
Chapter 1
Microscopic Anatomy of the Human Islet
of Langerhans

Peter In’t Veld and Miriam Marichal

Abstract Human islets of Langerhans are complex micro-organs responsible for
maintaining glucose homeostasis. Islets contain five different endocrine cell types,
which react to changes in plasma nutrient levels with the release of a carefully
balanced mixture of islet hormones into the portal vein. Each endocrine cell type
is characterized by its own typical secretory granule morphology, different pep-
tide hormone content, and specific endocrine, paracrine, and neuronal interactions.
During development, a cascade of transcription factors determines the formation of
the endocrine pancreas and its constituting islet cell types. Differences in ontogeny
between the ventrally derived head section and the dorsally derived head, body,
and tail section are responsible for differences in innervation, blood supply, and
endocrine composition. Islet cells show a close topographical relationship to the
islet vasculature, and are supplied with a five to tenfold higher blood flow than the
exocrine compartment. Islet microanatomy is disturbed in patients with type 1 dia-
betes, with a marked reduction in β-cell content and the presence of inflammatory
infiltrates. Histopathological lesions in type 2 diabetes are less pathognomonic with
a more limited reduction in β-cell content and occasional deposition of amyloid in
the islet interstitial space.
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1.1 Introduction

The human pancreas is an unpaired gland of the alimentary tract with mixed
exocrine–endocrine function. It is composed of four functionally different, but
interrelated components: the exocrine tissue, the ducts, the endocrine cells, and
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the connective tissue. These elements are intimately related through ontogeny,
anatomy, histology, and function. Because the scope of this chapter is the micro-
scopic anatomy of the islet of Langerhans, the other components will only briefly
be mentioned.

1.2 The Islets of Langerhans

The pancreas has an elongated shape, and somewhat resembles a 17th century pistol
with a curved handle and thick barrel. The handle is formed by the head of the
gland, which is closely attached to the distal two-thirds of the duodenum, the barrel
is formed by the body region, which is overlaid by the posterior wall of the stomach,
and by the tapering tail region that ends near the splenic hilus. Macroscopically, the
pancreas has a yellowish-pink aspect and a soft to firm consistency depending on
the level of fibrosis and fat accumulation in the organ. It has an average weight of
68 g (range 45–120 g) [1] and is composed of small lobules measuring 1–10 mm
in diameter. Microscopically, the lobules are formed by a mixture of ductules
and well-vascularized epithelial cell clusters that reflect the two main functions
of the pancreas: digestion and glucose homeostasis. Exocrine cells (98% of the
parenchyma) release a mixture of digestive enzymes and bicarbonate into the duo-
denum. They are organized into acini that open into intercalated ducts, to which they
are connected via centro-acinar cells. The intercalated ducts fuse into intralobular
ducts, interlobular ducts, and finally into the main pancreatic ductus of Wirsung,
which together with the common bile duct, opens into the duodenum at the papilla of
Vater (papilla major). The secondary ductus of Santorini ends in the papilla minor, a
few centimeters above the papilla major. Endocrine cells (1–2% of the parenchyma)
release nutrient-generated hormones into the portal vein. Clusters of endocrine cells
form islets of Langerhans, micro-organs that lie scattered throughout the exocrine
parenchyma in between the acini and ductal structures. The islets of Langerhans are
of vital importance to the body as they produce insulin, a prime regulator of glucose
homeostasis. The name ‘islets of Langerhans’ was coined by Edouard Laguesse
(1861–1927), a histologist working at the University of Lille, who, in a seminal
paper in 1893, correctly deduced that they are involved in endocrine secretion.
He named them after Paul Langerhans (1849–1888), who was the first to describe
these cell clusters in his doctoral thesis in 1869 but who was unable to attribute
them with a specific function [2]. The adult human islet of Langerhans has a mean
diameter of 140 μm [3]. It is pervaded by a dense network of capillaries [4] and is
(partly) surrounded by a thin collagen capsule [5] and glial sheet [6] that separates
the endocrine cells from the exocrine component. Islets vary in size and range from
small clusters of only a few cells to large aggregates of many thousands of cells.
Depending on the exact manner in which an ‘islet’ is defined, the estimate of islet
number in the adult human pancreas varies from several hundred thousand to several
million. Total beta mass appears to be highly variable between subjects, ranging
from 500 to 1500 mg [7], corresponding to an estimated 109 β-cells and 1–2% of
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mean pancreatic weight. Adult islets contain four major endocrine cell types: α-cells
(also referred to as A-cells), β-cells (also referred to as B-cells), δ-cells (D, formerly
also called A1), and PP cells (pancreatic polypeptide cells, formerly also called F or
D1 cells). A fifth cell type, the Epsilon or Ghrelin cell has recently been described.

