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Preface

As individual topics, the terms “satellite rainfall” and “surface hydrology” have
been much widely studied over the last few decades. Ever since rainfall products
begun to be developed using space-borne infrared sensors in geostationary orbit in
the seventies, satellite remote sensing of rainfall experienced tremendous progress.
Microwave sensors on low earth orbits came along during the eighties to provide
more accurate estimates of rainfall at the cost of limited sampling. As the con-
trasting but complementary properties of microwave and infrared sensors became
apparent, merged rainfall products started to appear during the following decade. In
1997, the Tropical Rainfall Measuring Mission (TRMM) with the first space-borne
active microwave precipitation radar (TRMM-PR), was launched. The success of
TRMM in improving our understanding on Tropical and Sub-tropical rainfall dis-
tribution and precipitation structures consequently spurred a larger scale mission
aimed at the study of global distribution of precipitation. Today, we now eagerly
anticipate the Global Precipitation Measurement (GPM) mission, which envisions
a global constellation of microwave sensors that will provide more accurate global
rainfall products at high resolution from 2013 onwards.

It is therefore safe to claim three decades of research heritage on satellite remote
sensing of rainfall. Similarly, the topic of “surface hydrology” requires no intro-
duction for readers of environmental sciences and geosciences either. But what
happens if we connect all the individual terms and name it – “satellite rainfall
applications for surface hydrology”? A new topic is created. But little is known
about this topic because satellite remote sensing of rainfall and surface hydrology
have evolved rather independently of each other. Even though the potential for a
space-borne source of rainfall data was always recognized for a variety of applica-
tions (such as flood forecasting in ungauged regions, transboundary water resources,
global/regional drought and agricultural planning), the fields of satellite rainfall and
surface hydrology have hardly intersected during their developmental stages during
the last few decades. We are now faced with a myriad of questions ranging from
common operational issues to detailed scientific inquiries. Some of these questions
are: There are so many satellite rainfall products currently available - which one
does one use for a specific application to get the best results? What is the optimum
scale of application of satellite rainfall data for a given surface application? What is
the level of uncertainty in each satellite rainfall product and what is the implication
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vi Preface

for a given surface hydrologic prediction? Where do I acquire the data for research
or for operational applications? How are these satellite rainfall products developed
and how do they differ from one another?

This book by Springer on “Satellite Rainfall Applications for Surface
Hydrology” is a contribution to both scientific and practical questions regarding
the use of satellite rainfall products in surface hydrology. Focusing on the evolution
of the algorithm of the satellite precipitation products, the accuracy assessment of
the products in different regions of the world, and application of the precipitation
products for various Decision Support Systems, the book provides very useful and
most up to date information to practitioners, researchers and graduate students who
need to explore the latest on satellite precipitation products for various hydrological
purposes.

The book is organized into three parts: (1) evolution of high resolution precipita-
tion products, (2) evaluation of high resolution precipitation products, and (3) real
time operations for decision support systems. Part one contains seven chapters that
dwell on high resolution satellite rainfall products by presenting detailed overview
of the algorithm behind seven of the major products available today that a hydrolo-
gist user would be interested in knowing. These products provide rainfall estimates
at various scales of hydrologic interest (from 4 to 25 km, sub-daily to sub-hourly)
using a myriad of estimation techniques. The purpose of this part is to enlighten
the reader on the essential estimation features of each rainfall product. Hence, most
of these chapters are outlined according to a common format, although deviations
may exist from chapter to chapter. Each of these chapters outline the sensors and
input datasets and the methodology used for calibration. These chapters also provide
examples and comparisons across the globe and future directions in the algorithm
development.

In Part two, seven chapters dwell on the evaluation of satellite rainfall prod-
ucts. Among the seven, two chapters deal with verification methodology and error
structure. Three chapters address uncertainty of satellite rainfall products in various
regions of the world through comparison with ground-based rainfall measure-
ments. Two chapters characterize the error propagation of satellite rainfall products
in hydrological applications. Finally, Part three provides examples of real-world
applications of satellite rainfall products in operational hydrology and real-time
decision support system. The aim of this part is to enable readers to understand
the potential of real-time satellite rainfall products for societal applications rang-
ing from agricultural/crop monitoring to flood and landslide detection in developing
countries.

This Springer book is not meant to be confused with two other books on similar
topics that have appeared in recent times – “Measuring Precipitation from Space”
(editors Vincenzo Levizzani et al.) and “Precipitation: Advances in Measurement,
Estimation and Prediction” (editor Silas Michaelides). Readers will find these two
books a far more comprehensive and voluminous source on the topic of rainfall.
Our Springer book focuses at the interface between satellite rainfall and surface
hydrologic applications. It dwells on issues that are of concern at hydrologic scales
of application. It is our hope that this book will therefore be of interest to graduate
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students and researchers who actively deal with satellite rainfall products for gaining
a better understanding and prediction of surface hydrologic phenomenon.

As we began to work on compiling the book more than a year ago, we realized
how difficult and impossible the task would be without the timely cooperation from
our contributing authors, numerous reviewers and the dedicated Springer staff. We
gratefully acknowledge their participation in this book effort. We would also like to
acknowledge the NASA New Investigator Program and the Program for Evaluation
of High Resolution Precipitation Products (PEHRPP) under the auspices of the
International Precipitation Working Group (IPWG) of the World Meteorological
Organization. These two programs provided us with a common platform and a man-
date to bring the two communities spanning satellite rainfall estimation and surface
hydrologic applications together. It is therefore a privilege for us that we finally
managed to complete the book and experience it becoming available for the readers!

Storrs, Connecticut Mekonnen Gebremichael
Cookeville, Tennessee Faisal Hossain
April, 2009
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The TRMM Multi-Satellite Precipitation
Analysis (TMPA)

George J. Huffman, Robert F. Adler, David T. Bolvin, and Eric J. Nelkin

Abstract The Tropical Rainfall Measuring Mission (TRMM) Multi-satellite
Precipitation Analysis (TMPA) is intended to provide a “best” estimate of quasi-
global precipitation from the wide variety of modern satellite-borne precipitation-
related sensors. Estimates are provided at relatively fine scales (0.25◦ × 0.25◦,
3-h) in both real and post-real time to accommodate a wide range of researchers.
However, the errors inherent in the finest scale estimates are large. The most suc-
cessful use of the TMPA data is when the analysis takes advantage of the fine-scale
data to create time/space averages appropriate to the user’s application. We review
the conceptual basis for the TMPA, summarize the processing sequence, and focus
on two new activities. First, a recent upgrade for the real-time version incorporates
several additional satellite data sources and employs monthly climatological adjust-
ments to approximate the bias characteristics of the research quality post-real-time
product. Second, an upgrade for the research quality post-real-time TMPA from
Versions 6 to 7 (in beta test at press time) is designed to provide a variety of improve-
ments that increase the list of input data sets and correct several issues. Future
enhancements for the TMPA will include improved error estimation, extension to
higher latitudes, and a shift to a Lagrangian time interpolation scheme.

Keywords Precipitation · Satellite · Remote sensing · TRMM · GPM

1 Introduction

As elaborated elsewhere in this book, precipitation is a critical weather element for
determining the habitability of different parts of the Earth, yet is difficult to mea-
sure adequately with surface-based instruments due to its small-scale variability in

G.J. Huffman (B)
Laboratory for Atmospheres, NASA/GSFC, Code 613.1, Greenbelt, MD 20771, USA
e-mail: george.j.huffman@nasa.gov

3M. Gebremichael, F. Hossain (eds.), Satellite Rainfall Applications for Surface
Hydrology, DOI 10.1007/978-90-481-2915-7_1,
C© Springer Science+Business Media B.V. 2010



4 G.J. Huffman et al.

space and time. Thus, satellite-borne sensors play a key role in estimating precipita-
tion. The proliferation of precipitation-sensing satellites in the last 20 years (Fig. 1)
has tremendously enhanced our ability to estimate precipitation over much of the
globe, but the critical piece of the puzzle is deciding how to combine all of these
individual estimates to form a single, best estimate. The desired result is a stable,
long, quasi-global time series of precipitation estimates on a uniform time/space grid
that has the finest scale that the data will reasonably support. Several factors work
against these attributes. Starting at the finest granularity, each sensor, and associ-
ated algorithms, has strengths and weaknesses that can affect its accuracy, usually
varying by region. A second factor is that the equatorial crossing times of the vari-
ous low-Earth-orbit (leo) precipitation-sensing satellites is uncoordinated, although
operational agencies typically strive to maintain one or two specific satellites in pre-
ferred orbits. This dependence on satellites of opportunity introduces larger gaps in
temporal sampling than would be the case for a coordinated constellation. As well,
many of the satellites drift (Fig. 1), giving interannual changes in the gaps, even
for the same complement of satellites. Finally, the number and types of satellites
change over time, implying that the input data cannot be considered homogeneous.
Accordingly, schemes that seek to combine all of these inputs into a “best” dataset
must be designed around, and examined for, these issues.

Fig. 1 Time history of Equator-crossing times (in local standard time) of precipitation-sensing
microwave satellites/sensors through September 2008. All are ascending node, except for DMSP
F08 and MetOp-A. The thickest lines denote the satellite used as a calibrator in the GPCP datasets.
TRMM is denoted by shading because it precesses, covering all overpass times in the course of a
43-day period
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The Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation
Analysis (TMPA) was designed with a heritage that includes the Adjusted
Geosynchronous Operational Environmental Satellite (GOES) Precipitation Index
(AGPI; Adler et al. 1994), the Global Precipitation Climatology Project (GPCP)
monthly satellite-gauge (SG) combination (Huffman et al. 1997; Adler et al. 2003),
and the GPCP One-Degree Daily (Huffman et al. 2001) combination estimates of
precipitation. In common with these predecessor data sets, we identify a specific
high-quality data set as the calibrator, and then work to make the remaining input
data as consistent as possible with the calibrator data. In contrast to the predecessor
data sets, the TMPA is designed to use “all” available data, meaning that we are
accepting the potential inhomogeneities of a time-varying complement of inputs in
return for potentially better combination results when more high-quality data are
available. Table 1 summarizes key features of the TMPA data sets, including the
input data sources. Another difference with the earlier data sets is that the TMPA
is generated twice, first as a real-time (RT) product computed about 6–9 h after
observation time, and then as a post-real-time research product computed about 15
days after the end of the month with additional data, including monthly surface rain
gauge data.

The spatial resolution was chosen as 0.25◦ × 0.25◦ latitude/longitude to ensure
that the grid box is somewhat larger than the typical footprint size for passive

Table 1 Summary of TMPA dataset characteristics. All inputs except the TRMM sensors (TMI
and PR) and AMSR-E are from multiple satellites. The TMPA generally uses a subset of each
sensor’s period of record due to various procedural limitations

Real-time product Research product

Input sensor-algorithm
datasets

TMI-and-PR–TCI1

TMI–GPROF1

AMSR-E–GPROF
SSM/I–GPROF
AMSU–NESDIS
MHS–NESDIS

TMI–GPROF
AMSR-E–GPROF
SSM/I–GPROF
AMSU–NESDIS

geo-IR–VAR geo-IR–VAR
leo-IR–VAR
Monthly

raingauge–GPCC2

Monthly climatological
TMI-TCI quantile-quantile
and TCI-3B43V.6 ratio
calibrations2

Spatial scale, extent 0.25◦×0.25◦, 50◦N–50◦S 0.25◦×0.25◦, 50◦N–50◦S
Temporal scale, extent 3-h, 1 October 2008-present3 3-h, 1 January 1998-present

1Microwave calibration standard.
2Final dataset calibrator(s).
3Estimates lacking the climatological calibration start 7 February 2005.
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microwave (hereafter “microwave”) precipitation estimates, which are the coars-
est estimates in common use. The spatial domain was set to 50◦N–50◦S because
all of the microwave and infrared (IR) estimates we are using tend to lose skill at
higher latitudes. The temporal resolution was chosen as 3 h because (1) it allows
us to resolve the diurnal cycle, (2) it matches the mandated interval for full-disk
images from the international constellation of geosynchronous (geo) satellites, and
(3) it provides a reasonable compromise between spatial coverage and temporal
frequency for gridding the asynoptic microwave estimates from leo satellites. The
time spans covered by the TMPA data sets are currently determined by the start of
TRMM for the research product and the start of recent-version processing for the
RT product, respectively.

The following sections briefly address the instruments and input datasets that
are used in the TMPA (Section 1.2), the methodology used to combine them
(Section 1.3), and their current status (Section 1.4). Then we display some compar-
isons and examples (Section 1.5) and end by discussing future plans (Section 1.6).

2 Instruments and Input Datasets

The TMPA depends on input from two different types of satellite sensors, namely
microwave and IR. First, precipitation-related microwave data are being collected by
a variety of leo satellites (Fig. 1), including the TRMM Microwave Imager (TMI) on
TRMM, Special Sensor Microwave/Imager (SSM/I) and Special Sensor Microwave
Imager/Sounder (SSMIS) on Defense Meteorological Satellite Program (DMSP)
satellites, Advanced Microwave Scanning Radiometer for the Earth Observing
System (AMSR-E) on Aqua, the Advanced Microwave Sounding Unit (AMSU)
on the National Oceanic and Atmospheric Administration (NOAA) satellite series,
and the Microwave Humidity Sounders (MHS) on later NOAA-series satellites and
the European Operational Meteorological (MetOp) satellite. All of these data have
a direct physical connection to the hydrometeor profiles above the surface, but each
individual satellite provides a very sparse sampling of the time-space occurrence of
precipitation. Even when composited into 3-h datasets, the current “full” microwave
coverage averages about 80% of the Earth’s surface in the latitude band 50◦N–S and
amounted to about 40% at the beginning of the TMPA record in 1998 with three
satellites. Not all of the data shown in Fig. 1 can be used in the TMPA. For example,
a signal contamination problem on the F15 DMSP that began in August 2006 sus-
pended its use, while various new sensors are in the process of being incorporated
into the products, including the SSMIS (DMSP F16 and F17) and MHS (NOAA 18
and MetOp).

Each pixel-level microwave observation from TMI, AMSR-E, SSM/I, and
SSMIS is converted to a precipitation estimate with sensor-specific versions of the
Goddard Profiling Algorithm (GPROF; Kummerow et al. 1996, Olson et al. 1999)
for subsequent use in the TMPA. This takes place at the Precipitation Measurement
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Missions’ (PMM) Precipitation Processing System (PPS), formerly known as the
TRMM Science Data and Information System (TSDIS). GPROF is a physically-
based algorithm that applies a Bayesian least-squares fit scheme to reconstruct the
observed radiances for each pixel by selecting the “best” combination of thousands
of pre-computed microwave channel upwelling radiances based on TRMM precip-
itation radar (PR) data. As part of the processing the microwave data are screened
for contamination by surface effects.

Pixel-level microwave radiances from AMSU-B and MHS are converted to pre-
cipitation estimates at the National Environmental Satellite Data and Information
Service (NESDIS) using operational versions of the Zhao and Weng (2002) and
Weng et al. (2003) algorithm. Ice Water Path (IWP) is computed from the 89-
and 150-Ghz channels, with a surface screening that employs ancillary data.
Precipitation rate is then computed based on the IWP and precipitation rate rela-
tions derived from cloud model data based on the NCAR/PSU Mesoscale Model
Version 5 (MM5).

The AMSU-B algorithm detects solid hydrometeors, but not liquid. The multi-
channel conical-scan passive microwave sensors (TMI, AMSR, SSM/I) similarly
sense only solid hydrometeors over land, so the AMSU-B estimates are roughly
comparable for land areas. However, over ocean the conical scanners also sense
liquid hydrometeors, providing additional sensitivity, including to warm rain con-
tributions from clouds that largely or totally lack the ice phase. As a result, the
AMSU-B estimates over ocean are relatively less capable in detecting precipitation
over ocean. An upgrade in 2007 added an emission component to increase the areal
coverage of rainfall over oceans through the use of a liquid water estimation using
AMSU-A 23.8 and 31 GHz (Vila et al. 2007). Additionally, an improved coastline
rainrate module was added that computes a proxy IWP using the 183 GHz bands
(Kongoli et al. 2007). (Despite the over-land focus of this book, some background
on “coast” and “ocean” will be given for completeness.)

The second major data source for the TMPA is the geo-IR data, which provide
excellent time-space coverage, in contrast to the microwave data. However, all IR-
based precipitation estimates share the limitation that the IR brightness temperatures
(Tb) primarily represent cloud-top temperature, and implicitly cloud-top height.
Arkin and Meisner (1987) showed that IR estimates are poorly correlated to precip-
itation at fine time/space scales, but relatively well-correlated at scales larger than
about 1 day and 2.5◦ × 2.5◦ of lat./long. The Climate Prediction Center (CPC) of
the National Weather Service/NOAA merges geo-IR data from the five main inter-
national geo satellites into half-hourly 4 × 4-km-equivalent lat./long. grids for the
domain 60◦N–60◦S (hereafter the “CPC merged IR”; Janowiak et al. 2001). This
dataset contains IR Tb’s corrected for zenith-angle viewing effects and inter-satellite
calibration differences. At present, the research TMPA estimates generated prior to
the start of the CPC merged IR data set in early 2000 are computed using a GPCP
data set (also produced at CPC) that contains 24-class histograms of geo-IR Tb data
on a 3-h, 1◦ × 1◦ lat./long. grid covering the latitude band 40◦N–S (hereafter the
“GPCP IR histograms”; Huffman et al. 2001). This data set also includes GOES
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Precipitation Index (GPI; Arkin and Meisner 1987) estimates computed from leo-
IR data recorded by the NOAA satellite series, averaged to the 1◦ × 1◦ grid. The
TMPA fills gaps in the geo-IR coverage with these data, most notably before June
1998 in the Indian Ocean sector.

Finally, the research TMPA employs three additional data sources: the TRMM
Combined Instrument (TCI) estimate, which combines data from both TMI and
the PR (TRMM product 2B31; Haddad et al. 1997a, b); the Global Precipitation
Climatology Centre (GPCC) monthly rain gauge analysis (Rudolf 1993); and the
Climate Assessment and Monitoring System (CAMS) monthly rain gauge analysis
developed by CPC (Xie and Arkin 1996).

3 General Methodology

The research-quality TMPA is computed in four stages; (1) the microwave precip-
itation estimates are inter-calibrated and combined, (2) IR precipitation estimates
are created using the calibrated microwave precipitation, (3) the microwave and IR
estimates are combined, and (4) rain gauge data are integrated. The real-time TMPA
lacks the fourth step and has a few simplifications, as outlined in Section 1.3.3. Each
TMPA precipitation field is expressed as the precipitation rate effective at the nom-
inal observation time because most gridboxes contain data from one snapshot of
satellite data. Figure 2 is a high-level summary of the following sections.

3.1 Combined Microwave Estimates

Each microwave precipitation data set is averaged to the 0.25◦ spatial grid over the
time range ±90 min from the nominal 3-h observation times (00Z, 03Z, . . ., 21Z).
Probability matching to a “best” estimate using coincident matchups is used to
adjust each sensor with a quantile-quantile relationship, similar to Miller (1972) and
Krajewski and Smith (1991). Although we wish to adopt the TCI as the calibrating
data source, the coincidence of TCI with any of the sensors other than TMI is sparse,
so we establish a TCI–TMI calibration, then apply that to TMI. The remaining sen-
sor data are all calibrated to TMI, and then adjusted to the TCI using the TCI–TMI
calibration. The TCI–TMI relationship is computed on a 1◦ × 1◦ grid for each
month with the coincident data aggregated on overlapping 3◦ × 3◦ windows. The
TCI–TMI calibration interval for the research product is a calendar month, and the
resulting adjustments are applied to data for the same calendar month. This choice
is intended to keep the dependent and independent data sets for the calibrations as
close as possible in time.

Preliminary work showed that the TMI calibrations of the other sensors’
estimates are adequately represented by climatologically-based coefficients repre-
senting large areas. In the case of the TMI–SSM/I calibration, separate calibrations
are used for five oceanic latitude bands (40–30◦N, 30–10◦N, 10◦N–10◦S, 10–30◦S,
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Fig. 2 Block diagram for the TMPA. Slanted hatched background indicates calibration steps that
are different in the RT and research products. Square- and cross-hatched backgrounds indicate final
RT and research calibration steps, respectively

30–40◦S) and a single land-area calibration for each of four three-month seasons.
The TMI–AMSR-E and TMI–AMSU/MHS calibrations are given one climatologi-
cal adjustment for land and another for ocean. The AMSU/MHS calibration has two
additional issues. First, the NESDIS algorithm changed on 31 July 2003 and 31 May
2007, so separate sets of calibrations are provided for the data periods. Second, in
all periods the AMSU/MHS fractional occurrence of precipitation in the subtropical
highs is notably deficient. After extensive preliminary testing, the authors judged it
best to develop the ocean calibration as a single region, recognizing that the resulting
fields would have a somewhat low bias. Huffman et al. (2007) show that the low bias
is somewhat larger than expected, but this does not affect the over-land hydrology
applications on which this book focuses. In all cases the calibrations in the 40◦–50◦
latitude belts in both hemispheres are simply taken to be the calibrations that apply
just Equator-ward of 40◦.

Once the microwave estimates are calibrated for each satellite and quality-
controlled, each gridbox is filled using the “best” available data to produce the
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High Quality (HQ) microwave combination field. The TCI alone is used, if avail-
able. If not, when there are one or more overpasses available from TCI-adjusted
TMI, AMSR-E, SSM/I, and SSMIS in the 3-h window for a given grid box, all of
these data are used (averaging as necessary). The histogram of precipitation rate
is somewhat sensitive to the number of overpasses averaged together, so it would
be more consistent to take the single “best” overpass in the data window period.
Finally, the TCI-adjusted AMSU/MHS estimates are only used if none of the other
microwave estimates are available for the grid box, due to the detectability defi-
ciency in the AMSU/MHS estimates over ocean discussed above. Detectability is
equally problematic over land for AMSU/MHS and conical-scan sensors, so this
rule is unnecessarily restrictive, but likely not a serious problem.

3.2 Microwave-Calibrated IR Estimates

The IR data are not provided at the 0.25◦ resolution, so some pre-processing is
required. In the early period of the research product (1 January 1998 to 7 February
2000), each grid box’s histogram in the 1◦×1◦ 3-h GPCP IR histogram dataset is
zenith-angle corrected, averaged to a single Tb value for the grid box, and plane-fit
interpolated to the 0.25◦ grid. For the period from 7 February 2000 onwards, the
CPC Merged IR is averaged to 0.25◦ resolution and combined into hourly files as
±30 min from the nominal time. Time-space matched HQ precipitation rates and IR
Tb’s are accumulated for a month into histograms of 3-h 0.25◦×0.25◦ values on a
1◦×1◦ grid, aggregated to overlapping 3◦×3◦ windows, and then used to convert IR
Tb’s to precipitation rates. As in the TCI–TMI calibration for the HQ, the calibration
period is the calendar month. Quality control is again applied to the HQ here to
control artifacts.

The IR precipitation estimate is a simple “colder clouds precipitate more”
approach, with the coldest 0.25◦×0.25◦-average Tb assigned the greatest observed
HQ precipitation rate, and so on, with zero precipitation assigned for all Tb’s
warmer than a spatially varying threshold value determined by the fractional cover-
age of precipitation in the microwave data. We refer to this approach as the variable
rainrate (VAR) algorithm. Calibration coefficients in grid boxes that lack coincident
data throughout the month, usually due to cold-land dropouts or quality control,
are computed using smooth-filled histograms of coincident data from surrounding
grid boxes. Strict probability matching tends to show unphysical fluctuations at
the highest precipitation rates, so we somewhat subjectively choose to replace the
coldest 0.17% of the Tb histogram by a fourth-order polynomial fit to a climatology
of coldest-0.17%–precipitation rate points around the globe. In each grid box a
constant is added to the climatological curve to make it piecewise continuous with
the grid box’s Tb-precipitation rate curve at the 0.17% Tb. The HQ–IR calibration
coefficients computed for a month are applied to each 3-h IR data set during that
month.
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3.3 Merged Microwave and IR Estimates

It is somewhat challenging to combine the HQ and IR precipitation estimates at
individual times because the quantities being sensed tend to have different fine-
scale patterns. Accordingly, we simply use the more physically-based HQ estimates
“as is” where available, and fill the remaining grid boxes with HQ-calibrated IR
estimates. This scheme provides the “best” local estimate, but the time series of
precipitation estimates has heterogeneous statistics, including data boundaries in
space and time.

3.4 Rescaling to Monthly Data

The final step in creating the research product is to introduce monthly rain gauge
data. Huffman et al. (1997), among others, have demonstrated the advantages of
including rain gauge data in combination data sets at the monthly scale, but we
were skeptical of including sub-monthly data due to issues of data coverage and
timeliness. Rather, we adopt the approach we took in the GPCP One-Degree Daily
combination data set, which is to scale the short-period estimates to sum to a
monthly estimate that includes monthly gauge data (Huffman et al. 2001). All
available 3-h merged HQ-IR estimates are summed over the calendar month to
create a monthly multi-satellite (MS) product. The MS and gauge are combined
using inverse-error-variance weighting as in Huffman et al. (1997) to create a post-
real-time monthly satellite-gauge combination (SG), which is posted by PPS as a
separate TRMM product (3B43). Then for each gridbox the (monthly) SG/MS ratio
is computed, then applied to scale each 3-h field in the month, producing the Version
6 3B42 product. The final fields have the detail of the satellite data, but have nearly
neutral monthly bias compared to gauges (i.e., over land).

The output of the 3-h algorithm is best viewed as movie loops, examples of which
are posted at http://trmm.gsfc.nasa.gov under the button labeled “Realtime 3 h &
7 Day Rainfall”.

3.5 RT Algorithm Adjustments

The RT and research product systems are designed to be as similar as possible to
ensure consistency between the resulting data sets. One important difference is that
the research product’s calibrator, the TCI, is not available in real time. In its absence
we use the TMI estimates as the initial RT calibrator. A second important difference
is that a real-time system cannot reach into the future, so the microwave-IR calibra-
tion “month” is taken as the five trailing and one current (partial) pentads, or 5-day
calendar intervals, of accumulated coincident data. As in the research product, the
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inter-calibration of individual microwave estimates to the TMI is handled with cli-
matological coefficients. The HQ-IR calibration is recomputed for each 3-h period
to capture rapid changes in the calibration for rare heavy rain events. Third, the
monthly gauge adjustment step carried out for the research product is not possible
for the RT.

Starting 17 February 2009, we implemented a procedure to address the sec-
ond and third differences listed above. It is labeled “Version 6”, but this should
not be confused with Version 6 of the official TRMM products 3B42 and 3B43.
Preliminary testing showed that computing these adjustments on a climatological
basis provoked fewer artifacts than attempting to use data from trailing months.
Therefore, we first determine a matched histogram calibration of TMI to the TCI,
computed for 10 years of coincident data to establish the climatology for each
calendar month. Second, a climatological monthly calibration of TCI to the 3B43
research product is computed as a simple ratio, again on a 1◦ × 1◦ spatial grid and
using 10 years of data. Finally, the TMI–TCI and TCI–3B43 calibrations are suc-
cessively applied to the preliminary 3-h RT multi-satellite product to create the final
3B42RT.

4 Current Status on Algorithm Development

The research product system is currently running as the Version 6 algorithm for
TRMM product 3B42, although that product provides only the final gauge-adjusted
merged microwave-IR field. The Version 6 TRMM 3B43 product provides the post-
real-time monthly SG described above. Version 6 data are available for January
1998 to the (delayed) present at http://lake.nascom.nasa.gov/data/dataset/TRMM/.
Users should be aware that beta testing is underway at press time for Version 7, as
discussed in Section 1.6.

The RT system has been running routinely on a best-effort basis in the PPS
(originally TSDIS) since late January 2002, and the last major upgrade occurred
at 00 UTC 17 February 2009, at which point an archive of new Version 6 RT esti-
mates starting 00 UTC 1 October 2008 was released. For simplicity, a fixed latency
(currently 9 h after nominal observation time) triggers the processing. The com-
bined microwave, microwave-calibrated IR, and merged microwave-IR estimates,
which are labeled 3B40RT, 3B41RT, and 3B42RT, respectively, are available from
ftp://trmmopen.gsfc.nasa.gov or http://precip.gsfc.nasa.gov. All RT estimates cre-
ated before 7 February 2005 are considered obsolete because they have rather
different processing, and therefore should not be used. As part of the release
of 17 February 2009 the format for 3B42RT was augmented so that the “new”
climatologically-calibrated precipitation estimate is provided in the first (“precip”)
field, but an additional field is appended to each file providing the “old” uncalibrated
precipitation estimate. This configuration permits users to continue using their pre-
viously established analysis routines by accessing the additional precipitation field
at the end of each file.
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Both data sets (and other precipitation data) are also accessible in the inter-
active Web-based TRMM On-line Visualizations and Analysis System (TOVAS)
at http://lake.nascom.nasa.gov/Giovanni/tovas. The TOVAS site can be particularly
helpful for new users, since it allows them to quickly create graphics from any of
the TMPA data sets. These results can be used as the standard to validate the data
access/navigation/scaling carried out in the users’ own application code.

5 Comparisons and Examples

Both versions of the TMPA have been produced for a sufficiently long time that
researchers have had the chance to develop and start reporting various applications
and validations that employ one or both versions. As well, the TMPA is examined
in other chapters in this book, including Chapters 10–13. This section summarizes
some of the previous results and provides some test results illustrating the new
climatological calibration that was recently instituted in the real-time product.

5.1 Prior Results

Basic validation statistics have been reported for a number of locations, including
primarily ocean locations (Huffman et al. 2007; Sapiano and Arkin 2009) and pri-
marily land areas (Ebert et al. 2007 and Tian et al. 2007, among others). The latter set
are most interesting to hydrologists. The Ebert et al. (2007) study introduces notable
on-going systematic daily continental-scale validation of many different quasi-
operational precipitation estimates for Australia, the continental United States,
western Europe, parts of South America, and other sites, organized through the
International Precipitation Working Group (IPWG) of the Coordinating Group for
Meteorological Satellites. The various Web sites for these regions are accessible
through http://www.bom.gov.au/bmrc/SatRainVal/validation-intercomparison.html,
and each provides a variety of detailed and summary statistics.

The first major result arises from the fact that the histogram of precipitation rates
in the microwave input data is generally more accurate over ocean than over land as
discussed above. As such, the land estimates are best in convective regimes, where
the icy hydrometeors that cause scattering are well-correlated to surface rainfall.
It is also the case that the more-approximate IR estimates are better correlated
to short-interval precipitation in convective conditions. Conversely, the stratiform
clouds that tend to dominate in cool-season and frontal conditions lead to signifi-
cant mis-estimation using IR algorithms. The behavior for numerical models tend
to be the opposite, estimating precipitation more accurately when the model convec-
tive parameterizations are not a major factor. As a result, observational estimates,
including the TMPA, tend to out-perform models in warm/convective conditions
and vice-versa in cool-season stratiform conditions (Ebert et al. 2007).

A second major result is that fine-scale precipitation estimates tend to have high
uncertainty, while averaging in space and time improves the error characteristics. As
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discussed in Huffman et al. (2007), the fine-scale uncertainty arises from a number
of issues, including algorithmic uncertainty and variations in the observational char-
acteristics of the various input sensors. Figure 4 in Huffman et al. (2007) exemplifies
the variations among near-simultaneous estimates from different sensors. Hossain
and Huffman (2008), among others, show the systematic improvement in uncer-
tainty that occurs across a number of metrics when increasingly more time/space
averaging is applied. The issue, of course, is that many users’ applications require
the full resolution. Nonetheless, the implicit averaging that results from, say, com-
puting hydrologic drainage basin flows, can allow the relatively uncertain estimates
to be useful (Nijssen and Lettenmaier 2004; Hong et al. 2007).

A third major result from previous studies is that the use of monthly gauge anal-
ysis data in the post-real-time research TMPA is beneficial, as demonstrated by
comparison to the real-time TMPA, which lacks gauge input. This is true at monthly
and longer time scales, as one might expect by construction, so that the climatology
for the research TMPA is close to that of the undercatch-corrected GPCC analysis
in most land regions. However, monthly gauge adjustment also brings improvement
on relatively short intervals (Ebert et al. 2007). This result is the basis for the shift
of the real-time TMPA to using calibration to the post-real-time research TMPA.

A few studies have examined how the histogram of precipitation values com-
pares for the two TMPA products (and other combination algorithms). Typically,
the TMPA shows somewhat too many high-precipitation-rate values and lacks pre-
cipitation events at the low rates (Fisher and Wolff 2008; Tian et al. 2007). The
result is that rain areas tend to be too small in size and have conditional rates that
are too high. These results are consistent with the finding in Jiang et al. (2008) that
the fraction of precipitation produced by tropical cyclones is as much as 30–50%
higher in the TMPA than in comparable radar and raingauge data. That is, regions
that possess a concentration of high precipitation rates will likely have an excess in
the TMPA due to the characteristic bias in the TMPA histograms.

More qualitatively, it is clear that the performance of the TMPA and other com-
bination products is critically dependent on the quality of the input data sets. All
of the combination schemes attempt to limit the impact of defects and disparities in
the input precipitation data, but the options are limited. For example, the TMPA pro-
cess starts by auditing the input microwave estimates for possible artifacts based on
“ambiguous pixel” flags contained in the GPROF datasets. All microwave datasets
are then intercalibrated to a single reference, which is the GPROF-TMI for the real-
time product and the TCI (Haddad et al. 1997a, b) for the non-real-time research
product. Likewise, the IR calibration is computed from the combined microwave
product. These actions should minimize shifts in bias as various satellites con-
tribute intermittently during the day. Issues that cannot be addressed with current
tools include: orographic enhancement and warm rain processes in general over
land, where only the solid-hydrometeor-based scattering signal is useful; lack of
sensitivity to light or very small-scale precipitation; and lack of retrieval skill in
frozen surface areas. The older versions of GPROF used up to now in the TMPA
(and other combinations) display artifacts in some coastal regions, including around
inland water bodies (Tian and Peters-Lidard 2007), but it is possible that the new
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GPROF2008 will correct this issue (Kummerow, 2008, “personal communication”).
There are deficiencies in the current gauge analysis in regions of complex terrain,
usually underestimates, but the new analysis available from the GPCC (Schneider
et al. 2008) should improve this situation. It will continue to be the case that some
underdeveloped areas, such as central Africa, are highly deficient in gauge obser-
vations, leading to more uncertainty in those regions for the post-real-time research
TMPA.

Additional studies of TMPA performance may be found listed in the document
posted at ftp://precip.gsfc.nasa.gov/pub/trmmdocs/TMPA_citations.pdf.

5.2 Climatological Calibration of the RT

As noted above, the real-time TMPA was upgraded in early 2009 to include a
climatological calibration to the post-real-time research TMPA product. Here, we
summarize the test data that were used to validate improved performance. Months
representative of each season, namely January, April, July, and October in 2007,
were computed and then compared to the original uncalibrated RT product. As well,
new calibrated RT estimates were computed for October-December 2008 and sim-
ilarly examined. The months in 2007 are not fully independent of the calibration
coefficients, since 2007 is one of the ten years used in the calibration, but we believe
this should not be a critical factor.

The monthly accumulations of all matched 3-h estimates for July 2007 from each
scheme (Fig. 3) have a very similar visual appearance, but there are important dif-
ferences (Fig. 4 (top, middle)). The Version 6 product is taken as the standard in
this discussion, since the reason for the calibration is to make the RT as consis-
tent with Version 6 as possible. The excess precipitation displayed by the original
RT (Fig. 4 (top)) in Africa, the U.S., and Mesoamerica for this particular month
is consistent with typical warm-season results, as are the low values in northeastern
Equatorial South America, the Western Ghats in India, and the monsoonal maximum
in Bangladesh and surrounding areas. We examine the success of the calibration by
defining the improvement (Ical) as

Ical = |3B42RT(cal) − 3B42V6| − |3B42RT(uncal) − 3B42V6|

where each term represents the monthly average of the product named. The cali-
brated RT is closer to Version 6 in regions where Ical<0, while the uncalibrated RT
is closer for Ical>0. This metric tends to emphasize regions with high precipitation,
since a larger dynamic range is possible, but this seems appropriate from a global
water and energy balance perspective.

The Ical for July 2007 (Fig. 4(bottom)) demonstrates that most of the regions
with biases likely dominated by regimes noted above see improvement with the new
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Fig. 3 Average precipitation rate in mm/d for July 2007 for the (top) uncalibrated RT, (middle)
calibrated RT, and (bottom) V6 TMPA precipitation products

calibration scheme (green and blue colors). By comparison with the individual dif-
ference images in Fig. 4 (top, middle), it is clear that the improvement is frequently
in the sense of simply reducing the bias, rather than fully correcting it. The climato-
logical relationships are not always effective for an individual month. Most notably
along the coast of Myanmar, but also in the Sahel, western coastal India, southern
Japan, and southern Brazil, the calibration drives the result further from correspon-
dence to 3B42V6 for this particular month. We should expect such fluctuations to
occur when the selection of regimes experienced in individual months do not match
up with the climatological distribution of regimes by month, but future work will
include an analysis of such cases for possible design issues with the calibration
scheme.

The two-dimensional histograms displayed in Fig. 5 give a better depiction of
how the calibration works over the whole domain, broken into land and water areas,
since gauge influence is only at work over land. In both regions the bulk of the
calibrated points (bottom diagrams) are clustered more closely about the 1:1 line
than for the uncalibrated (top). Note that the thin scatter of high values tends to be
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Fig. 4 Monthly average difference between (top) uncalibrated RT and V6, and (middle) calibrated
RT and V6. (bottom) Improvement metric defined in Eq. (1), Ical, which is the absolute value of
the top image subtracted from the absolute value of the middle image. In all three panels the units
are mm/d, the data are for July 2007, and the fields referenced are displayed in Fig. 3

shifted toward higher RT values when calibration is applied, reducing the negative
bias that appears to characterize the high end before calibration in this month.

Bias and root-mean-square (RMS) differences are summarized in Table 2 for all,
ocean, and land areas in the latitude band 50◦N–50◦S for the seven test months.
Changes in the bias are small and only favor the calibration scheme in about half
of the months for each of the regions. These changes are not considered impor-
tant, since the overall bias is a small residue of regions of opposing sign. That is,
improvements predominantly in regions of one sign could easily drive the average
result. The RMS is a more sensitive measure because it quantifies the degree to
which the RT is close to the V6. Near-unanimous improvement in both land and
ocean with the calibration confirms our qualitative impression from Figs. 4 and 5
that the calibration is working as intended. The lack of skill over land for January
2007 and December 2008 perhaps indicates that the results are sensitive to the treat-
ment of artifacts in winter land conditions, which dominate in those months due to
the preponderance of land in the Northern Hemisphere.
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Fig. 5 Two-dimensional histograms of monthly precipitation for TMPA-RT without (top) and
with (bottom) climatological calibration against V.6 TMPA for land (left) and ocean (right) for
July 2007, corresponding to the maps in Fig. 3

6 Future Plans/Conclusions

The TMPA is intended to provide a “best” estimate of quasi-global precipita-
tion from the wide variety of modern satellite-borne precipitation-related sensors.
Estimates are provided at relatively fine scales (0.25◦ × 0.25◦, 3-h) in both real and
post-real time to accommodate a wide range of research applications. However, the
errors inherent in the finest scale estimates are large. The most successful use of the
TMPA data takes advantage of the fine-scale data to create averages appropriate to
the user’s application.
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Table 2 Bias and root-mean-square (RMS) difference statistics comparing monthly accumula-
tions of uncalibrated and calibrated 3B42RT estimates, taking monthly accumulations of Version
6 3B42 as the standard. Results are displayed for all, ocean, and land regions in the latitude band
50◦N–50◦S for selected months in units of mm/d

Bias (mm/d) RMS (mm/d)

RT(uncal)–V6 RT(cal)–V6 RT(uncal)–V6 RT(cal)–V6

Land 0.203 0.511 2.09 2.41
Jan’07 Ocean 0.020 0.016 1.04 0.88

All 0.069 0.147 1.40 1.45
Land 0.603 0.467 2.16 1.86

Apr’07 Ocean 0.046 0.073 1.00 0.90
All 0.194 0.178 1.41 1.23
Land 0.399 0.535 2.31 1.90

Jul’07 Ocean −0.079 0.053 1.04 0.98
All 0.048 0.181 1.49 1.29
Land .650 0.439 2.17 1.79

Oct’07 Ocean 0.057 0.100 0.93 0.92
All 0.214 0.190 1.37 1.21
Land 0.162 −0.012 1.60 1.56

Oct’08 Ocean −0.012 −0.042 0.90 0.80
All 0.034 −0.034 1.13 1.05
Land −0.364 −0.315 1.78 1.66

Nov’08 Ocean −0.007 0.000 0.99 0.87
All −0.101 −0.083 1.25 1.13
Land −0.194 −0.605 1.66 1.86

Dec’08 Ocean 0.042 0.035 0.94 0.86
All −0.020 −0.134 1.17 1.21

At press time an upgrade of the research quality post-real-time TMPA from
Version 6 to Version 7 was in beta test, providing a variety of improvements that
modernize the input data sets and correct several issues. Specifically, the latest
GPROF code is being introduced for SSM/I (including a correction for the channel
interference on F15), SSMIS (thus bringing in the F16 and F17 records), AMSR-E,
and TMI; improved AMSU estimates are used; and MHS estimates from NOAA-18
and MetOp-A are included. The GPCC’s improved raingauge analyses are included
for both retrospective and initial (i.e., new-data) processing. Finally, we have sub-
stantially augmented the fields available in the output product data files. In 3B42,
we are adding fields of merged microwave precipitation, microwave-calibrated IR
precipitation, and microwave overpass time, in addition to providing more detail as
to the particular sensor on which the final precipitation estimate is based. In 3B43
we are including a data field for the relative weighting that the gauges receive in
each grid box.

The immediate task at hand is to complete the current beta test of the Version 7
TMPA system, reprocess the TRMM archive, and commence Version 7 computa-
tions on new observations. Once Version 7 is established, presumably in early 2010,
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Version 6 will be considered obsolete. As well, at that point the climatological cal-
ibrations in the RT will be updated to Version 7, rendering the Version 6-calibrated
RT obsolete. Status messages are posted routinely in the “Information” hot link
buttons on http://precip.gsfc.nasa.gov for the respective products.

Looking to the future, we are studying how best to extend the TMPA to higher
latitudes, for example by incorporating fully global precipitation estimates based
on Television Infrared Observation Satellite (TIROS) Operational Vertical Sounder
(TOVS), Advanced TOVS (ATOVS), and Advanced Infrared Sounder (AIRS) data.
It is also a matter of research to work toward a Lagrangian time interpolation
scheme, conceptually along the lines of the CPC Morphing algorithm (CMORPH;
Joyce et al. 2004) and the Global Satellite Map of Precipitation (GSMaP; Kubota
et al. 2007). Finally, it is still the case that the study of precipitation in general needs
a succinct statistical description of how errors in fine-scale precipitation estimates
should be aggregated through scales up to global/monthly (Hossain and Huffman
2008).

On the instrumentation side there is a concerted effort to provide complete 3-h
microwave data. Most of this effort is focused on the National Aeronautics and
Space Administration’s Global Precipitation Measurement (GPM) project. Besides
simply increasing the frequency of coverage, it is planned for GPM to provide a
TRMM-like “core” satellite to calibrate all of the microwave estimates on an on-
going basis over the latitude band 65◦N–S. We expect the geo-IR–based estimates
to have a long-term role in filling the inevitable gaps in microwave coverage, as well
as in enabling sub-3-h precipitation estimates at fine spatial scales.

