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Summary. In this paper a review by the research work of the authors on the
stochastic modelling of interacting individuals is presented. Both cases of direct and
indirect interaction (via underlying fields) are considered. Due to the strong cou-
pling among individuals, the evolution of each individual is governed by a stochas-
tic equation whose parameters are themselves stochastic; as a consequence we are
dealing with a doubly stochastic system, and this is a source of complexity which
may tremendously increase as the number of individuals becomes extremely large.
A possible way to reduce complexity is to apply suitable laws of large numbers, at a
mesoscale, in order to obtain a mean field governed now by deterministic PDEs. In
this way we may obtain an approximation of the driving fields which are determinis-
tic at the macroscale, thus driving, at the microscale, a simply stochastic evolution
for the individuals. Such models are called hybrid models.

Key words: Stochastic differential equations, measure-valued processes, empirical
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1 Introduction

In biology and medicine it is possible to observe a wide spectrum of formation
of patterns and clustering, usually due to self-organization phenomena. This
may happen at any scale; from the cellular scale of embryonic tissue formation,
wound healing or tumor growth, and angiogenesis, the microscopic scale of life
cycles of bacteria or social amoebae, to the larger scale of animal grouping.
Patterns are usually explained in terms of forces, external and/or internal,
acting upon individuals. In this way formation of aggregating networks are
shown as a consequence of collective behavior. Evidence of stochasticity are
often shown. A fruitful approach to the mathematical description of such
phenomena, suggested since long by various authors [10, 14, 19, 23, 28, 29], is
based on the so called individual based models, i.e. the “movement” of each
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individual embedded in the total population is described. This is known as
Lagrangian approach, i.e. individuals are followed in their motion. Possible
randomness may be included in the motion, so that the variation in time
of the (random) location of the individuals in a group composed of N(t)
individuals at time t ≥ 0, Xk

N (t) ∈ R
d, k = 1, . . . , N(t), is described by a

family of stochastic equations. On the other hand, particles are subject to
specific forces of interaction which are responsible of the reaction term.

A classical widespread approach has been given in terms of PDEs [20,
24, 25]. This is due, above all, to the wider spread knowledge on nonlinear
PDEs; so grouping behavior has been described by relevant quantities such as
scalar or vector fields. Such kind of models are often called Eulerian models,
since they describe the evolution of population densities; they are based on
continuum equations, typically (deterministic) partial differential equations of
the advection–reaction–diffusion type

ρt + ∇ · (vρ) = ∇ · (D∇ρ) + ν(ρ), (1)

where ρ is the population density and v is the velocity field, and ν(ρ) is a
possible additive reaction term which may include birth and death processes.
The advection term may describe the interaction mechanisms among individ-
uals (via the velocity v), while the non-convective (diffusive) flux takes into
account the spatial spread of the population.

In conclusion, the two different approaches (Lagrangian and Eulerian) de-
scribe the system at different scales: the finer scale description is based on
the (stochastic) behavior of individuals (microscale), and the larger scale
description is based on the (continuum) behavior of population densities
(macroscale). The central problem is to determine how information is trans-
ferred across scales; one of the aims of the modelling is to catch the main fea-
tures of the interaction at the scale of single individuals that are responsible,
at a larger scale, for a more complex behavior that leads to the formation of
patterns [10]. Often a multiple scale approach is preferable: the global behav-
ior of the population is described, at the macroscopic scale, by a continuum
density whose evolution in terms of integro-differential equations is derived
by a limiting process from the empirical distribution associated with a large
number of particles. From the mathematical point of view this means to per-
form some kind of law of large numbers, in such a way that one may identify
a possibly regular measure of the population distribution, having a density
which satisfies a PDE similar to the equation (1).

This is a way to reduce the complexity of Lagrangian models. Indeed, the
evolution equation of each individual is usually a stochastic equation whose
parameters are themselves stochastic. This is a source of complexity which
may tremendously increase as the number of individuals becomes extremely
large, as it may happen in many cases of real interest. Applying suitable laws
of large numbers at the mesoscale, we obtain an approximation of the driving
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fields which are deterministic at the macroscale. They drive, at the microscale,
a simply stochastic evolution for the individuals. Here we consider a review
of the investigation programme on the subject, that the authors have been
carrying out during the last decade [1, 2, 5, 6, 21–23].

In Section 2 we discuss the mathematical modelling of the stochastic inter-
acting population when the number of individuals is finite, both in the cases
of direct and indirect interaction. We consider both Lagrangian and Eulerian
(discrete) descriptions. In Sections 3 and 4, we look at two specific cases:
a model for stochastic aggregating–repelling individuals (direct interaction),
and a model for a branching and growth of vessels in tumor induced angio-
genesis, an example of stochastic fiber processes, coupled with the continuum
underlying field of a chemoattractor released by the tumor (indirect interac-
tion). In Section 5 we study the derivation of the corresponding hybrid models,
for the two working examples. In the first one we recall the mathematically
rigorous derivation of the limit model as the number of individuals increases
to infinity, via a law of large numbers; in the second example, we handle a
heuristic derivation of an hybrid model. Finally in Section 6, we address the
problem of the long time behavior of a stochastic interacting particle model,
as the number of particle N is still finite. In particular, we consider the case
of example one, discussed previously.