1.3 Embryology and Fetal Development

The pancreas is derived from two primordia in the distal embryonic foregut [8, 9]. At
3–4 weeks of gestation, a dorsal primordium is formed opposite the hepatic diver-
ticulum and a ventral primordium (sometimes bi-lobed) in close apposition to the
diverticulum. At 6 weeks of gestation the ventral pancreas rotates, and fuses with
the dorsal pancreas around week 7. The ventral primordium gives rise to part of the
head region of the gland (‘ventral head’), while the dorsal primordium gives rise to
the dorsal head, the body, and the tail. This difference in ontogeny is reflected in sig-
nificant differences in endocrine cell composition, vascularization, and innervation
between the ventral and dorsal pancreas. The ventral head is drained of exocrine
secretion by the ductus of Santorini and is supplied with blood via the mesenteric
artery. The dorsally derived head, body, and tail are drained by the ductus of Wirsung
and irrigated by the coeliac artery. The differences in ontogeny are mirrored by
differences in islet composition [10, 11].

Pancreas development is controlled by a complex cascade of transcription factors
[12]. Pancreatic and duodenal homeobox 1 (Pdx1) induces early (primary) progeni-
tor cells to expand and form duct-like outgrowths into the surrounding mesenchyme.
In a second wave of differentiation (secondary transition), cells at the duct tips dif-
ferentiate into acini, and cells in the duct walls give rise to endocrine cells, a process
driven by another key transcription factor Neurogenin3 (Ngn3). Endocrine cells are
first detected at 8–9 weeks at the basal side of the ductal epithelium where they grow
out to primitive islets. Exocrine acini are observed from 10 to 12 weeks. Growth of
the endocrine mass during fetal life follows that of the total gland, with endocrine
tissue forming 2–5% of the parenchyma [13]. Growth of β-cell mass in fetal and
adult life appears to be partly by neogenesis from endogeneous Ngn3+ progeni-
tor cells [14] and partly by replication of existing β-cells. β-cell replication peaks
around 20 weeks of gestation after which replication levels decrease exponentially
reaching near zero values a few years after birth [15–17].

During early development the percentage of the various endocrine cell types
changes: at 8 weeks approximately 50% of endocrine cells express glucagon,
decreasing to 15–20% in the adult. Similarly, the percentage of D-cells decreases
from 20 to 25% in neonates to approx 5% in adults [18–21].

1.4 Endocrine Cell Types

Adult human islets contain at least five different endocrine cell types. α and β-cells
were both first described in 1907 by Lane [22] on the basis of their histochemical
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staining characteristics, while D-cells were first recognized by Bloom in 1931
[23]. Both PP cells [24] and Ghrelin cells [25] were discovered with the aid of
immunocytochemistry.

1.4.1 α-Cells

α-cells secrete glucagon, a 29-aminoacid peptide with hyperglycemic action [26].
The peptide is derived from proglucagon (180-aminoacids) through proteolytic
cleavage. Other cleavage products that can be derived from the precursor are GLP-1,
GLP-2, and glicentin [27, 28]. Glucagon is stored in secretory granules that have a
typical morphology with an electrondense core and a grayish peripheral mantle [29].
Glucagon was immunohistochemically localized to the α-cells by Baum et al. [30].
The number of α-cells is estimated at 15–20% [31, 32], although the relative volume
taken up by α-cells can vary significantly between islets with some islets containing
up to 65% of α-cells [33]. α-cells are most prominent in the dorsally derived part of
the pancreas and virtually absent in the ventrally derived part (Table 1.1).