References

Adler RF, Huffman GJ, Chang A, Ferraro R, Xie P, Janowiak JE, Rudolf B, Schneider U, Curtis
S, Bolvin DT, Gruber A, Susskind J, Arkin PA, Nelkin EJ (2003) The Version 2 Global
Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979-present).
J. Hydrometeor. 4:1147–1167

Adler RF, Huffman GJ, Keehn PR (1994) Global tropical rain estimates from microwave-adjusted
geosynchronous IR data. Remote Sensing Rev. 11:125–152

Arkin PA, Meisner BN (1987) The relationship between large-scale convective rainfall and cold
cloud over the Western Hemisphere during 1982–1984. Mon. Wea. Rev. 115:51–74

Ebert EE, Janowiak JE, Kidd C (2007) Comparison of near real time precipitation estimates from
satellite observations and numerical models. Bull. Amer. Meteor. Soc. 88:47–64

Fisher BL, Wolff DB (2008) Validating microwave-based satellite rain Rate retrievals over TRMM
Ground Validation sites. Amer. Geophys. Union (AGU) Fall Meeting, 15–19 December 2008,
San Francisco, CA

Haddad ZS, Smith EA, Kummerow CD, Iguchi T, Farrar MR, Durden SL, Alves M, Olson WS
(1997a) The TRMM “Day-1” radar/radiometer combined rain-profiling algorithm. J. Meteor.
Soc. Japan 75:799–809

Haddad ZS, Short DA, Durden SL, Im E, Hensley S, Grable MB, Black RA (1997b) A new
parameterization of the rain drop size distribution. IEEE Trans. Geosci. Rem. Sens. 35:532–539

Hong Y, Adler R, Hossain F, Curtis S (2007) Global runoff simulation using satellite rainfall esti-
mation and SCS-CN method. Water Resources Res 43(W08502) doi:10.1029/2006WR005739



TRMM Multi-Satellite Product 21

Hossain F, Huffman GJ (2008) Investigating error metrics for satellite rainfall data at hydrologi-
cally relevant scales. J. Hydrometeor. 9:563–575

Huffman GJ, Adler RF, Arkin P, Chang A, Ferraro R, Gruber A, Janowiak J, McNab A, Rudolf
B, Schneider U (1997) The Global Precipitation Climatology Project (GPCP) combined
precipitation data set. Bull. Amer. Meteor. Soc. 78:5–20

Huffman GJ, Adler RF, Bolvin DT, Gu G, Nelkin EJ, Bowman KP, Hong Y, Stocker EF, Wolff DB
(2007) The TRMM Multi-satellite Precipitation Analysis: Quasi-global, multi-year, combined-
sensor precipitation estimates at fine scale. J. Hydrometeor. 8:38–55

Huffman GJ, Adler RF, Morrissey M, Bolvin DT, Curtis S, Joyce R, McGavock B, Susskind J
(2001) Global precipitation at one-degree daily resolution from multi-satellite observations.
J. Hydrometeor. 2:36–50

Janowiak JE, Joyce RJ, Yarosh Y (2001) A real-time global half-hourly pixel-resolution IR dataset
and its applications. Bull. Amer. Meteor. Soc. 82:205–217

Jiang H, Halverson JB, Simpson J (2008) On the differences in storm rainfall from Hurricanes
Isidore and Lili. Part I: Satellite observations and rain potential. Wea. Forecasting 23:44–61

Joyce RJ, Janowiak JE, Arkin PA, Xie P (2004) CMORPH: A method that produces global pre-
cipitation estimates from passive microwave and infrared data at high spatial and temporal
resolution. J. Hydrometeor. 5:487–503

Kongoli, C, Pellegrino P, Ferraro R, 2007: The utilization of the AMSU high frequency mea-
surements for improved coastal rain retrievals. Geophys. Res. Lett., 34:L17809, doi:10.1029/
2007GL029940.

Krajewski WF, Smith JA (1991) On the estimation of climatological Z–R relationships. J. Appl.
Meteor. 30:1436–1445

Kubota T, Shige S, Hashizume H, Aonashi K, Takahashi N, Seto S, Hirose M, Takayabu YN,
Nakagawa K, Iwanami K, Ushio T, Kachi M, Okamoto K (2007) Global precipitation map
using satellite-borne microwave radiometers by the GSMaP Project: Production and validation.
IEEE Trans. Geosci. Remote Sens. 45:2259–2275

Kummerow, C., W.S. Olson, L. Giglio, 1996: A simplified scheme for obtaining precipitation and
vertical hydrometeor profiles from passive microwave sensors. IEEE Trans. Geosci. Remote
Sens. 34:1213–1232

Miller JR (1972) A climatological Z-R relationship for convective storms in the northern Great
Plains. 15th Conf. on Radar Meteor. 153–154

Nijssen B, Lettenmaier DP (2004) Effect of precipitation sampling error on simulated hydrological
fluxes and states: Anticipating the Global Precipitation Measurement satellites. J. Geophys.
Res. 109 D02103

Olson WS, Kummerow CD, Hong Y, Tao W-K (1999) Atmospheric latent heating distributions
in the Tropics derived from satellite passive microwave radiometer measurements. J. Appl.
Meteor. 38:633–664

Rudolf B (1993) Management and analysis of precipitation data on a routine basis. Proc.
Internat. Symp. on Precip. and Evap. (Eds. B. Sevruk, M. Lapin), 20–24 Sept. 1993, Slovak
Hydrometeor. Inst., Bratislava, Slovak Rep. 1:69–76

Sapiano MRP, Arkin PA (2009) An inter-comparison and validation of high resolution satellite
precipitation estimates with three-hourly gauge data. J. Hydrometeor. 10:149–166

Schneider U, Fuchs T, Meyer-Christoffer A, Rudolf B (2008) Global precipitation analysis
products. File GPCC_intro_products_2008.pdf at http://gpcc.dwd.de/. Accessed 8 December
2008

Tian Y, Peters-Lidard CD (2007) Systematic anomalies over inland water bodies in satellite-based
precipitation estimates. Geophys. Res. Lett. 34:L14403

Tian Y, Peters-Lidard CD, Choudhury BJ, Garcia M (2007) Multitemporal analysis of TRMM-
based satellite precipitation products for land data assimilation applications. J. Hydrometeor.
8:1165–1183

Vila, D, Ferraro R, Joyce R, 2007: Evaluation and improvement of AMSU precipitation retrievals.
J. Geophys. Res., 112: D20119, doi:10.1029/2007JD008617



22 G.J. Huffman et al.

Weng F, Zhao L, Ferraro R, Poe G, Li X, Grody N (2003) Advanced microwave sounding unit
cloud and precipitation algorithms. Radio Sci. 38:8068–8079

Xie P, Arkin PA (1996) Gauge-based monthly analysis of global land precipitation from 1971 to
1994. J. Geophys. Res. 101:19023–19034

Zhao L, Weng F (2002) Retrieval of ice cloud parameters using the advanced microwave sounding
unit. J. Appl. Meteor. 41:384–395



CMORPH: A “Morphing” Approach for High
Resolution Precipitation Product Generation

Robert J. Joyce, Pingping Xie, Yelena Yarosh, John E. Janowiak
and Phillip A. Arkin

Abstract The CMORPH technique was developed to synergize the most
desirable aspects of passive microwave (high quality) and infrared (spatial and
temporal resolution) data. CMORPH is a global (in longitude; 60◦N–60◦S) high-
resolution (∼0.10◦ latitude/longitude, 1/2-hourly) precipitation analysis technique
that uses motion vectors derived from half-hourly geostationary satellite IR imagery
to propagate precipitation estimates derived from passive microwave data. Multi-
hour precipitation totals derived via the CMORPH methodology are an improve-
ment over both simple averaging of all available microwave-derived precipitation
estimates and over other merging techniques that blend microwave and infrared
information but which derive estimates of precipitation directly from infrared data
when passive microwave data are not available.

Keywords CMORPH · Precipitation · Remote sensing

1 Introduction

The period from 1998 – present has witnessed an unprecedented number of satel-
lites with passive microwave (PMW) instruments. These instruments provide the
most accurate passive spaceborne estimates of precipitation to date. But because
those sensors are housed on low-earth orbit spacecraft there are significant spa-
tial and temporal sampling issues with data provided by them. Conversely, infrared
(IR) data are spatially complete and are available every 15–60 min over the entire
globe equatorward of about 60◦ latitude, but estimates of rainfall from IR data are
not as accurate as those derived from PMW data. This situation has spurred the
development of methods to combine these highly disparate data.
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The combination of precipitation estimates that are derived separately from
PMW and IR data has been done in a variety of ways. Turk et al. (2000) were
the first to do this on a global basis by developing a rain rate frequency matching
procedure on the precipitation estimates that are generated from IR and PMW data
that updates continually. This process provides a calibration between the IR bright-
ness temperatures and PMW-derived rainfall rates that provides a means to produce
rainfall estimates directly from the IR brightness temperature information that have
been “trained” to mimic the PMW-derived rainfall estimates. The TMPA method
(Huffman et al. 2007) uses PMW data to calibrate the IR-derived estimates and cre-
ates analyses that contain PMW-derived rainfall estimates when and where PMW
data are available and the calibrated IR estimates where PMW data are unavail-
able. The PERSIANN technique (Hsu et al. 1997) uses a neural network approach
to derive relationships between IR and PMW data which are applied to the IR data
to generate rainfall estimates. In each of these methods, some or all of the rainfall
estimates in the resulting analyses are generated directly from IR data.

CMORPH (Joyce et al. 2004) uses a different approach in which IR data are
used only to derive a cloud motion field that is subsequently used to propagate rain-
ing pixels; thus, only rainfall estimates that have been derived from PMW data are
used in the procedure. A similar technique has been developed recently (GSMaP;
Kubota et al. 2007) in which IR data are used to derive a motion field except that a
Kalman filter approach is used in the blending methodology; however, morphing is
not performed in that technique as of this writing.

2 Description of the CMORPH Data and Methodology

2.1 Infrared Data

IR brightness temperature information from all available geostationary satellites that
have been collected, quality-controlled, and merged into global data sets (Janowiak
et al. 2001) are used by the CMORPH technique. Every 30 min, new full earth-disc
IR images are obtained from the European geostationary meteorological satel-
lites (“Meteosat”) spacecraft (sub-satellite points 0◦ and 63◦E), but only every
three hours from the Geostationary Operational Environmental Satellite spacecraft
(GOES; sub-satellite points 75◦W and 135◦W) although northern and southern
hemispheric images are available from the GOES spacecraft during the intervening
30 min intervals. Full earth disk images are available from Japan’s Multi-Function
Transport Satellite (MTSAT; sub-satellite point 140◦E) at hourly intervals. The
MTSAT spacecraft replaced the Geostationary Meteorological Satellite (GMS)
spacecraft series (same sub-satellite point for both) in 2005.

The IR data management procedure constructs datasets for each satellite IR
image in which the data are interpolated to a rectilinear grid at 0.03635◦ of latitude
and longitude resolution (∼ 4 km at the equator). Then the data are subjected to a
parallax adjustment which corrects for the mis-navigation of high cloud (Vicente et
al. 2002), and corrects for erroneously cold limb effects at the edges of the scans
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due to atmospheric attenuation effects (Joyce et al. 2001). After these processes
have been completed, datasets for the individual satellite domains are merged to
form global fields (60◦N–60◦S) for each half-hourly period.

2.2 Passive Microwave Data

The PMW-derived precipitation estimates that are presently used in CMORPH
are generated from observations obtained from the NOAA polar orbiting opera-
tional meteorological satellites, the U.S. Defense Meteorological Satellite Program
(DMSP) satellites, and from NASA’s Tropical Rainfall Measuring Mission
(TRMM; Simpson et al. 1988) and Aqua satellites. The PMW instruments aboard
these satellites are the Advanced Microwave Sounding Unit (AMSU-B), the Special
Sensor Microwave Imager (SSM/I), the TRMM Microwave Imager (TMI), and the
Advanced Microwave Scanning Radiometer – Earth Observing System (AMSR-E),
respectively. The characteristics of these sensors are summarized in Table 1.

Table 1 Characteristics of PMW sensors and associated satellites used in CMORPH

Sensor

Spatial resolution
(footprint at
∼85 GHz) (km)

Observing time
(ascending orbit)

Frequencies
(GHz)

Altitude
(Km)

TMI 4.6 × 6.9 Precessing orbit 10, 19, 21, 37, 85 403a

SSM/I (F-13) 13 × 15 18:11 19, 22, 37, 85 830
SSM/I (F-14) 13 × 15 20:30 19, 22, 37, 85 830
SSM/I (F-15) 13 × 15 21:32 19, 22, 37, 85 830
AMSR-E (Aqua) 6 × 4 13:30 7, 11, 19, 24, 37, 89 705
AMSU-B (N-15) 15 × 15b 18:58 89, 150, 183 830
AMSU-B (N-16) 15 × 15b 13:57 89, 150, 183 830
AMSU-B (N-17) 15 × 15b 22:08 89, 150, 183 830

aAltitude raised from 360 km to 403 km over the August 7–24, 2001 period to save fuel and thus
extend the mission life.
bfootprint for nadir view, limb footprint extends to 45 km diameter.

The TMI instrument is a nine-channel radiometer that operates at five frequen-
cies, four of which are quite similar to the frequencies of the SSM/I instrument
(Table 1). Although the TRMM spacecraft orbit limits the geographic coverage
to 38◦N–38◦S latitude, TMI offers higher spatial resolution than SSM/I due to
the lower orbit of the TRMM spacecraft. Surface rainfall derived from the TMI
instrument is a product of NASA’s TRMM Science Data and Information System
(TSDIS) 2A12 algorithm (Kummerow et al. 1996). This algorithm uses a look-up
table that relates the vertical profiles of liquid and ice to surface rain rates to produce
rainfall rates both over land and ocean surfaces.

The SSM/I sensors aboard the DMSP platforms are operational on the F-13,
F-14 and F-15 satellites at the time of this writing. CMORPH ingests precipita-
tion estimates that are generated from an SSM/I rainfall algorithm (Ferraro 1997)
which utilizes the 85 GHz vertically polarized channel to relate the scattering of
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upwelling radiation by precipitation sized ice particles within the rain layer and in
the tops of convective clouds to surface precipitation rate that is run operationally at
NOAA’s National Environmental Satellite and Data Information Service (NESDIS).
A precipitation rate is derived empirically from the relationship between retrieved
ice amount in the rain layer and in the tops of convective clouds to actual surface
rainfall. This scattering technique is applicable over land and ocean. In addition,
the NOAA/NESDIS algorithm provides rainfall estimates over ocean surfaces via
methodology that is based upon the absorption of the upwelling radiation by rain and
cloud water (“emission” technique) at 19 and 37 GHz. Rainfall estimates derived
from such thermal emission channels are more directly related to precipitation than
scattering techniques (and thus more accurate) since they directly sense the thermal
radiation that is emitted from liquid hydrometeors. Error attributes of the algorithm
are described by Li et al. (1998) and McCollum et al. (2002).

The AMSU-B instrument is currently operational aboard the NOAA-15,
NOAA-16 and NOAA-17 polar orbiting satellites. The AMSU-B sensor has five
window channels and its cross track swath width (approximately 2200 km) contains
90 fields of view (FOV) per scan. The NOAA/NESDIS AMSU-B rainfall algorithm
(Ferraro et al. 2000; Zhao and Weng 2002; Weng et al. 2003) performs a physical
retrieval of ice water path (IWP) and particle size from the 89- and 150 GHz chan-
nels. Then a conversion from IWP to rain rate is made based on cloud simulations
from the Fifth-Generation NCAR/Penn State Mesoscale Model (MM5) and on com-
parisons with in situ data. The 183 GHz channel combined with surface temperature
is used to screen out desert and the 23, 31, and 89 GHz channels are used to screen
out snow as described in Zhao and Weng (2002).

2.3 Rainfall Mapping

The globally merged IR data analyses are available at 1/2 h intervals; thus, a 30 min
time resolution was selected for CMORPH. The 0.0727◦ latitude and longitude
(8 km at the equator) grid resolution used in CMORPH was determined by con-
sidering the spatial resolution of the various input data sources: 4 km (GOES IR),
3–5 km (Meteosat IR), and the coarser resolution of the AMSU-B and SSM/I
(∼13 km) derived precipitation estimates, combined with the notion that the grid
must be fine enough to represent the propagation of rainfall systems in half-hourly
time increments. Because the PMW-derived rainfall estimates are coarser than the
8 km grid scale, the estimates are first mapped to the nearest grid point on global
(60◦N–60◦S) rectilinear grids at 0.0727◦ of latitude and longitude resolution, sep-
arately for each half hour and for each satellite. Then satellite rainfall maps are
combined by sensor type so that when the processes described above are completed,
remotely sensed rainfall estimates for half-hourly periods for each sensor type
(TMI, SSM/I, AMSU-B, AMSR-E) are saved to separate files. The half-hourly
global IR data that are used to propagate the PMW precipitation estimates are aver-
aged to approximately 0.727◦ latitude/longitude resolution (8 km at the equator), to
match the grids that contain the PMW estimated rainfall.
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A precedence of sensor type was established to determine which estimate to use
when a PMW-derived estimate from more than one sensor type is available at the
same location for a given half hourly period. Several estimates may be available for
a given time and location because TRMM under-flies all other low orbiters used
in this study. The order of precedence was established based on spatial resolution
and the availability of both emission-based and scattering-based estimates over the
oceans. The resulting order of precedence in regions of overlap is to use estimates
from TMI first, then from AMSR-E if no estimate from TMI is available, followed
by SSMI and finally AMSU-B. Each pixel in the half hourly analyses is tagged with
a satellite identifier representing the orbiter used to produce the estimate and this
information is stored as part of the CMORPH archive suite.

2.4 Intercalibration of the Various PMW-Derived Precipitation
Estimates

It is very important that the PMW-derived precipitation estimates are calibrated to
some reference because the various PMW sensors are not uniform and have some
significant differences among them. For example, the TMI and SSMI instruments
have channels that are sensitive to emission (37 GHz) and scattering (85 GHz) while
the AMSU-B sensor has only scattering channels. Therefore, large differences in
precipitation frequency and amount are apparent in comparisons of precipitation
estimates derived from AMSU-B and SSMI or TMI data over the oceans (Fig. 3
in Joyce et al. 2004). The channel differences are only part of the reason for the
differences seen in precipitation rate. In addition, AMSU-B is a cross-track scan-
ner thus the field of view is a function of scan angle while SSMI and TMI are
conical-scanning sensors and thus the field of view and pixel size is constant for
those instruments. Furthermore, the AMSU (Vila et al. 2007) and SSMI GPROF
(Kummerow et al. 2001; McCollum and Ferraro 2003; Wiheit et al. 2003) rainfall
estimation algorithms have a 35 mm/h rain rate maximum which are much less than
the 50 mm/h of the TMI and AMSR-E land and ocean algorithms.

The AMSR-E and TMI estimates were chosen as the normalization standard
because of the finer spatial resolution and emission detection capability (over
oceans) of those sensors. For both the AMSU and SSMI sensors, revised rain rate
scales are determined dynamically by frequency matching (from the heaviest to
lightest rain rates) with TMI and AMSR-E precipitation estimates that are tempo-
rally and spatially coincident with the precipitation estimates over the most recent
ten-day period. The scaled rainfall rates are calculated separately for land and ocean
in 10◦ latitude bands from 60◦S to 60◦N by matching estimates in overlapping 30◦
latitude domains. If the rainfall frequency of the “adjusted” rainfall is less than the
frequency of the TMI/AMSR-E reference, then the cumulative total of the adjusted
rainfall will be too low relative to the TMI-AMSR-E reference rainfall. In this case
a “retrofit” of the matched PDF is forced such that the cumulative adjusted rainfall
matches the reference rainfall.
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2.5 CMORPH Methodology

The CMORPH methodology will be described very briefly here so readers who
wish for more detail are referred to Joyce et al. (2004). In essence, two con-
current processes are initiated each half hour in preparation for constructing the
precipitation analyses. Passive microwave rainfall estimates generated from SSMI,
AMSR-E, AMSU, and TMI are collected (provided by NOAA/NESDIS), assem-
bled and intercalibrated (Section 2.3) for each half-hour period, while cloud motion
vectors are computed from successive 1/2 h images of global geosynchronous IR data
(Janowiak et al. 2001).

In order to determine cloud speed and direction, an iterative spatial lag correla-
tion process is applied to full resolution IR data. In essence, successive IR images
are shifted spatially with respect to each other in all possible directions, and the
shift that yields the highest correlation forms the basis of the motion field. However,
because the spatial distribution of cloud-top temperatures and precipitation are not
the same, the precipitation motion vectors are refined via a statistical model that
relates cloud motion vectors to radar rainfall advection.

The rainfall propagation process begins by propagating fields of 8-km, half-
hourly instantaneous PMW-derived precipitation estimates (t+0 h) forward in time
using the IR derived precipitation motion vectors described in the previous para-
graph (Fig. 1). All pixels with rainfall derived from PMW data (including those with

Fig. 1 Example of the
CMORPH process. The 0330
and 0500 UTC images are
actual rainfall estimates from
passive microwave; the 0400
and 0430 images are
(a) propagated forward in
time; (b) propagated
backward in time; (c)
propagated and morphed. The
time interpolation weights are
the weights assigned (in this
example) for the
corresponding images and
propagation directions (From
Joyce et al. 2004: their Fig. 8)
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zero precipitation) that reside within each 2.5◦ latitude/longitude region (centered
within the 5◦×5◦ grid box of IR data) are propagated in the same direction and dis-
tance to produce the analysis for the next half-hour (t+0.5 h). If a rainfall feature is
on the border between two of the 2.5◦ latitude/longitude regions, the rainfall field is
propagated evenly if the vector pairs from both regions match exactly. If two pixels
from different regions are propagated to the same pixel location by convergence, an
average of the two values is computed. If a data gap in the rainfall field occurs due
to a divergence of features, a bilinear interpolation of the rainfall features across the
gap is computed. Finally, if a PMW-derived precipitation estimate from a new scan
at “t+0.5 h” is available at a particular pixel location, then that estimate overwrites
the “older” propagated estimate. This entire process is repeated each half hour.

In addition to propagating rainfall estimates forward in time, a completely sep-
arate process is invoked in which the rainfall analyses are propagated backward in
time using the same propagation vectors used in the forward propagation. However,
this “backward propagation” is applied to the first PMW-derived rainfall field that
is available after the time of the current (“t+0”) estimates. A simple propagation
of the features themselves will not change the character of those features but will
merely translate them to new positions. However, changes in the intensity and shape
of the rainfall features are accomplished by inversely weighting both forward- and
backward-propagated rainfall by the respective temporal distance from the initial
and updated PMW-derived rainfall fields which results in “morphing”.

Several variations of CMORPH have been developed for various reasons since
the technique was developed initially. “GMORPH” is exactly like CMORPH except
that 700 hPa winds from the NCEP global data assimilation system (GDAS) are used
for the motion field instead of the inferred motion that is derived from the displace-
ment of features in successive IR images. The reason for developing this method
is because of concerns that the use of IR to determine the motion of the rainfall
can result in erroneous motion of tropical systems since IR data are retrieved from
cloud-tops and the motion at the tops of clouds may not correspond to the motion
of the rain at the surface. Another variant, dubbed “CMORPH-IR” was developed
because the performance of CMORPH is directly related to the frequency of updates
with new PMW information (Fig. 2.).

Therefore, more accurate rainfall estimates will be obtained by using IR-based
rainfall estimates when the time between overpasses of a PMW sensor is “suffi-
ciently long”. Hence, an algorithm was developed to estimate rainfall directly from
IR data. The algorithm (“IRFREQ”) was modeled after Turk and Miller (2005)
which is a histogram matching approach. Then, a decision model was instituted for
the blending process to objectively decide when to use IR-based rainfall estimates
(IRFREQ) instead of morphed estimates (see Joyce et al. 2004 for details). IRFREQ
estimates are substituted for morphed estimates approximately 20% of the time.

Finally, because of the relatively long time between real time and when
CMORPH analyses are available (i.e. “latency”, which is about 13 h), a “quick look”
product dubbed “QMORPH” was developed that has a latency of 3–4 h. QMORPH
is not a morph because it merely propagates PMW-derived rainfall estimates
forward in time, thus the features do not change in shape or intensity until new PMW
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Fig. 2 The correlation between radar and CMORPH (solid line) as a function of 1/2 -h periods
from nearest future or past microwave satellite overpass (x-axis) for the period April–May, 2003.
For reference, the dotted line represents the correlation between radar and GPI over the same
locations and times that were used in the radar-CMORPH correlation calculations. The shaded
plot at bottom of the figure shows the number of pairs in the correlations; the scale for that plot is
on the right (y-axis label in 1000’s) (Figure from Joyce et al. 2004, their Fig. 13)

data become available. The distinction from CMORPH is that QMORPH “waits” for
the availability of the “future” PMW rainfall data so that rainfall estimates can be
morphed between the older and most recent PMW-derived rainfall estimates. This
wait time is part of the reason for the long latency in CMORPH data.

3 Applications

One of the desirable features of CMORPH is the fine spatial and temporal char-
acter of the dataset which permits these analyses to be used for multiple purposes
ranging from mesoscale to global in the spatial domain and diurnal to interannual
in the temporal domain. Many precipitation analyses are available for exploring
global/multi-seasonal variability but CMORPH is one of the few that permits the
study of phenomena on mesoscale (spatial) and diurnal (temporal) over a global
(60◦N–60◦S) domain. To demonstrate the utility of CMORPH for studies at fine
time/space scales, we present a few examples.

In Fig. 3 we show the evolution of a strong squall line over the southeastern
U.S. as depicted by hourly CMORPH and radar data. The temporal continuity
of the rainfall pattern between the radar and CMORPH data is remarkably good
over the sequence of hourly plots when considering that the PMW-derived rain-
fall that CMORPH relies on heavily is updated about every two–three hours. There
are differences in intensity, particularly early in the sequence, although the relative
intensities of CMORPH and radar agree reasonably well over the period. The utility
of CMORPH over regions with dense rain gauge networks and radar coverage is
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Fig. 3 Progression of a squall line over the southeastern United States on February 6, 2008 over
successive hours from 0700 to 1600 UTC. Top two rows are for the 0700 to 1100 UTC period, with
the top row depicting radar and the bottom depicting CMORPH. The bottom tow rows are for the
1200 to 1600 UTC period. The gray shades range from 1 mm day–1 (lightest shading) to 25 mm
day–1 (darkest shading)

limited. However, by demonstrating that CMORPH provide radar-like informa-
tion, it is reasonable to conclude that CMORPH can be of considerable value in
regions with little or no direct observational data (particularly over the oceans), and
can greatly facilitate research on systems that possess similar spatial and temporal
characteristics as those presented in this example.
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The diurnal cycle of precipitation is another application that demonstrates the
utility of CMORPH. For example, a diagnosis of the performance of model precip-
itation forecasts in resolving the diurnal cycle of precipitation can be conducted by
taking advantage of the spatial and temporal resolution of CMORPH. To this end we
present some results from Janowiak et al. (2007) who used a version of CMORPH
(referred to as “RMORPH”) that was adjusted by rain gauge data (to reduce bias)
over several regionsof the U.S. to assess the ability of two models to resolve the diur-
nal cycle of precipitation during the convective season. In Fig. 4, the mean diurnal
cycle of precipitation over the period June 12–August 15, 2004 is shown over four
different regions as indicated in the titles of the four panels. The most prominent
result of the comparison among these estimates is the large and early onset of peak
convection in the southeast U. S. in the global model forecasts (GFS) that contrast
with RMORPH and the regional model (labeled “Eta” but present-day vernacular is
“NAM”). And although the

Fig. 4 The mean diurnal cycle of precipitation over several regions of the U.S. for raingauge
adjusted CMORPH (“RMORPH”; Janowiak et al. 2007), and short-range precipitation forecasts
from the NCEP regional North American Model (“Eta”), and the NCEP global model (“GFS”).
Note that time of day (x-axis) is in local time (specific to each region) and that the x-axis labels
correspond to the beginning of the 3 h accumulation periods (Figure from Janowiak et al. 2007;
their Fig. 6)
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Eta model exhibits an amplitude similar RMORPH, it peaks even earlier in the
day than the global model. In addition, over the “Plains” states, where a nocturnal
to early morning (depending upon location) precipitation maximum has been well-
documented, RMORPH depicts a rainfall peak near sunrise while the global model
peaks near noon. The regional model has a peak that coincides with RMORPH but
has much less amplitude in the diurnal cycle.

4 CMORPH Improvements

4.1 Backward Extension and Reprocessing

CMORPH processing began on December 6, 2002. Numerous improvements have
been developed and implemented to the processing system since production began
which have lead to discontinuities in the time history of CMORPH. Several years
after routine processing began, it was discovered that oceanic rainfall rates from
the AMSU-B sounders were unrealistically low. Thus, a “retrofit” TMI-AMSR-E
calibration was developed and implemented to eliminate the unrealistically low
magnitude of oceanic AMSU-B rainfall estimates. Consequently, the total oceanic
rainfall has risen in the operational CMORPH since the May 2005 implementation
of this calibration change. Furthermore, an AMSU-B algorithm update in August
2005 removed a major coastline rainfall deficiency. Later, the AMSU algorithm was
again vastly improved (Vila et al. 2007) with the inclusion of Cloud Liquid Water
(CLW) derived from AMSU-A and a Convective Index from the 183 GHz channel.
The resulting discontinuities in the CMORPH period of record have prompted a
reprocessing effort for the entire CMORPH time history.

4.2 Backward Extension of the CMORPH Period of Record

We believe that CMORPH can be extended back to November 1998 which is a time
when three passive microwave sensors were in orbit (TMI and two SSMI) and is
as far back as the archive of globally merged IR data (Janowiak et al. 2001) are
available. However, because the accuracy of CMORPH is highly dependent on the
time between passive microwave sensor overpasses (Fig. 2), rainfall from geosta-
tionary satellite IR (IRFREQ) must also be incorporated over this extension period
via a combination of those estimates with the relatively scarce PMW estimates by
using an advanced Kalman filter methodology (Section 4.3). Upon completion of
this effort, which is ongoing, CMORPH will have a time history that will exceed a
decade at the time of this writing.

4.3 Kalman Filter

The initial CMORPH scheme is a simple one that uses the inverse of the
distance (in time from a PMW overpass) as the weighting factor to derive “morphed”
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precipitation estimates for time periods between PMW overpasses. At the
present time, CMORPH ingests precipitation estimates from multiple sources and
creates analyses in a hierarchical framework after intercalibrating them against pre-
determined standards, thus decisions are made in a sequential, step-wise fashion.
Recent work by Kubota et al. (2007) has strongly suggested that a more compre-
hensive Kalman filter approach applied to the data merging process can result in
higher accuracy. We have developed a Kalman filter approach that is currently being
tested which is designed to combine the various PMW-derived precipitation esti-
mates based on the relative accuracy of these CMORPH inputs. The main inputs
into this new Kalman scheme are weights that reflect the accuracy of the satel-
lite estimates that were determined from comparisons over the U. S. of radar with
PMW-derived rainfall from various sensors and satellites (with different observing
times).

4.4 Bias Reduction

Satellite precipitation estimates contain bias, particularly over semi-arid conti-
nental regions during the warm season (Rosenfeld and Mintz 1988) and one
way to reduce bias is by integrating rain gauge data. Fortunately, rain gauge
data over the globe are increasingly available in near-real time so as to be
useful for integration in near real-time global precipitation analyses despite vari-
ations in the daily collection times round the globe: 0000 UTC – 0000 UTC
over Australia, 0600 UTC – 0600 UTC over Africa, 1200 UTC – 1200 UTC over
the Americas, and 1800 UTC – 1800 UTC over most of Europe. An Optimum
Interpolation approach (OI; Gandin 1963) to merge the satellite estimates and rain
gauge reports with the goal of providing global precipitation estimates at 0.25◦
latitude/longitude spatial and daily temporal resolution is being developed. This
procedure will be considerably different and more complex than the RMORPH
methodology (Janowiak et al. 2007). RMORPH estimates are simple disaggregation
of daily rain gauge values that are partitioned via the use of half-hourly CMORPH
data. Besides employing the use of OI, the new methodology will incorporate in situ
precipitation information over the oceans thus the resulting analyses will provide
bias-adjusted oceanic precipitation estimates as well as over land.

5 CMORPH Data Availability and Performance

The primary repository for CMORPH data is the Climate Prediction Center (CPC),
which is a division of the National Centers for Environmental Prediction (NCEP)
and is part of NOAA’s National Weather Service. Subsets of the CMORPH product
suite, for several temporal and spatial resolutions, are available at http://www.cpc.
ncep.noaa.gov/http://www.cpc.ncep.noaa.gov/products/janowiak/cmorph.shtml
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Due to the voluminous nature of the data and to the finite resources at NCEP,
the entire time history of CMORPH at the highest spatial (∼8 km) and temporal
(30 min) resolution is not available at the time of this writing. However, work is in
progress to make these data available via the World Wide Web.

Time series of the spatial correlation between the CPC daily rain gauge anal-
ysis (Higgins et al. 1996) with CMORPH and several other merging methods are
shown in Fig. 5. The upper-left panel (“Merged PMW”) shows the spatial corre-
lation with a simple mosaic of all available PMW-derived precipitation estimates
(dotted line) that are ingested into the CMORPH process. Note that CMORPH
(solid line) outperforms that product consistently over the time period. Similarly,
CMORPH generally performs better than the techniques in the remaining panels
in terms of spatial correlation. The mean bias of CMORPH (Fig. 5) is similar in
magnitude to the other methods, except for PERSIANN (Hsu et al. 1997) which has
very low bias. The remaining methods for which statistics are displayed in Fig. 5

Fig. 5 Time series of spatial
correlation between various
merged precipitation
estimates and rain gauge data
over the U.S. For each panel,
the solid line is for CMORPH
and the dotted line is for the
technique listed in the title
above the panel. The mean
bias for each technique is
printed in the upper-right
corner of each panel, and the
CMORPH mean bias
(0.42 mm day–1) is printed in
the upper-left corner of the
panel labeled “Merged
PMW”
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are “3B42RT” which is the real-time version of the TMPA technique (Huffman
et al. 2007) without bias correction, the “Hydroestimator” (Scofield and Kuligowski
2003), “GSMAP” (Kubota et al. 2007), and estimates from the “Stage II” U.S. radar
mosaics (Lin and Mitchell 2005).
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The Self-Calibrating Multivariate Precipitation
Retrieval (SCaMPR) for High-Resolution,
Low-Latency Satellite-Based Rainfall Estimates

Robert J. Kuligowski

Abstract The Self-Calibrating Multivariate Precipitation Retrieval (SCaMPR) is
an algorithm for retrieving rainfall rates using visible (VIS)/infrared (IR) and
microwave-frequency data from Earth-orbiting satellites. Rainfall rates derived from
microwave-frequency data are used as a calibration target for an algorithm frame-
work that both selects the optimal VIS/IR predictors and determines their optimal
calibration coefficients in real time. This algorithm is highly flexible and its short
data latency makes it well-suited for rapidly-changing heavy rainfall situations that
trigger flash flooding.

Keywords Satellite · Rainfall · Infrared · Microwave · Flash flood

1 Introduction

The impacts of flood-related disasters are exacerbated in many parts of the world
by the unavailability of critical rainfall information in real time. Rainfall informa-
tion from satellites in geostationary orbit offer high spatial and temporal resolution
with minimal data latency, which is well-suited for rapidly-developing heavy rain-
fall events for instances where more direct measurements of rainfall from gauges
or ground-based radars are not available. While these satellite-based estimates are
generally not as accurate as gauges or radar, they can provide a level of accuracy
in many situations that makes them highly useful for real-time forecasting of heavy
rainfall and resulting flood hazards.

Early estimates of rainfall rate from satellites were based on cloud-top bright-
ness temperatures from the infared (IR) window region of the spectrum (e.g.,
Scofield 1987; Adler and Negri 1988) and sometimes also from visible (VIS) albedo
(e.g., Griffith et al. 1978). These approaches are generally based on the assumption
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that cloud-top temperature (and, by extension, cloud-top height) is a reliable pre-
dictor of rainfall rate, which works relatively well for convective rainfall but quite
poorly for stratiform rainfall (e.g., Ebert et al. 2007). However, they also suffered
from weaknesses in discriminating cold, non-raining cirrus clouds from cumulonim-
bus clouds, which often resulted in significant overestimation of the extent of heavy
rainfall (e.g., Rozumalski 2000).

Beginning with the launch of the Special Sensor Microwave/Imager (SSM/I)
in 1987, microwave (MW)-frequency information became routinely available for
estimating rainfall rates. The advantage of these frequencies is that the radia-
tive signal is sensitive to the properties of clouds throughout their depth and not
just their uppermost portions. The disadvantage is that at present these frequen-
cies can be monitored only from low-Earth orbit, so data at a particular location
are generally available only twice per day for each satellite. This greatly limits
the utility of microwave-based estimates of rainfall for rapidly-evolving situa-
tions. Also, MW instruments tend to have much coarser spatial resolution than IR
instruments, making it difficult to discern the small-scale details of heavy rainfall
systems.

Numerous authors have attempted to address this issue by combining geostation-
ary IR and microwave data in order to optimize both accuracy and availability. An
overview of all of the available techniques is far beyond the scope of this chapter
(though some of them are addressed in detail elsewhere in this book), but it includes
histogram matching (e.g., Turk et al. 2003; Huffman et al. 2007), artificial neural
networks (e.g., Sorooshian et al. 2000), and using the IR as an interpolation template
for MW-based rain rates (e.g., Joyce et al. 2004).

A combination technique that is aimed toward short-term flash flood forecasting
applications is the Self-Calibrating Multivariate Precipitation Retrieval (SCaMPR),
first introduced in Kuligowski (2002). It uses microwave rain rates as the calibration
source for a framework that uses data from a selection of VIS/IR bands (or other
data) as predictor information. The algorithm uses discriminant analysis to select
and calibrate predictors for identifying rainfall areas, and uses stepwise forward
regression to select and calibrate predictors for estimating rainfall rate. The result-
ing calibration coefficients are then applied to subsequent GOES imagery at the full
spatial and temporal resolution of the GOES imager, allowing estimates with a tem-
poral refresh and data latency of the GOES data—a temporal refresh of 15 min at
most times over the CONUS and surrounding areas, and a latency of just minutes
between the time of the GOES image and the availability of the SCaMPR rainfall
rate field. The calibration is updated as new MW rainfall data become available.
The algorithm has been run in real time over the CONUS and nearby regions since
November 2004.

Section 2 of this chapter describes the data inputs to SCaMPR, while Section 3
summarizes the general architecture of the algorithm. Changes to the algorithm that
have been made since Kuligowski (2002) are outlined in Section 4, while Section 5
will show some examples and validation from the current version of SCaMPR.
Future plans for the algorithm will be summarized in Section 6.
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2 Instruments and Input Datasets

The real-time version of SCaMPR that began running in November 2004 uses
IR (bands 3–6) brightness temperature data from GOES-West (located at 135◦W)
and from GOES-East (located at 75◦W). Additional predictors are derived from
these inputs as described in Section 3. The new version of SCaMPR also uses VIS
(0.6 μm) data from GOES; additional details are provided in Section 4.

Microwave rainfall rates from the SSM/I (Ferraro 1997) and Advanced
Microwave Sounding Unit (AMSU; Vila et al. 2007) are used in the real-time ver-
sion that began running in November 2004. Rainfall rates from the Tropical Rainfall
Measuring Mission (TRMM) Microwave Imager (TMI; Kummerow et al. 2001)
and Precipitation Radar (PR; Iguchi et al. 2000) have been added to the SCaMPR
calibration data set, as described in Section 4.

3 General Methodology

SCaMPR is described in detail in Kuligowski (2002), but a brief overview is
provided here. The SCaMPR algorithm can be broken down into a calibration com-
ponent and an application component. The former uses previous IR/VIS data and
MW-derived rainfall rates to select predictors and derive associated coefficients for
identifying raining clouds and deriving rainfall rates. The latter component applies
these coefficients to current IR/VIS data to produce corresponding rainfall rate fields
with the spatial coverage and refresh rate of the IR/VIS data.

The calibration portion begins with the matching of IR/VIS data and MW-derived
rain rates. GOES pixels within 15 min of a MW pixel of interest are spatially aggre-
gated to the MW pixel resolution (assumed to be roughly 15 km) and placed in a file
of matched GOES and MW pixels that corresponds to the 15 × 15◦ regions (they
overlap, so there may be as many as nine) containing that pixel. When new pixels
are obtained, the oldest ones are cycled out of the data set such that there are at least
500 pixels with MW rain rates exceeding 2.5 mm/h—this was done to ensure that
the training data sample contained a sufficient number of significant rainfall events
for a statistically reliable calibration. Separate calibration files are maintained for
each calibration region.

Whenever new data are added to the calibration file, the calibration is updated.
This involves selecting and optimizing predictors for rain/no rain separation and
for rain rate estimation. The specific predictors that are available are GOES
bands 3 (6.5–6.7 μm), 4 (10.7 μm), and 5 (12.0 μm – GOES-11 and earlier) or
6 (13.3 μm – GOES-12 and after). In addition, all brightness temperature difference
(BTD) combinations are considered as predictors, along with cloud texture param-
eters that were adopted from Adler and Negri (1988) by Ba and Gruber (2001):

Gt = Tavg − Tmin (1)

S = 0.568(Tmin − 217 K) (2)
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where Tmin is the minimum brightness temperature within the surrounding 5 ×
5-pixel area and Tavg is the mean of the six nearest pixels (four along the scan line
and two across the scan). Gt has a high value in highly textured clouds and S is
used as a scaled threshold value of Gt in Adler and Negri (1988).

For the rain/no rain separation phase, the pixels in the calibration data set are
divided into those with zero and non-zero MW rain rates. Discriminant analysis
(basically a variant of linear regression with target values of 0 for non-raining pixels
and 1 for raining pixels) is used to select and calibrate rain-no rain predictors in
order to optimize the Heidke Skill Score:

HSS = 2 (c1c4 − c2c3)

(c1 + c2) (c2 + c4) + (c3 + c4) (c1 + c3)
(3)

where c1 is the number of dry/dry pixels (dry estimate, dry observation), c2 is the
number of wet/dry pixels, c3 is the number of dry/wet pixels, and c4 is the number
of wet/wet pixels. The discriminant analysis is run stepwise until two predictors are
chosen; additional predictors have not been shown to improve performance.

Only the raining pixels are used in the rain rate calibration phase. Because the
relationship between rainfall rate and brightness temperature is clearly nonlinear
(e.g., Fig. 1a of Vicente et al. 1998), linear regression will not adequately capture
these relationships. To deal with this, a second set of rain rate predictors is pro-
duced by regressing each predictor against the rain rate in log-log space, creating a
power-law regression that is equivalent to y = axb, where y is the target value, x the
predictor, and a and b are the regression coefficients. Note that the exponential fit
(y = aebx) used in Vicente et al. (1998) was tested in early work, but the power-law
function produced better results in this work. Both sets of predictors are then used
in the regression pool for selecting and calibrating the rain rate parameters, and the
stepwise forward regression is stopped after two predictors are selected since tests
have shown no benefit in adding a third rain rate predictor.

Once the calibration is completed, the selected predictors and coefficients are
used to derive estimates of rainfall rate for subsequent IR imagery at the full res-
olution of the imagery. This means that the SCaMPR rain rate estimates have the
same spatial resolution (4 km), temporal refresh (15 min over the CONUS and sur-
rounding regions, less frequent elsewhere) and data latency (minutes) of the GOES
data.

It should be noted that this is a finer resolution than the resolution at which the
calibration was performed, which does introduce some error since it is known that
for a nonlinear function f(x):

f (x) �= f (x) (4)

The magnitude of this error has not been evaluated quantitatively; however,
the algorithm appears to produce satisfactory results compared to other rain rate
algorithms in spite of the difficulties of this assumption.
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4 Current Status on Algorithm Development

The version of SCaMPR that has been running in real time at NESDIS since
November 2004 is somewhat different from the version presented in Kuligowski
(2002); the modifications are described in this section. As mentioned in Section 2,
the AMSU is used in addition to the SSM/I as a calibration data source, and as men-
tioned in Section 3, the length of the training period now depends on the number of
raining pixels available instead of being a fixed length of time.