2 Individuals, Interactions and Evolution

We consider a population composed, at time t ≥ 0, by a (possibly random)
number N(t) of individuals. Let the random variable Xk

N (t) represent the
random state in R

d, e.g., the spatial location, of the kth individual, for
k = 1, . . . , N(t). From a Lagrangian point of view, the state of the sys-
tem of N(t) particles may be described as a family of N(t) stochastic pro-
cesses {Xk

N(t)}t∈R+ , k = 1, . . . , N(t), defined on a common probability space
(Ω,F , P ) and valued in (Rd,BRd), where BRd is the usual Borel σ-algebra gen-
erated by intervals. A convenient description of the state of the kth individual
may achieved via a random Dirac-measure εXk

N (t), defined as follows:

εXk
N (t)(B) =

{
1 if Xk

N (t) ∈ B
0 if Xk

N (t) /∈ B
∀B ∈ R

d. (2)

It is a random element of MP (Rd), the space of probability measures on R
d;

for any sufficiently smooth function f : R
d → R

∫
Rd

f(y)εXk
N (t)(dy) = f

(
Xk
N (t)

)

is a real valued random variable.
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For any t ≥ 0, given the particle locations Xk
N (t), k = 1, . . . , N(t), an

Eulerian (discrete) description of the system can be given in terms of the
random probability measure on R

d

XN (t) =
1

N(t)

N(t)∑
k=1

εXk
N (t) ∈ MP (Rd). (3)

This measure may be regarded as the empirical distribution of the location of
a single particle of the system in R

d at time t ∈ R+. Note that the number
of particles may be either constant over time, say N(t) = N , for all t ∈ R+,
or a dynamical variable itself, described, e.g., by a suitable birth and death
process.

A key question concerns the modelling of the interaction; interaction
among particles may be direct or indirect. In the first case individuals inter-
act directly, i.e. the force exerted on each of them depends on the distribution
of the individuals in the population. In the case of indirect interaction the
force exerted on each particle depends on an underlying field whose evolu-
tion depends on the distribution of the entire population; as a consequence
the dependence of the evolution of the spatial distribution of a single individ-
ual upon the spatial distribution of the whole population is mediated by the
underlying field.

2.1 Direct Interaction and System Evolution

For sake of simplicity, let N(t) = N, independent of t ∈ R+. Generally speak-
ing, in this first case we may describe the evolution of the system by a system
of N random equations

dXk
N (t) = hN (X1

N (t), . . . , XN
N (t), Bt, t) dt, k = 1, 2, . . . , N, (4)

where hN : (Rd)n × R
d × R+ → R is a suitable function modelling the in-

teraction. The random perturbing function Bt may model a random forcing
factor.

If we consider pairwise interaction, the interaction between a couple of
individuals is mathematically modelled by a reference potential K1, depend-
ing on the distance between the two particles. In this way the range of the
potential kernel represents the spatial region of influence of the interaction.

A good choice is K1 = W1 ∗ W1, a kernel given by the convolution of
a sufficiently regular probability density W1 with itself; we assume that the
interaction of two particles, out of N , located in x and y, respectively, is
modelled by

1
N
KN(x − y), where KN(z) = NβK1(Nβ/dz), (5)

which expresses the rescaling of K1 with respect to the total member N of
particles, in terms of a scaling coefficient β ∈ [0, 1]. Particles X i

N and Xj
N
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interact if the supports of the associated smoothed measuresWN∗εXl
N

, l = i, j,
overlap. As a consequence, if we denote by WN (z) = NβW1(Nβ/dz), the
interaction of the single k-particle, out of N , located at Xk

N(t), with all the
others in the population is given by

J
(
X1
N(t), . . . , XN

N (t)
)
(Xk

N (t)) =
1
N

∑
j

∫
Rd

WN (Xk
N − y)WN (y −Xj

N)dy

= (WN ∗WN ∗XN(t))(Xk
N (t))

=
N∑
i=1

1
N
KN

(
X i
N (t) −Xk

N (t)
)

= (KN ∗XN (t))(Xk
N (t))

=: I [XN(t)] (Xk
N (t)). (6)

In many cases a convenient way to model randomness is to consider an
independent additive noise, acting on each particle; so that a possible model
for (4) is

dXk
N (t) =

[
fkN (t) + I [XN (t)] (Xk

N (t))
]
dt+ σdW k(t), k = 1, . . . , N ; (7)

the term given in (6) describes any interaction of the kth particle with other
particles in the system, the function fkN : R+ → R describes the individual
dynamics which may depend only on time or on the state of the particle itself,
and, finally, {W k}, k = 1, . . . N is a family of independent standard Wiener
processes. In this review the diffusion coefficient σ is kept constant.

The system (7) offers a Lagrangian description of the stochastic model;
from the fact that for any real function g on R

d × R+,

∫
Rd

g(x, t)XN (t)(dx) =
1
N

N∑
k=1

g(Xk
N (t), t).