1.4.2 β-Cells

β-cells form the bulk of the pancreatic endocrine cell mass. Depending on the mor-
phometric techniques that were used, the type of samples analyzed, and the extent
of the analysis, a relative islet β-cell mass was found between 50 and 80% [31–34].
β-cells secrete insulin, a 51-aminoacid peptide with strong hypoglycemic action.
Insulin is essential for cellular nutrient uptake and thus for the survival of the organ-
ism. Its isolation and immediate successful clinical application in 1923 by Banting,
Best, and Collip was one of the major medical breakthroughs of the 20th century
[35, 36]. Like virtually all peptide hormones, insulin is proteolytically derived from
a precursor molecule, proinsulin. This biologically inactive precursor is split into

Table 1.1 Cell types in the adult human endocrine pancreas

Cell type

A B D PP Epsilon

Peptide hormone Glucagon Insulin Somatostatin Pancreatic
polypeptide

Ghrelin

Molecular weight 3500 5800 1500 4200 3400
Number of amino acids 29 51 14 36 28
Volume % (adult)

Dorsal 15–20 70–80 5–10 <1 1
Ventral <1 10–20 2 80 1

Total 15–20 70–80 5–10 15–25 1
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three parts, an A and a B chain, which remain connected by two sulfur bridges, thus
forming the biologically active insulin molecule, and a C chain (Connecting pep-
tide), which is released together with insulin in a 1:1 molar ratio [37]. The β-cell also
co-secretes Islet Associated Polypeptide (IAPP, also called amylin), a 37-aminoacid
peptide related to calcitonin gene related peptide (CGRP) [38]. Under pathologi-
cal conditions IAPP molecules may polymerize and form large intraislet amyloid
deposits that are characteristic for type 2 diabetes and for insulinoma.

Insulin was first immunohistochemically localized to the β-cell by Lacy [39].
It is stored in cytoplasmic secretory vesicles that have a characteristic morphol-
ogy with an electrondense core and a clear peripheral mantle (Fig. 1.1). Within the
350 nm granule, insulin (but not proinsulin) is complexed to zinc, forming insulin–
zinc hexamers and crystalline granule cores. Depending on the maturation stage
of the granule, the mantle may contain unprocessed proinsulin; when the prote-
olytic enzymes (prohormone convertases PC1-2, carboxypeptidase-H) present in
the newly formed secretory granule have not yet resulted in sufficient cleavage
of the precursor molecules, the granule core may be absent and typical immature
‘gray’ granules are found [39]. The biological reason for Zn complexation is not
well understood, but its presence is of practical benefit in islet isolation procedures,
where zinc-chelating dyes like dithizone [40] are helpful in determining islet yield
and purity.

A β-cell is estimated to contain 9–13.000 secretory granules [41, 42]. With an
average daily insulin requirement of 40 IU and an average insulin content per gran-
ule of 8 fg, it can be estimated that approx 1012 secretory granules are released from
β-cells each day. Release may occur via a nutrient-regulated pathway or via a consti-
tutive pathway. Nutrient-induced release is initiated via closure of ATP-dependent

Fig. 1.1 Electron-microscopic image of an islet β-cell with mature dense-cored secretory granules
and immature gray granules (arrowheads) (bar 300 nm)
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potassium-channels, membrane depolization, opening of voltage-dependent calcium
channels, and calcium-induced fusion of the secretory granules with the plasma
membrane. The process of insulin release is complex and may partly consist of
granule fusion with the plasma membrane and partly of temporary opening of small
pores between the granule lumen and the extracellular milieu [43].

In addition to (pro)insulin, C-peptide, IAPP, zinc, and proteolytic enzymes, the
secretory granule contains calcium, adenine nucleotides, biogenic amines, and a
series of additional peptide (pro)hormones including chromogranin A and beta-
granin [44, 45]. Several granule (membrane) proteins have been implicated in
humoral autoimmunity in type 1 diabetes, like the zinc transporter ZnT8 [46],
insulinoma-associated protein 2 (IA-2; ICA-512) [47], and glutamic acid decar-
boxylase (GAD65) [48].

