
Chapter 16
Proteomics and Islet Research

Meftun Ahmed

Abstract The complementary disciplines of genomics and proteomics offer better
insights into the molecular mechanisms of diseases. While genomics hunts for
defining our static genetic substrate, proteomics explores the structure and function
of proteins expressed by a cell or tissue type under specified conditions. In the
past decade, proteomics has been revolutionized by the application of techniques
such as two-dimensional gel electrophoresis (2DGE), mass spectrometry (MS),
and protein arrays. These techniques have tremendous potential for biomarker
development, target validation, diagnosis, prognosis, and optimization of treatment
in medical care, especially in the field of islet and diabetes research. This chapter
will highlight the contributions of proteomic technologies toward the dissection of
complex network of signaling molecules regulating islet function, the identification
of potential biomarkers, and the understanding of mechanisms involved in the
pathogenesis of diabetes.
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16.1 Introduction

Pancreatic islets, the fascinating little magic box, because of their vital performance
in blood glucose regulation have long been central focus of diabetes research. The
essential illusion of these magical islets is the β-cell, a ‘mysterious maiden’ with
bags full of insulin. Search for the understanding of the β-cells has given rise new
ideas, imagination, and creativity in the worldwide scientific community, but till
now not a single phenomenon of the β-cell has been fully understood. Every new
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discovery tells a tale about the previous one – a little more, but the story seems a
never ending one. In this promising journey of biomedical discovery, the completion
of the human genome project has facilitated the entry of the biomedical researchers
into a new dimension – the post-genomic era. This era is marked by an explosion
of terms containing the suffix ‘omics,’ like the word genomics, transcriptomics,
and metabolomics. One of the very stylish and trendy labels carrying the appella-
tion ‘omics’ is proteomics, which attracted the attention of contemporary scientists
and offered to fill the void left by the human genome project to gain an in-depth
understanding of future disease prevention and innovation of novel drug targets. The
contributions of proteomic technologies toward the insights of the pathophysiology
of the pancreatic islet function will be discussed in following sections.

16.2 Proteome and Proteomics

All cells in the human body have essentially the same genetic information, and the
genes possess only the information which is sequentially encoded to construct the
final products – the proteins. These proteins are dynamic in nature and considered as
the molecular engineers for a cell; their composition in a cell may vary at its different
stages of development whereas the genes remain as the static component of a cell.
A classic example is the caterpillar and its mature form, the butterfly; they have the
same genetic makeup whereas their protein composition is quite different and it is
the protein which is responsible for different shapes and forms of the organism. The
renaissance of proteomics is due to the fact that proteins are expressed in quantities
and physical forms that cannot be predicted from DNA and mRNA analysis [1, 2].
In addition, the diseased cells often produce proteins that healthy cells do not have
and vice versa. Hence, scientists are aiming toward creating a complete catalogue
of all the human proteins with an intention to uncover their interactions with one
another [1, 3]. Their definitive goal is to discover biomarkers and to devise better
drugs with fewer side effects. Significant progress has already made in biomarker
discovery where several groups have announced that using proteomic techniques it
is highly possible to make an accurate early diagnosis for cancers including ovarian,
breast and prostate cancer [4–6].

In general, proteomics includes cataloging all the proteins present in a cell or
tissue type at a specific time under specific conditions, quantitation, and functional
characterization of these proteins to elucidate their relationships (protein–protein
interaction networks) and functional roles and ultimately outlining their precise
three-dimensional structures in order to find where the drugs might turn their activity
on or off – the ‘Achilles heels’ [7–9]. The term proteome was coined as a linguis-
tic equivalent to the concept of genome and first used in 1994 at the “Siena 2D
Electrophoresis” meeting (9–11). It denotes the entire PROTEin complement to a
genOME, expressed by a cell or tissue type, at a specific time in the development of
the organism under specific conditions [12, 13]. While humans are estimated to have
approximately 20,000–25,000 genes, alternate RNA splicing and posttranslational
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modification may led to encoding as many as 250,000–1 million individual proteins
or peptides. For example, more than 22 different isoforms of α-1-antitrypsin exist
in human plasma [14]. In addition, the proteome undergoes dynamic changes as
it continuously responds to autocrine, paracrine, and endocrine factors as well as
exposure to any pathogen, changes in external environment, and during time course
of disease and drug treatment. Various gene products, including microRNA [15], as
well as epigenetic factors [16] also influence the expression levels of genes and
their transcripts. As a consequence, the proteome is far more complex than the
genome. Thus, the scale of protein discovery task is challenging and very large
indeed. And multiple specialists from different fields must collaborate to provide a
range of sophisticated tools to analyze nature’s tremendous complexity. However,
proteomics is still in an early stage and at the time when mRNA expression arrays
are spreading like cell phones in industry and in academic institutions, systems for
large-scale protein analysis are still novelties. The commonly available proteomic
technologies to date are summarized in Table 16.1.

Table 16.1 Currently used proteomic technologies

Proteome profiling Emerging technologies
1D gel electrophoresis SILAC
2D gel electrophoresis Imaging mass spectrometry (IMS)
2D-DIGE Molecular scanner
MS-based methods iTRAQ

SELDI-TOF ICAT
MALDI-TOF HysTag
CE-ESI-MS Label-free LC-MS/MS quantitation
LC-MS Protein chips:

Protein identification Spotted array-based tools:
Mass spectrometry Forward-phase arrays (FPA), e.g., antibody
Mud-PIT or shotgun proteomics arrays, protein arrays
2-D LC-MS/MS Reverse-phase arrays (RPA)

Protein function Microfluidic-based tools
Yeast two hybrid
Phase display
Surface plasmon resonance analysis
Immunoaffinity

Structural proteomics
X-ray crystallography
NMR spectroscopy
Electron tomography
Immunoelectron microscopy

2D-DIGE, two-dimensional differential in-gel electrophoresis; CE-ESI-MS, capillary elec-
trophoresis electrospray ionization mass spectrometry; ICAT, isotope-coded affinity tags; iTRAQ,
isobaric tagging for relative and absolute quantitation; LC-MS liquid chromatography mass
spectrometry; Mud-PIT, multidimensional protein identification technology; MALDI-TOF, matrix-
assisted laser desorption/ionization time of flight; NMR, nuclear magnetic resonance; SELDI-TOF,
surface-enhanced laser desorption/ionization time of flight; SILAC, stable isotope labeling by
amino acids in cell culture.
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Over the years, proteomics has expanded to include profiling, quantitative, func-
tional, and structural proteomics based on a broad range of technologies. Protein
profiling involves identifying and making a list of the proteins present in a biological
sample [17]. Quantitative proteomics discovers molecular physiology at the protein
level and allows comparisons between samples by measuring relative changes in
protein expression in response to external stimuli [18, 19]. Functional proteomics
attempts to identify proteins in a cell, tissue, or organism that undergo changes in
abundance, localization, or modification in response to a specific biological condi-
tion and discover their functions based on the presence of specific functional groups
or based on their involvement in protein–ligand interactions [17, 20]. Similarly,
pathways can be characterized as a cascade of specific protein interactions required
to activate cellular functions. Functional proteomics thus focuses on understanding
part of the wiring diagram of a cell. Structural proteomics attempts to determine
the three-dimensional structure of proteins, the structure of protein complexes, and
small molecule protein complexes. X-ray crystallography and NMR are its main
approaches [21, 22].

