energy. For corresponding derivation for three-dimensional problems of continuum
mechanics, see [3]. We again perform scalar multiplications of the linear and di-
rector momentum, this time however involving the spatial derivatives r ′ and d ′

α.
We start with definition of the material momentum for director rods that has been
introduced in [1, equation (20)]:

P = −r ′ · J − d ′
α · J α. (37)

In the present contribution, the latter is understood as an entitity the balance of which
can be derived by a mathematical manipulation of linear and director momentum,
Equations (7) and (8). From the latter, and from the definition of the kinetic energy,
Equation (12), we have

ṙ ′ · J + ḋ ′
α · J α = ṙ · J ′ + ḋα · J α′ = T ′. (38)

We thus may write

Ṗ = −r ′ · J̇ − d ′
α · J̇ α − T ′ + (ρ0
)′ − (ρ0
)′ . (39)

where we have performed an identical expansion by means of the term (ρ0
)′.
Substituting Equations (1) and (2), we eventually obtain an equation of balance
material momentum of the form

Ṗ = b + C′. (40)

In (40), the so-called material force b turns out to be

b = −r ′ · ρ0 f − d ′
α · ρ0 lα + r ′′ · n + d ′

α · kα + d ′′
α · mα − (ρ0
)′. (41)

and the so-called material contact force, an influx term, becomes
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C = ρ0
 − T − r ′ · n − d ′
α · mα. (42)

The material contact force is identical to the one stated in [1, equation (19)]. Sev-
eral remarks seem to be in order. First, while the balance of material momentum,
Equation (40), was introduced by O’Reilly [1] as an additional law of balance, our
derivation shows that it represents a consequence of mathematical manipulations of
the fundamental laws of balance of linear and director momentum, Equations (1)
and (2), and of an identical expansion by the term (ρ0ψ)′. Second, Equation (40)
cannot be considered as a fundamental statement of balance, since, due to b in Equa-
tion (41), it cannot be considered as integrable without further considerations. The
integral form of Equation (40), which was introduced in [1, equation (21)], and
which involves a spatial integral of b, thus must be considered as doubtful in gen-
eral. Third, the above formulation of balance of material momentum is independent
from constitutive modeling. However, when one uses the special constitutive rela-
tions introduced in [1, equation (17)], then Equation (41) can be specialized to

b = −r ′ · ρ0 f − d ′
α · ρ0 lα − ρ0

∂


∂ξexpl
, (43)

the index “expl” indicting the explicit dependence of the free energy on the place ξ ,
see [1, equation (25)]. This special form somewhat hides the above addressed ques-
tion of integrability. Likewise to the jump relations of kinetic energy and free energy,
see Equations (36) and (37), a jump relation of material momentum can be however
derived from the jump relations of linear and director momentum, Equations (13)
and (14), without involving constitutive modeling as follows. From Equations (24,
25) and (34), we find that

[[T ]] = [[ṙ]] · 〈J 〉 + [[ḋα]] · 〈J α〉 = − ([[r ′]] · 〈J 〉 + [[d ′
α]] · 〈J α〉) γ̇ . (44)

Hence, using Equation (19) in connection with Equation (37) and performing an
identical expansion with the jump of ρ0ψ , one obtains

[[P ]]γ̇ = −〈r ′〉 · [[J ]]γ̇ − 〈d ′
α〉 · [[J α]]γ̇ + [[T ]] + [[ρ0
]] − [[ρ0
]]. (45)

We thus may set
[[P ]]γ̇ = −[[C]] − B. (46)

From the material contact force, Equation (42), and using the jump relations of lin-
ear and director momentum, Equations (13) and (14), the singular supply of material
momentum becomes

B = −[[ρ0
]] − 〈r ′〉 · F + [[r ′]] · 〈n〉 − 〈d ′
α〉 · Lα + [[d ′

α]] · 〈mα〉. (47)

which coincides with [1, equation (32.1)]. Multiplying with γ̇ and substituting the
relation of jump of free energy, Equation (36), as well as Equations (22–24) and
(25), we arrive at the relation
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Bγ̇ = � − νγ · F − νγα · Lα, (48)

which is in coincidence with [1, equation (34)], and which can be checked by sub-
tracting equation (31.1) from equation (31.2) of the latter reference. In case of F = 0
and Lα = 0 this reduces to

Bγ̇ = �, (49)

which clearly demonstrates that, when one assigns a constitutive relation to the sin-
gular supply of material momentum B in order to obtain an additional equation for
determining the place of the singular-cross section γ , this is equivalent to assign
constitutive relations to the singular supply of total energy �.
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Macroscopic Elasticity of Nanoporous Silicon:
Bulk and Surface Effects

H. Magoariec and A. Danescu

Abstract Nanoporous silicon is an elastic material for which the length scale of the
pores renders inappropriate the use of the tools from continuum homogenization
theories to obtain overall mechanical behavior. To encompass this difficulty we pro-
pose a model based on discrete interactions at the microscale and we use discrete ho-
mogenization to compute the bulk macroscopic material response for various sizes
and shapes of pores. When pore sizes are only several nm, the specific surface of
porous silicon is very important and surface effects, like oxidation in dry environ-
ment, have a significant impact on the macroscopic bulk properties. We extend the
proposed model to include also structural changes that model oxidation near the sur-
face. We discuss the size effect due to the presence of bulk and surface energy and
compare our theoretical predictions with the available experimental data.

1 Introduction

Porous silicon is obtained by electrochemical etching of crystalline silicon wafers
in a solution of ethanolic hydrofluoric acid. The size of pores created is controlled
by tuning the electrochemical parameters, i.e. the modulation of the current density.
Using this process one can obtain porosities up to 95% and nanopores up to several
nm of diameter over a thickness of a few microns. As a consequence porous silicon
possess a very large specific surface, which may attain orders of 100–1000 m2/g.

Among the various applications of porous silicon we cite: fabrication of chemical
sensors (for detection of toxins, volatile organic compounds, explosives, DNA and
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proteins) and its potential role as a hydrogen reservoir. This work is a part of a larger
project whose goal is the study of the role of nanoporous silicon as an active part
of a deformable substrate for molecular beam epitaxy. To this aim, we intend to use
the deformation induced by oxidation of the nanopore surface in order to stretch a
crystalline silicon film and use it as a substrate with tunable lattice parameters [3].

2 Elasticity of Nanoporous Silicon: Bulk Effects

In a fundamental paper dedicated to the structure and energy of covalent systems
[13], Tersoff note that the models able to predict macroscopic properties from in-
teratomic interactions fall in two groups: the group of pair potentials like Lennard-
Jones [7] and Morse [9] and those intended to accurately describe the small dis-
torsions (phonons and elastic interactions) from the ground state. More elaborate
models for interatomic interactions are actually available (Stillinger–Weber [12],
Tersoff [13]) but they are constructed to cover a wide range of bonding geometry and
coordination. As we are interested here in the elastic properties of porous silicon, we
shall use the simplest model in the second group, i.e., the Keating model [5]. This is
the simplest model that goes beyond pair interactions and account for near-neighbor
(NN) and next-to-near-neighbor (NNN) interactions.

2.1 Keating Model for Bulk Silicon

Widely used in semiconductors technology, crystalline silicon has a diamond-like
structure, which is a non-primitive lattice with lattice parameter a = 5.43 Å. The
Keating model [5] assumes that in the harmonic regime near a ground state, the total
elastic energy of a covalent system can be decomposed as

W =
∑

(j,k)

wjk +
∑

(j,k,l)

wjkl, (1)

where the NN and NNN interaction energies are expressed as

wjk = A

2

[
(uk − uj ) · nkj

]2
(2)

and

wjkl = B

2

[
(uk − uj ) · nlj + (ul − uj ) · nkj

]2
. (3)

For bulk crystalline silicon the macroscopic energy can be explicitly computed as

Ŵ (E) = min
{ũ}

W(Ex + ũ), (4)
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Fig. 1 The crystal structure of
Si and the unit rhombohedron
cell containing one atom in
each lattice.

where minimisation is needed to account for internal displacement since diamond-
like structure is a non-primitive lattice.1 The macroscopic stress can therefore be
expressed as

� = 1

vol(Y )

∂Ŵ

∂E
(5)

and using as unit cell Y a rhombohedron containing one atom in each lattice (see
Figure 1) and periodic boundary conditions we obtain, using Voigt notation,

C11 = A + 12B

12a
, C12 = A − 4B

12a
, C44 = 4AB

a(A + 4B)
. (6)

This result (Keating [5]) shows that if the previous assumptions hold then the
three macroscopic elasticites of bulk silicon are not independent and they obey the
nonlinear relation

2C44(C11 + C12) = (C11 − C12)(C11 + 3C12). (7)

This is verified remarkably well since the values

A = 1.45 · 10−8 N/Å B = 1.03 · 10−9 N/Å (8)

provide the macroscopic constants C11 = 166 GPa, C12 = 64 GPa and C44 = 79
GPa, in very good agreement (within 1%) with the experimental data.

2.2 Extension to Porous Silicon

We shall investigate the modeling of the macroscopic elastic response of porous
silicon using the Keating model. Under suitable assumptions about the uniformity

1 This procedure is the simplest discrete version of what is commonly called today periodic homo-
genization theory.
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of shapes and sizes of pores, and accounting only for microscopic NN and NNN
interactions in a sufficiently large representative volume element, we shall show
that the use of (4) and (5) will still provide the macroscopic stress-strain relation.
However, in this case, several important remarks are needed:

1. Excepting some special cases, explicit relations like (6) are not available. From
a numerical perspective, minimization in (4) still leads to a linear problem since
the Keating energy is a quadratic form with respect to displacements.

2. For pores of significant size the computation using discrete homogenization be-
comes inappropriate but, in these situations, one can switch to continuum models.

3. In general, the cubic symmetry of the bulk crystalline silicon is lost and the sym-
metry properties of the porous silicon will depend strongly on the shape and size
of the pores.

In order to verify the validity of the extension of the Keating model for porous
silicon we have explored different porosities using homogeneous imposed macro-
scopic strains and periodic boundary conditions. We start with the crystal structure
on a large domain Y which represents N3 copies of a unit cell and fix a simple
geometry of the pore, compatible with the cubic symmetry and inter-connectivity
between the pores.2 If we denote by L = N · 5.43 Å the lateral size of the reference
volume Y , a typical choice for the pore volume is

P α = Cα
x ∪ Cα

y ∪ Cα
z (9)

where Cα
x denotes the volume in the cylinder

Cα
x = {(x, y, z) ∈ Y such that |y − L/2| < αL/2 and |z − L/2| < αL/2} (10)

for 0 < α < 1. The geometry of the pore described in (9) is illustrated in Figure 2
and two other possible geometries leading respectively to cubic and transversely
isotropic elastic behavior are shown in Figure 3.

In the continuum case this choice will lead to a porosity given by

p(α) = 1 − 3α2 + 2α3, (11)

but the actual discrete setting will cover only a finite number of values for α.

In spite of the numerical complexity which increases rapidly with N , as already
noted, for small porosity and large N the continuum theory can provide accurate
results.

We have performed the numerical implementation of the above procedure for
arbitrary geometries and arbitrary size of pores. The particular geometry described

2 The inter-connectivity restriction, which is a well-founded physical assumption cannot be sat-
isfied in a two-dimensional situation. The cubic symmetry of the pore was chosen for simplicity,
since otherwise, the mechanical interpretation of the obtained result and its comparison with avail-
able experimental data become more intricate. The indirect methods used in experiments provide
only partial information about the Young modulus in the crystallographic direction [100] at some
fixed porosities.
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Fig. 2 A unit cell containing a pore whose geometry is described in (9).

Fig. 3 A unit cell leading to cubic macroscopic behavior (a) and a second unit cell (b) leading to
transversely isotropic macroscopic response.

in (9), which leads to cubic macroscopic response, allows the computation of elastic
constants C11, C12 and C44. The Young modulus in the crystallographic direction
[100] is therefore defined as

E[100] = C11(1 − 2R)(1 + R)/(1 − R) where R = C12/C11. (12)

The comparison of the numerical results and the experimental data obtained using
X-ray diffraction, nano-indentation, Brillouin spectroscopy and acoustic measure-
ments is presented in Figure 4. We conclude that, using discrete homogenization,
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Fig. 4 Young modulus in the crystallographic direction [100] obtained using discrete homogeniz-
ation and the Keating model and available experimental data from [1].

the extension to porous silicon of the Keating model is able to predict accurately the
elastic macroscopic behavior.

A particular feature of porous silicon is its extremely high specific area induced
by the presence of nanopores. At this scale there is a complex interplay between
bulk and surface elastic energy, which in turn induce a size effect.

3 Oxidation of Porous Silicon: Bulk and Surface Effects

In this section we extend the previous results to account for the macroscopic effects
of the nanopores free-surface oxidation in porous silicon.

3.1 Experimental Evidence

From the macroscopic point of view, the oxidation of porous silicon has a two-
fold effect: firstly, it induces microscopic morphological changes which change the
reference for a part of the structure. Secondly, oxidation induces a shift of the mac-
roscopic response, i.e., the Young modulus. The second effect is less important since
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the porous silicon has already a weak Young modulus. The first effect is more im-
portant since it provides a way to stretch the bulk structure acting only on the nan-
opores surface. The more accurate, indirect observation of the first effect can be
measured using Raman spectroscopy [4, 6, 10]. The shift of a Raman peak is com-
monly interpreted [2] as a strong physical evidence of an increase of the lattice
parameter.3

Experimental results in [8, 10] show that in dry or wet environment the main
characteristic feature in the oxidation of porous silicon is the back-bond oxidation
of the Si-H surface bonds. This results in either splitting of the bond and creation of
SiH and SiOH or creation of Si-O-Si [14]. Both processes induce strain at the free-
surface of the nanopores. Due to the singificant number of nanopores, this induced
strain will modify the macroscopic response of the material.

3.2 Surface Effects

As known in continuum mechanics, accounting for surface and bulk effects leads to
a size effect. In this case it is important to account properly for as much as possible
realistic features of the oxidation process at the appropriate scale from the available
experimental data. Experiments reported in [11] were conducted on nanoporous sil-
icon at 55% porosity. At fixed geometry proposed in (9), the porosity fixes α = 0.47
and accounting for the order of magnitude of the specific surface of the nanoporous
material which is larger than 100 m2/g, one can deduce4 the magnitude of L which
is about 10 nm.

The equilibrium distance of a Si-Si bond in crystalline silicon equals 2.35 Å.
Available data for silica, which is an amorphous material, show that the equilibrium
distance between silicon and oxygen atoms in Si-O-Si structures is 1.61 Å and the
minimum Si-O-Si bond angle is about 100◦. This means that, during the back-bond
oxidation the equilibrium distance of the Si-Si bond needs to be strained by, at least,
10%. In order to adjust the previous discrete model to account for the modification
of structural changes at the free-surface of the nanopores we have modified physical
characteristics of all Si-Si bonds which contain at least one Si at the surface to
include:

1. a different reference distance induced by surface oxidation;
2. a different rigidity A′ which is two times lower than that of crystalline silicon.

This is a simple pertinent choice since crystalline silicon is about two times stiffer
that the amorphous silica.

Thus, for NN interactions for which at least one Si atom is situated on the nanopore
surface we modify the expression in (2) to

3 Raman spectroscopy provides an average lattice parameter, at a length scale much larger than
that of the pore.
4 The mass density of crystalline silicon is 2.329 g/cm3.
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w
(s)
jk = A′

2

[
(uk − uj ) · nkj − l0

]2
. (13)

There are two reasons for which the NNN interaction energy was not modified
in this part of our study. The first one concerns the significant computational com-
plexity needed to account for both the amorphous structure induced by back-bond
oxidation, for instance using a combined random network at the surface of the nan-
opores, and a crystalline model in the bulk. The second reason rests on the con-
struction of the Keating model, where the NNN interactions are considered only as
a second order term and confirmed by the numerical values of A and B in (8).

We shall show in the following that, under the previous assumptions, the nu-
merical results obtained using discrete homogenization lead to estimations for the
strain induced by surface oxidation of the nanopores in good agreement with the
experimental results.

3.3 Numerical Results and Size Effects

The introduction of a different reference for surface NN interactions, and the use of
(4) and (5) lead to a macroscopic law in the form � = C[E + E0] where both the
elasticities C and the pre-strain E0 will depend on the values of A, B, A′, l0, the
size and the geometry of the pore. For simplicity, we have considered here the same
geometry as in the previous section, choice which leads to a pre-strain which is a
uniform extension, i.e. E = ε0I as a consequence of the symmetry of the nanopore.
An illustration of a 6nm structure containing a pore is provided in Figure 5 where
for convenience all Si-Si bonds starting from one Si at the surface were shown in
gray.

It is obvious that at fixed geometry, when the size of the unit cell is very large,
the surface oxidation process do not affect the macroscopic behavior of the bulk.
This is due to the fact that the ratio between the number of interactions modified by
surface oxidation and that of interactions not affected by surface oxidation tends to
0.

We have explicitly compute the macroscopic elasticity tensor C and the pre-strain
ε0, for a wide range of values of L and α. The resulting values of the pre-strain
are represented in Figure 6. We note that at fixed porosity, depending on the pore
size, the pre-strain induced by surface oxidation varies with an order of magnitude.
This is the effect of the interplay between the bulk and surface energy which has a
significant impact on the final result only for nanoporous materials. The porosity of
interest for the actual application is about 55%, in which case for a cell with L � 10
nm the computed value of the pre-strain is 1.5%. This value is in good agreement
with the experimental results [11] based on Raman spectroscopy. For nanopores
with sizes of about 10 nm the surface oxidation has a very small impact on the
pre-strain for porosities less than 50%, and a drastic increase is observed above this
value.
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Fig. 5 A 6 nm structure containing a pore; for convenience, the NN interactions starting from one
Si at the pore surface are represented in gray.

Fig. 6 Variation of the computed pre-strain ε0 as a function of porosity for different sizes of the
unit cell.
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Internal Variables and Generalized Continuum
Theories

Arkadi Berezovski, Jüri Engelbrecht and Gérard A. Maugin

Abstract The canonical thermomechanics on the material manifold is enriched by
the introduction of dual weakly non-local internal variables and extra entropy fluxes.
In addition to the dissipative reaction-diffusion equation for a single internal vari-
able of state, a hyperbolic evolution equation for the internal degree of freedom can
be also recovered in the non-dissipative case. It is demonstrated that the Mindlin mi-
cromorphic theory can be represented in terms of dual internal variables in a natural
way in the framework of the canonical thermomechanics.

1 Motivation

The description of any phenomenon depends on how many details we take into ac-
count. Any description can be improved, e.g., by the transition to finer space and
time scales. Though such a transition may be desirable for the understanding of a
process at microscopic or quantum level, it is hardly acceptable from the practical
point of view. Fortunately, there exists a possibility to include the influence of mi-
crostructural effects into the description of a phenomenon without changing of space
and time scales. This is the introduction of internal variables.

The use of internal variables in the description of the behavior of materials with
microstructure has a long tradition [1–11], and nowadays it is practically commonly
accepted. However, there are two clearly distinctive types of internal variables: in-
ternal degrees of freedom and internal variables of state [5, 12]. By definition, in-
ternal variables of state must have no inertia, and they produce no external work.
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The internal variables of state are not governed by a field equation, i.e., by their own
balance law; the power expended by internal variables will be only of the dissipated
type. From another side, internal degrees of freedom are endowed with both inertia
and flux, where the latter is not necessarily purely dissipative (on the contrary, it
could be purely non-dissipative) [5, 12].

Starting the modeling of dynamics of a microstructured material, we do not know
definitely a priori what kind of internal variables is more suitable in the particular
case. It is useful therefore to have a procedure which formalizes the choice. The
main idea of such a formalization can be illustrated on the simple example of linear
elasticity in one dimension.

One-dimensional elastodynamics is described by a Lagrangian density L that
depends on displacement u(x, t) and its first derivatives, which we denote by ut

for the time derivative and by ux for the spatial derivative. This leads to the Euler–
Lagrange equation of motion,

∂

∂t

(
∂L

∂ut

)
+ ∂

∂x

(
∂L

∂ux

)
− ∂L

∂u
= 0. (1)

In the linear case, the Lagrangian density has the form

L(u, ux, ut ) = 1

2

(
ρ0ut

2 − Eu2
x

)
, (2)

and we obtain the second-order wave equation for the single field variable u

∂2u

∂t2
− c2 ∂2u

∂x2
= 0, (3)

where c = √
E/ρ0, E is the Young’s modulus, and ρ0 is the density.

Introducing velocity and strain by

v = ut , ε = ux, (4)

we can represent the wave equation as the system of two first-order equations for
the two field variables

∂ε

∂t
= ∂v

∂x
, (5)

ρ0
∂v

∂t
= E

∂ε

∂x
. (6)

The two variables, v and ε, are dual ones in the sense that the evolution of one of
them is governed by another and vice versa. Just the same underlying idea is used
for the introduction of dual internal variables, thermodynamics of which is given
in [13].

In what follows, we will introduce two internal variables (which may have dis-
tinct tensorial nature) in the material formulation of thermomechanics and analyze
the conditions that are necessary to classify the internal variables as internal degrees
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of freedom or internal variables of state. As an example, the micromorphic elasticity
theory is presented as a particular case of the obtained formalization.

2 Canonical Thermomechanics on the Material Manifold

First, we need to recall certain basic definitions. A motion of a body is considered as
a time-parametrized sequence of mappings χ between the reference configuration
and the actual configuration: x = χ(X, t), where t is time, X represents the position
of a material point in the reference configuration, and x is its position in the actual
configuration. The deformation gradient is defined by

F = ∂χ

∂X

∣
∣
∣
∣
t

= ∇Rχ. (7)

If the constitutive relation for free energy has the form W = W(F, . . . , X, t), then
the first Piola–Kirchhoff stress tensor T is defined by

T = ∂W

∂F
. (8)

The local balance laws for sufficiently smooth fields at any regular material point
X in the body read (cf. [14]):

∂ρ0

∂t

∣
∣
∣∣
X

= 0, (9)

∂(ρ0v)

∂t

∣∣
∣
∣
X

− DivRT = f0, (10)

∂(K + E)

∂t

∣
∣
∣
∣
X

− ∇R · (T · v − Q) = f0 · v, (11)

where ρ0 is the mass density in the reference configuration, v = ∂χ/∂t|X is the
physical velocity, f0 is a body force per unit reference volume, K = ρ0v2/2 is
the kinetic energy, E is the internal energy per unit reference volume, Q is the
material heat flux, d/dt = ∂/∂t|X or a superimposed dot denotes the material time
derivative.

The second law of thermodynamics is written as

∂S

∂t

∣
∣∣
∣
X

+ ∇R · S ≥ 0, S = (Q/θ) + K, (12)

where S is the entropy density per unit reference volume, θ is the absolute temper-
ature, S is the entropy flux, and the “extra entropy flux” K vanishes in most cases,
but this is not a basic requirement.

The canonical form of the energy conservation has the form [12, 15]
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∂(Sθ)

∂t

∣
∣
∣
∣
X

+ ∇R · Q = hint, hint := T : Ḟ − ∂W

∂t

∣
∣
∣
∣
∣
X

, (13)

where the right-hand side of Eq. (13)1 is formally an internal heat source.
Then the second law can be represented in the form

Sθ̇ + S · ∇Rθ ≤ hint + ∇R · (θK). (14)

Correspondingly, the canonical (material) momentum conservation equation is ob-
tained as [12, 15]

∂P
∂t

∣
∣
∣
∣
X

− DivRb = fint + fext + finh, (15)

where the material momentum P, the material Eshelby stress b, the material inhomo-
geneity force finh, the material external (or body) force fext, and the material internal
force fint are defined by

P := −ρ0v · F, b = − (LIR + T · F) , L = K − W, (16)

finh := ∂L

∂X

∣
∣∣
∣
expl

≡ ∂L

∂X

∣
∣∣
∣
fixed fields

=
(

1

2
v2

)
∇Rρ0 − ∂W

∂X

∣
∣∣
∣
∣
expl

, (17)

fext := −f0 · F, fint = T : (∇RF)T − ∇RW
∣
∣
impl . (18)

Here the subscript notations expl and impl mean, respectively, the material gradient
keeping the fields fixed (and thus extracting the explicit dependence on X), and
taking the material gradient only through the fields present in the function.

3 Dual Internal Variables

Our goal is to show how the dual internal variables can be introduced in canonical
thermomechanics. The corresponding theory with a single internal variable was re-
cently presented in [12,15]. The generalization of the internal variable theory to the
case of two internal variables is straightforward. Let us consider the free energy W

as a function of two internal variables, α and β, each of which is a second-order
tensor

W = W(F, θ,α,∇Rα,β,∇Rβ). (19)

In this case, the equations of state are given by

T = ∂W

∂F
, S = −∂W

∂θ
, A := −∂W

∂α
, A := − ∂W

∂∇Rα
, (20)

B := −∂W

∂β
, B := − ∂W

∂∇Rβ
. (21)

152



Internal Variables and Generalized Continuum Theories

We include into consideration the non-zero extra entropy flux according to the case
of the single internal variable [12, 15]

K = −θ−1A : α − θ−1B : β. (22)

The canonical equations of momentum and energy keep their form

∂P
∂t

− DivRb̃ = fth + f̃intr,
∂(Sθ)

∂t
+ ∇R · Q̃ = hth + h̃intr, (23)

with the modified Eshelby stress tensor

b̃ = −(L1R + T · F − A : (∇Rα)T − B : (∇Rβ)T ), (24)

and intrinsic source terms

f̃intr := Ã : ∇Rα + B̃ : ∇Rβ, h̃intr := Ã : α̇ + B̃ : β̇. (25)

In the above equations the following definitions are used

Ã ≡ −δW

δα
:= −

(
∂W

∂α
− DivR

∂W

∂(∇Rα)

)

= A − DivRA, (26)

B̃ ≡ −δW

δβ
:= −

(
∂W

∂β
− DivR

∂W

∂(∇Rβ)

)

= B − DivRB, (27)

S̃ = θ−1Q̃, Q̃ = Q − A : α̇ − B : β̇, (28)

fth = S∇Rθ, hth = Sθ̇, (29)

which are similar to those in the case of the single internal variable [12, 15].
The corresponding dissipation inequality

� = h̃intr − S̃∇Rθ ≥ 0, (30)

is reduced in the isothermal case to

h̃intr := Ã : α̇ + B̃ : β̇ ≥ 0. (31)

The introduction of the second internal variable results in a more general form of
evolution equations for the internal variables α and β than in the case of a single in-
ternal variable [12,15]. In accordance with (31) these evolution equations are chosen
as (

α̇

β̇

)
= L

(
Ã
B̃

)
, or

(
α̇

β̇

)
=

(
L11 L12

L21 L22

) (
Ã
B̃

)
, (32)

where components L11, . . . , L22 of the linear operator L are dependent on state
variables. Representing the linear operator L as the sum of symmetric and skew-
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symmetric components L = (L + LT )/2 + (L − LT )/2, i.e.