Itô’s formula leads to the Eulerian (discrete) description via an evolu-
tion equation for the empirical measure XN (t) [4, 6, 23]; indeed, for any
g ∈ C2,1

b (Rd × R+),

∫
Rd

g(x, t)XN (t)(dx) =
∫

Rd

g(x, 0)XN (0)(dx) +
∫ t

0

Op1 (XN(s), g(·, s)) ds

+MN [X,W ] (t), (8)

where

MN [X,W ] (t) =
∫ t

0

σ

2N

N∑
k=1

∇g(Xk(s), s)dW k(s) (9)



64 V. Capasso and D. Morale

is a zero mean martingale, so that, by the Doob inequality [4],

E

[
sup
t≤T

|MN [X,W ] (t)|
]2

≤ E

[
sup
t≤T

|MN [X,W ] (t)|2
]

≤ 4
4σ2

N2

N∑
k=1

E

[∫ T

0

|∇g(Xk
N (s), s)|2ds

]

≤ 4σ2‖∇g‖2
∞T

N
. (10)

2.2 Indirect Interaction and System Evolution

As said above, in the case of indirect interaction the force exerted on each par-
ticle depends on an external field. As an example of self-organization mediated
by a system of underlying fields, we may consider a process of individual or-
ganization that occurs at a microscopic scale, while diffusion of an underlying
field occurs at a macroscopic scale. The dynamics of the field depends on the
individuals themselves (for example, a degradation phenomenon may be due
to an interaction with individuals at relevant spatial locations). Let ZkN (t)
be the state of the kth individual out of N(t), at time t. Again, note that
N(t) may be itself a stochastic process. A general model might appear of the
following form: for any t ≥ 0

dZkN (t) = F [C(·, t)] (ZkN (t))dt+ σ dW k(t), k = 1, . . . , N(t), (11)
∂

∂t
C(x, t) = Op2(C(·, t))(x) + Ĩ[ZN(t)](x), x ∈ R

d. (12)

In this case the evolution of an individual state ZkN (t) is driven by an
underlying field C(x, t), via the operator F [C(·, t)] depending on the field
and acting on each individual; on the other hand, the evolution equation of
the field C(x, t) depends itself upon the structure of the system of individuals
by means of Ĩ[ZN(t)](x), an operator which depends on the empirical measure

ZN (t) =
1

N(t)

N(t)∑
k=1

εZk
N (t)

of individuals, acting at a spatial location x. For simplicity, also here we
consider a diffusion coefficient σ in the SDEs (11) constant in time and space.
Note that also the evolution of the stochastic process {N(t)}t∈R+ may depend
upon the underlying field C(t, x).

Again, Itô’s formula may lead to an Eulerian (discrete) description of the
spatial structure of the population ZN (t) coupled with the equation (12) for
C(x, t), i.e. for any g ∈ C2,1

b (Rd × R+),
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∫
Rd

g(x, t)ZN (t)(dx) =
∫

Rd

g(x, 0)ZN (0)(dx)

+
∫ t

0

Op3 (ZN(s), C(x, t), g(·, s)) ds+MN [Z,W ] (t). (13)

In the next two sections we provide two examples of self organization
phenomena, in which the dynamics depends upon direct interaction among
individuals, in the first case, and upon indirect interaction in the second case.

3 Direct Interaction: an Aggregation–Repulsion Model

As an example of direct interaction we consider a stochastic system of
N(t) ≡ N individuals, subject to an advection term and a stochastic indi-
vidual component. Here we specify the advection components on the basis
of possible assumptions inducing self-organization of biological populations.
“Social” forces are responsible for interaction of each individual with other
individuals in the population within suitable neighborhoods. We consider
both aggregating and repelling forces, which compete, but act at different
scales. They are modelled by two regular kernels G,KN : R

d → R, with
G,KN ∈ C2

b (R
d,R+), as given by (6).

In the case of aggregation the parameter β in (6) is equal to zero,
so that the aggregating force exerted on the kth individual is given by
(∇G ∗ XN (t))Xk

N (t) (McKean–Vlasov interaction); in the case of repulsion,
the repelling force is given by (∇KN ∗ XN (t))Xk

N (t), with β ∈ (0, 1), where
KN and the empirical measure XN are given by (5) and (3) (moderate inter-
action) [23, 26, 27]. It is clear how the choice of β may determine the range
and the strength of the influence of neighboring particles; indeed, any par-
ticle interacts (repelling) with O(N1−β) other particles in a volume of order
O(N−β).

Additionally, the movement of each individual particle might be driven
by an external information coming from the environment, expressed via a
suitable potential U : R

d → R. The potential

U ∈ C2
b (R

d,R+) (14)

is taken as a smooth non-negative even function; we assume that it satisfies
the following condition [33–35]: there exist constants M0 ≥ 0 and r > 0 such
that (

∇U(x),
x

|x|

)
≤ − r

|x| , |x| ≥M0, (15)

where (·, ·) denotes the usual scalar product in R
d.

Again the stochastic component is modelled by a family of independent
standard Wiener processes {W k, k = 1, . . .}. These systems have been already
discussed by the authors in several papers [1, 2, 6, 21–23].
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Based on these modelling assumptions, we consider the following system
of SDEs:

dXk
N (t) =

[
γ1∇U(Xk

N (t)) + γ2 (∇ (G−KN) ∗XN) (Xk
N (t))

]
dt+ σdW k(t),

k = 1, . . . , N, (16)

where γ1, γ2, σ ∈ R+. In the case γ1 = 0, the system is a purely diffusive
interacting particle system.