In the plethora of proteomic technologies, two-dimensional gel electrophoresis
(2DGE) remains as a cornerstone of protein profiling [23, 24]. The 2DGE sepa-
rates proteins according to two independent parameters, isoelectric point (pI) in
the first dimension and molecular mass (Mr) in the second dimension by coupling
isoelectric focusing (IEF) and sodium dodecyl sulfate polyacrylamide gel elec-
trophoresis (SDS-PAGE) [25, 26]. Theoretically, 2DGE is capable of resolving up
to 10,000 proteins simultaneously, with approximately 2,000 proteins being rou-
tine and detecting and quantifying protein amounts of less than 1 ng per spot [23,
24]. Despite the well-known limitations of the 2DGE approach, e.g., poor solubility
of membrane proteins, limited dynamic range, difficulties in displaying and iden-
tifying low-abundant proteins, lack of reproducibility and automation, 2DGE will
remain as a powerful and versatile tool for display and quantification of a majority
of proteins in biological samples. The detailed technology, challenges as well as
the application, potential and future of high-resolution 2DGE have been elegantly
reviewed in several papers [23, 24, 27, 28]. However, gel-free high-throughput pro-
tein profiling techniques have leapt prominence and now become preferred method
of choice including multidimensional protein identification technology (Mud-PIT)
[29], molecular scanner [30], stable isotope labeling by amino acids in cell cul-
ture (SILAC) [31, 32], isotope-coded affinity tag (ICAT) [2], isobaric tagging for
relative and absolute quantitation (iTRAQ) [33], protein microarrays [34–37], and
HysTag reagent [38]. It should be noted that the use of these emerging techniques
is limited to certain specialized and privileged laboratories. Also, the choice of
a given proteomic approach depends on the type of biological question asked,
since each proteomic technology is characterized by specific applications, technical
advantages, and limitations. A typical gel-based proteomic work flow is schemati-
cally illustrated in Fig. 16.1. Peptide mass fingerprinting (PMF) and tandem mass
spectrometry (peptide fragmentation to generate partial sequence, MS/MS) are
commonly used for protein identification on two-dimensional proteomic patterns
[39–42]. The recent progress in the sensitivity of mass spectrometry analysis has
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Fig. 16.1 A two-dimensional gel-based proteomic workflow. There are two principal steps. The
first is separation and quantification of proteins in a sample using 2D gels. In the first dimension,
proteins are separated in a pH gradient according to their molecular charge, known as isoelec-
tric focusing. In the second dimension, the proteins are separated orthogonally by electrophoresis
based on their molecular mass. The end result is a 2D gel with thousands of spots where individual
spot represents a protein/peptide or a mixture. The second is identification of the separated pro-
teins, typically using mass spectrometry (MS) techniques and bioinformatics. A protein spot can
be excised from the 2D gel, digested with a protease and the peptides extracted. These peptides
can then be analyzed using MS techniques such as matrix-assisted laser desorption/ionization time
of flight (MALDI-TOF) and electrospray ionization tandem MS (ESI-MS/MS)

significantly increased the applicability of proteomic technologies [43] as protein
identification and profiling tool as well as determining protein interactions and the
type and location of posttranslational modifications [41, 44, 45]. Surface-enhanced
laser desorption/ionization time of flight (SELDI-TOF) is a suitable technique for
high-throughput proteomics analysis of complex mixtures of proteins where pro-
teins are retained on solid-phase chromatographic surfaces with specific properties
and are subsequently ionized and detected by TOF MS [46–48]. However, this sys-
tem is limited for profiling low molecular weight proteins (<20 kDa) [47]. In another
protein profiling strategy, commonly referred as ‘bottom-up’ shotgun proteomics
(multidimensional LC-MS/MS or Mud-PIT), complex protein mixtures are digested
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into peptides, followed by chromatographic separation of peptides prior to analysis
by tandem mass spectrometry, and computer algorithms then map the peptides onto
proteins to determine the original content of the mixture [49].

Quantifying changes in protein abundance between samples is a key goal of
proteomics. Promising novel methods for high-throughput quantitation involve
‘label-free’ approaches. Several studies have demonstrated that LC-MS peptide ions
spectral peak intensities are directly proportional to the protein abundances in com-
plex samples [50]. Another label-free method, termed spectral counting, compares
the number of MS/MS spectra assigned to each protein [50, 51]. With controls for
normalization between runs, label-free quantitation offers a simpler approach for
analysis. Spectral sampling also enables ranking different proteins by their relative
abundances, providing information that other methods cannot achieve [52].

In addition to the protein profiling and comparative proteomics, functional study
of target proteins is essential in any successful proteomic study. Functional pro-
teomic approaches are based on interactions of proteins or specific activities of
proteins. Phage display is a powerful proteomic tool used to express proteins or
domains of proteins [53, 54]. The system has played a pivotal role in mapping
epitopes of monoclonal and polyclonal antibodies, defining amino acid substrate
sequences, and identifying peptide ligands for drug research. Yeast two-hybrid sys-
tem detects binary protein interactions by activating expression of a reporter gene
upon direct binding between the two tested proteins [55, 56]. SELDI-TOF MS
has also been used to characterize protein–protein interaction [47]. Recently, for
studying the functions and interactions of proteins, protein microarrays have been
developed in analogy to DNA microarrays which can also be applied for com-
parative studies of expression of large sets of proteins [57]. There are two major
types of protein microarrays – forward (FPA) and reverse-phase array (RPA) [58,
59]. In forward protein arrays, thousands of recombinant antibodies carrying the
desired specificities are arrayed on glass slides, which make it very well suited for
high-throughput screening of biological samples for specific disease markers [60,
61]. The BD ClontechTM Ab Microarray 500 represents a significant step in that
direction. With this array, over 500 specific proteins can be assayed to detect and
compare expression level of both cytosolic and membrane-bound proteins repre-
senting a broad range of biological functions, including signal transduction, cell
cycle regulation, gene transcription, and apoptosis. In contrast to using chips with
immobilized antibodies to detect specific proteins, protein chips carrying the pro-
teome of a specific organism or cell type can be made by cloning and purification
of these proteins [62]. This protein microarray can then be screened on the basis
of the ability of the chip to bind specific ligands or interact with specific pro-
teins. The human ProtoArray R© protein microarray (InvitrogenTM) contains more
than 8,000 full-length human proteins purified under native conditions. This high-
content discovery tool provides highly sensitive and reproducible results enabling
rapid and easy profiling of thousands of biochemical interaction. In reverse-phase
microarrays, tissues [63], cell lysates [64], and serum samples [65] are spotted on
the surface and probed with specific antibodies per analyte for a multiplex read-
out. Thus, this analysis evaluates the expression level of defined target proteins in
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multiple samples. Both forward- and reverse-phase protein microarrays are novel
technologies in proteomics and offer great promise for use in clinical applications.

