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Abstract This article reports the first demonstration

of the impact of climate change on benthic–pelagic

coupling and the biogeochemical cycles of a coastal

marine system. Over the last 30 years Narragansett

Bay, a 328-km2 temperate estuary on the east coast of

the United States, has undergone a variety of

ecological changes. Building on a robust data set

that spans three decades, we present a link between

warming (?1.7�C in annual mean water temperature)

in the bay and a marked decrease in sediment oxygen

consumption, in the fluxes of ammonium and phos-

phate from sediments to the overlying water, and in

sediment denitrification. We attribute this reduction

in biogeochemical exchange to a dramatic drop in the

standing crop of water-column chlorophyll as the

system has shifted from one characterized by a

dominant winter–spring bloom to one supported by

more ephemeral and less intense summer–autumn

blooms. The recent climate-induced oligotrophication

of the bay will be further exacerbated by forthcoming

nitrogen reductions due to tertiary sewage treatment.
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Introduction

Even if the climate change—eutrophication

linkage is well established for the pelagic

system…it remains poorly defined for ben-

thic–pelagic coupling and the benthos.

Grall & Chauvaud (2002)

Coastal ecosystems around the world have been

subjected to a variety of locally driven anthropogenic

changes (e.g., nutrient enrichment: Valiela et al., 1992;

Kinney & Roman, 1998; eutrophication: de Jonge

et al., 1994; overfishing: Jackson et al., 2001; toxic

pollutant loading: Kot-Wasik et al., 2004). Further

complicating these local issues are regional and global

forces, most notably climate change. Obvious possible

effects of climate change on coastal systems include

sea level rise, changes in precipitation patterns, and the

associated pulsing of freshwater, nutrients, and sedi-

ment (Scavia et al., 2002), and perhaps increased
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intensity of storms (Emanuel, 2005). Climate change

may also affect coastal systems in more subtle ways by

altering the phenology or sequencing of events

(Farnsworth et al., 1995; Inouye et al., 2000; Walther

et al., 2002; Edwards&Richardson, 2004). To date, the

interactions between climate change, sediment bio-

geochemical cycling, and benthic–pelagic coupling

have largely been ignored.

Over the last decade, various ecological changes in

Narragansett Bay (Rhode Island, USA) have been

reported, including a decrease in mean annual water

column chlorophyll concentrations (Li & Smayda,

1998), replacement of boreal demersal fish with

demersal decapods (Oviatt, 2004), and earlier devel-

opment and larger populations of the major predator

zooplankton, Mnemiopsis leidyi (Sullivan et al.,

2001). These changes are thought to be mainly the

result of climate variability (North Atlantic Oscilla-

tion) and a long-term warming trend (Nixon et al.,

2003, 2004; Oviatt, 2004). There is a long history of

work documenting the strong linkages between the

benthos and the water column in Narragansett Bay,

including benthic oxygen uptake and nutrient regen-

eration (Nixon et al., 1976, 1980), denitrification

(Seitzinger et al., 1984; Nowicki & Oviatt, 1990),

benthic responses to organic additions of 15N-labeled

(Garber, 1982) and 14C-labeled (O’Reilly, 1984;

Rudnick & Oviatt, 1986) and unlabeled (Kelly &

Nixon, 1984; Grassle et al., 1985) organic matter, and

predation pressure by the benthos on the water

column (Doering et al., 1986; Doering, 1989; Oviatt,

2004). Building upon this study, we recently revisited

the most well-studied site in the bay to measure

benthic oxygen uptake, nutrient regeneration, and

sediment denitrification over an annual cycle. Our

main motivation for this study was to see whether it

would be possible to document any changes in the

biogeochemical cycling of Narragansett Bay benthos

over the last 30 years. Also, the major wastewater

treatment plants discharging to the bay are moving to

tertiary treatment. This research will provide baseline

data for future studies of denitrification and benthic

fluxes after tertiary wastewater treatment is imple-

mented. While this management intervention may

improve the water quality in the upper bay, the

consequences for the much larger mid- and lower bay

are unknown.