By standard arguments [4], we can prove that the system admits a unique
solution X(t) = (X1

N (t), · · · , XN
N (t)) for all t ∈ [0, T ], with almost surely

continuous trajectories [6]. From the system (16), Itô’s formula applied to a
function f ∈ C2,1

b (Rd×R+) ofXk
N(t), for any k = 1, . . . , N , gives the evolution

equation of the empirical measure (3) as follows:
∫

Rd

f(x, 0)XN (s)(dx) =
∫

Rd

f(x, 0)XN (0)(dx)
∫ t

0

∫
Rd

([γ1∇U + γ2 (∇ (G−KN) ∗XN )] (x)

∇f(x, s))XN (s)(dx)ds

+
∫ t

0

∫
Rd

(
σ2

2
�f(x, s) +

∂

∂s
f(x, s)

)
XN (s)(dx)ds

+ σ
1
N

∫ t

0

N∑
k=1

∇f
(
Xk
N (s), s

)
dW k(s), (17)

where again the last term in (17) is a zero mean martingale with respect to
the natural filtration of the process {XN(t), t ∈ R+}.

In conclusion in the example presented here, the Lagrangian description of
the system (7), discussed in the previous section, has the form of the system
(16), while its Eulerian (discrete) description is given by the system (17). In
Figure 1 simulation results for the same initial condition, and for different
drifts, are shown. For more simulation results and comparison with experi-
mental data, the interested reader may refer to [1, 22, 23].

4 Interaction via Underlying Fields:
A Birth and Growth Model

An interesting example of formation of patterns may be found in the process of
tumor growth and in particular in angiogenesis. Tumor-induced angiogenesis
is believed to occur when normal tissue vasculature is no longer able to support
growth of an avascular tumor. At this stage the tumor cells, lacking nutrients
and oxygen, become hypoxic. This is assumed to trigger cellular release of
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Fig. 1. Configuration of 100 particles for parameters values σ = 0.02, β = 0.5: (up
left) T = 0, (up right) T = 500, γ1 = 0, γ2 = 1, (down left) T = 1000, γ1 = γ2 = 1,
∇U(x) = x/(1 + |x|), (down right) T = 100, γ1 = γ2 = 1, ∇U(x) = |x|2.

tumor angiogenic factors, TAF, which start to diffuse into the surrounding
tissue and approach endothelial cells (ECs) of nearby blood vessels [13]. ECs
subsequently respond to the TAF concentration gradients by forming sprouts,
dividing and migrating towards the tumor. So, at an individual level, cells in-
teract and perform a branching process coupled with elongation, under the
stimulus of a chemical field produced by a tumor. In this way formation of ag-
gregating networks (vessels) are shown as a consequence of collective behavior.

The initiation of sprouting from preexisting parental vessels is not consid-
ered here; in order to avoid further mathematical technicalities, we assume
a given number N0 of initial capillary sprouts; we refer to literature [16] for
details on this topic. Let N(t) be the number of tips at time t, and X i(t) ∈ R

d

the location of the tip of the ith vessel at time t. Furthermore, let us denote
by Ti the branching time of the ith tip, i.e. the random time when the ith tip
branches from an existing vessel. We model sprout extension by tracking the
trajectory of individual capillary tips. The movement (extension) of the tips
follows a Langevin model; at any t > T i and for any k ∈ {1, . . . , N(t)} we
have

dX i(t) = vi(t)(1 − γIX(t)(X i(t))dt,

dvi(t) =
(
−kvi(t) + F

(
C(t,X i(t))

))
dt+ σdW i(t),

(18)
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where vi(t) is the velocity of the ith tip at time t. According to a typical
chemotaxis, velocity vi(t) is driven by a function F of the underlying field C.
An example is F (C(t,X i(t))) = ∇C(t,X i(t), so that vessels follow the in-
creasing density of the chemoattractor; the advection term includes the typical
inertial component −kvi(t). A family of independent Wiener processes W i(t)
model stochasticity. Finally, the network of endothelial cells is described by

X(t) =
N(t)⋃
i=1

{X i(s), Ti ≤ s ≤ t},

the union of the trajectories of the tips. In the equation (18) the parameter
γ may assume only the 0 and 1 values; γ = 0 means that no impingement is
considered; otherwise, for γ = 1 the phenomenon of anastomosis is taken into
account (see [7] and references therein, for further information).

The branching process ΦN (ds, dx) is modelled as a marked counting pro-
cess with stochastic intensity

α(t, x) = αh(C(t, x))
N(t−)∑
i=1

δXi(t)(x), (19)

where h ∈ Cb(Rd) is a non negative function. The equation (19) means that
the probability that branching occurs exactly at the kth tip is given by

prob
(
Φ(]t, t+ dt] ×Xk(t)) | Ft−

)
=

α(t,Xk(t))∫
Rd α(t, x)dx

dt.

The counting process N(t) is given by N(t) = ΦN (]−∞, t] ,Rd), so that the
probability of having a new tip during the time interval ]t, t+ dt] is

prob (N(t+ dt) −N(t) = 1 | Ft−) =
N(t−)∑
i=1

α(t,X i(t))dt;

when a tip located in x branches, the initial value of the state of the new tip
is taken as (XN(t)+1, vN(t)+1) = (x, v0), where v0 is a non random velocity.