The original version of SCaMPR in Kuligowski (2002) noted that even with the
nonlinearly transformed predictors, the regression scheme did not adequately fit
high rain rates. In Kuligowski (2002) this was addressed by padding the training
data with additional copies of the highest rain rates in order to improve the rep-
resentation of heavier precipitation events in the algorithm calibration. Subsequent
investigation revealed that the problem was actually due to the lack of an intercept
in the power-law regression, which led to incorrect curve fits since one end of the
curve was effectively anchored at the origin. Adding an intercept (i.e., y = axb+c)
led to much better curve fits and eliminated the need for data padding.

Also, whereas SCaMPR in Kuligowski (2002) uses rain rate fields from other
algorithms as predictors, this is not done in the current real-time version of
SCaMPR; it is a stand-alone algorithm. Finally, since the real-time version of
SCaMPR covers a much larger area (20–60◦N, 135–60◦W), the algorithm was mod-
ified to produce separate calibrations for 15×15◦ boxes with 5◦ of overlap on each
side, as alluded to in Section 3. The rainfall rate at a given pixel is thus a weighted
average of the values from the 9 different 15×15◦ boxes which include that pixel,
with the weighting being determined by the inverse squared distance to each box
center.

Additional modifications to SCaMPR were implemented into the real-time ver-
sion of the algorithm in 2009. The first is an improvement in the calibration data by
using rainfall rate estimates from TRMM. The TMI and PR provide an additional
source of microwave rainfall rates south of 38◦N, and in a variant of the method
used by Joyce et al. (2004), the TMI rainfall rates are used to bias-adjust the SSM/I
and AMSU rainfall rates. This is done by separately matching the cumulative distri-
bution functions (CDF’s) of the SSM/I and AMSU against corresponding TMI data
(after aggregating the TMI data to the footprint size of the SSM/I and AMSU) to
create look-up tables (LUT’s) for adjusting the SSM/I and AMSU rain rates. The
previous 30 days of matched data are used, and the LUT’s are updated daily.

Another modification was based on work that was done when applying SCaMPR
to Spinning Enhanced Visible/InfraRed Imager (SEVIRI) data when evaluating
its utility for GOES-R applications (see Section 6 for additional details). It was
found during this work that the brightness temperature difference between the IR
window and water vapor (WV) absorption bands could be used to distinguish con-
vective from stratiform precipitation (e.g., Tjemkes et al. 1997). Specifically, the
relationship between band 4 (10.7 μm) brightness temperature and rainfall rate was
analyzed as a function of the difference between GOES bands 3 (6.5–6.7 μm) and 4,
and it was determined (Fig. 1) that a significant transition took place below –2 K for
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Fig. 1 Plot of the slope of the GOES T4 (10.7- μm)-rain rate relationship as a function of the
difference between GOES T3 (6.5 μm) and T4 for GOES-12. Note the sharp transition that takes
place at differences below –3 K

GOES-11 and –3 K for GOES-12. Consequently, separate calibrations of SCaMPR
were performed for these two regimes.

In addition, the SEVIRI work revealed that the optimal training regions for
SCaMPR were much larger than those used in the real-time version; four latitu-
dinal bands of 30◦ in width (60–30◦S, 30◦S-EQ, EQ-30◦N, 30–60◦N) gave better
results than larger or smaller regions. As a result, the real-time version of SCaMPR
was modified to include only four spatial regions separated at 30◦N and 105◦W (the
latter made necessary by the interface between GOES-West and GOES-East cover-
age). Subsequent work confirmed that this was the optimal configuration for GOES.
To prevent discontinuities across the region boundaries, the calibration regions actu-
ally extend 5◦ beyond these boundaries and points in the 10◦-wide overlap zone are
assigned a distance-weighted value of the rain rates for all relevant regions.

The issue of the optimal number of training data points was also revisited, and
it was found that for regions of this size, 2,000 pixels with rain rates exceeding
0.25 mm/h were required when T3–T4 was strongly negative, but only 400 such
pixels were required when T3–T4 was weakly negative or positive. It is believed
that this is because higher rain rates are much more common in the latter regime
than in the former, and so less data is required to obtain a representative sample of
significant rainfall events.

Finally, the SEVIRI work also revealed the usefulness of visible-band data (nor-
malized by dividing by the cosine of the solar zenith angle), but only for stratiform
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clouds (the VIS data did not have any discernible benefit for deep convective
clouds). The same conclusions were drawn for the GOES work, and so two sep-
arate calibrations are used: daytime-only, and a 24-h calibration that does not use
visible data and is applied only during the night time hours.

5 Comparisons and Examples

Figure 2 is an example of SCaMPR output for 2015 UTC 30 August 2007 that
illustrates the expanded coverage area. It should be noted that because the current-
generation GOES requires half an hour to scan the full disk and do so only every 3 h
(and then half an hour apart), instantaneous SCaMPR rain rates (and those from
any other technique that uses GOES data) are never available simultaneously for the
entire coverage area; however, for this coverage area any particular region seldom
experiences a period of longer than 30 min without a rain rate estimate.

In Fig. 3, the original and new versions of SCaMPR are compared with the Stage
IV radar/rain gauge field and the Hydro-Estimator (Scofield and Kuligowski 2003),
which is the current operational satellite rainfall estimate at the National Oceanic
and Atmospheric Administration (NOAA) National Environmental Satellite, Data,
and Information Service (NESDIS). Although all three satellite rainfall estimates
tend to spread out the heavier rainfall, both versions of SCaMPR avoid the sig-
nificant overestimation of the heaviest rainfall over Iowa and Nebraska. The new
version of SCaMPR is too light relative to the original in this particular case, how-
ever. In terms of overall performance, the changes to SCaMPR have produced slight

Fig. 2 Sample SCaMPR instantaneous rain rate field for 2015 UTC 30 August 2007
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Fig. 3 Comparison of 1-h rainfall totals Stage IV (radar/gauge), operational Hydro-Estimator,
original (control) version of SCaMPR, and new version of SCaMPR at 0200 UTC 29 August 2007

overall improvement in the algorithm in terms of both reducing an overall dry bias
of SCaMPR (which is admittedly not readily apparent in the example in Fig. 3) and
slightly improving the correlation between the estimates and observed values.

6 Future Plans and Conclusions

As mentioned briefly in Chapter 4, SCaMPR has been selected for use in the
GOES-R operational ground system. GOES-R is scheduled for launch in 2015
(as of this writing) and represents the next generation of NOAA’s geostation-
ary satellites, and features a 16-band Advanced Baseline Imager (ABI) and a
Geostationary Lightning Mapper (GLM). The GOES-R Algorithm Working Group
(AWG) Hydrology Algorithm Team tested several candidate algorithms for potential
operational use for GOES-R, and SCaMPR was chosen to move forward with oper-
ational implementation. SCaMPR will thus be used to produce estimates of rainfall
rate for the full GOES disk (up to 60◦ latitude or 70◦ local zenith angle (LZA),
whichever is less) every 5 min at the full 2-km resolution of the ABI. The SCaMPR
rainfall rates will also be extrapolated forward in time to produce nowcasts of the
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probability of measurable rainfall and the predicted rainfall accumulation during the
subsequent 3 h.

Additional modifications to SCaMPR may be implemented prior to operational
deployment, perhaps including the use of GLM data for precipitation classification
and/or rain rate retrieval. Previous work by the author showed a positive impact
from using lightning data for both classifying precipitation systems and as a rain
rate predictor, and the GLM data could prove to have even greater impact since they
contain total lightning data whereas the previous work used only cloud-to-ground
lightning data.
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Extreme Precipitation Estimation Using
Satellite-Based PERSIANN-CCS Algorithm

Kuo-Lin Hsu, Ali Behrangi, Bisher Imam, and Soroosh Sorooshian

Abstract The need for frequent observations of precipitation is critical to many
hydrological applications. The recently developed high resolution satellite-based
precipitation algorithms that generate precipitation estimates at sub-daily scale pro-
vide a great potential for such purpose. This chapter describes the concept of devel-
oping high resolution Precipitation Estimation from Remotely Sensed Information
using Artificial Neural Networks-Cloud Classification System (PERSIANN-CCS).
Evaluation of PERSIANN-CCS precipitation is demonstrated through the extreme
precipitation events from two hurricanes: Ernesto in 2006 and Katrina in 2005.
Finally, the global near real-time precipitation data service through the UNESCO
G-WADI data server is introduced. The query functions for viewing and accessing
the data are included in the chapter.

Keywords Extreme precipitation · Image segmentation · Hurricane Katrina ·
Probability matching method · Self-organizing feature map

1 Introduction

Flood events caused by extreme precipitation are considered as the most frequent
and widespread natural disaster in human history. It is estimated hundred millions
of people are affected by flood events each year. Hurricane Katrina, for example,
impaired the South Eastern US States, including Mississippi, Louisiana, Alabama,
and Florida. The total damage is estimated at more than $80 billion and it is con-
firmed there were more than 1300 deaths (NWS NOAA, 2006). While accurate
precipitation monitoring is a key element for improving flood-forecasting, precip-
itation observations from traditional means (e.g. rain gauges) are limited to point
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measurements. Recent improvements in the ability of satellite remote sensing tech-
niques provide a unique opportunity for precipitation observation for hydrologic
applications of remote ungauged basins.

Satellite-based precipitation retrieval algorithms use information ranging from
visible (VIS) to infrared (IR) spectral bands of Geostationary Earth Orbiting (GEO)
satellites and microwave (MW) spectral bands from Low Earth Orbiting (LEO)
satellites. GEO satellites give frequent observations every 15–30 min, but the
information provided is indirect to the surface rainfall. Some improvements were
reported using cloud classification approaches using texture measures and cloud-
patch identification as well as combining information from multi-spectral imagery
(Ba and Gruber, 2001; Behrangi et al. 2009a, b; Bellerby et al., 2000; Bellerby,
2004; Capacci and Conway, 2005; Hong et al., 2004; Turk and Miller, 2005). On
the other hand, MW sensors on LEO satellites provide more direct sensing of rain
clouds. Its low sampling frequency, however, limits the effectiveness of the rain-
fall retrievals. Integration of multiple LEO satellite information is considered to be
effective in improving rainfall retrieval at short-time scales. Improvements in pre-
cipitation retrieval were also reported by locally adjusting GEO-IR retrievals using
near-real-time LEO MW-based rainfall estimation (Bellerby et al., 2000; Bellerby,
2004; Hsu et al., 1997; Huffman et al., 2007; Kidd et al., 2003; Marzano et al.,
2004; Nicholson et al., 2003a, b; Sorooshian et al., 2000; Todd et al., 2001; Turk
and Miller, 2005; Xu et al., 1999). More recent developments include morphing of
MW rainfall according to cloud advection from GEO-IR imagery and were found to
be effective in improving rainfall retrievals (Bellerby et al., 2009; Hsu et al., 2009;
Joyce et al., 2004; Ushio et al., 2009).

In this chapter, the Precipitation Estimation from Remotely Sensed Information
using Artificial Neural Networks – Cloud Classification System (PERSIANN –
CCS) is presented (Hong et al., 2004; Hsu et al., 2007). Instead of extracting local
texture information in PERSIANN (Hsu et al., 1997, 1999; Sorooshian et al., 2000),
PERSIANN-CCS extracts information from the whole cloud patch and provides
multiple infrared brightness temperature versus rainfall rate (Tb–R) relationships
for different cloud classification types. The chapter will be described as follows:
In Section 2, the development of PERSIANN-CCS and its application to the rain-
fall retrieval using geostationary satellite IR imagery is introduced. In Section 3
and 4, evaluation of PERSIANN-CCS rainfall retrieval on extreme events and near
real-time visualization of global precipitation estimation through the UNESCO
G-WADI (Water And Development Information for Arid Lands-A global Network)
map server are discussed. Finally, conclusions and future directions are discussed in
Section 5.

2 Methodology

Rainfall estimation from the PERSIANN-CCS consists of four major steps: (1) IR
cloud image segmentation, (2) feature extraction from IR cloud patches, (3) patch
feature classification, and (4) rainfall estimation. The classification and rainfall
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Fig. 1 The cloud image segmentation, feature extraction, classification, and rainfall estimation of
PERSIANN-CCS algorithm

estimation using PERSIANN-CSS is demonstrated in Fig. 1. The description of the
CCS system components is outlined below:

2.1 Cloud Image Segmentation

Studies show that different cloud systems consist of distinct thermal features and
distributions of cloud precipitable water. In a satellite-based cloud image, a number
of cloud systems may co-exist and be inter-connected in space and time. Although
cloud systems may be distinguished from our visual observation, it is useful to
develop an automatic method for classifying clouds. This is facilitated due to the
growing computational capability of modern computers. Overall, an effective image
segmentation procedure is one key step towards a better cloud image classification.

In this study a watershed-based (WA) segmentation approach (Vincent and
Soille, 1991; Dobrin et al., 1994) is used for cloud patch segmentation. This algo-
rithm starts with locating the local brightness temperature minimums in the IR cloud
image. Each local minimum is considered as a seed point to form a cloud system
(see “+” marker in Fig. 2a). Next, a threshold temperature is assigned and continued
to increase; image pixels under the threshold connecting to those local minimum
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Fig. 2 Cloud segmentation using a watershed-based algorithm: (a) the GOES IR imagery below
253 K and local temperature minimum points; (b)–(e) pixels are merged to several cloud patch
groups slowly by increasing IR temperature thresholds from 210 to 253 K

seeds are merged to the same patch group. As temperature continues to rise (see
Fig. 2b–c), image basins with pixels surrounding the local minimums are formed.
When two basins are connected to each other, a border is formed to separate them
(see Fig. 2d–e). The process stops when the assumed no-rain (or clear sky) thresh-
old of IR temperature is reached. In our case, the no-rain IR threshold temperature
is assigned as 253 K.

2.2 Input Feature Extraction

After the image segmentation, the cloud image is separated into a number of dis-
tinct patches, having various sizes and shapes. Transformation of the image under
the cloud patch coverage to fewer features can be useful to reduce the redundant
information in the patches, which as a result, may give rise to a more effective
classification of cloud images. This transformation is called feature extraction. In
our case, from the appearance of cloud systems, convective clouds are those puffy
clouds with sharp temperature gradient near the coldest cloud top, while stratiform
clouds are layer clouds with mild temperature gradients. Warm and cold clouds are
also separable based on their cloud top temperature features. Features are selected
from cloud patches with characteristics of (1) coldness, (2) geometry, and (3) tex-
ture (see Table 1). The features, except for Tbmin and TOPG, are extracted at three
temperature thresholds (220, 235, and 253 K).
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Table 1 The input features extracted from cloud patches

Category Features

Coldness Minimum temperature of a cloud patch: Tbmin
Features

Mean temperature of a cloud Patch: Tbmean

Geometric Cloud patch area: AREA
Features

Cloud patch shape index: SI

Texture Standard deviation of cloud patch: STD
Features

Mean value of local standard deviation of cloud patch: MSTD(5x5)
Standard deviation of local standard deviation: STDstd(5x5)
Temperature gradient near Tbmin: TOPG

2.3 Image Classification

After the representative features are extracted from the cloud patches, the next stage
is to the classify cloud patch features into a number of categories arranged in a two
dimensional classification map according to the similarity between cloud patch fea-
tures. This is accomplished by implementing an unsupervised clustering algorithm
named Self-Organizing Feature Map (SOFM).

A SOFM is a two layer data classification network (See Fig. 3). The first layer
connecting to the input features is called the input layer, while the second layer,
with units arranged in two dimensional arrays, represents the classification layer.
The array size in the 2nd layer is relevant to the cloud system (or patch) classi-
fication groups. In our case, an array of 20 × 20 units is assigned to the SOFM
2nd layer, which implies that 400 cloud groups were assigned. After SOFM train-
ing, similar cloud patch features are assigned to the nearby cloud groups. The
mean classification feature of the cluster j is presented as the connecting parameters

Fig. 3 A two layer
self-organizing feature map
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between the input features and the output unit j of the 2nd layer. The cloud patches
with input features close to the parameters of unit j are assigned to the cluster j.
Description of SOFM can be found from Kohonen (1995) and Hsu et al. (1999). A
brief discussion of training SOFM is listed below:

Step 1: Initialize the weights (or parameters) wij as uniform random number
in [0 1].

Step 2: Collect a set of cloud patches and extract their features. These fea-
tures are normalized and are presented as: �V(p) = [�V220(p), �V235(p), �V253(p)],
p=1..N, where N is the number of cloud patch samples used in the train-
ing; �V220(p), �V235(p), �V253(p) are features of patch p extracted from the
temperature threshold of 220, 235, and 253 K, respectively.

Step 3: Select a cloud patch sample m having normalized features as �V(m),
m∈[1,N]. Find the best unit in the 2nd layer that has minimum distance
between normalized input features and connect parameters (�wj):

j∗ = arg
j

min
∥
∥�wj − �V(m)

∥
∥ (1)

Step 4: Update the connection parameters for the neighborhood (radius r)
units of j∗ with learning rate α :

�wj = �wj + α
(�V(m) − �wj

)

(2)

Step 5: Terminate if the �wj is converged, or reduce r and α and go to step 3.

2.4 Mapping Patch to Pixel Rainfall

After the IR cloud image is processed through the patch segmentation and classi-
fication, the following stage is to assign rainfall rates to the pixels under the patch
coverage. This requires a set of training data including GEO-IR image and rainfall
measurement from radar or LEO-MW sensors. Over the continental United States
(CONUS), ground-based radar rainfall can be used for this purpose. The process
includes assigning IR cloud patches to the SOFM 2nd classification units and assign-
ing surface rainfall rates, observed from radar or LEO-MW sensors, to the classified
SOFM output units.

Taking rainfall estimation of the j-th SOFM output unit for example, a large
number of cloud patches were assigned to this unit. The corresponding IR bright-
ness temperature (Tb) and rainfall rate (R) in the cloud patch at pixel level are
presented as:

�Xj(k) = [Tbj(k), Rj(k)],k = 1..n1. (3)

Where n1 is the total number of pixels assigned to the SOFM output unit j; R j(k)
is the rainfall rate assigned to the SOFM output unit j.
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The probability matching method (PMM; Atlas et al, 1990; Vincent et al., 1998)
is then used to define the relationship of Tb and R at pixel scale, with the assump-
tion that the lower the Tb the higher the rainfall rate. The cumulative distribution
functions of the data pairs of Tb-R of the j-th SOFM classification unit can be
presented as:

R∗
∫

0

P(R)dR =
Tbmax∫

Tbmin

P(Tb)dTb −
T∗

b∫

Tbmin

P(Tb)dTb = 1 −
T∗

b∫

Tbmin

P(Tb)dTb (4)

Where the P(.) is the probability distribution function and the estimated value
of Tb and R is in the range [0 Rmax] and [Tbmin Tbmax], respectively. To generalize
the Tb and R relationship for future events, a power-law function of Tb and R is
suggested (Vicente et al., 1998):

Rj(k) = f (�θ j,Tbj(k)) = θ
j
0 + θ

j
1 · exp [θ j

2 (Tbj(k) + θ
j
3)θ

j
4 ] (5)

Where θ
j
k, k = 0,1, . . ., 4 are parameters and j is the j-th SOFM output unit. In our

case, 400 (i.e. 20 × 20) cloud patch groups were assigned and each group consists
of a power law function of 5 parameters. Parameters for each cloud patch group are
defined calibration data.

Figure 4(a) shows the 400 cloud patch groups, while each group is assigned a
unique Tb-R function; for those groups being close to each other, the Tb-R curves
are similar. Here we have selected a few cloud groups and their Tb-R functions, as
they are marked as G0~G6 in Fig. 4a, b. For the group in region G0, the cloud Tb is
high (clear weather pattern) and has no-rain associated with it. The slopes of Tb-R
curves are higher for G2, G4, and G6 regions, which imply that those cloud groups
are relevant to the convective clouds of low, medium, and high altitudes. For the

Fig. 4 (a) The Tb-R relationship of 20×20 SOFM cloud patch groups and (b) the Tb-R curves with
respect to the SOFM groups G0~G6
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regions covered by G1, G3, and G5, however, the slopes of Tb-R are less steep and
they are associated with light or no-rain clouds at low, medium, and high altitudes,
respectively.

3 Application Examples

As described in Section 2, PERSIANN-CCS extracts cloud information using three-
temperature thresholds (220, 235, and 253 K), which enables it to obtain rainfall
rate from different cloud systems. Our experiments show that PERSIANN-CCS can
be effective at detecting cirrus clouds and helps to distinguish between different
convective rain systems at various heights. A strong convective system is expected
to reach the very high troposphere level or enter into the lower stratosphere, while a
small local convective may stay in the lower troposphere.

Extreme rainfall events, particularly those associated with strong convective sys-
tems, pose a serious flooding threat to many populated areas worldwide. Better
representation of the intensity and distribution of these events is extremely important
to save human life and property. In the following section, performance of the high
resolution PERSIANN-CCS product is evaluated under two extreme precipitation
events which resulted in serious damage and fatality.

3.1 Hurricane Ernesto

Formed on August 24 in the eastern Caribbean Sea, Hurricane Ernesto was the
costliest tropical cyclone of the 2006 Atlantic hurricane season. Early in the morn-
ing of August 30, Ernesto made landfall on the Florida mainland in southwestern
Miami-Dade County. It moved across eastern Florida and hit North Carolina coast
on August 31, just below hurricane strength.

Compared to ground radar, PERSIANN-CCS is found to be capable of estimat-
ing rain rates under regions of cold clouds, but fails to detect rainfall under relatively
warm clouds areas, resulting in underestimation of both areal extent and volume of
the rainfall (see Fig. 5 for example). Although some discrepancies are observed
in hourly 0.04◦ PERSIANN-CCS rain estimates, overall evaluations have been
encouraging. Such a rain estimate with high spatial resolution is a unique feature
of PERSIANN-CCS and is beneficial for many applications including hydrological
modeling. At coarser time and space resolution PERSIANN-CCS provides fairly
reasonable estimation (see Fig. 6a–d). Daily accumulation of 0.04◦ rain estimate
results in capturing rain details fairly well (Figs. 6a, b).

For further statistical assessment of such an extreme rain event, scatter plots of
PERSIANN-CCS versus radar rain intensity estimate, accompanied by evaluation
statistics, are presented in Fig. 7. In addition, Table 2 demonstrates the evalua-
tion statistics for top 25 and 50 percentile rain rates to assess the capability of
PERSIANN-CCS to capture heavy rainfall.
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Fig. 5 Demonstration of IR (10.8 μm) image (Left panel) captured at 15:15 UTC on August 30
over Florida and corresponding hourly 0.04o rain rate obtained from ground radar (middle panel)
and PERSIANN-CCS (Right panel). The event is captured from the hurricane Ernesto, passing
over the region

Fig. 6 Analyzing the performance of daily 0.04◦ and 0.25◦ PERSIANN-CCS rain rate estimate as
compared to ground radar for hurricane Ernesto passing over Florida on August 30, 2006. White
grid boxes represent the areas, either not covered by radar or have missing data in all or at least
one of the hourly rain rate maps during the period of study
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Fig. 7 Scatter plots and evaluation statistics for different combination scenarios of time and
space resolution to analyze the performance of PERSIANN-CCS rain rate estimate as compared
to ground radar for Hurricane Ernesto on August 30, 2006. Perfect BIASvolume and BIAS area
should be 1

Table 2 Evaluation statistics for PERSIANN-CCS top 50 and 25 percentile rain rates for
Hurricane Ernesto on August 30, 2006. The ground radar rain estimate is used as reference

Time
resolution

Space
resolution

Top
percentile CORR

RMSE
(mm)

BIAS
volume CSI

Hourly 0.04◦ 50 0.28 12.46 0.54 0.56
0.04◦ 25 0.25 16.46 0.43 0.65
0.25◦ 50 0.42 8.14 0.66 0.71
0.25◦ 25 0.39 10.54 0.60 0.82

3 Hourly 0.04◦ 50 0.39 21.70 0.65 0.75
0.04◦ 25 0.37 27.86 0.56 0.82
0.25◦ 50 0.54 15.74 0.74 0.87
0.25◦ 25 0.52 19.99 0.70 0.94

Daily 0.04◦ 50 0.63 46.50 0.78 0.99
0.04◦ 25 0.57 60.23 0.75 1.00
0.25◦ 50 0.76 35.94 0.84 1.00
0.25◦ 25 0.73 46.43 0.83 1.00

3.2 Hurricane Katrina

Hurricane Katrina is well known as one of the most destructive and deadliest hur-
ricanes in the history of the United States. It formed over the Bahamas on August



PERSIANN Satellite Product 59

23, 2005 and rapidly strengthened in the Gulf of Mexico and caused severe destruc-
tion, mainly due to the storm surge, along the Gulf coast. The greatest fatalities and
destruction occurred in New Orleans, Louisiana where, Katrina made its second
landfall as a Category 3 hurricane, in the morning of August 29, 2005 after the first
landfall in Florida on August 24.

Similar to the previous case study, evaluation statistics of different combination
scenarios of time and space resolutions are presented in Figs. 8 and 9 and Table 3
for Hurricane Katrina on August 29, 2005. Figure 8 displays daily 0.04◦ and 0.25◦
rain rate maps obtained from ground radar and PERSIANN-CCS estimates. Detailed
statistics and scatter plots are shown in Fig. 9 and finally, the skill of PERSIANN-
CCS to capture higher rain intensities is presented in Table 3.

The statistics demonstrate that both 0.04◦ and 0.25◦ PERSIANN-CCS estimates
show reasonable results, particularly at coarser time resolution. From Table 3 and
compared to the pervious example, it is inferred that PERSIANN-CCS is less skil-
ful in capturing intense rainfall at finer time resolutions. However, at coarser time
resolution, while with high spatial resolution, it is found to be relatively reliable in
estimating intense rainfall.

Fig. 8 Analyzing the performance of daily 0.04◦ and 0.25◦ PERSIANN-CCS rain rate estimate as
compared to ground radar for hurricane Katrina, made its landfall on August 29, 2005. White grid
boxes represent no data at all or at least within one of the hourly rain rate maps during the period
of study
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Fig. 9 Scatter plots and evaluation statistics for different combination scenarios of time and space
resolution to analyze the performance of the PERSIANN-CCS rain rate estimate compared to
ground radar for Hurricane Katrina on August 29, 2005. Note that, at the best condition, both
BIASvolume and BIAS area should be 1

Table 3 Evaluation statistics for PERSIANN-CCS top 50 and 25 percentile rain rates: the ground
radar rain estimate is used as reference for Hurricane Katrina on August 29, 2005

Time
resolution

Space
resolution

Top
percentile CORR

RMSE
(mm)

BIAS
volume CSI

Hourly 0.04◦ 50 0.14 8.46 0.39 0.50
0.04◦ 25 0.09 11.12 0.32 0.58
0.25◦ 50 0.19 7.16 0.45 0.59
0.25◦ 25 0.16 9.30 0.37 0.69

3 Hourly 0.04◦ 50 0.25 16.88 0.48 0.75
0.04◦ 25 0.20 22.07 0.40 0.83
0.25◦ 50 0.30 15.0 0.52 0.83
0.25◦ 25 0.26 19.59 0.44 0.90

Daily 0.04◦ 50 0.84 29.87 0.66 0.97
0.04◦ 25 0.77 39.97 0.71 0.99
0.25◦ 50 0.89 25.45 0.68 1.00
0.25◦ 25 0.84 33.99 0.73 1.00
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4 Real-Time High Resolution Global Precipitation Server

UNESCO’s International Hydrological Program (IHP) and the Center for
Hydrometeorology and Remote Sensing at the University of California, Irvine
(CHRS), have been collaborating to build capacity for the forecasting and mit-
igation of hydrologic disasters. The focus of these collaborations has been on
the development of the means to extend the benefits of space and weather
agencies’ vast technological resources to the world wide community of hydrol-
ogists and resources managers, particularly in areas lacking hydrometeorological
observational infrastructure. These collaborations have resulted in the develop-
ment of several online precipitation mapping resources. Among these resources
is the real-time global precipitation server. The server, which can be accessed at
(http://hydis.eng.uci.edu/gwadi/), provides visualization and mapping of satellite-
based precipitation estimates at 0.04◦ × 0.04◦ spatial resolution obtained using
real-time implementation of the PERSIANN-CCS. The GeoServer interface to
PERSIANN-CCS data accounts for the following requirements: (a) ease of access,
(2) rapid image rendering, (c) interface simplicity, and (4) hydrologically rele-
vant functionalities, and (5) portability to other mirror sites. The latter requirement
dictates that all development be conducted using public domain software. The
server utilizes the open-source University of Minnesota MapServer technology
(http://mapserver.org//) to provide real-time visualization of precipitation accu-
mulation for most recent 3, 6, 12, 24, 48, and 72 h periods. The server also
utilizes the open source FWTools (http://fwtools.maptools.org/) implementation of
the Geospatial Data Abstraction Library (GDAL) and OpenGIS simple features
Reference implementation (OGR) library to update precipitation summaries for
watersheds including minimum, mean, maximum, and average rainfall within rain-
area and to update and populate data-base tables with these information. These
libraries are also used to facilitate rapid subsetting of data based on user defined
region or a pre-defined polygon areas such as country, administrative unit, and/or
watershed boundaries. Figure 10, shows the main page interface which consists of
(1) map layer control menu, (2) interactive reference map, (3) map navigation and
query menu, (4) map canvas, and (5) location bar. The layer control menu includes 4
sections which allow the user to select for display one or more overlay vector layers,
a PERSIANN-CCS data layer, and a baseline image. A query type pull down menu
is available with several choices as described below. Figure 11 illustrates the key
map navigation functionalities

4.1 Map Navigation

Within the main page, map navigation consists of layer selection using the layer
control menu and zooming and panning. Through web forms, users can load
into the map canvas (1 in the figure) several vector layers including countries,
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Fig. 10 Components of the G-WADI GeoServer web-interface including: (1) map layer control
menu, (2) interactive reference map, (3) map navigation and query menu, (4) map canvas, and (5)
location bar

administrative units, and watershed boundaries at different scales (continental-small
watershed), streams, and water bodies. The user can also load either precipita-
tion totals for the most recent 3-to-72 h as described above, or maps of extreme
rainfall as foreground (2 in the figure). The canvas background layers include
satellite image background (from NASA-MODIS), aridity, International Geoshpere-
Biosphere Programme (IGBP) land use, and/or elevation maps. The user can zoom
in to explore details of precipitation accumulation and view the spatial patterns of
rainfall. The speed of image generation is enhanced by using image-tiling tech-
niques to allow for rapid generation of area-views at multiple scales. Panning allows
the user to retain the current zoom level while freely moving the area of inter-
est either by sliding the map or by selecting a new map center. In addition, users
can jump from one area into another on the globe, while maintaining the current
zoom level by clicking the new area on the reference map available in the layer
control menu.
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Fig. 11 GWADI-GeoServer map navigation and query functionalities. (1) layer selection and
navigation, (2) available precipitation information, (3) precipitation information at a point, (4)
country and administrative unit’s reports, and (5) watershed report

4.2 Query Functions

Users can select pixel query to obtain a location report that includes the most
recent precipitation accumulation for the selected location along with long-term
(monthly average) precipitation. Elevation, land cover and coordinates of the pixel
are also reported with rain maps of the 0.5◦×0.5◦ area surrounding the selected
pixel. Additional queries can be performed using geographic boundaries. The results
of these queries are precipitation reports for countries and for administrative units.
Each report includes the most recent 3, 6, 12, 24, 48, and 72 h rainfall and extreme
rainfall maps. In addition, each report includes maps of land cover (based on the
IGBP classification), elevation from the United State Geological Survey (USGS)
Hydro1k (1 km), and Aridity map. Each country report also includes a link where
users can download a suite of vector layers extracted from the Digital Chart
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Fig. 12 Left: Pixel query, Right: Precipitation summary charts available through watershed reports

of the World data set. The hydrologically relevant watershed queries, which are
available for four consecutive levels (continental, tributary, major watershed, and
watershed) or watersheds add summary charts of minimum, maximum, average,
and average/rain-area precipitation values for 6 accumulation periods. Watershed
reports also include charts of rain/no-rain/no-data distribution for each of the 6
accumulation periods (Fig. 12).

4.3 Data Access

Users can obtain data either directly from the main interface or through the dynam-
ically generated report pages with the exception of the single pixel report. In the
first case, by selecting get data, a data access page is generated automatically with
the current map extent being used as the default data extraction region. Users can
change the default coordinate by selecting a new bounding box with the resulting
page and proceeding to download the data. Data access is also available from within
all polygon-based query results. For each of the above-described reports, the user
can request the data associated with the area represented by the country, administra-
tive unit, or selected watershed using the bounding box of the relevant polygon as the
target area. In both cases however, the data is immediately extracted and compressed
for all 6 accumulation periods and the user can obtain the data directly through the
http server without needing to provide email address. Precipitation data is provided
in the Arcview ASCII format which is easily readable by most commercial and
public domain GIS.



PERSIANN Satellite Product 65

5 Conclusions and Future Directions

This chapter describes the development of PERSIANN-CCS for rainfall estima-
tion and the data visualization and service through the G-WADI Geo-Server. Two
case studies were provided to demonstrate the capability of PERSIANN-CCS in the
measurement of precipitation from two hurricane events. The results were evalu-
ated using ground-based radar measurements at various spatial (0.04◦ and 0.25◦)
and temporal (hourly to daily) scales over the Southeastern United States. Case
studies show that, at 0.04◦ resolution, accumulation of PERSIANN-CCS estimation
from 3-h to daily scale has improved correlation coefficients from 0.52 to 0.73 for
Hurricane Ernesto and from 0.40 to 0.87 for Hurricane Katrina. Likewise, at 0.25◦
resolution, correlation coefficients are improved from 0.63 to 0.82 for Hurricane
Ernesto and from 0.44 to 0.91 for Hurricane Katrina (see Figs. 7 and 9). The results
demonstrated great potential of using PERSIANN-CCS estimates for hydrologic
applications.

Although PERSAINN-CCS performs fairly well under cold clouds (Tb < 253 K),
extending the algorithm’s capability to capture warmer rainfall requires more inves-
tigation. Employing multi-spectral images can be an alternative for this purpose.
During daytime a visible channel provides added information relevant to cloud
thickness, which is beneficial for rain detection and estimation (Behrangi et al.,
2009a, b; Cheng et al., 1993; Griffith et al., 1978; Osullivan et al., 1990). A water
vapor channel was also found useful for rain retrieval purposes (Ba and Gruber,
2001; Behrangi et al., 2009a; Desbois et al., 1982; Kurino, 1997). These two
channels are currently available globally from a constellation of geosynchronous
satellites hence, have potential to be implemented in operational rain estimation
algorithms. With the advent of modern imagers on the recent and future geosta-
tionary satellites, in particular the Spinning Enhanced Visible and InfraRed Imager
(SEVERI) on Meteosat Second Generation (MSG) and the Advanced Baseline
Imager (ABI) on GOES-R, more spectral channels with higher temporal and spatial
resolution are becoming available.

Recent developments using GEO cloud motion vectors to propagate and
smooth MW rainfall estimates have also demonstrated excellent skills in rain
retrieval. The Climate Prediction Center Morphing (CMORPH) algorithm, for
example, applied the difference between average cloud advection and the motion
of surface rainfall and then linearly interpolated MW rainfall estimates along
advection streamlines (Joyce et al., 2004). A new multi-platform multi-sensor
satellite rainfall algorithm, named Lagrangian Model (LMODEL), has been devel-
oped to evaluate the effectiveness of the cloud development modeling/model
updating approach (Bellerby et al., 2009; Hsu et al., 2009). The LMODEL
synergizes recent developments in cloud development modeling, satellite cloud-
feature extraction, cloud image tracking, geostatistics and sequential filtering
theory to develop microwave and IR combination algorithm for rainfall retrieval.
Investigation of extreme rainfall estimation using multi-spectral imagery and
LMODEL cloud tracking approaches are ongoing and will be reported in the near
future.
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The Combined Passive Microwave-Infrared
(PMIR) Algorithm

Chris Kidd and Catherine Muller

Abstract The retrieval of satellite rainfall estimates from multi-platform Earth
observations has received much attention over the last decade. The Passive
Microwave – InfraRed algorithm, developed at the University of Birmingham, has
been operating in a quasi-operational mode since 2002. The algorithm combines
the temporally-rich information from the infrared geostationary observations with
the more quantitative, but less frequent, rainfall information from the passive
microwave polar-orbiting satellites. Co-located infrared and passive microwave
information is entered into a database which is used to generate the relationship
between the surface rainfall and infrared cloud top temperatures at a centred-
weighted 5 × 5 scale. The technique produces rainfall estimates at a temporal
resolution of 30 min and a spatial resolution of 0.1 × 0.1: the user can then aggregate
these results to suit their requirements.

Keywords Satellite rainfall · Infrared · Passive microwave · Rainfall verification

1 Background

Precipitation is highly variable both spatially and temporally occurring over only a
few percent of the Earth’s surface at any one time. Conventional means of observa-
tion rely primarily on gauges and more recently on radar, although over the world’s
oceans these observations are often non-existent, and over the land areas coverage
is uneven and often sparse. Quantitative precipitation estimates from satellite data
can provide spatially and temporally consistent coverage over both land and ocean.
With increasing demand for improved precipitation estimates from satellite systems
over a range of scales in space and time, new techniques have been developed.
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Techniques often rely upon visible (Vis) and infrared (IR) observations of the cloud-
tops and, although the relationship with surface rainfall is not direct, they benefit
from frequent observations. More direct observations can be obtained from passive
microwave (PM) observations, although they suffer from poorer less-frequent sam-
pling. This dichotomy is shown in the results from the third Global Precipitation
Climatology Project (GPCP) Algorithm Intercomparison Project (AIP-3; Ebert and
Manton 1998), which showed that the PM estimates produced the best instantaneous
results and the IR-based estimates provided the best long-term estimates.

Although the relationship between the cloud-top characteristics, as observed by
VIS and IR sensors, and rainfall can be somewhat tenuous, many techniques have
been developed. Examples include the GOES precipitation index (GPI), developed
by Arkin and Meisner (1987), and designed to generate monthly rainfall products
using the fractional coverage of cloud colder than 235 K in the IR with a fixed
rain rate of 3 mmh–1. The use of a simple fixed cloud-top temperature threshold
and fixed rain rate has proved to be robust, although can lead to regional biases
in the rainfall product. More complex techniques such as the operational GOES
IR rainfall estimation technique, or Auto-Estimator, and the GOES Multispectral
Rainfall Algorithm (GMSRA), are described by Vicente et al. (1998, 2001) and Ba
and Gruber (2001) respectively. These techniques utilize relationships established
between the satellite observations and surface data sets together with moisture cor-
rection factors to account for evaporation. However, all Vis/IR-based techniques
estimate surface rainfall indirectly through the observation of the cloud-top: more
direct rainfall measurements are possible through PM observations which respond to
the hydrometeor particles, rather than the cloud tops. Precipitation-sized hydromete-
ors can emit or scatter microwave radiation, depending upon the size of the particle
and the frequency of the microwave radiation. At low frequencies (<c.40 GHz)
emission from rain droplets provide the main source of information for rainfall
retrievals, while above c.40 GHz, the same droplets will scatter microwave radia-
tion. Although the PM observations are more direct than the Vis/IR, the emission
signal is only discernable over surface water, and information on rainfall derived
from a scattering signal is related to ice particles in the upper regions of the cloud
system.

The combination of multi-satellite observations is therefore key to advancing
the accuracy of precipitation products, not only from improved sampling, but also
from the combination of different sources of information on the precipitation sys-
tems. Results from the Precipitation Intercomparison Projects (PIP) (Barrett et al.
1994; Smith et al. 1998; Alder et al. 2001) and the Algorithm Intercomparison
Programme (AIP) (summarised by Ebert 1996) demonstrated that PM-only algo-
rithms are more accurate than IR-only algorithms in terms of instantaneous rainfall
estimates. However, IR-only techniques provide better long-term estimates than the
PM-only techniques due to better temporal sampling. IR techniques generally use
data from geostationary satellites, providing a nominal 48 images per day, although
more recent satellite systems provide more frequent imagery. It should also be
noted that rainfall occurrence is less than cold-cloud occurrence, therefore cloud-
based IR techniques provide a smoother, more time-integrated product than rain
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particle-based PM techniques. Less frequent imagery from PM measurements is
obtained from a range of satellite systems including the Defense Meteorological
Satellite Program (DMSP) Special Sensor Microwave Imager (SSM/I) and Special
Sensor Microwave Imager-Sounder (SSM/IS), the Tropical Rainfall Measuring
Mission (TRMM) Microwave Imager (TMI), the Advanced Microwave Scanning
Radiometer (AMSR) and the Advanced Microwave Sounding Unit (AMSU).

Adler et al. (1993) first suggested the combination of IR and PM observations
to improve precipitation estimates on the basis of retaining the strengths of indi-
vidual techniques to overcome the other’s weaknesses. They compared the results
of the GPI and the convective-stratiform technique (CST; Adler and Negri 1988)
with an 85-GHz-based PM-technique over monthly timescales to generate modified
the rain-rate values for the IR algorithms. Similarly, Kummerow and Giglio (1995)
tested both fixed-IR/variable-rainrate and variable-IR/fixed-rainrate techniques over
the Pacific atolls, again based upon monthly relationships. The Universally Adjusted
GPI (UAGPI; Xu et al. 1999) used the scattering index (SI; Ferraro and Marks 1995)
to produce an optimal IR rain/no-rain threshold and optimal conditional rainrates in
order to reduce the total error between the IR-based and the PM-based rainfall esti-
mates. Adjustment of algorithm parameters like this is employed by a number of
techniques, including the GPCP multi-satellite product (see Huffman et al. 1997,
2001), which combines rainfall estimates from numerous sources by using weight-
ings based upon error estimates assigned to the individual components derived from
monthly rainfall products. Other methods use PM rainfall retrievals to calibrate the
IR temperatures to derive a generalised IR-rainrate regression. Kidd (1999) cali-
brated IR temperatures over the AIP-3 region while Todd et al. (2001) describes the
calibration of IR temperatures over Africa using a moving 1◦ × 1◦ window to gener-
ate fine-scale calibrations at 0.25◦ × 0.25◦. Techniques combining IR and PM data
through neural networks include the Precipitation Estimation from Remotely Sensed
Information Using Artificial Neural Networks (PERSIANN) technique (Sorooshian
et al., 2000) which generates rainfall estimates from a single IR channel at a nom-
inal resolution of 0.25◦ × 0.25◦ every 30 min using five feature parameters based
upon a mosaic of overlapping training regions. More recently, techniques, such as
CMORPH (Joyce et al. 2004) have been developed whereby the IR information
from several time-observations is used to move the areas of PM-derived rainfall.

The choice of the spatial and temporal calibration domain for the IR-PM com-
bined techniques is often subjective. Some techniques rely upon monthly 2.5 × 2.5
degree domains to provide robust calibrations to overcome the regional biases in
the IR-based algorithms (e.g. Adler et al. 1993; Xu et al. 1999). Although the cli-
matological variations in the IR–PM relationship will be reflected in the monthly
calibrations they will not respond to the sub-monthly variations in the meteorology.
Miller et al. (2001) and Turk et al. (2000) used instantaneous calibrations based
upon coincident IR–PM values to reflect the changes in the calibration over short-
term periods. However, the use of instantaneous calibration data results in relatively
few data and consequently a larger spatial domain is required to ensure an adequate
sampled-size: Turk et al. (2000) generated calibrations on a 5◦ × 5◦ basis within
a 15◦ × 15◦ moving window. A trade-off therefore exists between the temporal
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and the spatial sizes of the domains used for the IR-PM calibration: the choice of
the domain can be critical in the accuracy of the final rainfall product (Todd et al.
2001).

