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Abstract Pancreatic β-cells are poised to sense glucose and other nutrient secre-
tagogues to regulate insulin exocytosis, thereby maintaining glucose homeostasis.
This process requires translation of metabolic substrates into intracellular messen-
gers recognized by the exocytotic machinery. Central to this metabolism-secretion
coupling, mitochondria integrate and generate metabolic signals, thereby connecting
glucose recognition to insulin exocytosis. In response to a glucose rise, nucleotides
and metabolites are generated by mitochondria and participate, together with
cytosolic calcium, to the stimulation of insulin release. This review describes the
mitochondrion-dependent pathways of regulated insulin secretion. Mitochondrial
defects, such as mutations and reactive oxygen species production, are discussed in
the context of β-cell failure that may participate to the etiology of diabetes.
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9.1 Introduction

The primary stimulus for pancreatic β-cells is in fact the most common nutrient
for all cell types, i.e., glucose. Tight coupling between glucose metabolism and
insulin exocytosis is required to physiologically modulate the secretory response.
Accordingly, pancreatic β-cells function as glucose sensors with the crucial task
of perfectly adjusting insulin release to blood glucose levels. Homeostasis depends
on the normal regulation of insulin secretion from the β-cells and the action of
insulin on its target tissues. The initial stages of type 1 diabetes, before β-cell
destruction, are characterized by impaired glucose-stimulated insulin secretion. The
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large majority of diabetic patients are classified as type 2 diabetes, or noninsulin-
dependent diabetes mellitus. The patients display dysregulation of insulin secretion
that may be associated with insulin resistance of liver, muscle, and fat.

The exocytotic process is tightly controlled by signals generated by nutrient
metabolism, as well as by neurotransmitters and circulating hormones. Through
its particular gene expression profile, the β-cell is poised to rapidly adapt the rate
of insulin secretion to fluctuation in the blood glucose concentration. This chapter
describes the molecular basis of metabolism–secretion coupling in general and in
particular how mitochondria function both as sensors and generators of metabolic
signals. Finally, we will describe mitochondrial damages associated with β-cell
dysfunction.

9.2 Overview of Metabolism–Secretion Coupling

Glucose entry within the β-cell initiates the cascade of metabolism–secretion cou-
pling (Fig. 9.1). Glucose follows its concentration gradient by facilitative diffusion
through specific transporters. Then, glucose is phosphorylated by glucokinase,
thereby initiating glycolysis [1]. Subsequently, mitochondrial metabolism generates
ATP, which promotes the closure of ATP-sensitive K+ channels (KATP-channel)
and, as a consequence, depolarization of the plasma membrane [2]. This leads
to Ca2+ influx through voltage-gated Ca2+ channels and a rise in cytosolic Ca2+

concentrations triggering insulin exocytosis [3].
Additional signals are necessary to reproduce the sustained secretion elicited by

glucose. They participate in the amplifying pathway [4] formerly referred to as
the KATP-channel-independent stimulation of insulin secretion. Efficient coupling
of glucose recognition to insulin secretion is ensured by the mitochondrion, an
organelle that integrates and generates metabolic signals. This crucial role goes far
beyond the sole generation of ATP necessary for the elevation of cytosolic Ca2+

[5]. The additional coupling factors amplifying the action of Ca2+ (Fig. 9.1) will be
discussed in this chapter.

9.3 Mitochondrial NADH Shuttles

In the course of glycolysis, i.e., upstream of pyruvate production, mitochondria
are already implicated in the necessary reoxidation of NADH to NAD+, thereby
enabling maintenance of glycolytic flux. In most tissues, lactate dehydrogenase
ensures NADH oxidation to avoid inhibition of glycolysis secondary to the lack
of NAD+ (Fig. 9.2). In β-cells, according to low lactate dehydrogenase activity [6],
high rates of glycolysis are maintained through the activity of mitochondrial NADH
shuttles, thereby transferring glycolysis-derived electrons to mitochondria [7]. Early
evidence for tight coupling between glycolysis and mitochondrial activation came
from studies showing that anoxia inhibits glycolytic flux in pancreatic islets [8].
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Fig. 9.1 Model for coupling of glucose metabolism to insulin secretion in the β-cell. Glucose
equilibrates across the plasma membrane and is phosphorylated by glucokinase (GK). Further, gly-
colysis produces pyruvate, which preferentially enters the mitochondria and is metabolized by the
TCA cycle. The TCA cycle generates reducing equivalents (red. equ.), which are transferred to the
electron transport chain, leading to hyperpolarization of the mitochondrial membrane (��m) and
generation of ATP. ATP is then transferred to the cytosol, raising the ATP/ADP ratio. Subsequently,
closure of KATP-channels depolarizes the cell membrane (��c). This opens voltage-dependent
Ca2+ channels, increasing cytosolic Ca2+ concentration ([Ca2+]c), which triggers insulin exocy-
tosis. Additive signals participate to the amplifying pathway of metabolism–secretion coupling

Therefore, NADH shuttle systems are necessary to couple glycolysis to activation
of mitochondrial energy metabolism, leading to insulin secretion.