The purpose of this article is twofold. The main

goal is to report, we believe for the first time, a link

between climate-induced changes in benthic–pelagic

coupling and sediment biogeochemical cycles. Sec-

ond, to highlight the possible interactions between

climate change and management mitigation of nutri-

ent enrichment.

Materials and methods

Site description

Narragansett Bay, including Mount Hope Bay, is a

328-km2 phytoplankton-based temperate ecosystem

(latitude 41�N) with a mean depth of 8.6 m and a

mean flushing rate of 26 days (Pilson, 1985; Nixon

et al., 1995). Freshwater input is relatively low

(100 m3 s-1), with the result that the mid-bay is

generally well mixed and there is only occasional

weak vertical stratification (Nixon et al., 2005).

Salinity follows a down-bay gradient from *20 psu

at the head to *32 psu at the mouth of Narragansett

Bay. The annual temperature varies from about 0 to

24�C.
Clayey silt and sand-silt-clay sediments comprise

the majority of Narragansett Bay sediments (McMas-

ter, 1960). For this study, sediment cores were

collected from a station *7 m deep near the middle

of Narragansett Bay (Fig. 1). With an annual mean

vertical light attenuation coefficient of -0.55 m-1

(Oviatt et al., 2002), only about 2% of surface light

reaches the heterotrophic bottom. This mid-bay station

has been the site of many studies ranging from in situ

experiments on sediment oxygen demand and nutrient

regeneration (Nixon et al., 1976) to denitrification

measurements using extracted cores (Seitzinger et al.,

1984) and larger mesocosms (Nowicki, 1994). Sedi-

ment from this site has also been used for various

experiments (i.e., assessments of the benthic commu-

nity (Rudnick et al., 1985; Frithsen, 1989; Ellis, 2002);

effects of organic enrichment on the benthos (Garber,

1982; Grassle et al., 1985); benthic predation on the

water column (Doering et al., 1986; Oviatt, 2004) in

the large mesocosms of the marine ecosystems

research laboratory (MERL). Previous study has

shown that sediments at this station are predominantly

silt-clay (73%) with an organic content of 4.5% (Hale,

1974). At this mid-bay station, the dominant macro-

fauna include Mediomastus ambiseta, Nephtys incisa,

Amplisca, andNucula annulata (Seitzinger et al., 1984;
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Rudnick et al., 1985). This site has been and is currently

being monitored for benthic macro infauna and

meiofauna species composition and abundance as part

of the Environmental Protection Agency northeast

coastal assessment program (C.A. Oviatt pers. comm.,

see http://www.gso.uri.edu/merl/data.htm).

Sediment collection and incubation

Over the annual cycle in 2005 and 2006, triplicate

cores (78.5 cm2 and*15 cm deep) were collected by

SCUBA divers using a round PVC corer. Cores were

maintained in the field at in situ temperatures and

transported to an environmental chamber at the

Graduate School of Oceanography where they were

held in the dark in a water bath at field temperature.

The cores were then left uncapped with oxygen

bubbling gently through the overlying water over-

night (8–12 h).

Throughout this study, the benthic flux measure-

ments were conducted in the dark and separated into

two incubations. During the first incubation, water

samples were collected for dissolved gas analysis to

measure denitrification using the N2/Ar technique

iFig. 1 Location of the

long-term sediment

sampling site (closed circle)
in mid-Narragansett Bay

and the location of the long-

term water quality site

(open circle)
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(Kana et al., 1994; Giblin et al., 1995; Eyre et al.,

2002). Then, after a 24-h period of no measurements,

the second incubation for nutrient fluxes (NH4
?,

PO4
-) was initiated. Sediment oxygen consumption

was measured during both incubations. Before each

set of flux measurements, the overlying water in the

cores was carefully replaced with filtered (1 lm)

Narragansett Bay water. Cores were then sealed with

gas-tight lids containing magnetic stirrers and the

overlying water was continuously stirred (40 rpm).

