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Summary. A linear complementarity problem (LCP) is formulated for the price
of American options under the Bates model which combines the Heston stochastic
volatility model and the Merton jump-diffusion model. A finite difference discretiza-
tion is described for the partial derivatives and a simple quadrature is used for the
integral term due to jumps. A componentwise splitting method is generalized for the
Bates model. It is leads to solution of sequence of one-dimensional LCPs which can
be solved very efficiently using the Brennan and Schwartz algorithm. The numerical
experiments demonstrate the componentwise splitting method to be essentially as
accurate as the PSOR method, but order of magnitude faster. Furthermore, pric-
ing under the Bates model is less than twice more expensive computationally than
under the Heston model in the experiments.

1 Introduction

During the last couple of decades, the trading of options has grown to tremen-
dous scale. The most basic options give either the right to sell (put) or buy
(call) the underlying asset with the strike price. European options can be
exercised only at the expiry time while American options can be exercised
any time before the expiry. Usually American options need to be priced nu-
merically due to the early exercise possibility. One approach is to formulate a
linear complementarity problem (LCP) or variational inequality with a partial
(integro-)differential operator for the price and then solve it numerically after
discretization. Since the books by Glowinski, Lions, and Trémolières [17] and
by Glowinski [14], these problems have been extensively studied.

For pricing options, a model is needed for the behavior of the value of the
underlying asset. Many such models of varying complexity have been devel-
oped. More complicated models reproduce more realistic paths for the value
and match between the market price and model prices of options is better,
but they also make pricing more challenging. In the Black–Scholes model
[5], the value is a geometric Brownian motion. The Merton model [26] adds
log-normally distributed jumps to the Black–Scholes model while in the Kou
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model [23], the jumps are log-doubly-exponentially distributed. The Heston
model [19] makes the volatility also stochastic in the Black–Scholes model.
The Bates model [4] which is also sometimes called as the Heston–Merton
model adds to the Heston model log-normally distributed jumps. The corre-
lated jump model [12] allows also the volatility in the Bates model to jump.

Many methods have been proposed for solving the resulting LCPs. The
Brennan and Schwartz algorithm [6] is a direct method for pricing American
options under the Black–Scholes model; see also [21]. Numerical methods pric-
ing under the Heston model have been considered in [8, 20, 22, 27, 35]. The
treatment of the jumps in the Merton and Kou models have been studied in
[2, 3, 9, 10, 25, 32]. Pricing under the Bates model has been considered in [7]
and under the correlated jump model in [13].

In this paper, we consider pricing American call options under the Bates
model. We discretize the spatial partial derivatives in the resulting partial
integro-differential operator using a seven-point finite difference stencil. The
integral term is discretized using a simple quadrature. The Rannacher scheme
[29] is employed in the time stepping. We treat the LCP by introducing a
generalization for the componentwise splitting method in [20]. The numerical
experiments demonstrate that the proposed method is orders of magnitude
faster than the PSOR method.

The outline of the paper is the following. The Bates model and an LCP
for an American call option is described in Section 2. The discretization of
LCPs is constructed in Section 3. The componentwise splitting method is
proposed in Section 4. Numerical experiments are presented in Section 5 and
conclusions are given in Section 6.

2 Option Pricing Model

In the following, we give coupled stochastic differential equations describing
the Bates model. Then, we give an LCP for the price of an American call
option when the market prices of the volatility and jump risks are zero.

2.1 Bates Model

The Bates stochastic volatility model with jumps [4] combines the Merton
jump model [26] and the Heston stochastic volatility model [19]. It describes
the behavior of the asset value x and its variance y by the coupled stochastic
differential equations

dx = (μ− λξ)xdt +
√
yxdw1 + (J − 1)xdn,

dy = κ(θ − y)dt+ σ
√
ydw2,

(1)

where μ is the growth rate of the asset value, κ is the rate of reversion to the
mean level of y, θ is the mean level of y, and σ is the volatility of the variance y.
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The two Wiener processes w1 are w2 have the correlation ρ. The Poisson
arrival process n has the rate λ. The jump size J is taken from a distribution

f(J) =
1√

2πδJ
exp

(
− [lnJ − (γ − δ2/2)]2

2δ2

)
, (2)

where γ and δ define the mean and variance of the jump. The mean jump ξ
is given by ξ = exp(γ) − 1.