The NADH shuttle system is composed essentially of the glycerophosphate
and the malate/aspartate shuttles [9], with its respective key members mitochon-
drial glycerol phosphate dehydrogenase and aspartate–glutamate carrier (AGC).
Mice lacking mitochondrial glycerol phosphate dehydrogenase exhibit a normal
phenotype [10], whereas general abrogation of AGC results in severe growth
retardation, attributed to the observed impaired central nervous system function
[11]. Islets isolated from mitochondrial glycerol phosphate dehydrogenase knock-
out mice respond normally to glucose regarding metabolic parameters and insulin
secretion [10]. Additional inhibition of transaminases with aminooxyacetate, to non-
specifically inhibit the malate/aspartate shuttle in these islets, strongly impairs the
secretory response to glucose [10]. The respective importance of these shuttles is
indicated in islets of mice with abrogation of NADH shuttle activities, pointing
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Fig. 9.2 In the mitochondria, pyruvate (Pyr) is a substrate both for pyruvate dehydrogenase
(PDH) and pyruvate carboxylase (PC), forming, respectively, acetyl-CoA and oxaloacetate (OA).
Condensation of acetyl-CoA with OA generates citrate (Cit) that is either processed by the TCA
cycle or exported out of the mitochondrion as a precursor for long-chain acyl-CoA (LC-CoA)
synthesis. Glycerophosphate (Gly-P) and malate/aspartate (Mal-Asp) shuttles as well as the TCA
cycle generate reducing equivalents (red. equ.) in the form of NADH and FADH2, which are trans-
ferred to the electron transport chain resulting in hyperpolarization of the mitochondrial membrane
(��m) and ATP synthesis. As a by-product of electron transport chain activity, reactive oxygen
species (ROS) are generated. Upon glucose stimulation, glutamate (Glu) can be produced from
α-ketoglutarate (αKG) by glutamate dehydrogenase (GDH)

to the malate/aspartate shuttle as essential for both mitochondrial metabolism and
cytosolic redox state.

Aralar1 (or aspartate–glutamate carrier 1, AGC1) is a Ca2+-sensitive member of
the malate/aspartate shuttle [12]. Aralar1/AGC1 and citrin/AGC2 are members of
the subfamily of Ca2+-binding mitochondrial carriers and correspond to two iso-
forms of the mitochondrial aspartate–glutamate carrier. These proteins are activated
by Ca2+ acting on the external side of the inner mitochondrial membrane [12, 13].
We showed that adenoviral-mediated overexpression of Aralar1/AGC1 in insulin-
secreting cells increases glucose-induced mitochondrial activation and secretory
response [14]. This is accompanied by enhanced glucose oxidation and reduced
lactate production. Therefore, aspartate–glutamate carrier capacity appears to set a
limit for NADH shuttle function and mitochondrial metabolism. The importance
of the NADH shuttle system also illustrates the tight coupling between glucose
metabolism and the control of insulin secretion.
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9.4 Mitochondria as Metabolic Sensors

Downstream of the NADH shuttles, pyruvate produced by glycolysis is preferen-
tially transferred to mitochondria. The pyruvate imported into mitochondrial matrix
is associated with a futile cycle that transiently depolarizes the mitochondrial mem-
brane [15]. After its entry into the mitochondria, the pyruvate is converted to
acetyl-CoA by pyruvate dehydrogenase or to oxaloacetate by pyruvate carboxy-
lase (Fig. 9.2). The pyruvate carboxylase pathway ensures the provision of carbon
skeleton (i.e., anaplerosis) to the tricarboxylic acid (TCA) cycle, a key pathway
in β-cells [16-19]. Importance of this pathway is highlighted in a study showing
that inhibition of the pyruvate carboxylase reduces glucose-stimulated insulin secre-
tion in rat islets [20]. The high anaplerotic activity suggests the loss of TCA cycle
intermediates (i.e., cataplerosis), compensated for by oxaloacetate. In the control
of glucose-stimulated insulin secretion, such TCA cycle derivates might potentially
operate as mitochondrion-derived coupling factors [5].

Importance of mitochondrial metabolism for β-cell function is illustrated by
stimulation with substrates bypassing glycolysis. This is the case for the TCA
cycle intermediates succinate, or cell permeant methyl derivatives, that has been
shown to efficiently promote insulin secretion in pancreatic islets [21-23]. Succinate
induces hyperpolarization of the mitochondrial membrane, resulting in eleva-
tion of mitochondrial Ca2+ and ATP generation, while its catabolism is Ca2+

dependent [21].
Beside of its importance for ATP generation, the mitochondrion in general, and

the TCA cycle in particular, is the key metabolic crossroad enabling fuel oxidation
as well as provision of building blocks, or cataplerosis, for lipids and proteins [24].
In β-cells, approximately 50% of pyruvate is oxidized to acetyl-CoA by pyruvate
dehydrogenase [17]. Pyruvate dehydrogenase is an important site of regulation as,
among other effectors, the enzyme is activated by elevation of mitochondrial Ca2+

