
Goal Oriented Mesh Adaptivity for Mixed

Control-State Constrained Elliptic Optimal
Control Problems

Michael Hintermüller1 and Ronald H.W. Hoppe2

1 Institute of Mathematics, Humboldt University, DE-10117 Berlin, Germany,
and Department of Mathematics and Scientific Computing, University of Graz,
AT-8010 Graz, Austria, hint@mathematik.hu-berlin.de,
michael.hintermueller@uni-graz.at

2 Department of Mathematics, University of Houston, Houston, TX 77204-3008,
USA, and Institute of Mathematics, University of Augsburg, DE-86159
Augsburg, Germany, rohop@math.uh.edu, hoppe@math.uni-augsburg.de

1 Introduction

Adaptive finite element methods for the numerical solution of partial differ-
ential equations consist of successive cycles of the loop

SOLVE =⇒ ESTIMATE =⇒ MARK =⇒ REFINE.

Here, SOLVE stands for the finite element solution of the problem with re-
spect to a given triangulation of the computational domain. The following
step ESTIMATE is devoted to the estimation of the global discretization er-
ror in some appropriate norm or a user specified quantity of interest by a
cheaply computable a posteriori error estimator. The estimator is assumed
to consist of local contributions whose actual magnitude is then used in the
step MARK to specify elements of the triangulation for refinement. The fi-
nal step REFINE deals with the generation of a new triangulation based on
the refinement of the elements selected in the previous step according to spe-
cific refinement rules. Adaptive finite elements are by now well established.
There are various approaches such as residual-type a posteriori error esti-
mators which rely on the proper evaluation of the residuals with respect to
a computed approximation in the norm of the dual space and hierarchical
type estimators where the equation satisfied by the error is suitably localized
along with a solution of the local problems by higher order finite elements (cf.,
e.g. [1, 3, 35]). Averaging-type estimators typically use some sort of gradient
recovery on element-related patches (cf., e.g. [1, 35]), whereas the theory of
guaranteed error majorants provides reliable upper bounds for the error (see
[31]). Finally, the goal oriented weighted dual approach extracts information
on the error via the dual problem (cf. [4, 12]).
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As far as the optimal control of PDEs are concerned, the goal oriented
dual weighted approach has been applied to unconstrained problems in [4,5],
to control constrained ones in [17, 36] and to state constrained problems in
[16, 19]. Residual-type a posteriori error estimators for control constrained
problems have been developed and analyzed in [13,14,18,20,23,26,27]. State
constrained optimal control problems are more difficult to handle than con-
trol constrained ones, since the Lagrange multiplier for the state constraints
typically lives in a measure space. An appropriate way to cope with this prob-
lem is to use a regularization of the state constrained problems by means
of mixed control-state constraints (Lavrentiev regularization). With regard
to numerical solution techniques the regularized problems can be formally
treated as in the case of control constraints (cf., e.g. [2, 9, 29, 32–34]).

In this paper, we will develop, analyze and implement the goal oriented
weighted dual approach to mixed control-state constrained distributed opti-
mal control problems for linear second order elliptic boundary value problems.
The paper is organized as follows: In Section 2, we consider a model distributed
optimal control problem for a two-dimensional, second order elliptic PDE with
a quadratic objective functional and mixed unilateral constraints on the state
and on the control. The finite element discretization is based on standard
P1 conforming finite elements with respect to simplicial triangulations of the
computational domain and gives rise to a finite dimensional constrained mini-
mization problem. In both the continuous and discrete regime, the optimality
conditions are stated in terms of the associated Lagrangians. Section 3 is
devoted to a representation of the error in the quantity of interest which is
chosen as the objective functional. The error representation involves primal–
dual residuals, a primal–dual mismatch in complementarity due to a possible
mismatch between the continuous and discrete active and non-active sets, and
data oscillation terms. In Section 4, we derive the goal oriented a posteriori
error estimator based on appropriate upper bounds both for the primal–dual
residuals and the primal–dual mismatch in complementarity. The final section,
Section 5 contains a brief description of the marking and refinement strategy
as well as numerical results for an example illustrating the performance of the
error estimator.