β-cells in the human pancreas may show marked variation in granulation, cell
size, and size of the nuclei (Fig. 1.2). Differences in granulation and cell size may
reflect a heterogeneity in glucose responsiveness and biosynthetic activity [49],
while differences in nuclear size may reflect polyploidy with nuclear DNA content
of up to 8n being relatively common [50]. β-cells in the aging human pancreas dis-
play multiple prominent lysosomes with lipid-like content (Fig. 1.3). These strongly
autofluorescent organelles resemble the lipofuscin inclusions in aging neurons and
linearly increase with age [51].

1.4.3 D-Cells

The D (or δ) cells release somatostatin (formerly called somatotropin release inhibit-
ing factor), first isolated from in the hypothalamus [52]. This peptide hormone is a

Fig. 1.2 Two-color fluorescent imaging for insulin (green) and proinsulin (red) of a human
islet of Langerhans. Proinsulin has a predominantly perinuclear localization. Note the significant
differences in nuclear size between islet β-cells (asterix) (Bar 10 μm)
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Fig. 1.3 Electron-microscopic image of aging human β-cells with multiple cytoplasmic inclusions
(bar 5 μm)

potent inhibitor of glucagon and insulin release and was first immunohistochemi-
cally located to the D-cell by Luft et al. [53]. The hormone exists in a 14-aminoacid
form and in a 28-aminoacid form [54]. Although all islet cells have neuron-like
characteristics, the D-cells resemble small neurons most, as they often form long
slender processes with a secretory-granule rich knob-like ending near a capillary
suggesting focal and possibly paracrine secretion [55]. D-cells form 5–10% of islet
volume (Table 1.1).

1.4.4 PP Cells

The least well studied of the islet hormones is PP, secreted by the PP cell. The
peptide has been found immunocytochemically in two morphologically distinct cell
types: PP immunoreactive cells (formerly designated as F-cells), characterized by
round to angular secretory granules, were found in the ventrally derived head of the
pancreas, while cells with small granules, formerly called D1 cells, were found in
the dorsally derived part [56]. In the human pancreas the relative PP cell mass in the
ventral pancreas is considerable, constituting up to 80% of the cells (Table 1.1).

1.4.5 Epsilon Cells

The latest cell type that was added is the Epsilon or Ghrelin cell. The hormone ghre-
lin was first isolated from rat stomach and later localized to a specific cell type in the
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adult human islet [25]. Adult islets contain less than 1% epsilon cells. The hormone
is thought to be of importance in growth hormone release, metabolic regulation, and
energy balance, but its exact role in islet cells has yet to be established.

1.5 Islet Anatomy

Endocrine cells in the pancreas form aggregates of various sizes and microscopic
aspect. Larger aggregates, the islets of Langerhans, form small, ellipsoid or spheri-
cal structures dispersed throughout the exocrine part. The islet size and number of
β-cells increases from birth to adulthood [16]. In fetuses, islets are in close contact
with ducts, but they become more separated from the ducts in neonates and adults.
In adults, 50% of the islets remain close to the ducts [57]. Size and distribution of
islets vary widely from individual to individual, but without recognizable pattern,
except that their number seems to increase towards the tail of the pancreas [58, 59].
On light microscopy, the epithelial cells of the islets of Langerhans form trabecular
structures, separated by a dense network of anastomosing capillaries [4]. Two archi-
tecturally different types of islets are recognized: the diffuse and the compact islet.
In the postero-inferior (ventral) head of the pancreas, the islets are of the ‘diffuse’
type, because the trabeculae seem more loosely arranged than in the islets occurring
in the rest of the pancreas and which are known as ‘compact islets’. The diffuse islets
are very rich in PP cells and are larger than the compact islets. They also contain
substantially less A, B, and D cells than the compact islets [60], which are primarily
found in the body and tail and have sizes ranging from 50 to 280 μm. Compact islets
are well circumscribed and separated by a thin layer of collagen from the surround-
ing acini. This is less the case in the diffuse islets, which are often irregular. Though
occasional islets can measure 1–2 mm in diameter, compact islets larger than 250
μm are generally considered hyperplastic [61].