[25, 26] and, conversely, its activity is reduced upon exposures to either excess fatty
acids [27] or chronic high glucose [28]. Oxaloacetate, produced by the anaplerotic
enzyme pyruvate carboxylase, condenses with acetyl-CoA forming citrate, which
undergoes stepwise oxidation and decarboxylation yielding α-ketoglutarate. The
TCA cycle is completed via succinate, fumarate, and malate, in turn producing
oxaloacetate (Fig. 9.2). The fate of α-ketoglutarate is influenced by the redox state
of mitochondria. Low NADH to NAD+ ratio would favor further oxidative decar-
boxylation to succinyl-CoA as NAD+ is required as co-factor for this pathway.
Conversely, high NADH to NAD+ ratio would promote NADH-dependent reduc-
tive transamination forming glutamate, a spin-off product of the TCA cycle [24].
The latter situation, i.e., high NADH to NAD+ ratio, is observed following glucose
stimulation.

Although the TCA cycle oxidizes also fatty acids and amino acids, carbohydrates
are the most important fuel under physiological conditions for the β-cell. Upon glu-
cose exposure, mitochondrial NADH elevations reach a plateau after approximately
2 min [29]. In order to maintain pyruvate input into the TCA cycle, this new redox
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steady state requires continuous reoxidation of mitochondrial NADH to NAD+ pri-
marily by complex I on the electron transport chain. However, as complex I activity
is limited by the inherent thermodynamic constraints of proton gradient forma-
tion [30], additional NADH contributed by this high TCA cycle activity must be
reoxidized by other dehydrogenases, i.e., through cataplerotic functions. Significant
cataplerotic function in β-cells was suggested by the quantitative importance of
anaplerotic pathway through pyruvate carboxylase [16, 17], as confirmed by use
of NMR spectroscopy [18, 19, 31].

9.5 A Focus on Glutamate Dehydrogenase

The enzyme glutamate dehydrogenase (GDH) has been proposed to participate
in the development of the secretory response (Fig. 9.2). GDH is a homohex-
amer located in the mitochondrial matrix and catalyses the reversible reaction,
α-ketoglutarate + NH3 + NADH ↔ glutamate + NAD+; inhibited by GTP and
activated by ADP [32, 33]. Regarding β-cell, allosteric activation of GDH has trig-
gered most of the attention over the last three decades [34]. Numerous studies have
used the GDH allosteric activator L-leucine or its nonmetabolized analog beta-2-
aminobicyclo[2.2.1]heptane-2-carboxylic acid (BCH) to question the role of GDH
in the control of insulin secretion [34-37]. Alternatively, one can increase GDH
activity by means of overexpression, an approach that we combined with allosteric
activation of the enzyme [38]. To date, the role of GDH in β-cell function remains
unclear and debated. Specifically, GDH might play a role in glucose-induced ampli-
fying pathway through generation of glutamate [39-41]. GDH is also an amino acid
sensor triggering insulin release upon glutamine stimulation in conditions of GDH
allosteric activation [35, 37, 42].

Recently, the importance of GDH has been further highlighted by studies
showing that SIRT4, a mitochondrial ADP-ribosyltransferase, downregulates GDH
activity and thereby modulates insulin secretion [43, 44]. Clinical data and associ-
ated genetic studies also revealed GDH as a key enzyme for the control of insulin
secretion. Indeed, mutations rendering GDH more active are responsible for a hyper-
insulinism syndrome [45]. Mutations producing a less-active, or even nonactive,
GDH enzyme have not been reported, leaving open the question if such mutations
would be either lethal or asymptomatic. We recently generated and character-
ized transgenic mice (named ßGlud1–/–) with conditional β-cell-specific deletion
of GDH [46]. Data show that GDH accounts for about 40% of glucose-stimulated
insulin secretion and that GDH pathway lacks redundant mechanisms. In ßGlud1–/–

mice, the reduced secretory capacity resulted in lower plasma insulin levels in
response to both feeding and glucose load while body weight gain and glucose
homeostasis were preserved [46]. This demonstrates that GDH is essential for the
full development of the secretory response in β-cells, being sensitive in the upper
range of physiological glucose concentrations.



9 Role of Mitochondria in β-cell Function and Dysfunction 199

9.6 Mitochondrial Activation Results in ATP Generation

TCA cycle activation induces transfer of electrons to the respiratory chain resulting
in hyperpolarization of the mitochondrial membrane and generation of ATP (Fig.
9.2). The electrons are transferred by the pyridine nucleotide NADH and the flavin
adenine nucleotide FADH2. In the mitochondrial matrix, NADH is formed by sev-
eral dehydrogenases, some of which being activated by Ca2+ [25], and FADH2 is
generated in the succinate dehydrogenase reaction.