The chemotactic field C(t, x) diffuses and degradates; the consumption
is proportional to the extension velocities vi, i = 1, . . . , N(t). So, for any
(t, x) ∈ R+ × R

d,

∂

∂t
C(t, x) = c1δA(x)+d1�C(t, x)− ηC(t, x)

1
N

N(t)∑
i=1

(vi(t)δXi(t) ∗Vε)(x). (20)

We have considered a mollified version of the relevant random distribu-
tions, by means of a convolution with the kernel Vε(x), a smooth function
with compact support of order ε. From a mathematical point of view, the use
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Fig. 2. A vessel network (on the left) interacting with a degrading TAF field (on
the right) (d1 = 0, γ = 0).

of mollifiers reduces analytical complexity; from a modelling point of view this
might correspond to a nonlocal reaction with the relevant underlying fields.
Parameters c1, d1, η ∈ R

+ in the equation (20) represent the rate of produc-
tion of a source located in a region A ⊂ R

d, modelling, e.g., a tumor mass,
the diffusivity and the rate of consumption, respectively. We have denoted by
δXi(t)(x) the random distribution (Dirac density) localized at the tip X i(t),
for i = 1, . . . , N(t). Note that the equation (20) is a random partial differen-
tial equations, since the degradation term depends on the stochastic processes
{(X i(t), vi(t))}t, for any i = 1, . . . , N(t). The stochasticity of the underlying
field leads to the stochasticity of the kinetic parameters of birth and growth of
vessels. Figure 2 shows a simulation of the network coupled with a degradating
field (for technical simplicity we have taken d1 = 0, γ = 0).

To this process we may associate two fundamental random spatial mea-
sures, describing the network at time t; given a suitable scale parameter
N , QN , the empirical measure associated with the processes (Xk(t), vk(t)),
k = 1, . . . , N(t), is given by

QN (t) =
1
N

N(t)∑
i=1

ε(Xk(t),vk(t)), (21)

while, VN (t), the empirical spatial distribution of velocities, is given by

VN (t) =
1
N

N(t)∑
i=1

vk(t)εXk(t) =
∫
·×Rd

v QN (t)(d(x, v)).

We may write the equation (20) in the following form:

∂

∂t
C(t, x) = c1δA(x) + d1�C(t, x) − ηC(t, x)(VN (t) ∗ Vε)(x). (22)
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Given a smooth function g ∈ Cb(Rd × R
d), by Itô’s formula we obtain an

evolution equation for the random measure QN [7]
∫
B

g(x, v)QN (t)d(x, v) =
∫
B

g(x, v)QN (0)d(x, v)

+
∫ t

0

∫
B

[
∇xg(x, v)v + g(x, v)α1(s, x)δv0 (v)

−∇vg(x, v) [kv − F (C(t, x))]

+
σ2

2
Δvg(x, v)

]
QN (t)(d(x, v))ds + M̃N(t), (23)

where the last term

M̃N(t) =
∫ t

0

∫
Rn

[
ΦN (ds, dx) −Nα(s, x)QN (t)(dx × R

d) ds
]

+
∫ t

0

σ

2N

N(t)∑
k=1

∇vg((Xk(t), vk(t)))dW k(t)

is a zero mean martingale, such that again by the Doob inequality, for N
sufficiently large

E

[
sup
t≤T

|M̃N (t)|
]2

≤ C
TN(t)
N2

(‖g‖2
2 + ‖∇g‖2

2) < C
T

N
. (24)

In conclusion in the example presented here, the Lagrangian description
of the system (11)–(12), discussed in the previous section, has the form of the
system (18), (19) and (20), while the Eulerian discrete description (12)–(13)
is given by the system (22)–(23).

5 Hybrid Models: Large Population Behavior

Let us place our attention on the following facts. In the detailed models, in
both examples, the evolution equation of each individual (either an individual
in a population, or a tip in a vessel network) is a stochastic equation whose
parameters are themselves stochastic; as a consequence we are dealing with
a doubly stochastic system. A major difficulty, both analytical and computa-
tional, derives from the fact that, indeed, the parameters are {Ft−}-stochastic,
i.e. their value at time t > 0 depends upon the actual history Ft of the whole
system up to time t−.

Let us remind the main features of the discrete systems, as already dis-
cussed in Section 2.
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Direct Interaction

In this case each individual k, out of N , satisfies a system of SDEs of the form

dXk
N (t) = Op [XN(t)] (Xk

N (t))dt+ σdW k(t), k = 1, . . . , N, (25)

where

XN(t) =
1
N

N∑
j=1

εXj
N (t)

is the empirical measure at time t, and Op is a suitable operator which ex-
presses the specific model of interaction.

Hence the analysis and the computation of the above system requires the
knowledge of the evolution of all individuals up to time t; clearly XN(t) is an
{Ft}-stochastic quantity.

Indirect Interaction

In this case the individual dynamics is described by a system of the form

dZkN (t) = Op [C(·, t)] (ZkN (t))dt + σ dW k(t), k = 1, . . . , N(t), (26)

whose kinetic parameters depend upon a biochemical underlying field C(x, t)
which obeys to a random evolution equation of the form

∂

∂t
C(x, t) = Op1[C(·, t)](x) +Op2 [ZN(t), C(·, t)] (x), (27)

where ZN (t) is the empirical measure of the states ZkN(t), and Op1 and Op2
are suitable operators which express the specific model of spatial spread and
the interaction with the field produced by the whole system of individuals,
respectively.