2 The Mixed Control-State Elliptic Optimal Control
Problem and Its Finite Element Approximation

We assume Ω to be a bounded domain in R
2 with boundary Γ := ΓD ∪ ΓN ,

ΓD ∩ ΓN = ∅. We use standard notation from Lebesgue and Sobolev space
theory. In particular, we refer to L2(Ω) as the Hilbert space with inner product
(·, ·)0,Ω and norm ‖ · ‖0,Ω and to Hk(Ω), k ∈ N, as the Sobolev space with
norm ‖·‖k,Ω. The set L2

+(Ω) stands for the positive cone in L2(Ω) with respect
to the canonical ordering.
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Given a desired state yd ∈ L2(Ω), a shift control ud ∈ L2(Ω), regula-
rization parameters α > 0, ε > 0, and a function ψ ∈ L∞(Ω), we consider the
mixed control-state constrained distributed optimal control problem:
Find (y, u) ∈ V × L2(Ω), where V := {v ∈ H1(Ω) | v|ΓD = 0}, such that

inf
y,u
J(y, u) :=

1
2
‖y − yd‖2

0,Ω +
α

2
‖u− ud‖2

0,Ω, (1a)

subject to a(y, v) = (u, v)0,Ω , v ∈ V, (1b)

εu+ y ∈ K := {v ∈ L2(Ω) | v(x) ≤ ψ(x) f.a.a. x ∈ Ω}. (1c)

Here, a(·, ·) : V × V → R stands for the bounded, V -elliptic bilinear form

a(u, v) :=
∫
Ω

(∇u · ∇v + cuv) dx, c ∈ R+.

Denoting by A : V → V ∗ the operator associated with a(·, ·), we introduce
the Lagrangian L : V × L2(Ω) × V × L2

+(Ω) → R according to

L(y, u, p, σ) := J(y, u) + 〈Ay − u, p〉 + (εu+ y − ψ, σ)0,Ω, (2)

where 〈·, ·〉 denotes the dual pairing between V ∗ and V . Then, the minimiza-
tion problem (1a)–(1c) can be equivalently stated as the saddle point problem

inf
y,u

sup
p,σ

L(y, u, p, σ). (3)

Setting x := (y, u, p) ∈ X := V × L2(Ω) × V , the optimality conditions read
as follows:

∇xL(x, σ) = 0, (4a)

∇σL(x, σ)(μ − σ) ≤ 0, μ ∈ L2
+(Ω), (4b)

where ∇xL(x, σ) and ∇σL(x, σ) stand for the derivatives of L with respect to
x and σ in (x, σ). The multiplier p is referred to as the adjoint state. We note
that (4a) gives rise to the state equation (1b), the adjoint state equation

a(p, v) = (yd − y − σ, v)0,Ω , v ∈ V, (5)

and the equation
p = α(u− ud) + εσ, (6)

whereas the variational inequality (4b) can be equivalently written in terms
of the complementarity conditions

σ ∈ L2
+(Ω), ψ − (εu+ y) ∈ L2

+(Ω), (εu+ y − ψ, σ)0,Ω = 0. (7)
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We define the active set A as the maximal open set A ⊂ Ω such that εu(x) +
y(x) = ψ(x) f.a.a. x ∈ A and the inactive set I according to I :=

⋃
κ>0Bκ,

where Bκ is the maximal open set B ⊂ Ω such that εu(x) + y(x) ≤ ψ(x) − κ
for almost all x ∈ B.