Validation studies of these IR–PM techniques are somewhat variable due to the
different regions over which they have been tested. Comparison with the GPI tech-
nique indicates that most of the combined products showed reduced root-mean
squared error (RMSE) and bias (Alder et al. 1993; Kummerow and Giglio 1995; Xu
et al. 1999) and similar or slightly worse correlations (Xu et al. 1999; Miller et al.
2001). Todd et al. (2001) highlighted the importance of surface data sets: correla-
tions between the EPSAT gauges and the Microwave-IR Rainfall Algorithm (MIRA)
technique exceeded those of GPI and the UAGPI techniques, although when com-
pared with the Global Precipitation Climatology Centre (GPCC) gauge data set, the
reverse was true.

2 Algorithm Description

The Passive Microwave-InfraRed (PMIR) technique was initially formulated using
data over the AIP-3 study region in the western Pacific (Kidd, 1999). The PMIR has
been developed first, to exploit a number near real-time datasets that are available
over the Internet and second, to provide a simple yet robust multi-sensor precipita-
tion technique: it is described in detail in Kidd et al. (2003). Precipitation products
from this technique have been generated on a quasi-operational basis since January
2002 every 30 min at a resolution of c.12 × 12 km for regions between 60◦N and
60◦S. The technique, shown in Fig. 1, can be broken down into three separate pro-
cessing stages: (a) data ingest and preparation, (b) database management and (c)
results generation.

2.1 Data Ingest and Preparation

Data for the PMIR technique are derived from two main on-line data sources. The IR
dataset is available from the Climate Prediction Center and is described by Janowiak
et al. (2001). The data is acquired from five geostationary satellites, currently the
two US GOES, the Japanese MT-Sat and the two European MSG satellites. Data
from these satellites are remapped to a nominal 4 km spatial resolution and 30 min
temporal resolution, with corrections for parallax, viewing angle and inter-satellite
calibration (Janowiak et al. 2001).

PM data, from the Defense Meteorological Satellite Program (DMSP) Special
Sensor Microwave/Imager (SSM/I) sensors is obtained from the Global Hydrology
Climate Center of the National Aeronautics and Space Administration (NASA)
Marshall Space Flight Center/University of Huntsville, Alabama. Typically there
are three available sensors resulting in between four and six overpasses each day.
Rainfall estimates from this data are generated by the combined 85/19 GHz fre-
quency difference technique as submitted to the AIP-3 and PIP-3 inter-comparison
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Fig. 1 Processing stages of the PMIR algorithm: data is ingested in Part A and histograms pre-
pared of the cloud top temperatures and rainfall rates for each 1◦ × 1◦ latitude/longitude. Part B
generates a temporally and spatially-weighted histograms from which the calibration database is
derived. This database, for each 1◦ × 1◦ square is then applied (Part C) to the IR data to generate
0.1◦ × 0.1◦, 30 min estimates of rainfall

projects by the University of Bristol (see Ebert 1996). The original algorithm was
calibrated against UK FRONTIERS radar data but has subsequently been recali-
brated against the TRMM PR rainfall data to provide a more globally representative
PM-rainfall relationship. Surface contamination is removed through the use of the
screening methodology of Ferraro and Marks (1995): surface screening is per-
formed on a daily basis to eliminate surface variations, although some residual
contamination due to snow and ice does remain.

The IR data is resampled to a 0.1◦ grid by using a 3 × 3 filter to average the
4-km data and generate a mean cloud-top temperature over a 12 × 12 km area to
approximate the resolution of the PM rainfall estimates generated at the 85 GHz
resolution. The resulting rainfall estimates from all PM observations are remapped
to a 0.1◦ grid (approximately 12 km) for each 30-min period centered on the hour
and half-hour. The mean IR cloud top temperatures and the PM rainfall estimates are
now co-located for each 30 min at a resolution of 0.1◦ × 0.1◦. The PM-IR matched
histograms are generated at a scale of 1◦ × 1◦ recording IR temperatures (75–329 K)
and PM rainfall estimates (0.0–51.1 mm h–1). The histograms for each 30 min are
then saved to disk ready for the generation of the database.
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2.2 Database Management

The PMIR technique is capable of operating in two modes: a “climatological-
historical” mode which uses data from d-2 (day minus two) to d+2 using an
arbitrarily derived linear weighting function (0.6, 0.8, 1.0, 0.8, 0.6, respectively)
centered on d-0 (“today”), while the “operational” mode uses data for d-0 back to
d-4 and is accumulated using a similar weighting function (i.e., d-0 has a weight
of 1.0, d-1 × 0.8, d-2 × 0.6, etc.): both sets of temporal weighting functions are
applied to frequency of occurrences in the histograms of the IR-temperatures and
PM-rainrates. After the data has been aggregated temporally it is then smoothed
spatially through the use of a 5◦ × 5◦ Gaussian filter. These separate histograms of
co-located IR temperatures and PM rainfall rates are then are converted into cumu-
lative histograms and are then matched through the use of a cumulative histogram
matching approach such that the coldest IR temperatures are assigned the highest
rainfall. The main benefit of using the cumulative histogram matching approach is
that it does not assume that the IR and PM data sets are precisely co-located in
space and time: co-registered and temporally coincident data sets are rarely achiev-
able. Furthermore, cumulative histogram matching overcomes the problem of the
rainrates being heavily skewed towards zero: the technique allows the PM frequency
distribution of rainrates to be reflected in the resulting combined product. One draw-
back is, however, that the IR-calibration will perpetuate any errors in the rainfall
distribution generated by the PM-derived rainrates. Thus, the precise screening of
non-raining features is critical to the success of the technique. The relationships for
each 1◦ × 1◦ area are saved as a lookup table for subsequent application to generate
the final rainfall product.

2.3 Results Generation

The final step of the technique is the application of the lookup-tables to the IR data
sets. Data from the IR is available for each 30 min and is used at a resolution of
0.1◦ × 0.1◦. The corresponding calibration curve for the 1◦ × 1◦ area in which the
IR value is located is selected and the IR temperature converted to a rainfall rate.
Thus the final product is generated at a temporal resolution of 30 min and a spatial
resolution of 0.1◦ × 0.1◦, allowing users to average the product to temporal/spatial
scales to suit their application.

Examples of the input data sets are shown in Fig. 2. Figure 2(a) shows the
global-IR composite imagery from the 5 main geostationary satellites for 11 January
2009 at 12:00 UTC. The PM data is represented by the 85 GHz image (for 11
January 2009) in Fig. 2(b): the highlighted swaths indicate the coverage of the
SSM/I between 11:45 and 12:15 UTC. The 85 GHz channels, along with other PM
channels, are used to generate the daily snow/ice surface mask shown in Fig. 2(c):
the different tones of grey indicate the number of overpasses during the day when
snow or ice was retrieved by the algorithm. The PM rainfall product is shown in
Fig. 2(d) with these regions of snow and ice masked out in mid-grey.
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Fig. 2 Component elements
used in the PMIR technique:
(a) the infrared geostationary
composite imagery; (b)
passive microwave 85 GHz
imagery (highlighted region
is temporally co-incident with
the IR imagery); (c) snow-ice
mask, and; (d) the combined
PMIR product at 30-min,
0.1◦ × 0.1◦ resolution. This
example is for 11 January
2009 and illustrates the extent
of the snow/ice mask in the
northern hemisphere

3 Application and Results

The basis of the technique is described by Kidd et al. (2003, 2007) through the
implementation of the PMIR technique over Africa: monthly calibrations of the
IR were generated through comparison with the PM-derived rainfall rates. The
resulting maps of cloud-top temperatures associated with the rain/no-rain thresh-
old showed considerable regional variations ranging from 210 K, associated with
deep convective clouds, through to 290 K in regions of little rainfall. These warm
rain/no-rain thresholds and low conditional rainrates were associated with low-level
clouds, such as trade-wind cumulus, or sub-resolution rain-cells. Study of the cali-
bration periods revealed significant day-to-day variations in the PM-IR calibration,
results which are consistent with the study of Kidd (1999) over the TOGA-COARE
region.

Daily rainfall products compared by Kidd et al. (2003) included from the GPI,
the Universally-Adjusted GPI (Xu et al. 1999), a variable rain-rate version of the
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UAGPI, a PM-only frequency difference algorithm and two PMIR products, one the
operational-mode PMIR and the climatological-mode PMIR technique. The results
showed that the GPI produced greatest rainfall area, while the PM-only technique
generated the least rainfall extent although, statistically, the PM-only technique had
the lowest bias of the techniques. Comparisons between the satellite techniques and
surface gauge data showed that all the combined algorithms had better correlations
than single-sensor techniques, with the PMIR identifying the occurrence of rain-
fall well. Kidd et al. (2003) however, concluded that the combined techniques did
not necessary provide better statistical performance overall due to two main fac-
tors. First, the PM-technique that is used to calibrate the IR temperatures is critical
in determining the quality of the final product: any inherent weakness in the PM
algorithm will be transferred via the calibration to the combined technique and
reflected in the final product. Second, the calibrated-IR techniques are still reliant
upon the premise that cold cloud tops will faithfully represent the underlying rain-
fall. Furthermore, it was noted that the calibration itself may not be representative
of the meteorological regime, particularly in regions with a strong diurnal cycle and
hence different cloud-rain life cycle relationships.

An example of the PMIR precipitation product at 30 min/0.1◦ × 0.1◦ resolution
is shown in Fig. 3. Data for 20 July 2008 from 00:00 UTC and 11:30 UTC has been
processed and extracted for the region from 120◦W to 90◦W and from the Equator
to 30◦N. In the centre left of the sequence of images is Hurricane Fausto, just before
it reached its maximum strength: the strengthening of this hurricane through this
sequence is evident by the tightening and intensification of the rain bands around
the storm centre. To the East are a number of convective clusters moving west-
wards from the coast of central America into the Eastern Pacific. Also of note is
the convective activity over the land areas to the North, over Mexico, associated
with the diurnal heating and associated convective storms – the imagery from 00:00
to 11:30 UTC being 17:00–04:30 local time. This case study exemplifies the util-
ity of such a technique for application at fine temporal and spatial scales. While
the products from the technique can be averaged to provide coarser resolution esti-
mates, many applications require precipitation estimates at scales finer than many
currently-available products. In particular, hydrological modelling often requires
rainfall information at fine temporal and spatial scales for input into, for exam-
ple, flow models. Drainage basins often have irregular shapes with heterogeneous
surface types, further emphasising the requirement for precipitation products with
spatial resolutions commensurate with the landscape features. Likewise, temporal
scales for flood events are typically on scales less than 3-h: the 30-min (potentially
15-min) sampling resolution of this technique addresses this requirement.

The PMIR product has undergone extensive testing and evaluation at the reduced-
resolution daily/0.25◦x0.25◦ scales, comparable with numerous other operational
and quasi-operational precipitation products. Figure 4 shows a number of pre-
cipitation products generated on 11 January 2009 (00-24Z) at a resolution of
0.25◦ × 0.25◦. The 3B42RT product (Fig. 4a), described by Huffman et al. (2007),
combines numerous satellite rainfall estimates using weightings based upon error
estimates assigned to the individual components. The CMORPH technique (Fig. 4b;
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Fig. 3 Example of
0.1◦ × 0.1◦ 30 min PMIR
precipitation products for
rainfall over the Eastern
Pacific and Central America
on 20 July 2008: grey tones
represent rainfall from zero
(white) to 25 mmh–1 (black).
Region extends from 120◦W
to 90◦W and from 0◦N to
30◦N

Joyce et al. 2004) is based upon the premise that the estimates from PM-techniques,
being superior to those of the IR, are the main source of information with the IR
used purely for assessing the movement of the rain systems. The PMIR is shown in
Fig. 4c, while the output from the NRL NOGAPS Numerical Weather Prediction
(NWP) model is shown in Fig. 4d. It can be noted that the satellite-derived
products all show a good degree of similarity, capturing the main precipitation
systems, particularly across the Tropics. Some subtle differences can seen, for
example, off the coast of South America where the PMIR shows a broader area
of heavier rainfall than suggested by the 3B42RT and CMORPH techniques.
More pronounced are differences in higher latitude regions: in the southern hemi-
sphere the PMIR shows less rainfall than both the 3B42RT and the CMORPH
technique: in the northern hemisphere there are similar differences over the ocean.
Over the northern hemisphere land masses the PMIR suggests more rainfall than
the other two satellite techniques: both the PMIR and 3B42RT products show some
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Fig. 4 Comparison of daily
(00-24Z) 0.25◦ × 0.25◦
precipitation products for 11
January 2009: (a) 3B42RT
(multi-satellite technique);
(b) cmorph (IR-advection of
PM rainfall); (c) PMIR
(PM-calibrated IR) and; (d)
NRL NOGAPS model output

precipitation in the NW of the United States, although the PMIR also shows an area
over the Rocky Mountains not shown by the 3B42RT product. The PMIR also shows
regions of precipitation over Eurasia not shown in the other two satellite products.
The model rainfall product (Fig. 4d) shows broadly similar regions of rainfall, but
in less detail and with some of rain features displaced. Of particular note are the
regions of convective precipitation over continental Africa and South America: the
satellite products capture these precipitation features with a good degree of detail,
whereas the model output underestimates the rainfall totals and broadens the extent
of the rainfall area.

The PMIR precipitation product is routinely compared with surface data sets
and other precipitation products on a daily basis in near real time through the
validation efforts of the International Precipitation Working Group (IPWG) (see
Ebert et al. 2007): examples of these comparisons are shown in Fig. 5. The Bureau
of Meteorology in Melbourne, Australia, oversees the comparison of precipitation
products over Australasia: Fig. 5a, shows the PMIR precipitation product compared
with surface rain gauge data for 25 December 2008. The form of the precipitation
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(a)

(b)

Fig. 5 Examples of the application of the PMIR precipitation product over the international pre-
cipitation intercomparison project regions of (a) the European validation region on 20 July 2007
and (b) Australian validation region on 25 December 2008

regions are generally similar between the satellite and surface data sets, although the
satellite product produces a smaller extent than the surface gauge data, while gen-
erating only ∼60% of the rainfall totals. Figure 5b shows an example of the PMIR
over the IPWG European validation region on 20 July 2007. The PMIR performs
reasonably well, with a correlation of 0.542, although generating less rainfall extent
(85%) and less total rainfall (ratio=0.783) than suggested by the surface radar data.
However, as in the example over Australia, the general form of the rainfall pattern
in similar, albeit with the PMIR showing some influence from the IR cold cloud
patterns.

Longer term performance of the PMIR is shown in Fig. 6: here comparison is
made between the PMIR, the NRL NOGAPS model output and five other satellite
precipitation products. A 31-day moving-average correlation coefficient has been
generated for daily products over the IPWG European validation region. In com-
mon with other findings (e.g. Ebert et al. 2007), the satellite precipitation products
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Fig. 6 Statistical performance of satellite and model precipitation products during 2007 and
2008 over the IPWG European validation region. The model output is represented by the thick
continuous line while the PMIR is represented by the thick broken line

show a marked seasonal cycle in the retrieval performance, while the model shows
reasonably consistent performance, although poorer during the summer months and
somewhat better during the winter months. This seasonal cycle has been attributed
to a number of factors including the difficulty in extracting precipitation signals
over cold and snow-covered surface and the variations in the structure of the pre-
cipitation systems – winter-time weather systems having less vertical extent and
less liquid water than summer-time systems. The overall best-performing satellite
algorithm during this period was the CMORPH technique. Although performance
of the PMIR was generally poorer than the other techniques, it was on a par with
the Hydro-Estimator algorithm (Scofield and Kuligowski 2003) and the NRL geo.
It should also be noted that the techniques is designed to operate at finer resolutions
than daily/0.25◦ × 0.25◦ and at present the technique is working with only two PM
satellite data sets for calibration (the F13 and F15).

4 Conclusions

The exploitation of observations from multiple satellite sensors is key to the
improvement of rainfall estimates over single-sensor techniques. Over the last
decade there has been much work devoted to the development of such techniques,
ranging from combining individual sensor products, to the calibration of the IR
with PM rainfall information to the advection of PM rainfall measurements by
IR motion-vectors. At present the advection/morphing techniques produce precip-
itation products with superior statistical performance: however, such techniques
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are somewhat complicated requiring cloud-tracking routines. The PMIR technique
described here is relatively straightforward, currently relying upon two easily
available data sets, the global-IR composite and the PM DMSP SSM/I data set.

New observations from future satellite missions and the full exploitation of
current satellite observations hold great promise for improvements in quantitative
precipitation estimates from satellites. In particular, the full exploitation of imagery
from the satellites such as the Meteosat Second Generation (MSG) have yet to be
realised: the use of multichannel information should enable improved delineation
of precipitation regions and provide information on rainfall ‘‘potential’’ informa-
tion over the IR channel alone. In addition, newer geostationary satellite systems
have high scanning/image capture capabilities enabling precipitation products to
be generated at finer temporal resolutions, critical for flood-monitoring capabil-
ities. In particular, the development of the Global Precipitation Mission (GPM)
(Flaming 2002) to provide 3-hourly data will prove very useful in IR-calibration
techniques. Although the GPM mission would enhance the temporal sampling capa-
bility of PM-derived precipitation products, sub-three hourly estimates would still
be needed. In addition, the GPM dual-frequency precipitation radar will provide
unrivalled independent information on the precipitation structures in the mid- to
high-latitudes, helping to resolve some of the shortcomings of the satellite products
over the seasonal cycle. However, critical to the success of any combined tech-
nique is the performance of the individual algorithm components: to date there has
been no comprehensive study to evaluate whether certain techniques perform best
as a result of individual components, or through the technique of combining the
information.

Acknowledgments The author would like to thank NASA under their Precipitation Measurement
Missions programme for their continuing support of this research. Global infrared data is provided
courtesy of the Climate Prediction Center and John Janowiak; passive microwave data from the
SSM/I is courtesy of the Global Hydrology and Climate Center, NASA/MSFC.

References

Adler RF, and Negri AJ (1988) A satellite technique to estimate tropical convective and stratiform
rainfall. Journal of Applied Meteorology, 27, 30–51.

Adler RF, Negri AJ, Keehn PR, and Hakkarinen IM (1993) Estimation of monthly rainfall over
Japan and surrounding waters from a combination of low-orbit microwave and geosynchronous
IR data. Journal of Applied Meteorology 32, 335–356.

Adler RF, Kidd C, Petty G, Morrisey M, and Goodman MH (2001) Intercomparison of global
precipitation products: The Third Precipitation Intercomparison Project (PIP-3). Bulletin of the
American Meteorological Society 82, 1377–1396.

Arkin PA and Meisner BN, (1987) The relationship between largescale convective rainfall and cold
cloud over the Western Hemisphere during 1982–84. Monthly Weather Review 115, 51–74.

Ba MB and Gruber A (2001) GOES multispectral rainfall algorithm (GMSRA). Journal of Applied
Meteorology 40, 1500–1514.

Barrett EC, Adler RF, Arpe K, Bauer P, Berg W, Chang A, Ferraro R, Ferriday J, Goodman S,
Hong Y, Janowiak J, Kidd C, Kniveton D, Morrissey M, Olson W, Petty G, Rudolf B, Shibata
A, Smith E, and Spencer R (1994) The first WetNet Precipitation Inter-comparison Project:
Interpretation of Results. Remote Sensing Reviews 11, 303–373.



82 C. Kidd and C. Muller

Ebert EE (1996) Results of the 3rd Algorithm Intercomparison Project (AIP-3) of the Global
Precipitation Climatology Project (GPCP). Research Rep. 55, Bureau of Meteorology Research
Centre, Melbourne, Australia, 204 pp.

Ebert EE and Manton MJ (1998) Performance of satellite rainfall estimation algorithms during
TOGA COARE. Journal of Atmospheric Science 55, 1537–1557.

Ebert EE, Janowiak JE and Kidd C (2007) Comparison of near real time precipitation estimates
from satellite observations and numerical models. Bulletin of the American Meteorological
Society 88, 47–64.

Ferraro RR and Marks GF (1995) The development of SSM/I rain-rate retrieval algorithms using
ground based radar measurements. Journal Atmospheric and Oceanic Technology 12, 755–770.

Flaming GM (2002) Requirements for global precipitation measurement. Proc. IGARSS’02,
Vol. 1, Toronto, ON, Canada, IEEE, 269–271.

Huffman GJ, Adler RF, Arkin R, Chang A, Ferraro R, Gruber A, Janowiak J, McNab A, Rudolf
B and Schneider U (1997) The global precipitation climatology project (GPCP) combined
precipitation dataset. Bulletin of the American Meteorological Society 78, 5–20.

Huffman GJ, Adler RF, Morrisey MM, Bolvin DT, Curtis S, Joyce R, McGavock B, and Susskind
J (2001) Global precipitation at one-degree daily resolution from multi-satellite observations.
Journal of Hydrometeorology 2, 36–50.

Huffman GJ, Adler RF, Bolvin DT, Gu G, Nelkin EJ, Bowman KP, Hong Y, Stocker EF and Wolff
DB (2007) The TRMM multi-satellite precipitation analysis (TMPA): Quasi-global, multiyear,
combined-sensor precipitation estimates at fine scales. Journal of Hydrometeorology 8, 38–55.
doi:10.1175/JHM560.1

Janowiak JE, Joyce RJ and Yarosh Y (2001) A real-time global half-hourly pixel-resolution
infrared dataset and its application. Bulletin of the American Meteorological Society 82,
205–217.

Joyce RJ, Janowiak JE, Arkin PA and Xie P (2004) CMORPH: A method that produces global
precipitation estimates from passive microwave and infrared data at high spatial ad temporal
resolutions. Journal of Hydrometeorology 5, 487–503.

Kidd C (1999) Results of an infrared/passive microwave rainfall estimation technique. Proc.
Remote Sensing Society, Cardiff, Wales, United Kingdom, Remote Sensing Society, 685–689.

Kidd C, Kniveton DR, Todd MC and Bellerby TJ (2003) Satellite rainfall estimation using
a combined passive microwave and infrared algorithm. Journal of Hydrometeorology 4
1088–1104.

Kidd C, Tapiador FJ, Sanderson V and Kniveton D (2007) The University of Birmingham Global
Rainfall Algorithms. p.255–268. In Measuring Precipitation from Space: EURAINSAT and the
future. Eds. V. Levizzani, P. Bauer and J. Turk. Springer, New York 722 pp.

Kummerow C and Giglio L (1995) A method for combining passive microwave and infrared
rainfall observations. Journal of Atmospheric and Oceanic Technology 12, 33–45.

Miller SW, Arkin PA and Joyce R (2001) A combined microwave/ infrared rain rate algorithm
International Journal of Remote Sensing 22, 3285–3307.

Scofield RA and Kuligowski RJ (2003) Status and outlook of operational satellite precipitation
algorithms for extreme-precipitation events. Weather and Forecasting 18, 1037–1051.

Smith EA, Lamm JE, Adler RF, Alishouse J and Aonashi K (1998) Results of the WetNet PIP-2
project. Journal of Atmospheric Science 55, 1483–1536.

Sorooshian S, Hsu K-L, Gao X, Gupta HV, Imam B and Braithwaite D (2000) Evaluation of
PERSIANN system satellite-based estimates of tropical rainfall. Bulletin of the American
Meteorological Society 81, 2035–2046.

Todd MC, Kidd C, Kniveton D and Bellerby TJ (2001) A combined satellite infrared and passive
microwave technique for estimation of small-scale rainfall. Journal of Atmospheric Oceanic
Technology 18, 742–755.

Turk FJ, Hawkins J, Smith EA, Marzano FS, Mugnai A and Levizzani V (2000) Combining SSM/I,
TRMM and infrared geostationary satellite data in a near-real time fashion for rapid precipi-
tation updates: Advantages and limitations. Proc. 2000 EUMETSAT Meteorological Satellite
Data Users’ Conf., Vol.2, Bologna, Italy, EUMETSAT, 705–707.



KIDD Satellite Product 83

Vicente GA, Scofield RA and Menzel WP (1998) The operational GOES infrared rainfall
estimation technique. Bulletin of the American Meteorological Society 79, 1883–1898.

Vicente GA, Davenport JC and Scofield RA (2001) The role of orographic and parallax correction
on real time high resolution satellite rain rate distribution. International Journal of Remote
Sensing 23, 221–230.

Xu L, Gao X, Sorooshian S, Arkin PA and Imam B (1999): A microwave infrared threshold
technique to improve the GOES precipitation index. Journal of Applied Meteorology 38,
569–579.



The NRL-Blend High Resolution Precipitation
Product and its Application to Land Surface
Hydrology

Joseph T. Turk, Georgy V. Mostovoy, and Valentine Anantharaj

Abstract In this chapter, we discuss the basic workings of the NRL-Blend
high-resolution precipitation product, followed by a validation experiment. We
employ satellite omissions to the existing (late 2008) constellation of low Earth
orbiting satellite platforms to examine the impact of several proxy Global
Precipitation Mission (GPM) satellite constellation configurations when used to
initialize land surface models (LSM). The emphasis is on how high resolution pre-
cipitation products such as the NRL-Blend are affected by such factors as sensor
type (conical or across-track scanning) and nodal crossing time, using a collection of
GPM proxy datasets gathered over the continental United States. We present results
which examine how soil moisture states simulated by the two state-of-the-art land
surface models are impacted when forced with the various precipitation datasets,
each corresponding to a different proxy GPM constellation configuration.

Keywords Satellite · Microwave · Surface · Model · Hydrology · GPM

1 High Resolution Precipitation Products (HRPP)

High Resolution Precipitation Products (HRPP) combine a multitude of spaceborne
remotely-estimated and ground-based datasets in order to generate a precipita-
tion product that is of a finer spatial and/or temporal resolution than any of the
individual input datasets. These HRPPs are relevant to a variety of applications
relating to Earth’s hydrological cycle. Passive microwave sensors onboard low
Earth orbiting (LEO) and geostationary Earth orbiting (GEO) environmental satel-
lite systems provide the basic building blocks of an HRPP, augmented in some
cases by surface radar and raingauge information and analyses from numerical
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weather prediction (NWP) models. Examples of commonly used HRPPs are the
Tropical Rainfall Measuring Mission (TRMM) Multisatellite Precipitation Analysis
(TMPA) (Huffman et al., 2007), the Precipitation Estimation from Remotely
Sensed Information using Artificial Neural Networks (PERSIANN) datasets (Hsu
et al., 1997), the Climate Prediction Center morphing technique (CMORPH)
(Joyce et al., 2004), and the NRL-Blend (Turk and Miller, 2005) among oth-
ers. Typically, these HRPPs combine multiple satellite datasets (and some add
in additional raingauge and other non-satellite data) and produce estimates of
three-hourly accumulated precipitation between ±60◦ latitude, updated every three
hours, at a gridded spatial resolution of 0.25◦. From these three-hourly accumu-
lations, longer time scale accumulations can be generated. Some of these HRPPs
are designed to be operated strictly in near realtime (e.g, NRL-Blend), while oth-
ers create near realtime as well as a higher quality, post-processed non-realtime
datasets.

2 NRL-Blend HRPP Technique

In this section we outline the design and implementation of the NRL blended satel-
lite precipitation technique (referred to as NRL-Blend), which is based upon a real
time, underlying collection of time and space-matching pixels from all operational
geostationary (GEO) visible/infrared (VIS/IR) imagers and passive microwave
(PMW) imagers onboard low Earth orbiting (LEO) satellites. It operates in an auto-
nomous, operational mode with a steadily arriving stream of near real-time data
from the operational GEO and LEO satellites (Turk and Miller, 2005). As of
January 2009, the current operational GEO satellites are GOES-11, GOES-12,
Meteosat-7, Meteosat-9 (MSG-2), and GMS-6 (MTSAT-1R). The current LEO
constellation utilizes all 12 available satellites for a total of 12 PMW sensors and
one active radar system, including (launch date in parentheses),

The crosstrack Advanced Microwave Sounding Units (AMSU) onboard the
National Oceanic and Atmospheric Administration (NOAA)-15 (May 1998),
NOAA-16 (September 2000), and NOAA-17 (June 2002),

The Microwave Humidity Sounder (MHS) onboard NOAA-18 (May 2005)
and the EUMETSAT Meteorological Operational Platform (METOP)-A
(October 2006),

The Special Sensor Microwave Imagers (SSMI) onboard the Defense
Meteorological Satellite Program (DMSP) F-13 (March 1995), F-14 (April
1997), and F-15 (December 1999),

The Special Sensor Microwave Imager Sounder (SSMIS) onboard DMSP F-16
(October 2003) and F-17 (November 2006),

The Advanced Microwave Scanning Radiometer (ASMR-E) onboard the Earth
Observing System (EOS) Aqua (May 2002),
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The WindSat polarimetric radiometer onboard Coriolis (January 2003),
The Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI)

and its companion Precipitation Radar (PR) (November 1997).

All of these satellites orbit sun-synchronously with the exception of TRMM
(TRMM’s local observing time repeats approximately every 28 days at the equa-
tor). NOAA-15/17, Metop-A, all DMSP, and Coriolis are in orbit patterns which
crossover in mostly morning (AM) and evening (within a few hours of the solar
terminator), whereas NOAA-16/18 and Aqua are in orbits which crossover in early
afternoon (PM) and early morning (NOAA-16 is an operational backup which has
drifted from its initial afternoon 1400 local equator crossing time to near 1700 as
of late 2008). AMSU and MHS are across-track scanning sounders which can be
used also for precipitation estimation, PR is an across-track scanning radar, whereas
SSMI, SSMIS, WindSat and AMSR-E all scan conically. Although the NRL-Blend
is operated with all of these LEO datasets to minimize overall revisit time, as an
option any of these LEO datasets can be omitted such as to study, for example,
how the loss of a particular satellite in a particular orbit will affect the overall per-
formance of the NRL-Blend. This option will prove useful when the land surface
hydrology modeling is examined in Section 5.

2.1 Time-Space Colocation of LEO and GEO Datasets

Underlying the NRL blended satellite technique is an ongoing, real-time, dynamic
collection of colocated (in time and space) intersecting pixels from all GEO VIS/IR
and LEO PMW imagers. The operation of the NRL-Blend is essentially described
by three procedures. The first procedure involves dataset collocation and is done
in the background. As new PMW datasets arrive, the PMW-derived rainrate pixels
are paired with the time and space-coincident geostationary 11-μm IR brightness
temperature (TB) data from areas of GEO satellite scan coverage, using a 15-min
maximum allowed time offset between the pixel observation times. Figure 1 depicts
an example where a TRMM orbit passes over areas covered by each of the five
GEO satellites, and matched pairs of IR TB and LEO-derived rainrate are paired
with the associated date and geolocation. This collocation procedure is constantly
ongoing with newly arrived datasets. This background collection of collocated data
is used to update global histograms of the IR TB and the PMW rain rate (R) in the
nearest 2◦ latitude-longitude box, as well as the eight surrounding boxes (this over-
lap assures a fairly smooth transition in the histogram shape between neighboring
boxes), depicted on the left side of Fig. 2. The reasoning behind these threshold
values for time-collocation and box size are discussed in [25]. As soon as a box is
refreshed with new data, a probabilistic histogram matching relationship is updated
using the PMW rainrate and IR TB histograms, and an updated TB-R lookup table
(LUT) is created. The global LUT update process is constantly ongoing for all satel-
lite intersections of the 2◦ boxes, with operationally arriving global LEO and GEO
datasets.
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Fig. 1 Illustration depicting an global orbit overpass of the TRMM satellite and the rainrate inside
of the PR coverage area (red box). The orbit intersects coverage areas of each of the five geostation-
ary satellites (circa late 2008) at different times during its orbit. Colocated pairs of IR temperatures
and rainrates are collected along with the associated date and geolocation

2.2 Instantaneous Rainrate Adjustment

The second procedure is initiated with newly arrived GEO datasets and is depicted
on the right side of Fig. 2 (the foreground process). These GEO data are mapped
to a common 0.1◦ pixel–1 rectangular map projection (1200 lines × 3600 samples,
within ±60◦ latitude) and assigned a rainrate through bicubic interpolation of the
rainrate derived from the four surrounding LUT values. The consultation of the
LUT’s generated by the background is illustrated by the arrow pointing between the
background and foreground sides of Fig. 2. Bicubic interpolation assures smooth
transitions in rain rates across box boundaries. If any LUT is more than 24-h old
relative to the GEO dataset time, that LUT is not used (if all four LUTs are bad,
then a missing value is assigned for the rainrate). A final step involves the use
of a numerical weather prediction (NWP) model data to account for underlying
environmental conditions that are not detected (or not accounted for) in a satellite-
only analysis. Using the Navy Operational Global Atmospheric Prediction System
(NOGAPS) forecast model fields (interpolated to the satellite time), the 850-hPa
wind vectors, temperature, humidity, and total column precipitable water (TPW) are
combined with a high-resolution topographic database. A threshold based upon the
product of the humidity and TPW (Vicente et al., 1998) is used together to screen
false rain identification. The TPW and terrain slope are used to apply a scaling
factor in regions of likely orographic effects on both the upslope and downslope
sides (Vicente et al., 2002).
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Fig. 2 Block diagram of the generation of the global lookup tables (LUT) for all 2◦ latitude-
longitude boxes (background process, left side of vertical line), and the adjustment of GEO datasets
into instantaneous rain (foreground process, right side of vertical line)

2.3 Accumulations Procedure

At each 3-hourly synoptic time (00, 03, . . .21 UTC), the precipitation accumulations
are updated by backwards time-integrating the instantaneous LEO and GEO datasets
from the previous 24 h, and outputting an accumulations dataset at 3, 6, 12 and
24-h interval. In the accumulations procedure, each GEO instantaneous rain rate
pixel is weighted according to its time proximity to the nearest PMW overpass. The
PMW estimates are always fully weighted and the GEO estimate receives a smaller
weight the closer it occurs to a PMW overpass, as depicted in Fig. 3 which shows an
example for the 12-h accumulations ending at 12 UTC. For accumulations intervals

Fig. 3 Depiction and example of how the NRL-Blend accumulations are generated by weighted
backwards time integration of the instantaneous GEO and LEO rainrates
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beyond 24-h (such as monthly or seasonally), the 3-hourly accumulations are further
time integrated (for computational efficiency). Although the computations are done
on the 0.1◦ grid, the final products are averaged to a global 0.25◦ grid (480 lines ×
1440 samples) for size and stored in a basic binary format. Each pixel is stored as a
2-byte short integer, where the integer represents the average rainrate (mm hour–1)
over the time interval scaled by 100. To get back the accumulations totals (mm),
the integer value is therefore divided by 100 and multiplied the number of hours
in the accumulations interval. Although the NRL-Blend was operated intermittently
beginning in 2002, official data collection of the global precipitation accumulation
products began in January 2004.

2.4 Comparisons with Numerical Weather Prediction Models

An example of the NRL-Blend product is shown in Fig.4a. In this figure, the 12-h
precipitation accumulations ending at 12 UTC on 6 September 2006 are shown
(color scale in units of mm), with the grayshade background depicting a composited
longwave infrared (IR) satellite image at the accumulations end time. Visually, the
depiction and location of precipitation appears consistent with known precipitation

Fig. 4 (a) 12-h accumulated precipitation (color scale in mm) ending at 12 UTC on 6 September
2006 from the NRL-Blend HRPP (b) As in Fig. 4a, but the 12-h accumulated precipitation (color
scale in mm) ending at 12 UTC on 6 September 2006 from the 24-h forecast of the NOGAPS
model
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patterns at this time of year, e.g., several tropical cyclones in the Atlantic Ocean and
tropical disturbances in the western Pacific Ocean. However, each pixel is associated
with an error whose structure has various components. For example, the majority of
the error is likely associated with the accumulated errors from the instantaneous
rainrate estimates provided by each component satellite. Another error may be from
precipitation evolution that was not captured by the intermittent revisit schedule of
the component satellites.

An additional source of global precipitation data is available from many global
numerical weather prediction (NWP) forecast models. While many NWP models do
not yet specifically carry rain as a prognostic variable, the conversion of cloud liquid
water to rain is typically based on various temperature and humidity thresholds,
including parameterizations of convective processes. Since models evolve the mois-
ture with the dynamical state of the atmosphere, the models generally do a better job
of following the movement of precipitation associated with frontal systems. This
may explain why the motion-based HRPPs (such as CMORPH) tend to perform
better in the middle latitudes than other types of HRPPs which carry little or no
knowledge of the atmospheric dynamical state. Although an NWP model precipita-
tion dataset is a forecast and not a true observation, it nevertheless is an additional
source of data that in some cases may outperform the HRPPs. An example from the
Navy Operational Global Atmospheric Prediction System (NOGAPS) NWP fore-
cast model is shown in Fig. 4b, valid at the same time as Fig. 4a. While NOGAPS
does capture the same basic patterns of precipitation as noted in Fig. 4a, there
are regions of discrepancy. For example, the model tends to spread out too much
light precipitation and doesn’t capture the intense, smaller scale precipitation (e.g.,
tropical cyclones). On the other hand, the model pick up light rain associated with
mid-latitude frontal systems and doesn’t show evidence of discontinuities between
land and water backgrounds (which is an issue with passive-microwave based pre-
cipitation estimates). Nevertheless, while there are situations where HRPP-derived
precipitation is likely to be superior, there are other situations where the opposite is
true. Furthermore, NWP model data could complement HRPP data in a combined
model-plus-satellite approach. It is therefore constructive to include NWP model
forecasted precipitation datasets as part of any HRPP validation effort, as discussed
in the next section.

3 Ground Validation

Different applications can accommodate different types of errors and uncertainties
in the HRPPs. For example a drought analysis is interested in locations where lit-
tle or no precipitation has fallen over long time intervals. A flood warning system
needs to know how much rainfall has fallen over a period time ranging from hours
to weeks. In this section, we summarize previous and ongoing ground validation
efforts involving the NRL-Blend. A unique series of satellite-denial experiments are
presented which are aimed towards understanding how the performance of HRPPs
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such as the NRL-Blend is affected by the types of satellite sensors employed in the
underlying LEO satellite constellation.

3.1 Verification Efforts of the International Precipitation Working
Group (IPWG)

Nearly all of the verification of the NRL-Blend has taken place with ground-based
raingauge networks as part of the HRPP verification activities of the International
Precipitation Working Group (IPWG) (Turk and Bauer, 2006). Ebert et al. (2007)
presented a summary of the over-land validation of 12 HRPPs (including the NRL-
Blend) and four NWP models (including NOGAPS) done on a daily time scale
and at a 25-km spatial resolution, using the Australian Bureau of Meteorology
daily raingauge analysis (Weymouth et al. 1999). The results demonstrated that the
NRL-Blend (and other HRPPs) precipitation occurrence and amount were more
accurate than NOGAPS (and other NWP) models during summer months and
lower latitudes (where mainly convective type precipitation is present). Conversely,
NOGAPS (and other NWP) models exhibited superior performance compared to the
NRL-Blend (and other HRPPs) during winter months and higher latitudes (mainly
lighter, stratiform precipitation). Sapiano and Arkin (2008) analyzed the perfor-
mance of several three-hourly HRPP accumulations over the central United States,
and with an ocean buoy network in the tropical Pacific Ocean. The results showed
that the NRL-Blend did resolve the diurnal cycle of precipitation, but with a high
bias over land. The recent workshop of the Program for the Evaluation of High
Resolution Precipitation Products (PEHRPP), sponsored by the IPWG, provides
further summary and recommendations on future validation activities (Turk et al.,
2008).

3.2 Satellite Omission Experiments

The Global Precipitation Mission (GPM) is an upcoming joint mission between
the National Aeronautics and Space Agency (NASA) and the Japanese Aerospace
Exploration Agency (JAXA). It builds upon the heritage of the Tropical Rainfall
Measuring Mission (TRMM) with an advanced core spacecraft augmented by a
constellation satellite and other international satellite systems with precipitation-
sensing capabilities. With changes to satellite missions and sensor capabilities, it
is unlikely that the satellites forming the GPM constellation configuration will be
known until close to the launch of the core spacecraft, and will change during the
lifetime of the GPM. Therefore, it is instructive to study how the retention or loss
of a particular satellite platform and/or sensor type will affect the performance of
the GPM precipitation products and other applications that utilize GPM products.
In this study, we use the existing (late 2008) PMW satellite constellation to examine
the impact of several proxy GPM satellite constellation configurations. The focus
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is on how HRPPs such as the NRL-Blend are affected by such factors as sensor
type (conical or across-track scanning) and orbit equator crossing time (many of
the satellites in the GPM constellation will be in sun-synchronous orbits), using a
collection of GPM proxy datasets gathered over the continental United States. In
this section, we examine how the performance of the NRL-Blend is impacted when
one or more satellite systems are omitted, using an existing surface gauge network
analysis (Chen et al., 2008) for ground validation.

As mentioned in Section 2, the NRL-Blend can be configured to run with any or
all of a number of LEO satellites with precipitation-sensing capabilities. In order to
examine the impact of particular satellite types, equator crossing times and sensor
types (conical or crosstrack), the NRL-Blend was configured for ten parallel runs,
each run employing different combinations of satellites and sensor types, beginning
in June 2007. Each of these runs employed a different set of satellites relative to the
“all satellites” configuration. The all-satellites run, as the name suggests, utilized
all 12 available low Earth-orbiting satellites for a total of 13 sensors, previously
described in Section 2.

The other parallel runs of the NRL-Blend were configured to specifically study
the impact of omitting either the morning (AM) or afternoon (PM) satellites, and
the impact of omitting the crosstrack microwave sounding sensors. The reasoning
behind the latter is that owing to changes to satellite programs and sensors could
lead to the omission of the preferred conically-scanning microwave imagers, lead-
ing to a increased role for the crosstrack microwave sounders (designed mainly
for temperature and humidity profiling and not precipitation sensing) than origi-
nally envisioned in GPM. Microwave sounding sensors such as AMSU, MHS and
the future Advanced Technology Microwave Sounder (ATMS) are typically placed
in AM or PM sun-synchronous orbits to satisfy observational requirements for
NWP data assimilation applications. Several recent studies and algorithms have
demonstrated that the AMSU channel suite, with its suite of sounding and win-
dow channels, is capable of improved detection of precipitation at high latitudes
(Surussavadee and Staelin, 2008). With these encouraging results, it is therefore
instructive to determine how the performance of an HRPP (in this case, the NRL-
Blend, but the concept could be extended to any HRPP) is impacted by the loss of
satellites systems with microwave sounding sensors, and their associated equator
crossing times.

The ground truth data used is the optimal interpolation (OI) daily 0.5◦ gridded
gauge analysis provided by the National Oceanic and Atmospheric Administration
(NOAA) Climate Prediction Center (CPC) (Chen et al., 2008) over the continental
United States during two 3-month periods, Jun–Aug 2007 (JJA) and Dec 2007–Feb
2008 (DJF).