In humans, the endocrine cells are distributed throughout the islets without appar-
ent organization; this contrasts with murine islets, which show a clear topographical
separation of β and α-cell mass. It cannot be excluded that such topographical dif-
ferences between human and rodent islets are paralleled by differences in endocrine
and paracrine islet cell interactions. The cytoarchitecture of the human islet, with its
random islet cell distribution, does not support functional islet domains in which the
direction of blood flow determines intraislet endocrine signaling [34]. The relative
proportion of the various endocrine cell types in the human islets can vary con-
siderably; in one study [33] the percentage of β-cells ranged from 28 to 75%, that
of α-cells from 10 to 65% and that of somatostatin cells from 1.2 to 22%. Not all
endocrine cells in the pancreas occur in classical islet structures: 15% of all β-cells
are found in units with a diameter of <20 μm (1–3 cells) and without associated
glucagon, somatostatin, or PP cells [62]. These units, referred to as ‘single β-cells’
are equally distributed throughout the whole gland and in close association with
acini and ductules; they are significantly smaller than β-cells located in larger islets.
It has been speculated that these cells are an early stage in the formation of new
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islets, although recent studies in rodents using β-cell lineage tracing were unable to
confirm this [63].

The different islet cell types can be distinguished with special stains. Nowadays
immunohistochemistry is used almost exclusively, but several cell-type-specific
histochemical stains are available as well. The best known are Gomori’s alde-
hyde fuchsin for β-cells [64, 65] and Hellman–Hellerström for δ-cells [66]. The
Mallory-Azan stain distinguishes between the three major cell types.

1.6 Non-endocrine Islet Cells

Between the islet cell trabeculae, small amounts of connective tissue are present,
with blood vessels being most prominent. Other non-epithelial elements present in
the islet are nerve fibers, pericytes, macrophages [67], and dendritic cells; the latter
express major histocompatibility complex (MHC) class II molecules on their cell
surfaces, which may play a role in graft rejection and the initiation of type 1 diabetes.

Pancreatic lymphatics are found in the interlobular septa of the exocrine portion,
but are seldom in contact with the islets [68].

1.7 Islet Vasculature

The islet vasculature is critical for adequate glucose homeostasis, not only because
of the high oxygen consumption of pancreatic β-cells, but also because of timely
responses to changes in plasma glucose concentration and the release of islet hor-
mones into the circulation. Islet perfusion is mediated by neural, hormonal and cir-
culatory signals [69]. The islet capillary network has a density five times higher than
the exocrine capillary network [70, 71] and its vasculature is akin to the glomerular
system of the kidney: 1 to 3 afferent arterioles provide the islet with oxygenated
blood, which leaves through efferent venules; these empty into exocrine capillary
networks or collecting venules that in turn empty directly into larger veins. Another
similarity to glomeruli is that a variant of nephrin (a podocyte marker) has recently
been shown to mark the islet vasculature [72]. The islet endothelium contains 95 nm
fenestrations closed by a diaphragm and arranged into sieve plates (Fig. 1.4). Islet
capillaries display up to tenfold more fenestrations than exocrine capillaries [73],
further illustrating the close interaction between islet cells and the circulation.
VEGF-A released from pancreatic β-cells was shown to be a determining factor
in inducing islet capillaries and their fenestrated endothelial cells [74]. Islet β-cells
are usually bordered by at least one capillary and show polarity in their cytoplasm
with the secretory granules at the apical pole towards the blood vessel [75]. Islet cap-
illaries are surrounded by a double basement membrane, each characterized by its
own laminin subtypes. One basement membrane is derived from a peri-islet mem-
brane that accompanies the capillary along its winding path throughout the islet; the
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Fig. 1.4 Freeze fracture
replica of a rat islet showing a
fenestrated capillary with
fenestrations arranged into
sieve plates (arrowheads).
Adjacent to the capillary is an
endocrine cell with multiple
secretory granules in the
cytoplasm (bar 300 nm)

endothelial basement membrane constitutes the other. This situation differs from
that in rodents where only a single basement membrane was found [76].