Once again, the analysis and the computation of the above system requires
the knowledge of the evolution of all individuals up to time t; clearly ZN (t)
is an {Ft−}-stochastic quantity (in this case also the evolution of N(t) is
involved).

The strong coupling with the field (produced by the individuals themselves,
in the first case, and external, in the second case) is a source of complexity
which may tremendously increase as the number of individuals becomes ex-
tremely large, as it may happen in many cases of real interest. Under these
circumstances, a possible way to reduce complexity, which has been suggested
by the authors and by a large literature, is to apply suitable laws of large num-
bers at the mesoscale, i.e. in a suitable neighborhood of any relevant point
x ∈ R

d, such that, at that scale we may approximate, in the first case, XN (t)
by a deterministic measureX(t), possibly having a density ρ(x, t) with respect
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to the usual Lebesgue measure; in the second case we may approximate ZN (t)
by a deterministic measure, possibly having a density w(x, t) with respect to
the usual Lebesgue measure. The relevant densities ρ(x, t), and w(x, t) will
satisfy suitable deterministic evolution equations. In this way we obtain an
approximation of the driving fields which are deterministic at the macroscale,
which now drive, at the microscale, a simply stochastic evolution for the in-
dividuals. More specifically, a typical individual k in the first model (25) will
satisfy the following SDE:

dY k(t) = Op [ρ(·, t)] (Y k(t))dt+ σdW k(t), k = 1, . . . , N, (28)

coupled with a deterministic equation for ρ(x, t). For the second model (26)–
(27), a typical individual k will satisfy the following SDE:

dY k(t) = Op
[
C̃(·, t)

]
(Y k(t))dt + σ dW k(t), k = 1, . . . , N(t), (29)

where the evolution equation for the underlying field has become

∂

∂t
C̃(x, t) = Op1[C̃(·, t)](x) +Op2

[
w(·, t), C̃(·, t)

]
(x), (30)

coupled with a deterministic equation for w(x, t).
A more detailed analysis follows for the two models described in Sections

3 and 4. Though, for the aggregation–repulsion model we have been able to
carry out a detailed rigorous analysis, while for tumor-driven angiogenesis
only an heuristic derivation has been obtained, which leads to a system of
evolution equations which is compatible with existing deterministic models
already available in literature [30–32].

We wish to stress that anyhow substituting mean densities of individu-
als in the first model, or mean densities of tips in the second model, to the
corresponding stochastic quantities, leads to an acceptable coefficient of vari-
ation (percentage error) only when a law of large numbers can be applied, i.e.
whenever the relevant numbers per unit volume are sufficiently large; other-
wise stochasticity cannot be avoided, and, in addition, to mean values, the
mathematical analysis and/or simulations should provide confidence bands
for all quantities of interest. Indeed, numerical simulations carried out for the
fully stochastic model show that local coefficients of variation are, indeed,
much smaller in regions of largely crowded populations (either individuals or
vessels) [3].

5.1 The Aggregation–Repulsion Model

Following [6], we show how to derive rigorously an hybrid model, as described
at the beginning of this section in the case of the aggregation–repulsion model
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described in Section 3. For details the interested reader may refer to [6]. First
note that from (17) we get an averaged equation

E [〈XN (t), f(·, t)〉] = E [〈XN(0), f(·, 0)〉]

+ E

[∫ t

0

〈XN(s), [γ1∇U + γ2 (∇ (G−KN) ∗XN )] (·)∇f(·, s)〉 ds

+
∫ t

0

〈
XN (s),

σ2

2
�f(·, s) +

∂

∂s
f(·, s)

〉
ds

]
. (31)

Furthermore, thanks to the inequality (10), the quadratic variation of the
martingale term vanishes, in a finite time interval [0, T ]. So we might expect
a deterministic behavior of the system in the limit.

Let us sketch the mathematically rigorous proof of this behavior in the
case of large populations.

A Relative Compactness Result

We assume some regularity conditions for the initial empirical measureXN (0),

sup
N∈N

E

[∫
Rd

|x|XN (0)(dx)
]
<∞, (32)

sup
N∈N

E

[∫
Rd

|hN (x, 0)|2dx
]

= sup
N∈N

E
[
||hN (·, 0)||22

]
<∞, (33)

where
hN(x, t) = (WN ∗XN (t))(x), (34)

is a mollified measure.
Furthermore, let us impose the following restriction on β in the definition

of the scaled kernel (5), β ∈ (0, d/(d+ 2)).
We have proven [6] the tightness and then the boundedness of small

variations of the process XN , in the bounded Lipschitz metric [6]. This
leads, by means of the characterization of relative compactness by Ethier
and Kurtz [11], to the following result on the sequence of laws L(XN ) of
XN = {XN (t), t ∈ R+, N ∈ N}:

Theorem 1 ([6]). Under the hypotheses listed above and in Section 3, the se-
quence {L(XN )}N∈N is relatively compact in the spaceMP (C([0, T ],MP(Rd))).

