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14.1  Introduction

14.1.1  Aim of Study

Tree-ring-widths together with parameters including wood density, stable isotope 
content and the presence of reaction wood (anomalous, high-density cells produced 
as a result of mechanical stress, termed ‘compression wood’ in conifers) are 
frequently used as bio-indicators to study environmental conditions (Schweingruber 
1996). Some factors such as frost or summer drought, may have an immediate 
effect on ring width, other factors such as wintertime drought may have a delayed 
effect on tree-ring-widths, since the growing tissue is dormant. The effect of different 
factors is seen as variation in ring size and structure, which changes systematically, 
or vary slowly throughout the life of the tree (Fritts 1976).

Spruce is a popular tree species in European forestry, and in dendrochrono-
logical and dendroclimatological research. Previous dendrochronological stud-
ies on spruce in Poland have generally focussed on trees from the mountainous 
region (Bednarz et al. 1998–1999; Feliksik and Wilczyński 2000a, 2000b, 
2001; Savva et al. 2006). Lowland spruces in Poland and Lithuania have been 
studied mainly by authors of this paper: Zielski and Koprowski (2001, 2002); 
Koprowski and Zielski (2002, 2006, 2007); Vitas (2002, 2004). Because of the 
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transition zone between Atlantic and continental climates, we decided to 
 generalise the climate-growth response of spruce on the selected sites in natural 
stands in Poland and Lithuania as a basis for climate reconstruction. 
Dendrochronological regionalisation allows usage of a limited area for each 
reconstruction.

14.1.2  Climate of Study Area

Climatic conditions and biogeographical differences are expressed as influence of 
oceanic and continental climates. The Polish lowland (60%) belongs to the 
Middle-European Lowland, and has generally sub-Atlantic vegetation, and a pre-
dominantly oceanic climate. The mean yearly precipitation – 450–700 mm, and 
the mean yearly temperature – 7–9°C. Southern Poland is characterised by uplands 
and mountains. Northeastern Poland and Lithuania were connected to the Lowland 
East-Baltic-Belorus. The dominance of the Atlantic climate decreases from the 
south to the northeast of the research area (Kondracki 2002). Average yearly tem-
perature in Lithuania is  +6.1°C (−4.9°C in January and  +17.0°C in July). The 
western region of Lithuania is characterized by highest amounts of precipitation 
per year (up to 930 mm), warmest winters (January temperature of −2.8°C) and 
the longest period of vegetation (200–206 days). The smallest amount of precipita-
tion (520–620 mm per year) is characteristic of North Lithuania. Warmer winters 
and summers than those in the North and East are indicative of South Lithuania. 
The most continental climate conditions with the shortest period of vegetation 
(185–192 days) and coldest winters (−5.0°C to −6.8°C) are characteristic of East 
Lithuania (Bukantis 1994).

14.2  Material and Methods

14.2.1  Tree Sites and Sampling Method

Almost 2,000 samples were taken from 45 sites from different habitats in eastern 
Poland and from 47 sites in Lithuania1 (Fig. 14.1). Between ten and 30 dominant 
trees, without visible disease symptoms, were selected from each site. Two core 
samples were taken from each tree, one from the west and one from the east, 
using a Pressler borer, at a height of approximately 1.30 m above ground level. 
Samples from Polish Uplands were taken with mean elevation of approximately 
200–300 m a.s.l.

1 Site descriptions available upon request



32914 Growth/Climate Relationships 

14.2.2  Local Chronologies

The core samples were treated in the standard way and measured to the nearest 0.01 
mm by means of a mechanical instrument with a computer registering the ring 
widths. The samples from each site were then used to construct local chronologies.  
A number of methods were used to assess the cross-matching between the samples:

The Students- – t test. Only the samples whose t-value was greater than 4.0 were 
used to build a chronology.
Gleichläufigkeit. The CATRAS program (Aniol  – 1983) was used to compute the 
% Gleichläufigkeit (% GL). This is a non-parametric measure of the congruity 
of two growth curves, which consists of comparing subsequent intervals 
(Eckstein 1969; Schweingruber 1983).
The accuracy of the fit was tested by the COFECHA program (Holmes  – 1986; 
Grissino-Mayer 2001).

Fig. 14.1 Sites location, established homogenous regions
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Each sample was analysed by means of skeleton plot method (Douglass  – 1939; 
Schweingruber et al. 1990). To check the measuring mistakes, pointer years 
were detected and applied.

The following two types of chronologies were used for further investigations:

Raw data chronology – composed of averaged annual growth values and pre- –
sented in the form of actual numerical values.
Residual chronology, which was built by CRONOL, a tool from the DPL pack- –
age (Holmes 1984).