1.8 Innervation

Islets have sympathetic, parasympathetic, and sensory innervation; the nerve fibers
contain acetylcholine, noradrenaline, and several neuropeptides. The fibers accom-
pany the vasculature and are embedded in non-myelinating Schwann cells. They end
blindly in the pericapillary space in close proximity to the islet cells; true synaptic
contacts on islet cells have not been described but close nerve–islet cell interactions
appear to be mediated by CADM1 (cell adhesion molecule 1) [77]. The ventral
and dorsal parts of the pancreas have different innervation, with the dorsal pancreas
receiving its sympathetic innervation from the celiac ganglion and the ventral pan-
creas from the superior mesenteric ganglion. Insulin secretion is stimulated by the
parasympathetic system and inhibited by the sympathetic system [78]. It has been
postulated that thin peri-islet Schwann cell sheets and sensory afferent neurons may
play a role in the initiation of type 1 diabetes [79].

1.9 Islet in Type 1 Diabetes

Patients with recent onset type 1 diabetes (DM1) usually present with a pancreas that
is macroscopically normal in appearance and weight. This contrasts with findings
in patients with chronic disease in whom the lack of endogenously released insulin
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leads to the atrophy of the acinar cells and a decrease in overall pancreatic weight
[80, 81].

The characteristic lesion in recent onset DM1 is formed by the presence of
inflammatory infiltrates in the islets of Langerhans. In a seminal study in 1965
[80], Willy Gepts described the presence of insulitis in 15/22 young patients with
a duration of the disease of <6 months. He observed that the inflammatory lesions
were limited to islets in which β-cells were still present and that most remaining
islets were pseudoatrophic and contained only non-β-cells (Fig. 1.5), resulting in
an overall decrease in β-cell mass to 10% of normal values. He concluded that
DM1 was probably the result of a protracted inflammatory disease of autoimmune
or viral etiology. Subsequent studies using immunohistochemical staining and pre-
cise morphometric methods have confirmed these initial histopathological findings
[82], but the use of more sensitive techniques also indicated that residual β-cells
are still present many years after clinical onset, especially in older individuals. Our
knowledge of the disease processes leading to overt diabetes is still fragmentary
due to the fact that only a few dozen cases of very recent onset diabetes could

Fig. 1.5 Islets stained for
insulin (red) and glucagon
(brown). Islets from chronic
type 1 diabetics are
pseudoatrophic and consist
primarily of α-cells (top
panel), in contrast to islets
from a normal control with
both α and β-cells
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be studied by autopsy and this often under conditions that precluded extensive
molecular and immunological studies [83]. Our current understanding of the disease
process indicates that a T-cell-mediated autoimmune reaction against islet β-cells
occurs in genetically susceptible individuals and that this process appears to be ini-
tiated by environmental triggers [84]. The intensity of the disease process appears to
vary between patients and is often more severe in children. At clinical onset, most
patients still retain a significant β-cells mass (averaging 10–30% of normal values),
but most islets have lost their β-cell component and only contain α, D-, and PP cells;
these islets are usually referred to as pseudoatrophic [80, 83]. A small fraction of
islets still contain both β-cells and non-β-cells in normal proportions. Such β-cell
containing islets may contain an inflammatory infiltrate that predominantly consists
of CD8-positive T-cells and macrophages [85, 86]. Neither the mechanism leading
to the leucocytic infiltration is known, nor has the antigen toward which the immune
response is directed been identified.

Studies of the early phases leading to overt diabetes have indicated that positiv-
ity for autoantibodies directed against islet cell antigens often predate the disease by
many years. The presence of multiple autoantibodies in combination with a suscep-
tible HLA-DQ genotype was shown to have a predictive value of >70% in relatives
of DM1 patients [87]. As the effector phase of the disease appears to be cell medi-
ated, the presence of autoantibodies may function as surrogate markers for islet cell
destruction. Histopathological studies in non-diabetic adult organ donors with posi-
tivity for multiple autoantibodies and a susceptible HLA-DQ genotype showed that
only a minor part (<10%) of the islets presented with insulitis or other histopatholog-
ical lesions (Fig. 1.6). As such islets also showed high levels of β-cell replication,
it cannot be excluded that the clinical outcome of autoimmune attack depends on