16.3 Application of Proteomics in Islet Research

The accomplishment of human genome sequences has conferred the islet scientists
with immense errands to assess the relative levels of expression of these gene prod-
ucts including the proteins and their posttranslational modifications in pancreatic
islets. In the post-genomic era, to clarify the molecular mechanism of islet func-
tion in both normal and disease states, it is important to understand the entire gene
products which regulate the phenotypes of islet cells and their ability to differentiate
and secrete specific hormones. An important advantage of global protein expression
profiling compared with individual gene or protein regulation studies is the ability
to monitor changes in several functional groups simultaneously. It should be kept in
mind that proteomics per se is not a hypothesis-driven experimental approach, but
rather a hypothesis generating ‘fishing-expedition’ where one explores the proteins
that are not a priori expected to be associated with any pathophysiological con-
ditions, which allows discovering novel proteins and signaling networks opening
new research avenues. Since its introduction in 1994, the proteomic booms con-
tinue and got considerable attention of the islet researchers as well. Improvements
of the core technologies, especially advancement of protein identification by mass
spectrometry and bioinformatics tools, have recently encouraged the application of
proteomics to unlock the secret of islet pathophysiology. It is indeed interesting
to note that the most widely used protein separation technique, the 2DGE, has been
employed in 1982 for insulin granule protein profiling [66]. In those early days more
than 150 protein/peptide spots were detected in a 2DG of insulin secretory gran-
ule and some of the high molecular weight spots were presumed as glycoprotein.
Lack of high-throughput protein identification method did not permit annotation of
the granule proteins but provided an opportunity to study the functional properties
of the insulin secretory granule and to dissect the molecular events of exocytosis.
A similar proteomic approach has been utilized to explore the glucose-responsive
granule proteins in 35S-methionine-labeled rat islet and insulinoma cells and the
study showed that biosynthesis of 25 granule proteins were stimulated 15–30-fold
by glucose [67]. In a subsequent subproteomic study, almost after 25 years, Brunner
et al. [68], separated the INS-1E granule proteins by 1-dimensional SDS-PAGE and
identified 130 different proteins by LC-MS/MS.

16.3.1 Protein Profiling of Pancreatic Islets

A high-quality 2DGE reference map of the isolated pancreatic islets is essential
for a 2DG-based comparative proteomics study and for generation of hypoth-
esis. In the holy grail of protein profiling of pancreatic islets, Sanchez et al.
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[69] did a pioneering work where they mapped 63 spots corresponding to 44
mouse islet protein entries. This protein map is available in the Swiss-2D database
(http://us.expasy.org/ch2d/). Nicolls et al. [70] identified 88 proteins in total from
mouse islets of which 18 were already identified by Sanchez and coworkers.
Continued attempts in ‘shooting at stars’ generated another mouse islet 2DGE
reference map where 124 spots corresponded to 77 distinct proteins [71]. A ref-
erence map of rat insulinoma-derived clonal INS-1E β-cell proteins has also been
constructed (Fig 16.2). This 2D map contains 686 valid spots, among which 118
spots corresponding to 63 different proteins have been successfully identified by
MALDI-TOF MS and a combination of liquid chromatography and electrospray
tandem MS (LC-ESI-MS/MS). Using 2DGE and MALDI-TOF MS the first pro-
tein map and database of human islets have been generated in 2005 where 130
spots corresponding to 66 different protein entries were successfully identified [72].
A high level of reproducibility was reported among the gels, and a total of 744

�

Fig. 16.2 2-D PAGE image of INS-1E proteins. Proteins (200 μg) were loaded onto an IPG
strip (pH 3–10 NL) and subsequently separated by mass on a gradient (8–16%) SDS-PAGE
gel. The gel was stained with colloidal Coomassie blue and the filtered image was generated by
PDQuest software. Experimental masses and pIs are indicated. The gene names mark the loca-
tion of the corresponding proteins on the gel. Aco2, aconitate hydratase, mitochondrial; Actb,
β-actin; Ak2, adenylate kinase isoenzyme 2, mitochondrial; Alb, serum albumin; Aldoa, fructose-
bisphosphate aldolase A; Anx2, annexin A2; Anxa4, annexin A4; Anxa5, annexin A5; Arhgdia,
Rho GDP-dissociation inhibitor 1 (Rho-GDI α); Atp5a1, ATP synthase subunit α, mitochondrial;
Atp6v1a, V-type proton ATPase catalytic subunit A; Calr, calreticulin; Cfl1, cofilin-1; Eef1a1,
elongation factor 1-α 1; Eef1a2, elongation factor 1-α 2; Eno1, α-enolase; Gapd, glyceraldehyde-
3-phosphate dehydrogenase; Gnb2, guanine nucleotide-binding protein Gi/Gs/Gt subunit β-2;
Grp58, protein disulfide isomerase A3; Grp75, stress-70 protein, mitochondrial (75 kDa glucose-
regulated protein); Grp78, 78 kDa glucose-regulated protein; Hadha, trifunctional enzyme subunit
α, mitochondrial; Hadhsc, hydroxyacyl coenzyme A dehydrogenase, mitochondrial; Hnrpa2b1,
heterogeneous nuclear ribonucleoproteins A2/B1; Hnrpk, heterogeneous nuclear ribonucleopro-
tein K; Hnrpl, heterogenous nuclear ribonucleoprotein L; Hsc70, heat shock cognate 71 kDa
protein (Hspa8); Hsp40, DnaJ homolog subfamily B member 1 (heat shock 40 kDa protein
1); Hsp60, 60 kDa heat shock protein, mitochondrial; Idh3a, isocitrate dehydrogenase [NAD]
subunit α, mitochondrial; Ihd2, isocitrate dehydrogenase [NADP], mitochondrial; Krt8, keratin,
type II cytoskeletal 8; Mdh1, malate dehydrogenase, cytoplasmic; Mdh2, malate dehydrogenase,
mitochondrial; Nme2, nucleoside diphosphate kinase B; Orp150, 150 kDa oxygen-regulated pro-
tein (hypoxia up-regulated protein 1); Pdia1, protein disulfide isomerase; Pdia6, protein disulfide
isomerase A6; Pebp, phosphatidylethanolamine-binding protein 1; Pfn1, profilin-1; Pgk1, phos-
phoglycerate kinase 1; Pgrmc1, membrane-associated progesterone receptor component 1; Phgdh,
D-3-phosphoglycerate dehydrogenase; Pkm2, pyruvate kinase isozymes M1/M2; Ppia, peptidyl-
prolyl cis–trans isomerase A (cyclophilin A); Prdx1, peroxiredoxin-1 (thioredoxin peroxidase 2);
Rpsa, 40S ribosomal protein SA; Sod1, superoxide dismutase [Cu-Zn]; Stip1, stress-induced phos-
phoprotein 1; Tkt, transketolase; Tpm5, tropomyosin α-3 chain; Tra1, endoplasmin; Tuba, tubulin
α; Tubb5, tubulin β-5 chain; Txndc4, thioredoxin domain-containing protein 4; Ubc, polyubiquitin;
Uchl1, ubiquitin carboxyl-terminal hydrolase isozyme L1; Vcp, transitional endoplasmic reticu-
lum ATPase; Vdac, voltage-dependent anion-selective channel protein; Ywhae, 14-3-3 protein ε;
Ywhaz, 14-3-3 protein ζ/δ (protein kinase C inhibitor protein 1)
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protein spots were detected [72]. All the protein profiling studies [69–72] using
2DGE categorized the identified proteins according to cellular location and func-
tion. Any attempt to compare these studies renders déjà vu since a number of
prevailing proteins were repeatedly reported and most proteins fell into the cytoso-
lic category followed by mitochondrial and endoplasmic reticulum (reviewed by
[73]). In aforementioned studies a large part of the proteins have either chaperone
(e.g., protein disulfide isomerase, PDI; calreticulin; 78 kDa glucose-regulated pro-
tein, GRP78; 58 kDa glucose-regulated protein, GRP58; endoplasmin) or metabolic
(e.g., α enolase, transketolase, pyruvate kinase, and hydroxyacyl-CoA dehydroge-
nase, SCHAD) functions. However, every laboratory blessed with the successful
application of 2DGE has its own protocol for protein extraction, isoelectric focus-
ing, and SDS-PAGE. Therefore, a reference map produced by one group cannot
necessarily be useful for any other group interested in comparative islet proteomics.
Moreover, since introduction in SWISS-2D database, the islet proteome map has not
been updated assigning identification of more protein spots. Therefore, the technical
hurdle remains for the laborious protein identification procedure even if one follows
a similar protocol.