This is the main result needed for the asymptotics of the evolution equa-
tion of the measure-valued process {XN (t), t ∈ R+}. Indeed, Theorem 1 im-
plies the existence of a subsequence Nk ⊂ N, N1 < N2 < . . ., such that the
sequence {L(XNk

)}k∈N converges in MP(C([0, T ],MP(Rd))) to some limit
L(X), which is the distribution of some process X = {X(t), t ∈ [0, T ]},
with trajectories in C([0, T ],MP(Rd)). We discuss the uniqueness of the limit
later on. By now we assume uniqueness, so that we may take {Nk} = N;
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by Skorokhod theorem [4] we may assert that, corresponding to the possible
unique limit law, we can also have an almost sure convergence, i.e.

lim
N→∞

sup
t≤T

dBL(XN (t), X(t)) = 0 P − a.s. (35)

Regularity Properties of the Limit Measure

It is possible to show that there exists a positive (random) function h defined
on [0, T ] × R

d such that

lim
N→∞

E

[∫ T

0

∫
Rd

|hN (x, t) − h(x, t)|2dxdt
]

= 0. (36)

The equation (36) shows that the limit measure X ∈ MP ([0, T ] × R
d) has

P -a.s. a density
h ∈ L2

(
[0, T ] × R

d
)

(37)

withrespecttotheLebesguemeasureon[0, T ]×R
d, i.e. foranyf ∈ Cb([0, T ]×R

d)

∫ T

0

∫
Rd

f(t, x)X(dx, dt) =
∫ T

0

∫
Rd

f(t, x)h(t, x)(dx, dt). (38)

By now, we do not know neither whether the measure X(t) has a density
for any fixed t ∈ [0, T ] nor that the density is deterministic. The next step is
the identification of the limit by acquiring information on the limit dynamics.
We have proven the following:

Proposition 1. Let us suppose that a law of large numbers holds at initial
time

lim
N→∞

L(XN (0)) = δμ0 in MP(MP(Rd)), (39)

where μ0 has a density p0 in L2(Rd). Then, almost surely, for any f ∈
C2,1
b (Rd,R+), 0 ≤ t ≤ T ,

〈X(t), f(·, t)〉 = 〈μ0, f(·, 0)〉 +
∫ t

0

〈h(·, s), 1
2
σ2Δf(·, s) +

∂

∂s
f(·, s)

+ [(∇Ga ∗ h(·, s))(·) + ∇U(·) −∇h(·, s)] · ∇f(·, s)〉ds. (40)

This means that any limit measure X ∈ C([0, T ],MP (Rd)) is a solution of
the equation (40), with h ∈ L2

(
[0, T ] × R

d
)
, satisfying the relation (38).

So we have proven that for any t ∈ [0, T ], the measure X(t) is absolutely
continuous with respect to the Lebesgue measure, so that it admits a density
for each t. We prove it by showing that the Fourier transform of the measure
X(t) is in L2 for any t ∈ [0, T ], so that a density exists and the latter is also in
L2(Rd) and we prove that it is also L2 uniformly bounded. So we have shown
the following result:
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Theorem 2. Under the hypotheses of Theorem 1, let us suppose that a law of
large numbers applies at initial time

lim
N→∞

L(XN (0)) = δμ0 in MP(MP(Rd)), (41)

where μ0 has a density p0 in L2(Rd) ∩ C2
b (R

d). Then, almost surely, the se-
quence X converges in law to a deterministic measure X. For any t ∈ [0, T ]
the measure XN (t) has a density h(·, t) such that, for any f ∈ C2,1

b (Rd,R+),
0 ≤ t ≤ T ,

〈h(·, t), f(·, t)〉 = 〈μ0, f(·, 0)〉 +
∫ t

0

〈h(·, s), 1
2
σ2Δf(·, s) +

∂

∂s
f(·, s)

+ [(∇Ga ∗ h(·, s))(·) + ∇U(·) −∇h(·, s)] · ∇f(·, s)〉ds. (42)

One can easily see that the equation (42) is the weak form of the following
partial differential equation:

∂

∂t
ρ(x, t) =

σ2

2
�ρ(x, t) + ∇ · (ρ(x, t)∇U(x))

+ ∇ · [ρ(x, t)∇(ρ(x, t) −G ∗ ρ(·, t))(x)], x ∈ R
d, t ≥ 0, (43)

ρ(x, 0) = p0(x), x ∈ R
d.

Regularity Properties of the Limit Measure

The uniqueness of the limit h derives from the uniqueness of the weak solution
of the viscous equation (43), which can be achieved by classical arguments [12].

Hybrid Model

The equation (43) describes a mean field due to the large number of individ-
uals. As far as the individual dynamics is concerned, for any k, we have that
the typical particle Xk(t) ∼ Y k(t), follows the SDE:

dY k(t) = −
[
∇U(Y k(t)) + ∇Ga ∗ ρ(·, t)(Y k(t)) −∇ρ(Y k(t))

−∇U(Y k(t))
]
dt+ σdW k(t),

subject to the initial condition Y k(0) = Xk(0). While the Brownian stochas-
ticity of the movement of each particle is preserved, the drift is now the same
for each particle and depends on the mean field ρ in the equation (43).