For the finite element discretization of (1a)–(1c) we consider a family
{T�(Ω)} of shape-regular simplicial triangulations of Ω which align with ΓD,
ΓN on Γ . We denote by N�(D) and E�(D), D ⊆ Ω, the sets of vertices and
edges of T�(Ω) in D ⊆ Ω, and we refer to hT and |T | as the diameter and the
area of an element T ∈ T�(Ω), whereas hE stands for the length of an edge
E ∈ E�(D). For E ∈ E�(Ω) such that E = T+ ∩ T−, T± ∈ T�(Ω), we define
ωE := T+ ∪T−. Further, we denote by S� := {v� ∈ C0(Ω) | v�|T ∈ P1(T ), T ∈
T�(Ω)} the finite element space of continuous, piecewise linear finite elements
and we refer to V� as its subspace V� := {v� ∈ S� | v�|ΓD = 0}. We will also use
the following notation: If A and B are two quantities, then A � B means that
there exists a positive constant C such that A ≤ CB, where C only depends
on the shape regularity of the triangulations, but not on their granularities.

Then, given approximations yd� ∈ S�, ud� ∈ S� and ψ� ∈ S� of yd, ud and
ψ, the finite element approximation of (1a)–(1c) is given by
Find (y�, u�) ∈ V� × S� such that

inf
y�,u�

J�(y�, u�) :=
1
2
‖y� − yd� ‖2

0,Ω +
α

2
‖u� − ud�‖2

0,Ω, (8a)

subject to a(y�, v�) = (u�, v�)0,Ω, v� ∈ V�, (8b)
εu� + y� ∈ K� := {v� ∈ S� | v� ≤ ψ� in Ω}. (8c)

We proceed as in the continuous regime and introduce the Lagrangian L� :
V� × S� × V� × (S� ∩ L2

+(Ω)) by

L�(y�, u�, p�, σ�) := J�(y�, u�) + 〈Ay� − u�, p�〉 + (εu� + y� − ψ�, σ�)0,Ω (9)

such that (8a)–(8c) is equivalent to the saddle point problem

inf
y�,u�

sup
p�,σ�

L�(y�, u�, p�, σ�). (10)

The optimality conditions turn out to be

∇xL�(x�, σ�) = 0, (11a)

∇σL�(x�, σ�)(μ� − σ�) ≤ 0, μ� ∈ S� ∩ L2
+(Ω), (11b)

where x� := (y�, u�, p�) ∈ X� := V� × S� × V�. Again, (11a) comprises the
discrete state equation (8b), the discrete adjoint state equation

a(p�, v�) = (yd� − y� − σ�, v�)0,Ω, v� ∈ V�, (12)

and the equation
p� = α(u� − ud� ) + εσ�. (13)
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On the other hand, (11b) represents the discrete complementarity conditions

σ� ∈ S� ∩L2
+(Ω), ψ�− (εu�+ y�) ∈ S� ∩L2

+(Ω), (εu�+ y�−ψ�, σ�)0,Ω = 0.
(14)

We define the discrete active set A� according to A� := {x ∈ Ω | εu�(x) +
y�(x) = ψ�(x)} and refer to I� := Ω \ A� as the discrete inactive set.

3 Error Representation in the Quantity of Interest

We derive an error representation in the quantity of interest which involves
the second derivative of the Lagrangian L with respect to x. Since this second
derivative does depend neither on x nor on σ, we simply write ∇xxL(z, z′),
z, z′ ∈ X , instead of ∇xxL(x, σ)(z, z′). We will use the same simplifying no-
tation for the second derivative of Lh.

Theorem 1. Let (x, σ) ∈ X×L2
+(Ω) and (x�, σ�) ∈ X�× (S�∩L2

+(Ω)) be the
solutions of (3) and (10), respectively. Then there holds

J(y, u)− J�(y�, u�) = −1
2
∇xxL�(x�−x, x�− x)+ (εu�+ y�−ψ, σ)0,Ω + osc(1)

� ,

(15)
where osc(1)

� stands for the data oscillations

osc(1)
� :=

∑
T∈T�(Ω)

osc(1)
T , (16)

osc(1)
T := (y� − yd� , y

d
� − yd)0,T + α(u� − ud� , u

d
� − ud)0,T

+
1
2
‖yd − yd� ‖2

0,T +
α

2
‖ud − ud�‖2

0,T .