(
α̇

β̇

)
=

(
L11 (L12 + L21)/2

(L21 + L12)/2 L22

) (
Ã
B̃

)
+ (33)

+
(

0 (L12 − L21)/2
(L21 − L12)/2 0

) (
Ã
B̃

)
,

we can see that the symmetry of the linear operator L, which is equivalent to the
Onsagerian reciprocity relations L12 = L21, leads to the elimination of the antisym-
metric part of the linear operator L. However, we have no reasons to assume the
symmetry of the linear operator L in the case of arbitrary internal variables.

To provide the satisfaction of the dissipation inequality

h̃intr := Ã : α̇+B̃ : β̇ = Ã : (L11 ·Ã+L12 ·B̃)+B̃ : (L21 ·Ã+L22 ·B̃) ≥ 0, (34)

we may require that

Ã : (L12 · B̃) = −B̃ : (L21 · Ã). (35)

If Ã · B̃T is symmetric, the latter relation is reduced to the Casimir reciprocity
relations

L12 = −L21. (36)

On account of the relation (35), we arrive at the decomposition of evolution equa-
tions into dissipative and non-dissipative parts

(
α̇

β̇

)
=

(
L11 0
0 L22

) (
Ã
B̃

)
+

(
0 L12

−L12 0

) (
Ã
B̃

)
, (37)

and the dissipation inequality is reduced to

h̃intr = Ã : (L11 ·Ã)+B̃ : (L22 ·B̃) = (Ã ·ÃT ) : L11 +(B̃ ·B̃T ) : L22 ≥ 0. (38)

As it is seen, the form of evolution equations is determined by components of the
linear operator L. To analyze the possible forms of the evolution equations, we con-
sider two limiting cases, corresponding to pure symmetric and pure skew-symmetric
linear operator L.

The most remarkable feature of the considered approach is its applicability to
nondissipative processes. It is clear that in the skew-symmetric case (L11 = L22 =
0) the dissipation h̃intr vanishes, while evolution equations for the two internal vari-
ables are fully coupled

α̇ = L12 · B̃, β̇ = −L12 · Ã. (39)

In this case, the evolution of one internal variable is driven by another one that
means the duality between the internal variables.
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To be more specific, let us consider a simple case with B = 0. In this case, the
free energy function W is independent of ∇Rβ, and the kinetic relations (39) are
reduced to

α̇ = L12 · B, β̇ = −L12 · Ã. (40)

Assuming further a quadratic dependence of the free energy function with respect
to the internal variable β

B := −∂W

∂β
= −β, (41)

we reduce Eq. (40)1 to
α̇ = −L12 · β, (42)

while Eq. (40)2 is not changed

β̇ = −L12 · Ã. (43)

Substituting Eq. (42) into Eq. (43), we obtain a hyperbolic evolution equation for
the internal variable α:

α̈ = (L12 · L12) · Ã. (44)

This means that the introduced internal variable α now is practically an internal
degree of freedom, and the structure of Eqs. (42), (43) and (44) is similar to that in
the case of elasticity.

If, vice versa, L11 �= 0, L22 �= 0, while L12 = 0, we return to the classical
situation, where internal variables are fully independent:

α̇ = L11 · Ã, β̇ = L22 · B̃. (45)

Therefore, the classical internal variable theory implicitly includes the Onsagerian
reciprocity relations. In the fully dissipative case we are dealing with true internal
variables of state.

4 Example: Micromorphic Linear Elasticity

In the framework of the Mindlin micromorphic theory [16], each material point is
endowed with three translational degrees of freedom ui and a full microdeformation
tensor ψij with nine independent components. Three strain tensors are deduced: the
classical strain tensor εij

εij ≡ 1

2

(
∂iuj + ∂jui

)
, (46)

the relative deformation tensor γij

γij ≡ ∂iuj − ψij , (47)
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and the microdeformation gradient κijk defined by

κijk ≡ ∂iψjk. (48)

The free energy density W is supposed to be a homogeneous, quadratic function of
42 variables εij , γij , κijk [16]

W = 1

2
cijklεij εkl + 1

2
bijklγij γkl + 1

2
aijklmnκijkκlmn +

+dijklmγij κklm + fijklmκijkεlm + gijklγij εkl. (49)

As it was emphasized, only 903 of the 1764 coefficients in the former equation
are independent. In the case of centrosymmetric, isotropic materials the number of
independent coefficients is greatly reduced [16]

W = 1

2
λεiiεjj + µεij εij + 1

2
b1γiiγjj + 1

2
b2γij γij +

+1

2
b3γij γji + g1γiiεjj + g2

(
γij + γji

)
εij +

+a1κiikκkjj + a2κiikκjkj + 1

2
a3κiikκjjk + 1

2
a4κijj κikk + (50)

+a5κijj κkik + 1

2
a8κij iκkjk + 1

2
a10κijkκijk + a11κijkκjki +

+1

2
a13κijkκikj + 1

2
a14κijkκjik + 1

2
a15κijkκkij .

The corresponding stress tensors are the following ones [16]:
Cauchy stress

σij ≡ ∂W

∂εij

= σji = λδij εkk + 2µεij + g1δij γkk + g2(γij + γji), (51)

relative stress

τij ≡ ∂W

∂γij

= g1δij εkk + 2g2εij + b1δij γkk + b2γij + b3γji , (52)

and double stress

µijk ≡ ∂W

∂κijk
. (53)

The equations of motion in terms of stresses have the form (no body force) [16]

ρüj = ∂i

(
σij + τij

)
, (54)

1

3
ρ′d2

jiψ̈ik = ∂iµijk + τjk + �jk, (55)
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where ρ′d2
ji is a microinertia tensor, �jk is a volume double force.

In order to apply the internal variable theory, we need to represent the constitutive
relations in the Mindlin theory in terms of distortion ∂jui and microdeformation
tensor ψji . Accordingly, the stresses are represented as

σ ′
ij ≡ ∂W

∂(∂iuj )
= λδij ∂kuk + µ(∂iuj + ∂jui) +

+ g1δij (∂kuk − ψkk) + g2
(
∂iuj − ψij + ∂jui − ψji

) +
+ b1δij (∂kuk − ψkk) + b2(∂iuj − ψij ) + b3(∂jui − ψji), (56)

τ ′
ij ≡ ∂W

∂ψij
= −g1δij ∂kuk − g2(∂iuj + ∂jui) −

− b1δij (∂kuk − ψkk) − b2(∂iuj − ψij ) − b3(∂jui − ψji). (57)

The double stress remains unchanged. At last, equations of motion take on the form

ρüj = ∂iσ
′
ij , (58)

1

3
ρ′d2

ij ψ̈ik = ∂iµijk − τ ′
jk + �jk. (59)

Now we consider the microdeformation tensor ψij as an internal variable α and
apply the formalism developed in Section 3. The microdeformation gradient κij k

plays the role of the gradient of the internal variable α, and we introduce a dual
internal variable β in the same way as in Section 3.

In the non-dissipative case, the evolution equation for the internal variable α can
be symbolically written as

α̈ = (L12 · L12) · Ã = (L12 · L12) ·
(

−∂W

∂α
+ Div

∂W

∂(∇α)

)

. (60)

In terms of components of the microdeformation tensor ψij the latter evolution
equation obtains the form

(
L12 · L12

)−1

j i
ψ̈ik =

(

− ∂W

∂ψj k

+ Div
∂W

∂(∇ψj k)

)

= ∂iµij k − τ ′
j k. (61)

As one can see, the evolution equation for the microdeformation is practically the
same as in the Mindlin theory. The volume double force �j k can appear if we
consider a more general case than the pure nondissipative one.
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5 Conclusions

The internal variables theory is extended to cover both internal variables of state
and internal degrees of freedom by the generalization of its formal structure ex-
ploiting the possible coupling between the dual internal variables. The canonical
thermomechanics provides the best framework for this generalization. It should be
emphasized, however, that any new balance laws has not been introduced; only the
Clausius–Duhem inequality was exploited for the derivation of evolution equations
for internal variables.
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Stratified Energies: Ground States with Cracks

M. Giaquinta, P.M. Mariano, G. Modica and D. Mucci

Abstract Elastic bodies admitting cracks are analyzed. Separated pairs of displace-
ment fields and cracks are found as minimizers of the energy in large strain setting.
The crack patterns are constructed in terms of varifolds. The discontinuity set of
the displacement field is contained in the cracks and may or may not coincide with
them.

1 Introduction

By following Griffith’s pioneering suggestions, a variational view on the analysis of
cracks in simple bodies has been proposed in [3] (see also [1]). Minimality of the
energy at every time among all virtual crack-displacement pairs at that time is re-
quired. An energy conservation statement throughout the time evolution is imposed.
The difficulty of managing crack geometries in finding minimizers has suggested
the convenient simplification of identifying cracks with the jump sets of displace-
ment fields (see results in [2,3]). However, appropriate function spaces contain fields
with discontinuity sets with closure of positive Lebesgue measure. Theorems allow-
ing the selection of fields with physically significant discontinuity sets – that are
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sets that can be appropriate candidates for describing reasonable crack patterns –
seem to be not available at least up to now. A new view has been presented in [5].
Separated pairs of displacement fields and cracks are found as minimizers of the
energy in simple bodies undergoing large strain. A way for managing the geometry
of crack patterns is constructed in terms of special measures, namely varifolds. The
discontinuity set of the displacement field is contained in the cracks and may or
may not coincide with them. The description of “closed” cracks is also included in
this way. Moreover, an essential point is that no crack is prescribed to exist a priori:
its possible existence is eventually obtained by the minimization of the energy of
the body. A energetic threshold for the formation of a crack arises naturally. Exist-
ence theorems are obtained for a non-standard energy functional including a surface
energy which depend on the curvature of the possible crack and on the measure
localizing it over the body. The present paper anticipates without proof some of the
results collected in [5].

2 Curvature Varifolds with Boundary

Some preliminary notions are necessary to the ensuing developments.
Let B be an open, bounded subset of R

n, n ≥ 2, with Lipschitz boundary. For
a positive integer k, 1 ≤ k ≤ n, the Grassmann manifold of k-planes through
the origin in R

n is indicated by Gk,n and is also identified with the set of pro-
jectors � : R

n → R
n onto k-planes, characterized by �2 = �, �∗ = �,

Rank � = k, a set which is a compact subset of R
n ⊗ R

n. Consider also the trivial
bundle Gk(B) := B × Gk,n with natural projection π : Gk(B) → B. A k-varifold
on B is a nonnegative Radon measure V over Gk(B), namely V ∈ M(Gk(B)).
The weight measure of V is the Radon measure µV := π#V where π# is the nat-
ural projection of measures associated with the projection π , and the mass of V is
M(V ) := V (Gk(B)) = µV (B).

Denote by Hk the k-dimensional Hausdorff measure in R
n. If b is a Hk-

measurable, countably k-rectifiable subset of B and θ ∈ L1(b,Hk), for θ Hk b

a.e. x ∈ B there exists the approximate tangent k-space Txb to b at x. Define

Vb,θ (ϕ) :=
∫

Gk(B)

ϕ(x,�) dVb,θ (x,�) :=
∫

b

θ(x)ϕ(x,�(x)) dHk(x) (1)

for any ϕ ∈ C0
c (Gk(B)), where �(x) is the orthogonal projection of R

n onto Txb.

Definition 1. V is called a curvature k-varifold with boundary if

1. V = Vb,θ is the integer rectifiable k-varifold associated with (b, θ,Hk),
2. there exist a function A ∈ L1(Gk(B), R

n∗ ⊗R
n ⊗R

n∗), A = (A�i
j ), and a vector

Radon measure ∂V ∈ M(Gk(B), R
n) such that

∫

Gk(B)

(�Dxϕ + AtD�ϕ + AIϕ) dV (x,�) = −
∫

Gk(B)

ϕ d∂V (x,�)
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for every ϕ ∈ C∞
c (Gk(B)).

Moreover, for p ≥ 1 the subclass of curvature k-varifolds with boundary such that
A ∈ Lp(Gk(B)) is indicated by CV

p
k (B).

The function x �→ A(x,�(x)) ∈ R
n∗ ⊗ R

n ⊗ R
n∗ is called the curvature of the

varifold V . The vector measure ∂V is called the varifold boundary measure.
The following results proven in [7, 8] collect the geometrical properties of

curvature k-varifolds with boundary.

Theorem 1. Let V = Vb,θ be a k-varifold with boundary ∂V and curvature A, with
A�i

j ∈ L1(Gk(B)).

1. The following symmetry properties hold:

A�i
j = A

ji

� , A
ji

j = 0, A�i
j = ��

hA
hi
j + �h

jA
�i
h , V − a.e.

2. �i
hA

�h
j = A�i

j V -a.e. in such a way that, by setting Hi(x) := A
ij
j (x,�(x)), one

gets �h
i H

h = 0 V -a.e.; in particular, if � = �(x) is the orthogonal projection
over Txb, then

H(x,�(x)) ⊥ Txb µV − a.e.

3. The projection map x → �(x) is µV -a.e approximately differentiable and

(∇b��
j (x))i = A�i

j (x,�(x))

for µV -a.e. x.
4. The support of |∂V | is contained in the support of V and |∂V | ⊥ V .
5. ∂V is tangential to b in the sense that (�i

j )#∂
jV = ∂iV as measures on Gk(B).

6. V is a varifold with locally bounded first variation and generalized mean
curvature in the sense of Allard with generalized mean curvature vector H(x) =
H(x,�(x)) and generalized boundary π#∂V .

Theorem 2 (Rectifiability of the boundary). Let V be a curvature k-varifold with
boundary ∂V and k ≥ 1. There exists a Hk−1-countably rectifiable set C and a
function σ ∈ L1(C,Hk−1) such that π#|∂V | = σHk−1 C. Moreover, one has

∫
ϕ(x,�(x)) d∂V (x,�) =

∫

C

( ∫

Gk,n

ϕ(x,�) dτx(�)
)

dHk−1(x)

for every ϕ ∈ C∞
c (Gk(B)), where for Hk−1-a.e. x ∈ C the vector valued measure

τx on Gk,n has the structure

τx =
ix∑

i=1

mx
i αx

i δpx
i
, (2)

where ix ∈ N, δpx
i

is the Dirac delta supported by a k-plane px
i of the Grass-

manian Gk,n; moreover, the αx
i ’s are positive integers and the mx

i ’s are unit vec-
tors in R

n. In addition px
i contains the tangent (k − 1)-space TxC to C at x and
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px
i = Span

{
TxC,mx

i

}
. In the special case of one-dimensional curvature varifold

V with boundary, the formula (2) reduces to

τx :=
jx∑

j=1

αj tj δPj

where δPj is the Dirac delta function supported by a straight line Pj in G1,n, tj is
a unit vector that orients Pj and αj a positive integer. As a consequence, for the
boundary of a curvature 1-varifold one gets

∂V (x, P ) =
∞∑

i=1

δxi (x) × τxi (P ).

Theorem 3 (Compactness [8]). For 1 < p < ∞, let {V (r)} ⊂ CV
p

k (B) be a
sequence of curvature k-varifolds V (r) = Vbr ,θr

with boundary. The corresponding

curvatures and boundaries are indicated by A(r) = {A(r)�i

j } and ∂V (r), respectively.
Assume that for every open set � ⊂⊂ B there exists a constant c = c(�) > 0 such
that for every r

µV (r) (�) + |∂V (r)|(Gk(�)) +
∫

Gk(�)

|A(r)|p dV (r) ≤ c(�).

There exists a subsequence {V (rs)} of {V (r)} and a curvature k-varifold V = Vb,θ ∈
CV

p
k (B), with curvature A and boundary ∂V , such that

V (rs) ⇀ V, A(rs) dV (rs) ⇀ A dV, ∂V (rs) ⇀ ∂V,

in the sense of measures. Moreover, for any convex and l.s.c. function f : R
n∗ ⊗

R
n ⊗ R

n∗ → [0,+∞], one gets
∫

Gk(B)

f (A) dV ≤ lim inf
s→∞

∫

Gk(B)

f (A(rs)) dV (rs).

3 Transplacement Fields and Bulk Energy

Only Cauchy bodies are called upon in the analyses presented here. They are bodies
for which the morphology of each material element is described only by the place
in space occupied by its centre of mass. In other words, a body is identified with
a region B of the Euclidean ambient space R

3 that it occupies in a macroscopic
reference configuration, taken as reference place. B is considered here as an open
set with Lipshitz boundary. Other configurations are reached by means of trans-
placements that are usually taken as orientation preserving differentiable bijections
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u : B −→ R
3 mapping B in the current configuration u (B), a set that is presumed

to be always open and endowed with Lipshitz boundary.
The body occupying B is said to be an hyperelastic simple body when it is en-

dowed by a bulk energy which is absolutely continuous with respect to the volume
measure and depends on the deformation gradient only. Ground states of such a type
of body are described by minimizers of the overall energy. Such minimizers can be
determined in terms of Cartesian currents [6] that are described briefly below.

3.1 Sobolev Maps and Related Cartesian Currents

Let I (k, n) be the space of multi-indices in (1, . . . , n) of length k. Denote also by
0 the empty multi-index of length 0. For any α, the complementary multi-index to
α in (1, . . . , n) is indicated by ᾱ, ᾱ ∈ I (n − k, n), and σ(α, ᾱ) is the sign of the
permutation from (1, . . . , n) into (α1, . . . , αk, ᾱ1, . . . , ᾱn−k). For (e1, e2, . . . , en)

and (ε1, ε2, . . . , εn) bases in R
n and R

N , respectively, �r(R
n × R

N) is the vector
space of skew-symmetric tensors over R

n × R
N of the form

ξ =
∑

|α|+|β|=r

ξαβeα ∧ εβ =
min(r,N)∑

max(0,r−n)

ξ(k), ξ(k) =
∑

|α|+|β|=r
|β|=k

ξαβeα ∧ εβ.

For any linear map G : R
n → R

N , the notation M(G) is used for the simple n-
vector in �n(R

n × R
N) tangent to the graph of G and defined by

M(G) := �n( Id × G)(e1 ∧ · · · ∧ en) = (e1,G(e1)) ∧ · · · ∧ (en,Gen)).

For u : B → R
N an a.e. approximately differentiable map, denote by Du its

approximate gradient. u has a Lusin representative on the subset B̃ of Lebesgue
points of both u and Du, and |B \ B̃| = 0. Let ũ(x) and Dũ(x) be the Lebesgue
values of u and Du at x ∈ B̃, respectively. Assume that |M(Du)| ∈ L1(B). By
following [6], the graph of u, defined by

Gu :=
{
(x, y) ∈ B × R

N
∣
∣
∣ x ∈ B̃, y = ũ(x)

}
,

is a n-rectifiable subset of B × R
N with approximate tangent vector n-space at

(x, ũ(x)) generated by the vectors (e1,Dũ(x)e1), . . . , (en,Dũ(x)en)) in R
n × R

N .
The n-current integration over the graph of u is defined by the linear functional on
smooth n-forms ω = ω(x, y) with compact support in B × R

N given by

Gu(ω) =
∫

< ω , ξ > dHn Gu, (3)
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where ξ(x) := M(Dũ(x))
|M(Dũ(x))| , for x ∈ B̃, is the unit n-vector that orients the approx-

imate tangent n-space to Gu at (x, ũ(x)); moreover, Gu has finite mass M(Gu) :=
sup||ω||∞≤1 Gu(ω) < ∞, since

M(Gu) =
∫

B
|M(Du(x))| dx = Hn(Gu).

In particular, Gu is a vector valued measure on B × R
N , actually an integer rectifi-

able n-current with multiplicity 1 on B × R
N . The boundary of the current Gu can

be defined by duality as the (n − 1)-current acting on compactly supported smooth
(n − 1)-forms ω in B × R

N , namely ∂Gu(ω) := Gu(dω), ω ∈ Dn−1(B × R
N),

where dω is the differential of ω.

3.2 The Bulk Energy

By taking apart for a while the description of the possible cracks, it is assumed that
the external body forces have conservative nature so that the bulk energy of the body
has the usual form

EB(u) :=
∫

B
e(x, u,Du) dx

where e(·) is the sum of the elastic energy and the potential of external forces. It is
assumed that e = e(x, u, F ) satisfies common assumptions listed below:

(H1) e : B × R̂
n × M

+
n×n → [0,+∞] is continuous, where M

+
n×n is the class of

real (n × n)-matrices F such that det F > 0.
(H2) The map F �→ e(x, u, F ) is polyconvex, i.e. there exists a function

Pe(x, u, ξ) : B × R̂
n × �n(R

n × R̂
n) → [0,+∞]

continuous in (x, u) for every ξ , convex and lower semicontinuous in ξ for
every (x, u), such that

e(x, u, F ) = Pe(x, u,M(F)) ∀F ∈ M
+
n×n, ∀(x, u) ∈ B × R̂

n.

(H3) e = e(x, u, F ) satisfies the growth conditions

e(x, u, F ) ≥ c4 |M(F)|q ∀F ∈ M
+
n×n, ∀(x, u) ∈ B × R̂

n,

for some c4 > 0 and q > 1.
(H4) For every x ∈ B and F ∈ M

+
n×n if for some u ∈ R̂

n the inequality
e(x, u, F ) < +∞ is satisfied, then det F > 0.

The assumptions (H1) and (H4) are essentially suggested by physical plausibility.
The hypothesis (H2) is an essence an assumption of material stability while the
growth condition (H3) has more technical nature.
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4 A Skeletal Model Admitting Formation of Cracks

The aim now is to describe the possible presence of cracks. The setting is selected

are in [5]. Cracks are here represented here by 1-dimensional curvature varifolds
with curvature in Lp , p > 1, which are quite regular. Basically V ∈ CV

p

1 (B) can
be essentially described as (the integration over) a locally finite union of C1,1−1/p

curves counted with integer multiplicities. Their boundaries are just Dirac measures
concentrated at the endpoints with their tangential directions.

Definition 2. A macroscopic configuration of a body B ⊂ R
2 with a crack is a pair

composed by the bounded connected open set B with Lipschitz boundary and a
curvature 1-varifold with boundary, namely V = Vb,θ ∈ CV

p

1 (B) for some p > 1.

The gross place occupied by the body and the crack are treated as distinct objects.
The crack is not part of the initial boundary: it is selected by a measure over B,
namely a curvature varifold, and may or may not be an empty set in the reference
place. Since the material bonds across the crack margins are broken, along the de-
formation, the cracks faces may loose contact. The obvious implication is that the
graph of the deformation may have nonzero boundary. An appropriate class of ad-
missible deformations has to be defined.

Weak diffeomorphisms have been found to be natural descriptors of deformations
of standard elastic bodies [6]. They are orientation-preserving, allow frictionless
contact of parts of the boundary while still prevent self-penetration of the matter.
However, they satisfy a condition of zero boundary in the sense of currents, a con-
dition avoiding the formation of ‘holes’ of various nature. To allow fractures, an
extended version of them has to be formulated.

Definition 3. Let B ⊂ R
2 be a body with crack V ∈ CV

p
1 (B). A weak diffeo-

morphism on B admitting cracks described by V is an a.e. approximately differen-
tiable map u : B → R̂

2 such that

1. |Du|, det Du ∈ L1(B);
2. π#|∂Gu| ≤ µV , where µV := π#V ;
3. det Du(x) > 0 for a.e. x ∈ B;
4. for every compactly supported smooth function f : B × R̂

2 → [0,+∞)

∫

B
f (x, u(x)) det Du(x) dx ≤

∫

R̂
2

sup
x∈B

f (x, y) dy.

In this case, one writes u ∈ dif 1,1(B, V , R̂
2). Moreover, for q > 1 the class

dif q,1(B, V , R̂
2) is defined by

dif q,1(B, V , R̂
2) :=

{
u ∈ dif 1,1(B, V , R̂

2)

∣
∣
∣ |M(Du)| ∈ Lq(B)

}
.

Condition (ii) implies that the Green formulas hold true in B outside the crack and
prescribes that the boundary current has finite mass, namely M(∂Gu) < ∞.
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Theorem 4. Let {V (r)} ⊂ CV
p

1 (B), with p > 1, be a sequence of curvature
varifolds describing cracks in the body B, with equibounded total variations, i.e.
supr µV (r) (B) < ∞. Moreover, assume ur ∈ dif 1,1(B, V (r), R̃

2). Suppose also
that there exist u ∈ L1(B, R̂

2), v ∈ L1(B,�n(R
2 × R̂

2)), and V ∈ CV
p
1 (B)

such that ur ⇀ u, M(Dur) ⇀ v weakly in L1, and Vr ⇀ V as measures. Then
v = M(Du) and, moreover, if det Du > 0 a.e., u ∈ dif 1,1(B, V , R̂

2).

4.1 The Energy Functional

Bulk and crack contributions to the energy are involved as usual. The crack in this
skeletal model is one dimensional. The part of the energy associated with the crack
is then splitted in two contributions: (i) the energy along the margins, which depend
on the curvature of the margins themselves and is represented by the curvature of a
varifold and (ii) the energy at the tips, the corners and the junctions of the fracture,
that are represented by the boundary of the same varifold.

The energy E(u, V ) reads

E(u, V ) : = E(u, V,B)

=
∫

B
e(x, u,Du) dx + c1

∫

G1(B)

|A|p dV + c2M(V ) + c3M(∂V )
(4)

where the ci’s are positive constants and the hypotheses (H1) (H2), (H3) and (H4)
of Section 3 on the bulk energy density e = e(x, u, F ) are satisfied.

With regard to crack energy term, the p-norm |A|p of the curvature can be re-
placed by φ(|A|) where φ : R

+ → R
+ is a convex function satisfying φ(t) ≥ c5 tp.

The term c2M(V ) is the Griffith-like part of the surface energy of the crack.

4.2 Ground States: Existence Theorems

It may be convenient to prescribe a comparison varifold Ṽ ∈ CV
p
1 (B) such that all

competing varifolds V satisfy the bound µṼ ≤ µV . The comparison varifold Ṽ can
be of course zero when an initial crack is absent. In the opposite case, Ṽ describes
a crack from which the competing cracks may extend without excluding that they
may have portions unrelated with Ṽ .

The space

Aq,p,K,Ṽ (B) :=
{
(u, V )

∣
∣
∣ V ∈ CV

p

1 (B), u ∈ dif q,1(B, V , R̂
2),

‖u‖L∞(B) ≤ K, µṼ ≤ µV

}
,
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with K > 0, is then the natural functional environment for investigating the exist-
ence of minimizers (u, V ) for the energy E .