Recent advances in mass spectrometry techniques allowed use of strong cation
exchange fractionation coupled with reversed phase LC-MS/MS and characteriza-
tion of 2,612 proteins in the mouse islet proteome [74]. Using nano-UPLC coupled
to ESI-MS/MS more than thousand proteins have been identified in mouse islet
(unpublished data). A 2D LC-MS/MS study of the human islets characterized 3,365
proteins covering multiple signaling pathways in human islets including integrin sig-
naling and MAP kinase, NF-κβ, and JAK/STAT pathways [75]. Combined genomic
and proteomic techniques have been employed for profiling of glucagon secret-
ing α-cells [76]. While a total of 5,945 gene products were detected in α-cells
by the gene chips alone, only 1,651 proteins were identified with high confidence
using shotgun proteomics and rigorous database searching. Seven hundred sixty-two
cross-mapped gene product pairs (both the gene and the corresponding protein) were
jointly detected by both platforms. Conversely, 126 gene products were detected
exclusively by proteomics, being somehow missed by the gene chip platform [76].
In recent years the growing number of islet proteomic data necessitates development
of bioinformatics tools for easy data handling and data mining to assign subcellular
location, functional properties, molecular networks, and known potential posttrans-
lational modifications. It is becoming essential to create a common platform for islet
proteomic users integrating molecular, cellular, phenotypic, and clinical information
with experimental genetic and proteomics data.

An important feature of proteomics is that protein isoforms generated by post-
translational modifications can be separated by 2DGE. Among the hundreds of
different types of protein modifications, reversible protein phosphorylation is a key
regulatory mechanism of cellular signaling processes [77–79]. To detect global
phosphoproteome profiles of islets, the advantages of the fluorescent dye Pro-
Q Diamond, which is suitable for the fluorescent detection of phosphoserine-,
phosphothreonine-, and phosphotyrosine-containing proteins on 2D gels directly
[80], have been exploited and 90 different phosphorylated proteins were detected
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on the 2D map (unpublished data). However, vanishingly small amounts of phos-
phorylated proteins in cells and lack of robotic picker in our laboratory precluded
spot cutting and identification of most of the spots. Only a few, including ATP
synthase α chain, elongation factor 1-α, actin, γ-aminobutyric-acid receptor α-3
subunit, and α-2-HS-glycoprotein could be successfully identified. Further isola-
tion and purification of phosphoproteins and increasing the loading amount by
pooling islet samples will possibly increase the chances for better identification
for comparative studies to elucidate how posttranslational modifications regulate
insulin secretion. LC-MS/MS analysis for posttranslational modifications of mouse
islet proteome identified relatively abundant secretion-regulatory proteins including
chromogranin A and secretogranin-2 [74]. Then again, it is just the very minute tip
of the phosphoproteome iceberg.

16.3.2 Comparative and Quantitative Islet Proteomics

The ability of the islet of Langerhans to respond with proper insulin release when
the ambient glucose concentration is changed is of fundamental importance for glu-
cose homeostasis [81]. In diabetes mellitus this ability is impaired with reduction in
both first- and second-phase insulin secretion [82, 83] which leads to postprandial
hyperglycemia. In the search for islet-derived factors responsible for the deranged
insulin secretion, isolated islets have typically been cultured under different con-
ditions, and it is well documented that elevated glucose concentrations (11 mM)
during culture are essential for maintaining islet β-cell functions [84]. Individual
islets from the NOD and ob/ob mouse, which are animal models of type 1 and type
2 diabetes, respectively [85, 86], have demonstrated improved glucose-stimulated
insulin secretion (GSIS) after exposure to high glucose in culture medium [87,
88]. Such beneficial effects on GSIS have been correlated to changes in expres-
sion of individual proteins like glucokinase, glucose transporter 2, and uncoupling
protein 2 [89–91]. However, molecular details of the phenotypic shift in response
to elevated glucose are to a large extent unknown. Since GSIS is a multifacto-
rial event, approaches capable of determining multiple proteins simultaneously are
essential for the elucidation of molecular mechanisms responsible for changes in
GSIS. 2DGE and MS have been employed to characterize changes in global islet
protein expressions related to exposing islets to high glucose [71]. In this proteomic
study, the prohormone convertase 2 and cytokeratin 8 appeared as distinct spots
on 2D gels of islets exposed to high glucose, but the proteins were barely visible
on gels of freshly isolated islets [71]. The observed glucose-induced changes in
global protein expression pattern suggested that enhanced insulin synthesis, restora-
tion of insulin content and granule pools, and increased chaperone activity and
antioxidants are important mechanisms underlying the augmented secretory effect
of glucose in mouse islets. In comparison to other discrete hypothesis-driven stud-
ies, this report, for first time, showed orchestrated changes of multiple islet proteins
that may contribute to the enhanced GSIS observed in these islets [71]. From this