Proof. We note that for z� = (δy�, δu�, δp�) ∈ X� there holds

L(x, σ�) = L(x, σ) + (εu+ y − ψ, σ� − σ)0,Ω, (17a)
∇xL(x�, σ�)(z�) = ∇xL(x�, σ�)(z�) + (εδu� + δy�, σ� − σ)0,Ω . (17b)

Using the optimality conditions (4a), (4b) and (11a), (11b) as well as (17a),
(17b), Taylor expansion yields

J(y, u) − J�(y�, u�)L(x, σ) − L�(x�, σ�)

= L(x, σ) − L�(x, σ�) −∇xL�(x, σ�)(x� − x) − 1
2
∇xxL�(x� − x, x� − x)

= J(y, u) − J�(y, u) − (εu+ y − ψ�, σ�)0,Ω

−∇xL�(x, σ�)(x� − x) − 1
2
∇xxL�(x� − x, x� − x)
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= −∇xL(x, σ�)(x� − x) − 1
2
∇xxL�(x� − x, x� − x)

− (εu+ y − ψ�, σ�)0,Ω + osc(1)
�

= −1
2
∇xxL�(x� − x, x� − x) − (εu+ y − (εu� + y�), σ�)0,Ω

+ (εu� + y� − (εu+ y), σ − σ�)0,Ω + osc(1)
�

= −1
2
∇xxL�(x� − x, x� − x) + (εu� + y� − ψ, σ)0,Ω + osc(1)

� ,

from which we conclude. �
Remark 1. We note that the error representation (15) reduces to the result
from [5] in the unconstrained case, i.e. when σ = σ� = 0.

For a further evaluation of the error, we introduce interpolation operators

iy� : V → V�, ip� : V → V�, iu� : L2(Ω) → S�, iσ� : L2(Ω) → S�, (18)

such that for all y, p ∈ V and u ∈ L2(Ω) there holds

‖iy�y − y‖2
0,T + h

1/2
T ‖iy�y − y‖2

0,∂T � hT ‖y‖1,DT ,

‖ip�p− p‖2
0,T + h

1/2
T ‖ip�p− p‖2

0,∂T � hT ‖p‖1,DT ,

‖iu�u− u‖0,T , ‖iσ� σ − σ‖0,T → 0 as hT → 0.

whereDT := {T ′ ∈ T�(Ω) | N�(T ′)∩N�(T ) �= ∅}. We may choose, for instance,
Clément-type quasi-interpolation operators (cf., e.g. [35]) or the Scott–Zhang
interpolation operators (cf., e.g. [8]).

Theorem 2. In addition to the assumptions of Theorem 1, let ix� = (iy� , i
u
� , i

p
� )

be the interpolation operators as given by (18). Then there holds

J(y, u)−J�(y�, u�) = −r(iy� y−y)−r(i
p
�p−p)+μ�(x, σ)+osc(1)

� +osc(2)
� , (19)

where r(iy� y − y) and r(ip�p− p) stand for the primal–dual residuals

r(iy� y − y) :=
1
2
(
(y� − yd� + σ�, i

y
� y − y)0,Ω + (∇p�,∇(iy� y − y))0,Ω

)
, (20a)

r(ip�p− p) :=
1
2

((∇y�,∇(ip�p− p))0,Ω − (u�, i
p
�p− p)0,Ω) , (20b)

Moreover, μ�(x, σ) is the primal–dual mismatch in complementarity and osc(2)
�

a further data oscillation term given by

μ�(x, σ) :=
1
2

((εu� + y� − ψ, σ)0,Ω + (ψ� − (εu+ y), σ�)0,Ω) , (21a)

osc(2)
� :=

1
2
(yd − yd� , y� − iy� y)0,Ω +

1
2
(yd − yd� , i

y
�y − y)0,Ω

+
α

2
(ud − ud� , u� − iu� u)0,Ω +

α

2
(ud − ud� , i

u
� u− u)0,Ω. (21b)
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Proof. Using (11a) and (17b), for z� = (δy�, δu�, δp�) ∈ X� we find

0 = ∇xL(x, σ)(z�)
= ∇xL(x�, σ�)(z�) + ∇xxL(x − x�, z�) + (εδu� + δy�, σ − σ�)0,Ω
= ∇xxL(x− x�, z�) + (εδu� + δy�, σ − σ�)0,Ω + (yd� − yd, δy�)0,Ω