Theorem 5. Consider B ⊂ R
2, q, p > 1, K > 0, Ṽ ∈ CV

p

1 (B). Assume that
there exists an element (u, V ) ∈ Aq,p,K,Ṽ (B) that satisfies the prescribed Dirich-
let boundary conditions. Then the energy functional (4) attains its minimum in the
subclass of Aq,p,K,Ṽ (B) of couples (u, V ) where u satisfies the prescribed bound-
ary conditions.

The constant K is selected at will for purposes of physical plausibility: it is only
necessary for establishing the boundedness of the L∞ norm of u. In contrast, the
constants p and q and the comparison varifold Ṽ have constitutive nature. The a-
priori L∞ bound on the transplacement field has been relaxed in [2,4] in a different
setting, not dealing with the path followed here.

The simpler description of the boundary measure of the one dimensional
curvature varifolds allows one to state another existence theorem with a different
growth condition for the bulk energy.

Consider the energy functional (4) where the bulk energy density e(x, u, F ) satis-
fies (H1), (H2), (H4) of Section 3 and impose a different growth condition indicated
here by

(H3-1)

e(x, u, F ) ≥ c4|F |2 ∀F ∈ M
+
2×2, ∀(x, u) ∈ B × R̂

2,

for some c4 > 0.
For K > 0 and Ṽ ∈ CV

p

1 (B) the class

Ap,Ṽ ,K :=
{
(u, V )

∣
∣
∣ V ∈ CV

p
1 (B), p > 1, u ∈ dif 1,1(B, V , R̂

2), Du ∈ L2(B),

‖u‖L∞(B) ≤ K, µṼ ≤ µV

}
,

(5)
is then the natural functional setting for another existence result.

Theorem 6. Assume that the bulk energy density of (4) satisfies (H1), (H2), (H4)
of Section 3 and (H3-1). Suppose that that there is at least one element (u0, V0) in
the class (5) with u0 satisfying a given Dirichlet data. Then the functional (4) has a
minimizer in the subclass of (5) of couples (u, V ) with u satisfying the prescribed
Dirichlet boundary conditions.

In the previous scheme, a sequence of varifolds accumulating at the boundary of
B vanishes at the limit. It is possible to consider a different situation where the
propagation of cracks at the boundary of the body B is taken into account, and
a term involving the crack at the boundary may contribute to the limit energy of
minimizing sequences. Such a situation has a clear meaning in terms of transplace-
ments for the Dirichlet problem, where the limit crack may be seen as a rupture of
the boundary condition.

A related existence theorem again follows.
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Crack Curving Based on Configurational Forces
and Their Gradients

Henning Schütte

Abstract A numerical scheme is presented to predict crack trajectories in two di-
mensional components. First a relation between the curvature in mixed-mode crack
propagation and the corresponding configurational forces is derived, based on the
principle of maximum dissipation. With the help of this, a numerical scheme is
presented which is based on a predictor-corrector method using the configurational
forces acting on the crack together with their derivatives along real and test paths.
With the help of this scheme it is possible to take bigger than usual propagation
steps, represented by splines. Essential for this approach is the correct numerical
determination of the configurational forces acting on the crack tip. The methods
used by other authors are shortly reviewed and an approach valid for arbitrary non-
homogenous and non-linear materials with mixed-mode cracks is presented. Nu-
merical examples show, that the method is a able to predict the crack paths in com-
ponents with holes, stiffeners, etc., with good accuracy.

1 Introduction

Crack path prediction is based on three parts: a criterion for the onset of crack
propagation, a criterion for the direction of propagation, a criterion for the propaga-
tion speed or step length, for fatigue or quasi-static propagation respectively. There
is a wealth of criteria available, but most of the criteria available in the literature
cannot consistently by derived without ad-hoc assumptions. Furthermore one has
to distinguish between approaches for kinking and curving of cracks. Most criteria
available will give a statement for the immediate directional change of the crack
path, thus producing a kink. With small step sizes and kinking angles these criteria
are then used to represent a curved crack path, as a kink will physically only be ne-

Henning Schütte
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Germany; e-mail: henning.schuette@rub.de

P. Steinmann (ed.), IUTAM Symposium on Progress in the Theory and Numerics of
Configurational Mechanics, 169–178.
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cessary, if there is an abrupt change in the loading or the material properties. Among
the few approaches using curving segments is the one of Sumi et al. [1], but he is re-
stricting himself to slightly curving cracks. Most of these criteria are unfortunately
restricted to linear elastic fracture mechanics, as they are either based on the near
tip stress field solution or the stress intensity factors. So for nonlinear elastic, in-
homogeneous or plastic crack propagation methods based on configurational forces
have drawn attention [2–4]. Unfortunately the direction of the J-Integral or config-
urational force vector on the crack tip as the directional criterion is not a correct
choice as it does not account for the change of the configurational forces induced

always straight crack propagation for pure mode II, which is in contrast with ex-
perimental observations. Also the calculation of J2 with the help a domain integral
type approach used in most of these methods is inaccurate. So these criteria are only
valid for small kinking angles, which results in small steps sizes for an accurate
representation of curved cracks. The aim of this paper is to present a derivation of
a propagation criterion valid for strongly curved cracks with finite propagation step
sizes and formulated with the help of configurational forces, so the numerical ap-
proaches presented in [3,4] can be used to end up with a numerical scheme that can
be generalized to treat inhomogeneous materials at finite deformations. Additionally
a method is presented to calculate valid results for J2 from a direct configurational
nodal force approach.

2 Crack Curving in LEFM

The derivation of the criterion for curved crack propagation is done with the help of
the results obtained by Amestoy and Leblond [6] in the framework of linear elastic
fracture mechanics. Linear elastic fracture mechanics is based on the near tip stress
field

σij = Kα f α
ij (θ) r−1/2 + Tα gα

ij (θ) + bα hα
ij (θ)

√
r + O(r), (1)

where the Kα are the stress intensity factors (SIFs) for the three modi α =
I, II, III , T the (non-local) T-stresses and the bα are the coefficients of square-
root stress terms also used by Sumi et al. [1]. The fij , gij , hij matrices of angular
functions stem from the Williams series solution [7]. A kinked and curved crack
(Figure 1) with the elongation of the crack s is described by y ′ = a�x ′ 3/2 + 1

2C�x ′ 2.
The evolution of the SIFs is given by Amestoy and Leblond [6] as

Kα(s) = K�
α + K(1/2)

α

√
s + K(1)

α s + O(s2/3) (2)

with
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Fig. 1 The kinked and curved crack.

K�
α = Fαβ(φ)Kβ (3)

K(1/2)
α = Gαβ(φ)Tβ + a�Hαβ(φ)Kβ (4)

K(1)
α = [

K(1)
α

]φ,a�

C�=0 + C�Mαβ(φ)Kβ (5)

where the Greek indices run over I , II , III the three crack modes and the matrices
F , G, H , M are universal functions, depending only on the kinking angle and not
the special crack problem under consideration. The first term in eq. (3c) involves the
b-coefficients of eq. (1), but also some non-universal parts, that means it can only
be determined for a special crack problem in a finite body. A special note on the
non-universal characteristic of the second-order term for curving cracks seems to be
missing in Sumi et al.’s [1] approach, but is pointed out in [6]. Amestoy and Leblond
have derived in [6] also the consequences for the crack path of the criterion of local
symmetry [8] (KII = 0). Here, using the same series approach, the consequences
of a maximum dissipation postulate should be derived, motivated by the work of
Le et al. [5], where they have shown, that from the variational principle of a body
containing a crack the maximum dissipation (or maximum driving force) criterion
follows without any ad-hoc assumptions. Furthermore the energetic approach has
the advantage that the crack propagation rate and the driving force acting on the
crack can accurately be determined for crack kinking and curving and also remain
the correct thermodynamic dual quantities for these cases.

3 Maximum Dissipation for Regular Curved Cracks

As the criterion for kinking cracks has already been derived in [5], we will here re-
strict ourselves to the case of regular crack propagation, i.e. curving without kinking.
This implies for all criteria, that mode II has to vanish for the initial crack config-
uration as it would immediately lead to crack kinking. The starting point is thus the
dissipation of a growing crack, based on the driving force acting on the propagating
crack tip. Following Le et al. [5] we introduce this driving force with the help of the
actual SIFs
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G(s) = Kα(s)Kβ(s)�αβ = G� + G(1/2)
√

s + G(1)s + O(s(3/2)) (6)

with

�αβ = 1 − ν2

E

⎛

⎝
1 0 0
0 1 0
0 0 1

1−ν

⎞

⎠ (7)

The terms in the series can be given with the help of eq. (2) as

G�(φ) = K�
αK�

β�αβ = Fαγ �αβFβδKγ Kδ (8)

G(1/2)(φ, a�) = (
2K�

αK
(1/2)
β + K(1/2)

α K
(1/2)
β

√
s
)
�αβ (9)

G(1)(φ, a�, C�) = (
2K�

αK
(1)
β + 2K(1/2)

α K
(1)
β

√
s + K(1)

α K
(1)
β s

)
�αβ (10)

The consequences of the postulate of maximum dissipation are here for the sake of
simplicity derived from the maximum driving force principle. The consequences of
the two are the same, as long as the fracture resistance does not explicitly depend
on the direction crack propagation, e.g. through the kinking angle. In the following
we restrict ourselves to the two-dimensional case.

3.1 Zeroth Order Approximation

The zeroth order term, depending only on the kinking angle, is the driving force
acting on a kinked crack that has already been determined in [5]. Introducing KII =
0 into this solution leads to a vanishing kinking angle ϕ� = 0.

3.2 First Order Approximation

To derive the first curvature parameter a� the maximum driving force determined
from the series eq. (6) is cut after the square-root term

G(s) = G� + G(1/2)
√

s + O(s); φ = φ�. (11)

The postulate of maximum driving force

∂G(s)

∂a�
= ∂G(1/2)

∂a�
= 0 (12)

leads to the curvature parameter

a� = −1

s

�αβ

(
K�

αHβγ Kγ + √
sHβγ Kγ GαT

)

�αβHαγ Kγ HβδKδ

(13)
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Inserting ϕ = 0 into the matrix H (cf. [6]) and setting KII = 0 for regular crack
propagation leads to a vanishing first order curvature parameter and thus a vanishing
first order driving force

a� = 0 ⇒ G(1/2) = 0 (14)

3.3 Second Order Approximation

The driving force series eq. (6) is reduced with the help of eq. (refeq:10) and ϕ = 0
to

G(s) = G� + G(1/2)
√

s + G(1)s + O(s3/2) = G + G(1)s + O(s3/2) (15)

The second order driving force term can be further simplified with the help of a� = 0
to

G(1) = (
2KαK

(1)
β + K(1)

α K
(1)
β s

)
�αβ (16)

And the second order SIF term appearing here reduces to

K(1)
α = K(1)

α

∣∣
straight + C�Mαβ(φ = 0)Kβ (17)

The first non-universal term in eq. (17) is to be understood as the first order term
that would appear for a straight (not kinked, not curved) crack propagation. The
maximum driving force gives then an equation for the second curvature parameter
C�

∂G(s)

∂C�
= ∂G(1)

∂C�
= 0 = 2�αβ

(
KαMβδKδ + K(1)

α MβδKδs
)

(18)

with the solution (inserting MI,I (φ = 0) = MII,II (φ = 0) = 0,MII,I = 1/2)

C� =
−2K

(1)
I I

∣
∣
straight

KI

⇒ C� =
−2

dKII

ds

∣
∣
straight

KI

(19)

where the second interpretation in the above equation is possible because of the
vanishing KII for the initial crack. This is a similar result to the one derived in [6]
from the principle of local symmetry. Also Sumi presented in [5] a similar result for
slightly curved cracks. To be able to use a numerical approach based on configur-
ational nodal forces in the framework of an FEM simulation, this result has to be
reformulated in terms of configurational forces.
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4 Transition to Configurational Forces

Configurational forces are to be understood as the forces in material space (in op-
posite to physical space) resulting from the variation in energy due to the change in
position of the singularity arising at the crack tip (cf. [9]). For the configurational or
Eshelby-stress tensor

µij = ψδij − uk,j
∂ψ

∂uk,i

(20)

with the free energy density ψ , ui the displacement vector and δij the Kronecker
delta the following balance of material momentum equation is valid

µij,j = − ∂ψ

∂Xi

∣
∣∣
exp

(21)

where the right hand side term is only non-vanishing, if there exists an explicit de-
pendency of the free energy density with respect to the position X in the material.
This is only the case for non-homogeneos materials, e.g. functionally graded mater-
ials. For homogenous materials the divergence in eq. (21) is vanishing, giving rise to
a path-independent conservation integral, the first component of which is the widely
know J-Integral

Fi = Ji = lim
�→0

∮

�

µij nj ds (22)

Please note that eq. (22) shows only an asymptotical path-independency, since the
integrand for J2 is not necessarily vanishing on the crack surfaces. This will be
discussed in detail in connection with the numerical approach for the accurate de-
termination of the configurational forces in a finite element framework. In a linear
elastic fracture mechanics framework we have the following connection between
configurational forces, J-integral vector components and the stress intensity factors

Ft = J1 = 1 − ν2

E

(
K2

I + K2
II ) (23)

Fn = J2 = 1 − ν2

E

(−2KIKII ) (24)

With the help of these relations the main result of the preceeding section, the
curvature resulting from maximum dissipation can be rewritten as

C� = ∇t · FFF · n
FFF · t

= ∂tFn

‖F‖ (25)

where ∇t is the tangential part of the gradient of the material force with respect to
material space (compare Figure 4). This tangential derivative is to be understood as
the derivative of the normal component of the configurational force along a straight
crack elongation. The second interpretation of eq. (25) is valid because for the real
crack the normal component will always vanish. Equation (25) means the local
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Fig. 2 Curved crack with normal and tangential configurational forces.

Fig. 3 Integration domains of increasing size.

curvature of the crack trajectory is the same as the local curvature of the mater-
ial force field. This result seems to be such a natural and straightforward result, that
the author believes, it will hold in general without the underlying assumptions made
earlier in the linear elastic fracture mechanics framework.

5 Finite Element Framework

A finite element framework making use of nodal configurational forces is used,
similar to the ones described in [3, 4]. The essential part is, that this approach gives
in a simple post-processing step the configuration forces as the thermodyamical
dual quantitiy to a variational change of the position of the corresponding node with
respect to the material

F
h =

E

A
e=1

nen∑

n=1

∫

Be
0

µ · ∇XNe dA (26)
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Fig. 4 Normal and tangential components of the configurational forces at the crack tip

Fig. 5 J1 and J2 values for increasing domain size.

Without discretization errors the finite element results for a body with a crack would
produce only configurational forcees acting on the nodes representing the crack
front (or one force acting on the crack tip). Due to the failure of the shape-functions
normally used in an FEM based approach to accurately represent the two singularit-
ies involved at the crack tip (namely the stress singularity and the singularity of the
Eshelbian-stress, which are of different order) also spurious configurational nodal
forces are produced in the vincinity of the crack front (or tip). Figure 4 shows the
results from a simulation separated into the normal and tangential parts.

The accuracy of the forces acting directly on the tip usually is low. Thus many
authors [3–5] have adopted some method similar to the domain integral method,
which in this framework consists simply in adding up the contributions of the nodes
contained in a certain area surrounding the crack tip (Figure 5).

F =
∑

ni∈�

F
h
i (27)

Figure 5 shows clearly, that the value for J1, but not the value for J2 is converging,
when the size of the domain is increased. Because of this an extrapolation back to a
zero area domain is necessary, as suggested by the limit value appearing in eq. (22)
hinting to the asymptotic path independence of the J-integral vector.
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Fig. 6 Forward sensing alaong the predicted crack path.

Fig. 7 Specimen by Bittencourt et al.

6 Step by Step Propagation Scheme

A step by step numerical scheme has been implemented in the commercial FEM-
code ANSYS. After each step the geometry has been created newly and a new
mesh has been created. After that the following scheme has been adopted for each
propagation step:

• small test step to determine the curvature 25
• “forward sensing” the ratio σnt /σnn to determine the maximum length (Figure 6)
• constant curvature propagation
• small change of the tail slope of the spline by �ϕ = J2/J1 to get vanishing J2
• or cut back, if J2/J1 is too big.

With the help of this scheme the experiments from Bittencourt et al. [10] (Figure 7)
have been simulated. Figure 6 illustrates, that highly accurate results can be attained
with a small number of propagation steps.
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Fig. 8 Computational result from 20 propagation steps.

7 Conclusions

A criterion to describe the crack trajectory of a curved crack has been derived. The
formulation in terms of configurational forces opens the door to a applicability to
a wider range of inhomogenous materials or finite deformations. The necessity of
an extrapolation technique to determine accurate J2 values has been shown. The
numerical scheme based on splines and a predictor-corrector method enables to take
large steps in an FEM simulation and thus save computational effort, while keeping
or increasing the accuracy of the predicted path.
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Anisotropic Elasticity of Grade Three:
Conservation and Balance Laws

Eleni Agiasofitou and Markus Lazar

Abstract In this work we derive conservation and balance laws in the context of
linear, anisotropic elasticity of grade three including cohesive forces. More particu-
larly, for a homogeneous medium without external forces we derive the conservation
laws of translation and addition of solutions as well as the balance laws that stem
from the rotation and scaling transformations. The Eshelby stress tensor of such a
gradient theory of higher order is determined. On the other hand, we calculate all the
corresponding balance laws for an inhomogeneous medium in the presence of ex-
ternal forces. The dynamical reciprocal theorem for anisotropic elasticity of grade
three is derived and its relationship to the balance law of addition of solutions is
examined.

1 Introduction

Elasticity of grade three is an extension of elasticity in which there is a microstruc-
ture associated with material points. The theory of gradient elasticity enriches the
classical elasticity with additional material-characteristic length scales in order to
describe the size effects resulting from the underlying microstructure. Such a con-
sideration is based on the constitutive relations in which the strain energy density
W is a function not only of the displacement gradient but also of the gradients of
the displacement up to the third order W = W(∇u,∇2u,∇3u) including surface
energy as originally proposed by Mindlin [10]. For crystals, anisotropic elasticity of
grade three is a proper candidate to describe their microstructure. The aim of this
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paper is to derive the conservation as well as the balance laws for linear, anisotropic
elasticity of grade three including the so-called cohesive forces [10, 11, 15]. The
present work is a generalization of the paper [2] to anisotropic materials.

2 Anisotropic Elasticity of Grade Three

In the framework of linear elasticity of grade-3 for a homogeneous, anisotropic
material in the absence of external forces, the strain energy density is considered
as a function of the first, second and third gradient of the displacement field
uα = uα(x), α = 1, 2, 3 that is

W = W(uα,i , uα,ij , uα,ijk), (1)

where uα,i = ∂uα/∂xi . We denote by x = (x1, x2, x3, t) that is the first three
components of x are the spatial coordinates and the fourth one corresponds to the
time variable t . Considering the dynamical case, we represent the kinetic energy
density by

T = 1

2
pαu̇α, (2)

where pα is the linear momentum vector and a superposed dot will denote the time
derivative. Then, the Lagrange density can be expressed as

L = T − W. (3)

Therefore, for the problem under study we have

L = L(u̇α, uα,i, uα,ij , uα,ijk). (4)

In general, a Lagrangian of third order for an inhomogeneous body in the presence
of body forces can be of the form

L = L(xi, uα, u̇α, uα,i, uα,ij , uα,ijk). (5)

A third order variational problem consists of finding the extrema of the so-called
action integral

J [u] =
∫

�

L(x, u(3))dx, (6)

where the integrand L(x, u(3)) is a smooth function of x, u and the derivatives of
u up to third order, u(3), and � is an open, connected subset of R

4 with smooth
boundary ∂� and dx = dx1dx2dx3dt .

For a smooth function u(x) to be an extremum of the action integral J [u] it is
necessary that it satisfies the Euler–Lagrange equations

Eα(L) = 0, α = 1, 2, 3. (7)
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Throughout the paper, we assume the usual convention of summation over a re-
peated index. The Euler–Lagrange equations for a third order variational problem
are given by the formula

Eα(L) = ∂L

∂uα

− Di

∂L

∂uα,i

+ DiDj

∂L

∂uα,ij

− DiDj Dk

∂L

∂uα,ijk

= 0, i, j, k = 1, . . . , 4, (8)

where Di is the total derivative.
Namely, the strain energy density for a linear, anisotropic material can have the

form

W = 1

2
ταjuα,j + 1

2
ταjkuα,jk + 1

2
ταjkluα,jkl + 1

2
A0

αjkuα,jk + 1

2
B0

αjkluα,jkl, (9)

where ταj is the force stress tensor, ταjk and ταjkl are the double and the triple stress
tensors, respectively and can be defined as follows

ταj = ∂W

∂uα,j

, ταjk = ∂W

∂uα,jk

, ταjkl = ∂W

∂uα,jkl

, (10)

or more specifically [7, 8, 11]

ταj = Cαjβkuβ,k + Fαjβkluβ,kl + Eαjβklmuβ,klm,

ταjk = Fβlαjkuβ,l + Aαjkβlmuβ,lm + Gαjkβmnpuβ,mnp + A0
αjk,

ταjkl = Eβmαjkluβ,m + Gβmnαjkluβ,mn + Bαjklβmnpuβ,mnp + B0
αjkl , (11)

where Cαjβk, Fαjβkl, Eαjβklm, Aαjkβlm, Gαjkβmnp, Bαjklβmnp, A0
αjk and B0

αjkl

are the tensors of the material constants and especially A0
αjk and B0

αjkl are the co-
hesive forces. To complete the set of the constitutive relations (10) for the considered
Lagrangian we give the following relation for the linear momentum vector

pα = ∂T

∂u̇α

= ρu̇α, (12)

where ρ is the mass density.
For the considered model, the Euler–Lagrange equations (8) via the relations (10)

and (12) take the form

Dt pα − Di

(
ταi − Dj ταij + Dj Dkταijk

) = 0, i, j, k = 1, 2, 3. (13)
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3 Conservation – Balance Laws in Elasticity of Grade Three

In this section, we start giving a brief mathematical setting for the derivation of a
conservation law for a third order variational problem. The next subsections deal
with the derivation of conservation or balance laws for specific group of transform-
ations for a homogeneous body without external forces.

3.1 Structure of Conservation Laws

This subsection gives the absolutely necessary material concerning the construction
of the currents which enter into a conservation law. The calculation is based on the
Noether theorem [13] and especially in the prolongation method as it is described
in the books by Olver [14] and Bluman and Kumei [3]. For the detailed calculation
of the currents for a third order variational problem, the reader is referred to [2].

Let us consider an n-parameter group of transformations G acting on both inde-
pendent x and dependent u variables

(x∗, u∗) = (�w(x, u),�w(x, u)) , (14)

where x ∈ X ≡ R
4, u ∈ U ≡ R

3 and the parameter w = (w1, w2, . . . , wn). Each
parameter of an n-parameter Lie group of transformations leads to an infinitesimal
generator. The infinitesimal generator vr , corresponding to the parameter wr, r =
1, . . . , n of the group G is a vector field defined on an open subset M ⊂ X × U

vr = ξr
i (x, u)

∂

∂xi

+ φr
α(x, u)

∂

∂uα

, i = 1 . . . , 4, α = 1, 2, 3 (15)

where

ξr
i (x, u) = ∂�i

w(x, u)

∂wr

∣
∣∣
∣
w=0

, φr
α(x, u) = ∂�α

w(x, u)

∂wr

∣
∣∣
∣
w=0

, (16)

where �i
w,�α

w are the components of �w,�w and

Qr
α(x, u(1)) = φr

α(x, u) − ξr
i (x, u)uα,i (17)

are the characteristics of the vector fields vr .
Noether’s theorem states that if G is a symmetry group of the variational prob-

lem (6), vr , r = 1, . . . , n are the infinitesimal generators of G and Qr
α are the char-

acteristics of vr , then Qr
α are also the characteristics of conservation laws for the

Euler–Lagrange equations Eα(L) = 0; in other words there are Ari, i = 1, . . . , 4
such that

DiAri = −Qr
αEα(L) (18)

are conservation laws in characteristic form for the Euler–Lagrange equations.
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In our case, that is for a third order variational problem, the general form of the
currents are given by the following formulas (see [2])

Ari = Qr
α

[
∂L

∂uα,i

− Dj

∂L

∂uα,ij

+ Dj Dk

∂L

∂uα,ijk

]
+ DjQ

r
α

[
∂L

∂uα,ij

− Dk

∂L

∂uα,ijk

]

+ Dj DkQ
r
α

∂L

∂uα,ijk

+ Lξr
i , i, j, k = 1, 2, 3 (19)

and

Ar4 = Qr
α

∂L

∂u̇α

+ Lξr
4 . (20)

The statement of Noether’s theorem holds also in the case that the vector fields vr

generate a divergence symmetry instead of a variational one for the functional J . In
that case, Noether’s theorem gives the following currents

Ari = Qr
α

[
∂L

∂uα,i

− Dj
∂L

∂uα,ij

+ Dj Dk
∂L

∂uα,ijk

]
+ DjQ

r
α

[
∂L

∂uα,ij

− Dk
∂L

∂uα,ijk

]

+ Dj DkQ
r
α

∂L

∂uα,ijk

+ Lξr
i − Bri, i, j, k = 1, . . . , 3 (21)

and

Ar4 = Qr
α

∂L

∂u̇α

+ Lξr
4 − Br4, (22)

where Bri(x, u(m)) are functions of x, u and derivatives of u.
In what follows, we find the conserved quantities that enter every time into the

specific conservation law calculating firstly the components of the infinitesimal gen-
erators and the corresponding characteristics and substituting these quantities into
Eqs. (19) and (20) if the group of transformations is a variational symmetry or to
Eqs. (21) and (22) if the group of transformations is a divergence symmetry.

3.2 Translations in Space and Time

Let us consider the following transformation corresponding to translations of the
independent variables in space and time, namely

x∗
i = xi + wrδri, r, i = 1, . . . , 4

u∗
α = uα, α = 1, 2, 3 (23)

where δri is the usual Kronecker delta.
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Due to the fact that the group (23) is a 4-parameter one, Eq. (18) can be read as
follows

DiAri = 0, i = 1, . . . , 4, r = 1, 2, 3 (24)

and

DiA4i = 0, i = 1, . . . , 4. (25)

Eq. (24), using the relations (19), (20), (10) and (12) concludes to the translational
conservation law in the linear, anisotropic elasticity of grade-3

DtPr − DlPrl = 0, (26)

where
Pr := Ar4 = −pαuα,r (27)

and

Prl := −Arl (28)

= −Lδrl − uα,r

(
ταl − ταlj,j + ταljk,jk

) − uα,rj

(
ταlj − ταljk,k

) − uα,rjkταljk

are the pseudomomentum vector and the Eshelby stress tensor [4] for the linear
elasticity of grade-3, respectively.