2.2 Linear Complementarity Problem for American Options

We define a partial integro-differential operator L acting on a price function
u as

Lu = uτ − 1
2
yx2uxx − ρσyxuxy − 1

2
σ2yuyy − (r − q − λξ)xux

− κ(θ − y)uy + (r + λ)u − λ

∫ ∞

0

u(Jx, y, τ)f(J)dJ, (3)

where τ = T − t is the time to expiry and q is the dividend yield. For compu-
tations, the unbounded domain is truncated to be

(x, y, τ) ∈ (0, X) × (0, Y ) × (0, T ] (4)

with sufficiently large X and Y .
The initial value for u is defined by the payoff function g(x, y) which gives

the value of option at the expiry. In the following, we consider only call options.
A similar approach can be also applied for put options. The payoff function
for a call option with the strike price K is

g(x, y) = max{x−K, 0}, x ∈ (0, X), y ∈ (0, Y ). (5)

The price u of an American option satisfies an LCP
{
Lu ≥ 0, u ≥ g,

(Lu) (u− g) = 0.
(6)

We pose the boundary conditions

u(0, y, τ) = g(0, y), u(X, y, τ) = g(X, y), y ∈ (0, Y ),
uy(x, Y, τ) = 0, x ∈ (0, X).

(7)

Beyond the boundary x = X , the price u is approximated to be the same as
the payoff g, that is, u(x, y, τ) = g(x, y) for x ≥ X . On the boundary y = 0,
the LCP (6) holds and no additional boundary condition needs to be posed.
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3 Discretization

We approximate the price u on a space–time grid defined by the grid points
(xi, yj , τk), 0 ≤ i ≤ m, 0 ≤ j ≤ n, 0 ≤ k ≤ l.

3.1 Discretization of Spatial Differential Operator

We use a uniform space grid with the grid steps in the x-direction and y-
direction being Δx = X/m and Δy = Y/n, respectively. Figure 1 shows a
coarse space grid. A semidiscrete approximation for the price u is given by
the time-dependent grid point values

ui,j(τ) ≈ u(xi, yj , τ) = u(iΔx, jΔy, τ), 0 ≤ i ≤ m, 0 ≤ j ≤ n. (8)

We need to discretize the spatial partial derivatives in L given by

a11uxx + a12uxy + a22uyy + b1ux + b2uy + cu, (9)

where

a11 = −1
2
yx2, a12 = −ρσyx, a22 = −1

2
σ2y,

b1 = −(r − q − λξ)x, b2 = −κ(θ − y), c = r + λ.
(10)

The spatial partial derivatives are discretized using finite differences. For the
non cross-derivatives, we use the standard central difference approximations

uxx(xi, yj , τ) ≈ 1
(Δx)2

(2u(xi, yj , τ) − u(xi −Δx, yj , τ) − u(xi +Δx, yj , τ)) ,

uyy(xi, yj , τ) ≈ 1
(Δy)2

(2u(xi, yj , τ) − u(xi −Δx, yj , τ) − u(xi +Δx, yj , τ)) ,

ux(xi, yj , τ) ≈ 1
2Δx

(u(xi +Δx, yj , τ) − u(xi −Δx, yj , τ)) ,

uy(xi, yj , τ) ≈ 1
2Δy

(u(xi +Δx, yj , τ) − u(xi −Δx, yj , τ)) .

(11)

y

Y

0
0 X x

Fig. 1. A coarse 17× 9 uniform grid for the computational domain (0, X)× (0, Y ).
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Fig. 2. A seven-point finite difference stencil used with a negative correlation ρ < 0
between the Wiener processes for the asset value x and its variance y.

In this paper, we assume that the correlation ρ is negative and we use a seven-
point stencil shown in Figure 2. A similar stencil has been described in [7].
For a positive correlation ρ, a suitable seven-point stencil is given in [20, 22].
The cross-derivative uxy is approximated by

uxy(xi, yj , τ) ≈ 1
2ΔxΔy

(2u(xi, yj , τ) − u(xi −Δx, yj +Δy)

−u(xi +Δx, yj −Δy) − (Δx)2uxx(xi, yj , τ) − (Δy)2uyy(xi, yj , τ)
)
. (12)

Due to additional derivative terms in (12), we define modified coefficients for
uxx and uyy as