Electron transport chain activity promotes proton export from the mitochondrial
matrix across the inner membrane, establishing a strong mitochondrial membrane
potential, negative inside. The respiratory chain comprises five complexes, the sub-
units of which are encoded by both the nuclear and the mitochondrial genomes
[47]. Complex I is the only acceptor of electrons from NADH in the inner mito-
chondrial membrane and its blockade abolishes glucose-induced insulin secretion
[30]. Complex II (succinate dehydrogenase) transfers electrons to coenzyme-Q from
FADH2, the latter being generated both by the oxidative activity of the TCA cycle
and the glycerophosphate shuttle. Complex V (ATP synthase) promotes ATP forma-
tion from ADP and inorganic phosphate. The synthesized ATP is translocated to the
cytosol in exchange for ADP by the adenine nucleotide translocator (ANT). Thus,
the work of the separate complexes of the electron transport chain and the adenine
nucleotide translocator couples respiration to ATP supply.

NADH electrons are transferred to the electron transport chain, which in turn
supplies the energy necessary to create a proton electrochemical gradient that
drives ATP synthesis. In addition to ATP generation, mitochondrial membrane
potential drives the transport of metabolites between mitochondrial and cytoso-
lic compartments, including the transfer of mitochondrial factors participating in
insulin secretion. Hyperpolarization of the mitochondrial membrane relates to the
proton export from the mitochondrial matrix and directly correlates with insulin
secretion stimulated by different secretagogues [30].

Accordingly, potentiation of glucose-stimulated insulin secretion by enhanced
mitochondrial NADH generation is accompanied by increased glucose metabolism
and mitochondrial hyperpolarization [14].

Mitochondrial activity can be modulated according to nutrient nature, although
glucose is the chief secretagogue as compared to amino acid catabolism [48] and
fatty acid beta-oxidation [49]. Additional factors regulating ATP generation include
mitochondrial Ca2+ levels [25, 50], mitochondrial protein tyrosine phosphatase [51],
mitochondrial GTP [52], and matrix alkalinization [53].

Mitochondrial function is also modulated by their morphology and contacts.
Mitochondria form dynamic networks, continuously modified by fission and fusion
events under the control of specific mitochondrial membrane anchor proteins [54].
Mitochondrial fission/fusion state was recently investigated in insulin-secreting
cells. Altering fission by down regulation of fission-promoting Fis1 protein impairs
respiratory function and glucose-stimulated insulin secretion [55]. The reverse
experiment, consisting in overexpression of Fis1 causing mitochondrial fragmen-
tation, results in a similar phenotype, i.e., reduced energy metabolism and secretory
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defects [56]. Fragmented pattern obtained by dominant-negative expression of
fusion-promoting Mfn1 protein does not affect metabolism–secretion coupling [56].
Therefore, mitochondrial fragmentation per se seems not to alter insulin-secreting
cells at least in vitro.

9.7 The Amplifying Pathway of Insulin Secretion

The Ca2+ signal in the cytosol is necessary but not sufficient for the full develop-
ment of sustained insulin secretion. Nutrient secretagogues, in particular glucose,
evoke a long-lasting second phase of insulin secretion. In contrast to the transient
secretion induced by Ca2+-raising agents, the sustained insulin release depends on
the generation of metabolic factors (Fig. 9.1). The elevation of cytosolic Ca2+ is
a prerequisite also for this phase of secretion, as evidenced among others by the
inhibitory action of voltage-sensitive Ca2+ channel blockers. Glucose evokes KATP-
channel-independent stimulation of insulin secretion, or amplifying pathway [4],
which is unmasked by glucose stimulation when cytosolic Ca2+ is clamped at per-
missive levels [57-59]. This suggests the existence of metabolic coupling factors
generated by glucose.

9.8 Mitochondria Promote the Generation of Nucleotides Acting
as Metabolic Coupling Factors

ATP is the primary metabolic factor implicated in KATP-channel regulation [60],
secretory granule movement [61, 62], and the process of insulin exocytosis [63, 64].

Among other putative nucleotide messengers, NADH and NADPH are generated
by glucose metabolism [65]. Single β-cell measurements of NAD(P)H fluorescence
have demonstrated that the rise in pyridine nucleotides precedes the rise in cytosolic
Ca2+ concentrations [66, 67] and that the elevation in the cytosol is reached more
rapidly than in the mitochondria [68]. Cytosolic NADPH is generated by glucose
metabolism via the pentose phosphate shunt [69], although mitochondrial shuttles
being the main contributors in β-cells [70]. The pyruvate/citrate shuttle has triggered
attention over the last years and has been postulated as the key cycle responsible
for the elevation of cytosolic NADPH [70]. As a consequence of mitochondrial
activation, cytosolic NADPH is generated by NADP-dependent malic enzyme and
suppression of its activity was shown to inhibit glucose-stimulated insulin secretion
in insulinoma cells [71, 72]. However, such effects have not been reproduced in
primary cells in the form of rodent islets [73], leaving the question open.