On the other hand, the analysis of Eq. (25) leads to the conservation law of energy
for the linear, anisotropic elasticity of grade-3

DtH − DlSl = 0, (29)

where
H := A44 = pαu̇α − L = T + W (30)

and

Sl := −A4l = u̇α

(
ταl − ταlj,j + ταljk,jk

)+ u̇α,j

(
ταlj − ταljk,k

)+ u̇α,jkταljk (31)

are the Hamiltonian density and the material flux vector or field intensity [12] for
the linear, anisotropic elasticity of grade-3, correspondingly.

Furthermore, we can take the integral form of the equations (26) and (29) integ-
rating over a volume V of a regular bounded body with surface S using the diver-
gence theorem

∫

S

PrlnldS −
∫

V

DtPrdV = 0, (32)
∫

S

SlnldS −
∫

V

DtHdV = 0, (33)

where n is the unit outward normal vector to S.
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3.3 Rotations in Space

We continue to obtain actually the balance law that comes from the rotation of the
dependent and the independent variables in the space

x∗
i = xi + eirkwrxk, i, k, r = 1, 2, 3

t∗ = t,

u∗
α = uα + eαrkwruk, α, k, r = 1, 2, 3 (34)

where eirk is the permutation tensor or Levi-Civita tensor.
The expressions of Arl and Ar4 (Eqs. (19) and (20)) for the group of rotations

are

Mrl := −Arl = ermα

(
xmPαl + um(ταl − ταlj,j + ταljk,jk) + um,j (ταlj − ταlkj,k)

+um,jkταljk + uj,m(τjlα − τjlkα,k) + 2uj,mkτjlkα

)
(35)

and
Mr := Ar4 = ermα(xmPα + umpα) (36)

and construct the following rotational balance law

DtMr − DlMrl =
erαm

(
uj,mτjα + um,j ταj + uj,mlτjαl + uj,mlτjlα + um,jlταlj

+ uj,mlkτjαlk + um,jklταljk + uj,mklτjlαk + uk,mjlτkljα

)
, (37)

where Mrl is the total angular pseudomomentum vector and Mr is the total angular
momentum tensor for the linear, anisotropic elasticity of grade-3.

It is clear that in the above calculation of Eq. (37) we have not taken into ac-
count the symmetries of ταjl and ταjlk with respect to the last two and three indices,
correspondingly. If these symmetries are considered, Eq. (37) is simplified to

DtMr − DlMrl = erαm

(
uj,mτjα + um,j ταj + 2 uj,mlτjαl

+ um,jlταlj + 3 uj,mlkτjαlk + um,jklταljk

)
. (38)

For an isotropic material the rotational balance law (37) changes to a conservation
law since the isotropy condition in this case is fulfilled (see also [2]).

3.4 Scaling

We investigate here the case of the one-parameter group of scaling of independent
and depended variables

185



E. Agiasofitou and M. Lazar

x∗
i = (1 + w)xi, i = 1, 2, 3

t∗ = (1 + w)t,

u∗
α = (1 + wdu)uα, α = 1, 2, 3 (39)

where du denotes the scaling dimension of u.
In this case, the currents (19) and (20) have the specific form

Yl := −Al = xiPil − tSl + duuα(ταl − ταlj,j + ταljk,jk)

+ (du − 1)uα,j (ταlj − ταlkj,k) + (du − 2)uα,jkταljk (40)

and
Y := A4 = xiPi − tH + duuipi. (41)

Having in mind that the scaling group leads to a conservation law in classical linear
elasticity we obtain that

du = 1 − n

2
= 2 − d

2
, (42)

where n and d = n + 1 are the space and space-time dimensions, respectively.
Finally, we conclude to the following equation for the scaling group

DtY − DlYl =
(
ταlj − d

2
A0

αlj

)
uα,lj +

(
2ταljk − d

2
B0

αljk

)
uα,ljk. (43)

It is also interesting to see that the above equation in the dynamical case, that is
d = 4, using also the constitutive relations (11), becomes

DtY − DlYl = (Fβkαljuβ,k + Aαljβkmuβ,km + Gαljβmnpuβ,mnp − A0
αlj )uα,lj

+ 2
(
Eβmαljkuβ,m + Gβmnαljkuβ,mn + Bαljkβmnpuβ,mnp

)
uα,ljk,

(44)

where it is obvious that B0
αljk does not influence the breaking of symmetry instead

of A0
αlj .

3.5 Addition of Solutions

Next, we examine the case of a divergence symmetry as it is the group of addition
of solutions

x∗
i = xi, i = 1, 2, 3

t∗ = t,

u∗
α = uα + w vα, α = 1, 2, 3 (45)

where vα = vα(x) is an arbitrary solution of the field equation (13).
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Using the relations (21) and (22) we find the expressions for the quantities

Bi = −uα

(
ταi(v) − ταik,k(v) + ταikl,kl(v)

)−uα,k

(
ταik(v) − ταikl,l(v)

)

− uα,klταikl(v) + A0
αik(uα,k − vα,k) + B0

αikl(uα,kl − vα,kl), (46)

B4 = uαpα(v) (47)

and consequently for the conserved currents

Ai = −vα

(
ταi(u) − ταik,k(u) + ταikl,kl(u)

)−vα,k

(
ταik(u) − ταikl,l(u) − A0

αik

)

− vα,kl

(
ταikl(u) − B0

αikl

)

+ uα

(
ταi(v) − ταik,k(v) + ταikl,kl(v)

)+uα,k

(
ταik(v) − ταikl,l(v) − A0

αik

)

+ uα,kl

(
ταikl(v) − B0

αikl

)
(48)

and

A4 = vαpα(u) − uαpα(v). (49)

The conservation law that comes from the transformation of addition of solutions
has the form

DtI − DiIi = 0, (50)

where I := A4 and Ii := −Ai .
Furthermore, Eq. (50) can be written in the following integral form

∫

S

IinidS −
∫

V

DtIdV = 0. (51)

4 Balance Laws in Elasticity of Grade Three

This section is devoted to the derivation of the balance laws that correspond to the
former groups of transformations in the presence of material inhomogeneities and
external body forces. We conclude giving the dynamical reciprocal theorem in the
anisotropic elasticity of grade-3. It is also discussed its connection with the balance
law of addition of solutions and the restrictions under which it is valid.

4.1 Balance Laws and the J, L and M-Integrals

The Lagrangian for an inhomogeneous medium with external body forces is given
as

L = T − W − V, (52)
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where V is the potential of external forces, therefore L will be of the general form
(5). The external body forces and the material or inhomogeneity forces [9] are re-
spectively defined by

Fα := − ∂V

∂uα

, f inh
i := ∂L

∂xi

. (53)

In this case, the tensors Cαjβk, Fαjβkl , Eαjβklm,Aαjkβlm,Gαjkβmnp, Bαjklβmnp,A0
αjk

and B0
αjkl can be considered as continuously differentiable functions of the position.

The associated Euler–Lagrange equations are given by the formula (8) or in the
terms of the stress tensors as follows

Dt pα − Di (ταi − Dj ταij + Dj Dkταijk) = Fα, α, i, j, k = 1, 2, 3. (54)

Starting from the translational conservation law (26) with the aid of the Euler–
Lagrange equations (54), we can compute the translational balance law for the
linear, anisotropic elasticity of grade-3

DtPr − DlPrl = f inh
r , (55)

where it is evident the existence of a source term breaking the translational sym-
metry.

Repeating the same procedure for the case of the rotation group, Eq. (37) via
Eqs. (54) and (55) leads to the following rotational balance law

DtMr − DlMrl = ermα

(
xmf inh

α + umFα − ul,mτlα − um,lταl

−ul,mj τlαj − um,jlταlj − uj,mlτjlα

−ul,mjkτlαjk − um,jklταljk − uj,mklτjlαk − uk,mjlτkljα

)
.

(56)

Moreover, Eq. (43) through Eqs. (26), (29) and (54) gives us the following scaling
balance law

DtY − DlYl =
(
ταlj − d

2
A0

αlj

)
uα,lj +

(
2ταljk − d

2
B0

αljk

)
uα,ljk

+ xlf
inh
l + 2 + d

2
uαFα. (57)

Finally, the balance law that corresponds to the addition of solutions is given as
follows

DtI−DiIi = vαFα(u)−uαFα(v)+A0
αik,i(vα,k−uα,k)+B0

αikl,i(vα,kl−uα,kl), (58)

where it is easy to see that the gradients of the cohesive forces give additional source
terms due to the inhomogeneity of the material.
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The integral forms of the balance laws (55), (56) and (57) lead respectively to
the generalizations of the dynamical J, L and M-integrals in the linear, compatible,
anisotropic elasticity of grade-3

Jr :=
∫

S

PrlnldS −
∫

V

DtPrdV = −
∫

V

f inh
r dV, (59)

Lr :=
∫

S

MrlnldS −
∫

V

DtMrdV (60)

= −
∫

V

ermα

(
xmf inh

α + umFα − ul,mτlα − um,lταl − ul,mjτlαj − um,jlταlj

− uj,mlτjlα − ul,mjkτlαjk − um,jklταljk − uj,mklτjlαk − uk,mjlτkljα

)
dV,

M :=
∫

S

YrlnldS −
∫

V

DtYrdV (61)

= −
∫

V

[(
ταlj − d

2
A0

αlj

)
uα,lj + (

2ταljk − d

2
B0

αljk

)
uα,ljk

+ xlf
inh
l + 2 + d

2
uαFα

)]
dV.

4.2 Dynamical Reciprocal Theorem

We proceed to show that in the case of vanishing cohesive forces, the balance law
of addition of solutions (58) is actually the dynamical reciprocal theorem in linear,
anisotropic elasticity of grade-3.

Indeed, following Achenbach [1], one can show (see also [2]) that if we have the
displacements fields u(x) and v(x) produced by body forces Fα(u) and Fα(v), then
the following relation holds

uα

(
Fα(v) − Dtpα(v)

)−vα

(
Fα(u) − Dt pα(u)

)=
Di

[
vα

(
ταi(u) − ταik,k(u) + ταikl,kl(u)

)+vα,k

(
ταik(u) − ταikl,l(u)

)+vα,klταikl(u)

− uα

(
ταi(v) − ταik,k(v) + ταikl,kl(v)

)−uα,k

(
ταik(v) − ταikl,l(v)

)−uα,klταikl(v)
]

+ A0
αik(uα,ik − vα,ik) + B0

αikl(uα,ikl − vα,ikl). (62)

We mention here that for the derivation of the above formula the symmetries
Cαjβk = Cβkαj , Aαjkβlm = Aβlmαjk and Bαjklβmnp = Bβmnpαjkl are essential.
It is easy to check that Eq. (62) coincides with the balance law (58).

If A0
αik = 0 and B0

αikl = 0, then Eq. (62) is nothing but the reciprocal theorem
for the linear, anisotropic elastodynamics of grade-3 in local form. The integration
of Eq. (62) for vanishing cohesive forces concludes to the following relation
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∫

V

uα

(
Fα(v) − Dtpα(v)

)
dV +

∫

S

(
uα

(
ταi(v) − ταik,k(v) + ταikl,kl(v)

)

+ uα,k

(
ταik(v) − ταikl,l(v)

)+uα,klταikl(v)
)
dSi

=
∫

V

vα

(
Fα(u) − Dtpα(u)

)
dV +

∫

S

(
vα

(
ταi(u) − ταik,k(u) + ταikl,kl(u)

)

+ vα,k

(
ταik(u) − ταikl,l(u)

)+vα,klταikl(u)
)
dSi, (63)

which is the generalization of the reciprocal theorem in global form, akin to the the-
orems of Betti and Rayleigh (see e.g. [1]), to the linear, anisotropic elastodynamics
of grade-3.

From the above analysis it is clear that in the case of anisotropic elasticity of
grade-2 or dipolar gradient elasticity, that is Eαjβklm = 0,Gαijβklm = 0 and
Bαjklβmnp = 0 in the constitutive relations (11), the reciprocal theorem holds
without to demand the vanishing of the tensor Fαjβk as erroneously claimed in
[5, 6].

5 Conclusions

To sum up, for a homogeneous material in the absence of external forces only the
groups of translations and addition of solutions lead to conservation laws in contrast
to the groups of rotations and scaling that conclude just to balance laws. Moreover,
the cohesive forces appear explicitly in the balance law of scaling even in the case
of a homogeneous material. On the other hand, for an inhomogeneous material, the
cohesive forces influence explicitly the balances of scaling and addition of solutions
giving additional source terms. Finally, the balance law of addition of solutions is
actually the dynamical reciprocal theorem under the restriction of vanishing cohes-
ive forces.
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Evaluation of Crack-Driving Forces at
Finite Viscoelasticity: Theory and Experiment

Michael Kaliske, Christiane Netzker and Bastian Näser

Abstract This contribution presents an approach to determine the fracture mech-
anical parameters energy release rate and crack-driving force efficiently with the
material force method expanded for dissipative materials. A reliable test proced-
ure for the evaluation of these parameters is presented. Another focus lies on the
investigation of time-dependent effects in this context induced by viscoelasticity.

1 Introduction

During the last two decades, numerical simulation has been growing to one of the
most important tools in the development and optimisation of new construction ele-
ments, structural parts and their assemblies. The Finite Element Method represents
the most common numerical procedure for evaluating the structural behaviour of a
component. It allows to determine both the displacements as well as the stress and
strain conditions in a part due to certain load conditions. The reliability of these
investigations depends on the underlying constitutive model of the observed mater-
ial. In order to investigate the complex constitutive behaviour of elastomers, which
show a combination of nonlinear elasticity at finite strains, dissipative phenomena
like history dependent reduction of stiffness as well as rate-dependent and rate-
independent inelasticity, it is therefore necessary to adopt physically based material

Michael Kaliske
Institute for Structural Analysis, Technische Universität Dresden, Nürnberger Str. 31a,
01062 Dresden, Germany; e-mail: michael.kaliske@tu-dresden.de

Christiane Netzker
Institute for Structural Analysis, Technische Universität Dresden, Nürnberger Str. 31a,
01062 Dresden, Germany; e-mail: christiane.netzker@tu-dresden.de

Bastian Näser
Institute of Structural Mechanics, University of Leipzig, Marschnerstr. 31,
04109 Leipzig, Germany

P. Steinmann (ed.), IUTAM Symposium on Progress in the Theory and Numerics of
Configurational Mechanics, 193–202.
© Springer Science+Business Media B.V. 2009



M. Kaliske et al.

models since purely phenomenologically inspired constitutive equations can only
account for single characteristics.

Even though the Finite Element Method offers the possibility to perform both
static and dynamic simulations of highly materially and geometrically nonlinear
problems, it yields no direct information on the fracture mechanical behaviour of the
investigated components. However, the consideration of fracture mechanical aspects
is of special importance since the safety and serviceability of most products can be
mainly attributed to the initiation and growth of cracks. Therefore, further fracture
mechanical investigations are inevitable in order to evaluate the sensitivity of these
components with respect to crack growth.

Conventional fracture mechanical concepts were derived for brittle materials as
well as metals and hold true only for purely elastic material characteristics. Consid-
ering the complex properties of elastomeric material, fracture mechanical investiga-
tions are very challenging and cannot be conducted with these standard approaches.
According to this, only few publications regarding the fracture behaviour of elast-
omers exist, most of them assuming pure elasticity. Another approach regarding
the determination of the crack-sensitivity of a component is offered by the concept
of material forces. The fracture mechanical investigations presented in this con-
tribution base on the extension of the material force method to inelastic material
behaviour.

2 Viscoelasticity of Elastomers

A realistic material formulation of elastomers has to take into account stress soften-
ing and damage, respectively, as well as phenomena like rate-dependent and rate-
independent dissipation of energy.

Viscoelastic material models basing on linear evolution laws proved to be in-
sufficient for reproducing the rate-dependent behaviour of elastomers. A nonlinear
formulation was proposed by Bergström and Boyce [1]. On basis of this finite vis-
coelasticity model, an algorithmic approach to model the rate-dependent behaviour
of elastomeric material in the context of the Finite Element Method was derived
[2, 3]. This micromechanically inspired model describes the material by a Helm-

holtz free energy function consisting of an equilibrium part representing the pure
elastic material behaviour and a non-equilibrium part modelling the viscous effects

W = We + Wv. (1)

Assuming nearly incompressibility, the elastic response is split into a volumetric
and an isochoric part, while the viscous deformations are assumed to be purely
isochoric. For viscoelastic, incompressible material behaviour, the evolution of the
dissipated energy is expressed by the reduced dissipation inequality

Dv = M̃
v : Ḟ

v
(2)
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= τv : d̃
v

(3)

≥ 0 (4)

with the isochoric part of the Mandel tensor in the intermediate configuration M̃
v

and the rate of the viscous deformation gradient Ḟ
v
.

The inelastic rate of the deformation tensor in the current configuration Ḟ
v

d̃
v = −1

2
Lv

(
be

)
be -1 (5)

can be obtained by the Lie time derivative Lv

(
be

)
of the elastic finger tensor be.

The direction of the evolution is represented by

n = τv
iso∥

∥τv
iso

∥
∥ with

∥
∥τv

iso

∥
∥ =

√
τv

iso : τv
iso and τv

iso = P : τv, (6)

where τv denotes the viscoelastic, incompressible part of the Kirchhoff stress and

P = 1 − 1

3
1 ⊗ 1 (7)

the fourth order deviatoric projection tensor. Introducing furthermore the effective
creep rate γ̇ leads to the following evolution law

d̃
v = γ̇ n. (8)

Based on the tube-model of Doi and Edwards [4], which restricts the parameter c

to c < 0, and assuming an energy activated creep process, Bergström and Boyce
derive the effective creep rate

γ̇ := γ̇0
[
λv

c − 1
]c

(
τ v

τ̂

)m

with τ v =
∥∥τv

iso

∥∥
√

2
(9)

depending on the viscous network stretch λv
c = √

Iv
1 /3, where Iv

1 = trCv with the

inelastic metric in the reference configuration C
v := FvT Fv . With regard to the

dissipation inequality, the parameters γ̇0/τ̂
m and m must be positive.

The integration of the evolution law depends on an operator split of the material
time derivative into an elastic predictor and an inelastic corrector step

ḃ
e := l isobe + belT

iso︸ ︷︷ ︸
elastic

+ Lv

(
be

)

︸ ︷︷ ︸
inelastic

(10)

where

Lv

(
be

) = F Ċ
v -1

F
T

(11)
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with the incompressible part of the deformation gradient F = J−1/3 F. With Ċ
v -1 =

0 during the elastic trial step leading to

be,tr = F
(
Cv -1)

tn
F

T
(12)

and with Lv

(
be

) = ḃ
e

during the elastic corrector step, the evolution law is finally
derived as

ḃ
e = [−2γ̇ n

]
be,tr

. (13)

The elastic Finger tensor be is derived on basis of an exponential mapping al-
gorithm by an iterative solution of the nonlinear set of equations. The consistent
tangent moduli are computed from a virtual intermediate stress expression by em-
ploying a pull-back operation of the Kirchhoff stress to the intermediate configura-
tion by the trial elastic deformation gradient [2, 3].

3 Fracture Mechanical Parameters

Every infinitesimal crack growth in a structural component involves a release of
energy. This change of potential energy is represented by the energy release rate.
According to the Griffith fracture criterion [6], the crack will propagate if the crack
growth releases more energy than required for the development of new surfaces.

The energy release rate is one fracture mechanical parameter. In case of elastic,
non-dissipative material, it can be entirely attributed to the tearing of the material.

Inelastic, dissipative materials on the other hand show a distinctive process zone
around the crack tip leading to a change of potential energy due to the movement
of the dissipative zone around the crack tip in addition to the change of potential
energy due to the displacement of the crack tip itself. The total amount of released
energy is represented by the energy release rate which can be understood as the
energy flow into the dissipative zone. This energy release rate offers no information
on the part of energy released solely by the creation of new surfaces. Therefore, a
second fracture mechanical parameter has to be distinguished. The energy flow to
the crack tip is represented by the so-called crack-driving force which is related to
the change of the elastic potential with respect to a movement of the crack tip within
a fixed dissipative zone. The decision which of the two parameters has to be applied
depends on the purpose of investigation.

The fracture process on the micro-scale can be described by the crack-driving
force because it yields only the energy flow to the crack tip contributing entirely to
the tearing of the material. Due to the extent of the dissipative zone, the value of
the energy release rate depends on the evaluated area around the crack tip resulting
in a path-dependency of the corresponding contour integrals. This is of special im-
portance regarding the fact that the dissipative zone cannot always be completely
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Fig. 1 Internal mechanical work and elastic strain energy.

included into the contour. In contrast, the crack tip is entirely included into every
contour so that the crack-driving force is path-independent.

3.1 Classical Fracture Mechanical Approaches

Both fracture mechanical parameters can be derived with variations of the J-integral
formulation. This line integral can be evaluated either in terms of the internal mech-
anical work as originally defined by Rice [10] yielding the crack-driving force or
in terms of the strain energy as implemented in most commercial Finite Element
programs (cf. Figure 1). The latter definition yields only the energy release rate
in case of dissipative material while the definition according to Rice is restricted
to monotonic loading due to the incremental evaluation of the internal mechanical
work. Therefore, both approaches are not suited to identify the crack-driving force
of inelastic, dissipative materials under realistic loading conditions.

Both, the crack-driving force and the energy release rate can be determined by an
energy balance of two model states with different crack lengths. Since this method
is again restricted to monotonic loading, requires extensive numerical efforts and
allows only to investigate one crack at a time, it can only be applied under certain
restrictions.

3.2 Material Force Method

Within the material force method, the described fracture mechanical parameters can
be computed efficiently in the context of the Finite Element Method. This approach
can be adapted to linear and non-linear elastic as well as inelastic material behaviour
at small and finite strains and is not restricted to monotonic loading.

The material forces due to the Eshelby-stress tensor �, which was introduced by
Eshelby [5], captures only the change of the elastic strain energy. Evaluated inside
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Fig. 2 Path-dependency of material force, material volume force and crack-driving force.

a domain around the crack tip, these material forces correspond therefore to the
energy release rate.

In order to ensure the local balance of the material motion problem

Div � + G = 0 with G = G0 + Gv, (14)

material volume forces due to inelastic effects Gv arise in addition to the mater-
ial body forces resulting from the elastic problem (cf. Section 4). These additional
material volume forces can be related to the negative driving forces on the cor-
responding dissipative field. Thus, it is possible to separate the pure crack-driving
force from the material forces without any restrictions regarding the loading or the
number of cracks.

The importance of taking into account the material volume forces which arise
from inelastic material behaviour is emphasized by Figure 2. The diagram shows
the sum of material forces due to the Eshelby-stress tensor, the material volume
forces and the crack-driving forces, respectively, as a function of the distance from
the crack tip. Obviously, the crack-driving force converges even in close vicinity
of the crack tip. The crack-driving force can be stated as path-independent. On the
contrary, the material force and the material volume force are a function of the in-
tegration path. Further examination showed also a small discretization-dependency
of both the material force and material volume force. Depending on the integration
path, disregard of the material volume forces will lead to an over- or underestimation
of the crack-driving force as the fracture mechanical parameter.
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4 Material Forces of Viscoelastic Material

According to the definition of the material forces, the material gradient of the strain
energy has to be computed. For purely elastic material, the strain energy density
depends only on the deformation gradient F and – in case of inhomogeneities – on
the spatial place X.

The strain energy is only dependent on the elastic deformations. Applying a mul-
tiplicative split of the deformation gradient F = Fe Fv into an elastic and a vis-
coelastic part, it can be therefore expressed in terms of the total deformation gradient
F and the viscoelastic deformations Fv in case of viscoelastic material behaviour

Wv = Wv
(
Fe, X

) = Wv
(
F Fv -1

, X
) = Wv

(
F, Fv, X

)
. (15)

The material gradient of the strain energy density

∇XWv = ∇X(J v W̃v) (16)

= ∂J v

∂X
W̃v + J v ∂W̃v

∂Fe

︸ ︷︷ ︸
P̃

v

: ∂Fe

∂X
+ ∂ψ

∂X

∣
∣
∣
∣
expl

(17)

contains with

Wv = J v W̃v and Pv = J v P̃
v

Fv -T (18)

the strain energy density and the first Piola–Kirchhoff stress tensor in the interme-
diate configuration.

Assuming nearly incompressibility J v = det Fv ≡ 1, as shown by all elastomeric
materials of pratical relevance, and considering ∇XJ v = 0, Eq. (17) reduces to

∇XWv = ∂W̃v

∂Fe

︸ ︷︷ ︸
P̃

v

: ∂Fe

∂X
+ ∂ψ

∂X

∣∣
∣
∣
expl

. (19)

Rearranging Eq. (19) leads to

∇XWv = P̃ : ∂
(
F Fv -1)

∂X
+ ∂ψ

∂X

∣∣
∣
∣
expl

(20)

= P̃ :
(

∂F
∂X

Fv -1
)

+ P̃ :
(

F
∂Fv -1

∂X

)

+ ∂ψ

∂X

∣
∣∣
∣
expl

(21)

= P̃ : (∇XF Fv -1) + P̃ : (
F ∇XFv -1) + ∂ψ

∂X

∣
∣
∣
∣
expl

. (22)
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Since the method of material forces is based on the material motion balance,
which can be derived from the spatial motion problem

Div P + B = 0 (23)

with the physical volume forces B by a pull-back operation into the reference con-
figuration [9]

FT Div P + FT B = 0, (24)

a pull-back operation is employed to the first term of Eq. (22)

P̃ : (∇XF Fv -1) = P : ∇XF = Div
(
FTP

) − FT Div P
︸ ︷︷ ︸
−B

. (25)

This term corresponds to the derivation of material forces for elastic material.
The second term of Eq. (22), depending on the inverse viscoelastic deformation

gradient, can be expressed as

F ∇XFv -1 = F
∂Fv -1

∂Fv : ∂Fv

∂X
= F

[− Fv -1 ⊗ Fv -T]T2,3 : ∇XFv (26)

where [•]T2,3 denotes an exchange of the components attributed to the second and
third index, yielding finally

P̃ : (
F ∇XFv -1) = −Fv -T (

FT P
) : ∇XFv. (27)

Considering Eq. (14) and taking into account Eqs. (22) as well as (25), the mater-
ial volume forces from the elastic derivation include a term resulting from physical
volume forces, like gravitational or centrifugal forces, and a second term accounting
for elastic inhomogeneities

G0 = FT B + ∂ψ

∂X

∣
∣
∣
∣
expl

. (28)

The material volume forces due to viscoelastic effects result in

Gv = Fv -T (
FT P
︸︷︷︸
Mv

) : ∇XFv (29)

= Fv -T Mv : ∇XFv (30)

= M̃
v : ∇XFv (31)

with the Mandel-stress tensor defined in the intermediate configuration, M̃
v
, as the

work conjugated quantity of the history variable Fv .
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0 s 75 s 150 s 210 s 257 s

Fig. 3 Multiple-specimen experiment
at increasing load levels and time.
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Fig. 4 Experimentally and numerically determ-
ined crack resistance curves.