14.2.3  Regionalisation

Hierarchical cluster analysis (HCA) was used to distinguish regions with similar 
increment patterns. This method has been successfully employed by Leuschner and 
Riemer (1989) and Wilson and Hopfmüller (2001) to distinguish groups of trees at 
varying altitudes. The STATISTICA program was used to perform the HCA. To 
maximise the between-group variance, while minimising the within-group vari-
ance, Ward’s method was used, with Pearson’s correlation coefficient being used as 
a measure of the similarity.

14.2.4  Dendroclimatological Analysis

Climate-growth relationships were calculated by means of the PRECON pro-
gram (Fritts 1996). This program applies a bootstrap response function to esti-
mate the error using random sampling from the data. The response function 
method has been described in detail by Fritts (1976), and Briffa and Cook 
(1990). The bootstrapped procedure provides an alternative to testing the signifi-
cance and stability of the regression coefficient (r) in time. It is based on the 
evaluation of a large quantity of data (subsamples). It has been found that with 
more than 50 sub-samples, the results do not vary considerably. The regression 
coefficient is calculated for each randomly selected sub-sample. If this is 
repeated 50 times, we get 50 regression coefficients, and 50 independent verifi-
cations of the correlation. At the final stage, the results of these parameters are 
calculated on the basis of the preceding 50 measurements (Guiot 1993). Climate 
data from October of the previous year to September of the current year served 
as independent variables, and the residual chronologies for each site were used 
as dependent variables. In all bootstrap calculations, 50 bootstrap replications 
were calculated.
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Mean monthly temperatures and monthly precipitation sums were collected 
from 16 meteorological stations of the Institute of Meteorology and Water 
Management in Warsaw and four meteorological stations from Lithuania.

14.3  Results and Discussion

14.3.1  Dendroclimatological Regionalisation

Regionalisation was made by comparison of 79 local chronologies, distinct regions 
with a similar increment pattern were identified by HCA. Some chronologies were 
rejected because of young age of trees. We were able to recognize four main groups, 
where linkage distance is higher than two (Fig. 14.2). Group 1 is composed of 
Lithuanian sites and two sites from north-eastern Poland. Group 2 consists of sites 
only from Poland. The first group is divided into two smaller groups “1a” and “1b”. 
Trees from the region “1a” grow in northern Lithuania and from the group “1b” in 
the southern part of the country and in Poland (Figs. 14.1 and 14.2). These chronolo-
gies split from the same branch in the hierarchical tree, and indicate that the yearly 
variance of tree-ring widths share some of the variation with the trees from other 
sites. The border between region “1a” and “1b” is approximately the same as 
between northern and southern climate regions of Lithuania, but this line divides the 
eastern area into north and south. Two sub-groups from region 2 represent trees from 
north-eastern Poland on the one hand and from middle and southern Poland on the 
other. The border between these groups (2a and 2b) confirms the idea that spruce 
from the Hercynian-Carpathian centre reached the middle Wisła and Bug River, and 
the southern border of boreal-Baltic range is the border between two ranges. The 
problem of spruce range and dendrochronological regions was discussed in detail by 
Koprowski and Zielski (2006). Savva et al. (2006) grouped Picea abies chronologies 
at different elevations, and they observed that shifting elevational pattern may be 
associated with the length of the growing season. The shortest vegetation period is 
characteristic of East Lithuania (185–192 days) and Suwalskie Lakeland (185–190 
days). This gives an approximate difference of 3 weeks in comparison with west and 
south-east Poland. In western Lithuania, the vegetation period lasts 200–206 days. 
The border between regions 1a and 1b is rather more connected with rainfall. The 
northern part of Lithuania has the smallest amount of precipitation, especially in 
comparison to the western part – up to 930 mm. In Poland, the dominance of the 
Atlantic climate decreases from the south to the northeast, while the effects of the 
continental climate increase. This is expressed as a higher mean yearly precipitation, 
a decrease in the vegetation growth period, and a greater yearly temperature ampli-
tude. Regionalisation accomplished for other species e.g. pine in Poland (Wilczyński 
et al. 2001) gave similar results as for spruce. This suggests that supra-regional fac-
tors like climate play an important role in determining tree-ring growth, in some way 
independently from local environmental conditions and tree species.
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14.3.2  Growth/Climate Relationships

In the second part of our paper, we would like to focus on climatic conditions, 
which determined tree growth and may be a key factor understanding the spatial 
distribution of increment patterns. Results of the dendroclimatological research are 
presented in Tables 14.1, 14.2, 14.3 and 14.4. Trees from the region “1a” respond 
mostly to precipitation during the vegetation period, especially from June to July 
(Table 14.1) and the variance explained by climate varies from 46% to 2%. Trees 
from most sites respond to precipitation, whilst only three sites are sensitive to 
temperature. Regions 1b and 2a seem to be temporal instable. The reaction to cli-
mate is mixed; some trees react more to precipitation, some to temperature 
(Tables 14.2 and 14.3). Wilson and Elling (2004) took into account the problem of 
temporal instability in growth-climate response and demonstrated some implica-
tions for dendroclimatic reconstructions. They concluded that, due to SO