ã11 = a11 +
1
2
Δx

Δy
a12, and ã22 = a22 +

1
2
Δy

Δx
a12. (13)

It is well-known that the central finite differences can lead to positive
weights in difference stencil when the convection dominates the diffusion. To
avoid positive weights, we add some artificial diffusion according to

â11 = min
{
ã11,−

1
2
b1Δx,

1
2
b1Δx

}
(14)

and

â22 = min
{
ã22,−

1
2
b2Δy,

1
2
b2Δy

}
. (15)

This is equivalent to using a combination of one-sided and central differences
for the convection. The resulting matrix is an M-matrix. Its off-diagonals are
nonpositive and the diagonal is positive. It is strictly diagonally dominant
when c = r + λ > 0.

3.2 Discretization of Integral Term

The integral term due to the jumps in (3) needs to computed at each grid
point x = xi. We denoted it by

Ii =
∫ ∞

0

u(Jxi, y, τ)f(J)dJ. (16)
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In order to perform the integration, we make a change of variable J = es

which leads to
Ii =

∫ ∞

−∞
u(esxi, y, τ)p(s)ds, (17)

where p is the probability density function of the normal distribution with the
mean γ − δ2/2 and the variance δ2 given by

p(s) =
1√
2πδ

exp
(
− [s− (γ − δ2/2)]2

2δ2

)
. (18)

We decompose Ii into integrals over grid intervals as

Ii =
n−1∑
j=0

Ii,j +
∫ ∞

ln xn−lnxi

g(esxi, y)p(s)ds, (19)

where

Ii,j =
∫ ln xj−lnxi

ln xj+1−lnxi

u(esxi, y, τ)p(s)ds. (20)

The price function u(x, y, τ) needs to be approximated between each grid
point pair (xi, xi+1). For this, we use a piecewise linear interpolation

u(x, y, τ) ≈ xi+1 − x

xi+1 − xi
u(xi, y, τ) +

x− xi
xi+1 − xi

u(xi+1, y, τ) (21)

for x ∈ [xj , xj+1].
By performing the integration, we obtain

Ii,j ≈ eγ

2

[
erf

(
si,j+1 − γ − δ2/2

δ
√

2

)
− erf

(
si,j − γ − δ2/2

δ
√

2

)]
αjxi

+
1
2

[
erf

(
si,j+1 − γ + δ2/2

δ
√

2

)
− erf

(
si,j − γ + δ2/2

δ
√

2

)]
βjxi, (22)

where erf(·) is the error function, si,j = lnxj − lnxi,

αj =
u(xj+1, y, τ) − u(xj , y, τ)

xj+1 − xj
, and βj =

u(xj , y, τ)xj+1 − u(xj+1, y, τ)xj
xj+1 − xj

.

(23)

3.3 Semidiscrete LCP

The space discretization leads to an LCP
{

uτ + Au + a ≥ 0, u ≥ g,
(uτ + Au + a)T (u − g) = 0,

(24)
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where A is (m+1)(n+1)× (m+1)(n+1) matrix, a is a vector resulting from
the second term in (19), u and g are vectors containing the grid point values
of the price u and the payoff g, respectively. In the above LCP, the inequalities
hold componentwise. The entries in the rows of A corresponding to the grid
points on the boundaries x = 0 and x = X are set to zero. The submatrix of
A corresponding to the grid points not on the boundaries x = 0 and x = X
is an M-matrix. When the numbering of the grid points first goes through the
grid points in the x-direction and then in the y-direction, the (n+1)× (n+1)
diagonal blocks of A are essentially full matrices due to the jump term.

3.4 Time Discretization

We use the Rannacher scheme [29] with nonuniform time steps. It takes a few
first time steps with the implicit Euler method and then it uses the Crank–
Nicolson method. This leads to better stability properties than using just the
Crank–Nicolson method. The solution vector u is approximated at times

τk =

⎧⎪⎪⎨
⎪⎪⎩

(
k

2l

)2

T, k = 0, 1, 2, 3,
(
k − 2
l− 2

)2

T, k = 4, 5, . . . , l.
(25)

In order to simplify the following notations, we define time step sizes Δτk =
τk+1 − τk, k = 0, 1, . . . , l − 1.