Initial and final samples for Winkler analysis were

collected from each core and oxygen was monitored

over the course of the incubation using a Hach HQ10

LDO probe. N2/Ar samples were collected in dupli-

cate at five times during the incubation and preserved

with HgCl2. Dissolved inorganic nitrogen and phos-

phorus samples were collected at three points during

the second incubation and filtered through glass fiber

filters (Whatman GF/F 0.70 lm) using a 60-ml acid-

washed polypropylene syringe. The filtrate was

collected and stored in 60-ml acid-washed and

deionized water-leached polyethylene bottles and

stored at -15�C until analysis. An additional core

container with no sediments was incubated as a

control. When necessary, corrections were made for

any changes that occurred, but the water column

respiration was usually negligible.

Analytical methods

N2/Ar was measured using MIMS (Kana et al., 1994;

Giblin et al., 1995) including a Pfeiffer Quadrupole

Mass Spectrometer and a flow-through silicone

capillary membrane inlet (Bay Instruments, Easton,

Maryland). Dissolved inorganic nitrogen and phos-

phorus concentrations were analyzed using a Lachat

Instrument QuikChem 8000 flow injection analyzer

(Table 1). Oxygen concentrations were determined

using the Winkler method with manual titration.

Data analysis

The N2 flux for each core was determined by the rate

of change in N2 concentration (Groffman et al., 2006).

For the N2/Ar method, the change in N2 concentration

is determined from the change in N2/Ar multiplied by

the Ar concentration at air saturation (Colt, 1984). N2

production was then determined from a five-point

linear regression (Giblin et al., 1995). Sediment

oxygen consumption was determined by subtracting

the final concentration from the initial concentration

and dividing by the total time of the incubation. Rates

were then prorated for the volume and area of the

core. Nutrient fluxes were initially calculated as above

for oxygen. However, upon further examination, it

was noticed that fluxes decreased over time, most

likely because of a decrease in the concentration

gradient between the sediments and the overlying

water. To avoid underestimating the nutrient fluxes,

the flux between the initial and middle time points of

the incubation was calculated. Differences between

the historical and most recently collected data and

their relationship with temperature were examined

using a two-way ANOVA and least-squared differ-

ence (LSD) multiple comparison test.

Results

Oxygen uptake and nutrient fluxes

Sediment oxygen consumption over the annual cycle

ranged from a low of 3 mg m-2 h-1 at 6�C to a high of

27 mg m-2 h-1 at 23�C (Fig. 2). The low-temperature

measurements (4 mg m-2 h-1 at 5�C) in this study

were similar to the historical data, but the annual mean

in the past (43 mg m-2 h-1) was much higher than

what was measured here (14 mg m-2 h-1). Overall,

the oxygen consumption measurements in this study

showed no significant (P\ 0.01) relationship with

Table 1 Analytical

methods used in this study
Parameter Method reference Detection limit

N2/Ar ratio Kana et al., 1994 0.03%

Ammonium US EPA, 1983a; Grasshoff, 1976 0.07 lM

Nitrite ? Nitrate US EPA, 1997; Grasshoff, 1976 0.02 lM

Orthophosphate US EPA, 1983b; Grasshoff, 1976 0.01 lM

Oxygen Lambert & Oviatt, 1983; Carrit & Carpenter, 1966 0 mg O2 l
-1
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temperature. This is surprising since all of the historical

data sets for mid-Narragansett Bay, including mea-

surements made in situ, in extracted cores, and in the

large (13 m3) MERL mesocosms (Oviatt et al., 1993)

showed an exponential relationship between oxygen

uptake and temperature (Nixon et al., 1976). In the

most recent measurements, the rates were also signif-

icantly (P\ 0.01) lower than the historical rates.

The measurements of ammonium flux over the

annual cycle in this study also showed small uptakes

and releases (Fig. 3). With an influx of -15 lmol

m-2 h-1 and an efflux of 98 lmol m-2 h-1, the mean

ammonium flux (14 lmol m-2 h-1) was significantly

(P\ 0.01) lower than the historical mean

(94 lmol m-2 h-1) (Nixon et al., 1980). Previously,

ammonium regeneration has exhibited a marked

increase with higher temperatures, but this no longer

appears to be true. Dissolved inorganic phosphate

(DIP) flux ranged from-4 to 21 lmol m-2 h-1 with a

mean of 2.5 lmol m-2 h-1 (Fig. 4). This range is

significantly (P\ 0.01) lower than the historical range

(-5 to 55 lmol m-2 h-1) andmean (8 lmol m-2 h-1).
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iFig. 2 Sediment oxygen