+ α(ud� − ud, δu�)0,Ω,

from which we deduce

∇xL(x�, σ)(x − x� − z�) = ∇xxL(x� − x, x− x� − z�), (22a)
∇xxL(x� − x, x� − x) = ∇xxL(x� − x, x� − x+ z�)

− (εδu� + δy�, σ − σ�)0,Ω. (22b)

Taking advantage of (22a),(22b) in (15), it follows that

J(y, u) − J�(y�, u�)

=
1
2
∇xxL(x, σ�)(x − x�, x� − x+ z�)

+
1
2
(εδu� + δy�, σ − σ�)0,Ω +

1
2
(yd� − yd, δy�)0,Ω

+
α

2
(ud� − ud, δu�)0,Ω + (εδu� + y� − ψ, σ)0,Ω + osc(1)

�

= −1
2
∇xL(x�, σ�)(x� − x+ z�) +

1
2
(εu� + y� − (εu+ y), σ� + σ)0,Ω

+
1
2
(yd − yd� , y� − y)0,Ω +

α

2
(ud� − ud, δu�)0,Ω + osc(1)

� .

We conclude by choosing z� = (iy� y − y�, i
p
�p − p�, i

u
� − u�) and observing (7)

and (14). �
Remark 2. The primal–dual residuals r(iy� y− y) and r(ip�p− p) will be further
estimated in the following section and will be made fully a posteriori in a
standard way (cf., e.g. [4]). The term μ�(x, σ) as given by (21a) represents
the primal–dual mismatch in complementarity due to a possible mismatch in
the approximation of the active and inactive sets A and I by their discrete
counterparts A� and I�. In its present form it is not yet a posteriori. In the
subsequent section, we will show how μ�(x, σ) can be made fully a posteriori
and thus be included in the refinement strategy. A similar remark applies
to the term osc(2)

� which is essentially a data oscillation term, but as given
by (21b) not a posteriori due to the occurrence of y. It will be made fully a
posteriori as well.

4 Weighted Primal–Dual A Posteriori Error Estimator

By straightforward estimation of the right-hand sides in the representations
(20a), (20b) of the primal–dual residuals the following result can be easily
established.
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Theorem 3. The primal–dual residuals can be estimated according to

|r(iy� y − y)| �
∑

T∈T�(Ω)

ωyTρ
y
T , (23a)

|r(ip�p− p)| �
∑

T∈T�(Ω)

ωpTρ
p
T . (23b)

Here, ρyT and ρpT are the L2-norms of the residuals associated with the state
and the adjoint state equation

ρyT :=
(
‖u�‖2

0,T + h−1
T ‖1

2
ν · [∇y�]‖2

0,∂T

)1/2

, (24a)

ρpT :=
(
‖y� − yd� − σ�‖2

0,T + h−1
T ‖1

2
ν · [∇p�]‖2

0,∂T

)1/2

. (24b)

The corresponding dual weights ωyT and ωpT are given by

ωyT :=
(
‖ip�p− p‖2

0,T + hT ‖ip�p− p‖2
0,∂T

)1/2
, (25a)

ωpT :=
(
‖iy�y − y‖2

0,T + hT ‖iy�y − y‖2
0,∂T

)1/2
. (25b)

Remark 3. If the state y of the purely state constrained problem (i.e. ε = 0)
is in W 1,r(Ω) for some r > 2 and hence represents a continuous function, the
adjoint state p lives in W 1,s(Ω) with s being conjugate to r. The multiplier
σ turns out to be a bounded Borel measure, and the discrete multipliers σ�
are chosen as a linear combination of Dirac delta functionals associated with
the nodal points of the triangulation. In this case, the primal–dual residuals
have to be estimated in the respective Lr- and Ls-norms and the multipliers
have to be treated separately (cf. [19]).