Regarding the action of NADPH, it was proposed as a coupling factor in glucose-
stimulated insulin secretion based on experiments using toadfish islets [74]. A direct
effect of NADPH was reported on the release of insulin from isolated secretory
granules [75], NADPH being possibly bound or taken up by granules [76]. More
recently, the putative role of NADPH, as a signaling molecule in β-cells, has been
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substantiated by experiments showing direct stimulation of insulin exocytosis upon
intracellular addition of NADPH [77].

Glucose also promotes the elevation of GTP [78], which could trigger insulin
exocytosis via GTPases [63, 79]. In the cytosol, GTP is mainly formed through the
action of nucleoside diphosphate kinase from GDP and ATP. In contrast to ATP,
GTP is capable of inducing insulin exocytosis in a Ca2+-independent manner [63].
An action of mitochondrial GTP as positive regulator of the TCA cycle has been
mentioned above [52].

The universal second messenger cAMP, generated at the plasma membrane from
ATP, potentiates glucose-stimulated insulin secretion [80]. Many neurotransmitters
and hormones, including glucagon as well as the intestinal hormones glucagon-like
peptide 1 (GLP-1) and gastric inhibitory polypeptide, increase cAMP levels in the
β-cell by activating adenyl cyclase [81]. In human β-cells, activation of glucagon
receptors synergistically amplifies the secretory response to glucose [82]. Glucose
itself promotes cAMP elevation [83] and oscillations in cellular cAMP concen-
trations are related to the magnitude of pulsatile insulin secretion [84]. Moreover,
GLP-1 might preserve β-cell mass, both by induction of cell proliferation and inhi-
bition of apoptosis [85]. According to all these actions, GLP-1 and biologically
active-related molecules are of interest for the treatment of diabetes [86].

9.9 Fatty Acid Pathways and the Metabolic Coupling Factors

Metabolic profiling of mitochondria is modulated by the relative contribution of
glucose and lipid products for oxidative catabolism. Carnitine palmitoyltransferase
I, which is expressed in the pancreas as the liver isoform (LCPTI), catalyzes the
rate-limiting step in the transport of fatty acids into the mitochondria for their
oxidation. In glucose-stimulated β-cells, citrate exported from the mitochondria
(Fig. 9.2) to the cytosol reacts with coenzyme-A (CoA) to form cytosolic acetyl-
CoA that is necessary for malonyl-CoA synthesis. Then, malonyl-CoA derived
from glucose metabolism regulates fatty acid oxidation by inhibiting LCPTI. The
malonyl-CoA/long-chain acyl-CoA hypothesis of glucose-stimulated insulin release
postulates that malonyl-CoA derived from glucose metabolism inhibits fatty acid
oxidation, thereby increasing the availability of long-chain acyl-CoA for lipid
signals implicated in exocytosis [16]. In the cytosol, this process promotes the accu-
mulation of long-chain acyl-CoAs such as palmitoyl-CoA [87, 88], which enhances
Ca2+-evoked insulin exocytosis [89].

In agreement with the malonyl-CoA/long-chain acyl-CoA model, overexpression
of native LCPTI in clonal INS-1E β-cells was shown to increase beta-oxidation of
fatty acids and to decrease insulin secretion at high glucose [49], although glucose-
derived malonyl-CoA was still able to inhibit LCPTI in these conditions. When
the malonyl-CoA/CPTI interaction is altered in cells expressing a malonyl-CoA–
insensitive CPTI, glucose-induced insulin release is impaired [90].
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Over the last years, the malonyl-CoA/long-chain acyl-CoA model has been chal-
lenged, essentially by modulating cellular levels of malonyl-CoA, either up or
down. Each ways resulted in contradictory conclusions, according to the respec-
tive laboratories performing such experiments. First, malonyl-CoA decarboxylase
was overexpressed to reduce malonyl-CoA levels in the cytosol. In disagreement
with the malonyl-CoA/long-chain acyl-CoA model, abrogation of malonyl-CoA
accumulation during glucose stimulation does not attenuate the secretory response
[91]. However, overexpression of malonyl-CoA decarboxylase in the cytosol in the
presence of exogenous free fatty acids, but not in their absence, reduces glucose-
stimulated insulin release [92]. The second approach was to silence ATP-citrate
lyase, the enzyme that forms cytosolic acetyl-CoA leading to malonyl-CoA syn-
thesis. Again, one study observed that such maneuver reduces glucose-stimulated
insulin secretion [71], whereas another group concluded that metabolic flux through
malonyl-CoA is not required for the secretory response to glucose [72].

The role of long-chain acyl-CoA derivatives remains a matter of debate, although
several studies indicate that malonyl-CoA could act as a coupling factor regulat-
ing the partitioning of fatty acids into effector molecules in the insulin secretory
pathway [93]. Moreover, fatty acids stimulate the G-protein-coupled receptor
GPR40/FFAR1 that is highly expressed in β-cells [94]. Activation of GPR40 recep-
tor results in enhancement of glucose-induced elevation of cytosolic Ca2+ and
consequently insulin secretion [95].