5 Example

In cooperation with partners within the research group “Fracture Mechanics and
Statistical Mechanics of Reinforced Elastomeric Blends”, conventional test config-
urations were examined with regard to their applicability in terms of the interpret-
ation of the two fracture mechanical parameters. Eventually, a quasi-static fracture
mechanical test with the multiple-specimen method was applied. In this test, sev-
eral identical single edge notched tension specimens were subjected to different
load levels causing different lengths of stable crack growth �a (Figure 3). The di-
mension of �a was measured. The corresponding J-value was determined with the
help of energy values calculated from the recorded load-displacement dependencies
considering the internal mechanical work as well as the elastic strain energy (cf.
Figure 1). The according J-�a data pairs were plotted as crack resistance curves.

For the numerical simulation of this test, the viscoelastic material model presen-
ted in Section 2 was applied. For each crack length, a + �a, the energy release
rate (without consideration of material body forces) and the crack-driving force
(with consideration of material body forces) were determined by the material force
method. The comparison of experimental and numerical results (Figure 4) proved
for the first time that the material forces with consideration of material body forces
can be related to the measured J-integral.

6 Conclusions

Although the context of material forces is widely used in today’s fracture mech-
anics (e.g. [7–9, 11]), the publications concentrate mainly on the examination of
elastic material features. The extension and adaption of the material force method
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to inelastic effects and stress softening of rubber-like materials under finite strains
is a new development, which allows to model the fracture mechanical behaviour
of filled elastomers more realistically. By taking into account the material volume
forces, different fracture mechanical effects of viscoelastic material, for example the
driving force on a crack tip and the driving forces on the viscoelastic zone, can be
evaluated.

It was shown that a realistic numerical investigation of the fracture mechanical
behaviour of elastomeric material requires the consideration of the time-dependent
inelastic properties.
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On Configurational Forces within
Green–Naghdi Thermo-Hyperelasticity

Swantje Bargmann, Ralf Denzer and Paul Steinmann

Abstract The contribution’s main objective is the examination of configurational
forces in non-classical nonlinear thermoelasticity based on the approach of Green
and Naghdi. In the early 1990s, Green and Naghdi introduced a theory attracting
interest as heat propagates as thermal waves at finite speed, does not necessarily
involve energy dissipation and fully integrates the classical theory. A wide range of
heat flow problems can be modeled and the classical theory is fully embedded. As
configurational forces have proven to be well suited for the examination of defect
mechanics, a numerical example from that research area is discussed. The numerical
realization is based on Galerkin finite elements in space as well as in time.

1 Kinematics of Spatial and Material Motion Problem

A body B is considered to be a collection of continuum particles. A finite, isotropic
and homogeneous body is considered. Let X denote the fixed position of a particular
particle in the undeformed and stress-free configuration B0, the region the body oc-
cupies at the initial time t0. X and B0 are called the particle’s material position and
the material configuration, respectively. Then the deformation of this configuration
is described by the time-dependent vector field of the nonlinear spatial deformation
map ϕ, whereas the material deformation map �, with which continuum particles
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Fig. 1 Spatial motion problem: kinematics.

are followed through the material at fixed spatial coordinates x, describes the inverse
motion problem

x = ϕ ( X, t ) and X = � ( x, t ). (1)

x denotes the spatial position of the particle X in the deformed (spatial) configura-
tion Bt at time t .

The deformation gradient F of the spatial motion map and its counterpart f of the
material motion problem, are defined by

F = ∇Xϕ (X, t) and f = ∇x� (x, t). (2)

The positive Jacobians will be denoted as J = det F > 0 and j = det f > 0.
Furthermore, we introduce the right Cauchy–Green strain tensor C = Ft · F as a
typical strain measure of the spatial motion problem. And in complete analogy, the
material motion right Cauchy–Green strain tensor is given by c = ft · f.

In what follows, the material time derivative of an arbitrary quantity {•} at fixed
material placement X will be denoted as Dt {•} = ∂t {•}|X. Accordingly, the spatial
velocity v can be introduced as the material time derivative of the spatial motion
map as v = Dtϕ (X, t). The gradient and the divergence of an arbitrary quantity
{•} with respect to the material placement will be denoted as ∇X{•} and Div {•},
respectively. Whereas, the spatial time derivative of a quantity {•} at fixed spatial
placements x is denoted as dt {•} = ∂t {•}|x . Thus, it defines the material velocity
V : V = dt � (x, t). Furthermore, ∇x{•} and div {•} denote the gradient and diver-
gence of an arbitrary quantity {•} with respect to the spatial placement.

Remark: Spatial vs. material motion kinematics
The spatial and the material motion problem are related through the identity maps in
B0 and Bt : idB0 = � ( ϕ(X, t), t ) and idBt = ϕ ( �(x, t), t ). Their deformation
gradients are simply related via the inverses as F−1 = f ( ϕ(X, t), t ) and f−1 =
F ( �(x, t), t ) and e.g. the velocities via v = −V · F. The Euler theorem relates
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the material and spatial time derivative of any scalar– or vector–valued function {•}:
Dt {•} = dt {•} + ∇x{•} · v and dt {•} = Dt {•} + ∇X{•} · V .

2 Thermoelastic Model

The non-classical theory of thermoelasticity of Green and Naghdi [1] is based on
balance laws, i.e. the balance of energy and the balance of momentum, like in the
classical case. The novelty of the Green–Naghdi approach is the introduction of a
new thermal variable, i.e. the thermal displacement α:

α (X, t) :=
∫ t

t0

T (X, τ ) dτ + α0 or Dtα = T . (3)

T represents the empirical temperature and α0 denotes the initial value of the
thermal displacement α at reference time t0. For the sake of simplicity and with
out loss of generality, the absolute temperature θ equals the empirical temperature:
θ = T .

The existence of a scalar-valued, positive, polyconvex, objective, material spe-
cific and path independent free energy density ψ is postulated. As in the classical
case, Green–Naghdi thermo-hyperelasticity has a conservative structure implying
that ψ plays the role of a potential for some of the constitutive relations, e.g. for the
stress. For the derivation of the energetically conjugated quantities in case of Green–
Naghdi thermo-hyperelasticity the reader is referred to the publication of Bargmann
and Steinmann [11].

The promising approach of Green and Naghdi [1] is based on the introduction
of three varying state spaces leading to three types of heat conduction, labeled type
I, II and III. Thereof, type I corresponds to Fourier’s approach. Consequently, the
classical theory is fully included. In the following, we introduce and compare the
classical Fourier theory (Green–Naghdi type I) to the non-classical Green–Naghdi
theory of type III. Type III is the most general case: it contains type II as a limiting
case and allows thermal wave propagation. In the following, the thermal theories
of type I as well as type III are coupled with a classical Neo-Hookean hyperelastic
theory.

2.1 Type I – Classical Theory

Usually, heat conduction in solids is based on Fourier’s law which describes a dif-
fusive process and leads to the well-known parabolic heat equation. This classical
theory hypothesizes that the heat flux is proportional to the temperature gradient.
Most engineering applications are described accurately by this parabolic equation,
but at cryogenic temperatures material behavior can completely differ from that
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at room temperature. Predictions of the classical theory may diverge conspicuously
from experimental data. One of these situations occurs at temperatures near absolute
zero, where the phenomenon of second sound was discovered in the 20th century.
Moreover, Fourier’s theory predicts unnatural infinite transmission speed for parts
of local heat pulses.

In the following, the basic equations are revised. The constitutive equations may
depend on the right Cauchy–Green strain tensor C, the temperature Dtα = T and
the temperature gradient ∇XDt α = ∇XT , thus

ψ = ψ (Dt α,∇XDt α, C) and H = H (Dt α,∇XDtα, C) . (4)

The constitutive equations for the free energy density ψ (acting as a potential for
the entropy density η and the mechanical stresses, i.e. the Piola stress P) reads:

ρ0ψ := µ

2
[C − I] : I + λ

2
ln2 J − µ ln J + ρ0c

[
T − T0 − T ln

T

T0

]

−3wK [T − T0]
ln J

J
− [T − T0] S0, (5)

with λ and µ denoting the Lamé constants and w, K and T0 are the thermal ex-
pansion coefficient, the bulk modulus and the reference temperature. ρ0 denotes the
body’s density in the reference configuration B0 and c the constant specific heat.
The absolute entropy density S0,

S0 = S0(T0) =
∫ T0

0
c dT . (6)

is added to the free energy in order to scale the entropy. Otherwise the change of en-
tropy and not the entropy itself is denoted by η which would lead to reference tem-
perature depending internal configurational forces. The entropy flux vector H :=
− κ1

T
∇XT is assumed to be isotropic in the reference configuration B0 and leads to

an isotropic heat flux vector Q following Fourier’s law Q = T H = −κ1∇XT .
Consequently, the spatial heat flux vector represents an anisotropic behavior, as
q = −jκ1F · Ft · ∇xT .

2.2 Type III – Non-Classical Theory

Fourier’s law is not suitable for modeling second sound as has already been shown
in the papers by Bargmann and Steinmann [2, 3]. The numerical results diverge
tremendously from the experimental data. The theory of type III (being a gradient
theory in time and in space) overcomes this drawback. It is a combination of the
classical Fourier theory (type I) and the Green–Naghdi theory without energy dis-
sipation (type II). The free energy density ψ and the heat flux Q are assumed to be
functions of the thermal displacement gradient ∇Xα, the temperature Dt α = T , the
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temperature gradient ∇XDt α = ∇XT and the right Cauchy–Green strain tensor C.1

ψ = ψ (Dtα,∇Xα,∇XDtα, C) and H = H (Dtα,∇Xα,∇XDtα, C) (7)

We conclude the following relations for ψ and Q, based on those stated in [1]:

ρ0ψ := µ

2
[C − I] : I + λ

2
ln2 J − µ ln J + ρ0c

[
T − T0 − T ln

T

T0

]

−3wK [T − T0]
ln J

J
− [T − T0] S0 + κ3

2bT0
∇Xα · ∇Xα,

H := −1

b

[
κ3

T0
∇Xα + κ4

T
∇XT

]
, (8)

where b denotes a constant material parameter.
In the following, the governing equations of thermo-hyperelasticity are intro-

duced for the spatial as well as for the material motion problem. The mechanical
problem is primarily described by the balance of momentum, whereas the thermal
problem is characterized by the balance of entropy.

2.3 Spatial Motion Problem

The balance of momentum of the spatial motion problem reads

Dt (ρ0v) = DivP + ρ0b (9)

P represents the Piola stress tensor and b is the momentum source.
The thermal problem is governed by the balance of entropy

Dt (ρ0η) = −DivH + ρ0[s + ξ ], (10)

where η, H , s and ξ ≥ 0 are the entropy density, the material entropy flux vector, the
entropy source and the non-negative entropy production, respectively. Multiplying
the balance of entropy (10) by the temperature T results in

T Dt (ρ0η) = H · ∇XT − Div Q + ρ0T [s + ξ ] . (11)

Here, the material heat flux vector is related to the material entropy flux vector by
Q = T H , see [11]. The entropy density η is thermodynamically conjugated to the
empirical temperature T . Moreover, the classical relation between the Piola stress
tensor P and the free energy density ψ holds:

1 Actually, as introduced by Green and Naghdi [1], the constitutive equations may also depend on
the thermal displacement α. However, we follow the usual procedure and define them independent
of α, leading to Eq. (7).
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∂T

∂(Dtα)
η := −∂ψ

∂T
and P := ρ0

∂ψ

∂F
, (12)

see [11]. Thus, the material time derivative of the entropy density renders Dt (ρ0η) =
ρ0∂T ηDt T − ∂T P : DtF. Since the specific heat capacity c can be defined by
c = T ∂T η we finally obtain

ρ0cDt T = H · ∇XT − Div Q + ρ0T [s + ξ ] + Qmech
0 . (13)

The thermodynamic coupling effect, i.e. the Gough–Joule effect, is caused by the
thermomechanical coupling term Qmech

0 = T ∂T P : Dt F.

2.4 Material Motion Problem

The so-called configurational forces are established by the balance of linear mo-
mentum of the material motion problem. The latter is defined as a projection of the
spatial balance of linear momentum onto the material manifold, i.e. by a premulti-
plication of −jFt :

jDtP 0 = divp + ρtB, (14)

i.e. it is postulated analogously to (9) [15–17]. It balances the time rate of change
of the material motion momentum P 0 with the material motion momentum flux p
and the momentum source ρtB. The mass specific kinetic energy density k reads
k = V · C · V /2 and the material volume force is denoted by ρtB. Moreover, the
two-point material momentum flux p is related to the classical material Eshelby
stress tensor via Σ = Jp · ft . We leave out the scalar-valued balance of entropy
of the material motion problem for the sake of brevity as it will not be used in the
computations.

Remark: Spatial vs. material quantities
At this point, relations between the material and the spatial quantities are stated
more detailed. Due to the vector-valued nature of the balance of linear momentum,
its material formulation differs more from the spatial one in contrast to scalar-valued
balance equations. The thermoelastic balance of pseudomomentum is derived fol-
lowing the way of Dascalu and Maugin [8] who present a rational and well docu-
mented derivation in case of type II. Thus, in case of type III, the entropy equation
(10) is multiplied by the thermal displacement gradient ∇Xα and then inserted into
the balance of pseudomomentum.

Then, the Eshelby stress tensor Σ reads Σ = ρ0[ψ − k]I − Ft · P for the classical
type I and Σ = ρ0[ψ − k]I − Ft · P + ∇Xα ⊗ H for the non-classical type III.

The total thermoelastic pseudomomentum of type I is P 0 = ρ0C · V and P 0 =
ρ0C · V − ρ0η∇Xα in case of type III. At first, the appearance of the entropy density
η in the pseudomomentum might be seen a bit awkward. But as α is introduced
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x [mm]

y
[m

m
]

−10
−10

10

10

A
B C

density ρ 10
[
kg/m3

]

specific heat c 100
[
W/kgK

]

thermal conductivity κ1 100
[
W/mK

]

thermal conductivity κ3 100
[
W/s2mK

]

thermal conductivity κ4 0.001
[
W/mK

]

thermal exp. coeff. w 10−5
[
1/K

]

Young’s modulus E 210000
[
N/m2

]

Poisson’s ratio ν 0.4
reference temperature T0 10 [K]
absolute entropy S0 1 [N/m2K]
material parameter b 1

Fig. 2 Discretization and material parameters of two dimensional disc. The disc is fixed at nodes
A, B and C in both directions. The bold line indicates the crack of the specimen.

in analogy with the mechanical displacement u, why not regard η as some kind of
thermal momentum in analogy with the mechanical momentum? See also [9, 10].

The classical spatial volume force b does not contain any contribution from the
kinetic energy. Contrarily, the material volume force ρ0B can be expressed as

ρ0B = −ρ0Ft · b + ρ0η∇XT − ∂ρ0

∂X
[ψ − k] , (15)

in case of type I, with ρ0Bext = −ρ0Ft · b being the external force. The internal
force ρ0B int = ρ0η∇XT − ρ0∂Xψ can be interpreted as a measure of the material’s
inhomogeneity in the material motion context [15]. For type III, the material volume
force ρ0B reads

ρ0B = −ρ0Ft · b − ρ0s∇Xα − ∇X

(∇Xα

T

)
· QI − ∂ρ0

∂X
[ψ − k] , (16)

where QI refers to part of the heat flux vector with is proportional to the temperature
gradient analogous to the theory of type I.

3 Discretization and Numerical Example

The numerical discretization is done with Galerkin finite element methods. First
the equations are discretized in space with a Bubnov–Galerkin finite element ap-
proach and subsequently the temporal discretization, applying a Galerkin time finite
element method, is carried out. The complete derivation of the discretization pro-
cedure is given in [13]. The result of the discretization of Eq. (14) is the discrete
balance of pseudomomentum of the material motion problem, which formally reads

F�h
dyn + F�h

int − F�h
sur − F�h

vol = 0. (17)
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Fig. 3 Two dimensional disc with crack. Heat conduction of type I. The temperature distribution
is plotted at times t = 0.01, 14, 28, 42, 56, 70 s.

The configurational node point inertia, internal, surface and volume forces take
the form

F�h
dyn =

nel

A
e=1

nen∑

i=1

∫

Be
t

Ni
�jDtP 0 dv, F�h

int =
nel

A
e=1

nen∑

i=1

∫

Be
t

∇xNi
� · pt dv,

F�h
sur =

nel

A
e=1

nen∑

i=1

∫

∂Be
t

Ni
�p · n da, F�h

vol =
nel

A
e=1

nen∑

i=1

∫

Be
t

Ni
�ρtB dv (18)
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t = 0.01 s t = 14 s t = 28 s

t = 42 s t = 56 s t = 70 s

Fig. 4 Two dimensional disc with crack. Heat conduction of type I. The discrete configurational
node point forces F�h are plotted at different times.

with Ni
� the shape function of the spatial discretization and A the assembly operator.

As a numerical example a cracked disc consisting of coupled geometrically non-
linear thermo-hyperelastic material is discussed. Figure 2 illustrates the spatial dis-
cretization of the specimen with a radius of 10 mm and the material parameters
stated in the table aside. In space, it is discretized with 12 constant strain trian-
gular and 84 bilinear quadrilateral finite elements. Moreover, the spatial mesh is
refined towards the crack tip. For the temporal discretization 10000 equidistant fi-
nite elements are applied. The specimen is fixed at nodes A, B and C (as indicated
in Figure 2), meaning the movement of the nodes mentioned is limited in x as well
as in y-direction. The disc is observed for 10 seconds, thus the time step equals
hn = 0.01 s.

The disc has a temperature distribution of 10 K with a Dirichlet boundary of
20 K. The displacements are assumed to be zero in the beginning. In case of type
III, the thermal displacement α is initialized to be zero at every node. Figure 3
depicts the temperature development in the disc in case of thermoelasticity type I at
times t = 0.01 s, t = 14 s, t = 28 s, t = 42 s, t = 56 s and t = 70 s. The heat
propagates diffusively from the boundary to the interior.

In Figure 4 the corresponding discrete configurational node point forces F�h =
F�h

dyn + F�h
int + F�h

vol are shown. The dynamic configurational force does not vanish in

case of coupled thermoelastodynamics as considered in this example, i.e. F�h
dyn �= 0.

As the heat and the temperature gradient ∇XT decrease at the boundary, the bound-
ary discrete node point material forces become smaller, too. Moreover, as the center
heatens up, configurational forces develop in this region.
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Fig. 5 Two dimensional disc with crack. Heat conduction of type III. The temperature distribution
is plotted at times t = 0.01, 14, 28, 42, 56, 70 s. Heat propagates as a thermal wave from the
warmer boundary to the cooler middle of the disc.

The temperature distribution according to type III is illustrated as contour plots
in Figure 5. After the boundary is heated, the heat propagates as a thermal wave to-
wards the disc’s interior. However, due to the existing diffusive part of the heat flux,
the wave’s amplitude declines in the beginning. Because of the smaller diameter, it
starts to increase again as it travels towards the disc’s center point. Furthermore, the
computed discrete configurational node point forces F�h are shown in Figure 6. The
configurational node point forces decrease over time due to the decreasing heat flux
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t = 0.01 s t = 14 s t = 28 s

t = 42 s t = 56 s t = 70 s

Fig. 6 Two dimensional disc with crack. Heat conduction of type III. The discrete configurational
node point forces F�h are plotted at different times.

Q and propagate along with the wave. Moreover, while pointing to the middle in
the beginning, their direction changes when the wave detaches from the boundary.

4 Conclusions

The objective of this contribution was the investigation of non-classical Green–
Naghdi thermo-hyperelasticity in context of the material force method. The dy-
namic, geometrically nonlinear, fully coupled problem of the classical theory of
type I and the non-classical theory of type III were considered and compared. Due
to the two different ways of heat propagation, the behaviors of the configurational
forces differs considerably when examining type I or III.

In general, configurational forces appear at places where thermal effects can be
understood as a source of continuously distributed defects. The fully coupled prob-
lem was studied in a cracked specimen. The configurational forces indicated the
tendency of the material inhomogeneity to move relative to their surrounding ma-
terial and, therefore, present a powerful computational tool when modeling ther-
moelastic defect mechanics.
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Translational Conservation and Balance Laws in
the Gauge Theory of Dislocations

Markus Lazar and Charalampos Anastassiadis

Abstract We present the translation gauge theory of moving dislocations which is
mathematically analogue to the Maxwell theory of electromagnetic fields. Such a
theory describes dislocations in an incompatible elastic continuum. The physical
state quantities in the dislocation gauge theory are the physical velocity vector, the
elastic distortion tensor, the dislocation density tensor and the dislocation current
tensor. We use gauge-principles like minimal replacement known from field the-
ories. We derive the equations of motion of dislocations. We give the isotropic as
well as the anisotropic constitutive relations for the present theory. Translational
conservation and balance laws are derived. We give the canonical as well as the
gauge-invariant currents. We show that the dynamical Peach–Koehler force is math-
ematically analogous to the Lorentz force in Maxwell’s theory of electromagnetic
fields.

1 Introduction

Dislocations are important crystal defects. After bending and twisting crystals con-
tain lots of dislocations. The dislocation is a defect breaking the translational sym-
metry. Furthermore, dislocations cause plasticity.

Why do we need generalized elasticity for dislocations? Elasticity breaks down
at small distances far from crystal defects and it leads to singularities in strain and
stress fields. Elasticity is a scale-free theory without characteristic length scales.
Moreover, ‘classical’ dislocation theory misses constitutive relations for the char-
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acteristic fields of dislocations. A promising candidate of an improved dynam-
ical theory of dislocations is the so-called translational gauge theory of disloca-
tions [1, 2, 8, 9]. The translational gauge theory of dislocations was introduced by
Edelen et al. [1, 2] and later improved by Lazar [5, 6] and Lazar and Anastassi-
adis [8,9]. Such a theory uses the field theoretical framework which is well accepted
in theoretical physics. In physics fundamental theories are gauge theories. There-
fore, we consider a gauge theory of dislocations which is analogue to the Maxwell
theory of electromagnetic fields. We want to investigate the (dynamical) Peach–
Koehler force in the framework of dislocation gauge theory and from the math-
ematical point of view if it is a Lorentz-type force. The analysis of the Lie-point
symmetries (translation, rotation, scaling), the symmetry of addition of solutions
and the gauge symmetry can be found in [8].

2 Dislocation Gauge Theory

In this section we want to explain how we can extend the theory of elasticity to a
gauge theory of dislocations. We consider the three-dimensional translation group
T (3) as the gauge group. In elasticity we deal with a displacement vector, ui , trans-
forming from the undeformed to the deformed states. The distortion tensor and the
velocity vector are defined by

βij = ui,j , vi = u̇i (1)

which are obviously invariant under a ‘rigid’ translation transformation:

u∗
i = ui + fi, fi − constant translations. (2)

As a consequence the elastic Lagrangian is also invariant under a constant transla-
tion: L(v∗

i , β∗
ij ) = L(vi , βij ) due to v∗

i = vi , β∗
ij = βij . Thus, elasticity has a rigid

translational symmetry. On the other hand, one question arises: What about local
translational symmetry?

If we postulate a local translation transformation for ui :

u∗
i = ui + fi(t, x), fi(t, x) − local translations, (3)

the invariance of u̇i , ui,j and L is lost. The extension from the rigid to soft trans-
lation symmetry affects the transformation behavior of the Lagrangian L which
contains derivatives u̇i and ui,j of the field ui . The soft symmetry transformations
on u̇i and ui,j generate terms containing derivatives ḟi (t, x) and fi,j (t, x) of the
spacetime-dependent group parameters which spoil the former rigid invariance. In
order to compensate these terms, one is forced to introduce so-called gauge fields.
The translational gauge fields ϕi and φij have the following inhomogeneous trans-
formation laws:
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ϕ∗
i = ϕi − ḟi (t, x), φ∗

ij = φij − fi,j (t, x), (4)

where ϕi is a vector gauge field and φij is a tensor gauge field. The gauge fields
couple to the field ui by T (3)-gauge-covariant derivatives:

vi := ∇t ui ≡ u̇i + ϕi, βij := ∇j ui ≡ ui,j + φij . (5)

Thus, we have redefined the physical momentum vi and the elastic distortion βij by
means of the gauge-covariant derivatives. Now vi and βij are gauge invariant under
local T (3):

v∗
i = vi, β∗

ij = βij . (6)

Therefore, they are physical state quantities. In addition they are now incompatible
fields. Also we replace in the Lagrangian the partial derivatives of the field ui by
gauge-covariant derivatives

L(u̇i , ui,j ) −→ L(u̇i , ui,j , ϕi, φij ) = L(vi , βij ) = L(v∗
i , β∗

ij ). (7)

This is called minimal replacement (see, e.g., [1, 2]). The translational gauge fields
ϕi and φij give rise to additional physical state quantities. These physical state
quantities are the following translational field strengths

Tijk = φik,j − φij,k, Iij = −ϕi,j + φ̇ij (8)

or in terms of βij and vi

Tijk = βik,j − βij,k, Iij = −vi,j + β̇ij (9)

called the dislocation density tensor (torsion tensor) and the dislocation current
tensor, respectively. Since they are state quantities, they have to be gauge-invariant:

T ∗
ijk = Tijk, I∗

ij = Iij . (10)

In addition, they have to fulfill the translational Bianchi identities (square brackets
indicate skewsymmetrization)

εjklTijk,l = 0, Ṫijk + 2 Ii[j,k] = 0. (11)

The first equation means that dislocations do not have sources and the second one
represents that the circulation of the dislocation current is proportional to the time-
derivative of the dislocation density.