In order to simplify the notations in the following, we denote by
LCP(B,u,b,g) the linear complementarity problem

{
(Bu − b) ≥ 0, u ≥ g,
(Bu − b)T (u − g) = 0.

(26)

The Rannacher time stepping leads to the solution of the following se-
quence of LCPs:

LCP(B(k+1),u(k+1),b(k+1),g), (27)

where u(k) denotes the vector u at the time τk. For the first four time steps
k = 0, 1, 2, 3, we use the implicit Euler method defined by

B(k+1) = I +ΔτkA and b(k+1) = Δτku(k) −Δτka. (28)

The rest of the time steps k = 4, 5, . . . , l − 1 are performed using the Crank–
Nicolson method defined by

B(k+1) = I+
1
2
ΔτkA and b(k+1) =

(
I − 1

2
ΔτkA

)
u(k)−Δτka. (29)
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4 Componentwise Splitting Method

Componentwise splitting methods are inspired by ADI (Alternating Direction
Implicit) schemes which were introduced in [11, 28]. Instead of treating a
part of operator explicitly, we use fully implicit splittings considered in
[15, 16, 24, 33], for example. For the Heston model, the componentwise split-
ting method were introduced in [20] with a positive correlation ρ. In [7], the
splitting method was considered in the case of a negative correlation.

The matrix A is split into three matrices which correspond to the cou-
plings in the x-direction, y-direction, and diagonal direction. Figure 3 shows
the matrix splitting and also the corresponding splitting of the finite dif-
ference stencil. The simplest fractional step method based on the implicit
Euler method is given in Figure 4. The formal accuracy of this method is
O(Δτl−1) = O

(
1
l

)
.

We increase the accuracy of the splitting method by performing a Strang
symmetrization [30] and use the Crank–Nicolson method; see also [15]. This
leads one time step to have the following fractional steps:

Step 1. LCP
(
I +

Δτk
4

Ay,u(k+1/5),

(
I − Δτk

4
Ay

)
u(k),g

)

Step 2. LCP
(
I +

Δτk
4

Ad,u(k+2/5),

(
I − Δτk

4
Ay

)
u(k+1/5),g

)

Step 3. LCP
(
I +

Δτk
2

Ax,u(k+3/5),

(
I − Δτk

2
Ax

)
u(k+2/5) −Δτka,g

)

Step 4. LCP
(
I +

Δτk
4

Ad,u(k+4/5),

(
I − Δτk

4
Ay

)
u(k+3/5),g

)

Step 5. LCP
(
I +

Δτk
4

Ay,u(k+1),

(
I − Δτk

4
Ay

)
u(k+4/5),g

)

In order to maintain the good stability of the Rannacher scheme, we use the
implicit Euler method instead the Crank–Nicolson method for the first four
time steps k = 0, 1, 2, 3 in the above symmetrized splitting method.

4.1 Solution of One-Dimensional LCPs

For an American call option, typical early exercise boundaries at different
times are shown in Figure 5. The boundary can be described by a relation

A

�
�

�
���

� � �

��

=

= Ax

� � � � +

+ Ay

�

�

�

+

+ Ad

�
�

�
��

�

�

Fig. 3. The matrix splitting of A and the corresponding splitting of the finite
difference stencil.
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1. LCP(I +ΔτkAy,u(k+1/3), Δτku(k),g)
Solve the sequence of one-dimensional LCPs:

2. LCP(I +ΔτkAd,u(k+2/3), Δτku(k+1/3),g)
Solve the sequence of one-dimensional LCPs:

3. LCP(I +ΔτkAx,u(k+1), Δτku(k+2/3) −Δτka,g)
Solve the sequence of one-dimensional LCPs:

Fig. 4. Three fractional splitting steps for performing the time step from τk to τk+1.

 0

 0.2

 0.4

 0.6

 0.8

 1

0 50 100 150 200 250 300 350 400

y

x

Fig. 5. The time evolution of the early exercise boundaries for an American call
option.

y = h(x, τ), where h an increasing function with respect to x. Thus, a given
point (x, y, τ) belongs to

• The hold region if y > h(x, τ) or
• The early exercise region if y ≤ h(x, τ)

Similarly, the early exercise boundary divides each x-directional line, y-
directional line, and (1,−1)-directional line into two parts. Due to this solution
structure and the tridiagonal matrices defining the LCPs in the y-direction
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and (1,−1)-direction, the Brennan and Schwartz algorithm can be used to
solve these problems. The LCPs in the x-direction have full matrices due to
the integral term. An iterative solution procedure for these problems is de-
scribed in the end of this section.