374 M. Ahmed

proteomic study, it is unclear how glucose-induced increase in cytokeratin inter-
acts with kinesin–microtubule system and contributes, if any, in enhanced glucose
responsiveness. However, it has been conjectured that kinesin-dependent interaction
of cytokeratin with microtubules is mediated by the insulin granules where cytok-
eratins can interact with various lipids of the insulin granules, which are anchored
to microtubules through kinesin interaction. In support of this view, oligonucleotide
microarray studies showed an increase in cytokeratin 19 gene in pancreatic β-cells
exposed to high (25 mM) glucose compared to low glucose (5.5 mM) for 24 h [92].
Increase in cytokeratins level in different cultured cells has also been reported [93,
94]. This type II cytoskeletal 8 protein (KRT8) has been detected on 2D maps of
glucose-responding mouse islets, INS-1E cells [95], and human islets [72]. In search
for glucose-responsive proteins, a 65 kDa protein has been detected on 2D map
of mouse islets [96] and glucose-induced synthesis of this protein was blocked by
D-mannoheptulose, a specific blocker of glucose phosphorylation and metabolism.
However, isolation and characterization of this protein has not been performed.
Among the 2,000 different islet protein spots, 1.5% was reported to be regulated by
glucose in physiological concentration range [97]. In another study, depolarization
induced Ca2+ influx and insulin release was found to be highly correlated with phos-
phorylation of a 60 kDa protein [98]. Identification of this phosphoprotein revealed
an intermediate filament protein of the keratin class in hamster insulinoma cells and
in pancreatic islets [99]. This cytokeratin protein exists in both phosphorylated and
unphosphorylated state and corresponds to the gel position of KRT8 detected by
Ahmed et al. [71, 72, 95]. The gel position of the unidentified glucose-responsive
65 kDa protein also matches with the KRT8. In support of the suggestion that cytok-
eratin may be involved in the regulation of insulin release, cytokeratins 7, 8, 18, and
19 were localized to adult endocrine pancreas and insulinoma cells by immunohis-
tochemistry and immunoblot analysis [99–102], and it has been well documented
that disturbances in cytoskeleton of the pancreatic β-cells drastically reduced their
insulin secretory function and lifetime [103].

Comparative proteomics of glucose-responsive and glucose-nonresponsive MIN-
6 cells using 2D-differential in-gel electrophoresis (DIGE) [104] also contributed
to the understanding of the proteins involved in GSIS. Similar to the findings of
Ahmed et al. [71], they showed that glucose-nonresponsive cells have lower ER
chaperone proteins (e.g., PDI, GRP78, endoplasmin, endoplasmic reticulum protein
29) and decreased antioxidative enzymes (e.g., carbonyl reductase 3, peroxiredoxin
4, and superoxide dismutase 1) suggesting proper protein folding and protection
against oxidative stress are required for glucose-stimulated insulin release from
pancreatic β-cells. To dissect the molecular events associated with β-cell dysfunc-
tion and development of diabetes, Lu et al. [105] characterized global islet protein
and gene expression changes in diabetic MKR mice and compared with nondi-
abetic control mice. Using iTRAQ, 159 proteins were found to be differentially
expressed in MKR; marked up-regulation of protein biosynthesis and endoplas-
mic reticulum stress pathways and parallel down-regulation in insulin processing/
secretion, energy utilization, and metabolism were observed. One hundred fifty-
four of the differentially expressed proteins were able to be mapped to probe IDs
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on the microarray. In this study about 45.2% of the differentiated proteins showed
concordant changes (i.e., changes in the same direction) in mRNA, 0.6% were dis-
cordant (i.e., having higher protein expression but lower mRNA expression), and
notably 54.2% showed changes in the proteome but not in the transcriptome. Similar
approaches have been used for better understanding of the cellular and molecular
functions of the signaling pathway of insulin synthesis and release in human β-
cells [106]. Of the 97 differentially expressed proteins involved in improved insulin
release, the changes in protein and mRNA expression for 49 proteins (50.5%) were
in the same direction, while they moved oppositely for 14 proteins (14.4%). Thirty-
four of the 97 differentially expressed proteins were identified by protein expression
but not by mRNA expression. The proteomic and genomic data indeed supple-
ment each other and suggest a posttranscriptional and/or posttranslational regulation
of a substantial number of differentially expressed proteins is involved in islet
function.

Imaging mass spectrometry (IMS) has been applied to identify differential
expression of peptides in thin tissue section of pancreas of control and ob/ob mice
[107]. Improvement and successful application of the IMS may lead to the dis-
covery of new disorder-specific peptide biomarkers with potential applications in
disease diagnosis. Protein expression profiling in fetal rat islets after protein restric-
tion during gestation expanded our knowledge in the pathogenesis of type 1 and
type 2 diabetes [108].