There are several ways to provide approximations of the weights ωyT and
ωpT , T ∈ T�(Ω). We refer to [4] for a detailed discussion. Here, we use piecewise
quadratic interpolations iy�,2y� and ip�,2p� of the computed P1 approximations
y� and p� of the state y and the adjoint state p with respect to the coarser
triangulation T�−1(Ω). This results in the computable weights

ω̂yT :=
(
‖ip�,2p� − p�‖2

0,T + hT ‖ip�,2p� − p�‖2
0,∂T

)1/2

, (26a)

ω̂pT :=
(
‖iy�,2y� − y�‖2

0,T + hT ‖iy�,2y� − y�‖2
0,∂T

)1/2

. (26b)

We now concentrate on the primal–dual mismatch in complementarity
μ�(x, σ) where for notational simplicity we drop the argument (x, σ). Taking
the complementarity conditions (7) and (14) into account, we find
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μ�|I∩I�
= 0, (27a)

μ�|A∩I�
=

1
2
(
(εu� + y� − ψ, iσ� σ)0,A∩I�

+ (εu� + y� − ψ, σ − iσ� σ)0,A∩I�

)
, (27b)

μ�|I∩A�
=

1
2
(ψ� − (εu+ y), σ�)0,Ω

=
1
2
(
(ε(u� − iu� u) + y� − iy�y, σ�)0,I∩A�

+ (ε(iu� u− u) + iy�y − y, σ�)0,I∩A�

)
, (27c)

μ�|A∩A�
=

1
2

((εu� + y� − ψ, σ)0,A∩A�
+ (ψ� − (εu+ y), σ�)0,A∩A�

)

=
1
2
(
(ψ� − ψ, iσ� σ + σ�)0,A∩A�

+ (ψ� − ψ, σ − iσ� σ)0,A∩A�

)
. (27d)

We further need to provide computable approximations of the sets A and I.
We use a modification of the approximation of the indicator function χ(A) of
the continuous coincidence set A from [26] (cf. also [17]) according to

χA
� := 1 −

ψ − (εiu�,2u� + iy�,2y�)
γhr� + ψ − (εiu�,2u� + iy�,2y�)

, (28)

where 0 < γ ≤ 1 and r > 0 are fixed and iu�,2u� is defined in the same way as
iy�,2y�. Indeed, for T ⊂ A we find

‖χ(A) − χA
� ‖0,T ≤ min(|T |1/2, γ−1h−r� ‖εu+ y − (εiu�,2u� + iy�,2y�)‖0,T )

which converges to zero whenever ‖εu + y − (εiu�,2u� + iy�,2y�)‖0,T = O(hq�),
q > r. By the same arguments, for T ⊂ I one can show as well that ‖χ(A) −
χA
� ‖0,T → 0 as h� → 0. Now, for fixed 0 < κ ≤ 1 and 0 < s ≤ r we provide

approximations Â� of A and Î� of I according to

Â� :=
⋃

{T ∈ T�(Ω) | χA
� (x) ≥ 1 − κhs� for all x ∈ T }, (29a)

Î� :=
⋃

{T ∈ T�(Ω) | χA
� (x) < 1 − κhs� for some x ∈ T }. (29b)

We define approximations TA∩A�
, TI∩A�

and TA∩I�
of A ∩ A�, I ∩ A� and

A ∩ I� by means of

TA∩A�
:= Â� ∩ A�, TI∩A�

:= Î� ∩ A�, TA∩I�
:= Â� ∩ I�.

We further define

ω̃yT := ‖iy�,2y� − y�‖0,T ,

ω̃uT := ‖iu�,2u� − u�‖0,T ,

ω̃σT := ‖iσ�,2σ� − σ�‖0,T ,
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where iσ�,2σ� is also given by piecewise quadratic interpolation. Then, we can
estimate the contributions to the primal–dual mismatch in complementarity
in (27b)–(27d) according to

|μ�|A∩I�
| ≤

∑
T∈TA∩I�

μ̄
(1)
T , (30a)

μ̄
(1)
T :=

1
2
‖εu� + y� − ψ‖0,T (‖iσ�,2σ�‖0,T + ω̃σT ),

|μ�|I∩A�
| ≤

∑
T∈TI∩A�

μ̄
(2)
T , (30b)

μ̄
(2)
T := ‖σ�‖0,T (εω̃uT + ω̃yT ),

|μ�|A∩A�
| ≤

∑
T∈TA∩A�

μ̄
(3)
T , (30c)

μ̄
(3)
T :=

1
2
‖ψ� − ψ‖0,T (‖iσ�,2σ� + σ�‖0,T + ω̃σT ).