Brennan and Schwartz Algorithm

The Brennan and Schwartz algorithm for American put options under the
Black–Scholes model was described in [6]. The algorithm can be modified to
use a standard LU-decomposition [1, 21]. We formulate it for a tridiagonal
linear complementarity problem:

Tx =

⎛
⎜⎜⎜⎜⎝

T1,1 T1,2

T2,1
. . . . . .
. . . Tm−1,m−1 Tm−1,m

Tm,m−1 Tm,m

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

x1

x2

...
xm

⎞
⎟⎟⎟⎠ ≥

⎛
⎜⎜⎜⎝

b1

b2

...
bm

⎞
⎟⎟⎟⎠ = b, (30)

x ≥ g, (Tx − b)T (x − g) = 0. (31)

The Brennan and Schwartz algorithm assumes the solution x to be such that
for some integer k it holds that

xi > gi, i = 1, . . . , k, and
xi = gi, i = k + 1, . . . ,m.

(32)

The algorithm with LU-decomposition is described as follows:

Brennan and Schwartz algorithm
Computation of LU-decomposition and forward substitution:
U1,1 = T1,1

y1 = b1

Do i = 2, . . . ,m
Li,i−1 = Ti,i−1/Ui−1,i−1

Ui−1,i = Ti−1,i

Ui,i = Ti,i − Li,i−1Ui−1,i

yi = bi − Li,i−1yi−1

End Do
Backward substitution with a projection:
xm = ym/Um,m

xm = max{xm, gm}
Do i = m− 1, . . . , 1

xi = (yi − Ui,i+1xi+1)/Ui,i

xi = max{xi, gi}
End Do

In this algorithm the only modification to a standard solution with LU-
decomposition is the additional projection in the backward substitution.
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After a suitable numbering of unknowns the assumption (32) holds for
the one-dimensional LCPs in all three directions. The Brennan and Schwartz
algorithm can be use directly to solve the one-dimensional LCPs in the y-
direction and in the (1,−1)-direction.

LCPs with Full Matrices Associated to the x-Direction

A matrix associated to one-dimensional LCP in the x-direction is denoted by
B. It has a regular splitting [34]

B = T − J, (33)

where −J is a full matrix resulting from the integral term and T is the rest
which a tridiagonal matrix. We generalize a fixed point iteration described in
[31] and used in [2,10,32]. The fixed point iteration for LCP(B,x,b,g) reads

LCP(T,xj+1,b + Jxj ,g), j = 0, 1, . . . (34)

Each iteration requires the solution of an LCP with the tridiagonal T and
the multiplication of a vector by J. The Brennan and Schwartz algorithm
can be used to solve the LCPs (34). The iteration converges very rapidly and
only a couple of iterations are needed to reach sufficient accuracy for practical
purposes.

5 Numerical Experiments

In the numerical experiments for call options, we use the model parameter
values:

• The risk free interest rate r = 0.03
• The dividend yield q = 0.05
• The strike price K = 100
• The correlation between the price and variance processes ρ = −0.5
• The mean level of the variance θ = 0.04
• The rate of reversion to the mean level κ = 2.0
• The volatility of the variance σ = 0.25
• The jump rate λ = 0.2
• The mean jump γ = −0.5
• The variance of jump δ = 0.4

The computational domain is (x, y, τ) ∈ [0, 400]× [0, 1] × [0, 0.5].
Our first experiment compares the PSOR method and the Strang sym-

metrized componentwise splitting method for call options under the Heston
model, that is, λ = 0. In this case, the LCPs in the x-direction are tridiagonal
and they can be solved using the Brennan and Schwartz algorithm without
the iteration (34).
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Table 1. The numerical results for the Heston model

Method Grid (m,n, l) Iteration Error Ratio CPU

PSOR (64, 32, 8) 34.6 0.14470 0.05
(128, 64, 16) 42.3 0.05607 2.58 0.48
(256, 128, 32) 95.3 0.01006 5.58 8.18
(512, 256, 64) 196.6 0.00350 2.87 128.51