16.3.3 Glucolipotoxicity and Islet Proteomics

Whereas glucose is the most important physiological stimulus for insulin secretion,
chronic hyperglycemia causes desensitization and impairment of insulin release in
response to glucose [109–112]. Similarly, a high-fat intake, particularly if rich in
saturated fatty acids, is associated with impaired insulin sensitivity and secretion
and development of type 2 diabetes [113]. It is commonly accepted that acute expo-
sure (1–3 h) of pancreatic islets to free fatty acid leads to stimulation of GSIS both
in vitro [114–117] and in vivo [118–120]. However, the impact of long-term (>6 h)
FFA exposure remains controversial [118, 121, 122]. The discrepancies may depend
on the circulating free fatty acid levels and also on the percentage of unsaturation
of the fatty acids [123, 124]. It has been proposed that an increased FFA concen-
tration alone is insufficient to induce β-cell failure and that an elevation of FFAs
combined with high glucose is required to result in β-cell malfunction [125, 126],
possibly as a result of accumulation of harmful lipid metabolites, e.g., ceramide in
the cytoplasm [127, 128]. This in turn is believed to interfere with the ability of
the β-cells to respond to glucose with enhanced insulin secretion. Although the con-
cept of glucolipotoxicity has become very popular and often debated, the underlying
causes as well as functional consequences remain poorly defined. The main dietary
fatty acids palmitate and oleate modulate the immediate early response genes, c-fos
and nur-77, and a number of late genes of fatty acid metabolism including acetyl
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CoA carboxylase and fatty acid synthase [129]. By analyzing global gene expression
profiles in chronic fatty acid-treated MIN6 cells, it was found that the major groups
of genes regulated by fatty acids are metabolic enzymes, transcription factors, and
genes controlling distal secretory processes [130]. However, in another study long-
term lipid infusion in normal rats showed little influence on broad spectrum of
islet-associated genes [131]. A series of selected ‘candidate genes’ have also been
studied recently [132]. The insulin (Ins1) and Glut2 transcript levels were signifi-
cantly down-regulated in the presence of both palmitate and oleate. Transcription of
the mitochondrial acyl-CoA transporter carnitine palmitoyltransferase I (CPT I) was
up-regulated almost 4-fold. In contrast to previous findings [133–135], the uncou-
pling protein UCP-2 was up-regulated 2-fold in the presence of high glucose but
no additional effect by FFAs was detected [132]. Therefore, it has been suggested
that the failure of glucose to stimulate insulin secretion from FFA-pretreated islets
is conceivably not due to increased uncoupling and reduced ATP generation [132].
However, conflicting opinion also exists since Western blot analysis indicates that
high glucose and fatty acid synergistically impaired the production of ATP in β-cells
through reduction of ATP synthase β-subunit protein expression [136]. Interestingly
we have found that the expression of ATP synthase subunit α (1.21-fold) and ATP
synthase subunit β (1.16-fold) was significantly increased (p < 0.05) in islets isolated
from high-fat-fed mice (unpublished data). In this proteomic study, compared to
control mice, islets from high-fat-fed mice showed differential expression of 1,008
proteins. In accordance with the previous findings of fatty acid-induced inhibition of
insulin gene transcription [132], insulin-degrading enzymes [137] were highly over-
expressed in islets isolated from high-fat-fed mice whereas both insulin 1 precursor
and glucagon precursor were down-regulated. Top 10 down-regulated proteins in
high-fat-diet islets include ARF (ADP ribosylation factor) GTPase-activating pro-
tein GIT1, flavin adenine dinucleotide (FAD) synthetase, CPT I, laminin subunit
β2 precursor, γ-aminobutyric acid receptor subunit α-3, vesicle transport protein
SEC20, reticulon 1, early endosome antigen 1, β-1,4-mannosyl-glycoprotein 4-β-N-
acetylglucosaminyltransferase and tudor domain-containing protein 5. The largely
down-regulated proteins include kelch-like protein 8, leucine-rich repeat containing
protein 8D, transcription factor E3, ras-related protein Rab 11B, Na+–K+ ATPase
subunit α2 precursor, putative ATP-dependent RNA helicase DHX33, SCHAD, F-
actin capping protein subunit β, arylacetamide deacetylase, and type I inositol 3,4
bisphosphate 4 phosphatase. The vast amount of lipotoxicity proteomic data con-
tains many novel proteins and opens new avenues for islet researchers. A recent
SELDI-TOF analysis of INS-1E cells exposed to 0.5 mM palmitate for 48 h in
the presence of high glucose (20 mM) identified calmodulin as palmitate-regulated
protein (Sol EM, personal communication).

In a pioneering glucotoxicity proteomic study, Collins et al. [97] used 2DGE of
35S-methionine-labeled islet proteins that were exposed in vivo or in vitro to either
low or high glucose. Approximately 2,000 protein spots were detected on 2D gels
and 1.5 and 1.6% detectable proteins showed differential expression in response to
prolonged glucose load in vitro and in vivo model, respectively. Lack of mass spec-
trometry did not allow protein identification of those glucose-responsive proteins.
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Schuit et al. [138], purified rat β-cells and performed 2DGE of 35S-methionine-
labeled proteins synthesized over 4 h at 10 mM glucose after 10 days culture in
low (6 mM) or high (20 mM) glucose. They distinguished two patterns of β-cell
proteome change between 6 and 20 mM glucose. In one pattern two spots corre-
sponding to proinsulin were increased almost 9-fold in the presence of high glucose.
Similar to this finding, on the 2DG map of INS-1E cells, proinsulin appeared as two
spots. However, while one spot showed almost 2-fold up-regulation in the presence
of high glucose (25 mM) the other spot was 5-fold down-regulated by high glu-
cose compared to exposure to low glucose (5.5 mM, unpublished data). The other
pattern described by Schuit et al. [138] showed suppression of translation of mul-
tiple spots close to pH 7 on 2D gels when the β-cells were exposed to 20 mM
glucose. However, the identities of these protein spots were not determined. SELDI-
TOF analysis of the different mitochondrial samples from INS-1E cells incubated
for 5 days at 5.5, 11, 20, and 27 mM glucose showed 34 differentially expressed
peaks among the samples [139]. Such changes in expression of proteins were corre-
lated with impairment of GSIS. Nevertheless, no identification of the differentially
expressed peptides has been carried out. Comparison of INS1-E mitochondrial 2DG
proteome revealed 75 spots showing 2-fold or more significant changes (p < 0.05)
in relative abundance in the presence of 20 mM glucose compared to the cells
exposed to 5.5 mM glucose. Thirty-three protein spots appear only on the mito-
chondrial map of the INS-1E cells exposed to 5.5 mM glucose. Mitochondrial
protein spots down-regulated in glucotoxic conditions include ATP synthase α chain
and δ chain, stress-70 protein, mitochondrial (75 kDa glucose-regulated protein;
GRP 75; HSPA9), malate dehydrogenase, aconitase, trifunctional enzyme β subunit
and NADH-cytochrome b5 reductase, and voltage-dependent anion-selective chan-
nel protein (VDAC) 2. There were up-regulation of protein spots corresponding
to heat shock protein 60, mitochondrial (HSP60) and 10 kDa heat shock protein,
mitochondrial (HSP10). Typical to 2D map single protein appeared in multiple
spots and several proteins co-migrated. For example, on the mitochondrial 2D map
five different spots corresponding to VDAC1 appeared at same molecular weight
but having different pI. Three spots showed over-expression in response to high
glucose and two other spots were down-regulated. Changes in expression of a sin-
gle isoform (spots) of a protein on 2DG do not necessarily signify alteration in
total protein amount. Therefore, caution should be undertaken before concluding
expression level of a protein on 2DG without validating the data with Western
blot or other methods. In addition to the mitochondrial proteins, other differen-
tially expressed proteins in glucotoxic condition includes proinsulin, calreticulin,
protein disulfide isomerase A6 (PDIA6), PKC substrate 60.1 kDa protein, hypoxia
up-regulated protein 1 (ORP150), endoplasmin, heat shock cognate 71 kDa protein
(HSPA8), heterogeneous nuclear ribonucleoproteins D0 and A2/B1, lamin B1, his-
tones H2B, H3.3, and H4 and elongation factor 1-α-1. With label-free LC-MS/MS
approach 353 proteins were found to be differentially expressed in INS-1E cells
exposed to 25 mM glucose compared to the cells cultured in the presence of
5.5 mM glucose (unpublished data). Ingenuity pathways analysis (IPA) revealed
strong association of differentially expressed proteins with energy production, lipid
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Fig. 16.3 Ingenuity pathway network obtained on a set of differentially regulated proteins detected
in INS-1E cells exposed to 25 mM glucose compared to the cells cultured in the presence
of 5.5 mM glucose. Proteins with a gray background were down-regulated by high glucose
while other interacting proteins with a dark background were up-regulated. ATP1A1, ATPase,
Na+–K+ transporting, α1 polypeptide; CK2, casein kinase 2; CLTC, clathrin, heavy chain; CUL5,
cullin 5; CYP17A1, cytochrome P450, family 17, subfamily A, polypeptide 1; DLAT, dihy-
drolipoamide S-acetyltransferase; GAK, cyclin G-associated kinase; Ikb, inhibitor of nuclear
factor of κ light polypeptide gene enhancer in B-cells, beta; IKBKAP, inhibitor of kappa light
polypeptide enhancer in B-cells, kinase complex-associated protein; LMNA, lamin A/C; LMNB1,
lamin B1; LONP1, lon peptidase 1, mitochondrial; LRPPRC, leucine-rich PPR-motif contain-
ing; MYBBP1A, MYB-binding protein (P160) 1a (p53-activated protein-2); NCL, nucleolin;
NFKB, nuclear factor of κ light polypeptide gene enhancer in B-cells; NOLC1, nucleolar and
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metabolism, protein synthesis, DNA replication, recombination and repair, cell sig-
naling, and metabolic disease. Using IPA we mapped biological networks affected
by the differentially expressed proteins between 5.5 mM and 25 mM glucose-
exposed INS-1E cells. Figure 16.3 shows the network involved in endocrine system
development and function, lipid metabolism, and small molecule biochemistry. In
INS-1E cells exposed to 25 mM glucose, N-methylpurine DNA glycosylase (MPG)
showed significant (> 2-fold) up-regulation while carboxypeptidase E (CPE) was
4-fold down-regulated. Other substantially down-regulated proteins in response
to high glucose exposure included chromogranin A (CGA), membrane-associated
guanylate kinase (MAGI1), ubiquitin protein ligase E3 component n-recognin 5
(UBR5), and mitofusin (MFN). Although fold change is a commonly used crite-
rion in quantitative proteomics, it does not provide an estimation of false-positive
and false-negative rates that are often likely in a large-scale quantitative proteomic
analysis such as in label-free LC-MS/MS quantitation. It is therefore essential for
the islet researchers to adopt effective significance analysis of proteomic data which
is particularly useful in the estimation of false discovery rates [140]. The proteomic
data from 2DG and LC-MS/MS analysis of the glucotoxic studies provide a com-
prehensive overview of the orchestrated changes in expression of multiple proteins
involved in nutrient metabolism, energy production, nucleic acid metabolism, cel-
lular defense, glycoprotein folding, molecular transport, protein trafficking, RNA
damage and repair, DNA replication, apoptosis signaling, and mDNA stability.
Farnandez et al. [141] have correlated proteomic data with metabolomic find-
ings in glucotoxic conditions in INS-1 β-cell line. While 75 proteins showed
differential expression in the presence of high glucose, only 5 of those proteins
were found to be involved in the observed metabolomic alterations, suggest-
ing allosteric regulation and/or posttranslational modifications are more important
determinants of metabolite levels than enzyme expression at the protein level [141].
Combined SELDI-TOF and 2DGE approach identified 11 different proteins coupled
to altered insulin release in response to high glucose (20 mM) (Sol EM, personal
communication).