9.10 Mitochondrial Metabolites as Coupling Factors

Acetyl-CoA carboxylase catalyzes the formation of malonyl-CoA, a precursor in
the biosynthesis of long-chain fatty acids. Interestingly, glutamate-sensitive protein
phosphatase 2A-like protein activates acetyl-CoA carboxylase in β-cells [96]. This
observation might link two metabolites proposed to participate in the control of
insulin secretion. Indeed, the amino acid glutamate is another discussed metabolic
factor proposed to participate in the amplifying pathway [39, 40, 97]. Glutamate can
be produced from the TCA cycle intermediate α-ketoglutarate or by transamination
reactions [33, 48, 98]. During glucose stimulation total cellular glutamate levels
have been shown to increase in human, mouse, and rat islets as well as in clonal
β-cells [18, 38, 39, 41, 99-101], whereas one study reported no change [102].

The finding that mitochondrial activation in permeabilized β-cells directly stim-
ulates insulin exocytosis [5] initiated investigations that identified glutamate as
a putative intracellular messenger [39, 40]. In the in situ pancreatic perfusion,
increased provision of glutamate using a cell permeant precursor results in augmen-
tation of the sustained phase of insulin release [103]. The glutamate hypothesis was
challenged by the overexpression of glutamate decarboxylase (GAD) in β-cells to
reduce cytosolic glutamate levels [99]. In control cells, stimulatory glucose con-
centrations increased glutamate concentrations, whereas the glutamate response
was significantly reduced in GAD overexpressing cells. GAD overexpression also



9 Role of Mitochondria in β-cell Function and Dysfunction 203

blunted insulin secretion induced by high glucose, showing direct correlation
between the glutamate changes and the secretory response [99]. In contrast, it was
reported by others that the glutamate changes may be dissociated from the amplifica-
tion of insulin secretion elicited by glucose [100]. Recently, we abrogated GDH, the
enzyme responsible for glutamate formation, specifically in the β-cells of transgenic
mice. This resulted in a 40% reduction of glucose-stimulated insulin secretion [46].
Moreover, silencing of the mitochondrial glutamate carrier GC1 in β-cells inhibits
insulin exocytosis evoked by glucose stimulation, an effect rescued by the provision
of exogenous glutamate to the cell [104].

The use of selective inhibitors led to a model where glutamate, downstream
of mitochondria, would be taken up by secretory granules, thereby promoting
Ca2+-dependent exocytosis [39, 40]. Such a model was strengthened by the demon-
stration that clonal β-cells express two vesicular glutamate transporters (VGLUT1
and VGLUT2) and that glutamate transport characteristics are similar to neuronal
transporters [105]. The mechanism of action inside the granule could possibly be
explained by glutamate-induced pH changes, as observed in secretory vesicles from
pancreatic β-cells [106]. An alternative mechanism of action at the secretory vesi-
cle level implicates glutamate receptors. Indeed, clonal β-cells have been shown to
express the metabotropic glutamate receptor mGlu5 in insulin-containing granules,
thereby mediating insulin secretion [107].

Another action of glutamate has been proposed. In insulin-secreting cells, rapidly
reversible protein phosphorylation/dephosphorylation cycles have been shown to
play a role in the rate of insulin exocytosis [108]. It has also been reported that glu-
tamate, generated upon glucose stimulation, might sustain glucose-induced insulin
secretion through inhibition of protein phosphatase enzymatic activities [101]. An
alternative or additive mechanism of action would be the activation of acetyl-CoA
carboxylase [96] as mentioned above. Finally, glutamate might serve as a precursor
for related pathways, such as GABA (gamma-aminobutyric acid) metabolism that
could then contribute to the stimulation of insulin secretion through the so-called
GABA shunt [109].

Several mechanisms of action have been proposed for glutamate as a metabolic
factor playing a role in the control of insulin secretion. However, we lack a consen-
sus model and further studies should dissect these complex pathways that might be
either additive or cooperative.

Among mitochondrial metabolites, succinate has been proposed to control
insulin production. Indeed, it was reported that succinate and/or succinyl-CoA are
metabolic stimulus-coupling factors for glucose-induced proinsulin biosynthesis
[110]. Later, an alternative mechanism has been postulated regarding succinate
stimulation of insulin production. Authors showed that such stimulation was
dependent on succinate metabolism via succinate dehydrogenase, rather than being
the consequence of a direct effect of succinate itself [111].

Citrate export out of the mitochondria has been described as a signal of fuel
abundance that contributes to β-cell stimulation in both the mitochondrial and



204 P. Maechler et al.

the cytosolic compartments [70]. In the cytosol, citrate contributes to the forma-
tion of NADPH and malonyl-CoA, both proposed as metabolic coupling factors as
discussed in this review.