(1024, 512, 128) 372.2 0.00066 5.31 1890.76

Componentwise (64, 32, 8) 0.14412 0.01
splitting (128, 64, 16) 0.05621 2.56 0.06

(256, 128, 32) 0.01019 5.51 0.51
(512, 256, 64) 0.00355 2.87 6.36

(1024, 512, 128) 0.00067 5.28 58.27

Table 1 reports the numerical results. It (and also Table 2) has the fol-
lowing columns: Grid (m,n, l) defines the number of grid steps in x, y, and τ
to be m, n, and l, respectively. Iteration gives the average number of PSOR
iterations on each time step with the relaxation parameter ω = 1.5. With the
componentwise splitting method iteration specifies the number of iterations
(34) to solve the LCPs in the x-direction at each time step. Error column
gives the root mean square relative error given by

error =

[
1
5

5∑
i=1

(
u(xi, θ, T ) − U(xi, θ, T )

U(xi, θ, T )

)2
]1/2

, (35)

where x = (80, 90, 100, 110, 120)T and U is the reference price. Ratio is the
ratio of the consecutive root mean square relative errors. CPU gives the CPU
time in seconds on a 3.8 GHz Intel Xeon PC. The reference prices under the
Heston model at (xi, θ, T ), i = 1, 2, . . . , 5, are 0.131563, 1.255396, 4.999888,
11.680219, 20.325463 which were computed using the componentwise splitting
method on the grid (4096, 2048, 512).

We can observe from Table 1 that the discretizations with both methods
appears to be roughly second-order accurate as the ratio is four on average.
Furthermore, the splitting increases the error only about 2%. On the coarsest
grid, the splitting method is five times faster than the PSOR method, and on
the finest grid it is 32 times faster.

In our second experiment, we performed the same comparison under the
Bates model. The reference prices computed using the componentwise split-
ting method on the grid (4096, 2048, 512) are 0.328526, 2.109397, 6.711622,
13.749337, 22.143307. In the componentwise splitting method, the LCPs in the
x-direction lead to full matrices and the iteration (34) is employed to solve
them. Based on a few experiments, we observed that already after two iter-
ations the accuracy is sufficient. Thus, we use two iterations in our compari-
son. The multiplication by the matrix J is the most expensive operation in the
iteration. In order to perform it efficiently, we collected all n multiplications
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Table 2. The numerical results for the Bates model

Method Grid (m, n, l) Iteration Error Ratio CPU

PSOR (64, 32, 8) 39.6 0.10887 0.16
(128, 64, 16) 48.1 0.03803 2.86 2.14
(256, 128, 32) 108.2 0.00670 5.68 138.92
(512, 256, 64) 222.6 0.00209 3.20 8605.09

(1024, 512, 128) 420.5 0.00034 6.13 275191.73

Componentwise (64, 32, 8) 2.0 0.10833 0.01
splitting (128, 64, 16) 2.0 0.03790 2.86 0.09

(256, 128, 32) 2.0 0.00668 5.67 0.81
(512, 256, 64) 2.0 0.00210 3.19 10.18

(1024, 512, 128) 2.0 0.00035 6.07 109.45

corresponding to all x-grid lines together and then performed the resulting
matrix–matrix multiplication using the optimized GotoBLAS library [18].

The numerical results under the Bates model are given in Table 2. Absolute
errors are comparable to the ones under the Heston model, but as the option
prices are higher under the Bates model the relative errors reported in the
table are smaller. Again roughly second-order accuracy is observed with both
methods. The CPU times with the componentwise splitting method were less
than twice the times under the Heston model. The componentwise splitting
method is 16 times faster on the coarsest grid, and it is about 2,500 times
faster on the finest grid. On finer grids, the PSOR method leads to infeasible
CPU times while the times with componentwise splitting method are still
reasonable.

6 Conclusions

We described a linear complementarity problem (LCP) for pricing American
options under the Bates model and we considered a finite difference discretiza-
tion. We proposed a componentwise splitting method to solve approximately
the LCPs. It leads to a sequence of LCPs with tridiagonal matrices. The
Brennan and Schwartz algorithm can solve these LCPs efficiently.

Our numerical experiments showed that the additional splitting error do
not essentially increase the discretization error. The componentwise splitting
method is orders of magnitude faster than the PSOR method under the Bates
model. Pricing under the Bates model was at most two times more expensive
than under the Heston model with the componentwise splitting method.
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