For ease of interpretation with previous studies, the panels in Fig. 5 use the iden-
tical box-and-whiskers type presentation as used in Ebert et al. (2007), using the
same 1 mm day–1 threshold for rain detection. The panels from top to bottom are
bias, equitable threat score (ETS), probability of detection (POD) and false alarm
rate (FAR). The left figure only considers data west of 100 W longitude (generally
higher elevation terrain, colder surface backgrounds), and the right figure is for data
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Fig. 5 Seasonal performance of HRPP precipitation estimates using different satellite combina-
tions over the continental United States west of 100 W longitude (left), and east of 100 W longitude
(right), using a threshold of 1 mm day–1. From top, bias, equitable threat score (ETS), probability
of detection (POD) and false alarm rate (FAR) from ten NRL-Blend versions and one NWP model.
Each color refers to a different set of satellites that was omitted from the “all satellites” baseline
product from the NRL-Blend. “No XT” refers to no crosstrack sounders, “No AM XT” refers to no
morning nodal crossing crosstrack sounders, “No TMI+PR+Aqua” refers to no TRMM TMI and
PR and no AMSR-E from Aqua

east of 100 W longitude. The colors refer to different runs of the NRL-Blend each
with a different set of satellites. For example, “No AM XT” refers to the NRL-
Blend precipitation estimates when all morning (time of ascending node near 1800
local) satellites with crosstrack sounders were omitted from the “all satellites” con-
figuration of the NRL-Blend. “No PM XT” refers to the NRL-Blend precipitation
estimates when all afternoon (time of ascending node near 1330 local) satellites with
crosstrack sounders were omitted. Only one NWP model (NOGAPS) is shown (gray
color). By intercomparing the bias, ETS, POD and FAR side-by-side, one can eas-
ily notice where one satellite combination performed better or worse than another,
and how this ensemble of HRPPs performed relative to the NOGAPS model during
summer and winter seasons, and at lower and higher elevations. In general, there
is overall performance degradation for all HRPPS over the western United States
(US) compared to the eastern US. This is consistent with studies that have shown
the poor performance of PMW scattering-based techniques when used over high
elevation and complex terrain (Bennartz and Bauer, 2003). At first glance there is
not much difference amongst the various satellite omission runs for the NRL-Blend
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“adjustment-based” HRPP technique, but closer inspection (green box) illustrates
largest performance impact is the omission of the morning overpass crosstrack
sounders (“No AM XT” and “No AM” configurations).

4 Sensitivity of Land Surface Parameters

The improved spatio-temporal coverage envisioned for the GPM-era satellite pre-
cipitation estimates will facilitate and enable a suite of operational applications that
will routinely utilize the estimated satellite rainfall data, especially in ungauged
areas, as well as in regions that lack adequate radar coverage. In fact, GPM is pro-
moted as a science mission with broad societal applications, (GPM, 2008a) that will
address societal benefits related to human health (soil moisture, climate and dis-
ease outbreak), homeland security (removal of chemical/biological/nuclear agents),
flooding potential and warning, water availability, water quality, and agriculture and
food security. Hence the GPM mission will potentially extend its scope beyond
meeting the scientific objectives of advancing precipitation measurement capabil-
ities, improving understanding of the global energy and water cycle variability, and
advancing climate and weather prediction (GPM, 2008b).

In addition, the science objectives of GPM also include “hydrometeorological
prediction” capabilities for flood-hazard and fresh-water resource modeling and
prediction, as well as quantifying the improvements in the estimation and parti-
tioning of land surface parameters of runoff/infiltration/storage and latent/sensible
heat fluxes. Hence it is helpful to quantify and understand the sensitivities of some
of the commonly used land surface models (LSM) to uncertainties in the satellite
precipitation estimates. We use the suite of GPM proxy data from the satellite omis-
sion experiments to force the land surface models and then estimate the sensitivities
of the different models to differences in the precipitation forcing data.

5 Land Surface Model Response

Impact and validation efforts also include the use of land surface models (LSM) and
other types of hydrological observations (other than raingauge as was done above)
to examine the impact of these GPM proxy data upon streamflow, discharge, soil
moisture and other runoff measurements. By employing the Noah (Ek et al., 2003)
and the Mosaic (Koster and Suarez, 1992) LSMs, incorporated with the NASA
Land Information System (LIS) (Kumar et al., 2008) to simulate land surface and
hydrological states, the performance impact of different GPM constellations can be
examined. A similar methodology was used by Gottschalck et al. (2005) to study
the impact of different precipitation products on soil states simulated by the Mosaic
LSM over the continental United States. Precipitation is considered as an important
factor in controlling spatial and temporal patterns of the soil moisture, especially
in arid and semi-arid regions (Grayson et al., 2006). The analysis domain covers
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the south-central United States where there is a large number of well-instrumented
watersheds in the Arkansas and Red River basins (Duan and Schaake, 2003).

5.1 Configuration of Land Surface Models

The Noah LSM (version 2.7.1) was used for retrospective soil moisture simulations
with four standard soil layers having thickness (from top to bottom) of 10, 30, 60,
and 100 cm. Also, the Mosaic model had a standard configuration with 3 soil layers
having the following thickness: 2, 158, and 200 cm. Both models were configured
at 0.1◦ × 0.1◦ latitude-longitude grid over the experimental domain.

There are certain differences in the physics and structure between Noah and
Mosaic models that are relevant to this study. In both LSMs, a tile approach is
adopted to represent the surface heterogeneity within the model grid cells. The total
heat and water vapor fluxes from the individual grid cell are estimated as an area-
weighted average of the fluxes produced by the each tile within the grid cell. Every
tile in the Mosaic model is completely homogeneous (e.g. it is represented either by
complete vegetation cover of a prescribed type or by the bare soil surface). On the
other hand, the tiles in the Noah LSM are heterogeneous and treated as a mixture
of vegetation canopy and bare soil surfaces. The total tile flux is a weighted aver-
age of the fluxes coming from vegetation and bare soil surfaces with weights equal
to their corresponding area fractions within the tile. Heat and moisture fluxes are
calculated separately over these surfaces. Four different tiles were permitted within
each model grid cell in the current simulations of the surface states with the Noah
and Mosaic LSMs. It is assumed that both in Noah and Mosaic models the tiles are
described by only one surface temperature, which is a reasonable assumption for the
Mosaic homogeneous tile, but it can be considered as an oversimplification within
the Noah model having heterogeneous tiles composing of vegetation canopy and
bare soil surfaces.

Soil temperature prediction is based on the heat diffusion equation, which is
numerically solved for four soil layers in the Noah model, but a simpler approach
based on the force-restore method (Deardorff, 1978) is adopted in the Mosaic model
to predict the soil temperature only in two layers (surface and deep). Note that the
surface temperature (Ts), which is equal to the canopy temperature, is estimated
from the prognostic energy balance equation in the Mosaic model. Conversely in
the Noah model, Ts is evaluated diagnostically from an equation of the surface
energy budget, linearized in Ts. Therefore, the Mosaic LSM implies some heat
storage (the term ∂Ts/∂ t is nonzero) within the thin surface layer having a finite
thickness, which includes both the soil substrate and the canopy air. Due this reason
in part, the Mosaic model has a relatively thinner top soil layer of only 2 cm. But in
the Noah model the term ∂Ts/∂ t is assumed to be zero, and this fact suggests a zero
thickness of the surface layer and therefore no heat storage within it. More details
about differences in the surface layer description have been presented by Smirnova
et al. (1997).
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In both LSMs, soil moisture is predicted from a numerical solution of the
diffusion-type equation (e.g., Chen et al. 1996). Water movement in the soil depends
on hydraulic properties (saturated conductivity and matrix potential, porosity, and
others) of the soil substrate. It assumed that the entire soil column having 2-m depth
in the Noah model is homogeneous and each of four Noah model’s layers within
this column has the same hydraulic properties. Conversely, the Mosaic LSM allows
vertical heterogeneity within the 3.5 m soil column and each soil layer is char-
acterized by its own set of hydraulic properties. The explicit use of soil vertical
heterogeneity makes the Mosaic model more realistic/adequate in describing water
flows in natural conditions in comparison with the Noah LSM, which accepts sim-
plified assumption of vertical homogeneity. A free drainage condition is adopted at
the bottom boundary of the soil column in both LSMs.

Surface static fields (vegetation fraction, leaf and stem area indices, soil porosity
and texture, sand/clay/silt fraction, elevation, slope, and others), which are neces-
sary for the land state simulations with the LSMs, are bilinearly interpolated or
aggregated from their native grids (most of these fields are available at 0.01◦ grid
spacing) to the 0.1◦ × 0.1◦ latitude-longitude grid using routines available from
the NASA LIS. In order to produce realistic soil moisture fields, both LSMs were
integrated for a 2.5 year period (from 1 Jan. 2005 to 1 June 2007) using the North
American Land Data Assimilation System (NLDAS) forcing fields including precip-
itation (Cosgrove et al., 2003). Initially, a constant 30% volumetric moisture content
was assigned at all model grid points. After the 2.5 year spin-up time, the Noah and
Mosaic LSMs were additionally integrated for 14 months (until 31 August 2008)
using six different GPM proxy precipitation products and the NLDAS atmospheric
fields (except for precipitation). Hourly soil moisture values outputted from both
LSMs were averaged to produce daily mean values and these daily values of soil
moisture were used as a basis for the analysis described in the next section.

5.2 Soil Water Content Sensitivity

A top 1-m soil water content (SWC) was used as an integral soil moisture measure
to compare simulation capabilities between Noah and Mosaic LSMs in reproduc-
ing a response of the soil moisture to variations in precipitation. Usually, the total
SWC within a column is measured in length units (mm or cm) and can be consid-
ered as the amount of water stored in the control volume represented, in our case,
by the 1-m soil column having the unit cross-section area. Due to this definition,
the SWC is also known as the water storage (Mitchell et al., 2004; Schaake et al.,
2004). Either the water storage (or the column SWC) and its temporal change/range
at monthly and seasonal scales are broadly adopted for the LSM intercomparison.
Previous studies (Mitchell et al., 2004; Schaake et al., 2004) have shown that the
local maximum water holding capacity of the soil substrate (defined as the SWC
difference between saturation and wilting points, which depend on the soil texture)
has a little impact upon the observed and simulated water storage range. Rather,
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Fig. 6 (a) Geographical distribution of accumulated precipitation (cm) from the NRL-Blend “All-
Satellites” configuration during 1 April to 31 August 2008. (b) Same as above, but during August
2008 only

they have suggested that the monthly/seasonal water storage changes are controlled
by the description of the model’s evaporation and runoff.

In order to better understand the seasonal variations of the impact of the various
NRL-Blend precipitation products on the simulated SWC, we focused on a monthly
analysis of SWC difference relative to the “all-satellites” NRL-Blend configura-
tion during Mar–Aug 2008. Figure 6a depicts the estimated precipitation from the
NRL-Blend “All Satellites” configuration between 1 April and 31 August 2008, and
Fig. 6b represents August 2008 only. It would be instructive to consider monthly
mean SWC fields (climatology) simulated using the all-satellites precipitation prod-
uct before performing an intercomparison between SWC fields produced by the six
GPM proxy precipitation products. Figure 7a illustrates geographical distribution
of top 1-m SWC simulated with Noah and Mosaic LSMs and averaged for August
2008. Although there is a general agreement in geographical patterns of 1-m SWC
simulated by the two LSMs (the corresponding correlation between the Noah and
Mosaic SWC fields is as high as 0.67), the SWC values produced by the Mosaic
model are substantially underestimated in comparison to those simulated by the

Fig. 7 Geographical distribution of (a, left) top 1-m soil water content (averaged for August 2008)
and (b, right) its change from 1 April to 31 August 2008, simulated with Noah (upper frame) and
Mosaic (lower) land surface models, using the “all-satellites” NRL-Blend precipitation product.
Positive values shown by brown color in right frames stand for soil drying and negative (green/blue)
for soil moistening. The thick line in Fig. 7b outlines the boundary of the Arkansas-Red River basin
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Noah LSM. The mean top 1-m SWC difference (bias) between Noah and Mosaic
(Noah minus Mosaic value) simulations is 8.3 cm for August 2008. This rather large
SWC bias demonstrated by the Mosaic model might be attributed to more efficient
surface evaporation and drainage through the lower boundary of the soil column,
accounting for the slope of the model grid cell, as compared to that in the Noah
LSM. Comparisons between observed and simulated top 2-m SWC performed over
the state of Illinois (Schaake et al., 2004) also indicated a low SWC bias predicted
by the Mosaic model, especially for SWC ≤ 50 cm, and almost zero bias for the
Noah LSM. Figure 7b shows the Apr–Aug SWC (top 1-m water storage) change
simulated by the Noah and Mosaic LSMs. Despite differences in the model physics,
both LSMs produce highly-correlated spatial patterns of the water storage change.
These patterns include areas of drying (positive values of SWC change) in the NW
and SE parts of the domain, and a distinct zone of moistening (negative values)
stretching from the SW to the NE corner of the domain.

The impact of precipitation in a LSM is dependent upon many physical factors,
such as soil type, vegetation, etc. and a soil moisture analysis at a given time is
likely to be the cumulative result of precipitation amount and variability from weeks
or months prior. For example, note how the soil moisture pattern in Fig. 7a is bet-
ter matched with the pattern of the precipitation that fell for several months prior
(Fig. 6a). To accommodate this, Fig. 8 shows the geographical distribution (August
2008 average values) of top 1-m SWC difference relative to the all-satellites con-
figuration for the six different proxy constellations. Results for both Noah (upper
frame) and Mosaic (lower frame) LSMs are depicted in Fig. 8. This monthly mean
SWC difference can be considered as a typical bias in the soil moisture produced by
the omission of the specified satellites and sensors. We note that the biggest impact
(largest absolute values of the top 1-m SWC biases) is due to the omission of either
the crosstrack microwave sounders, or the morning crossing (AM) satellites from
the NRL-Blend. On the other hand, omission of afternoon (PM) satellites in the
NRL-Blend resulted in the smallest impact upon the soil moisture simulated both
with the Noah and Mosaic models. Although the relative magnitude of these SWC
changes is small (generally, they are in the ±5 cm range), and the spatial scales are
different, these results are consistent with the raingauge-only validation presented
earlier in Fig. 5.

Note that all the scenarios except the TMI+PR+Aqua omission case provide a
spatially coherent response in the SWC difference relative to the all-satellites config-
uration. Indeed, a positive SWC difference prevails in the western half of the domain
(west of 100 W) and negative over the eastern half (east of 100 W longitude) as
shown in Fig. 8. These marked features of the spatial SWC response simulated with
the two LSMs might be associated with east-west gradients of hydrometeorological
variables (Duan and Schaake, 2003). Generally over this basin, annual precipitation
and runoff decrease and potential evaporation increases from east to west, resulting
in wetter areas east of 100 W and drier to the west. Also, the accuracy of satellite
precipitation estimates are generally lower over high elevation terrain concentrated
west of 100 W longitude. It is important to note a rather high similarity in spatial
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Fig. 8 Geographical distribution of top 1-m soil water content (SWC) difference relative to the
all-satellites configuration for the six different GPM proxy constellations noted at the top of each
frame (upper part of each frame corresponds to Noah and lower to Mosaic model simulations).
SWC represents August 2008 averaged values

patterns of SWC differences simulated with two LSMs with quite different struc-
ture and physics. Indeed, correlations of SWC difference between the Noah and
Mosaic LSMs are high for all different satellite omission scenarios. Corresponding
correlation coefficients range between 0.7–0.8 during summer months and 0.6–0.7
in spring with a little variation among the six satellite omission cases. Observed
high coherence in the top 1-m spatial response (estimated as a difference relative to
some baseline case) simulated with different LSMs may suggest that precipitation
is a more important factor in controlling the spatial distribution of the SWC relative
response in comparison to the model physics.

While this single month (August 2008) analysis is important, these results are
further substantiated by analyzing the symbolic boxplots (Wilks, 2006) of the top
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1-m SWC difference (relative to the all-satellites scenario) distribution when plot-
ted for an entire spring-summer 2008 and additionally stratified into two regions
east/west of 100 W longitude. Figure 9 shows these symbolic boxplots (each of
the six panels uses a different constellation configuration, identical to Fig. 8) for
both Noah and Mosaic LSMs and for the entire spring-summer 2008. As before,
the largest SWC deviations (they are proportional to the range between upper and
lower quartiles depicted in Fig. 9) from the all-satellites configuration are observed
when the crosstrack microwave sounders or AM crossing satellites are excluded. As
in Fig. 8, less response in SWC is produced by both the Noah and Mosaic models
west of 100 W longitude over high elevation terrain and drier regions. Also, both
LSMs indicate that SWC deviations have a tendency to be positive (soil moisten-
ing in comparison to the all-satellites case) west and negative (soil drying) east of

Fig. 9 Symbolic distribution plots (boxplots) of top 1-m soil water content (SWC) difference
relative to the “all-satellites” NRL-Blend configuration. Median, upper and lower quartiles, and
data range within lower/upper inner fences are shown. SWC differences for the regions west of
100 W are depicted in blue (Noah) and black (Mosaic), and for the region east of 100 W are shown
in magenta (Noah) and green (Mosaic)



102 J.T. Turk et al.

100 W longitude. In addition to the above mentioned geographic differences, Fig. 9
illustrates a clear seasonal tendency in SWC change from the relatively low SWC
response during spring and early summer months, to the high SWC deviation by the
end of summer.

Despite spatial scale differences, these results are consistent with the valida-
tion impact studies presented in Section 3, demonstrating the importance of the
crosstrack microwave sounders and the morning local time crossing satellites.
However, we note that these results are unique to the type of HRPP technique (NRL-
Blend) used in this study, and the results may differ when used with other types of
HRPP techniques. Also, precipitation often has a predominant time-of-day cycle
and therefore the local time of the observation is important. Relatively speaking,
soil moisture changes over longer time scales than precipitation does. Therefore in
the case of the soil moisture simulations, we note that the removal of the morning
(AM) satellites likely has less to do with the specific local time-of-day observa-
tion than it does with the fact that the bulk of the current (2008) satellites (DMSP,
Coriolis and several NOAA) have early morning crossing times.

6 Conclusions

We have examined the impact of omitting certain types of satellites and sensors upon
the performance of the NRL-Blend high resolution precipitation product (HRPP).
Each separate run of the NRL-Blend omitted one or more sensors relative to the
“all satellites” satellite configuration. These omission experiments were designed to
examine possible types of satellite constellation configurations that may exist during
the GPM era. A specific purpose was to examine the utility of the crosstrack passive
microwave (PMW) sounders which, while not designed for quantitative precipita-
tion retrieval, have shown promise in precipitation estimation at higher elevations
and latitudes. A second purpose was to examine the local time of observation by
the sun-synchronous satellite platforms (many GPM constellation satellites will
orbit in sun-synchronous orbits) affects the performance of the satellite precipita-
tion products. The impact was examined two ways. The first was by examining
traditional performance metrics (bias, correlation, etc.) amongst the various NRL-
Blend products, where the validation data consisted of a dense raingauge analysis
over the central United States, and where the validation was separated along the
100 W longitude line (which roughly separates drier, high elevation regions west
of this boundary from lower, moist regions to the east). The overall performance of
the NRL-Blend degrades over higher elevation areas, where PMW techniques are
known have problems. A slight but noticeable degradation in the performance of the
NRL-Blend was noted for the case when all crosstrack sounders were removed or
the morning local time crossing satellites were removed (change to equitable threat
score of about 0.1 and a similar degradation in probability of detection).

The second impact consisted of examining the outputs of land surface models
(LSM) where the LSM was forced with these same precipitation datasets. Both
the Noah and the Mosaic LSMs, incorporated with the NASA Land Information
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System, were used to simulate land surface and hydrological states when these same
NRL-Blend precipitation datasets were used (in lieu of the LIS-provided precipita-
tion). The LSM analysis examined seasonal changes in modeled soil moisture. The
biggest impact (largest absolute values of the top 1-m SWC biases) was due to
the omission of either the crosstrack microwave sounders, or the morning cross-
ing (AM) satellites. On the other hand, omission of afternoon (PM) satellites in
the NRL-Blend resulted in the smallest impact upon the soil moisture simulated
both with the Noah and Mosaic models. Although the relative magnitude of these
SWC changes is small (in the ±5 cm range), these results are consistent with the
raingauge-only validation conclusions, suggesting the importance of the crosstrack
microwave sounders in future GPM constellations.

GPM is currently planned to be active during the NASA Soil Moisture Active
Passive (SMAP) mission. Although each mission is designed to function indepen-
dently of each other, there exists significant GPM-SMAP overlap in terms of science
goals and applications, specifically towards the utilization of frequent precipitation
estimates. For example, one of the biggest obstacles to improved over-land precipi-
tation estimation is the large variability in land surface emissivity, which is affected
by near-surface soil moisture. Conversely, GPM can potentially benefit SMAP soil
moisture retrievals with its capability for improved tracking of precipitation evolu-
tion between SMAP revisits. It is constructive to examine the connection between
these two missions at this stage as to maximize the utility of the overall data towards
achieving mission goals.
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Kalman Filtering Applications for Global
Satellite Mapping of Precipitation (GSMaP)

Tomoo Ushio and Misako Kachi

Abstract GSMaP (Global Satellite Mapping of Precipitation) is a project aim-
ing (1) to produce high-precision and high-resolution global precipitation maps
using satellite-borne microwave radiometer data, (2) to develop reliable microwave
radiometer algorithms, and (3) to establish precipitation map techniques using
multi-satellite data for the coming GPM era. The GSMaP_MVK system uses a
Kalman filter model to estimate precipitation rate at each 0.1◦ with 1-h resolu-
tion on a global basis. The input data sets are precipitation rates retrieved from the
microwave radiometers and infrared images to compute the moving vector fields.
Based on the moving vector fields calculated from successive IR images, precip-
itation fields are propagated and refined on the Kalman filter model, which uses
the relationship between infrared brightness temperature and surface precipitation
rate. This Kalman filter – based method shows better performance than the moving
vector – only method, and the GSMaP_MVK system shows a comparable score
compared with other high-resolution precipitation systems.

Keywords Kalman filter · Infrared radiometer · Precipitation map · Microwave
radiometer

1 Introduction

Estimation of the global distribution of precipitation with high accuracy has long
been a major scientific goal. The making of precipitation maps on a global basis is
important for modeling of the water cycle, maintaining the ecosystem environment,
agricultural production, improvements of weather forecast precision, flood warning,
and so on. Because most rain gauges are distributed in the Northern Hemisphere, and
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there are extremely few rain gauges on the sea, it is difficult to measure the temporal
and spatial changes of the rain rate on a global scale. In addition to this, precip-
itation is basically a rapid process and has a great variability in space and time.
Due to these features, it is quite difficult to capture the global distribution of pre-
cipitation with high resolution and enough accuracy for the scientific and practical
applications.

As a result of recent progress in technology, many satellites for observation of
meteorological phenomena have been launched, enabling us to observe precipita-
tion on a global basis with high resolution and accuracy. The passive observation
of precipitation at microwave frequencies has been shown to be very effective for
estimating the rainfall rate (mm/h) with enough accuracy, and we now have sev-
eral active satellites with on-board microwave radiometers. Following that success,
future satellite-based programs like GPM (Global Precipitation Measurement) are
planned. The GPM project is a follow-on mission of the TRMM (Tropical Rainfall
Measuring Mission) under international cooperation including the United States,
Japan, and other countries, which will extend TRMM observation to higher latitudes
with 3-h sampling at any given point on the earth. Since the microwave radiometers
are all on low earth orbit satellites, the problem of sampling error is unavoidable,
even if all the microwave radiometers aboard the satellite are used. Therefore it
is necessary to utilize a gap-filling technique to generate precipitation maps from
only the microwave radiometer data if temporal resolution of 3 h or less is required,
which is important for the operational applications like flash flood warning systems.

Worldwide, damages by floods account for more than two-thirds of the total dam-
age caused by natural disasters. Floods are usually caused by heavy rainfalls and/or
tropical cyclones, such as typhoons, hurricanes, and cyclones, and occur almost
every season and year all over the world. Accurate estimations of precipitation,
water vapor, and clouds from satellite observations are needed in higher resolution
in time and space for this purpose. Long-term operation and near-real-time avail-
ability are also required. Great expectations for development of early warning and
alert systems for flood events using satellite-derived precipitation information have
been recently raised internationally.

On the basis of the requirements for global precipitation estimates, there are
numerous global precipitation systems, for example TMPA-RT (Huffman et al.
2007), NRLgeo (Turk and Miller 2005), PERSIANN (Sorooshian et al. 2000),
CMORPH (Joyce et al. 2004), and PMR (Kidd et al. 2003), that provide data
in near real time through the Internet. Among them, the WCRP (World Climate
Research Program) GPCP (Global Precipitation Climatology Project) has been a
pioneer in this field and the most successful system that provides precipitation
estimates on a monthly 2.5◦ grid with two decades of data (1979 to present)
(Adler et al. 2003). The most recent system named TMPA (The Tropical Rainfall
Measuring Mission Multi-satellite Precipitation Analysis) provides 3-h real-time
rainfall analysis on a 0.25◦ grid (Huffman et al. 2007). The TMPA method utilizes
precipitation estimates from the various microwave radiometer data and the surface
precipitation estimates by the ground rain gauges, based on histogram matching
for the long term. TMPA’s estimates are generated from infrared radiometer data
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of the geosynchronous meteorological satellites with precipitation estimates from
the microwave radiometer. While the GPCP type system uses the direct conversion
method from brightness temperature at infrared wavelengths to the rainfall rate on
the microwave radiometer data as a calibrator, CMORPH (CPC Morphing tech-
nique) (Joyce et al. 2004) takes a different approach to produce precipitation maps
that have higher resolution of 30 min and 0.073◦. CMORPH calculates atmospheric
motion vectors from two successive infrared images at 30-min intervals and then
the precipitation pixels are propagated according to the moving vector fields. In
this approach, no direct conversion between the infrared brightness temperature
and rainfall rate is used, which is a distinct feature compared with precipitation
systems such as CMORPH. In addition to the TMPA and CMORPH products, the
PERSIANN (Sorooshian et al. 2000) system works on a neural network based pro-
cedure to compute a precipitation estimates with 0.25◦ resolution, and the NRL
blended technique (Turk and Miller 2005) is built on the statistical relationships
from co-located passive microwave and infrared pixels, and is operated in near real
time. In spite of the physical simplicity of CMORPH, this moving method shows
excellent scores from the daily 0.25◦ comparisons with the radar-rain gauge net-
works in several regions on the globe in PEHRPP (Pilot Evaluation of the High
Resolution Precipitation Products).

The Global Satellite Mapping of Precipitation (GSMaP) project started in 2002
with the support of the Japan Science and Technology Agency (JST). Its aims
are (1) to produce high-precision and high-resolution global precipitation maps
from satellite-borne microwave radiometer data, (2) to develop reliable microwave
radiometer algorithms, and (3) to establish a precipitation map technique by using
multi-satellite data for the coming GPM era. In this project, in order to make
global precipitation maps with 0.1◦/1 h resolution, we take an approach that takes
advantage of both the moving vector method and direct conversion of brightness
temperatures to rain rates. In order to combine these advantages, Kalman filter
theory is applied to the precipitation rate propagated along with the atmospheric
motion vector. We refer to this Kalman filter–based system as GSMaP_MVK, short
for GSMaP moving vector with Kalman filter method, while the moving vector–
only approach is labeled GSMaP_MV. Using this technique, a near-real-time system
named GSMaP_MVK_RT, which simply contains only the propagation process for-
ward in time, was developed and opened to the public via the Internet. The full
system (GSMaP_MVK), which contains both the forward and backward propaga-
tion processes, has been developed and implemented (Ushio et al. 2009). In this
chapter, the GSMaP_MVK system is summarized and reviewed.

2 Data

This section describes the input data sets that are used in this study. As is stated
above, the precipitation estimation from the microwave radiometer is better than
that of IR-only approaches. However, all these microwave radiometers aboard the
satellite are in low earth orbit (LEO) and there is a problem of sampling error. On
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the other hand, infrared radiometers on geostationary orbit can give information on
cloud top layers and equivalent blackbody temperatures. Since the Geo-IR sensors
sees the cloud top pattern with hourly to sub-hourly resolution, the sampling interval
is less than that of LEO microwave radiometers. However, the IR channel is not as
sensitive to precipitation rates. Therefore, the microwave radiometer (MWR) on low
earth orbit (LEO) and the infrared radiometer (IR) on geostationary (Geo) orbit are
quite complementary with each other for monitoring the precipitation. Hence in this
system, both the LEO-MWR and the Geo-IR data sets are used.

At the moment of this writing, the available microwave sensors are SSM/I
(Special Sensor Microwave/Imager), TMI (TRMM Microwave Imager), and
AMSR-E (Advanced Microwave Scanning Radiometer for EOS), whose charac-
teristics are listed in Table 1. The algorithm to convert the brightness temperature
observed at the several microwave channels to surface rain rate is described in
Aonashi et al. (1996) and Kubota et al. (2007), and the surface rain rate is retrieved
by finding the optimal rain intensity that matches the brightness temperature calcu-
lated from the radiative transfer model with the observed brightness temperature.
At the time of this writing, no AMSU data sets are used in this product, because
development of the AMSU rainfall product from the Aonashi’s algorithm have not
yet been completed. In the near future, the AMSU data set will be included in this
GSMaP_MVK product.

Table 1 Characteristics of microwave radiometers used in this study

Name Altitude (km) Sensor Frequency (GHz)

TRMM 402 TMI 10, 19, 21, 37, 85
AQUA 705 AMSR-E 7, 10, 19, 24, 37, 89
DMSP-F13 803 SSM/I 19, 37, 85
DMSP-F14 803 SSM/I 19, 37, 85
DMSP-F15 803 SSM/I 19, 37, 85

The IR data sets used in the current version of the system are from the CPC
(Climate Prediction Center) (Janowiak et al. 2001) through the Man – computer
Interactive Data Access System (McIDAS; Lazzara et al. 1999). The latitude and
longitude resolution of the data are 0.03635◦ (4 km at the equator). The latitude
range is 60º N–60º S. The temporal resolution is about 30 min. While the stan-
dard system uses these IR data sets as input, the near-real-time system named
GSMaP_NRT uses slightly different IR data for the purpose of near-real-time supply
of the system as described below.

3 Methodology

Figure 1 shows the algorithm flow of the GSMaP_MVK system. The basic proce-
dures are (1) to propagate the rain pixels along with the atmospheric motion vector
derived from successive IR images in 1-h intervals, (2) to refine the precipitation rate



GSMaP Satellite Product 109

on a Kalman gain, and (3) to combine the backward precipitation fields. Since the
propagation process is similar to the morphing technique in CMORPH, an overview
of the moving vector technique is first given here and then the method for applying
the Kalman filter is presented.

Infrared (IR) Data

Microwave Radiometer (MWR) Data

GSMaP Data

Kalman Filter

T - 1 [hour] T [hour]

Fig. 1 Flow chart of the algorithm developed in this study. Adapted from Ushio et al. (2009)

The procedure to calculate the atmospheric motion vector is simple. That is, a
sub-region is selected, the region is correlated, and the peak correlation is deter-
mined. Consider the two successive IR images at times t and t + 1 h. If the cloud
area at time t + 1 moves horizontally a few pixels from time t, the two images match
at the offset of a few pixels. This offset value can be obtained by (1) calculating
the two-dimensional correlations between the two images for the zero offset, (2)
repeating the calculation for various offsets, and then (3) looking for the maximum
correlation. The offset value in longitudinal and latitudinal directions that shows the
maximum correlation is the atmospheric motion vector that we want. In this sys-
tem, a FFT (Fast Fourier Transformation) based algorithm is applied to compute the
correlation coefficient in order to speed up the computation.

According to the method stated above, the moving vector fields are obtained
globally with several degrees resolution. Based on the vector fields, the precipita-
tion pixels that were retrieved from the microwave radiometer data are propagated
forward in time and the precipitation rate at the propagated pixel is reformed using
the Kalman filter. This procedure is repeated until the next microwave radiometer
overpass.

The Kalman filter is a theory that provides an efficient recursive means to esti-
mate the state of a process from a series of noisy measurements. In this application,
we pay much attention to the relationship between the IR brightness temperature
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and the surface precipitation rate to refine the precipitation rate propagated by the
moving vector. Although the brightness temperature at IR wavelengths is not so
sensitive to surface precipitation rate, the data have no sampling error with 1 h
resolution and are statistically correlated with the surface precipitation rate with
large variances. This noisy measurement in terms of precipitation rate provides bet-
ter feedback information to more accurately represent the temporal variation of a
precipitation system.

In this system, the state equation is

Xk = Xk−1 + w (1)

where Xk is the precipitation rate at time k, which is the propagated precipitation
rate forward in time; and w is the process noise, which shows the variation of the
precipitation system.

Figure 2 shows a histogram of the w values, which indicate the uncertainty in
precipitation rate after 1 h from its propagation compared with the precipitation rate
retrieved from the microwave radiometer. It is shown that the variation of precipita-
tion rate in 1 h is normally distributed with zero mean, enabling application of the
Kalman filter theory.

0
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Variation of rain rate[mm/h]

Fig. 2 Histogram of the uncertainty in precipitation rate after 1 h from its propagation compared
with the rain rate retrieved from the microwave radiometer. Adapted from Ushio et al. (2009)

Figure 3 shows the geostationary satellite IR brightness temperature relative to
precipitation rate estimated from microwave radiometers. We see that the IR bright-
ness temperature is non-linearly correlated with surface precipitation rate with large
variance and a noisy measurement of the true precipitation is made from the IR
observation. Based on this relationship, at time k a measurement yk of the true state
Xk is made according to

yk = HXk + v (2)
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where H is a constant coefficient and v is the measurement error expressed as bars in
Fig. 3. To apply the Kalman filter on a linear basis, the linearization approximation
is needed and has been performed for every 1 mm h−1 increment in the present
study.

Fig. 3 Geostationary satellite IR brightness temperature (ordinate) relative to precipitation esti-
mated from microwave radiometers (abscissa) during July 2005. Adapted from Ushio et al. (2009)

Based on these equations, the Kalman gain is computed to refine the precipitation
rate after its propagation. After thus applying the Kalman filter, the same procedure
is applied to the precipitation pixels from the next microwave radiometer traversal.
Following the CMORPH strategy, this procedure is illustrated in Fig. 4. Consider the
case that the microwave radiometer passes over a certain area at time t. According
to the procedure described above, the rainy pixels are propagated from the mov-
ing vector derived from successive IR images and the precipitation rate is refined
via the Kalman filter. This process is repeated until the next microwave radiometer
traversal. When the next microwave radiometer arrives, the revisited precipitation
pixels are also propagated backward in time and the Kalman filter refines the pre-
cipitation rate as illustrated in the middle column in Fig. 4. This process is repeated
until the most recent microwave radiometer traversal. The optimal precipitation
rate is calculated from the weighted average between the forward and backward
estimates.
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Fig. 4 Schematic illustration combining the precipitation fields forward and backward in time.
The white belts denote the coverage of the microwave sensors. Adapted from Ushio et al. (2009)

4 Current Status of the System

Since the GSMaP_MVK system is from a newly developed algorithm, the pro-
cessing and data supply systems are being upgraded. To meet user requirements
of the high-resolution precipitation data in near real time, the JAXA Earth
Observation Research Center (EORC) has developed and operated a near-real-
time data processing system, which is called “Global Rainfall Map in Near Real
Time (GSMaP_NRT)” based on the GSMaP algorithms described in previous sec-
tions. Core algorithms of the system are based on those provided by the GSMaP
project, microwave radiometer retrieval by GSMaP_MWR, and IR data merged by
GSMaP_MVK.

GSMaP_NRT uses TRMM/TMI, AMSR-E, three SSM/I, and geostationary
satellite information as inputs. Input data are almost the same as GSMaP standard
systems, but differ slightly in terms of their real-time availability. Table 2 summa-
rizes the differences of input data including ancillary data between GSMaP_NRT
and GSMaP standard systems. Data available within three hours from observation
are utilized in the GSMaP_NRT system. Infrared (IR) data observed by each geosta-
tionary satellite, such as the MTSAT satellite by the Japan Meteorological Agency,
GOES satellites by NOAA, and Meteosat satellites by EUMETSAT, are provided
through the Japan Weather Association within 1 h after observation. Note that the
SSM/I data on DMSP F-15 satellite have been used for rainfall retrieval only over
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Table 2 Difference between GSMaP_NRT and standard systems

Input data Sensor GSMaP_NRT GSMaP standard

Passive microwave
radiometer

TRMM TMI NASA/GSFC
Realtime version

NASA/GSFC
Standard version

Aqua AMSR-E JAXA/EORC JAXA/EORC
DMSP SSM/I

(F13, 14, 15)
NOAA/national

weather service
Remote sensing

systems
GEO Infrared

radiometer
MTSAT,

METEOSAT-7/8,
GOES-11/12

Globally-merged
pixel-resolution
data by JWA

Full-resolution IR
data by
NASA/GSFC and
NOAA/climate
prediction center
(CPC)

Atmospheric
information

– JMA global analysis
(GANAL)
realtime version

JMA global analysis
(GANAL)

Sea surface
temperature

– JMA Merged
satellite and in situ
data global daily
sea surface
temperatures in
the global ocean
(MGDSST)

JMA MGDSST

the ocean because of interference problems in the 22 GHz Vertical polarization
channel since August 2006. Also note that SSM/I data on DMSP F-14 satellite have
not been available since 23 August 2008.

The current GSMaP_NRT system operationally produces frequent and accu-
rate hourly global rainfall maps within four hours after observation. Figure 5 is a
schematic flow of the system. Note that the system uses only the forward processing
of the GSMaP_MVK, because it gives greater importance to data availability than
quality, to meet user requirements such as application to flood prediction. A system
combining forward and backward processing in the operational system, which will
be available three days after observation, is in preparation. Full-resolution IR data,
which are provided by NASA/GFSC and NOAA/CPC, and microwave radiometer
data, which have not been included in near-real-time processing because of data
delay, will be used for reprocessing three days after observation.

Currently, GSMaP_NRT rainfall systems are distributed with browse
images and KMZ files for Google Earth software via the Internet
(http://sharaku.eorc.jaxa.jp/GSMaP/). The system has been processing by means of
the Version 1 system since November 2007, and a major update of the algorithm
to Version 2 has been applied since October 2008. Table 3 is a summary of
GSMaP_NRT Version 2 systems. A satellite information flag denotes all satellite
sensors that are used in estimation of rainfall at each pixel during one-hour time
period. An observation time flag indicates the relative time of the latest microwave
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ftp

MWRs and
GEO IRs

Gridded/
merged
MWR
retrievals

Rainfall
retrieval
from each
MWR

Decoding

Blended
MWR-IR
algorithm
(forward)

Objective
Analysis/

SST

RTM 
calculation
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Fig. 5 Schematic flow of the GSMaP_NRT processing system

Table 3 Summary of GSMaP_NRT Systems (Version 2)

Parameter [unit] Coverage
Horizontal
resolution Temporal resolution

Hourly rain rate [mm/h] Global (60◦N–60◦S) 0.1◦ grid box Hourly
Satellite information

flag
Observation time flag
Hourly rain rate in text

format [mm/h]
Global (60◦N–60◦S)

but separated to
regional files

Daily accumulated
rainfall [mm/day]

Global (60 N–60S) 0.25◦ grid box Daily (accumulation from
00Z to 23Z of the
specified day)

Daily (accumulation from
12Z of previous day to
11Z of the specified day)

radiometer observation at each pixel. Those two flags will help users evaluate the
reliability of the rainfall estimates. Daily and 0.25◦ latitude/longitude grid averaged
rainfall systems are also produced by the system for the International Precipitation
Working Group (IPWG) satellite precipitation validation/intercomparison studies.
Currently GSMaP_NRT results, as well as those of other satellite-based rainfall
systems, are compared with regional ground rain gauge and radar network data on a
near-real-time basis over United States (University of Maryland), Australia (Bureau
of Meteorology, Australia), South America (University of Maryland), and Japan
(Osaka Prefecture University).
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GSMaP_NRT is also characterized as prototype of GPM. The GPM mission con-
sists of two categories of satellites. One of is the TRMM-type core (GPM core
satellite) satellite jointly developed by the United States and Japan that will carry an
active precipitation radar (Dual-frequency Precipitation Radar: DPR) and a passive
microwave radiometer as a calibrator to other satellites. The other is a constella-
tion of several satellites developed by each international partner (space agency)
that will carry passive microwave radiometers and/or microwave sounders. The
core satellite will make detailed and accurate estimates of precipitation structure
and microphysical properties from the GSMaP_MWR algorithm using TRMM’s
Precipitation Radar (PR) and TRMM Microwave Imager (TMI), while the con-
stellation of satellites will provide suitable temporal sampling of highly variable
precipitation systems enabled by GSMaP_MVK.

Figure 6 is a comparison of precipitation observations by a single satellite
with high horizontal resolution and accuracy (TRMM) and by combined multi-
satellites with high temporal resolution and global coverage (GSMaP_NRT). The

Fig. 6 Rainfall observation of Cyclone Nargis. Upper left: Rainfall and cloud image observed by
TRMM PR and visible infrared scanner (VIRS) at 00:43 UTC 3 May 2008. Upper right: Zoomed
image of red rectangle area in lower panel. Rainfall (color) estimated by GSMaP algorithm in
near-real-time system, and cloud image (grayscale) observed by geostationary satellites. Lower:
Global rainfall at 00:00–00:59 UTC 3 May 2008
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upper left panel is an observation of Cyclone Nargis just after its landfall on
the coast of Myanmar at 00:43 UTC 3 May 2008. Nargis caused serious dam-
age in the Irrawaddy Delta of Myanmar and became a wide-scale disaster. Color
denotes rainfall observation by the Precipitation Radar (PR), and the grayscale
denotes simultaneous observation of cloud images by the Visible Infrared Scanner
(VIRS), both onboard the TRMM satellite. The footprint of PR is about 5 km,
and detailed structures of strong rain bands are indicated in yellow and red.
Although PR observes a three-dimensional structure, the observation swath is nar-
rower (about 250 km) than that of VIRS (about 850 km). The upper right and
lower panels are hourly global rainfall by the GSMaP_NRT systems and cloud
image observed by geostationary satellites at 00:00–00:59 UTC 3 May 2008.
The upper right panel is a zoomed image of the red rectangle area in lower
panel. The well-organized rainfall area in the middle of the image is Cyclone
Nargis at the coast of Myanmar. The horizontal resolution of the precipita-
tion map (GSMaP_NRT) is a 0.1◦ latitude/longitude grid, coarser than that of
PR (about 5 km), but it has major advantage in global coverage and temporal
resolution.

Research efforts on utilization of satellite precipitation data for flood predic-
tion have been underway recently. Although the TRMM satellite has achieved
highly accurate precipitation observations over tropical and subtropical regions, its
observations are infrequent because it is only a single satellite in low earth orbit.
Production of high temporal resolution global rainfall maps by a single satellite is
difficult, but has been achieved by combining multiple satellites and sensors with
TRMM as GSMaP system demonstrated in Fig. 6. Using large-scale rainfall infor-
mation provided by high-resolution rainfall systems, application in flood prediction
areas will be able to evolve into operational uses. Coordination research with flood
communities, in order to use GSMaP_NRT systems in their flood alert system and
tools, has been in progress toward GPM era.

5 Comparisons and Examples

5.1 Example

In order to demonstrate the performance of the GSMaP_MVK system, Fig. 7 shows
examples of the system in hourly to seasonal time scales. The top panel shows a
representative example of the GSMaP_MVK on an hourly scale on July 15, 0 UTC
2005. As is seen from this panel, the global precipitation distribution in a certain
hour is produced by interpolating the precipitation area from the IR and MWR data
sets using Kalman filtering. While convective precipitation systems appear mainly
in the tropics, band type precipitation systems can be seen in middle latitudes. A
typhoon system with heavy rainfall rate is also seen in this panel far south of Japan.
This typhoon (Typhoon Haitang) actually brought heavy rainfall to the Taiwan area
a few days after this observation.



GSMaP Satellite Product 117

Fig. 7 Examples of the
GSMaP_MVK systems for
various time scales. From top
to bottom, global
precipitation distributions in
1 h, daily, seasonal, and
climatological scales are
shown. Adapted from Ushio
et al. (2009)

The second panel is an example of the GSMaP_MVK on a daily scale on 3 July
2005. On this time scale, some features of precipitation systems of longer duration
are evident. For example, a Baiu (Japanese summer monsoon) front is seen over
Japan; this system brought significant amounts of precipitation not only to Japan
but also to the Pacific Ocean off Japan. With this front, a historically heavy rain
rate exceeding more than 100 mm/day was recorded in the western part of Japan on
July 3 by the Japanese Meteorological Agency, which caused hazardous flooding at
that time. Looking at an example in the seasonal scale in the bottom panel, some
strong precipitation areas are evident. For example, across the Pacific Ocean along
the ITCZ, a relatively heavy precipitation belt appears with a peak at the eastern
part. In the Bay of Bengal, a strong precipitation pattern associated with an Asian
monsoon is evident.