uptake over the annual

temperature cycle for mid-

Narragansett Bay

sediments. Historical data

(closed circles) from Nixon

et al. (1976, 1980) and

unpublished data. Most

recent 2005/2006 data

(open circles) from this

study
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iFig. 3 Ammonia fluxes

over the annual temperature

cycle for mid-Narragansett

Bay sediments. Historical

data (closed circles) from
Nixon et al. (1976, 1980)

and unpublished data. Most

recent 2005/2006 data

(open circles) from this

study
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Fig. 4 Dissolved

inorganic phosphate (DIP)

fluxes over the annual

temperature cycle for mid-

Narragansett Bay

sediments. Historical data

(closed circles) from Nixon

et al. (1976, 1980) and

unpublished data. Most

recent 2005/2006 data

(open circles) from this

study
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Remarkably, as seen with oxygen and ammonia, DIP

fluxes also showed no increase with temperature as

they had in the past.

Denitrification rates

Using the N2/Ar technique, we found denitrification

rates ranging from 22 to 100 lmol N2-N m-2 h-1.

Seitzinger et al. (1984) reported seasonal denitrifica-

tion rates measured for 1979 at the mid-bay station that

ranged from 40 to 109 lmol N2-N m-2 h-1. Addi-

tional denitrification measurements made by Nowicki

(1994) using sediment from this site and a slightly

modified technique varied from 18 to 120 lmol N2-

N m-2 h-1. While the rates in this study are similar to

those measured previously, the mean annual rate has

significantly (P\ 0.01) declined from 74 lmol N2-

N m-2 h-1 in 1979 to 40 lmol N2-N m-2 h-1 in

2005/2006. Neither the present nor the historic deni-

trification rates exhibit a positive relationship with

increasing temperature (Fig. 5).

Discussion

The analytical techniques used to measure the

concentrations of oxygen, ammonia, and phosphate

have not changed substantially between the earlier

work and the current study and therefore analytical

changes do not confound these comparisons. Unfor-

tunately, it is possible that the denitrification decline

may be an artifact of changing methodology. No

direct comparisons between the N2 technique, used by

Seitzinger et al. (1984) and Nowicki (1994), and the

N2/Ar technique have yet been reported. However, the

oxygen and nutrient regeneration measurements

reported previously are not confounded by changing

analytical techniques, and their large declines suggest

that the decline in denitrification is also real.

Ecological responses to climate change

in narragansett Bay

Narragansett Bay has traditionally been characterized

by a strong winter–spring diatom bloom that usually

begins in mid-November and reaches peaked con-

centrations at the end of December or early January

(Pratt, 1959). However, over the last three decades

the timing and magnitude of the phytoplankton

bloom in Narragansett Bay have decreased dramat-

ically. Long-term monitoring of the phytoplankton at

a station near the middle of the bay (Fig. 1) shows

that mean annual water-column chlorophyll concen-

trations have decreased by almost 70% since 1970

(Fig. 6). Most of the decline in the annual means is

associated with changes in the traditional winter–

spring bloom which has arrived later or not at all

(Oviatt et al., 2002). The abundance of diatoms

during the bloom has also declined (Karentz &

Smayda, 1998; Li & Smayda, 1998). Since chloro-

phyll is tightly coupled with the rate of 14C uptake in

this system (Keller & Riebesell, 1989) as well as in

many others (see recent review by Brush et al., 2002),

this decline has almost certainly been associated with

a marked decline in the rate of primary production.