Finally, we have four physical state quantities in the translation gauge theory of
dislocations, namely the physical velocity vi , the elastic distortion βij , the disloca-
tion density tensor Tijk and the dislocation current tensor Iij . Thus, the Lagrangian
is of the form: L = L(vi , βij , Iij , Tijk). The Lagrangian of dislocation gauge the-
ory is given by
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L = T − W = 1

2
pivi − 1

2
σij βij + 1

2
Dij Iij − 1

4
HijkTijk . (12)

The canonical conjugate quantities read

pi := ∂L

∂vi

, σij := − ∂L

∂βij

, Dij := ∂L

∂Iij

, Hijk := −2
∂L

∂Tijk

, (13)

where pi , σij , Iij , and Hijk are the physical momentum vector, the force stress
tensor, the dislocation momentum flux tensor, and the pseudomoment stress tensor,
respectively. The Euler–Lagrange equations derived from the Lagrangian L =
L(vi , βij , Iij , Tijk) are given by

E u
i (L) = Dt

∂L

∂u̇i

+ Dj
∂L

∂ui,j

− ∂L

∂ui

= 0, (14)

E
ϕ
i (L) = Dt

∂L

∂ϕ̇i

+ Dj

∂L

∂ϕi,j

− ∂L

∂ϕi

= 0, (15)

E
φ
ij (L) = Dt

∂L

∂φ̇ij

+ Dk
∂L

∂φij,k

− ∂L

∂φij

= 0, (16)

where Dt and Di are the so-called total derivatives. Written in terms of the canonical
conjugate quantities (13), Eqs. (14)–(16) take the form

Dt pi − Dj σij = 0 (force balance), (17)

DjDij + pi = 0 (momentum balance of dislocations), (18)

DtDij + DkHijk + σij = 0 (stress balance of dislocations). (19)

Equation (17) represents the force balance. The time-derivative of the physical mo-
mentum is the source of the force stress. It is a kind of continuity equation. Equa-
tion (18) is the momentum balance law of dislocations, where the physical mo-
mentum is the source of the dislocation momentum flux. Equation (19) represents
the stress balance of dislocations. Thus, the force stress and the time derivative of
the dislocation momentum flux are the sources of the pseudomoment stress. The
coupled system (17)–(19) together with the Bianchi identities (11) are analogous to
the inhomogeneous Maxwell equations of electromagnetic fields.

If we neglect the effects that the stresses may depend on the velocity vi and the
dislocation flux Iij and that the momenta may depend on the elastic distortion βij

and the dislocation density Tijk , the anisotropic constitutive relations for a homo-
geneous material are given by

pi = Mij vj + FijkIjk, (20)

Dij = Fkij vk + EijklIkl, (21)

σij = Cijklβkl + BijklmTklm, (22)

Hijk = 2Blmijkβlm + AijklmnTlmn, (23)

218



Translational Conservation and Balance Laws in the Gauge Theory of Dislocations

with the material tensors: Mij , Fijk , Eijkl , Cijkl , Bijklm and Aijklmn. They possess
the symmetries:

Mij = Mji, (24)

Eijkl = Eklij , (25)

Cijkl = Cklij , (26)

Bijklm = −Bijkml , (27)

Aijklmn = Almnijk = −Aikjlmn = −Aijklnm. (28)

Substituting the constitutive relations (20)–(23) into the field equations (17)–(19),
we obtain

Mij v̇j + Fijk İjk − Cijklβkl,j − BijklmTlkm,j = 0, (29)

Fkij vk,j + EijklIkl,j + Mij vj + FijkIjk = 0, (30)

Fkij v̇k + Eijkl İkl + AijklmnTlmn,k + 2Blmijkβlm,k

+ BijklmTklm + Cijklβkl = 0, (31)

or just in terms of vi and βij

Mij v̇j + Fijk(β̈jk − v̇j,k) − Cijklβkl,j + Bijklm(βlm,kj − βlk,mj ) = 0, (32)

Fkij vk,j + Eijkl(β̇kl,j − vk,lj ) + Mij vj + Fijk(β̇jk − vj,k) = 0, (33)

Fkij v̇k + Eijkl(β̈kl − v̇k,l) + Aijklmn(βln,km − βlm,kn) + 2Blmijkβlm,k

+ Bijklm(βkm,l − βkl,m) + Cijklβkl = 0. (34)

Equations (32)–(34) is a system of coupled partial differential equations for vi and
βij .

For an isotropic and centrosymmetric medium the constitutive relations (20)–
(23) reduce to

pi = ρvi, (35)

Dij = d1δij Ikk + (d2 + d3)Iij + (d2 − d3)Iji , (36)

σij = λδij βkk + (µ + γ )βij + (µ − γ )βji, (37)

Hijk = c1Tijk + c2(Tjki + Tkij ) + c3(δij Tllk + δikTlj l), (38)

where ρ is the mass density and with 9 material constants µ, λ, γ , c1, . . . , c3 and
d1, . . . , d3. Then the field equations simplify to
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Table 1 This table lists the material parameters cI , dI , µ, λ and γ for the translational gauge
theory of dislocations.

Edelen et al. Lazar and
[1, 2] Anastassiadis [8]

µ µ µ

λ λ λ

γ 0 γ

c1 2s1 c1
c2 0 c2
c3 0 c3
d1 0 d1
d2 s2/2 d2
d3 s2/2 d3

ρv̇i − λβj,ji − (µ + γ )βij,j − (µ − γ )βji,j = 0, (39)

d1(β̇jj,i − vjj,i ) + (d2 + d3)(β̇ij,j − vi,jj )

+ (d2 − d3)(β̇ji,j − vj,ji ) + ρvi = 0, (40)

d1δij (β̈kk − v̇k,k) + (d2 + d3)(β̈ij − v̇i,j ) + (d2 − d3)(β̈ji − v̇j,i )

+ c1(βik,jk − βij,kk) + c2(βji,kk − βjk,ik + βkj,ik − βki,jk)

+ c3
[
δij (βlk,lk − βll,kk) + (βkk,ji − βkj,ki )

]

+ λδij βkk + (µ + γ )βij + (µ − γ )βji = 0. (41)

The differences between the gauge theories of dislocations are mainly the choice
of the constitutive relations. In Table 1 we have listed the choice of the constitutive
relations given by Edelen et al. [1, 2]. It can be seen that Edelen’s constitutive rela-
tions are very special.

3 Conservation Laws

The Lagrangian L depends on the first derivatives of the dependent fields vi , ϕi and
φij . In this case the infinitesimal criterion of invariance [11] says that a Lie group G
is a variational symmetry if and only if

pr(1)ν(L) + L (DiXi + Dt τ ) = 0, (42)

where pr(1) denotes the first prolongation (see [8]). After some standard calculations
(see, e.g., [7, 8]) we find the conservation law in characteristic form

DiAi + DtA4 + Qu
αEu

α(L) + Qϕ
αEϕ

α (L) + Q
φ
αβE

φ
αβ(L) = 0, (43)

where the characteristics are defined by
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Qu
α = Uα − Xjuα,j − τ u̇α, (44)

Qϕ
α = α − Xjϕα,j − τ ϕ̇α, (45)

Q
φ
αβ = �αβ − Xjφαβ,j − τ φ̇αβ. (46)

Here the infinitesimal generators are defined by

Xi(x, t,u,ϕ,φ) := ∂x∗
i

∂ε

∣
∣
∣∣
ε=0

, τ (x, t,u,ϕ,φ) := ∂t∗

∂ε

∣
∣
∣∣
ε=0

, (47)

Uα(x, t,u,ϕ,φ) := ∂u∗
α

∂ε

∣
∣
∣
∣
ε=0

, α(x, t,u,ϕ,φ) := ∂ϕ∗
α

∂ε

∣
∣
∣
∣
ε=0

, (48)

�αβ(x, t,u,ϕ,φ) = ∂φ∗
αβ

∂ε

∣
∣
∣
∣
ε=0

.

Therefore, if the Euler-Lagrange equations (14)–(16) are fulfilled, then Eq. (43) is a
conservation law

DtA4 + DiAi = 0, (49)

where Ai is the associated flux and A4 is the conserved density. The corresponding
components A4 and Ai of the conservation law (49) are given by

A4 = Lτ + Qu
α

∂L

∂u̇α

+ Qϕ
α

∂L

∂ϕ̇α

+ Q
φ
αβ

∂L

∂φ̇αβ

, (50)

Ai = LXi + Qu
α

∂L

∂uα,i

+ Qϕ
α

∂L

∂ϕα,i

+ Q
φ
αβ

∂L

∂φαβ,i

. (51)

4 Canonical Currents of Translations in Space and Time

The translation acts on the independent variables. The Lie-point group transforma-
tion of the translation in space and time is given by the formulas

x∗
i = xi + εkδki, t∗ = t + ε4δ44, (52)

leaving the field variables unchanged

u∗
α = uα, ϕ∗

α = ϕα, φ∗
αβ = φαβ. (53)

The components of the generators (47) corresponding to the infinitesimal transform-
ations (52) and (53) take the form

Xki = δki, τ = δ44, Uα = 0, α = 0, �αβ = 0. (54)
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Using Eqs. (50), (51) and (54), we obtain for the translational density and flux quant-
ities

Aki = L δki − uα,k
∂L

∂uα,i

− ϕα,k
∂L

∂ϕα,i

− φαβ,k
∂L

∂φαβ,i

, (55)

Ak4 = −uα,k
∂L

∂u̇α

− ϕα,k
∂L

∂ϕ̇α

− φαβ,k
∂L

∂φ̇αβ

, (56)

A4i = −u̇α
∂L

∂uα,i

− ϕ̇α
∂L

∂ϕα,i

− φ̇αβ
∂L

∂φαβ,i

, (57)

A44 = L − u̇α
∂L

∂u̇α

− ϕ̇α
∂L

∂ϕ̇α

− φ̇αβ
∂L

∂φ̇αβ

. (58)

In terms of the physical momentum pi , the dislocation momentum flux Dij , the
force stress σij and pseudomoment stress Hijk they read

Pki := −Aki = −L δki − σαi uα,k − Dαi ϕα,k + Hαβi φαβ,k, (59)

Pk := Ak4 = −pα uα,k − Dαβ φαβ,k, (60)

Si := A4i = σαi u̇α + Dαi ϕ̇α − Hαβi φ̇αβ, (61)

H := −A44 = −L + pα u̇α + Dαβ φ̇αβ. (62)

Here Pki is the canonical Eshelby stress tensor of dislocation gauge theory. The
vector Pk is the canonical pseudomomentum vector, Si denotes the canonical field
intensity or Poynting vector. The scalar H is the canonical Hamiltonian. The con-
servation laws of the canonical pseudomomentum and the canonical energy are

DtPk − DiPki = 0, (63)

DtH − DiSi = 0. (64)

First we observe that indeed they are conservation laws because no sources like
configurational forces appear. The total energy and momentum of the system are
conserved. However, they are not conserved separately. There is an exchange of en-
ergy and momentum between the two subsystems (elastic continuum, dislocations).
Therefore, in order to obtain configurational forces we have to investigate the two
subsystems.

4.1 Elastic Subsystem

First we deal with the subsystem of the elastic continuum. This system is usually
used in continuum mechanics. For the elastic subsystem we use the Lagrangian of
the elastic continuum
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Le = 1

2
pivi − 1

2
σij βij . (65)

So we obtain from (59)–(62) the following canonical quantities of the elastic sub-
system

P
(e)
ki := −Le δki − σαi uα,k, (66)

P (e)
k := −pα uα,k, (67)

S
(e)
i := σαi u̇α, (68)

H (e) := −Le + pα u̇α. (69)

The local conservation laws (63) and (64) become now balance laws. The balance
laws of the canonical pseudomomentum and canonical energy for the elastic sub-
system read

DtP
(e)
k − DiP

(e)
ki = Fk, (70)

DtH
(e) − DiS

(e)
i = W , (71)

where the configurational force and power densities are

Fk = pα ϕα,k − σαβφαβ,k, (72)

W = −pα ϕ̇α + σαβ φ̇αβ. (73)

4.2 Dislocation Subsystem

Now we investigate the subsystem of dislocations which is similar to Maxwell’s sys-
tem of electromagnetic fields. For the dislocation subsystem we use the Lagrangian
of dislocations

Ldi = 1

2
Dij Iij − 1

4
HijkTijk. (74)

So we obtain for the canonical currents of the dislocation part

P
(d)
ki := −Ldi δki − Dαi ϕα,k + Hαβi φαβ,k, (75)

P (d)
k := −Dαβ φαβ,k, (76)

S
(d)
i := Dαi ϕ̇α − Hαβi φ̇αβ, (77)

H (d) := −Ldi + Dαβ φ̇αβ. (78)

The balance laws of the canonical pseudomomentum and canonical energy for the
dislocation subsystem read
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DtP
(d)
k − DiP

(d)
ki = −Fk, (79)

DtH
(d) − DiS

(d)
i = −W . (80)

As source terms we obtain the configurational force and the power densities with op-
posite sign because the complete system is conserved. Also we observe that the con-
figurational force (72) does not have the correct form of the Peach–Koehler force.
Moreover, all the canonical currents are not gauge-invariant.

5 Gauge-Invariant Currents

We have seen that the canonical translational currents neither produce the correct
configurational forces nor they are gauge-invariant. Therefore, we have to construct
the gauge-invariant currents from the canonical ones. From the physical point of
view, the gauge-invariant currents are the correct ones. From the mathematical point
of view, the method behind to construct the gauge-invariant currents is the so-called
Belinfante–Rosenfeld procedure (see, e.g., [10]). The result is given by

P
(g)

ki = Pki + Dt (Dαi φαk) − Dβ(Hαβi φαk), (81)

P
(g)

k = Pk + Dβ(Dαβ φαk), (82)

S
(g)

i = Si − Dt (Dαi ϕα) + Dβ(Hαβi ϕα), (83)

H (g) = H − Dβ(Dαβ ϕα), (84)

where the gauge-invariant currents are defined by

P
(g)

ki := −L δki − σαi βαk + Dαi Iαk − Hαβi Tαβk, (85)

P
(g)

k := −pα βαk + Dαβ Tαβk, (86)

S
(g)

i := σαi vα − Hαβi Iαβ, (87)

H (g) := −L + pα vα + Dαβ Iαβ. (88)

The conservation laws of the gauge-invariant pseudomomentum and Hamiltonian
are given by

DtP
(g)

k − DiP
(g)

ki = 0, (89)

DtH
(g) − DiS

(g)

i = 0. (90)

5.1 Elastic Subsystem

The gauge-invariant currents of the elastic system read
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P
(e-g)

ki := −Le δki − σαi βαk, (91)

P
(e-g)

k := −pα βαk, (92)

S
(e-g)

i := σαi vα, (93)

H (e-g) := −Le + pα vα. (94)

With Eqs. (91)–(94), the balance laws of the elastic system are

DtP
(e-g)

k − DiP
(e-g)

ki = F
(g)

k , (95)

DtH
(e-g) − DiS

(e-g)

i = W (g), (96)

where

F
(g)

k = −pi Iik + σij Tijk, (97)

W (g) = σij Iij , (98)

are the gauge-invariant configurational force and power densities. In Eq. (97) we
have two contributions to the configurational force density. The first term is the
force density caused by the dislocation current density Iik in presence of the phys-
ical momentum field pi (see also [3,4,13]). The second term gives the force density
caused by the dislocation density Tijk in presence of the force stress field σij . This
is just the static Peach–Koehler force density [12]. Thus, Eq. (97) is the dynam-
ical Peach–Koehler force density. Equation (98) is the interaction power density of
a moving dislocation in an elastic medium [3, 13]. The dynamical Peach-Koehler
force F (PK) = −F (g) is analogous to the Lorentz force of electromagnetic fields:
F (em)

k = ρEk + εklm jl Bm. The configurational power density as energy exchange
between the two systems is similar to the electric power density in the Maxwell
theory: W (em) = jk Ek (ρ – charge density, ji – electric current, Ei – electric field,
Bi – magnetic field). If we substitute the anisotropic constitutive relations (20) and
(22) into (97) and (98), we obtain

F
(g)

k = −(Mij vj + FijlIjl) Iik + (Cijlmβlm + BijlmnTlmn) Tijk, (99)

W (g) = (Cijklβkl + BijklmTklm) Iij . (100)

Thus, for the anisotropic case core-core interactions between the dislocation densit-
ies and the dislocation currents give contributions in the Peach–Koehler force (99)
and interaction power density (100).

5.2 Dislocation Subsystem

The gauge-invariant currents of the dislocation part are given by
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P
(d-g)

ki := −Ldi δki + Dαi Iαk − Hαβi Tαβk, (101)

P
(d-g)

k := Dαβ Tαβk, (102)

S
(d-g)

i := −Hαβi Iαβ , (103)

H (d-g) := −Ldi + Dαβ Iαβ. (104)

If we use Eqs. (75)–(78) and (101)–(104) for the calculation of the canonical and
gauge-invariant force and power, the same results as in Eqs. (95), (96) and (97), (98)
appear, but with opposite signs:

DtP
(d-g)

k − DiP
(d-g)

ki = −F
(g)

k , (105)

DtH
(d-g) − DiS

(d-g)

i = −W (g). (106)

6 Conclusion

We have presented a translational gauge theory of dislocations with a Lagrangian
L = L(vi , βij , Iij , Tijk) given in terms of the physical state quantities: physical
velocity vector, elastic distortion tensor, dislocation current tensor and dislocation
density tensor. Such a theory of dislocations possesses asymmetric stresses. Ten ma-
terial parameters enter the isotropic constitutive relations. We have shown that the
Peach–Koehler force is the source for the gauge-invariant Eshelby stress tensor of
the elastic and dislocation subsystems. The Peach–Koehler force is a material force
due to the incompatibility tensors (dislocation current tensor, dislocation density
tensor). From the mathematical point of view, the Peach–Koehler force is analog-
ous to the Lorentz force in the Maxwell theory of electromagnetic fields. The gauge
theory of dislocations is mathematically analogue to the Maxwell equations of elec-
trodynamics. The gauge group of the dislocation theory is the three-dimensional
translation group T (3) and, on the other hand, the unitary group U(1) is the gauge
group of the Maxwell theory. Moreover, the Maxwell theory possesses a Lorentz
symmetry with respect to the speed of light. Due to several speeds of sound, the
dislocation theory does not have, in general, a Lorentz symmetry.
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Configurational Forces in Continuous Theories
of Elastic Ferroelectrics

Vassilios K. Kalpakides and Antonios I. Arvanitakis

Abstract Domain walls in a ferroelectric crystal are considered as sharp interfaces,
so their motion is governed by field equations, jump conditions and an appropri-
ate kinetic relation between the domain wall velocity and the driving force. In
this article, a regularized version of the sharp-interface theory in ferroelectrics is
presented, by introducing a level set function that changes sign from domain to
domain smoothly and thus eliminating discontinuities. It is proved that consider-
ing level set functions as constitutive variables in the energy functional, the driv-
ing forces that move domain walls are configurational forces obeying the canonical
momentum equation. A new, recently proposed differential equation is used to de-
scribe the evolution of the level set function which keeps level set function closer
to a signed distance function as possible. Theoretical considerations and numer-
ical simulations show that configurational forces are closely related to the level set
description of sharp interface theories in solids. Moreover, it is displayed that in-
homogeneity forces drive the system successfully to the typical domain structure of
elastic ferroelectrics.

1 Introduction

The electromechanical properties of ferroelectric materials are closely related to
their microstructure, i.e. the domain structure. In a single crystal grain of a ferro-
electric material there are domains of uniform polarization. The boundary between
two distinct domains is called domain wall. A domain wall is an interface that sep-
arates phases of the material corresponding to different oriented polarization states.

In this article, at a first stage the sharp interface theory for elastic ferroelectrics
is developed. Based on this, a theory of domain wall motion by introducing an ad-
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ditional level set function is presented. The domain wall is the zero level set of this
function. In order to avoid discontinuities, domain wall is taken to be a transition
layer using a small regularization parameter that controls domain wall thickness.

Considering level set functions as constitutive variables, it is proved that forces
acting on domain walls are inhomogeneity forces and their expression enters the
canonical momentum (pseudomomentum) equation. Soft lead zirconate titanate was
chosen to perform computer simulations on ferroelectric domain structure.

2 Sharp Interfaces and Configurational Forces in Ferroelectrics

We assume an elastic ferroelectric body occupying an open set � ⊂ �2. The region
� is separated by a domain wall St in two subregions �−

t and �+
t corresponding

to domains of different spontaneous polarization. The unit normal n to the domain
wall is directed from subregion �−

t to �+
t .

The energy of the material in each region is assumed to be that of linear piezo-
electric materials

W(e, E) = 1

2
(e − e0) : [C(e − e0)] − (e − e0) : dTE − 1

2
E · (kE) − P0 · E, (1)

where C, d, k denote the elastic, piezoelectric and dielectric tensors of the material,
respectively. Also, P0 is the spontaneous polarization vector and e0 the spontaneous
strain. The electric field E and strain e are given by the kinematical relations

E = −∇φ,

e = 1

2
(∇u + (∇u)T), (2)

where φ and u denote the electric potential and mechanical displacements, respect-
ively. Two distinct energy densities are considered corresponding to the two disjoint
regions �−

t and �+
t , i.e.

W =
{

W1, in �−
t

W2, in �+
t

(3)

The branches of the energy correspond to different phases of the material associated
with the orientation of the spontaneous polarization in each subregion. Within the
smooth regions the standard equations and constitutive relations hold

div σ = 0, div D = 0, in �+
t ∪ �−

t , (4)

σ = ∂W

∂e
, D = −∂W

∂E
, (5)

where σ is the Cauchy stress tensor and D the electric displacement vector. On
domain wall St one has to deal with the jump conditions
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[[σ ]] · n = 0, [[D]] · n = 0, (6)

where [[•]] = •+ − •− is the jump of any field across the domain wall St .
The interface motion is determined by the normal velocity V = V (x, t) = v ·

n. This motion is accompanied by energy dissipation which can be computed as
following [1, 7]

� =
∫

St

f V ds ≥ 0, (7)

where f = − (n · [[�]] n), with � = W I − (∇u)σ + E ⊗ D denoting the Eshelby
stress tensor for electroelasticity.

Abeyaratne and Knowles [1] have proved that the solution uniqueness of such
problems needs a kinetic relation

V = V (f, n). (8)

Finally, gathering all the above information one can solve numerically the problem
of domain wall motion in a ferroelectric crystal. This approach is called local ap-
proach [5]. Approaches using configurational forces in interface motion problems
can be found in literature (see for instance [2, 7]).

3 The Level-Set Method

The main idea behind level set method is based on the implicit interpretation of a
surface (or curve) [8, 9]. A smooth, scalar function, ψ(x, t), x ∈ � is introduced
with the following property

�+
t = {x ∈ � | ψ(x, t) > 0}, �−

t = {x ∈ � | ψ(x, t) < 0},
St = {x ∈ � | ψ(x, t) = 0}. (9)

Notice that the interface St is the zero level set of the function ψ; for this reason ψ

is referred to as level set function. A simple example of such a function is the signed
distance function from the interface St . Assuming that the interface is moving with
a given velocity field v(x, t), the evolution equation for the level set function is of
Hamilton–Jacobi type [8]

∂ψ

∂t
− V |∇ψ| = 0. (10)

One can set the signed distance function as initial condition for the above equation.
Nevertheless, solving this initial value problem the level set function after some time
steps will not remain a signed distance function leading to numerical instabilities.
To remedy this, one has to solve an additional initial value problem after some time
steps [8]. Alternatively, one can use a variational level set method [4, 11] given by
the initial boundary value problem
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∂ψ

∂t
= µ (�ψ − κ) + V |∇ψ|, in �,

ψ(x, 0) = ψ0(x), ∀ x ∈ �,

∇ψ · n = 0, on ∂�, (11)

where µ is a penalizing parameter. The first term on the right-hand side of eq. (11)
keeps the level set function close to a signed distance function, while the second
term moves the level set according to a kinetic relation. Furthermore, the unit normal
n and the curvature κ to the curve are given by

n = ∇ψ

|∇ψ| , κ = ∇ ·
( ∇ψ

|∇ψ|
)

, (12)

respectively.

4 Continuous Energy and Configurational Forces

4.1 The Energy Function and the Level Set

For the needs of the level set method, one can write eq. (3) as an interpolation
between the two branches W1 and W2:

W(e, E, h) = W2(e, E) + h(W1(e, E) − W2(e, E)), (13)

where h = H(ψ) is the Heaviside function. Next one can introduce a continuous
form of the energy by the use of a regularized version of the Heaviside function

Hε (ψ) =

⎧
⎪⎪⎨

⎪⎪⎩

1, ψ > ε,

0, ψ < −ε,
1

2

(
1 + ψ

ε
+ 1

π
sin

(
πψ

ε

))
, |ψ| ≤ ε,

, (14)

where ε is a parameter defining the width of the layer Sε = {x ∈ � | |ψ(x, t)| ≤ ε}.
Then, the energy function and the constitutive relations become

Wε(e, E, hε) = W2(e, E) + hε(W1(e, E) − W2(e, E)),

σε = ∂Wε

∂e
= σ2 + hε(σ1 − σ2), σi = ∂Wi

∂e
,

Dε = −∂Wε

∂E
= D2 + hε(D1 − D2), Di = ∂Wi

∂E
, (15)
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where hε = Hε(ψ). Notice that the non-continuity of the energy function on the in-
terface has been removed. Instead, it is now an inhomogeneous function in a narrow
layer around the interface.

Estimating the dissipation rate, one can define the driving force that moves the
level set function [3],

�ε =
∫

∂�

σn · vds −
∫

∂�

D · nϕ̇dv − d

dt

∫

�

Wεdv ≥ 0 ⇒

�ε = −
∫

�

∂Wε

∂ψ

∂ψ

∂t
dv = −

∫

�

∂Wε

∂hε

δε(ψ)V |∇ψ |dv, (16)

where δε(ψ) = H ′
ε(ψ) is the regularized Dirac function. Taking the view of Hou et

al. [3], we define the driving force as

fε = −∂Wε

∂hε

, in Sε. (17)

The last step is to determine an appropriate kinetic relation between the above driv-
ing force and the normal velocity component of the zero level set function. In this
article the following expression is adopted

V = M1fε + M2fε|n1 − n2|, (18)

where M1, M2 are the mobilities of the isotropic and anisotropic term, respectively
and n1, n2 the components of n given by eq. (12). Thus, using eqs. (15) and (18),
one can solve the field equations (4) and (11) accompanied by appropriate boundary
conditions to determine the domain wall motion.

To reveal the role that the configurational forces might play in this problem, eq.
(13) can be written in the following form

W̄ (e, E, x) = Wε(e, E, hε), (19)

so as to underline that the energy function depends on x explicitly. Then, the equi-
librium equation for configurational forces [6] holds

div � + finh = 0 (20)

where finh represents the inhomogeneity forces. A simple calculation gives

finh = −∂W̄

∂x
= −∂Wε

∂hε

H ′
ε(ψ)

∂ψ

∂x
= −∂Wε

∂hε

δε(ψ)∇ψ. (21)

A direct conclusion is that the level set function introduces inhomogeneities in a
material. Combining eqs. (17), (20) and (21) one can write
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Fn =
∫

�

fεδε(ψ)|∇ψ|dv =
∫

�

(finh · n)dv = −
∫

�

(div � · n)dv, (22)

where Fn is the resultant driving force in the layer. The above relation shows that
the concept of material force can be naturally embedded in the framework of level
set method. Furthermore, it provides an alternative way to compute the driving force
by the use of the Eshelby stress tensor.