5.2 The Branching and Growth Process

As discussed in [7], in the case of the branching and growth process described
in Section 4, we may only give an heuristic convergence result. Starting from
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the system (23), if, formally, we take QN (t)(d(x, v)) → Q∞(t)(d(x, v)) =
p(t, x, v)dxdv, then
∫
B

g(x, v)p(t, x, v)dxdv =
∫ t

0

∫
B

p(s, x, v)ds dxdv
[
σ2

2
Δvg(x, v)

+ ∇xg(x, v)v + g(x, v)α1(s, x)δ{v0}(v)

−∇vg(x, v)
[
kv − F

(
C̃(t, x)

)]]
(44)

∂

∂t
C̃(t, x) = c1δA(x) + d1�C̃(t, x) − ηC̃(t, x )

∫
Rd

p(t, x, v)dv.

(45)

The equation (44) may be seen as the weak form of the following partial
differential equation for the density p(t, x, v):

∂

∂t
p(t, x, v) = −v · ∇xp(t, x, v) + k∇v · (vp(t, x, v)) + α1(t, x)p(t, x, v0)

−∇v ·
[
F
(
C̃(t, x)

)
p(t, x, v)

]
+
σ2

2
Δvp(t, x, v). (46)

The individual processes (Y i(t), vi(t))t obey to the following stochastic
system:

dY i(t) = vi(t)dt,

dvi(t) =
(
−kvi(t) + F (C̃(t, Y i(t)))

)
dt+ σdW i(t),

(47)

coupled with a branching process with intensity

α(t, x) = αh(C̃(t, x))
N(t−)∑
i=1

δY i(t)(x). (48)

Note that both (47) and (48) depend on the mean field C̃(t, x) in the
equation (45).

6 Long Time Behavior

In this section we investigate the long time behavior of the particle system
described in Section 3, for a fixed number N of particles.

6.1 Interacting–Diffusing Particles

First of all, let us consider the system (16) with γ1 = 0, i.e. the case in which
the advection is due only to interactions among particles. Following [17], from
(16) it follows that the location of the center of mass X̄N of the N particles,
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X̄N (t) =
1
N

N∑
k=1

Xk
N (t),

evolves according the following equation:

dX̄N (t) = − 1
N2

N∑
k,j=1

∇(KN −G)(Xk
N (t) −Xj

N (t))dt+ σdW̄ (t), (49)

where W̄ (t) = 1
N

∑N
k=1W

k(t) is still a Brownian motion; by the symmetry of
the kernels K1 and G, the first term on the right-hand side vanishes and we
get

dX̄N (t) = σdW̄ (t), (50)

i.e. the stochastic process X̄N is a Wiener process. Hence, its law, conditional
upon the initial state, is

L
(
X̄N (t)|X̄N (0)

)
= L

(
X̄N (0), σ2W̄ (t)

)
= N

(
X̄N (0),

σ2

N
t

)
;

with variance σ2

N t, which, for any fixed N , increases as t tends to infinity.
Consequently, we may claim that the probability law of the system does not
converge to any non trivial probability law, since otherwise the same would
happen for the law of the center of mass.

6.2 Complete System

Let us now consider the complete system of SDEs (16) with γ1 > 0. This
means that particles are also subject to a confining potential U . Equations of
the type

dXt = −∇P (Xt) + σdWt (51)

have been thoroughly analyzed in literature; under the sufficient condition of
strict convexity of the symmetric potential U [8, 9, 17, 18], it has been shown
that (51) does admit a nontrivial invariant distribution. From a biological
point of view a strictly convex confining potential is difficult to explain; it
would mean an infinite range of attraction of the force which becomes infinitely
strong at infinity, with an at least constant drift even far from origin.

A weaker sufficient condition for the existence of a unique invariant mea-
sure has been more recently suggested by Veretennikov [34, 35], following
Has’minski [15]. This condition states that there exist constants M0 ≥ 0 and
r > 0 such that for |x| ≥M0

(
−∇P (μ)(x),

x

|x|

)
≤ − r

|x| . (52)

It is ease to prove that without any further condition on the interaction
kernels KN and G, by considering the condition (15) on U , we may apply the
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results by Veretennikov and prove the existence of an invariant measure for
the joint law of the particles locations. The condition (15) means that ∇U
may decay to zero as |x| tends to infinity, provided that its tails are sufficiently
“fat”.

Proposition 2. Under the hypotheses for the existence and uniqueness (hy-
potheses stated in Section 3) and the condition (15), the system (16) admits
a unique invariant measure.

Let now P x0
N (t) denote the joint distribution of the N particles at time t,

conditional upon a non random initial condition x0, and let PS denote the
invariant distribution. As far as the convergence of P x0

N (t) is concerned, for t
tending to infinity, as in [34], one can prove the following result.

Proposition 3. Under the same assumptions of Proposition 2, for any k,
0 < k < r̃ − Nd

2 − 1 with m ∈ (2k + 2, 2r̃ −Nd) and r̃ = γ1Nr, there exists a
positive constant c such that

∣∣P x0
N (t) − PSN

∣∣ ≤ c(1 + |x0|m)(1 + t)−(k+1),

where
∣∣P x0
N (t) − PSN

∣∣ denotes the total variation distance of the two measures,
i.e. ∣∣P x0

N (t) − PSN
∣∣ = sup

A∈B
Rd

[
P x0
N (t)(A) − PSN (A)

]
,

and x0 the initial data.

So Proposition 2 states a polynomial convergence rate to invariant mea-
sure. To improve the rate of convergence, one has to consider more restricted
assumptions on U [35].
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