This leads to the following upper bound for the primal–dual mismatch in
complementarity:

|μ�(x, σ)| ≤
∑

T∈T�(Ω)

μ̄T , (31)

where

μ̄T :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, T ∈ TI∩I�
,

μ̄
(1)
T , T ∈ TA∩I�

,

μ̄
(2)
T , T ∈ TI∩A�

,

μ̄
(3)
T , T ∈ TA∩A�

.

The oscillation term osc(2)
� as given by (21b) is treated analogously which

results in

|osc(1)
� + osc(2)

� | ≤
∑

T∈T�(Ω)

oscT , oscT := osc(1)
T + osc(2)

T , (32)

where osc(1)
T is given by (16) and osc(2)

T by

osc(2)
T := ω̃yT ‖yd − yd� ‖0,T + ω̃uT ‖ud − ud�‖0,T .

Hence, we end up with the computable upper bound

|J(y, u) − J�(y�, u�)| �
∑

T∈T�(Ω)

(ω̂yTρ
y
T + ω̂pTρ

p
T + μ̄T + oscT ) . (33)
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5 Numerical Results

The marking strategy for selection of elements of the triangulation for refine-
ment is based on a bulk criterion (cf. [11,30]) where we select a set M� ⊂ T�(Ω)
of elements such that with respect to a given constant 0 < Θ < 1 there holds

Θ
∑

T∈T�(Ω)

(ω̂yTρ
y
T + ω̂pTρ

p
T + μ̄T + oscT ) ≤

∑
T∈M

(ω̂yTρ
y
T + ω̂pTρ

p
T + μ̄T + oscT ) .

The bulk criterion is realized by a greedy algorithm (cf., e.g. [23]). The refine-
ment is realized by newest vertex bisection.

We conclude this section with the results for an example which was chosen
as a test case in [28]. The data of the problem are as follows:

Ω := B(0, 1), ΓD = ∅, α := 1.0, c = 1.0,

yd(r) := 4 +
1
π

− 1
4π
r2 +

1
2π

ln(r),

ud(r) := 4 +
1
4π
r2 − 1

2π
ln(r), ψ(r) := r + 4.

The optimal solution in the pure state constrained case is given by

y(r) ≡ 4, p(r) =
1
4π
r2 − 1

2π
ln(r),

u(r) ≡ 4, σ = δ0.

As regularization parameter ε for the Lavrentiev regularization we have chosen
ε = 10−4. The finite element discretized optimal control problem has been
solved by the Moreau–Yosida based active set strategy from [6]. Moreover,
Θ = 0.4 has been used for the bulk criterion in the step MARK of the adaptive
loop.

Figure 1 shows the computed optimal state (left) and optimal control
(right). We note that the peaks at the origin are numerical artefacts due

4
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Fig. 1. Optimal state (left) and optimal control (right).
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Fig. 2. Optimal adjoint state (left) and adaptively refined triangulation after 14
refinement steps of the adaptive loop (right).
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Fig. 3. Decrease of the quantity of interest δ� := |J(y, u)− J�(y�, u�)| as a function
of the total number of degrees of freedom for adaptive and uniform refinement.

to the singularity of the optimal adjoint state in the origin (see Figure 2
(left)). Figure 2 (right) displays the computed adaptively refined mesh after
14 refinement steps of the adaptive loop. Finally, Figure 3 shows the decrease
of the error δ� := |J(y, u)− J�(y�, u�)| measured in the quantity of interest as
a function of the total number of degrees of freedom on a logarithmic scale
both for adaptive and uniform refinement.
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