4.2 Two Level Set Functions

To study multi-phase problems, one has to introduce several level set functions and
write an appropriate expression for the total energy. Motivated by observed domain
patterns in a two dimensional ferroelectric sample, we introduce two distinct level
set functions ψ1, ψ2. Thus, the body can be separated in four different phases cor-
responding to the four possible orientations of polarization in 2-d ferroelectrics with
tetragonal crystal symmetry

S1
t = {x ∈ �|ψ1(x, t) = 0}, S2

t = {x ∈ �|ψ2(x, t) = 0}
�++

t = {x ∈ � | ψ1(x, t) > 0 and ψ2(x, t) > 0},
�−−

t = {x ∈ �| ψ(x, t) < 0 and ψ2(x, t) < 0}
�+−

t = {x ∈ � | ψ1(x, t) > 0 and ψ2(x, t) < 0},
�−+

t = {x ∈ �| ψ(x, t) < 0 and ψ2(x, t) > 0}. (23)

The above regions correspond to polarization phases P++ = (0 p0)
T, P−− =

(0 −p0)
T, P−+ = (p0 0)T, P+− = (−p0 0)T. As before, a regularized energy

containing the four phases can be formulated as

Wε(e, E, h1
ε, h

2
ε) = (W2 − W1)h

1
ε + (W3 − W1)h

2
ε

+ (W4 + W1 − W2 − W3)h
1
εh

2
ε + W1, (24)

where W1, W2, W3, W4 the energy expression of each region and h1
ε = Hε(ψ1) and

h2
ε = Hε(ψ2).

Our next step is to determine the driving force that moves each level set function.
Due to the non-homogeneous energy in eq. (24), one can write

∂W̄

∂x
= ∂Wε

∂h1
ε

δε(ψ1)∇ψ1 + ∂Wε

∂h2
ε

δε(ψ2)∇ψ2

= f1
inh + f2

inh, f 1
ε = −∂Wε

∂h1
ε

, f 2
ε = −∂Wε

∂h2
ε

. (25)

234



Configurational Forces in Continuous Theories of Elastic Ferroelectrics

Notice in eq. (25) the crucial role of Dirac function δε which confines the configur-
ational forces to act within the layer Sε , where the inhomogeneities are present. The
field equations and boundary conditions for the four phases problem are

∇σε = 0, ∇ · Dε = 0, in �

∂ψi

∂t
= µi (�ψi − κi) + Vi |∇ψi | , in �, i = 1, 2

σεn = 0, Dε · n = 0, ∇ψi · n = 0, on ∂�, (26)

where σε , Dε are taken by the constitutive eqs. (5). To complete this job, one has to
choose appropriate kinetic relations. In this case the following isotropic forms

V1 = M ′
1f

1
ε , V2 = M ′

2f
2
ε , (27)

have been adopted.

5 Computational Results

In this section, the above system is solved numerically. To this end, we have made
use of soft lead zirconate titanate the material parameters of which are taken [7],

C =
⎛

⎝
12.6 5.3 0
5.3 11.7 0
0 0 3.53

⎞

⎠ 1010 Pa, d =
(

0 0 17
−6.5 23.3 0

)
10−2 C

/
m2,

k =
(

1.51 0
0 1.3

)
10−8 C/Vm, e0 =

⎛

⎝
−0.0039
0.0076

0

⎞

⎠ , P0 =
(

0
0.2

)
C/m2.

To describe the other three phases, apart from the modification of the polarization
vector, one has to change the piezoelectric tensor and the spontaneous strain. The
rest of the parameters used in this paper are: ε ≤ 0.2, µ � 10−6 1/s. The field
equations in each simulation were solved using finite element discretization in space
(Lagrange quadratic elements) and finite differences in time (forward difference
discretization).

In Figure 1, a domain of opposite polarization grows inside a mono-domain crys-
tal under external electric field. The kinetic relation that has been used in this com-
putation is given by eq. (18) with M1 = 2 · 10−4 m3/sN and M2 = 0. Notice that
the domain grows vertically to reach the boundary. Then under the motion of 180◦
domain walls expands to cover the whole region of the sample.

In Figure 2, a domain of horizontal polarization grows in a crystal with vertical
polarization under compressive stress. The kinetic relation used in this computation
is given by eq. (18) with M1 = 2 · 10−4 m3/sN and M2 = 20 · 10−4 m3/sN. This
type of kinetic relation forces the domain to grow faster at 45◦ from the applied
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Fig. 1 Domain of opposite vertical polarization grows in a ferroelectric mono-domain crystal un-
der external electric field. Zero level set represents 180◦ domain walls.

Fig. 2 Domain of horizontal polarization grows in a ferroelectric mono-domain crystal under com-
pressive stress. Zero level set represents 90◦ domain walls.

stress axis, since such behavior is experimentally observed. The domain grows until
it reaches the boundary, then under the motion of 90◦ domain walls expands up to
occupy the whole crystal.

In Figure 3a, the profile of configurational forces on an 180◦ domain wall is
displayed. As one can see, configurational forces take non zero values within the
narrow layer representing the domain wall. In Figure 3b, the configurational traction
norm is plotted at a specified height from one edge of the crystal up to the other at
various instants. Note that the peak is on the zero level set and the inhomogeneity
travels through the material up to the right end where it vanishes.
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Fig. 3 Profile norm of material forces on a moving 180◦ domain wall and horizontal cross-section
plot of the norm at different times.

Fig. 4 The evolution of the level set functions in the case of a ferroelectric with four phases.

Also, we simulate the four phases of soft lead zirconate titanate as developed in
Section 4.2. In Figure 4, the evolution of an arbitrary domain structure is illustrated.
We choose two intersecting ellipses as initial values for the two level set functions
and M ′

1 = M ′
2 = 2 · 10−4 m3/sN. The initial structure evolves until it reaches an

equilibrium state. This vortex domain structure is quite typical to ferroelectrics and
it is in agreement with experimental and theoretical results [10].

Last, in Figure 5 the electric energy density and the driving forces on each level
set are plotted as functions of time. As expected, during domain evolution depicted
in Figure 4, the energy of the material reaches a minimum and configurational forces
tend to zero.
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Fig. 5 Driving forces on level set functions and electric energy density with time.
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A Variationally Consistent Approach for Crack
Propagation Based on Configurational Forces

Jörn Mosler

Abstract This paper is concerned with a variationally consistent approach suitable
for the analysis of cracking in brittle materials. In line with the pioneering works
by Griffith, it is assumed that a crack propagates, if this is energetically favorable.
However, in order to bypass the well-known defects of Griffith’s original idea such
as the requirement of a pre-existing crack, a modified energy-based criterion is pro-
posed. In contrast to Griffith and similar to Francfort and Marigo, the novel cracking
model is based on a finite crack extension. More precisely, new crack surfaces form,
if this leads to a reduction in energy within a finite (but not global) neighborhood.
The features of the advocated model are critically analyzed.

1 Introduction

Since the pioneering work [1] by Griffith has been published, energy-based criteria
have been frequently applied to the analysis of crack propagation. The underlying
mathematically and physically sound idea is that a crack propagates, if this is ener-
getically favorable. For the derivation of this strategy, Griffith analyzed the force F

associated with a (material) variation of a crack tip and postulated that a new crack
segment would form, if F reached a critical threshold, i.e., F > Fcrit, with Fcrit
denoting a material parameter. Clearly, F represents a material or configurational
force, cf. [2]. Unfortunately, Griffith’s model shows some problems.

Griffith’s model was critically analyzed in [3, 4]. Francfort and Marigo showed
that Griffith’s local criterion cannot predict crack initiation, and in its original ver-
sion, it does neither provide any information concerning the length nor the direction
of the new crack segment. Based on this observation, Francfort and Marigo advoc-
ated a global criterion. Conceptually identical to the ideas proposed by Griffith, they

Jörn Mosler
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considered a minimization problem of the type

inf
�c,ϕ

I (�c,ϕ), with I (�c,ϕ) =
∫

�

�bulk dV +
∫

�c

�s dA. (1)

Here, �bulk and �s are the Helmholtz energy of the bulk � and the surface energy
associated with the formation of new crack surfaces, ϕ denotes the deformation
mapping and �c is the crack surface. Obviously, the topology of the crack surface �c
is usually unknown. According to Eq. (1), crack propagation is understood as a com-
petition between surface energy and energy released in the bulk. Although the global
criterion (1) eliminates the aforementioned problems associated with Griffith’s the-
ory, it induces some new difficulties. From a mathematical point of view, Eq. (1)
represents a so-called free discontinuity problem. The computation of the solution
of such a problem is far from being straightforward. Even more importantly, in ad-
ditional to these technical difficulties, the global energy minimization problem (1)
may lead to non-physical minimizers. Such a pathological example was recently
given by Larsen [5]. Larsen analyzed a brittle bar (in this case, �s = const denotes
the fracture energy of the considered material) subjected to a one-dimensional (ho-
mogeneous) tension stress state. Clearly, if this bar cracks, the energy necessary for
forming the crack �c equals �s

∫
�c

dA. As a consequence, a crack will develop, if
the Helmholtz energy of the bulk material reaches the critical threshold

�bulk =
�s

∫

�c

dA

∫

�

dV
. (2)

Here, it is assumed that �bulk is spatially constant. According to Eq. (2), for a pris-
matic bar with length l, Eq. (2) results in

�bulk = �s/l (3)

As a result, crack initiation depends strongly on the length of the bar. Clearly, even
if stochastic effects are taken into account, this dependency is too pronounced in
Eq. (3) and thus, the model (1) is not in line with experimental observations.

Griffith’s local criterion and the global counterpart proposed by Francfort and
Marigo can be recast into the unified framework

inf
�c,ϕ

Ĩ (�c,ϕ), with Ĩ (�c,ϕ) =
∫

E⊂�

�bulk dV +
∫

�c⊂E

�s dA. (4)

By setting E = � the approach advocated by Francfort and Marigo is obtained,
while the limiting case diam(E) → 0 corresponds to Griffith’s method (diam de-
notes the diameter).

In this contribution, the truly non-local minimization problem (4) with
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0 < diam(E) < diam(�) (5)

is analyzed. As a prototype, the model is implemented by employing the so-called
Strong Discontinuity Approach (SDA), cf. [6–9]. In this contribution, it will be
shown that the resulting finite element formulation allows to model crack initiation
consistently and that the approach avoids the non-physical minimizers predicted by
the global model proposed by Francfort and Marigo [3, 4].

2 The Strong Discontinuity Approach – Fundamentals

In this section, the kinematics associated with the Strong Discontinuity Approach
(SDA) as introduced in [6] is briefly presented. For an overview, the interested reader
is referred to [9, 10].

First, the general case dealing with mixed-mode failure is discussed in Sec-
tion 2.1. Subsequently, the kinematics corresponding to the formation of slip bands
occurring in ductile materials is addressed in Section 2.2.

2.1 Kinematics Associated with Mixed Mode Brittle Failure

According to Simo et al. [6] and without going too much into detail, the discontinu-
ous deformation mapping (more precisely, the displacement field) characterizing the
SDA is given by

u = û + [[u]] (Hs − ϕ), with û ∈ C∞(�, R
3), ϕ ∈ C∞(�, R). (6)

Here and henceforth, û, [[u]], Hs and ϕ represent a continuous displacement field,
the displacement discontinuity, the Heaviside function (Hs = 1,∀X ∈ �+ and
Hs = 0,∀X ∈ �−, see Figure 1) and a scalar-valued ramp function (not to be
confused with the vector-valued deformation mapping), respectively. The smooth
ramp function ϕ allows to prescribe the Dirichlet boundary conditions in terms of û

(see [7, 11]).
Applying Eq. (6) to the finite element method, the displacement field within the

considered element e is approximated by using standard interpolation functions Ni .
More precisely,

û =
n∑

i=1

Ni û
(e)
i ∈ C∞(�(e), R

3) (7)

and

ϕ =
n

�+∑

i=1

Ni ∈ C∞(�(e), R). (8)
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Fig. 1 Body � ⊂ R

3 separated into two parts �− and �+ by a two-dimensional submanifold ∂s�

of class C1.

In Eq. (8), the sum over all shape functions corresponding to nodes belonging to the
closure of �+ is computed. Further details may be found in [9].

With approximation (7) and (8), the deformation gradient F = GRADϕ can be
computed. It results in

F = 1 + GRADû + [[u]] ⊗ N δs − [[u]] ⊗ GRADϕ. (9)

In Eq. (9), a spatially constant displacement discontinuity GRAD [[u]] = 0 is as-
sumed and the dirac-delta distribution denoted as δs is introduced. According to
Eq. (9), the regularly distributed part of the deformation gradient governing the ma-
terial response in �± := �− ∪ �+ reads

F = F̂ − [[u]] ⊗ GRADϕ with F̂ := 1 + GRADû. (10)

2.2 Kinematics Associated with Slip Bands

The kinematics as defined in the previous subsection is associated with the most
general case ranging from mode-I to mode-II and mode-III failure. However, some-
times, e.g., for the analysis of slip bands, it is more convenient to modify the kin-
ematics a priori according to the considered physical phenomenon.

In this section, the deformation characterizing slip bands is analyzed. Hence,
the displacement jump [[u]] is orthogonal to the spatial normal vector n = F−T ·
N/‖F−T · N‖ (the push forward of N ), i.e.,

n · [[u]] = 0. (11)

Introducing the so-called material displacement jump J := F−1 · [[u]], Eq. (11) can
be re-written as

J · N = 0 (12)
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and Eq. (10) results in
F = F̂ − F · J ⊗ GRADϕ. (13)

Alternatively, the additive decomposition (13) can be recast into the equivalent mul-
tiplicative counterpart

F = F̂ · FJ , with FJ := 1 − J ⊗ GRADϕ. (14)

Here, the identity F ·J = F̂ ·J is applied. It bears emphasis that this identity is only
fulfilled in case of mode-II or mode-III failure, i.e., if J · N = 0. Interestingly, the
multiplicative decomposition (14) is formally identical to that used in finite strain
plasticity (more precisely, crystal plasticity). Further details concerning this analogy
may be found in [8, 9].

3 A Non-Local Crack Initiation Criterion

In this section, a variationally consistent formulation suitable for the analysis of
deformation-driven, localized material defects such as cracks or shear bands is pro-
posed. For that purpose, the underlying variational framework is introduced in Sec-
tion 3.1. Subsequently, both limiting cases of material failure are carefully analyzed.
While Section 3.2 deals with brittle fracture, the opposite, namely a ductile slip
band, is addressed in Section 3.3.

3.1 Fundamentals

It is well known that the Strong Discontinuity Approach (SDA) in its original form
is based on a Petrov–Galerkin discretization, cf. [9]. Hence, it is not variationally
consistent. More precisely, the SDA cannot be derived from a potential in general.
However, if the failure surface (crack or shear band, see Figure 1) is parallel to
one of the boundaries of the cut finite element, a symmetric scheme is obtained,
see [9]. Consequently and for the sake of simplicity, the aforementioned condition is
assumed to hold true. Clearly, within a (standard) SDA-based finite element analysis
this condition is usually too restrictive in practice. Therefore, a combination with
adaptive strategies such as r-adaptivity is required, cf. [12, 13].

In line with Griffith’s local criterion and Francfort’s and Marigo’s global coun-
terpart, we advocate the non-local minimization principle

inf
�c,ϕ

Ĩ (�c,ϕ), with Ĩ (�c,ϕ) =
∫

E⊂�

�bulk dV +
∫

�c⊂E

�s dA. (15)

with �bulk and �s denoting the bulk energy and the surface energy of the considered
body. The neighborhood E ⊂ � is defined as the domain of the respective finite
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element e. Alternatively, assuming that the crack is aligned with the facets of the
finite elements (The topology of the crack is to some extend known in advance and
it is approximated by means of a finite space), Eq. (15) can be re-written as

inf
û,[[u]]

Ĩ (û, [[u]]), with Ĩ (û, [[u]]) =
∫

E⊂�

�bulk(û, [[u]]) dV +
∫

�c⊂E

�s([[u]]) dA.

(16)
Suppose the continuous part û as well as the discontinuous part [[u]] of the dis-

placement field have been computed by means of minimization problem (16) (it will
be shown later that this leads to physically sound solutions). The respective solution
is denoted as ûn, [[u]]n. Based on this solution and the respective boundary condi-
tions at time tn+1, the goal is to compute the updated variables ûn+1 and [[u]]n+1.
Clearly, if no new crack segments form, the new solution can also be computed by
relaxing the energy with respect to ûn+1 and [[u]]n+1 (and some additional restric-
tions). However, first it has to be checked, if a new crack forms. For that purpose,
the energy associated with an uncracked body

I e
cont :=

∫

�e

�bulk(F̂ ) dV (17)

is compared to that of the cracked counterpart, i.e.,

I e
disc := inf

[[u]]

⎧
⎪⎨

⎪⎩

∫

�e

�bulk(F̂ , [[u]]) dV +
∫

�c⊂�e

�s([[u]]) dA

⎫
⎪⎬

⎪⎭

∣
∣
∣∣
∣
∣
∣
F̂=const

. (18)

Since within the SDA the displacement discontinuity is modeled in an element-wise
fashion, the computation of the aforementioned energies can conveniently be restric-
ted to the considered finite element e. It bears emphasis that similar to computational
plasticity (cf., the return-mapping scheme), the aforementioned crack initiation cri-
terion is checked several times within a considered loading increment (the same
holds for the yield function in plasticity theory). By doing so, it is guaranteed that
crack propagation is governed by means of a physically sound state (converged).

Remark 1. The crack initiation criterion (17) and (18) can only be applied to fully
open cracks (or shear bands). If micro-defects characterized by non-vanishing trac-
tion vectors are to be modeled, dissipation has to be added to Eq. (18).

Remark 2. The crack initiation criterion (17) and (18) shows a similar size effect as
the model proposed by Francfort and Marigo [3]. However, without going too much
into detail, this effect can be eliminated by replacing Eq. (18) by the more general
minimization principle

I e
disc := inf

[[u]]

⎧
⎪⎨

⎪⎩

∫

�e

�bulk(F̂ , [[u]]) dV + lc

∫

�c⊂�e

�̃s([[u]]) dA

⎫
⎪⎬

⎪⎭

∣
∣
∣
∣∣
∣
∣
F̂=const

. (19)
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Here, lc = 1/‖GRADϕ‖ is the characteristic length of the considered finite element,
cf. [14,15]. It can be shown in a relatively straightforward manner that the modified
crack initiation criterion is purely local in nature (stress based). This is a direct
consequence of the locally incompatibly enhanced displacement field associated
with the SDA.

3.2 Mixed Mode Brittle Failure

In this subsection, the variational framework as briefly introduced before is applied
to the analysis of brittle fracture. Hence, the surface energy �s is constant and fur-
thermore, it is identical to the fracture energy of the respective solid. To prove that
the proposed energy-driven method leads to physically sound results, the stationar-
ity condition corresponding to a fully open macro-crack is analyzed. Obviously, in
this case, the stress vector T := P · N acting at such a crack is supposed to vanish.
Here and henceforth, P denotes the first Piola–Kirchhoff stress tensor.

The condition T = 0 characterizing brittle fracture can be checked in a straight-
forward manner by computing the stationarity condition associated with Eq. (18).
Applying Eq. (10), it results in

∂Ie
disc

∂ [[u]]
=

∫

�e

∂�bulk

∂ [[u]]
dV = −‖GRADϕ‖

∫

�e

T dV = 0. (20)

Here, the definition of the first Piola–Kirchhoff stress tensor P := ∂F �bulk, together
with the identity

GRADϕ = N ‖GRADϕ‖, (21)

have been used. Eq. (21) is a direct consequence following from the assumption
that the crack or the shear band surface is aligned with one of the facets of the finite
element. Furthermore, a linearly varying ramp function ϕ is considered, i.e., ϕ ∈ P1.
As evident from Eq. (20), the model indeed predicts a stress-free macro-crack (in
an average sense).

3.3 Slip Bands

The applicability of the proposed variational method to the analysis of shear bands
can be proven in the same manner as shown for brittle cracks. For the sake of sim-
plicity, it is again assumed that �s = const. However, the more general case, i.e.,
�s = �s(J ) does not rise any new problems.

In case of slip bands, it is more convenient to start from kinematics (14), i.e.,
the multiplicative decomposition of the deformation gradient. With this split, the
stationarity condition reads
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∂Ie
disc

∂J
·δJ =

∫

�e

∂�bulk

∂J
·δJ dV = −‖GRADϕ‖

∫

�e

{[
F̂

T · P
]

· N
}
·δJ dV, (22)

with δJ denoting the variation of J . Hence, the stress vector T̄ := [F̂ T · P ] · N

(intermediate configuration) has to vanish for any tangential direction (in case of
slip bands, δJ belongs to the tangent plane). Consequently, the proposed variational
model enforces the constraints associated with shear bands naturally (in an average
sense).

4 Conclusions

In this paper, a fully variational framework suitable for the analysis of localized ma-
terial failure such as cracking in brittle materials or shear bands in ductile metals has
been developed. Based on the (embedded) Strong Discontinuity Approach (SDA),
the final failure kinematics of solids characterized by a discontinuous deformation
mapping is approximated. In contrast to previous, conventional models, the un-
known deformation including the displacement discontinuity follows naturally by
minimizing the energy of the respective solid. Clearly, besides the physical interpret-
ation of cracking as an energy minimizer, the variational formulation shows several
significant advantages compared to classical methods. For instance, the proposed
minimum principle opens up the possibility of deriving error estimates necessary
for adaptive finite element analyses.

The presented energy-driven approach is in line with Griffith’s classical local
criterion and Marigo’s and Francfort’s global extension. More precisely, the energy
within a non-local neighborhood, i.e., the domain of the respective finite element, is
analyzed. Interestingly, it turns out that the final model does not involve any length
scale concerning the spatial discretization. Furthermore, by incorporating the char-
acteristic length of the considered finite element into the minimization principle,
a purely local crack initiation criterion is obtained (stress based). This reflects the
local incompatibility of the enhanced displacement field associated with the adopted
Strong Discontinuity Approach (SDA). For models showing a compatible discon-
tinuous part of the displacement, the proposed minimization principles have to be
carfully analyzed in the future.
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Computational Homogenization of Defect
Driving Forces

Sarah Ricker, Julia Mergheim and Paul Steinmann

Abstract Due to the fact that many engineering materials and also biological tissues
possess an underlying (heterogeneous) micro-structure it is not sufficient to simulate
these materials by pre-assumed overall constitutive assumptions. Therefore, we ap-
ply a homogenization scheme, which determines the macroscopic material behavior
based on analysis of the underlying micro-structure. In the work at hand focus is
put on the extension of the classical computational homogenization scheme towards
the homogenization of material forces. Therefore, volume forces have to incorpor-
ated which may emerge due to inhomogeneities in the material. With assistance of
this material formulation and the equivalence of the J-integral and the material force
at a crack tip, studies on the influence of the micro-structure onto the macroscopic
crack-propagation are carried out.

1 Introduction

The main goal of the current work is the combination of the concept of computa-
tional homogenization with the concept of configurational mechanics. Homogen-
ization schemes which incorporate simulations on different length scales play an
important role in the simulation of heterogeneous materials. Apparent classes of
such materials in the field of engineering applications are given, e.g., by compos-
ite materials, metal foams which are often used in lightweight construction due to
their strength–weight ratio, or different kinds of alloys. Another application is the
prediction of the mechanical behavior of biological tissues like bones or pulmonary
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tissue, which is of great interest in biomechanical simulation. In the computational
homogenization scheme applied here, the macroscopic response at a certain mater-
ial point is determined by analysis of its underlying micro-structure. Therefore in
each macroscopic simulation point of interest the microscopic setting is attached
via a so-called representative volume element (RVE). On the macro-level no con-
stitutive assumption is stated because the required quantities, which are the stress
and the tangent modulus in the applied deformation-driven scheme, emerge from
an averaging over the RVE. Due to this nested solution scheme, wherein for each
macroscopic simulation point a finite-element simulation is performed on the mi-
croscopic RVE, this particular approach is denoted as FE2 method in the work of
Feyel and Chaboche [3] or Feyel [4]. For further reading on this computational ho-
mogenization scheme the reader is referred, e.g., to the work of Kouznetsova et al.
[6] and Miehe [8, 9].

The fundamental feature of this work is the extension of the classical computa-
tional homogenization towards the homogenization of material or configurational
forces. Therefore, in contrast to state-of-the-art homogenization schemes, volume
forces have to be taken into account, which in the material motion problem occur
due to, e.g., inhomogeneous materials. The material formulation in the sense of
Eshelby, which is inverse to the spatial motion problem, is motivated by the follow-
ing description of Eshelby in [2]:

. . . the total energy of a system . . . is a function of the set of parameters neces-
sary to specify the configuration of the imperfections. The negative gradient of
the total energy with respect to the position of an imperfection may conveni-
ently be called the force on it. This force, in a sense fictitious, is introduced to
give a picturesque description of energy changes, and must not be confused
with the ordinary surface and body forces acting on the material.

Thus, it can be summarized that in contrast to classical spatial forces in the sense
of Newton which are linked to the variation of spatial positions of physical particles
with respect to the ambient space, the material forces in the sense of Eshelby are
linked to the variations of material positions of physical particles with respect to
the ambient material. Therefore, this material formulation exhibits a wide range
of applications in the field of defect mechanics. It can be shown that the material
force at a crack-tip corresponds to the J-integral, introduced by Rice [11], and thus
yields a criterion whether a crack propagates or not. Further details describing the
material motion problem and its application to fracture mechanics can be found in
the textbook by Maugin [7] and, e.g., in the work of Steinmann [12], Steinmann et
al. [13], Denzer et al. [1] among many other publications in this field.

The current work is structured as follows: In Section 2 the governing equations
for the spatial and the material motion problem, which are given by the kinematics
and the balance equations, are reviewed. In Section 3 the averages of the variables
of interest are summarized for the spatial and the material motion problem. Then, in
Section 4 the essential theorems and the boundary conditions, which are necessary
to perform the scale-transitions, are elaborated. The influence of different micro-
structures onto the macroscopic behavior as well for the spatial as for the material
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motion problem is studied by numerical examples in Section 5. The work is closed
by the conclusions given in Section 6.

2 Governing Equations

In the following the governing equations for the spatial as well as for the mater-
ial motion problem are reviewed. No distinction is made between the macro- and
the micro-level, due to the fact that the kinematics and the balance equations are
valid for both levels. Please note that in the homogenization scheme the constitutive
assumption is only stated at the micro-level, because the macroscopic behavior is
obtained from the analysis of the microscopic RVE.