�

Fig. 16.3 (continued) coiled-body phosphoprotein 1; NONO, non-POU domain containing,
octamer-binding protein; PLCB1, phospholipase C, β 1; PLK2, polo-like kinase 2; POLR1A,
polymerase (RNA) I polypeptide A; POR, P450 (cytochrome) oxidoreductase; PRPH, periph-
erin; PTBP1, polypyrimidine tract-binding protein 1 (heterogeneous nuclear ribonucleoprotein I);
RPL18, ribosomal protein L18; TUBB3, tubulin β-3; UBR5, ubiquitin protein ligase E3 compo-
nent n-recognin 5; UNC13A, unc-13 homolog A; VCP, valosin-containing protein.

= enzyme ; = peptidase; = transporter; = ion channel, = transcription regu-

lator; = group or complex; = kinase; = other. = direct interaction; =
indirect interaction; = binding only; = acts on; = inhibits and acts on.



380 M. Ahmed

16.3.4 Type 1 Diabetes and Islet Proteomics

Type 1 diabetes (T1D) is an autoimmune disorder characterized by selective destruc-
tion of insulin-producing β-cells in the pancreas resulting from the action of
environmental factors on genetically predisposed individuals [142]. The prevail-
ing view for the pathogenesis of type 1 diabetes is that an autoimmune reaction,
where cytokines play an important role, causes destruction of the β-cells [143].
Numerous reports have demonstrated both in rodent and in human islets that
interleukin-1β (IL-1β) alone or in combination with interferon-γ (IFN-γ) and tumor
necrosis factor α (TNF-α) affects the transcription and translation of genes, which
have been implicated in β-cell destruction [144]. To search for novel proteins
involved in cytokine-induced destruction of β-cells 2DGE has been used [145].
This approach has detected up-regulation of 29 proteins on 2DG image of rat
islets exposed to IL-1β compared to control islets, and addition of nicotinamide
reduced the up-regulation of 16 IL-1β-induced proteins [145]. In a subsequent
study [146], on 2D gels of 35S-methionine-labeled rat islets 52 spots were up-
regulated, 47 down-regulated, and 6 synthesized de novo by IL-1β. Among these
105 differentially expressed proteins, 23 protein spots were found to be signif-
icantly affected when nitric oxide (NO) production was prevented, suggesting a
major role of NO-independent IL-1β-mediated regulation of gene expression [147].
Mass spectrometric analysis allowed identification of 15 proteins, which were most
profoundly altered by cytokine treatment [147]. Also, on the transcription level
similar approaches have been employed to search for genes involved in the cytokine-
induced alterations [148]. Both these powerful approaches have yielded important
information about putative genes/proteins involved in the development of the dis-
ease. Larsen et al. [149] identified 57 different proteins from IL-1β-exposed rat islets
and categorized them into several functional groups including (1) energy transduc-
tion; (2) glycolytic pathway; (3) protein synthesis, chaperones, and protein folding;
and (4) signal transduction. Results of this differential expression analysis suggest
that islet exposure to cytokines induces a complex pattern in β-cells comprising
protective (e.g., up-regulation of stress proteins) as well as deleterious (e.g., iNOS
induction and NO production) events [150]. The overall picture of the proteomic
studies of type 1 diabetes is complex and do not allow us to predict which pro-
tein changes may be considered ‘primary’ or ‘secondary’ in importance, time, and
sequence [149]. An integrative analysis method was developed combining genetic
interactions using type 1 diabetes genome scan data and a high-confidence human
protein interaction network [151]. Using this network analysis of the differentially
expressed proteins in INS-1E cells exposed to cytokines, 42 of the differentially
expressed proteins constituted a significant interaction network suggesting exten-
sive cross talk between the different proteins and the pathways in which they are
involved with some proteins such as the chaperones GRP78, HSPA8, and GRP75
and the RNA synthesis/turnover proteins placed at the center of different networks.
In fact all these islet proteomic studies strongly suggest a protective role of the
chaperones in regulating β-cell dysfunction.
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16.3.5 Pharmacoproteomics and Pancreatic Islets