2
 forcing 

in southern Germany, the calibration period for spruce ring-width will be restricted 
to the 1871–1978 period. Spruces from lowlands (regions 1b and 2a) are most flexible 
on weather conditions in the vegetation period. In the region 1b (most Lithuanian 
sites) the role of precipitation also lasts for 2 months from May to June, while in 
north-eastern Poland this extends to July. Trees from a few sites respond negatively 
to high summer temperatures. A quite different correlation was stated by Bednarz 
et al. (1998–1999) for Babia Góra National Park (Carpathian Mts.). Here, high 
June–July precipitation had a negative effect on tree growth, on the contrary to 
summer temperature, which is strongly positively correlated with tree-ring-widths. 
This is due to high annual precipitation meaning and therefore moisture is not a 
limiting factor, and summer droughts are extremely rare. Negative correlation to 
summer precipitation in cooler regions was found too by Mäkinen et al. (2000, 
2003) or Miina (2000). Trees from warmer regions of eastern Finland (Mäkinen 
et al. 2003), or in the lower altitude mountains in Germany (Dittmar and Elling 
1999; Wilson and Hopfmüller 2001) and the northern part of this country (Eckstein 
et al. 1989) react in the same way. The role of precipitation and temperature during 
the vegetation period was also described by Kahle and Spiecker (1996), Mäkinen 
et al. (2001), Meyer and Bräker (2001), Dittmar and Elling (2004).

On some sites, the influence of different climate conditions from other months 
was noted. The warm November temperatures had a negative influence at two sites 
in the Forest Inspectorate areas of Lidzbark (Grodki 17), Goldap and site Mickunai. 
The reason for that could have been the disruption to the tree passing into its winter 
phase if trees are not tough enough that is a gradual temperature decline in winter 
months prepares plants to withstand frost (Obmiński 1977). In certain Polish spruce 
sites, high temperatures in January and February produce a positive influence 
meaning the subsequent formation of wide rings is observed. During earlier inves-
tigations carried out in the Olsztyn Lake District (though on a shorter sequence of 
climatic data), one of the sites showed a negative impact of high February tempera-
tures (Zielski and Koprowski 2002). This may be a result of snow loading on the 
branches. This phenomenon is strengthened when wet snow falls at the temperature 
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of 0°C (Modrzyński 1998). Skre and Nes (1996) found that high winter tempera-
tures may cause an increased needle loss and lead to growth reduction in the fol-
lowing season. A negative correlation between February temperature and subsequent 
ring width was observed in Finland (Miina 2000; Mäkinen et al. 2000).

Spruce from southern sites grows under the influence of the highland climate, 
with a stronger role of March temperature. In the Ustron Forest District of the 
Polish mountains, the low temperatures of the end of winter and during spring were 
a limiting factor. The higher the altitude of the site, the longer the period of time 
during which higher temperatures positively influenced cambial activity (Feliksik 
and Wilczyński 2000b).

14.4  Conclusions

Dendroclimatological research on Norway spruce in Poland and Lithuania gives an 
opportunity to extend the knowledge of spruce ecology and to follow the climate 
growth relationships in regard to climate reconstruction. Regionalisation based on 
growth increment patterns divided the research area into four regions, the most 
northern sites (Lithuania and north-eastern Poland) are more sensitive to rainfall 
during the vegetation period. In northern Lithuania precipitation from June to July 
is the most important for tree growth, while in southern Lithuania this period is 
from May to June. In north eastern Poland the influence of precipitation from May 
to July prevails. We concluded that tree-ring-widths from these three regions (1a, 
1b, 2a) are mostly determined by precipitation during the vegetation period, espe-
cially from May to July. Differences in growth patterns are not so clearly related to 
the length of vegetation period, which varies from 185–192 days in East Lithuania 
and 185–190 days in Suwalskie Lakeland to 200–206 days in western Lithuania. 
The border between the length of a vegetation period in Lithuania extends from 
north to south while the border of selected dendrochronological homogenous 
regions runs from the West to the East. This difference is rather connected with 
rainfall; the smallest amount of precipitation is noted in northern Lithuania whilst 
in Poland the effects of continental climate increase from the south to the northeast. 
This is expressed, among other parameters, as higher yearly mean precipitation. 
The decrease in dominance of the Atlantic climate from the south to the northeast 
is also responsible for distinguishing regions 2a and 2b. This is visible in their reac-
tion to climate. Trees from the southern part of Poland (region 2b) are more sensi-
tive to March temperature. We concluded that, with regard to climate reconstruction, 
it is possible to reconstruct precipitation from May to July for north-eastern Poland 
and Lithuania.
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