2.1 Governing Equations for the Spatial Motion Problem

In the spatial motion problem a body B0 with material points X is considered. These
points are mapped to the spatial configuration via the deformation map ϕ, whose
gradient yields the deformation gradient tensor:

x = ϕ(X) and F = ∂ϕ

∂X
. (1)

The spatial motion Piola stress tensor and the body forces are given in terms of the
energy functional U0

P = ∂U0

∂F
and b0 = −∂U0

∂x
. (2)

The connection between the Piola stress and the Cauchy stress is given by the fol-
lowing push-forward operation

σ = det(F)−1 P · F t . (3)

This set of equations is completed by the quasi-static balance of momentum which
reads

− Div P = b0 ⇒ − div σ = bt = det(F)−1 b0. (4)

Thereby, Div(•) and div(•) denote the divergence operators with respect to the ma-
terial coordinates X and the spatial coordinates x.
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2.2 Governing Equations for the Material Motion Problem

In the material motion problem a body Bt with spatial points x is considered. In
analogy with the spatial motion problem we define the deformation map and the
deformation gradient as

X = �(x) and f = ∂�

∂x
. (5)

The material motion two-point stress and the body forces are given in terms of the
energy functional Ut

p = ∂Ut

∂f
and Bt = −∂Ut

∂X
, (6)

wherein Ut is obtained via Ut = det(f) U0. The connection between the material
two-point stress and the Eshelby stress is given by the following pull-back operation

� = det(f)−1 p · f t . (7)

This set of equations is completed by the quasi-static balance of momentum which
reads

− div p = Bt ⇒ − Div � = B0 = det(f)−1 Bt . (8)

3 Homogenization

In order to determine the averaged or homogenized macroscopic quantities an aver-
aging over the micro-domain has to be established. Therefore, in our deformation-
driven framework we apply the macroscopic deformation gradient tensor FM via
admissible boundary conditions onto the RVE. After solving the microscopic bound-
ary value problem within a finite-element scheme the homogenization procedure is
carried out. The homogenized quantities are not simply defined as the volume av-
erages over their microscopic counterparts, but as averages over boundary terms of
the RVE. This modus operandi has already been proposed by Hill in [5]:

Macro-variables intended for constitutive laws should thus be capable of
definition in terms of surface data alone, either directly or indirectly. It is
not necessary, by any means, that macro-variables so defined should be un-
weighted volume averages of their microscopic counterparts. [. . . ] Accord-
ingly, we approach the construction of macro-variables by first identifying
some relevant averages that depend uniquely on surface data.

Note that in the following macro-variables are denoted by (•)M and averaged vari-
ables by (•̄). Non-indexed variables belong to the micro-level.
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3.1 Averaged Variables for the Spatial Motion Problem

In this section we summarize the desired homogenized variables for the spatial mo-
tion problem as averages over the boundary of the RVE. Firstly, we need the average
of the deformation gradient tensor, which is defined by:

F̄ := 1

V0

∫

∂V0

ϕ ⊗ N dA (9)

where V0 denotes the volume of the RVE in the material configuration, ϕ the spatial
micro-deformation mapping and N the normal vector of the boundary of the RVE
in the material configuration. Furthermore, the averaged Cauchy stress is defined as
the average of the product of the traction vector t0 and the deformation mapping
vector ϕ

σ̄ := 1

Vt

∫

∂Vt

tt ⊗ ϕ da (10)

where Vt denotes the volume of the RVE in the spatial setting. For further insight
into the averaging of variables, the reader is referred to the textbook by Nemat-
Nasser and Hori [10].

3.2 Averaged Variables for the Material Motion Problem

In analogy with the spatial computational homogenization scheme, in the material
homogenization scheme averages of the microscopic material quantities have to be
defined. Firstly, we consider the average of the material deformation gradient tensor,
which reads

f̄ := 1

Vt

∫

∂Vt

� ⊗ n da. (11)

Therein, � denotes the microscopic material deformation map, i.e., � = ϕ−1 holds,
and n identifies the normal vector on the boundary of the RVE in the spatial config-
uration. Furthermore, the material Eshelby stress �̄ is obtained via

�̄ := 1

V0

⎡

⎢
⎣

∫

∂V0

T0 ⊗ � dA +
∫

S0

Ts
0 ⊗ � dA

⎤

⎥
⎦ . (12)

The material traction vector on the boundary is denoted with T0 and is ob-
tained through T0 := � · N. The tractions at the interface S0 are defined as
Ts

0 = (T0)1 + (T0)2 = �1 · N1 + �2 · N2. The interface integral needs to be incor-
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porated due to the fact that the configurational tractions on opposite sides of the
interface are not in equilibrium.

4 Scale-Transition and Boundary Conditions

In order to connect the macroscopic simulation points and the underlying micro-
RVE a scale-transition has to be performed. In case of the applied deformation-
driven scheme, this macro-micro transition is performed by solving a boundary
value problem on the micro-scale, driven by the macroscopic deformation gradient.
After solving this particular microscopic boundary value problem the micro-macro
transition is performed via averaging the desired variables according to Section 3.

4.1 Spatial Motion Problem

The microscopic deformation map for the spatial motion problem is given in terms
of the macroscopic deformation map ϕM , the deformation gradient tensor FM and
the spatial fluctuations w

ϕ(X) = ϕM + FM · X + w(X). (13)

In order to perform the scale-transition in a consistent manner the Average-Strain
Theorem, which claims the equivalence of the macroscopic and averaged deforma-
tion gradient, has to be fulfilled:

F̄ ≡ FM. (14)

This constraint yields two types of admissible boundary conditions, namely dis-
placement boundary conditions

w = 0 on ∂V0 (15)

and periodic displacement boundary conditions

w+ = w− on ∂V0 = ∂V+
0 ∪ ∂V−

0 . (16)

Please note that in case of periodic boundary conditions it follows directly from the
microscopic equilibrium that the tractions behave anti-periodically, i.e., t+0 = −t−0 .

After defining the boundary conditions for the scale-transition focus is put onto
the variation of averaged work. The Hill–Mandel condition given in equation (17)
states that the averaged variation of microscopic work DδŪ0 has to be equivalent to
the variation of macroscopic work DδU0M at fixed coordinates X.
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DδU0M = DδŪ0

⇒
[
DδFM · F−1

M

]
: σM − DδϕM · btM = 1

Vt

∫

∂Vt

Dδϕ · tt da. (17)

Inserting the boundary conditions given in equations (15) and (16) into the Hill–
Mandel (17) condition yields the following equivalences between the averaged and
the macroscopic variables:

σM = σ̄ and btM = 0. (18)

4.2 Material Motion Problem

The microscopic deformation map for the material motion problem is here com-
puted from a pull-back and a composition with the spatial deformation map as

X = � = −fM · ϕM + fM · x − fM · w(ϕ−1(x)). (19)

Thus, the variation of the material deformation map at fixed coordinates x reads

dδ� = dδfM · [−ϕM + x − w
] = dδfM · FM · X. (20)

By assistance of the average strain theorem for the spatial motion problem one
can show that the average strain theorem is also valid for the material motion prob-
lem, i.e.,

f̄ ≡ fM. (21)

In order to perform the scale-transition in a consistent manner, the Hill–Mandel
condition adapted to the material motion problem has to be fulfilled

dδUtM =dδŪt

⇒ [dδfM · FM ] : �M − dδ�M · B0M = 1

V0

⎡

⎢
⎣

∫

∂V0

dδ� · T0 dA +
∫

S0

dδ� · Ts
0 dA

⎤

⎥
⎦ .

(22)

Inserting the expression for the variation of the microscopic deformation map given
in equation (20) and comparing the coefficients yields following equivalences

�M = �̄ and B0M = 0. (23)

From B0M = 0 we can conclude that the inhomogeneities at the micro-level, cap-
tured by B0, as well as inhomogeneities at the macro-level due to different attached
RVEs are completely contained in the format of the Eshelby stress �M at the macro-
level.
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Fig. 1 Macroscopic and microscopic longitudinal Cauchy stress for macroscopic specimen with
centered hole under tensile loading.

5 Examples

In this section numerical examples for the multi-scale computation of the spatial
and the material motion problem will be presented.

The influence of different kinds of micro-structures on the spatial as well as on
the material response of a macroscopic specimen is studied. All examples are cal-
culated with periodic boundary conditions and Neo-Hookean type constitutive law
on the micro-level.

In a first example a macroscopic specimen with a centered hole under tensile
loading is considered – see Figure 1. A homogeneous micro-structure is compared
to a micro-structure with a void. Figure 1 displays the longitudinal Cauchy-stresses
on the macro-scale as well as the microscopic stress in particular RVEs, located
on the left side of the macroscopic hole. As expected, both the stress plot and the
load-displacement diagram reveal that the macro-specimen is softer for a higher
percentage of micro-voids. In the stress plot this can be identified by the decreasing
stress peak near the boundary of the hole.

Secondly, focus is put on the same macro-structure, but this time the material
nodal forces are of interest. Figure 2 monitors the material forces on the macro
and the micro nodes for different micro-structures – a homogeneous structure, a
structure with 15% voids and a structure with 25% voids. Again, the displayed mi-
croscopic RVEs are located near the macroscopic hole. In the homogeneous micro-
structure no material nodal forces are present. In the micro-structures containing
voids material nodal forces occur on the boundary of the hole. The softening ef-
fect of the micro-voids onto the macroscopic material behavior can be observed in
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Fig. 2 Macroscopic and microscopic material nodal forces for macroscopic specimen with a
centered hole under tensile loading.

the decrease of the macroscopic material forces at the boundary of the macroscopic
hole.

In a last example the influence of different micro-structures on the material force
at a crack tip is studied. It can be shown that the material force at the crack tip
corresponds to the J-integral and thus yields a criterion whether a crack propagates
or not. In Figure 3 we consider three different RVEs, each representing a micro-
structure with two material layers and a straight interface. For all three RVEs the
average of the Young’s moduli is the same, but the ratio of the moduli differs. From
Figure 3 it can be observed that the bigger the difference between the stiffnesses of
the two materials becomes, the smaller is the macroscopic material force. Thus, we
have shown that the present approach captures the influence of the heterogeneous
micro-structure on the macroscopic J-integral.
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Fig. 3 Macroscopic material force at crack tip for different ratios of microscopic Young’s moduli
– left to right ratio of 1:2; 1:10 and 1:20.

6 Conclusions

In the current work we have extended the classical computational homogenization
scheme towards the homogenization of the material motion problem. Therefore, a
formulation containing the homogenization of volume forces, which may occur in
the material motion problem due to inhomogeneities on the micro-structure, has
been elaborated. Furthermore, it has been shown that in the homogenization of the
Eshelby stress interface terms have to be taken into account, because material trac-
tions at the interface are not vanishing in general. Based on the spatial average strain
theorem admissible boundary conditions have been developed which fulfill the Hill–
Mandel condition. In a next step the microscopic deformation map for the material
motion problem has been introduced which provides the basis for the material ana-
logon of the average strain theorem. Then by assistance of a Hill–Mandel type con-
dition the equivalence between the averaged and the macroscopic material stress has
been elaborated. To complete these studies the influence of the micro-structure onto
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macroscopic behavior, like the deformation, the stresses or the material force at a
crack-tip, has been monitored by numerical examples. Thus, the presented approach
captures the influence of the microscopic setting for the spatial and the material mo-
tion problem.
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On the Computation of Configurational Forces
in Anisotropic Hyperelastic Solids

V. Ebbing, J. Schröder, P. Steinmann and P. Neff

Abstract In the field of configurational mechanics we study energetic changes as-
sociated to variations of material configurations. The central part in this notion is
the energy momentum tensor, also known as the Eshelby stress tensor, which enters
the configurational force balance. The mechanics of material forces has been suc-
cessfully applied to a variety of important fields in applied mechanics such as e.g.
the evolution of interfaces, growth in biomechanical systems, the kinetics of dis-
locations, fracture mechanics, morphology/structure optimization in heterogeneous
microstructures.

In most contributions configurational forces are computed for isotropic bodies; in
this presentation we consider the influence of anisotropy. As a specific model prob-
lem we consider a single-edged-tension specimen, where we analyze the sensitivity
of the configurational forces in amplitude and orientation with respect to changing
main axes of anisotropy of a hyperelastic material. These configurational forces can
be interpreted as driving forces on the crack tips of the considered boundary value
problem, which are directly related to the classical J -integral in fracture mechanics.
In order to guarantee the existence of minimizers we use an anisotropic polyconvex
energy. Here, we focus on a transversely isotropic constitutive law formulated in the
framework of invariant theory.
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1 Introduction

A scheme of configurational forces entering computational mechanics was first
mentioned in [7]. A prominent application is in the field of fracture mechanics
[27, 28]. Here the material forces are directly related to the classical J -integral, see
e.g. [10, 13]. Besides the application of this concept in physical problems as men-
tioned above it can also be used as an error indicator in adaptive Finite-Element-
Method, see e.g. [18–21, 31]. For an overview of recent developments in this rap-
idely expanding branch of continuum mechanics we refer to [29, 30].

In the following we restrict our discussion on hyperelasticity, where we assume
the existence of an energy function W formulated in terms of the deformation gradi-
ent F. The existence of minimizers of boundary value problems is guaranteed if the
functional to be minimized is sequentially weakly lower semicontinuous (s.w.l.s.)
and coercive. The concept of quasiconvexity, introduced by Morrey [17], ensures the
s.w.l.s. condition if further growth conditions are satisfied. The polyconvexity con-
dition, introduced by Ball [3], directly implies s.w.l.s., quasiconvexity and rank-one
convexity. For the proof of polyconvexity of the free energy function W = W(F),
we have to prove the convexity of the free energy with respect to the argument
({F, Cof F, det F}) ∈ R

19. This local convexity condition is much simpler to handle
than the non-local integral inequality of the quasiconvexity condition. Investiga-
tions concerning the relation of polyconvexity to the notion of material stability, in
the sense of Legendre–Hadamard ellipticity, are documented in [25], in this context
see also [14].

For isotropic materials there exist some models, e.g., the Ogden, Mooney–Rivlin
and Neo-Hooke-type free energy functions, which satisfy the polyconvexity condi-
tion. In the case of anisotropy only a few years ago the construction of polyconvex
energy functions was a question yet to be answered. In 2002 Ball still noticed in
Some open problems in elasticity [2]: Are there ways of verifying polyconvexity and
quasiconvexity for a useful class of anisotropic stored-energy functions?

Almost at the same time the first anisotropic polyconvex energy functions in case
of transverse isotropy were proposed by Schröder and Neff [23]; an extension of this
work as well as the general formulation of orthotropic polyconvex functions is dis-
cussed in [24]. A more general concept for the construction of triclinic, monoclinic,
orthotropic and transversely isotropic polyconvex energy functions is given in [26].
In order to account for the condition of a stress-free reference configuration a priori,
an attractive approach is given in [4, 11]. Applications of anisotropic polyconvex
models to biomechanics can be found in [5, 9, 12, 16].

2 Continuum Mechanical Preliminaries.

The body of interest in the material configuration is denoted by B0 ⊂ R
3, paramet-

rized in X, and the spatial configuration by Bt ⊂ R
3, parametrized in x.
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Fig. 1 Material (reference) and spatial (current) configuration of the considered body.

The nonlinear deformation map ϕt : B0 → Bt at time t ∈ R+ maps points
X ∈ B0 onto points x ∈ Bt . The deformation gradient F is defined by

F(X) := Gradϕt(X), (1)

with the Jacobian J (X) := det F(X) > 0. In the sequel we will use polynomial
invariants governed by the mappings of the infinitesimal referential line dX, area
dA = NdA and volume elements dV , respectively. These quantities, defined w.r.t.
the reference configuration, are mapped to their spatial counterparts dx, da = nda

and dv via

dx = FdX, nda = Cof [F]NdA and dv = det [F] dV, (2)

see Figure 1. Equation (2)2 is the well-known Nanson’s formula. Furthermore, as
already mentioned the argument (F, Cof F, det F) plays an important role in the
definition of polyconvexity. The local form of the balance of linear momentum reads

−DivP = f̄, (3)

where f̄ denotes the body forces. The Piola stresses P are derived from an energy
density W(F; X), defined per unit volume in the reference configuration, by the par-
tial derivative P = ∂F W . Multiplying (3) by a suitable vector-valued test function
δu and integrating over the reference configuration B0 yields the weak form of the
balance of linear momentum G = 0, with

G =
∫

B0

Grad[δu] : P dV −
∫

∂B0

δu · t̄0 dA −
∫

B0

δu · f̄ dV, (4)

with the traction vector t̄0 = PN and the outward unit normal N.
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3 Balance of Configurational Forces

The nonlinear material motion deformation map �t : Bt → B0 at time t ∈ R+
maps points x ∈ Bt onto points X ∈ B0, i.e. X = �t(x), with �t = ϕ−1

t . For the
material motion problem the local form of balance of linear momentum reads

−DivΣ − F̄ = 0, (5)

where Σ and F̄ denote the Eshelby stress tensor and the configurational body forces,
respectively. These quantities can be derived from the energy density W(F; X) as
follows

Σ = W 1 − FT P F̄ = −∂XW − FT f̄. (6)

Note that F̄ captures essentially possible inhomogeneities in the material properties.
Multiplying (5) by a test function δU, under consideration of the necessary bound-
ary conditions, leads to the weak form of the balance of material momentum of the
material motion problem (sometimes also denoted as balance of pseudo or config-
urational momentum), G̃ = 0, with

G̃ =
∫

B0

Grad[δU] : Σ dV −
∫

∂B0

δU · Σ N dA. (7)

Here we neglected configurational body forces for the sake of simplicity since our
numerical example in Section 5 will exclusively concentrate on homogeneous ma-
terial properties and vanishing (spatial) body forces. Note that this case corresponds
to divergence free (solenoidal) Eshelby stresses and thus to path-independent J -
integrals, an attractive property in fracture mechanics. Next, the test function is
selected from a proper finite dimensional test space Vh

0 that is typically spanned
by polynomial basis functions NK as already used in the finite element discretiza-
tion of the spatial deformation problem. Finally, the discrete configurational (nodal)
material force at node point K is computed by

fconfig
K =

∫

Bh
0

[Σh · Grad NK] dV. (8)

These vectorial quantities are power conjugated to configurational changes of the
material node point positions; they are easily calculated in a post processing step,
the so-called Material Force Method, once the solution to the spatial deformation
problem has been computed, see [1]. Here the sign convention associates a config-
urational change of the material node point position in the direction of the discrete
material node point force with an energy increase of the system. Thus in order to
release energy, that can then potentially be used for other physical processes like,
e.g., the creation of new surfaces or the motion of defects, material node point pos-
itions have to move opposite to the material node point forces; compare our results
in Section 5.
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4 Polyconvex Anisotropic Energy Functions

Concerning the construction of the constitutive equations in anisotropic finite elasti-
city the principle of objectivity and the principle of material symmetry play an
important role. The principle of objecticity is automatically fulfilled since we use
the reduced constitutive equations formulated in terms of the right Cauchy–Green
tensor C := FT F, i.e., ψ(C) = W(F). The principle of material symmetry en-
forces the invariance of the constitutive equations with respect to the transforma-
tions Q ∈ G ⊂ O(3) of the material symmetry group G, which is a subgroup of the
full orthogonal group O(3), i.e.,

ψ(C) = ψ(QCQT ) ∀Q ∈ G. (9)

The anisotropy of the material can be described by structural tensors M, which
are invariant with respect to transformations of the underlying material symmetry
group:

M = QMQT ∀Q ∈ G ⊂ O(3), (10)

see [6,15]. Inserting the structural tensor as a further tensorial argument into the free
energy function (9), then

ψ(C, M) = ψ(QCQT , QMQT ) ∀Q ∈ O(3), (11)

holds. This is the definition of an isotropic tensor function, therefore the scalar-
valued function (11) can be formulated in terms of the principal invariants

I1 := tr C, I2 := tr [Cof C], I3 := det C, (12)

and the mixed invariants

J4 := tr [CM], J5 := tr [Cof [C]M]. (13)

In the following we focus on transversely isotropic materials and introduce a struc-
tural tensor defined as

M = a ⊗ a, (14)

where a characterizes the preferred direction of the material, with the normalization
condition ‖a‖ = 1. M preserves the transversely isotropic material symmetry group
Gt i := {±1; Q(α, a) | 0 < α < 2 π}, where Q(α, a) denotes all rotations about
the a-axis.

4.1 Special Anisotropic Polyconvex Energy

The material model is assumed to be additively decomposed as follows
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ψti = ψ̂ iso + ψ̂t i , (15)

where the isotropic function ψ̂ iso is chosen to be a function depending on the prin-
cipal invariants (12). In detail, we consider the compressible Mooney–Rivlin model

ψ̂ iso = α1 I1 + α2 I2 + δ1 I3 − (2 α1 + 4 α2 + 2δ1)ln(
√

I3), (16)

which satisfies the polyconvexity condition if α1, α2, δ1 ≥ 0 holds, see e.g. [8].
The resulting isotropic second Piola–Kirchhoff stresses Siso satisfy automatically
the stress-free reference configuration condition

Siso(C = 1) := 2∂Cψ̂ iso(C = 1) = 0. (17)

For the anisotropic part ψ̂t i we use the simple polyconvex function

ψ̂t i = [
f3(I3) + f4(J4) + f5(J5)

]
. (18)

The functions f4(J4) and f5(J5) have the explicit form

f4 = ξ

α + 1
J α+1

4 , f5 = ξ

β + 1
J

β+1
5 , ∀ ξ, α, β ≥ 0 (19)

and are taken from [26].The proof of the polyconvexity of the powers of J4 and J5 is
given in [23,24]. For an a priori fulfillment of the stress-free reference configuration
condition of the anisotropic part of the stresses at natural state, i.e.,

St i(C = 1) := 2∂Cψ̂ti (C = 1) = 0, (20)

we consider additionally an isotropic function in terms of I3 in (18), proposed in
this way in [11]. In detail, the function f3(I3) appears in the form

f3 = ξ

γ
I

−γ

3 , ∀ ξ ≥ 0, γ ≥ −1

2
. (21)

The explixit expression of the anisotropic part is then given by

ψ̂t i = ξ

(
1

α + 1
(J4)

α+1 + 1

β + 1
(J5)

β+1 + 1

γ
(I3)

−γ

)
. (22)

The Eshelby stress tensor, defined in (6), is finally calculated by

Σ = ψti
0 1 − C S, (23)

where we have introduced the abbreviation

ψti
0 = ψti − ψti(C = 1), (24)

in order to satisfy the condition Σ = 0 in the unloaded reference configuration.
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5 Numerical Example: Cracked SET Specimen

As a numerical example we consider a single-edged-tension specimen (SET) as
shown in Figure 2. We study the influence of the orientation of the main axes of
anisotropy on the amplitude and orientation of the configurational forces at the crack
tips. The main axis of anisotropy corresponds to the preferred direction a of the
hyperelastic transversely isotropic energy (22). The material parameters are set to

α1 = 1 N/mm2, α2 = 1 N/mm2, δ1 = 1 N/mm2,

ξ = 1 N/mm2, α = 10, β = 1, γ = 1.
(25)

In this 2D example the orientation of the preferred direction of the transversely
isotropic material is described by the angle ϕ = �(a, e1), whereas the direc-
tion of the configurational force at the crack tip A is characterized by the angle

η = �
(

fconfig
A , e1

)
. The height to width ratio of the SET specimen is chosen to be

H/W = 120 mm/40 mm, the crack length to width ratio is set to a/W = 0.5 and
the thickness of the crack is d = 0.2 mm, see Figure 2.

The specimen is discretized by 7886 six-noded triangular elements and the mesh
is strongly refined in the vicinity of the crack tips as shown in Figure 3. In detail, we
discretized a circular area around each crack tip with the radius r = r10 = 0.52 mm.
The radii of the inner circles of finite elements of these domains are calculated by
geometric series

ri = ωi−1 r1, i = 1, . . . , 10, with r1 = 0.1 mm, ω = 1.2. (26)

Fig. 2 Undeformed SET specimen, boundary conditions.

267



V. Ebbing et al.

Fig. 3 Undeformed SET specimen, discretization with 7886 6-noded triangular elements.

a) b)

c) d)

ϕ = 0◦, η = 0◦, lconfig = 1 ϕ = 15◦, η = 9.66◦, lconfig = 0.859

ϕ = 30◦, η = 12.52◦, lconfig = 0.504 ϕ = 45◦, η = 4.25◦, lconfig = 0.292
Fig. 4 Angle η versus angle ϕ. Ratios of norms of material forces.

For a good approximation of the material force fconfig acting at crack tips A and
B with the Material Force Method, we choose the whole circular area around the
crack tip as the integration domain. Figure 4 depicts the results of the orientation
and amplitudes of the configurational forces at both crack tips for four different
orientations of the preferred direction. The amplitudes of the material forces are
normalized w.r.t. the amplitude to the material force in case of ϕ = 0◦, i.e.,

lconfig(ϕ) = ‖fconfig(ϕ)‖/‖fconfig(ϕ = 0◦)‖. (27)

Comparing these ratios we notice that the amplitude of the forces becomes signifi-
cantly smaller by increasing the angle of anisotropy up to 45◦. Regarding the
changes of the angles ϕ and η Figure 4 shows the following: for ϕ = 0◦, 15◦, 30◦
the angle of orientation of fconfig rises from 0◦ to about 12◦, whereas for ϕ = 45◦
we obtain the angle η ≈ 4.25◦. Therefore, a high sensitivity of the configurational
forces in amplitude as well as in orientation appears in the considered boundary
value problem. A more detailed discussion on this topic and further results can be
found in [22].
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6 Conclusion

Configurational mechanics play an increasingly important role in both defect mech-
anics and computational mechanics. Since most contributions deal with the compu-
tation of configurational forces in isotropic solids, we have analyzed the influence
of anisotropy on the material forces. In detail, we have investigated the change of
amplitude and orientation of the configurational forces at crack tips due to varying
main axes of anisotropy of a transversely isotropic hyperelastic material. For the de-
scription of the assumed hyperelastic material behavior we use an anisotropic poly-
convex energy in order to guarantee the existence of minimizers. The anisotropy
of the material is described in the framework of invariant theory. As a represen-
tative example we have considered a single-edged-tension specimen, where we first
noticed a high sensitivity of the amplitude: Changing the angle of the preferred dir-
ection of the material about 45◦ yields a reduction of the origin amplitude of the
material forces of approximately 70%. Furthermore, the orientation of the material
forces is also sensitive to the change of orientation of the preferred direction.
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