9.11 Reactive Oxygen Species Participate to β-Cell Function

Reactive oxygen species (ROS) include superoxide (O−
2 •), hydroxyl radical (OH•),

and hydrogen peroxide (H2O2). Superoxide can be converted to less-reactive H2O2
by superoxide dismutase (SOD) and then to oxygen and water by catalase (CAT),
glutathione peroxidase (GPx), and peroxiredoxin, which constitute antioxidant
defenses. Increased oxidative stress and free radical-induced damages have been
proposed to be implicated in diabetic state [112]. However, metabolism of physio-
logical nutrient increases ROS without causing deleterious effects on cell function.
Recently, the concept emerged that ROS might participate to cell signaling [113]. In
insulin-secreting cells, it has been reported that ROS, and probably H2O2 in partic-
ular, is one of the metabolic coupling factor in glucose-induced insulin secretion
[114]. Therefore, ROS fluctuations may also contribute to physiological control
of β-cell functions. However, uncontrolled increase of oxidants, or reduction of
their detoxification, may lead to free radical-mediated chain reactions ultimately
triggering pathogenic events [115].

9.12 Mitochondria Can Generate ROS

Mitochondrial electron transport chain is the major site of ROS production within
the cell. Electrons from sugar, fatty acid, and amino acid catabolism accumulate on
the electron carriers NADH and FADH2 and are subsequently transferred through
the electron transport chain to oxygen, promoting ATP synthesis. ROS formation
is coupled to this electron transportation as a by-product of normal mitochon-
drial respiration through the one-electron reduction of molecular oxygen [116,
117]. The main sub-mitochondrial localization of ROS formation is the inner mito-
chondrial membrane, i.e., NADH dehydrogenase at complex I and the interface
between ubiquinone and complex III [118]. Increased mitochondrial free radical
production has been regarded as a result of diminished electron transport occurring
when ATP demand declines or under certain stress conditions impairing specific
respiratory chain complexes [119, 120]. This is consistent with the observation
that inhibition of mitochondrial electron transport chain by mitochondrial complex
blockers, antimycin A and rotenone, lead to increased ROS production in INS-1
β-cells [114].



9 Role of Mitochondria in β-cell Function and Dysfunction 205

9.13 Mitochondria are Sensitive to ROS

Mitochondria not only produce ROS but are also the primary target of ROS attacks.
The mitochondrial genome is more vulnerable to oxidative stress and consecutive
damages are more extensive than those in nuclear DNA due to the lack of protec-
tive histones and low repair mechanisms [121, 122]. Being in close proximity to
the site of free radical generation, mitochondrial inner membrane components are at
a high risk for oxidative injuries, eventually resulting in depolarized mitochondrial
membrane and impaired ATP production. Such sensitivity has been shown for mito-
chondrial membrane proteins such as the adenine nucleotide transporter and ATP
synthase [123, 124]. In the mitochondrial matrix, aconitase was also reported to be
modified in an oxidative environment [125].

Furthermore, mitochondrial membrane lipids are highly susceptible to oxidants,
in particular the long-chain poly-unsaturated fatty acids. ROS may directly lead to
lipid peroxidation and the production of highly reactive aldehyde species exerts fur-
ther detrimental effects [126]. The mitochondrion membrane-specific phospholipid
cardiolipin is particularly vulnerable to oxidative damages, altering the activities of
adenine nucleotide transporter and cytochrome c oxidase [127].

9.14 ROS May Trigger β-Cell Dysfunction

ROS may have different actions according to cellular concentrations being either
below or above a specific threshold, i.e., signaling or toxic effects, respectively.
Robust oxidative stress caused either by direct exposure to oxidants or secondary
to gluco-lipotoxicity has been shown to impair β-cell functions [128–130]. In type
1 diabetes, ROS participate in β-cell dysfunction initiated by autoimmune reactions
and inflammatory cytokines [131]. In type 2 diabetes, excessive ROS impair insulin
synthesis [132–134] and activate β-cell apoptotic pathways [132, 135].

Hyperglycemia induces generation of superoxide at the mitochondrial level in
endothelial cells and triggers of a vicious cycle of oxidative reactions implicated
in the development of diabetic complications [118]. In the rat Zucker diabetic fatty
model of type 2 diabetes, direct measurements of superoxide in isolated pancreatic
islets revealed ROS generation coupled to mitochondrial metabolism and perturbed
mitochondrial function [136].

Short transient exposure to oxidative stress is sufficient to impair glucose-
stimulated insulin secretion in pancreatic islets [128]. Specifically, ROS attacks
in insulin-secreting cells result in mitochondrial inactivation, thereby interrupting
transduction of signals normally coupling glucose metabolism to insulin secretion
[128]. Recently, we observed that one single acute oxidative stress induces β-cell
dysfunction lasting over days, explained by persistent damages in mitochon-
drial components accompanied by subsequent generation of endogenous ROS of
mitochondrial origin [137].
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The degree of oxidative damages also depends on protective capability of ROS
scavengers. Mitochondria have a large set of defense strategies against oxidative
injuries. Superoxide is enzymatically converted to H2O2 by the mitochondrion-
specific manganese SOD [138]. Other antioxidants like mitochondrial GPx, per-
oxiredoxin, vitamin E and Coenzymes Q, and various repair mechanisms contribute
to maintain redox homeostasis in mitochondria [139, 140]. However, β-cells are
characterized by relatively weak expression of free radical-quenching enzymes
SOD, CAT, and GPx [141]. Overexpression of such enzymes in insulin-secreting
cells inactivates ROS attacks [142]. Beside ROS inactivation, the uncoupling pro-
tein (UCP) 2 was shown to reduce cytokine-induced ROS production, an effect
independent of mitochondrial uncoupling [143].