Fig. 1.6 Insulitis in an islet of Langerhans from a non-diabetic autoantibody-positive organ donor.
Infiltrating leucocytes are stained with leucocyte common antigen (brown) and the islet cells are
stained with the pan-endocrine marker synaptophysin (red)
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the balance between β-cell replication and autoimmune β-cell destruction [88].
Evidence that such regenerative processes may also occur in young patients with
recent onset of the disease is found in the early cases described by Gepts, where islet
hyperplasia was observed in a 2-year-old child that died 60 days after diagnosis in
ketoacidosis. In this patient a single lobe of the gland showed marked hyperplasia
of insulin-containing islets in a pancreas that was devoid of β-cells in the remaining
part [80]. Additional evidence that β-cell regeneration may play a role in disease
progression comes from studies where β-cell apoptosis was found in patients with
long-standing DM1 [89], indirectly suggesting that β-cells are still being replen-
ished many years after the onset of the disease. The mechanism underlying β-cell
regeneration in the diabetic pancreas is unknown and may either involve neogenesis
or replication, although no evidence of β-cell replication was found in recent onset
patients who died in ketoacidosis [90].

Although the bulk of the evidence favors an autoimmune etiology of the disease,
it is likely that at least some cases of DM1 have a viral origin as the Coxsackie
B4 enterovirus could be isolated from a small series of recent-onset DM1 patients
characterized by a non-destructive islet inflammation consisting of natural killer
cells [91].

1.10 Islets in Type 2 Diabetes

β-cells can adapt to a large number of physiologic stimuli: athletes secrete 2–3
times less insulin than normal individuals in order to reach normoglycemia [92].
Compared to lean non-diabetics, obese subjects can secrete 2–5 times more insulin
in response to a glycemic challenge [93]. Pregnancy is another example in which
insulin secretion rises drastically in response to physiologic demand [94, 95]. Type
2 DM occurs in predisposed individuals when the adaptive capacity of the endocrine
pancreas fails. Several factors can contribute to this failure. DM2 is considered a dis-
ease of insulin resistance and insulin deficit, loss of β-cell mass, increased apoptosis,
and amyloid deposition. Genetic and environmental factors also play an impor-
tant role. There is no real histological ‘hallmark’ for type 2 diabetes in the human
pancreas. Amyloid deposition comes closest to being such a ‘hallmark’, because
the majority of type 2 diabetic subjects show deposition of non-AA amyloid in at
least some of their islets. However, not all DM2 subjects show amyloid deposition
and islet amyloid can be found in islets of non-diabetics [96–99]. The precursor
of amyloid in DM2 is Islet Amyloid Polypeptide (IAPP) or amylin, a 37-amino
acid peptide which is present in β-cell secretory granules, and is co-secreted with
insulin [100, 101]. Its function is not known. The number of amyloid affected islets
is not clearly related to the duration of diabetes in man [98, 102, 103], but may
be related to the degree of insulin resistance and islet failure [104]. Affected islets
are mostly found in the dorsal head, body, and tail and are rare in the ventral head
[105, 106]. Islets located at the periphery of the pancreas exhibit a higher percent-
age of amyloid deposition than islets in the central regions [105]. The histochemical



14 P. In’t Veld and M. Marichal

staining properties of islet amyloid are the same as for the other forms of amy-
loid (Congo Red being the most specific stain). Immunohistochemistry for IAPP is
another method to demonstrate islet amyloid. It is obvious from a morphologist’s
point of view that once islets are almost completely invaded by amyloid they can
hardly function correctly and this can result in failure to secrete hormones into the
blood stream and failure to get sufficient nutrients to the islet cells. However, the
number of islets affected in this way is minimal in most diabetics and therefore this
does not seem to play a major role in the pathogenesis of DM2 [107]. Most authors
do agree that in DM2 the β-cell mass is reduced, but the reduction in β-cell mass
early in the disease seems insufficient to cause diabetes in the absence of β-cell
dysfunction [108, 109]. When amyloid causes β-cell loss in DM2, this is probably
through membrane disruption caused by amyloid fibers. This hypothesis, known
as the ‘toxic oligomer hypothesis,’ is based on findings in neurodegenerative dis-
eases [110]. Since it has been shown that patients with Alzheimer disease are more
prone to DM2 than non-Alzheimer patients [111], a link between both diseases is
possible.
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