A series of images for a particular event in every hour is effective to show the use-
fulness of this high-resolution system. In Fig. 8, consecutive images of the Typhoon
Nabi with 1 h/0.1◦ resolution are shown. This typhoon arose in 29 August 2005 at
the Mariana Island, hit Japan, and then turned into an extratropical cyclone in 8
September 2005 at the Kuril Islands. Consecutive 12 h of images just before hitting
Japan Island are shown in this figure. With the combining method described here,
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Fig. 8 Consecutive images of 12 h with 1 h/0.1◦ resolution from GSMaP_MVK for July 3,
showing the progression of Typhoon Nabi. For each image, the color superimposed on the IR cloud
image denotes the rain rate, while the grey belts denote the coverage by the various microwave
sensors. Adapted from Ushio et al. (2009)

the precipitation pattern associated with the typhoon is successfully demonstrated.
The precipitation system is spiraling cyclonically and the distribution consists of the
eyewall as well as the principal and secondary rain bands that occur outside the eye-
wall. Changes of the structure are observed every hour as it propagates, suggesting
that the GSMaP_MVK system can be useful for typhoon tracking and monitor-
ing, although the reproduction of the precipitation distribution on an hourly/10 km
scale is generally difficult and possesses low reliability. It is also suggested that the
GSMaP_MVK system is useful for monitoring large-scale phenomena other than
typhoons.
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5.2 Comparison and Validation

In this section the Kalman filter method itself is first evaluated and then the
GSMaP_MVK system is compared with other ground-based data sets. In the method
described here, precipitation estimates retrieved from the microwave radiometer
data are propagated with moving vectors and refined from the Kalman filter. In
the current algorithm, on the next microwave radiometer overpass, the refined pre-
cipitation rate at the pixel is overwritten by the precipitation rate from an updated
microwave scan. At the time of this overwrite, the two precipitation estimates from
the Kalman filter output and from the microwave radiometer are obtained simulta-
neously, and the Kalman filtered result in this system can be assessed through the
comparison with the updated microwave scan data. Thus Fig. 9 shows how the cor-
relation drops as the time from the last microwave radiometer overpass increases. As
expected the correlation gradually decreases after the microwave radiometer over-
pass in cases both with and without Kalman filtering. One or two hours after the
updates, no significant difference with and without Kalman filter can be seen. But
after three hours or more, the moving vector approach with Kalman filtering tends
to be superior to the moving vector only method without Kalman filtering.

Fig. 9 Correlation coefficient
between GSMaP and
precipitation estimated from
microwave radiometers for
the period of July 2005 in the
tropics and the extra-tropics
over land and ocean. The
solid line denotes the Kalman
filter method, while the dotted
line denotes the moving
vector only method

One of the best ways to validate the satellite precipitation system is to use the
ground-based radar data calibrated by the dense rain gauge network. In this sec-
tion, some comparisons with the data from the radar rain gauge network in Japan
called RADAR-AMeDAS are presented for validation of the GSMaP_MVK sys-
tem. Detailed analyses are described in Ushio et al. (2009) and Kubota et al.
(2009). Scatter plots comparing observed precipitation distributions for one month
with 1 h/0.1◦ and for 3 h/0.25◦ resolutions are shown in Fig. 10. In this figure,
the unit is 10 log(rain rate in mm h−1) [dBR]. Since the original resolution of
the GSMaP_MVK is 1 h/0.1◦, in the left panel a comparison with this resolu-
tion is shown. As a whole, the precipitation estimates from GSMaP_MVK and
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ground radar data match well, with a correlation coefficient of 0.44, though gen-
erally speaking, precipitation estimates on a global basis with such a high resolution
are difficult. The high-density region spreading vertically around −4 dBR on the
abscissa arises from an observation problem and should be ignored. The monthly
mean precipitation rate is 0.17 mmh−1 for the GSMaP_MVK and 0.23 mmh−1 for
the RADAR-AMeDAS, and the difference is about 0.06 mmh−1, suggesting that
the satellite system slightly underestimates the precipitation rate. The lower reso-
lution comparison (3 h/0.25◦) is presented in the right panel. It is anticipated that
the correlation coefficient rises to 0.65 and a more linear relationship appears in the
comparison with this resolution.

Fig. 10 Scatter plots comparing the hourly precipitation estimates from GSMaP_MVK with
RADAR-AMeDAS with 1 h/0.1◦ (left panel) and 3 h/0.25◦ (right panel) resolution. Adapted from
Ushio et al. (2009)

As for the daily comparison, it is very helpful to use the IPWG/PEHRPP vali-
dation data (Ebert et al. 2007). The IPWG/PEHRPP provides most of the statistical
parameters for the evaluation of the several high-resolution satellite precipitation
systems at several regions including the United States, Australia, Europe, Japan and
so on. In this study, the statistical validation results are shown from the Japanese
validation site. Figure 11 shows a time series of monthly averaged daily correlation
and root mean square error (RMSE) for some satellite precipitation systems such
as 3B42RT, CMORPH, and GSMaP_MVK. The top panel shows that the correla-
tion rises in the summer season and gradually decreases toward the winter season
in all the satellite systems. In July the correlation shows its highest value of 0.7
and in January the minimum value of 0.2 appears. At this writing, this trend arises
partly because the algorithm of the microwave radiometer fails to retrieve solid pre-
cipitation rate data correctly. Generally, the GSMaP_MVK and CMORPH systems
perform better in terms of correlation and RMSE than the 3B42RT, indicating that
the moving vector type approach works well. The GSMaP_MVK and CMORPH
tend to have similar scores, and it seems that the CMORPH has a slightly better score
than the GSMaP_MVK in spite of the Kalman filter. Probably this is because the
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Fig. 11 Time series of correlation coefficient between the GSMaP_MVK, CMORPH, 3B42RT,
and RADAR-AMeDAS data during 2005. Adapted from Ushio et al. (2009)

CMORPH uses not only the microwave radiometer but also the microwave sounder
data sets, while the current version of the GSMaP_MVK uses only the microwave
radiometer data. But it is anticipated that the future version of the GSMaP will
include the AMSU data, and the development of the precipitation retrieval algo-
rithm of the microwave sounder data is ongoing. The initial comparison of the
GSMaP_MVK including the microwave sounder data shows the best performance.
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6 Future Plans and Conclusions

In this chapter, concept, methodology, and comparisons of the GSMaP_MVK were
described, and a data distributing and processing system of this system was also
presented. Using the Kalman filter theory, the GSMaP_MVK takes advantage of
both the moving vector type and IR Tb to rain rate conversion type approaches.
The evaluation of the Kalman filter approach clearly shows a better score than the
moving vector only approach. Some comparisons with ground-based data sets show
that the GSMaP_MVK has one of the best scores for estimating the precipitation
rate.
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Neighborhood Verification of High Resolution
Precipitation Products

Elizabeth E. Ebert

Abstract High resolution satellite-derived precipitation fields may be quite useful
for many applications even if they do not exactly match with the observations. To try
to assess their quality, verification techniques known collectively as neighborhood
techniques have been developed. These techniques compare the estimates and obser-
vations within space/time neighborhoods and measure their “closeness” according
to various criteria such as the similarity of estimated and observed precipitation
intensity distributions, occurrence of precipitation exceeding critical thresholds,
fractional precipitation area, and so on. By changing the size of the space/time
neighborhoods it is possible to assess at which scales the satellite estimates have
sufficient accuracy for a particular application. This chapter demonstrates the neigh-
borhood verification approach using two satellite-based high resolution precipitation
products, and interprets their accuracy according to four different “closeness”
criteria.

Keywords Verification · Neighborhood verification · Evaluation · Closeness

1 Introduction

High space and time resolution precipitation products from satellites and numeri-
cal weather prediction models are now widely available and are used for a variety
of applications from weather analysis and prediction, climate analysis, emergency
management, stream flow prediction, water resource management, agriculture, etc.
These applications have different requirements regarding accuracy and timeliness.
Therefore, the source of precipitation data that best suits one application may not
be ideal for another. Among hydrological applications, flash flood forecasting calls
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for rapid data transmission but can accommodate moderate accuracy in the esti-
mates, while water resource management needs unbiased precipitation estimates
even though they may take some time to acquire.

Satellite-based estimates in particular can be very useful when it is necessary
to know the spatial distribution of precipitation in near real time, and radar-based
precipitation estimates are either not available or not of suitable quality to use quan-
titatively. The finest scales at which operational satellite precipitation estimates are
normally made are ∼8 km and 30 min for estimates using geostationary satel-
lite data (e.g., HydroEstimator (Scofield and Kuligowski, 2003), CMORPH (Joyce
et al., 2004), and PERSIANN (Sorooshian et al., 2000)), and ∼25 km and 3-hourly
for estimates using mainly passive microwave data (e.g., TMPA-RT (Huffman et al.,
2007) and NRL-PMW (Turk and Miller, 2005)). The high spatial and temporal reso-
lution offers users the flexibility to either make direct use of the estimated fine-scale
precipitation distributions, or average or accumulate the estimates to larger space
and time scales as required.

In order to make appropriate use of high resolution satellite precipitation esti-
mates it is necessary to understand the nature of their estimation errors. This is
done by verifying the satellite estimates against reference data such as rain gauge
or radar analyses, where these are assumed to give a reasonable representation of
the true precipitation distribution. Due to the sparseness of gauge networks measur-
ing sub-daily precipitation, the finest scales at which gauge analyses are normally
used for satellite precipitation validation are ∼ 25 km and 24-hourly (e.g., Ebert
et al., 2007). Verification of sub-daily satellite precipitation estimates usually relies
on radar precipitation composites or radar-gauge analyses. This is starting to be done
more frequently (e.g., Hossain and Huffman, 2008; Sapiano and Arkin, 2008), and
will be done in this chapter as well.

When satellite estimates and surface reference data are available on a common
grid, the traditional verification approach is to compare the value of the satellite
in a given pixel with the corresponding observation in that pixel. This matching
strategy makes it very difficult for high resolution satellite estimates to demonstrate
good skill, for several reasons. In addition to retrieval error, which is related to the
conversion of satellite-measured radiances to surface precipitation, other non-trivial
sources of error contribute to the total error. Sampling error can occur when there
are spatial and temporal mismatches between the satellite products and the reference
data. The satellites give estimates of instantaneous precipitation rates over the pixel-
sized areas, while gauges provide temporal accumulations at a point. Gauge analyses
that map point data to the pixel scale contain error associated with the interpolation.
Gauge measurements may be affected by under-catch errors. Radar provides instan-
taneous areal precipitation estimates that are analogous to the satellite estimates,
albeit at much higher resolution than the satellite. However, the conversion of radar
reflectivity to surface precipitation is complex and itself contains a variety of errors
(Collier, 1996). For a review of precipitation measurement methodology and errors
see Michaelides (2008). It is no wonder, then, that it is so difficult to achieve per-
fect verification results when the reference data give an imperfect estimate of the
truth.
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Upscaling to coarser space and time resolution is a well known approach for
reducing the sampling error, but this process loses important information on the
precipitation intensity distribution. For many applications it may not be essential to
get the precipitation position and timing exactly right; instead, “close enough” may
be good enough.

An emerging verification approach called “neighborhood verification” has been
described by Ebert (2008)1. Instead of requiring an exact space/time match, all
pixel-scale values within a spatial and/or temporal neighborhood of the observation
are considered to be equally likely estimates of the “true” value, thus representing a
probabilistic view of verification. Some neighborhood verification methods compare
the estimated values within a neighborhood to the observation in the center, while
others compare the estimates to observed values within the same neighborhood.
The advantage is that useful skill can be demonstrated even if perfect correspon-
dence is not achieved at the pixel scale. By varying the size of the neighborhoods and
performing the verification at multiple scales and for multiple intensity thresholds,
it is possible to determine at which scales the satellite estimates have useful skill.
This strategy evolved from the need for more appropriate verification approaches
for high resolution model precipitation forecasts, but is equally applicable to high
resolution satellite precipitation estimates.

This chapter describes the general neighborhood verification approach (Ebert,
2008), and focuses on four methods that are particularly suited for evaluating
precipitation mean values, precipitation frequency, occurrence of extreme val-
ues, and similarity of the intensity distribution. The verification methodology is
demonstrated on precipitation estimates from the CMORPH algorithm of Joyce
et al. (2004) and the near real time TRMM Multisatellite Precipitation Analysis
(TMPA-RT) of Huffman et al. (2007), using gauge analyses and radar estimates
over Australia as reference data. The information that can be gained from each of
the methods is highlighted.

2 Neighborhood Verification Methods

Neighborhood verification computes error metrics for the set of all neighborhoods,
or space/time windows, in a domain, rather than the set of all individual pixels. The
use of continuous, rather than discrete, sampling leads to more robust statistics. The
size of the local spatial neighborhood around a pixel is increased linearly or expo-
nentially from 1×1, 3×3, 5×5, etc., to some upper bound on the window size that
reflects the maximum distance that may still be considered relevant for precipitation
guidance. For hydrological applications this might be one or two times the typical
catchment size, or the size of a synoptic scale rain system. If a temporal domain is
used then t time windows are increased in the same way.

1Although she called it “fuzzy verification” the term “neighborhood verification” is preferred as it
more clearly describes the nature of the approach.
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Since many neighborhood verification methods use the concept of an “event”,
i.e., the occurrence of a value greater than or equal to some threshold value, the pre-
cipitation intensity threshold for an event is also varied from small to large values,
R1,. . ., Rm. Thus, instead of the single score that is normally reported for pixel-scale
validation using a rain/no rain threshold, neighborhood verification provides an
m×n×t array of scores for varying scales and thresholds. It is then possible to exam-
ine the array of scores to determine which space and time scales have useful skill
for precipitation exceeding various intensities.

A well known neighborhood verification approach is upscaling, in which the
estimates and observations at pixel scale are averaged to larger scales before
being compared using the usual continuous and categorical verification metrics.
Zepeda-Arce et al. (2000) and Yates et al. (2006) describe the use of upscaling to
evaluate model output against radar data and gauge analyses. More recently, Hossain
and Huffman (2008) upscaled precipitation estimates from four different high res-
olution satellite products to show how several commonly used verification metrics
improved with increasing spatial scale from 0.04◦ to 1.0◦.

In recent years many new techniques that verify neighborhoods of pixels have
been proposed in the meteorological literature (Brooks et al., 1998; Zepeda-Arce
et al., 2000; Atger, 2001; Casati et al., 2004; Germann and Zawadzki, 2004; Theis
et al., 2005; Rezacova et al., 2007; Roberts and Lean, 2008). Ebert (2008) describes
twelve neighborhood verification methods, four of which are demonstrated here.
Each method is characterized by a decision model regarding what constitutes a
useful forecast or estimate. For example, the upscaling method considers a use-
ful estimate to be one that has the same average value as the observations. This is
one criterion for judging whether precipitation estimates at the catchment scale are
useful for hydrological purposes.

The fractions skill score (FSS) method of Roberts and Lean (2008) considers
a perfect estimate to be one with the same frequency of events as was observed
within a neighborhood. This neighborhood method implicitly acknowledges that
the observations are likely to contain random error at the pixel scale, and asserts
that a better approach to comparing estimates with observations is to assess their
similarity in terms of their fractional coverage of raining pixels. The fractions skill
score is probabilistic in nature, and is based on a variation of the Brier score used to
verify probability forecasts:

Fractions Brier Score = FBS = 1

N

∑

N

(Pest − Pobs)
2 (1)

Pest and Pobs are the fractional coverages of estimated and observed precipitation
pixels, respectively, in each of the N neighborhoods in the domain. The FBS is the
mean squared error in probability space, with lower values of FBS indicating more
accurate satellite estimates. To transform the score into a positively oriented metric
the FBS is referenced to the corresponding value for the unmatched case, giving a
fractions skill score of
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FSS = 1 − FBS

1
N

[
∑

N
P2

est +∑

N
P2

obs

] (2)

The FSS varies between 0 for a complete mismatch (i.e., negatively correlated)
and 1 for a perfect match.

Roberts and Lean (2008) show that the target value of FSS above which the
estimates are considered to have useful (better than a uniform probability forecast
of fobs, the observed rain fraction in the domain) skill is given by

FSSuseful = 0.5 + fobs

2
(3)

where fobs is the fraction of observed raining pixels in the full domain. This leads to
the concept of a “skillful scale”, namely the smallest scale at which the FSS exceeds
FSSuseful. This is a more meaningful concept for many users. In fact, the skillful
scale is now used in the United Kingdom to help weather forecasters at the Met
Office understand the quality of high resolution model forecasts (M. Mittermaier,
personal communication, 2008).

The multi-event contingency table (MECT) method of Atger (2001) considers an
estimate to be useful if at least one occurrence of an event is estimated close to an
observed event. “Close” can refer to space, time, intensity, or any other important
aspect. This is an important criterion for emergency managers and disaster relief
agencies using satellite estimates to detect heavy precipitation in a remote region,
or for weather forecasters using model output to prepare warnings of heavy precipi-
tation. The MECT method compares a neighborhood of estimates to an observation
in the center using traditional categorical metrics such as frequency bias, probability
of detection, false alarm ratio, and so on. These are derived from the four elements of
the contingency table, namely the number of hits (observed precipitation correctly
detected), misses (observed precipitation not detected), false alarms (detections of
precipitation where none occurred), and correct negatives (no precipitation detected
or observed)2. According to the MECT method, whenever precipitation is observed
in the central pixel of the neighborhood and also detected by the satellite in at
least one pixel in the neighborhood, this counts as a hit. If there is no precipitation
observed in the central pixel but one or more neighborhood pixels with detected
precipitation, a false alarm is counted. As the neighborhood increases in size, it is
easier to get a hit, but also easier to get a false alarm. Although any categorical
score can be computed, the one most relevant to accuracy assessment in this case is
the Hanssen and Kuipers discriminant HK, which measures the difference between
the probability of detection (rewarding hits) and the probability of false detection
(penalizing false alarms). In terms of the contingency table elements HK is given by

2See Jolliffe and Stephenson (2003) or JWGV (2008) for more detailed information on contin-
gency tables and categorical verification scores.
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HK = hits

hits + misses
− false alarms

correct rejections + false alarms
(4)

A score of 0 indicates no skill, while a score of 1 signifies perfect performance.
Germann and Zawadzki (2004) proposed a neighborhood verification method

that uses as its criterion for goodness, “A forecast is useful if it has a high prob-
ability of matching the observed value.” Called the conditional square root of
RPS (CSRR), it explicitly uses a probabilistic approach to compare precipitation
estimates to observed precipitation in the center of each neighborhood. They com-
pute the ranked probability score (RPS), which measures the domain-averaged
mean squared difference in cumulative probability space, for precipitation in M
logarithmically increasing intervals3:

RPS = 1

N

[

1

M − 1

M
∑

m=1

(CDFest,m − CDFobs,m)2

]

(5)

where CDFest,m is the cumulative probability of the estimates exceeding the inten-
sity threshold for category m, and CDFobs,m is the observed cumulative probability,
equal to 1 if the observed value exceeds the threshold for category m, and 0 if not.
The RPS rewards estimates with an intensity distribution that peaks sharply near
the observed value. The square root of the RPS can be interpreted as the standard
error of the probability estimates across the full range of precipitation intensities.
This quantity is normalized by the observed precipitation fraction in the domain to
enable performance to be compared for different cases:

CSRR =
√

RPS

Pobs
(6)

This is a negatively oriented score, i.e., a perfect estimate would have a value
of CSRR=0. Unlike the three methods described previously, CSRR values are not
computed for varying precipitation thresholds since the score evaluates the full
intensity distribution of the estimates. Likely users of CSRR information would
include emergency managers and other decision makers concerned about the effects
of local heavy precipitation.

The first two neighborhood methods described in this section, upscaling and FSS,
compare neighborhoods of satellite estimates against neighborhoods of observa-
tions. Ebert (2008) calls this strategy “model oriented”, meaning that the observa-
tions are manipulated to represent the scales that can be resolved by the numerical

3The M intervals are chosen here to have bounds identical to the thresholds used for the other
methods. Since the RPS is sensitive to the choice of intervals, this score should be used in a relative
sense (i.e., to compare performance) rather than an absolute sense.
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weather prediction model (in that paper); “product oriented” might be a better term
to use with satellite estimates. This gives a fair assessment of the satellite products in
the sense that they are being evaluated only on scales that they claim to resolve. The
last two neighborhood methods, MECT and CSRR, compare each neighborhood
of satellite estimates against the single observation in the center of the neighbor-
hood. Although this may seem “unfair”, many users wish to know the accuracy of
the satellite estimate at a particular location. Note that this “user oriented” philos-
ophy is more demanding than the “product oriented” one, but not as tough as the
traditional pixel-to-pixel verification, since skill can still be demonstrated when the
satellite estimate detects precipitation close to the observation.

3 Neighborhood Verification of CMORPH and TMPA
Precipitation Estimates

The upscaling, FSS, MECT, and CSRR methods were used to evaluate four aspects
of the precipitation distribution, namely the mean value, the frequency of precipi-
tation pixels, the occurrence of an estimated event close to an observed event, and
the estimated intensity distribution, within spatial and temporal neighborhoods of
increasing size. Several intensity thresholds were used with particular emphasis on
evaluating the higher precipitation rates.

To better understand the neighborhood verification we can compare verification
results from two different hours on the same day. November 3, 2007 was char-
acterized by a deepening low pressure system over southeastern Australia which
produced heavy precipitation in the vicinity of Melbourne. Figure 1 shows the pre-
cipitation from the Rainfields merged radar-gauge analyses (Seed and Duthie, 2007)
and CMORPH satellite estimates (Joyce et al., 2004), valid for the hours ending at
10 and 16 UTC. The first case shows CMORPH estimates to be relatively unbi-
ased, but with the precipitation area in the northeast slightly displaced from the
radar observations (Fig. 1a). In the second case the CMORPH estimate had excellent
placement but its intensities were much lighter than observed (Fig. 1b).

To prepare the data for verification, the original 2 km resolution radar pixels were
averaged to the 8 km scale of the satellite product. The neighborhood verification
used six spatial scales increasing logarithmically from 1×1 to 29×29 pixels, the
largest that the radar analysis could accommodate, and eight intensity thresholds
ranging from 0.1 to 20 mm h–1. No time window was used.

The results are shown in Figs. 2 and 3 as a function of the precipitation inten-
sity threshold (x-axis) and spatial scale (y-axis). In these plots the shading and the
number show the value of the score. The value in the lower left corner is the score
that would be achieved using traditional pixel matching and a very low threshold,
essentially rain/no rain.
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a

b

Fig. 1 Hourly precipitation estimated from a radar-gauge analysis (left) and the CMORPH satellite
precipitation product (right), at (a) 10 UTC and (b) 16 UTC on 3 November 2007

For the upscaling approach the equitable threat score4 was chosen as the error
metric since it penalizes both misses and false alarms. Other metrics such as mean

4The equitable threat score is a categorical verification metric used widely by the meteorological
community to verify precipitation forecasts and estimates. It is defined as the fraction of all events
forecast and/or observed that were correctly diagnosed, accounting for the hits that would occur
purely due to random chance:

ETS = hits − hitsrandom

hits + misses + false alarms − hitsrandom

where hitsrandom = 1
N

(

Nobs.rain x Nfcst.rain
)

. The ETS can be interpreted as the detection skill
relative to random chance, and varies between -1/3 and 1.
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Fig. 2 Neighborhood verification scores for hourly CMORPH estimates verified against radar-
gauge analyses in southeastern Australia at 10 UTC on 3 November 2007. In (a)–(c) the spatial
scale is varied along the y-axis with larger scales at the top of the plot, while the precipitation
intensity threshold is varied along the x-axis with larger values to the right. The value in the lower
left corner represents the usual pixel-scale score for a rain/no rain threshold. Score values of 0 occur
where there were no satellite estimates for that intensity-scale combination but there were observed
values. Blank entries represent intensity-scale combinations for which there were no observations
or the score was undefined. The bold numbers in the fractions skill score plot indicate where useful
skill was achieved according to Eq. (3). The CSRR in (d) has no threshold dependency and is
plotted simply as a function of spatial scale

error, root mean square error, and Nash-Sutcliffe efficiency coefficient can also be
computed as a function of scale to evaluate the mean value; a categorical score was
chosen here to illustrate the varying performance with precipitation intensity.

In both cases, CMORPH showed optimal skill at a spatial scale of 72 km. For
the 10 UTC case this occurred for an intensity threshold of 2 mm h–1, indicating
that the moderate precipitation was located more accurately than precipitation of
other intensities (Fig. 2a). Although there were pixel scale observations exceeding
20 m h–1, there were no corresponding satellite detections, resulting in a score of 0
as seen in the right side of the diagram. At 16 UTC the optimal ETS occurred for
much lower precipitation thresholds, reflecting the bias errors (Fig. 3a). In general
the 16 UTC case scored more highly than the 10 UTC case due to its excellent
precipitation detection.

The opposite was true when comparing the estimated and observed fractional
coverage of precipitation pixels using the fractions skill score. Useful detections
were made for a greater range of scales and intensities for the 10 UTC case
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Fig. 3 As in Fig. 2, for verification at 16 UTC on 3 November 2007

compared to the 16 UTC case (Figs. 2b, 3b). By considering the fractional cover-
age of pixels exceeding a particular intensity, the FSS puts greater emphasis on the
precipitation intensity distribution than does the upscaling approach. This explains
why the unbiased case outperformed the biased case with better detection. FSS gen-
erally improves with increasing spatial scale and decreasing precipitation intensity,
and tends to be characterized by higher numerical values than the ETS and HK.

The ability of CMORPH to detect precipitation of a given intensity close to where
it was observed was quite different at 10 and 16 UTC, according to the MECT ver-
ification (Figs. 2c, 3c). A good way to use the results from the MECT method is to
choose a threshold of interest, say 10 mm h–1, and scan vertically to see which scales
had a large HK score. In a warning context this would tell the user how large the
neighborhood surrounding the point of interest should be to provide a useful indi-
cation of precipitation, with many hits and not too many false alarms. For example,
at 10 UTC a neighborhood of 40–72 km (effective radius of 23–40 km) gave useful
detections of precipitation exceeding 10 mm h–1, while no detections of 10 mm h–1

were found in the neighborhood of any observed values at 16 UTC due to the low
bias of the CMORPH estimate. However, for light precipitation only small neigh-
borhoods were required for very good detections. The diagonal pattern of higher HK
scores seen in Figs. 2c and 3c is typical for this method, as the difficulty in detecting
higher precipitation rates (due to their greater temporal variability and associated
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higher sampling errors) means that larger neighborhoods are generally needed to
find a match.

The final evaluation of the CMORPH estimates was done using the probabilistic
CSRR method, which has a low (good) value when the estimated intensity distribu-
tion peaks near the observed value. The focus of the CSRR on the precipitation rate
distribution is similar to that of the FSS, but neighborhood estimates are compared
to point values rather than the neighborhood distribution of observed precipitation
rates. The CSRR showed better performance for CMORPH at 10 UTC, when there
was little bias, than at 16 UTC when the estimates contained significant bias error
(Figs. 2d, 3d). The scales that best represented the observed precipitation distribu-
tion were 24–72 km, in agreement with the upscaling and MECT results. The return
to lower CSRR values at the largest scale for the 16 UTC case is related to the inclu-
sion of moderate CMORPH precipitation rates from the southeastern corner of the
domain in the precipitation rate distribution being compared to observed pixels near
the center of the domain (Fig. 1b).

The CMORPH example focused on the interpretation of neighborhood verifica-
tion results, where the goal was to interpret the behavior of the scores in light of
the errors that can be seen in the radar and satellite precipitation maps. The more
typical use of verification is to detect systematic errors over some period of time
using a much larger dataset. The aggregated verification results can then be used to
guide the improvement of detection algorithms and the appropriate interpretation of
existing satellite precipitation products.

To demonstrate the use of neighborhood verification for providing information
on systematic errors, we verify satellite estimates from the TMPA-RT algorithm
(also known as 3B42RT; Huffman et al., 2007). Estimated 3-hourly precipitation
accumulations at 0.25◦ spatial resolution were summed to 24 h accumulations
and verified against operational daily rain gauge analyses at the same scale over
Australia (Weymouth et al., 1999) during two seasons, December 2005–February
2006 (summer) and June–August 2006 (winter). The neighborhood verification
scores for each method were computed for each day separately, then aggregated
for the full season. This involved summing the daily hits, misses, and false alarms
(upscaling and MECT methods) or squared errors (FSS and CSRR methods) and
computing the scores from the summed components.

Not all possible verification scales are useful in practice – for daily pre-
cipitation we will be primarily interested in scales below about a few degrees
latitude/longitude. Therefore, the neighborhood sizes used in the neighborhood
verification were 1×1, 3×3, 5×5, 9×9, and 17×17. As before, no temporal
neighborhoods were used.

Figure 4 shows the neighborhood verification of TMPA-RT daily precipitation
estimates during the summer season, while Fig. 5 shows performance for the winter
season. Looking first at the general performance, the TMPA-RT performed better in
summer than in winter as has been found earlier (Ebert et al., 2007). The maximum
precipitation rates were much higher in summer than in winter, and there were fewer
instances of non-detection.
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Fig. 4 Neighborhood verification results for TMPA-RT precipitation estimates over Australia
during the summer season, December 2005–February 2006

The upscaling method shows that the skill was greatest for low precipitation
thresholds (light precipitation) and decreased monotonically as the precipitation
rate increased. In summer the ETS values for precipitation thresholds exceeding
1 mm d–1 were better than 0.5 for scales of 2 to 4◦, while for heavy precipitation
(≥50 mm d–1) the ETS was less than 0.2 for all scales (Fig. 4a). Wintertime perfor-
mance was much worse, with negligible skill for precipitation heavier than 20 mm
d–1 (Fig. 5a).

To understand these results it is helpful to look at the frequency biases for sum-
mer and winter, shown in Fig. 6. The frequency bias is simply the ratio of detected
to observed precipitation events, with a value of 1 indicating unbiased estimates. In
summer the frequency of light precipitation was relatively unbiased, but the occur-
rence of heavier precipitation at pixel scale was overestimated by more than a factor
of 4 for high thresholds. The high rate of false alarms contributed to the poorer ETS
values at these scales. The situation was reversed in winter when precipitation fre-
quency was underestimated at all scales and intensities, and the high rate of misses
led to low overall skill. This behavior is in agreement with the pixel-scale results
shown by Ebert et al. (2007) for earlier dates.

As with the upscaling approach, the performance according to FSS was greater at
smaller precipitation thresholds and larger scales (Figs. 4b, 5b). This means that the
estimated precipitation frequencies better matched the observed frequencies occur-
ring at those scales and intensities. To show whether these matches were useful
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Fig. 5 As in Fig. 4, for the winter season, June–August 2006

Fig. 6 Frequency bias of TMPA-RT for the upscaling verification approach, for (a) summer 2006
and (b) winter 2006

according to the Eq. (3), the observed frequency, target skill, and skillful scale (i.e.,
the minimum scale at which the target skill is met) are listed in Table 1. In some
cases these were interpolated from the results in Figs. 4 and 5. In summer the skill-
ful scales were conveniently small, a few pixels or less, for precipitation threshold
up to 20 mm d–1, beyond which the estimated frequencies were not sufficiently close
the observed frequencies. This is most likely due to the high biases noted earlier. In
winter useful skill was shown only for low thresholds and at scales greater than
100 km.
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Table 1 Threshold-dependent observation frequency, target FSS, and estimated skillful scale for
TMPA-RT estimates during (a) summer 2005–2006 and (b) winter 2006

(a)

Precipitation threshold (mm d–1)

Dec 2005–Feb 2006 1 5 10 20 50 75 100 125 150 200

Observed frequency,
fobs

0.27 0.14 0.08 0.04 0.006 0.002 0.001 0 0 0

Target FSSuseful 0.64 0.57 0.54 0.52 050 0.50 0.50 0.50 0.50 0.50

Estimated skillful

scale (◦ lat/lon)
0.25 0.25 0.35 0.63 3.1 – – – – –

(b)

Precipitation threshold (mm d–1)

June–Aug 2006 1 5 10 20 50 75 100 125 150 200

Observed frequency,
fobs

0.09 0.03 0.01 0.004 0 0 0 0 0 0

Target FSSuseful 0.54 0.52 0.51 0.50 050 0.50 0.50 0.50 0.50 0.50

Estimated skillful

scale (◦ lat/lon)
2.3 1.6 3.2 – – – – – – –

The MECT method is concerned with identifying estimated events near observed
events, and uses the Hanssen and Kuipers score (HK) as its error metric. As events
become increasingly rare the false alarm rate drops and the HK score tends toward
the probability of detection. According to the MECT, the greatest skill at detecting
precipitation in the vicinity of an observed value occurred at moderate to heavy
precipitation thresholds of 20–75 mm d–1, and spatial scales of 100–400 km during
summer (Fig. 4c). Good performance was seen at these scales even for precipitation
exceeding 150 mm d–1, which indicates the potential usefulness of TMPA-RT for
flooding precipitation applications (e.g., Hong et al., 2007). During winter good
performance was seen for slightly lower precipitation thresholds (10–20 mm d–1)
and greater spatial scales (≥400 km) (Fig. 5c).

The seasonal mean CSRR scores were significantly lower for summertime
TMPA-RT estimates than for winter (Figs. 4d, 5d). The poor wintertime perfor-
mance was mainly related to low bias seen in Fig. 6b, with the estimated intensity
distribution not matching closely with the observed values. In both seasons quite
large neighborhoods were required to get optimal precipitation rate distributions, a
result of both sampling and detection errors.
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4 Discussion

As the production and distribution of high resolution satellite-based precipitation
products becomes increasingly common, the need to evaluate them appropriately
becomes more important. Standard pixel-by-pixel verification can suggest that high
resolution precipitation products are not as accurate as lower resolution products, yet
most users intuitively feel that the high resolution products should be more useful.
Neighborhood verification gives credit to estimates that are “close” to the obser-
vations, thus offering an alternative to traditional verification approaches. This is
achieved by looking in space/time neighborhoods surrounding the observations and
evaluating the degree of “closeness” according to various criteria.

Many neighborhood verification methods are now available to answer different
questions about the accuracy of high resolution products. The neighborhood veri-
fication framework of Ebert (2008) includes twelve methods, four of which have
been described and demonstrated here. Upscaling verifies the mean value of the
satellite estimates against the mean value of the observations in successively greater
neighborhoods. The fractions skill score (FSS) compares estimated and observed
distributions in neighborhoods by computing squared errors in probability space.
Two methods were shown for comparing estimates to pixel-scale observations.
The multi-event contingency table (MECT) looks for estimates that are located
nearby observed precipitation events and measures the closeness using the Hanssen
and Kuipers score. The conditional square root of RPS (CSRR) is a probabilistic
approach, evaluating whether the distribution of estimated precipitation rates in the
neighborhood of an observation peaks near the observed intensity. Each of these
methods addresses a different aspect of accuracy.

By evaluating the accuracy of the satellite estimates as a function of both intensity
and spatial scale, neighborhood verification gives information about which scales
have useful skill. This helps users to decide whether to use the estimates at face
value at full resolution, or spatially transform the values to give more accurate and
useful information.

Most users of precipitation estimates are not very familiar with objective verifica-
tion techniques and scores, and thus neighborhood verification may seem somewhat
daunting. Two new metrics, namely the FSS and the CSRR, have only recently
been introduced into the meteorological literature and are not yet found in stan-
dard textbooks on verification. Even those who are comfortable with verification
methods and scores may find it overwhelming to interpret the results from sev-
eral neighborhood methods, each of which produces a large array of scores. The
key is to first identify which is the most important aspect(s) of the estimated
precipitation to get right – is it the spatial average, the precipitation area, the pres-
ence of one or more high intensity estimates nearby the location of interest, the
precipitation rate distribution, or something else, then choose the neighborhood ver-
ification method that addresses this aspect – upscaling, FSS, MECT, or CSRR,
respectively. Focusing on an intensity threshold of interest and condensing its
scale-dependent performance into a single easily-interpreted value like the “skillful
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scale” can help make the verification results much more accessible. As neigh-
borhood verification becomes more widely used, new approaches will certainly
emerge for interpreting the results in ways that intuitively meet the needs of specific
users.
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A Practical Guide to a Space-Time Stochastic
Error Model for Simulation of High Resolution
Satellite Rainfall Data

Faisal Hossain, Ling Tang, Emmanouil N. Anagnostou,
and Efthymios I. Nikolopoulos

Abstract Abstract For continual refinement of error models and their promotion
in prototyping satellite-based hydrologic monitoring systems, a practical user guide
that readers can refer to, is useful. In this chapter, we provide our readers with one
such practical guide on a space-time stochastic error model called SREM2D (A Two
Dimensional Satellite Rainfall Error Model) developed by Hossain and Anagnostou
(IEEE Transactions on Remote Sensing and Geosciences, 44(6), pp. 1511–1522,
2006). Our guide first provides an overview of the philosophy behind SREM2D and
emphasizes the need to flexibly interpret the error model as a collection of modifi-
able concepts always under refinement rather than a final tool. Users are encouraged
to verify that the complexity and assumptions of error modeling are compatible with
the intended application. The current limitations on the use of the error model as
well as the various data quality control issues that need to be addressed prior to error
modeling are also highlighted. Our motivation behind the compilation of this prac-
tical guide is that readers will learn to apply SREM2D by recognizing the strengths
and limitations simultaneously and thereby minimize any black-box or unrealistic
applications for surface hydrology.

Keywords Satellite rainfall · Infrared · Passive microwave · Uncertainty

1 Introduction

To the surface hydrologist, rainfall remains one of the most complex hydro-
logic variables exhibiting intermittency across scales of interest. Being a binary
phenomenon (e.g. it is either raining or is completely dry), rainfall is one of
the few natural variables whose lack of continuity in space and time dominates
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as scales become smaller (unlike stream flow or soil moisture). Although, the
space-time structure of rainfall directly affects the response of dynamic terrestrial
hydrologic processes such as runoff generation and soil moisture evolution, this
scale-dependent complexity has remained a challenge to its mathematical modeling
and a topic of much research the last few decades.

Models that simulate the rainfall generation process are aplenty. Using various
discrete pulse-type probability distributions and/or the physics of the atmospheric
process, these models can simulate the evolution of rainfall in the space-time con-
tinuum. The modeling of the rainfall process has been a much studied topic since
the 1970s (see for example, Anagnostou and Krajewski, 1997; Stewart et al., 1984;
Bras and Rodriguez-Iturbe, 1976; Eagleson, 1972). For a review of currently avail-
able rainfall models, the reader is referred to Waymire and Gupta (1981) and Fowler
et al. (2005).

However, error models on rainfall, which are conceptually different from rainfall
models because they simulate the measurement error of rainfall, are relatively less
common, particularly if the focus is on space-borne platforms Hossain and Huffman
(2008). Satellite rainfall error modeling has a relatively shorter heritage than radar
rainfall error modeling (see for example, Ciach et al., 2007 and Jordan et al., 2003).
The issue of “error” (hereafter used synonymously with “uncertainty”) arises when
there is more than one source of data observing the same rainfall process, with one
source having typically lower confidence than the other. Satellite rainfall, on account
of being indirect “measurements” of the rainfall process are often linked with such
lower levels of confidence than the more conventional measurement arising from
ground networks such as weather radars and in-situ gages (Huffman, 2005). As
satellite rainfall data become more easily available at higher spatial and temporal
resolutions from multiple sources, a natural outcome will be an explosion of its
use in surface hydrologic applications over regions where it is needed most. For
applications that are very critical for society (such as flood/landslide monitoring or
drought management), it is important therefore that users understand the uncertainty
associated with satellite rainfall data prior to building decision support systems.

The purpose of this chapter is to provide readers with a detailed practical guide
on the use of a space-time satellite rainfall error model called SREM2D devel-
oped earlier by authors of this chapter – F. Hossain and E.N. Anagnostou (“A Two
Dimensional Satellite Rainfall Error Model” IEEE Transactions on Remote Sensing
and Geosciences, 44(6), pp. 1511–1522, 2006). In another work by Hossain and
Huffman (2008), a detailed overview on the history of error quantification of satel-
lite rainfall data and its modeling is provided. Thus, other competing error models
are not the subject of interest in this chapter.

Also, due to increased interest on SREM2D from users of various backgrounds,
this practical guide is considered timely for advancing the application of high
resolution (satellite) precipitation products (HRPPs) in surface hydrology (here-
after, rainfall is used as a shorthand for precipitation). At the time of writing this
manuscript, users from the following organizations and institutions were identified
as having expressed a direct interest or already begun using SREM2D in their anal-
yses: (1) NASA Laboratory of Atmospheres, (2) NASA Data Assimilation Branch,
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(3) University of Oklahoma, (4) Mississippi State University’s GeoResources
Institute, (5) University of Mississippi Geoinformatics Center. Most error models
described in literature are written for researchers engaged in development and
assessment of satellite rainfall data. There is none, to the best of our knowledge,
that aims to guide a user towards its practical use, calibration, limitations and inter-
pretation of error model output. Hence, a motivation behind the compilation of this
practical guide is that readers and users alike will learn to apply SREM2D recogniz-
ing simultaneously the pros and cons and thereby minimize any black-box or invalid
applications for surface hydrology.

The paper is organized as follows. Section Two addresses the question Why
SREM2D? and provides an overview of the philosophy behind SREM2D. Section
Three dwells on the general modeling structure of the SREM2D error model.
Section Four describes the formulation of SREM2D error metrics, followed by
“Data Quality Control/Quality Assessment (QA/QC) and Error Metric Calibration”
in Section Five. This section (Five) explains readers the computation of various
error metrics of SREM2D from the data and the potential limitations that may be
associated with the calibration approach. Section Six describes issues of SREM2D
simulation and reproducibility of error statistics via ensemble generation of
synthetic satellite data. Conclusions and the open issues needing closure regarding
SREM2D are provided in Section Seven.

2 Why SREM2D?

Although existing rainfall error metrics and error models have undoubtedly
advanced the application in terrestrial hydrology (Huffman, 1997; Gebremichael
and Krajewski, 2004; Steiner et al., 2003; Ebert, 2008), some issues continue to
remain open. Firstly, most error models treat error as a uni-dimensional (i.e., a
single quantity) measure without an explicit recognition that rainfall is an inter-
mittent process that can also affect the measurement accuracy. These models use
the power law type relationships for estimating this aggregate error as a function
of spatial and temporal sampling parameters. Such models may be acceptable
for estimating the average error over large areal nd temporal domains (e.g 512 X
512 km2, monthly or daily accumulations). However, there is no clear indication
at this stage about the implication of using such coarse-grained error models
for hydrologic error propagation experiments where the space-time covariance
structure of the estimation error may not be preserved. For example, a satellite
rainfall product with an error standard deviation of X mm/h can be generated from
a multiplicity of distinct space-time patterns of rainfall. Each pattern, however, will
have a different response in surface hydrology at fine space-time scales (see for
example, Lee and Anagnostou, 2004).

Thus, there is a need to transition current error models to a level that recognizes
at a minimum the need for preservation of covariance structure of the measured
rainfall and the associated measurement accuracy as a function of space and time.
With this need comes the recognition for a change in paradigm that single aggregate
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error metrics (such as error variance) are not sufficient metrics for error models that
aim to simulate the hydrologically-relevant features of satellite rainfall uncertainty.
SREM2D is one such error model developed for space-time generation of satellite
rainfall fields in response to the limitations of current error models that tend to
simplify the uncertainty.