9.15 Mitochondrial DNA Mutations and β-Cell Dysfunction

Mitochondrial DNA (mtDNA) carries only 37 genes (16,569 bp) encoding 13
polypeptides, 22 tRNAs and 2 ribosomal RNAs [47]. Mitochondrial protein bio-
genesis is determined by both nuclear and mitochondrial genomes, and the few
polypeptides encoded by the mtDNA are all subunits of the electron transport chain
[144]. Transgenic mice lacking expression of the mitochondrial genome specifically
in the β-cells are diabetic and their islets exhibit impaired glucose-stimulated insulin
secretion [145]. Moreover, mtDNA-deficient β-cell lines are glucose unresponsive
and carry defective mitochondria, although they still exhibit secretory responses to
Ca2+-raising agents [146–148].

Mitochondrial inherited diabetes and deafness (MIDD) is often associated with
mtDNA A3243G point mutation on the tRNA (Leu) gene [149, 150], usually in
the heteroplasmic form, i.e., a mixture of wild-type and mutant mtDNA in patient
cells. Mitochondrial diabetes usually appears during adulthood with maternal trans-
mission and often in combination with bilateral hearing impairment [151]. The
aetiology of diabetes may not be primarily associated with β-cells, rendering the
putative link between mtDNA mutations and β-cell dysfunction still hypothetical
[152]. Moreover, pancreatic islets of such patients may carry low heteroplasmy per-
centage of the mutation [153] and, accordingly, the pathogenicity of this mutation
is hardly detectable in the endocrine pancreas [153, 154].

Some clinical studies strongly suggest a direct link between mtDNA mutations
and β-cell dysfunction. Diabetic patients carrying mtDNA mutations exhibit marked
reduction in insulin release upon intravenous glucose tolerance tests and hyper-
glycemic clamps compared to noncarriers [155–157]. It is hypothesized that mtDNA
mutations could result in mitochondrial impairment associated with β-cell dys-
function as a primary abnormality in carriers of the mutation [155]. Alternatively,
impaired mitochondrial metabolism in cells of individuals carrying mtDNA muta-
tions might rather predispose for β-cell dysfunction, explaining late onset of the
disease. Due to technical limitation of β-cell accessibility in individuals, the putative
impact of mtDNA mutations on insulin secretion still lacks direct demonstration.
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In cellular models, direct investigation of β-cell functions carrying specific
mtDNA mutations also faces technical obstacles. Indeed, as opposed to genomic
DNA, specific mtDNA manipulations are not feasible. The alternative commonly
used is to introduce patient-derived mitochondria into cell lines by fusing enucle-
ated cells carrying mitochondria of interest with cells depleted of mtDNA (ρo cells),
resulting in cytosolic hybrids, namely cybrids.

Mitochondria derived from patients with mtDNA A3243G mutation were intro-
duced into a human ρo osteosarcoma cell line. The resulting clonal cell lines
contained either exclusively mutated mtDNA or wild-type mtDNA from the same
patient [158]. The study shows that mitochondrial A3243G mutation is responsible
for defective mitochondrial metabolism associated with impaired Ca2+ homeostasis
[159]. The A3243G mutation induces a shift to dominantly glycolytic metabolism
while glucose oxidation is reduced [159]. The levels of reducing equivalents in the
form of NAD(P)H are not efficiently elevated upon glucose stimulation in mtDNA-
mutant cells, reflecting the impact of this mutation on the electron transport chain
activity [158]. As a metabolic consequence we observed a switch to anaerobic glu-
cose utilization accompanied by increased lactate generation [159]. Accordingly,
ATP supply is totally dependent on high glycolytic rates, enabling the mtDNA-
mutant cells to only reach basal normal ATP levels at the expense of stimulatory
glucose concentrations. Such a phenotype is well known to dramatically impair
glucose-stimulated insulin secretion in β-cells.

9.16 Conclusion

Mitochondria are key organelles that generate the largest part of cellular ATP and
represent the central crossroad of metabolic pathways. Metabolic profiling of β-cell
function identified mitochondria as sensors and generators of metabolic signals con-
trolling insulin secretion. Recent molecular tools available for cell biology studies
shed light on new mechanisms regarding the coupling of glucose recognition to
insulin exocytosis. Delineation of metabolic signals required for β-cell function will
be instrumental in therapeutic approaches for the management of diabetes.
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