A potential application of proteomics in islet research is the detection of molecular
alterations in diabetes and further characterization of existing or new drug [152].
One of the prime targets for the treatment of diabetes is to enhance the insulin
sensitivity so that the tissues can precisely utilize glucose and keep its plasma
level within physiological limit. Rosiglitazone, a member of the thiazolidinedione
(TZD) class of antidiabetic agents, improves insulin sensitivity both in liver and in
peripheral tissues. TZDs bind to and activate the peroxisome proliferator-activated
receptor (PPARγ) and regulate the coordinated expression of multiple genes that
integrate the control of energy, glucose, and lipid homeostasis, therefore contribute
to increased insulin sensitivity. Rosiglitazone has been shown to prevent islet cell
hyperplasia and protects islets from toxic agents [153–155]. In an elegant study
using 2DGE, Sanchez et al. [156] compared protein expression profiles of pancreatic
islets from obese diabetic C57BL/6J lep/lep mice and their lean littermates treated
with rosiglitazone. They identified 9 differentially expressed proteins between lean
and obese, diabetic, untreated mice. The expression levels of four of those nine
proteins (tropomyosin 1, profilin, profilin fragment, and fatty acid-binding protein)
were significantly modulated by rosiglitazone treatment of the obese mice. In a sec-
ond set of experiments designed to identify proteins potentially associated with a
low islet cell mass, they compared the islet protein expression between C57BL/6J
and C57BL/Ks mice. The C57BL/Ks mice have a 2-fold less islet cell mass as
compared with the C57BL/6J [157] and, as a consequence, were more suscep-
tible to diabetes [158, 159]. Thirty-one proteins were found to be differentially
expressed between the two mouse models and two of them, tropomyosin 1 and pro-
filin, showed the same differential pattern between C57BL/Ks and obese diabetic
C57BL/6J lep/lep mice. Taken together, these results suggest that actin-binding pro-
teins could play an important role in defective islet function. We have a long way
to go for the development of novel actin-modulating drugs for treatment of dia-
betes similar to microtubule-interacting or microtubule-stabilizing drugs developed
for cancer treatment [160, 161]. In a recent study, the effects of imidazolines have
been tested on rat islet proteome [162] with the optimism that if it were possible
to develop one of the them into a drug. This compound may be effective with-
out risk of insulin shock from hypersecretion in subjects with low or normal blood
glucose as imidazolines increase insulin release selectively at high glucose con-
centrations [163]. The 2DG analysis revealed 53 differentially expressed proteins
between imidazoline-treated and imidazoline-nontreated islets. Of special interest
among the differentially expressed proteins are those involved in protecting cells
from misfolded proteins (HSP60, PDI, and calreticulin), Ca2+ binding (calgizzarin,
calcyclin, and annexin A1), and metabolism or signaling (pyruvate kinase, α eno-
lase, and protein kinase C inhibitor 1). However, elucidation of exact mechanism of
action of imidazolines and validation of targets require further studies.

Natural medicinal plant extracts and active components have antidiabetic activity
[164], and the extracellular polysaccharides (EPS) obtained from mycelia culture
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of Phellinus baumii has strong hypoglycemic activity. Proteomic study provided
insights into the mechanism of antidiabetic activity of the EPS in type 1 diabetes
[165]. The 2DGE image analysis and mass spectrometry identified 10 down-
regulated and 16 up-regulated proteins in streptozotocin-treated diabetic mice islets.
The altered level of all these differentially expressed proteins was partially or fully
restored to normal level by EPS treatment. The interesting down-regulated proteins
in diabetic model include cholesterol esterase, PDI and islet regenerating pro-
tein, whereas the up-regulated proteins were Cu/Zn superoxide dismutase, carbonyl
reductase, GRP58, hydroxymethylglutaryl-CoA synthase, similar to α glucosidase
II, α subunit, and putative human mitogen-activated protein kinase activator with
WD repeats-binding protein. One advantage of this study is that the proteomic data
was indeed supported by transcriptomics. It would be interesting to know how alter-
ation of certain specific protein targets modulates the development and progress of
type 1 diabetes. In a recent study, using proteomic approaches it has been demon-
strated that Rho-GDI-α/JNK pathway might be the focus of therapeutic target for
the prevention of mycophenolic acid-induced islet apoptosis [166].

16.4 Conclusion

During the last decade state-of-the-art proteomic technologies including the 2DGE
and label-free LC-MS/MS quantitation have been applied to dissect the pathophys-
iology of islet function in an increasingly manner. A vast array of proteomics data
has emerged from these studies providing molecular and comprehensive snapshot
of complex disease process involving the pancreatic islet cells – but just like a trace
of light through an age-old dark cave, coming from the gleaming endless ocean.
Careful analysis and powerful bioinformatic tools are still required for functional
summary of the data sets and generation of novel hypothesis. These proteomic
studies are indeed very early steps toward better understanding of the mechanism
of pathophysiology of diabetes and providing new approaches for the prevention
and treatment of the disease. Almost no functional proteomics has been performed
in islet research. However, improvement and easy availability of high-throughput
proteomic techniques will hopefully draw the attention of more islet biologist and
generate significant functional data. An important feature of diabetes is that it is
a progressive condition. Pancreatic β-cell function, in particular, shows a progres-
sive decline in the pre-diabetic phase and in established diabetes. To clearly define
islet function, therefore, we need to measure it over a period of time amalgamat-
ing multiple platforms and involving cell biologists, physiologists, geneticists, and
biochemists working together with proteomics specialists. A large-scale study will
allow this, together with the detection of changes in islet protein patterns and other
metabolic traits will lead to a better understanding of how susceptible gene vari-
ants and their protein products predispose to diabetes. This will also help to explore
novel biomarkers to predict future diabetes, for better understanding of the patho-
physiology of diabetes, to reveal drug targets, as well as to optimize the selection of
molecules that interact with these targets.
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