3 General Modeling Structure Of SREM2D

SREM2D is designed as a collection of concepts, each having flexibility in mod-
ification or replacement with an alternative concept. The logical thought process
behind the collection of concepts has already been outlined in a step by step manner
by Hossain and Huffman (2008). For the convenience of our readers, we reiterate
in this section the pertinent steps (Fig. 1) “as is” to highlight the general modeling
structure of SREM2D. Hereafter, we use the term “reference” rainfall to refer to
ground validation (GV) rainfall data that is corrupted by the error model to simulate
less confident satellite-like observations of the rainfall process.

Recognizing that it is the intermittency of the rainfall process in space and time
that dictates the variability of a hydrologic process overland, the SREM2D concep-
tualizes that the error metrics in three general dimensions. These are: (1) temporal
dimension (How does the error vary in time?); (2) spatial dimension (How does the
error vary in space?), and (3) retrieval dimension (How “off” is the rainfall esti-
mate from the true value over rainy areas?). A given satellite grid-box can be rainy
or non-rainy. When compared to the corresponding reference rainfall data, a satellite
estimate may fall into one of four possible outcomes:

1) Satellite successfully detects rain (successful rain detection, or “hit”).
2) Satellite fails to detect rain (unsuccessful rain detection, or “miss”).
3) Satellite successfully detects the no-rain case (successful no-rain detection).
4) Satellite fails to detect the no-rain case (unsuccessful no-rain detection, or

“false alarm”).

The grid-boxes that are successfully detected as rainy may exhibit three addi-
tional properties or dimensions listed above (in space, time and scalar difference,
see Figure 1). Each of these properties may be considered fully or partially rep-
resentative of the three general dimensions outlined earlier. At this stage, it is not
clear how adequately these properties represent a given dimension. For example, the
temporal variation of error probably results from a mixture of the true spatial and
temporal correlations of the rain system in its Lagrangian (system-following) frame
of reference, and the advection speed of that frame of reference. In SREM2D, the
temporal dimension (how does error vary in time?) is modeled with a simple repre-
sentation – assuming that only the mean field bias (systematic error) is correlated in
time in an Eulerian (surface-based) frame of reference.

The successful rain or no-rain detection capability may exhibit a strong covari-
ance structure (i.e., the probability of successful detection of a grid-box as rainy or
non-rainy may be a function of the proximity to a successfully detected grid-box).
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Fig. 1 Generalized framework for building error metrics and error models, (taken from – Hossain
and Huffman(2008), “Investigating Error Metrics for Satellite Rainfall at Hydrologically Relevant
Scales, Journal of Hydrometeorology vol. 9(3), pp. 563–575”)
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For grid-boxes that are detected as non-rainy, satellite rainfall data can be character-
ized by a marginal probability of no-rain. However, for grid-boxes that are detected
as rainy, the probability of successful detection may depend on the magnitude of
the rainfall rate. The functional dependency of probability of detection of rain may
be tagged with reference (GV) or the estimated rain rate. For surface hydrology,
users would likely be interested in the probability of rain detection benchmarked
with respect to GV. On the other hand, according to Hossain and Huffman (2008),
the data producers may find it almost impossible to tag the probability of detection
of the satellite estimates in a likewise manner for the hydrologist on an operational
basis due to lack of global scale GV data and hence, choose to use satellite estimates
instead.

Collecting all these components, and by following the logical modeling steps
outlined in Fig. 1, the SREM2D set of error metrics (e.g. in lieu of a single error
metric concept) is: (1) Probability of rain detection (and as a function of rainfall
magnitude) – PODRAIN; (2) Probability of no-rain detection – PODNORAIN; (3) First
and second order moments of the probability distribution during false alarms; (4)
Correlation lengths for the detection of rain-CL RAIN, and (5) no rain–CL NORAIN; (6)
Conditional systematic retrieval error or mean field bias (when reference rain > 0);
(7) Conditional random retrieval error or error variance; (8) Correlation length for
the retrieval error (conditional, when rain >0.0) – CL RET; and finally, (9) Lag-one
autocorrelation of the mean field bias. In the following section, we dwell on the
mathematical formulation of each of these nine error metrics. For more details, the
reader can refer to Hossain and Huffman (2008) or Hossain and Anagnostou (2006).

4 Formulation of SREM2D Error Metrics

4.1 Probabilities of Detection (Rain and No-Rain)
(Metrics 1 and 2)

Consider first, the following contingency matrix for hits and misses associated with
satellite rainfall estimates:

The probabilities of detection for rain and no-rain are defined as follows,

Probability of Detection for Rain (PODRAIN):
NA

NA + NC
(1)

Probability of Detection for No Rain (PODNORAIN):
ND

NB + ND
(2)

We also define the (successful) rain detection probability, PODRAIN, as a function
of rainfall magnitude of either the reference rainfall or satellite estimate. The func-
tional form is usually identified through calibration with actual data (see Hossain
and Anagnostou, 2006). Based on observations with actual satellite data, SREM2D
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models the dependency of the probability of rain detection in the form of a logistic
regression model as follows:

PODRAIN (RREF) = 1

A + exp ( − BRREF)
(3)

Subscript “REF” refers to reference rainfall (A and B are logistic parameters).
The use of an idealized rain detection efficiency function may have its demerits
when the empirical detection property deviates significantly from the logistic form.
Users are therefore encouraged to verify the form and consider modeling PODRAIN
from an empirical look-up table (discussed in detail in Section Five).

The PODNORAIN, is the unitary probability that satellite retrieval is zero when
reference rainfall is zero, which is also determined on the basis of actual satellite
and reference rainfall data (Eq. 2).

4.2 False Alarm Rain Rate Distribution (Metric 3)

A probability density function (Dfalse) is defined to characterize the probability dis-
tribution of the satellite estimates when there are misses over non-rainy areas. This
function is also identified through calibration on the basis of actual sensor data.
Hossain and Anagnostou (2006) have reported that this Dfalse probability density
function typically tends to appear exponential. Hence, both the moments (first and
second) can be defined using only one parameter (a SREM2D metric) of the distribu-
tion, λ. This can be computed using the chi-squared or maximum likelihood method.
We must however stress that it is up to the user to verify the assumption of exponen-
tial distribution and use the appropriate probability distribution for sampling these
false alarm rain rates.

4.3 Correlation Lengths (Metrics 4, 5 and 8)

To identify the correlation lengths of error (i.e., how does the error vary in space)
a simple exponential type auto-covariance function is assumed in SREM2D (users
may opt for more sophisticated approaches if necessary). The correlation length (the
separation distance at which correlation = 1

e = 0.3678) is thus determined on the
basis of calibration with actual data over a large domain. For identifying the spatial
correlation length of rain detection, CLRAIN (or, no-rain detection – CLNORAIN) from
data, all successfully detected rainy (non-rainy) pixels are assigned a value of 1.0
while the rest has a value of 0.0. The empirical semi-variogram is then computed as
follows:

γ (h) = 1

2n(h)

∑n(h)

i=1
(z(xi) − z(xi + h))2 (4)
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where z(xi) and z(x i +h) are the binary pixel values (0 or 1) at distance xi and
xi +h, respectively and h is the lag in km. n represents the number of data points at a
separation distance of h. The term γ (h) is the semi-variance at separation distance h.
Assuming that the empirical variogram is best represented by an exponential model,
the functional parameters describing the spatial variability can be fitted as follows,

γ (h) = c0 + c(1 − e−h/CL) (5)

where c0 represents the nugget variance, c is the sill variance and CL is the dis-
tance parameter known as “correlation length” (a SREM2D metric). Conversely, the
correlation function is modeled as, C = EXP(–h/CL), where C is the correlation.

For identifying the correlation length for retrieval error (i.e., when both satellite
and reference rainfall simultaneously register HITs), CLRET, a similar set of steps
are adopted as above for rain/no rain detection, with the exception that the binary
values (0–1) are no longer pertinent. Instead, one computes the correlation length in
terms of retrieval error defined as the logarithmic difference between reference and
satellite estimate.

4.4 Conditional Rain Rate Distribution (Metrics 6 and 7)

The conditional (i.e., reference rainfall > threshold unit) non-zero satellite rain rates,
RSAT, are statistically related in SREM2D to corresponding conditional reference
rain rates, RREF, as,

RSAT = RREF .εS (6)

where the satellite retrieval error parameter, εs, is assumed to be log-normally
distributed. This assumption has its pros and cons. The advantage of such an
assumption is that a log transformation [log(RSAT)–log(RREF)] of Eq. 6 allows the
εs to be mapped to a Gaussian N(μ, σ ) deviate, ε (hereafter referred to as “log-
error”), where μ and σ are the mean and standard deviation, respectively. On
the other hand, the assumption of log-normality implies that data on log-error is
homoscedastic (i.e., the variance remains the same regardless of the magnitude
of the log-error). Hence, it is the user’s responsibility to verify the assumption
of log-normality and homoscedasticity and assess if log-normality is sufficient to
model the skewness expected from non-zero and positive rainfall rates. Skewness
of rainfall is known to diminish at longer space-time accumulations (from hourly
to monthly). Thus, for a particular application, such as optimizing satellite rainfall-
based irrigation schedule at weekly timescales, there may not be any need to account
for skewness in the satellite rainfall. Vice-versa, skewness will be important for
assessing the use of half-hourly real-time satellite rainfall data for flash-floods
forecasting.

Another aspect to highlight is the definition of the threshold rainfall rate to
distinguish rainy events from non-rainy (dry) events. This is particularly
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ation of log-error for SREM2D for three high resolution satellite rainfall products (3B41RT,
3B42V6 and KIDD) over Northern Italy. Here, KIDD is a IR-based satellite rainfall product by
Kidd et al. (2003)
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important because of the multiplicative and log-transformed nature of the error
model. A zero threshold can result in unrealistically high Gaussian standard devi-
ation and bias because of exceedingly high multiplicative ratios that are obtained
at near-zero reference rain rates. Figure 2 shows how the μ and σ of log-error
varies as a function threshold for three existing satellite rainfall products remapped
at 0.25o and 3 hourly timescales over Northern Italy. The reference GV data was
derived from a dense gauge network. Our general recommendation is that the
threshold be constrained to 0.1 mm/h or be subjectively decided after checking for
reproducibility of SREM2D error statistics (discussed later in Section Six).

4.5 Lag-One Temporal Correlation (Metric 9)

The retrieval error parameter ε is both spatially and temporally auto-correlated
and this space-time structure is accounted for in SREM2D. The spatial aspect has
already been discussed earlier in Section 4.3. For temporal correlation, an autore-
gressive function is used to identify the temporal variability of μ (i.e., conditional
satellite rainfall bias),with the pertinent metric being the lag-one correlation. This
makes the treatment of temporal dependence of error in SREM2D somewhat sub-
jective as the lag-one correlation will be dictated by the temporal resolution of
data. A more robust treatment may be to incorporate the correlation length in time
(i.e., the e-folding time of the temporal correlogram) in modeling of the temporal
correlation of error. Again, this issue is for the user to verify depending on how
adequately SREM2D captures the full spectrum of error at hydrologically relevant
scales. More details on the temporal aspect is provided in the next section (Section
Five).

5 Data QA/QC and Calibration of Metrics for SREM2D

5.1 Quality Assessment and Quality Control

SREM2D uses as input, a time-series of reference rainfall fields. This time-series
is then corrupted in space and time according to the nine error metrics outlined in
Section Four. The user needs to calibrate these nine SREM2D error metrics for a
specific satellite rainfall product that he/she plans to assess. Collectively, these nine
metrics represent the multi-dimensional error structure of the satellite data product
under investigation. For calibration of SREM2D metrics, a sufficiently long period
of synchronized rainfall fields (from a sufficiently large areal domain) of reference
and satellite sources is required. The definition of “sufficiently long” is subjective.
For example, 5 year of hourly reference and satellite rainfall data over the Upper
Mississippi basin may yield a “climatologic” average SREM2D metrics for a spe-
cific satellite rainfall product that has matured in algorithmic formulation (such as
Global Precipitation Climatology Project product available at 1◦ -Daily resolution).
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On the other hand, 3 month-long hourly data during summer may be more infor-
mative of metrics a user should employ for simulation of satellite observation of
thunder storms and other shorter-duration convective rain systems.

An important aspect of QA/QC during SREM2D calibration is that there should
not be any missing data in space and time and that both sets (satellite and refer-
ence) must be synchronized very accurately. Users should resolve this QA/QC issue
because most real-time HRPPs available today at sub-daily time scales are produced
on a best-effort basis with a non-negligible portion of data often reported missing.
We recommend the following two strategies for replacement of missing data: (1) if
the percentage missing is small (< 5%), then reference rainfall may be substituted
with minimal effect on the computation of error metrics; (2) if percentage of missing
is considerably larger (∼5–15%), persistence of preceding satellite data over miss-
ing periods may be considered. The argument for #2 is that in a real-world scenario,
the user would have to continue using the last available satellite observation over
ungauged regions until the next satellite overpass or data downlink.

A major problem arises when both satellite and reference data are missing in
significant portions. For such cases, we recommend that the period of data not
be included in SREM2D error metric calibration. As an example, Table 1 shows
missing data statistic for one particular data set of Stage IV NEXRAD radar rain-
fall data over the United States spanning six years (2002–2007). The Northwestern
region appears to have a significant amount missing data (mainly east of the Cascade
Mountains) that can result in spurious error calibration of SREM2D if attempted.

Table 1 Missing data statistics for Stage IV NEXRAD data over different regions of the United
States spanning 6 years (2002–2007) at 4 km and 1 hourly scale

ALL Northwest Southwest Midwest Northeast Southeast

% Missing 11 32% 9.1% 0.8% 1.3% 12.7%

Because the primary motivation of an error modeling technique is to understand
how erroneous a satellite rainfall product is compared to a reference GV dataset
both in rainfall and in hydrologic simulation, SREM2D does not account for the
possible effects of errors in the "reference" rainfall estimates. However, users must
also recognize that the SREM2D estimation technique of the nine error metrics will
incorporate the uncertainties arising from both the satellite and reference rainfall.

5.2 Error Metric Calibration

After proper QA/QC of calibration data, the user needs to calibrate the nine metrics
that serves as input to the SREM2D error model. In this section, we show exam-
ples of calibration for four global satellite HRPPs at 0.25o 3 hourly scales over
the United States spanning two regions (Florida and Oklahoma; Fig. 3) and four
seasons in 2004 (Winter, Spring Summer, and Fall). These four satellite products
are: (1) 3B41RT; (2) 3B42RT; (3) CMORPH and (4) PERSIANN. Literature on
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Fig. 3 Two regions (Oklahoma and Florida) in the United States selected for SREM2D calibration
of error metrics for four global satellite rainfall products (shown in boxes)

the first two products (hereafter referred to as 3B41RT and 3B42RT) are available
from Huffman et al. (2007), while readers can refer to details on CMORPH and
PERSIANN from Joyce et al. (2004) and Hong et al. (2005), respectively. The ref-
erence GV data pertained to NEXRAD (Stage III) rainfall product. The regions are
bounded, for Oklahoma, by 32.0oN to 39.0oN and –92.0oW to –102.0oW; and, for
Florida, by 20.0oN to 26.0oN and –84.0oW and –80.0oW (Fig. 3).

Table 2 summarizes the missing data statistic at that native scale as part of
QA/QC of calibration data. All data were then remapped to the consistent scale
of 0.25o and 3 hourly to allow inter-comparisons among products. Figure 4 demon-
strates the PODNORAIN for various products across the two regions and seasons.
The nuances across products and seasons (particularly for CMORPH) are apparent
in this figure. Figure 5 shows the PODRAIN as a function of NEXRAD rain rate. As
mentioned earlier in Section

Table 2 Missing data statistic for four global satellite rainfall products at native scale over the
United States for 2004 (the two regions – Oklahoma and Florida are combined)

Native scale Percentage of missing data

Products
Temporal
(h)

Spatial
(◦)

Winter
(JF)

Spring
(AM)

Summer
(JJA)

Fall
(SON)

3B41RT 1 0.25 0.97 2.18 1.18 1.00
3B42RT 3 0.25 1.46 2.10 1.45 1.00
PERSIANN 1 0.04 2.30 1.43 1.22 1.10
CMORPH 3 0.25 0.00 0.00 0.00 0.00
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Fig. 4 PODNORAIN for CMORPH, 3B41RT, 3B42RT and PERSIANN across four seasons in
2004. Left panels – Oklahoma; Right panels – Florida

Four, the functional form of PODRAIN is almost invariably found to obey the
logistic pattern. Users need to fit appropriate parameter values for A and B of
Equation 3 to model the PODRAIN as a function of NEXRAD rain rate. There are
several non-linear optimization routines that can be used to robustly derive A and B
values. However, we recommend that the user also applies some human judgment
to check for the closeness of the idealized logistic curve with empirical one derived
(Fig. 5) at low rain rates (∼1–5 mm/h).

Figure 6 shows the probability distribution of false alarm rain rates of satellite
products. The distribution appears exponential like. The mean (expected value) of
this distribution comprises another SREM2D metric (1/λ). Care must be applied in
the derivation of the false alarm distribution as it is sensitive to the choice of bin
size. Users can apply more rigorous statistical tests and the maximum likelihood
method to derivemore robust estimates of the false alarm metric. Figure 7 shows
the spatial covariance structure of rain retrieval (conditional), rain detection and
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no-rain detection for Florida (Summer 2004). Assuming that an exponential corre-
lation model is representative, the separation distances where the correlation drops
to 1/e (=0.368) comprise the correlation length (CL) error metrics for SREM2D
for generation of correlated random fields. Certain instances may result in the cor-
relation never (at least over the domain of the study region) dropping to 1/e. For
example, in arid and clear-sky climates, the correlation length CLNORAIN for an
Infra-red satellite rainfall product will probably be associated with large values. For
such cases, we recommend that the user constrain the spatial structure by applying
correlation length values compatible with the domain size of interest. A downside of
large correlation lengths in error modeling, particularly for rain retrieval, is that the
conditional error standard deviation may be under-simulated due to spatial similarity
of the generated random values. This aspect is discussed in more detail in the next
section.
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6 SREM2D Simulation And Reproducibility Of Error Statistics

6.1 Simulation Issues

As model developers, we initially coded the first SREM2D error model using
Fortran 77. However, we believe that the general modeling structure (Section 3)
is tangible enough for any user to develop his/her own custom-built code. We there-
fore encourage users to rather understand the SREM2D philosophy first, assess if
the complexity of the error modeling is compatible with the intended application
and then apply/modify or simplify the error model accordingly using the preferred
computing platform.
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Fig. 7 Spatial covariance structure of rain retrieval, rain detection (middle panel) and no-rain
detection (upper panel) for Summer 2004 in Florida

An aspect that adds to the computational burden of SREM2D is the need for
generation of correlated Gaussian random fields. First, the spatial structure of rain
and no-rain joint detection probabilities is modeled using Bernoulli trials of the
uniform distribution with a correlated structure that is generated from Gaussian
random fields. These two Gaussian random fields (one each for rain detection and
no-rain detection) are transformed to the uniform distribution random variables via
an error function transformation. Spatially correlated field of Gaussian N(0,1) ran-
dom deviates is generated in 2-D space based on Turning Bands (Mantoglou and
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Wilson, 1982). The N(0,1) spatially correlated random field is then transformed to
uniform U[0,1] field as follows:

xj = 1

2
+ 1

2
erf (εj/

√

2) (7)

where xj, is a U[0,1] random deviate for pixel j generated from the corresponding
N(0,1) deviate, εj. The erf (εj) is the error function defined by the following integral,

erf(εj) = 2√
π

x∫

0

e−w2
dw (8)

The uniform random fields are then scaled by its standard deviation to yield a
unitary variance (this ensures the maximum covariance of 1.0 at lag 0). Numerical
consistency checks have revealed that correlation length is altered significantly by
this non-linearity only at lags (grid spaces) beyond 10 and should be accordingly
accounted for modeling the join probability of detection if necessary. Execution of
this procedure yields a spatially correlated uniform field of U [0,1] random deviates
that are now amenable for Bernoulli trials for rain and no-rain detection with a priori
spatial structures. A third Gaussian random field is generated next for the simulation
of correlated retrieval error field pertaining to N (μ,σ).

Hossain and Anagnostou (2006) provide the simulation algorithm for SREM2D
that outlines each simulation step for the error model in the form of a programming
flow-chart. We recommend that users refer to that algorithm flow-chart to clarify the
individual process calculations that SREM2D computes in space and time.

6.2 Reproducibility of SREM2D Error Statistics

Before the assessment of satellite rainfall products for decision-making can begin,
users must verify that the ensembles of satellite rainfall data simulated by SREM2D
are adequately realistic. In other words, the reproducibility of error statistics (met-
rics) by SREM2D needs to be verified. Like any other mathematical model,
SREM2D does not perfectly mimic the uncertainty as expected from the calibrated
metrics. Nevertheless, the user must set some minimum standards on reproducibil-
ity based on the intended application. We recommend two particular ways by which
SREM2D can be verified of this “reproducibility” property. These are as follows:

1) Checking the consistency of ensemble of cumulative rainfall hyeotograph
against actual satellite rainfall data.

2) Checking the accuracy of error metrics computed from simulated satellite
rainfall data against actual reference rainfall data.
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The first method checks if the actual satellite cumulative rainfall hyeotograph is
enveloped reasonably realistically by the ensemble of SREM2D generated synthetic
satellite hyetographs. Because actual satellite rainfall data is not used in the gener-
ation of SREM2D synthetic data, this test can considered an independent check.
Users are recommended to perform this test over the whole domain and a few ran-
dom smaller sub-domains within the study region. An additional aspect to check is
to verify if the simulated hyetographs exhibit a pattern of jumps and plateaus simi-
lar to the actual data. The second method computes the nine SREM2D error metrics
from synthetic satellite data against actual reference rainfall data to check the close-
ness of the values with calibrated measures. This check may be done on individual
realizations or over a set of ensembles. The latter is likely to yield more accurate
results due to the larger space-time sample size that minimizes the randomization
effects per each realization.

In the following, we provide an example of the two error reproducibility tests
over an alpine basin in Northern Italy.

6.2.1 Checking the Consistency of Ensemble of Cumulative Hyetograph
Against Actual Satellite Rainfall Data

Figure 8 shows the alpine region of Northern Italy over which SREM2D error
metrics were calibrated for three satellite rainfall products. The three shaded grid
boxes represent the location of actual satellite pixels at 0.25o scale for three satellite
products

3B41RT, 3B42V6 and KIDD. Herein, KIDD represents a high resolution (0.04◦)
Infrared (IR)-based satellite rainfall product produced by Kidd et al. (2003). Six
months of satellite data spanning June–November 2002 were used for calibration
of SREM2D metrics. Reference data comprised gage rainfall from a dense network
represented by the black circles shown in the figure. Table 3 shows the SREM2D
metrics calibrated for the satellite products at the 0.25o 3 hourly scale. A threshold of
0.1 mm/h was assigned to separate the rainy events from non-rainy events. Figure 9
demonstrates the cumulative hyetographs generated from 100 SREM2D realiza-
tions (mean and ±σ) and actual satellite rainfall data for 3B41RT and 3B42V6. We
observe that 3B41RT is relatively more accurately enveloped than 3B42V6. Overall,
the simulation of both products appear reasonably realistic for the domain of interest
in Northern Italy.

6.2.2 Checking Reproducibility of Error Metrics

In Table 4, the reproducibility of the mean and standard deviation of log-error
for retrieval is demonstrated for a few random SREM2D realizations against the
calibrated values (that served as input to the error model) for the KIDD satellite
product. While the PODNORAIN and bias of log-error is reasonably well reproduced
for each selected realization, the standard deviation of log-error is found to be con-
sistently underestimated by margins of 10–15%. A recently-identified limitation of
the SREM2D model is that the generation of correlated random fields with long
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Fig. 8 Alpine region of
Northern Italy. Shaded grey
boxes represent the actual
location of the 0.25o satellite
pixels for 3B41RT and
3B41V6 data used in the
calibration of SREM2D error
metrics. Black circles
represent the location of
tipping bucket gages that
comprised reference rainfall
data

Table 3 SREM2D error metrics calibrated for 3B41 and 3B42 for the region of Northern Italy

Metrics 3B41 3B42 KIDD

A 1.05 1.1 1.1
B 1.85 1.08 1.2
Mean (mu-Gaussian of log-error) 0.026 −0.1102 −0.226
Sigma (std.dev Gaussian of log-error 0.942 0.764 0.733
False Alarm mean rain rate (mm/hr) 0.433 0.760 0.680
Lag-one correlation 0.41 0.13 0.41
POD no-rain 0.81 0.97 0.99
∗CLret km 50 50 50
∗CLrain det km 0 0 0
∗CLno rain det km 75 75 75

correlation lengths for retrieval error tend to conflict with the standard deviation of
retrieval error and result in under-simulation (i.e. underestimation). This underesti-
mation appears to magnify as the domain size increases. We do not know yet how
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Fig. 9 Cumulative rainfall hyetographs over Northern Italy. Blue line represents the mean of 100
SREM2D realizations. Solid black line represents the actual satellite hyeotograph. Upper panel –
3B41RT; Lower panel – 3B42V6

to address this problem at this stage, but it is certainly an aspect that users should
be cognizant of and strive for rectification in future improvements of the SREM2D
model. Users should also perform similar consistency checks for all other SREM2D
metrics and not just of conditional bias and standard deviation.
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Table 4 Reproducibility of some SREM2D error metrics for a few random realizations over
Northern Italy for KIDD (KIDD is the IR-based satellite rainfall product by Kidd et al. 2003)

POD NORAIN Bias (log-error) Std Dev (log error)

Empirical 0.986 0.727 1.19
Realization 1 0.983 0.672 0.98
Realization 2 0.983 0.496 1.04
Realization 3 0.990 0.545 1.05
Realization 4 0.990 0.747 1.01

7 Conclusions

For continual refinement of error models and their promotion in prototyping
satellite-based hydrologic monitoring systems, a practical user guide that readers
can refer to is useful for potential users of HRPPs. In this chapter, we have pro-
vided our readers with one such practical guide on a space-time stochastic error
model called SREM2D (A Two Dimensional Satellite Rainfall Error Model) devel-
oped by Hossain and Anagnostou (IEEE Transactions on Remote Sensing and
Geosciences, 44(6), pp. 1511–1522, 2006). This practical guide overviewed the phi-
losophy behind SREM2D and emphasized the need to flexibly interpret the error
model as a collection of modifiable concepts always under refinement. We stressed
at various stages of the guide the importance of verifying that the complexity
and assumptions of error modeling were compatible with the intended applica-
tion. Our motivation behind the compilation of this practical guide was that readers
should learn to apply SREM2D recognizing the strengths and limitations simulta-
neously and thereby minimize any black-box or unrealistic applications for surface
hydrology. We also hope that developers of other error models will produce simi-
lar “guides” to make the pros and cons of the error modeling philosophy open for
the user.

Like any other model, SREM2D is not without limitations. The requirement of
continuous data (reference and satellite) in space and time may be considered a short
coming for calibration of SREM2D error metrics. For advancing the application of
satellite HRPPs, the associated uncertainty information is critical for users to under-
stand the realistic limits to which these HRPPs can be applied over an ungauged
region. However, this represents a paradox. Satellite rainfall uncertainty estimation
requires reference (ground validation-GV) data. On the other hand, satellite data
will be most useful over ungauged regions in the developing world that are lacking
in GV data. Consequently, we need to ask ourselves several questions for SREM2D.
Can the model parameters/metrics be transferred from one region to another? Can
they be regionalized? At this stage, there is no clear answer, although there is work
on-going by the authors to resolve this paradox and understand how reliable is the
“transfer” of error from a gauged location to an ungauged one.
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On the computational side, the need to generate three independent and corre-
lated random fields increases simulation runtime for SREM2D. The need to convert
Gaussian random fields to uniform random fields by the non-linear error transforma-
tion also results in an unknown change of spatial structure that is not yet completely
constrained at large space lags (> 10). The spatial correlation also has the effect of
imparting negative bias to the standard deviation of retrieval error.

Despite these limitations, SREM2D represents a unique hydrological transition
from current error models because it explicitly recognizes the need for preservation
of covariance structure of rainfall and the associated measurement accuracy as a
function of space and time. It also provides greater versatility in error modeling by
moving away from the single aggregate error metric models to a multi-dimensional
one comprising nine metrics. We believe that subject of space-time error modeling
of high resolution satellite rainfall products can reach closure with the systematic
evolution of the philosophy and concepts embedded in the SREM2D model.
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Regional Evaluation Through Independent
Precipitation Measurements: USA

Mathew R.P. Sapiano, John E. Janowiak, Wei Shi,
R. Wayne Higgins, and Viviane B.S. Silva

Abstract This chapter concerns the validation of high resolution (mostly 0.25◦,
daily and three-hourly) precipitation products over the United States. A synthe-
sis of relevant studies is followed by comparisons of high resolution estimates
based on satellites and models, with in situ ground validation data over the US.
All the comparisons use multiple satellite estimates as well as model data (from the
NCEP GFS). First, daily results are shown from the ongoing, web-based, real-time
International Precipitation Working Group validation activity over the US. Next,
validation data from 15 sub-daily gauges over Kansas and Oklahoma are used to
assess the performance of three-hourly precipitation estimates, with attention to the
distribution of precipitation. Finally, results from the comparison of several products
against data collected from the North American Monsoon Experiment are given.
Results show that existing high resolution products have great skill over many areas
of the US, even at the three-hourly time-scale. Significant issues still exist over
orography and results are seasonally dependent.

Keywords Precipitation · Validation · Satellite · Model forecast · US

1 Introduction

The usefulness of validation studies is reliant on the quality and quantity of com-
parison data. The validation of satellite estimates of precipitation is traditionally
achieved by comparison to in situ observations (including gauges and radar) since
these present the most realistic picture of the true state. Generally speaking, such
observations are concentrated over the populous areas, usually over the most devel-
oped or prosperous countries. As might therefore be expected, the observing system
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Fig. 1 Topography of the US, in m

over the US is amongst the best in the world with comprehensive gauge and radar
networks which are freely available. In addition, the US has diverse meteorological
conditions due to its large area and varied topography (Fig. 1), with the Rockies
being the major orographic feature. Figure 2 shows the mean precipitation for each
season from the Higgins et al. (2000) 0.25◦ gauge analysis which distinctly shows

Fig. 2 Mean US precipitation by season in mm day–1
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some of the climatically different zones over the US such as the wet north-east
coast, the relatively dry central plains and the moderately wet east coast. A strong
annual cycle is also apparent with, for example, higher rainfall from convective
systems in the warm season over the south-east coast and lower precipitation (with
significant orographic effects) over the west coast during the cold season. Thus, the
US observing system is an excellent place to conduct validation activities.

Table 1 Summary of satellite datasets used in this chapter

Product name Key reference Native resolution Notes

TRMM multi-satellite
precipitation
analysis (TMPA)

Huffman et al.
(2007)

0.25◦; three-hourly Combined passive
microwave (PMW)
and
microwave-calibrated
infrared (IR).
Corrected to match
gauge analysis over
land

CPC morphing
technique
(CMORPH)

Joyce et al. (2004) 8 km; half-hourly IR data used to obtain
motion vectors to
advect PMW rain
rates

Hydro-estimator Scofield and
Kuligowski
(2003)

0.25◦; three-hourly
globally; 4 km,
quarter-hourly
over US

Based on IR, but some
model output also
used

NRL-blended Turk and Miller
(2005)

0.25◦; hourly Weighted combination
of PMW and
PMW-calibrated IR

Precipitation estimation
from remotely sensed
information using
artificial neural
networks
(PERSIANN)

Hsu et al. (1997);
Sorooshian et al.
(2000)

0.25◦; half-hourly;
4 km version
available over US

Adaptive neural
network calibrated
with PMW to get
estimates from IR

Several studies have compared the currently available high resolution precipi-
tation estimates over the US. Gottschalck et al. (2005) compared the precipitation
from the TMPA, PERSIANN (see Table 1 for expansion of acronyms) and Stage
IV radar (Baldwin and Mitchell 1998; Lin and Mitchell 2005), along with several
model datasets, with the Higgins et al. (2000) gauge analysis over one year from
March 2002 to February 2003. Their comparison showed that the 3B42RT (a version
of TMPA without the gauge adjustment) and PERSIANN overestimated spring and
summer precipitation over much of the Central US, a phenomenon they attributed
to cold cirrus clouds which lead to higher rain rates (since colder infrared tempera-
tures are assigned higher rain-rates). The TMPA (without the gauge adjustment) also
overestimated precipitation during the winter and spring seasons over the plains and
the Northern Rockies due to snow and ice contamination in the Passive Microwave
(PMW) record. Gottschalck et al. (2005) also presented correlations between the
Higgins et al. (2000) gauges and the precipitation estimates studied. The TMPA and
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PERSIANN showed surprisingly similar skill with high correlations over the eastern
half of the US (from Texas to the Great Lakes) but with generally low correlations
over the western half throughout most of the year. Correlations were lower in many
areas over the winter season with correlations greater than 0.5 over the south-east
only.

Ebert et al. (2007) described results from the validation activities of three of
the validation sites associated with the International Precipitation Working Group
(IPWG) over Australia, the UK and the US (new results from the latter are shown
in this chapter). They assessed a large number of satellite and model precipitation
estimates against gauge and radar networks in these three territories, and continue
to produce results in real-time on the internet. Over the US, they found that the
satellite estimates performed better for warm-season convective precipitation, whilst
Numerical Weather Prediction (NWP) estimates performed best for cold season
synoptic-scale precipitation. They also showed that datasets based on PMW data
tended to have higher correlations with validation data than infrared (IR) estimates,
but that a blend of the two was superior to either PMW or IR estimates.

Tian et al. (2007) validated CMORPH and the TMPA against the Stage IV
radar/gauge estimates and the Higgins et al. (2000) gauge combination over the
US. They found that the gauge-adjustment of the TMPA was highly effective at
removing the bias, especially when compared to CMORPH which heavily overes-
timated precipitation over the central US during the warm season. However, they
also showed that both datasets tended to underestimate cold season precipitation
over the north-east coast (although CMORPH had a more severe underestimate).
Correlations against the validation data were similar to those found by Gottschalck
et al. (2005) with high correlations over the Eastern US in the warm season and
the south-east in the cold season (with low correlations elsewhere). They reported a
higher Probability of Detection (POD) and False Alarm Ratio (FAR) over the south-
east for CMORPH than for TMPA, but they showed that both datasets faithfully
reproduced the diurnal cycle.

Ruane and Roads (2007) described the variance at different timescales for the
TMPA, CMORPH and PERSIANN. They reported a higher variance at all fre-
quencies in CMORPH and PERSIANN, and more high frequency noise in TMPA,
particularly over land. PERSIANN had higher variance at short, synoptic timescales
(3–6 days) which they linked to better tracking of storm systems and CMORPH had
higher annual variance, particularly at high latitudes, which might indicate more
signal at these time-scales.

Curtis et al. (2007) assessed the performance of the TMPA in estimating the
total precipitation associated with Hurricane Floyd over three river basins in North
Carolina. When compared to a gauge network and radar estimates, they found that
the TMPA over-estimated the total precipitation of extreme events, although the
overestimation was much smaller for very heavy events. Villarini and Krajewski
(2007) compared a single 0.25◦ gridbox of the gauge-adjusted TMPA with a dense
rain gauge network over Oklahoma. They found that the TMPA had higher correla-
tions with the gauge data during the warm season but tended to underestimate low
precipitation values.
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The rest of this chapter extends on these results with new comparisons between
ground observations and some of the high resolution satellite (and model) estimates.
Section 2 shows synthesized results from the IPWG daily US validation web-
site (Ebert et al. 2007; http://cics.umd.edu/∼johnj/us_web.html). Section 3 shows
extended results based on the validation work of Sapiano and Arkin (2008) over the
Great Plains of Kansas and Oklahoma at three hourly resolution. Finally, Section 4
shows an evaluation of the warm season precipitation estimated by several different
types of data during the North American Monsoon Experiment (NAME)

2 Results From IPWG Daily US Validation Site

For several years, the IPWG US validation site has been producing standard, daily
validation metrics for several different precipitation products (based on satellites
and models) in near real-time. A summary of the results from the archive is given
in this section. One important caveat for the interpretation of these results is that
the archive is based on the product that was available at the time of the comparison,
thus the results are not updated to reflect enhancements and reprocessing of any of
the datasets. The potential effect of this is that some datasets may appear worse than
they would currently be expected to be.

Time series of spatial correlation (computed daily over the entire conterminous
U.S.) present several interesting features (Fig. 3). First, the performance of the satel-
lite products and model forecasts are out of phase, with the former performing best
during the warm season (May-September) and the latter performing best in the cool
season (November-March). This behavior has been noted previously in Ebert et al.
(2007), and the explanation, in general, is that the satellite algorithms are challenged
by cold surface features (snow and ice) that occur during winter. Specifically, the
passive microwave scattering algorithms have difficulty discriminating the scatter-
ing from frozen water at the surface from that due to hydrometeors in the atmosphere
that result in precipitation. Conversely, the models are quite skillful in predicting the
large-scale stratiform precipitation that dominates during winter but are challenged
with predicting convective precipitation that is much smaller in scale and which
occurs most frequently during the warm season.

Another interesting feature is the amplitude of the seasonal differences in spa-
tial correlation with the largest annual fluctuations observed in the model forecasts
and the smallest in the Hydro-Estimator. In terms of mean correlation over the
2004–2008 period, the highest correlations with the validating rain gauge analy-
ses are with CMORPH, the National Center for Environmental Prediction (NCEP)
Global Forecast System (GFS; Kalnay et al. 1990) and Navy Operational Global
Atmospheric Prediction System (NOGAPS; Hogan and Rosmond 1991) model fore-
casts, and the Hydro-Estimator (0.62, 0.61, 0.60, 0.60, respectively), while the
3B42RT and PERSIANN techniques have the lowest mean correlation over the
period (0.51 and 0.55, respectively). Despite improvements in the algorithms (and
models) with time, there is no discernable improvement in spatial correlation over
the 5-year period.
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Fig. 3 Time series of spatial correlation (over the conterminous U. S.) between the CPC daily U. S.
precipitation analyses and various satellite estimates and numerical model short-range predictions
over the period January 1, 2004 to July 15, 2008. The time series is displayed as a 21-day running
mean to improve clarity



Evaluation Through Independent Precipitation Measurements: USA 175

Whilst these time series are informative, they are unable to portray geographi-
cal variations in the performance of the precipitation estimates. Hence, we present
in Figs. 4 and 5 the spatial distribution of temporal correlation for the cool and
warm seasons separately. The most striking observation is the large difference in
performance of the model forecasts between the warm and cool seasons. Note
the tremendous improvement during the cool season when correlation coefficients
exceed 0.70 over most of the nation. In contrast, the satellite algorithms perform

Fig. 4 Temporal correlation between the CPC daily U. S. precipitation analyses and various
satellite estimates and numerical model short-range predictions for the November–March peri-
ods during 2004–2008. The 99% significance level is very conservatively estimated to be 0.30 to
account for autocorrelation by reducing the degrees of freedom from approximately 900 to 70
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Fig. 5 Same as Fig. 4, except for the May–September (2004–2008) period

quite poorly over much of the West where snow cover is often observed during win-
ter. Note the relatively strong correlations during winter (> 0.70) in the southeastern
quadrant among all of the satellite analyses. These high correlations are likely due
to the lack of snow and ice in that region and to the generally warmer and often
convective nature of the precipitation there. The Hydro-Estimator also exhibits rel-
atively strong correlation over portions of the north-central U.S., perhaps due to the
inclusion of radar or model data in that technique.

During the warm season, the model performance is generally at or below that
of the satellite estimates although they tend to exhibit higher correlation with the
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Fig. 6 Time series of mean bias between the CPC daily U.S. precipitation analyses and various
satellite estimates and numerical model short-range predictions over the period January 1, 2004
to July 15, 2008. Mean bias is defined as the nationwide mean daily precipitation from a given
technique or model minus the nationwide daily mean from the rain gauge analysis. Units are mm
day–1. The time series is displayed as a 21-day running mean to improve clarity
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rain gauge data in the western half of the country compared to the satellite esti-
mates. CMORPH exhibits correlation coefficients in excess of 0.70 over almost the
entire eastern half of the U. S. during this season and the other satellite techniques
have higher correlation with the rain gauge data over the eastern half of the nation
compared to the western half.

Time series of mean bias, i.e. the difference in the daily spatial mean precipitation
for the nation as a whole between the satellite/model estimates and the validating
rain gauge analyses, are shown in Fig. 6. Most striking is the small bias in the
model forecasts (about 0.5 mm day–1 in the GFS model) compared to the satel-
lite estimates which range between (about +/– 2 mm day–1) and that the bias in the
models, although relatively low, is almost exclusively positive. Also interesting is
the pronounced annual cycle in bias in all of the satellite estimates except the Hydro
Estimator, and in the NOGAPS model forecasts but not in the GFS forecasts. That
annual cycle is characterized by overestimates during the warm season and underes-
timates during winter. CMORPH and PERSIANN exhibit the most amplified annual
cycle.

3 Sub-Daily Validation

Sapiano and Arkin (2008) performed an inter-comparison of five high resolu-
tion, satellite-derived precipitation products (CMORPH, Hydro-Estimator, NRL-
Blended, PERSIANN and TMPA) as well as forecast precipitation from the NCEP
GFS model. Global validation of sub-daily precipitation is not currently possible
due to the lack of quality controlled, homogeneous, sub-daily in situ measurements,
thus the precipitation estimates were compared with sub-daily gauge data from the
Atmospheric Radiation Measurement (ARM; Ackerman and Stokes 2003) Program
sites over the Southern Great Plains (SGP; over Oklahoma and Kansas). In addition,
the NCEP Stage IV (Baldwin and Mitchell 1998; Lin and Mitchell, 2005) merged
radar/gauge product was used for comparison.

Here, we show a similar but extended analysis featuring comparisons between
three-hourly precipitation estimates from the SGP sites and CMORPH, the Hydro-
Estimator, NRL-Blended, PERSIANN, TMPA (see Table 1). For each of these
precipitation estimates, the four grid-points nearest to each SGP gauge were bi-
linearly interpolated to create matched, three-hourly pairs. The satellite estimates
were all evaluated on 0.25◦ grids (the finest common grid). The Stage IV data were
included in the analysis using the same methodology, but incorporated at the native
4 km and 0.25◦ resolutions to allow for comparison of the effect of scale.

First, statistics based on the three-hourly resolution matched pairs for each SGP
gauge are shown for the six-month warm and cold seasons (October–March and
April–September). Boxplots are used in order to show the spread over all sites
graphically. The box includes the 25th and 75th percentiles and the line in the mid-
dle of the box represents the median. The whiskers extend to the furthest outlying
values that are no more than 1.5 times the inter-quartile range (difference between
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the 75th and 25th percentiles) away from the median. The “plus” symbols beyond
the whiskers denote observations which are further than 1.5 times the inter-quartile
range from the median. The crosses represent the mean of the three-hourly correla-
tions and the circles show the mean correlation over all sites obtained using daily
accumulations.