The cause of the oligotrophication of Narragansett

Bay is not well understood, but it cannot be attributed

to a reduction in nitrogen inputs as they have

remained essentially unchanged for at least 25 years

(Nixon et al., 2008). There is some correlative

evidence that climate variability (North Atlantic

Oscillation) and long-term warming trends may be
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iFig. 5 Denitrification over

the annual temperature

cycle for mid-Narragansett

Bay sediments. Historical

data (closed circles) from
Seitzinger et al. (1984) and

Nowicki (1994). Most

recent 2005/2006 data

(open circles) from this

study
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responsible (Hawk, 1998; Borkman, 2002; Oviatt

et al., 2002; Oviatt, 2004). Winter warming in the bay

is highly significant. Warming has amounted to an

increase of about 1.7�C during the 1990s compared

with the period between 1890 and 1970 at nearby

Woods Hole, MA, where it is known that water

temperature is closely correlated with that in Narra-

gansett Bay (Nixon et al., 2003, 2004). Townsend &

Cammen (1988) found that year-to-year variation in

the spring bloom in the Gulf of Maine was controlled

by light and not temperature. Working in Narragan-

sett Bay, however, Borkman (2002) found that

warmer winters tended to be cloudier, thus making

it difficult to separate temperature and light effects.

Experiments with the large MERL mesocosms have

shown that slightly warmer temperatures reduce or

eliminate winter–spring phytoplankton blooms in

Narragansett Bay, presumably because of higher

grazing pressure (Keller et al., 1999). Field evidence

also confirms that warmer winters are associated with

a delayed or complete elimination of the winter–

spring bloom (Oviatt et al., 2002).

Regardless of the reason, the loss of the winter–

spring bloom is particularly alarming for a benthic

community that is already food-limited by the end of

summer. Tracer and mass balance studies, also carried

out in the MERL mesocosms, have shown that a

smaller fraction of the summer blooms is deposited on

the bottom compared with winter–spring blooms

(Rudnick & Oviatt, 1986; Keller et al., 1999). From

the field (Rudnick et al., 1985; Craig, 1989; Ellis,

2002), from mesocosm study (Grassle et al., 1985;

Beatty, 1991), and from a numerical model (McKenna

1987), there is considerable evidence that certain

groups of the meio- and macro-benthic infauna have

historically been food-limited during summer in

Narragansett Bay.

Implications for management

There is a common impression among environmental

groups, some managers, and some scientists that

nuisance blooms of macroalgae (especially Ulva sp.)

are increasing and, more importantly, that bottom

waters in upper Narragansett Bay and the Providence

River (actually an estuary at the head of the bay,

Fig. 1) are developing more frequent, intense, and

widespread hypoxia (e.g., Rhode Island Department

of Environmental Management, 2003). Unfortu-

nately, historical data are not really available to

address the question of change in either of these

conditions. Because of this, many of the major

wastewater treatment plants that discharge directly to

the bay are in the process of upgrading to tertiary

treatment, thus reducing total nitrogen loading to the

bay. Nixon et al. (2005) estimated that by 2010

summer nitrogen inputs to Narragansett Bay may

decrease between 30% and 40%. Clearly, these

reductions will have significant impacts on the new

production of the bay because 14C uptake and bloom

formation are strongly limited by nitrogen availabil-

ity during summer (Furnas et al., 1976; Oviatt et al.,

1995), when concentrations of dissolved inorganic

nitrogen are very low or undetectable in the surface

water of the mid- and lower bay (Fig. 7). It is

anticipated that with less phytoplankton production

there will be less organic matter deposition to the

sediments, less benthic respiration, and therefore

fewer hypoxic/anoxic events. However, we have

shown here that there have already been large
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iFig. 6 Mean annual water

column chlorophyll a
concentrations at the mid-

bay station (see Fig. 1).

Historical data (closed
circles) from Li & Smayda

(1998). Most recent data

(open circles) from the

Graduate School of

Oceanography/URI (see

http://www.gso.uri.edu/

phytoplankton)
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reductions in pelagic chlorophyll in the mid-bay and

that respiration and nutrient regeneration by the

benthos of mid-Narragansett Bay have declined

greatly over the past three decades. Others have

shown a positive effect of nitrogen loading on benthic

biomass (Josefson & Rasmussen, 2000) and a

positive relationship between primary and secondary

production (Nixon et al., 1986). Since climate change

has already begun the oligotrophication of a once

highly productive bay, it is possible that reductions of

nitrogen input during the growing season will have a

significant negative impact on secondary production

throughout the mid- and lower bay, a much larger

area than the regions currently exposed to frequent

hypoxia.
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