Figure 7 shows boxplots of correlations between each of the high resolution pre-
cipitation estimates and the SGP gauges as well as correlations between the gauges
and the Stage IV data extracted from the 4 km and 0.25◦ resolutions. Of the satellite
estimates, CMORPH has the highest mean three-hourly correlation (denoted by the
cross) in both the warm and cold seasons with mean correlations of around 0.55. In
the convective warm season, the TMPA has the next highest correlation, followed by
PERSIANN and the Hydro-Estimator. In the cold season, the TMPA, PERSIANN
and the Hydro-Estimator all have similar three-hourly correlations of around 0.45.
NRL-Blended has consistently lower correlations in both seasons. Similar results
are obtained for daily data (mean denoted by the circle) but with higher mean
daily correlations of around 0.6–0.65 for CMORPH. In the warm season, TMPA,
PERSIANN and the Hydro-Estimator are all perform about as well as CMORPH at
the daily time-scale. As a benchmark, the 4 km Stage IV yields mean three-hourly
correlations of around 0.85 and the 0.25◦ version yields lower correlations of around
0.7–0.75. This difference demonstrates the effect of the coarser 0.25◦ when com-
pared to a point estimate. The results show that the satellite estimates have high
correlations with daily and sub-daily gauge estimates, but that they are inferior to
the radar/gauge estimate of Stage IV.
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Fig. 7 Boxplots of three-hourly correlations at each SGP with the precipitation estimates extracted
from 0.25◦ data
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Fig. 8 Boxplots of three-hourly bias of the precipitation estimates extracted from 0.25◦ data, as a
percentage of the mean precipitation at each SGP site

Of the datasets included in this comparison, the TMPA and the Stage IV include
a gauge adjustment and are expected to a have a near zero bias compared to these
gauges. Figure 8 shows the bias as a percentage of the mean for each SGP site
and confirms that these datasets have near zero bias. Biases are generally lower
in the cold season which is dominated by large-scale stratiform events than in the
convective warm season. CMORPH, NRL-Blended and PERSIANN over-estimate
precipitation by as much as 100% during the warm season. Biases are far smaller
in the cold season, although there are more extreme outliers which are in excess
of 100%; although the mean rainfall is lower during the cold season so these are
relatively small in absolute terms. Interestingly, the Hydro-Estimator tends to more
seriously overestimate cold season precipitation than warm season precipitation and
has a far lower bias than the other satellite-only datasets. This dataset was designed
to estimate extreme events which are more likely to occur in the warm season.

A crucially important property for high resolution products is how they repre-
sent the distribution of precipitation, particularly the upper tail of the distribution
which is corresponds to the extreme wet events. Quantile–Quantile (Q–Q) plots are
used here to show agreement (or lack thereof) between the Cumulative Distribution
Function (CDF) of the SGP gauges and the CDF of each of the precipitation esti-
mates. Since the number of data points is equivalent, these plots are constructed
by separately ordering the estimates and the validation data into ascending values
and plotting them against each other. Since an examination of the distributions at
each site is not feasible, all the values have been put together and a single Q–Q
plot is shown for all sites (Fig. 9). The Stage IV data tends to correctly cap-
ture the lower values of the total distribution, but underestimates values greater
than 4 mm day–1. Similarly, the Hydro-Estimator correctly captures most of the
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Fig. 9 Quantile–Quantile plots of each precipitation estimate against all SGP gauges for three-
hourly, 0.25◦ data

distribution, but underestimates the most extreme values, which is surprising given
that it was designed for the monitoring of extremes. CMORPH and NRL-Blended
over estimate all values by 20–25%, which is consistent with their higher bias seen
in Fig. 8, whereas the TMPA faithfully represents the overall distribution of the
sites. These results suggest that a gauge correction applied to CMORPH and NRL-
Blended would yield a similar agreement between distributions as seen for TMPA.
PERSIANN overestimates values less than 10 mm day–1 and underestimates values
greater than 10 mm day–1.

These three hourly results show that CMORPH has the highest correlations but
has relatively low HSS when compared to the other datasets, suggesting that it tends
to overestimate the occurrence of an event, but gives more accurate estimates when
it does rain. The bias tends to be larger in the convective warm season. Of the non-
gauge adjusted datasets, the Hydro-Estimator has the lowest warm season bias, but
the bias adjustment of the TMPA is a major advantage and such a correction should
be incorporated into other datasets.

4 Evaluation of Warm Season US Precipitation Using Gauges
From NAME

The North American monsoon system has substantial influences on the warm sea-
son climate over North America and it provides a useful framework for describing
and diagnosing warm season climate controls and the nature of the year-to-year
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variability. The North American Monsoon Experiment (NAME) was an interna-
tionally coordinated process study aimed at determining the sources and limits
of predictability of warm season precipitation over North America (Higgins et al.
2006). The NAME community organized a Precipitation Assessment Project (PAP)
in advance of the NAME 2004 Field Campaign, as an important prerequisite to
improved understanding, simulations and ultimately predictions of warm season
precipitation over North America. The NAME PAP is one of several NAME activ-
ities designed to ensure maximum coordination of NAME observational, model
development and prediction activities (Higgins et al. 2006). The NAME PAP
includes seven different satellite estimates (though only four are examined here)
and model precipitation forecasts from the NCEP GFS. These estimates are inter-
compared over the NAME domain with the Climate Prediction Center (CPC)
Unified rain gauge analysis (Higgins et al. 2000).

We present a direct comparison of the different precipitation estimates with
NAME gauges over nine zones in southwestern North America (Fig. 10) that were
invoked during the NAME 2004 field campaign. It is well known, however, that
semi-arid regions such as the NAME domain pose a difficult challenge for remote
estimates of precipitation, including radar. This is partly due to the fact that satel-
lites (and radars – depending on the distance from the site) retrieve information from
hydrometeors and clouds, i.e. parameters in the free atmosphere not at the surface
where rain gauges measure precipitation. Several studies have documented large
evaporation over semi-arid regions (e.g. Scofield 1987). Rosenfeld and Mintz (1988)
estimated conservatively that 30% of the rainfall evaporates in the first 0.6 km below
the cloud base in semi-arid regions at rainfall intensities as high as 80 mm h–1. The
inter-comparison presented here also highlights daily statistics, including frequency,
intensity and variability of rainfall over the region during the period of the NAME
2004 field campaign (June–September 2004).

Each group participating in the NAME PAP agreed to inter-compare their precip-
itation estimates for the period June-September 2004 (hereafter JJAS 2004), which
corresponds to the NAME 2004 Enhanced Observing Period (EOP). Data was made
available for the NAME Tier III domain (140◦W–80◦W, EQ-55◦N) and a subset of
this is analyzed here for the US. Daily averages were used on a 0.25◦ grid where the
averaging was done over the 24-h period from 1200 UTC on day zero to 1200 UTC
on day one. The GFS forecasts used in this study are the average of the 12–24 h and
24–36 h forecasts from the 0000 UTC run of the GFS. Two PMW/IR datasets were
used: CMORPH and PERSIANN (see Table 1), as were the PMW-only AMSU-B
estimates of Weng et al. (2003; note that this AMSU-B data is used in CMORPH
and in the training of PERSIANN) and the IR-only Hydro-Estimator.

There is a known tendency for the CPC gauge analysis to overestimate the
light precipitation amounts and to underestimate the heavy amounts when com-
pared to station data. These are well known attributes of all objective analysis
schemes, though some techniques minimize these aspects better than others (e.g.
Shen et al. 2001). Figure 11 shows scatter plots of the data averaged over all 9
zones. Differences between the CPC gauge analysis and the raw (quality controlled)
station observations are generally quite small with a very high correlation (0.98)
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Fig. 10 A typical station distribution over the NAME domain for the CPC gridded gauge analysis
and topography, shaded at intervals of 500 m. Also shown are the NAME zones used in this section

between the gauges and the CPC gauge analysis. The GFS forecasts are also in good
agreement with the gauges with a relatively high correlation (0.81). All of the
satellite products tend to overestimate precipitation amounts when the large area
is considered as a whole. Correlations vary, with the AMSU data being the highest
and PERSIANN being the lowest which shows the advantage of PMW estimates.

Some statistics computed for the region shown in Fig. 12 (125◦W–95◦W,
20◦N–35◦N) are given in Table 2. They were obtained after computing the mean
daily precipitation for the period JJAS 2004. All of the products have mean daily
precipitation (based on the period JJAS 04) exceeding 0.5 mm day–1 at most loca-
tions which is consistent with the influence of the objective analysis, which tends to
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Fig. 11 Comparisons of daily precipitation amounts (mm) obtained by averaging over all 9 zones
for the period JJAS 2004. Each panel shows an individual precipitation estimate product versus
station observations, with each open circle representing one day during the period

spatially spread or extend light precipitation. There is a large difference in the area
average of JJAS 2004 mean daily precipitation with the satellite estimates being gen-
erally higher (roughly 4–5 mm day–1) than the gauge analysis and model forecasts
(roughly 3 mm day–1). In addition, the maximum values of the JJAS 2004 mean
daily precipitation and the standard deviation (computed as the departure of the
mean daily precipitation at each grid point from the area average mean daily precip-
itation) are also greater for most of the satellite estimates. Overall, these results are
consistent with the results shown in Fig. 12, that indicate the tendency for the satel-
lite estimates to overestimate precipitation during the NAME 2004 field campaign
period. Spatial correlations of JJAS 2004 mean daily precipitation from the CPC
gauge analysis with the satellite estimates (not shown) are generally quite good.

Higgins et al. (2006) identified two NAME sub-regions which are of particu-
lar interest for the North American monsoon: the core of the monsoon (CORE;
112◦W–106◦W, 24◦N–30◦N) and an area over Arizona and New Mexico (AZNM;
112.5◦W–107.5◦W, 32◦N–36◦N). Time series of daily precipitation amounts for the
North American monsoon CORE and AZNM sub-regions show reasonable agree-
ment amongst the estimates (Fig. 13). However, in the CORE region the satellite
precipitation amounts almost always exceed the CPC and GFS amounts during the
period shown. This is true whether the daily precipitation amounts are large or
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Fig. 12 Mean daily precipitation (mm) for JJAS 2004

small. In AZNM the satellite estimates exceed the CPC and CFS estimates when the
precipitation amounts are large and compare more favorably when they are small.
These results are consistent with those reported in Janowiak et al. (2004), who found
that remotely-sensed precipitation estimates (including radar) exhibit a substantial
positive bias compared to rain gauge estimates over semi-arid regions during the
warm season due to evaporation of rain before it reaches the surface. Also shown
in Fig. 13b, c are the mean daily precipitation amounts from the CPC (solid lines),
GFS (dotted lines) and the average of the satellite estimates (dashed lines) for July–
August 2004, for the corresponding sub-regions. The values are listed Table 3. In
both sub-regions, the mean daily precipitation amounts from the GFS are very close
to that from CPC’s gauge analyses, while the averages of the satellite estimates at
least double the amounts from either CPC or the GFS.
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Table 2 Some statistics for the domain shown on Fig. 12 [125◦W–95◦W, 20◦N–35◦N] over land
only for JJAS 2004. The total number of points in the domain is 3962 for all of the products

Number of
points with
mean daily
precipitation
(> 0.5 mm)

Area average
mean daily
precipitation
(mm)

Max.
precipitation
(mm)

Standard
deviation
(mm)

Spatial
correlation with
CPC-GAUGE

CPC-GAUGE 3513 3.03 11.15 1.57 NA
CMORPH 3604 4.78 17.59 2.64 0.79
PERSIANN 3631 3.96 13.93 2.33 0.77
AMSU 3602 5.29 16.98 2.71 0.79
Hydro-

estimator
3407 3.99 28.73 3.49 0.70

GFS 3480 3.07 19.49 2.24 0.73

It is important to emphasize that satellite estimates do not always overesti-
mate precipitation. In fact, during the cool season the satellite estimates tend to
be lower than the CPC and GFS estimates (including the semi-arid CORE and
AZNM regions). In addition, numerical model forecasts generally outperform the
satellite estimates when validated against the CPC estimates during the cool season
(Janowiak et al. 2004).

The NAME 2004 field campaign featured 10 Intensive Observing Periods
(IOPs) embedded within the longer Enhanced Observing Period (EOP) which
occurred during JJAS 2004. NAME IOP 2 focused on the influence of a tropical
cyclone (Tropical Storm Blas) on a Gulf of California moisture surge event and
the associated precipitation patterns. Johnson et al. (2004) documented the surge
characteristics associated with this event (including the increases in rainfall over
northwestern Mexico and southeastern Arizona from gauge precipitation analy-
ses). In a more general context, Higgins and Shi (2005) documented relationships
between tropical cyclones, moisture surges and the associated precipitation patterns
using composites and historical data for the period 1979–2001.

The purpose of this case study is to examine the evolution of the observed pre-
cipitation associated with NAME IOP-2 for the various precipitation estimates. In
particular, time-latitude diagrams are used to illustrate the northward progression of
the precipitation associated with this event (Fig. 14). The northward evolution of
the precipitation pattern is well captured in all of the estimates. The CPC and GFS
estimates are considerably lighter throughout the event. The satellite estimates also
show heavy precipitation in advance of the surge. This is likely due to the presence

�
Fig. 13 (a) CORE (112◦W–106◦W, 24◦N–30◦N) and AZNM (112.5◦W–107.5◦W, 32◦N–36◦N)
subregions. Time series of daily precipitation (mm) for (b) CORE and (c) AZNM subregions for
July–August 2004. The CPC analysis and GFS day 1 forecasts are indicated by the solid and
dotted lines, respectively. The average of the satellite estimates is indicated by the dashed line. The
shading surrounding the dashed line shows the spread in the satellite estimates
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Fig. 13 (continued)



188 M.R.P. Sapiano et al.

Table 3 Mean daily precipitation (mm day–1) from the CPC, GFS and the average of the satellite
estimates for July–August 2004 for the two sub-regions

CPC GFS Mean-satellite

CORE 4.23 3.56 8.76
AZNM 1.43 1.41 3.27

of high cloudiness in advance of Tropical Storm Blas, which could contribute to
overestimated precipitation in the IR satellite estimates.

Generally, the satellite, gauge and model precipitation estimates agree quite well
with each other in terms of frequency, intensity and variability of precipitation in
this region. The most substantial differences are found over the high elevation areas.
Among these products, CPC’s gauge-only gridded analysis is closest to the gauge
observations themselves, both at individual gauge locations and for larger areas
(including the NAME zones and NAME Tier 1). As for individual zones, the CPC
analysis performs best in zones 4 and 7, where the stations are more uniformly
distributed compared to the other regions. However, it underestimates the heavier
precipitation amounts in several of the eastern zones (e.g. zones 5, 8 and 9) where
the station density is particularly low. It is in these zones that the satellite estimates
are particularly useful.

5 Discussion

Like other studies, our results show that high resolution satellite precipitation esti-
mates are well-correlated with validation data over the US at daily and sub-daily
time-scales at the 0.25◦ resolution. The diurnal cycle is generally well represented,
although the three-hourly time resolution used is too coarse to resolve the 1–2 h lags
that might be expected from PMW estimates. Like many other studies (e.g. Ebert et
al. 1996; Arkin and Xie 1994; Ebert and Manton 1998), our results show that PMW
estimates are superior to IR estimates, but that blends of PMW and IR information
yield the highest skill. It is clear that such blends should be used in studies where
precipitation data is required, and that gauge adjustment of blended PMW/IR data
is an important step that removes much of the bias.

Many activities have largely focused on the 0.25◦ resolution which is common to
most of the estimates currently used. Far higher resolutions are obviously desirable
for hydrological purposes, but limits of the current sensors (most notably the foot-
print size of the PMW estimates) somewhat preclude this. Despite this limitation,
many of the datasets have higher resolution estimates available (down to half-hourly
at 4–8 km) and the validation community should make greater attempts to conduct
inter-comparisons at higher resolutions. At the same time, users should take caution
when using higher resolution estimates since many satellite estimates are very noisy
on fine scales and spatial and/or temporal averaging is a necessary step to obtain
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Fig. 14 Time-latitude cross section of daily precipitation (mm) from (a) CPC, (b) GFS and
(c) satellite during NAME IOP-2. Precipitation data is averaged over the longitude band 112.5◦
W–107.5◦W. The mean of the satellite estimates is shown in (c)
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useful estimates. In this regard, we advise the user to exercise extreme caution in
the interpretation of finer scale precipitation estimates.

Precipitation forecasts from numerical weather prediction models do well,
although this skill might not be expected to be repeated elsewhere over the globe.
In particular, we found higher skill in the cold season when synoptic-scale precipi-
tation is more common than in the convective warm season. The GFS model shows
very good skill over the US and tends to outperform the satellite estimates during
the cold season. This result suggests that a combination of satellites and models,
with the latter used during the cold season, would increase the skill of precipitation
estimates. Such combinations are now becoming available (Sapiano et al. 2008) and
will provide a valuable resource for many users, including hydrologists.
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Comparison of CMORPH and TRMM-3B42
over Mountainous Regions of Africa and
South America

Tufa Dinku, Stephen J. Connor, and Pietro Ceccato

Abstract Two satellite rainfall estimation algorithms, CMORPH and TMPA, are
evaluated over two mountainous regions at daily accumulation and spatial resolution
0.25◦. The evaluated TMPA products are TRMM-3B42 and TRMM-3B42RT. The
first of the two validations region is located over the Ethiopian highlands in the Horn
of Africa. The second is located over the highlands of Columbia in South America.
Both sites are characterized by a very complex terrain. Relatively dense station net-
works over the two sites are used to validate the satellite products. The correlation
coefficients between the reference gauge data and the satellite products were found
to be low. Besides, the products underestimate both the occurrence and amount of
rainfall over both validation sites. These were attributed, at least partly, to orographic
warm rain process over the two regions. The performance over Colombia was better
compared to that for Ethiopia. And CMORPH has exhibited better performance as
compared to the two TRMM products.

Keywords Satellite · Rainfall estimation · Passive microwave · Infrared · Validation

1 Introduction

Thermal infrared (TIR) and passive microwave (PM) sensors are the most widely
used for satellite rainfall estimation. TIR provides useful information mainly about
storm clouds based on the low temperatures of the top of these clouds. PM sen-
sors are more attractive mainly because their measurements have better physical
relationships to rainfall as compared to TIR observation. Thus, PM observations
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contain information about rain areas rather than clouds. The problem is that PM
sensors are not yet available on geosynchronous satellites, and this makes the obser-
vation frequency just a couple of times per day. As a result, most current rainfall
estimation techniques are based on TIR observations, or combination of TIR and
PM observations. Both TIR and PM rainfall retrievals have some serious limita-
tions. The limitations for TIR include inability to provide information beneath the
top of the cloud, underestimation of rainfall from warm clouds particularly over
coastal and mountainous regions, and the cold cirrus clouds that could be confused
with deep convective. The main limitations of PM rain retrieval are background
emission from the land surface which varies significantly depending on vegetation
type and soil characteristics, stratiform and warm rain that does not produce much
ice aloft, low repetition rate (typically twice per day) that makes aggregation over
daily time periods impossible, and coarser spatial resolution compared to TIR sen-
sors. For more detail on the different aspects of satellite precipitation estimation the
reader may refer to, among many others, Levizzani et al., 2002, 2007; and Gruber
and Levizzani, 2008.

Mountainous regions pose unique challenges to satellite rainfall retrieval from
both TIR and PM observations. The challenge to TIR rainfall retrieval comes
mainly from warm orographic rains. Most TIR algorithms use cloud-top temper-
ature thresholds to discriminate between raining and non-raining clouds. And these
thresholds are usually too low for the relatively warm orographic clouds, resulting
in underestimation. The rainfall signal for over-land PM rainfall retrieval comes
mainly from ice scattering aloft. However, orographic clouds may produce heavy
rainfall without much ice aloft, and this may result in underestimation of surface
rainfall. The other challenge to PM rain retrieval algorithms comes from cold sur-
faces and ice cover over mountain-tops. These cold surfaces could be misidentified
as raining clouds.

Validation of satellite rainfall products over mountainous region will offer an
insight into how the different algorithms perform over such regions. However, there
has not been much validation, particularly at daily time scale, over mountainous
regions. The main problem is lack of raingauge observations over mountainous
regions, or lack of access to available observations. Here we take advantage of
the availability of raingauge observation over two mountainous regions to compare
the performances two satellite rainfall algorithms over these regions. A relatively
dense station network over Ethiopia (Africa) and Colombia (South America) are
used to validate the products of two algorithms. The first algorithm is the NOAA-
CPC morphing technique (CMORPH, Joyce et al., 2004). The second is produced
by the Tropical Rainfall Measuring Mission (TRMM) and is named “TRMM Multi-
satellite Precipitation Analysis” product (TMPA, Huffman et al., 2007). One of
these products is named TRMM-3B42. These algorithms are selected for compar-
ison because (i) they are currently the state of the art algorithms; (ii) have been
available for some time and are being used widely; and (iii) are available over both
Africa and South America.
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2 Study Regions and Data

2.1 Study Region

Two validation sites were selected to explore the performance of the two rainfall
retrieval algorithms over mountainous regions. The first site is located over Ethiopia
in the Horn Africa (Fig. 1), while the second site is part of Colombia in South
America (Fig. 3). The rectangular boxes over the validation regions represent the
specific validation sites. These sites are selected mainly because of three factors: (i)
both have a very complex orography; (ii) they are located within the tropics; and
(iii) there is good quality data from a relatively dense station network.

The site over Ethiopian is characterized by the Rift Valley, which is part of
East African Rift Valley, and plateaus and mountain ranges on either side of the
Rift Valley (Fig. 1). The main rainy season is during June to September (Fig. 2).
Figure 2 represent the area average of the box outlined in the figure, but there are
some variations within the box. The area-averaged monthly mean is calculated from
gridded data for the years 1971–2000. The gridded data is produced by the Global
Precipitation Climatology Center (GPCC) at a spatial resolution of 0.5◦ (Schneider
et al., 2008). The full data product, which uses relatively more gauges than the other
GPCC products, is used here. The main synoptic feature during the main rainy sea-
son over Ethiopia is the Inter Tropical Convergence Zone (ITCZ). However, the
effect of ITCZ is modulated by the topography.

Fig. 1 Topography and
raingauge distribution (+)
over Ethiopia. Circles (O)
indicate stations whose data
is available through GTS.
Only stations in the specified
box are used for evaluation of
the satellite products



196 T. Dinku et al.

Fig. 2 Mean (1971–2000)
monthly rainfall for the
validation site over Ethiopia

Fig. 3 Topography and
distribution of raingauge
stations (+) used for the
validation over Colombia.
Circles (O) indicate stations
whose data is available
through GTS. Only stations
in the specified box are used
for evaluation of the satellite
products

The main topographic features for the Colombian site are the three mountain
ranges divided by two valleys (Fig. 3), which is the northern tip of the Andes
Mountains. As opposed to the site over Ethiopia, the two valleys in Colombia
are deeper (<500 m above mean sea level), and the valley on the eastern side is
very prominent. Both valleys are associated with major rivers. This site has rainfall
throughout the year with two relative peaks in May and October (Fig. 4). Figure
4 represents an area average over the specified box, and it is also computed from
GPCC full data product (Schneider et al., 2008). Columbia has one of the wettest
regions in the world with mean annual rainfall exceeding 11000 mm over the south-
western part of the country (Hurtado, 2005). The ITCZ, which stays over this region
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Fig. 4 Mean (1971–2000)
monthly rainfall for the
validation site over Colombia

throughout the year, is the main synoptic feature for Colombia. Topography plays a
significant role in modifying the effect of ITCZ.

There are some significant differences between the two validation sites. The first
difference is that the site over Colombia is very close to the Pacific Ocean, while the
site over Ethiopia is relatively far away from any ocean. The other feature is that the
ITCZ remains in the vicinity of Colombia throughout the year, while its stay over
Ethiopia is limited to the summer months. Due to these factors the Colombian site
has heaver rainfall than the site over Ethiopia. The rainy season is also longer over
Colombia with two rainfall peaks in May and October (Fig. 4). The peak rainfall
months for the site over Ethiopia are July and August (Fig. 2). The other difference,
which might affect the validation results, is that the raingauge station network is
denser over Colombia.

2.2 Gauge Data

Daily rain gauge data for about 145 stations was obtained from the National
Meteorology Agency (NMA) of Ethiopia. After quality control 137 stations were
retained, and 75 of these are located within the validation box in Fig. 1. Only data
for the main rainy season (June to September) from 2003 and 2004 are used for the
current work. The data for Columbia was provided by Columbian Meteorological
Agency (IDEAM). Daily data from about 400 stations from April to June of 2003
to 2005 was used. From the 400 stations 246 fall within the validation box in Fig.
3. The distribution of the stations particularly over the mountain ranges (Fig. 3) is
very impressive. Both Figs. 1 and 3 also show the distribution of raingauges whose
data may be available through the Global Telecommunication System (GTS). Data
from these stations may have been used for adjusting some of the satellite prod-
ucts evaluated here. Thus, these stations were excluded from the analysis. The rest
of the data from both sites were subjected to rigorous quality check. The quality-
controlled gauge measurements were then interpolated into regular grids, which are
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then averaged at 0.25◦ spatial resolution for comparison with the satellite products.
All available stations, except the GTS gauges, were used for interpolation; however,
only 0.25◦ grid boxes falling within the validation boxes and with at least one gauge
were used for comparison with the satellite products.

2.3 Satellite Data

Three satellite rainfall products are compared. The first product is form the Climate
Prediction Center (CPC) at the National Oceanic and Atmospheric Administrations
(NOAA) named NOAA-CPC morphing technique (CMORPH, Joyce et al., 2004).
The other two products are from the TRMM project at the National Aeronautics and
Space Administration (NASA). The TRMM products compared here are TRMM-
3B42 and its real time version TRMM-3B42RT (Huffman et al., 2007). Table 1
gives a summary of the main characteristics of the three satellite rainfall products.

Table 1 Summary of the satellite products evaluated here; the PM and Gauge columns indicate
whether the product includes passive microwave or gauge observations

Time res. Space res. Existence PM Gauge

TRMM-3B42RT 3-hourly 0.25◦ 2002-present Y N
TRMM-3B42 3-hourly 0.25◦ 1998-present Y Y
CMORPH 3-hourly 0.25◦ 2003-pressent Y N

CMORPH is a relatively new algorithm, which combines different PM rainfall
estimates with information derived from TIR observations. As such CMORPH is
not a rainfall estimation algorithm. It is a technique where by PM rainfall estimates
produced by different algorithms from different sensors are propagated in space and
time using motion vectors derived from half-hourly TIR observations (Joyce et al.,
2004). The algorithm starts with detecting the time sequence of feature motions
from the TIR data, and then uses this information to compute the displacement vec-
tor for morphing from one instantaneous PM estimate to the next. In additions, a
time-weighted interpolation is performed to modify the shape and intensity of pre-
cipitation features during the time between PM observations. This creates spatially
and temporally complete PM estimates, which are independent of the TIR rain-
fall estimates. This way, CMORPH combines the superior retrieval accuracy of PM
estimates and the higher temporal and special resolution of TIR data.

The TRMM-3B42 algorithm (Huffman et al., 2007) combines TIR data from
geostationary satellites and PM data from different sources: the TRMM microwave
imager (TMI), Special Sensor Microwave Imager (SSM/I), Advanced Microwave
Sounding Unit (AMSU), and Advanced Microwave Sounding Radiometer-Earth
Observing System (AMSR-E). The TRMM-3B42 estimates are produced in four
steps: (i) the PM estimates are adjusted and combined, (ii) TIR precipitation esti-
mates are created using the PM estimates for calibration, (iii) PM and TIR estimates
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are combined, and (iv) the data is rescaled to monthly totals where by gauge obser-
vations are used indirectly to adjust the satellite product. TRMM-3B42 is available a
couple of days after the end of each month. The real time version (TRMM-3B42RT)
is a product from the third step above. Thus it does not use gauge adjustment.
TRMM-3B42RT is available with a lag time of few hours after the TIR and PM
inputs are obtained. The PM estimates used in step (i) above are adjusted using
probability matching method to a “best” estimate. In the case of 3B42, the best
estimates used for adjustment is the TRMM combined instrument, which is based
on TMI and the TRMM precipitation radar (PR). For 3B42RT, the best estimate
is just TMI. The method used to combine the PM and TIR estimates, in step (iii)
above, is a very simple one: the PM estimates are used as is and pixels that do not
have PM observations are simply replaced by TIR estimates. This may result in a
heterogeneous time series for a given location.

3 Comparison of the Satellite Rainfall Products

Standard validation statistics are used to compare the performance of the two
algorithms over the two mountainous regions. These include linear correlation coef-
ficient (CC), multiplicative bias (Bias), mean absolute error (MAE), Frequency Bias
(FBS), probability of detection (POD), false alarm ratio (FAR), critical success
index (CSI), and the Heidke Skill Score (HSS). Correlation coefficient and MAE
represent pixel-by-pixel comparison, while FBS, POD, FAR, CSI, and HSS are cat-
egorical validation statistics. The pixel-by-pixel comparison statistics are used to
evaluate the performance of the satellite products in estimating the amount of the
rainfall, while the categorical statistics are used to assess rain detection capabilities.
The expressions for these error statistics are given below.

MAE =
1
N

∑ |(S − G)|
G

(1)

Bias =
∑

S
∑

G
(2)

Where: G = gauge rainfall measurements, G = average of the gauge measure-
ments, S = satellite rainfall estimate, and N=number of data pairs. The following
validation statistics are based on contingency Table 2, where A, B, C and D represent
hits, false alarms, misses, and correct negatives, respectively.

FBS = A + B

A + C
(3)

POD = A

A + C
(4)
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Table 2 Contingency table comparing gauge area-averages and satellite rainfall estimates. The
rainfall threshold used is 1.0 mm

Gauge ≥ Threshold Gauge < Threshold

Satellite ≥ Threshold A B
Satellite < Threshold C D

FAR = B

A + B
(5)

CSI = A

A + B + C
(6)

HSS = 2 · (A · D − B · C)

(A + C) · (C + D) + (A + B) · (B + D)
(7)

The validation statistics is presented in Table 3a for Ethiopia and Table 3b for
Colombia. The first impression from these statistics is that the correlation coeffi-
cients between the satellite products and the reference raingauge data are very low,
particularly over Ethiopia. This shows that the satellite products may not reliably
give the amount of daily rainfall. There is also an overall underestimation of both
the amount rainfall (Bias < 1) and the frequency of rainfall occurrences (FBS < 1)
over Ethiopia. For Colombia, all the three products underestimate the occurrence of
rainfall, but only TRMM-3B42 seems to underestimate the amount. The underesti-
mation of the frequency of occurrence is also reflected in the POD for both regions,
which is low particularly for the TRMM products. However, the false alarm ratio is
small over both validation sites showing that the main problem is under detection
of the occurrence of the rainfall. The HSS, which measures the accuracy of the esti-
mates accounting for matches due to random chance, is lower than what has been
obtained for a plain region over Zimbabwe (Dinku et al., 2008).

The overall performance of the products is better over Colombia with higher cor-
relation coefficients, POD, CSI and HSS. Correlation coefficients and HSS values
are particularly higher for Colombia compared to the values obtained for Ethiopia.
One source of this difference could be the denser station network over Columbia.

The bold values in Table 3a and b show a relatively better statistics for the specific
product. Comparing the three products, CMORPH has an overall better statistics
over both validation sites. Particularly POD, CSI and HSS values for CMORPH are
better over both validation regions compared to the values for the TRMM products.
TRMM-3B42 uses an indirect gauge adjustment as described earlier. Of course the
number of GTS gauges, which are used in the adjustment, from these mountainous
regions is very limited (see Figs. 1 and 3). But the current version of CMORPH
does not employ any gauge adjustment scheme. Thus, the better performance of
CMORPH could be more significant than what could be inferred from the results in



Evaluation through independent measurements: Mountainous Africa and South America 201

Table 3 Comparison of error statistics of the three satellite rainfall products over Ethiopia (a) and
Columbia (b). The bold values highlight a relatively better value for the specific product. N is the
number of data values used to compute the statistics. The threshold used for rain detection is 1 mm

(a)
N=161348 3B42RT 3B42 CMORPH
CC 0.46 0.57 0.60
Bias 1.13 0.86 1.11
MAE 0.99 0.73 0.81
FBS 0.86 0.88 0.95
POD 0.73 0.76 0.81
FAR 0.14 0.13 0.14
CSI 0.65 0.68 0.72
HSS 0.40 0.45 0.48

(b)
N = 15006 3B42RT 3B42 CMORPH
CC 0.37 0.39 0.32
Bias 0.83 0.84 0.91
MAE 0.93 0.84 0.86
FBS 0.88 0.93 0.97
POD 0.60 0.69 0.81
FAR 0.11 0.11 0.14
CSI 0.56 0.64 0.72
HSS 0.24 0.30 0.33

Table 3a. On the other hand, the gauge input in TRMM-3B42 has resulted in a slight
improvement over TRMM-3B42RT.

As discussed above, the major problems with satellite rainfall estimates over the
two mountainous regions are poor correlations coefficients and underestimation of
rainfall occurrences and amount. This is attributed mainly to the complex orogra-
phy of the regions and the associated warm rain process. Dinku et al. (2007) has
shown the effect of orography on satellite rainfall estimates over Ethiopia by com-
paring two versions of NOAA-CPC Africa Rainfall Estimation (RFE). The previous
version, V.1.0 (RFE1, Herman et al., 1997), was operational from 1995 to 2000.
The current version, V.2.0 (RFE2, Xie et al., 2002), has been in operation since
2001. The RFE2 algorithm produces daily rainfall estimates at a spatial resolution of
0.1◦ by combining PM retrieval, TIR estimates and raingauge data obtained through
GTS. RFE1 has a provision for taking into account the orographic warm rain pro-
cess, which is absent from the current version. As a result, the previous version
was found to perform better than the current version although the previous version
did not use PM inputs. The performance of the different satellite rainfall prod-
ucts over Ethiopia was also compared with results for a relatively flat region over
Zimbabwe (Dinku et al., 2008). The performance of the products was much better
over Zimbabwe.

The above results suggest that topography must be taken into account to improve
rainfall estimation over mountainous regions. One way of doing this is what
Herman et al. (1997) implemented in RFE1, which combines relative humidity,
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Fig. 5 Comparison of ten-day total satellite rainfall estimates over Ethiopia by the CMORPH and
TAMSAT algorithms

wind direction and the terrain slope to estimate rainfall over regions where cloud-top
temperatures are between 275 and 235K. The other approach could be local calibra-
tion using available raingauge data; of course this is possible only for areas where
raingauge observation is available. A good example that demonstrates the advan-
tage of local calibration is the TAMSAT (Tropical Applications of Meteorology
using Satellite data) algorithm. This algorithm uses cold-cloud-duration (CCD),
which is the length of time that a satellite pixel is colder than a given tempera-
ture threshold, then assumes a linear relationship between CCD and rain rate at
the surface(Grimes et al., 1999; Thorne et al., 2001). The main advantage of the
TAMSAT algorithm is that the temperature threshold and the parameters of the lin-
ear regression are determined through calibration using locally available gauges.
As a result, the threshold temperature and regressions parameters will vary over
different regions, and this may take the topographic effect into account. Figure 5
compares the performance of the TAMSAT algorithm with that of CMORPH over
Ethiopia at ten-day accumulations. There is a big difference in the level of sophis-
tication between the two algorithms; yet, TAMSAT performs as well as CMORPH.
And this is attributed to the specific calibration of the TAMSAT algorithm over
Ethiopia.
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4 Conclusion

Two satellite rainfall algorithms, CMORPH and TMPA, have been evaluated over
two mountainous regions in Africa and South America. The objective of this work
has been to explore how the two algorithms would perform over the two validation
sites, which are characterized by a very complex topography. The products had low
correlation, and underestimated both the occurrence and the amount of surface rain-
fall over both validation regions. The performance of CMORPH was slightly better
than that of the TRMM products over both validation sites. The better performance
of CMORPH is significant when one considers the fact that TRMM-3B42 includes
gauge adjustment, and CMORPH does not. The overall performance of both satellite
products is better over the South American site.
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Evaluation Through Independent
Measurements: Complex Terrain and Humid
Tropical Region in Ethiopia

Menberu M. Bitew and Mekonnen Gebremichael

Abstract Evaluation of satellite rainfall products was conducted using ground-
based daily rainfall measurements at 22 locations within a grid of 5×5 km collected
during summer monsoon 2008 in a very complex terrain and humid tropical region
in Ethiopia. Two high-resolution satellite rainfall products, namely, PERSIANN-
CCS available at 1-h and 0.04◦ resolution, and CMORPH available at 30-min
and 0.08◦ resolution. Both remotely-sensed products underestimated heavy events
by about 50%, and so caution must be exercised when using CMORPH and
PERSIANN-CCS as input for flood forecasting, as this could underestimate large
flood events. The underestimation in monthly total rainfall was significant (32% for
CMORPH, 49% for PERSIANN-CCS), and this error level needs to be acknowl-
edged in applications that require monthly analyses. PERSIANN-CCS failed to
detect half of the light events, and consistently those under 1.6 mm/day, indicat-
ing clearly that PERSIANN-CCS has difficulty detecting light rainfall events in
complex terrain.

Keywords Rainfall · Remote Sensing · Validation · Complex terrain

1 Introduction

High-resolution satellite precipitation estimates are increasingly becoming available
across the globe. However, examples of operational applications of these products
are few, particularly in developing countries that do not have alternative reliable
ground-based monitoring systems. One reason for this is the lack of quantitative
information on the uncertainty level of these estimates. The recognition of this fact
has led to the establishment of a number of ground validation sites in the developed
countries. However, Africa in general does not have a ground validation site, and so
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only little is known about the error characteristics of the satellite estimates. In this
study, we conducted an intensive 39-day field campaign to collect high-quality data
on precipitation to evaluate the accuracy of satellite rainfall estimates in a complex
terrain and humid tropical region in Ethiopia. In the following, we provide a discus-
sion of the study region, types of satellite data tested, field campaign, results and
discussion, and conclusions.

2 Data and Methods

2.1 Study Region

The Beressa Watershed is located in the central highlands of Ethiopia, within
9◦33′43′′N to 9◦42′27′′N and 39◦28′34′′E to 39◦44′23′′E (Fig. 1). It covers an
area of 283 km2. Geologically, it is part of a huge land mass that covers more
than 300,000 km2 in central Ethiopian high land. The high altitude and mountain-
ous nature of the area is associated with the uplift during the rifting process and
a series of volcanisms. The Beressa watershed is located on the western plateau
edge of the rift system. It is characterized by diverse topographic conditions; ele-
vation ranges from 1850 to 3700 m. Climate is considered humid, with 1100 mm
of annual precipitation. Most of the annual rainfall comes from summer monsoon.
Major rain-producing systems during summer monsoon are: the northward migra-
tion of the ITCZ; development and persistence of the Arabian and the Sudan thermal
lows along 20◦N latitude; development of quasi-permanent high-pressure systems
over the south Atlantic and south Indian oceans; development of the tropical east-
erly jet and its persistence; and the generation of the low-level Somali jet, which
enhances low level southwesterly flow (Seleshi and Zanke 2004).

Fig. 1 (a) Map of Ethiopia showing the location of the Beressa watershed with respect to the rift
valley. (b) The Beressa Watershed (283 km2) delineated using a 90-m DEM. The inset contains
two grids (5×5 km) located in two areas of the watershed, and the rain gauges within them. (c) A
picture showing an example of one of the installed non-recording rain gauges
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2.2 Types of High-Resolution Satellite Products Used

We evaluated the accuracy of two very high-resolution satellite rainfall products
that have fundamental differences in their retrieval algorithms. These products
are CMORPH (NOAA’s Climate Prediction Center Morphing technique; Joyce
et al. 2004) and PERSIANN-CCS (Precipitation Estimation from Remotely Sensing
Imagery using Artificial Neural Network cloud classification system; Hong et al.
2004). CMORPH has 30-min and 0.08◦ latitude×0.08◦ longitude resolution,
whereas PERSIANN-CCS has 1-h and 0.04◦ latitude×0.04◦ longitude resolution.
While both products use geostationary infrared data as well as non-geostationary
microwave in their retrieval algorithms, they use fundamentally different approaches
to combine the two datasets. CMORPH obtains its precipitation estimates from the
microwave data exclusively, however, it uses infrared data to construct the advection
of the precipitation structure in between the microwave overpasses. On the other
hand, PERSIANN-CCS obtains its precipitation estimates from the infrared data,
however, it uses the microwave data for training the neural network that assigns
precipitation estimate to the infrared temperature.

2.3 Rainfall Field Experiment

We conducted a summer field campaign in the Beressa watershed, where we
installed two networks of non-recording rain gauges over an area of 5×5 km area
(Fig. 1). The first network consisted of 22 non-recording rain gauges over a 5×5 km
area, in the upstream mountainous region of the watershed we call “Grid H”. The
second network consisted of 18 non-recording rain gauges over a 5×5 km area, in
the downstream hilly region of the watershed we call “Grid L”. Initially, we put rain
gauges every kilometer within each grid (i.e. a total of 36 rain gauges per grid), but
we lost some of them during the experimental period. We believe that the remaining
density of 18 or 22 rain gauges is adequate to estimate accurately the mean rainfall
over each grid (see, for example Gebremichael et al. 2003). We focused our current
study on Grid H, which has a relatively higher number of rain gauges and better
geometric match to the satellite grids. Grid H’s rain gauges have elevations ranging
from 3100 to 3270 m.

The non-recording rain gauges used were the “Tru-Chek R©” plastic rain gauges
manufactured by the Forestry Suppliers. The gauges have scales permanently
marked on the front sides. We mounted each gauge vertically on a wooden pole
at a height of 2 m above the ground. A typical rain gauge installation is shown in
Fig. 1c. Our research group and trained local research assistants took readings off
each rain gauge, every morning from 7 am to 8 am, for the period of July 2 to August
9, 2008. This is the major rainy period in the region; there were 37 rainy days during
the 39-day experimental period.
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2.4 Method of Analysis

In Fig. 2, we show the CMORPH and PERSIANN-CCS pixels superimposed on the
rain gauge network. To evaluate CMORPH, we compared the rainfall value of the
CMORPH pixel which lies over the rain gauge network (i.e. C1 pixel) against the
rainfall value obtained by averaging rainfall values recorded at the 22 rain gauges.
To match the approximate size of a CMORPH pixel C1, we chose PERSIANN-CCS
pixels P1, P2, P3, and P4. To evaluate PERSIANN-CCS, we compared the average
of the rainfall values of the P1, P2, P3, and P4 against the rainfall value obtained by
averaging rainfall values recorded at all 22 rain gauges. We aggregated the hourly
or 30-min satellite precipitation estimates to daily values, so that we could compare
them with the daily observations from the non-recording rain gauges.

Fig. 2 CMORPH and
PERSIANN-CCS grids over
the study region with respect
to the rain gauge network
layout. Dotted lines show the
grids for PERSIANN-CCS,
and dashed lines show the
grids for CMORPH. P1, P2,
P3 and P4 PERSIANN grids,
and C1 CMORPH grid are
used in the current analysis

3 Results and Discussion

We begin with a description of the rainfall statistics using rain gauge data. In
Fig. 3a, we present the cumulative spatial-average daily rainfall obtained by averag-
ing data from the 22 rain gauges. The maximum daily rainfall was 48 mm. 50%
of the total rainfall was contributed by daily events with rain rates greater than
25 mm/day, and 75% of the total rainfall from rain rates exceeding 14 mm/day.
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Fig. 3 (a) Percentage of total rainfall versus mean daily rain rate, and (b) percentage of total
rainfall versus percentage of observations (no-rain observations were discarded), derived from the
daily average of the rain gauge network

In Fig. 3b, we present a plot of the percentage of the running accumulation to the
total accumulation against the percentage of observations to the total observations.
The figure shows that the large contribution of the total rainfall came from infrequent
yet heavy rains: 50% of the total rainfall was provided by the heaviest 18% of the
observations, and 75% of the total rainfall by the heaviest 37% of the observations.

In Fig. 4, we present a time series of daily rainfall, as derived from the rain gauge
network (i.e. average of 22 rain gauges), and CMORPH (i.e. C1) and PERSIANN-
CCS (i.e. average of P1, P2, P3, and P4) satellite products. The rain gauge network
showed large temporal variability in the daily rainfall, with a daily standard devi-
ation (std) of 12.6 mm, mean of 12.4 mm, and coefficient of variation (cv) of
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Fig. 4 Time series (July 2–August 9, 2008) of daily rainfall obtained from (solid line) rain gauge
network; (dotted line) PERSIANN-CCS values averaged over four grids P1, P2, P3, and P4; and
CMORPH value at grid C1

102%. CMORPH reported daily std of 10.0 mm, mean of 8.4 mm, and cv of
119%. PERSIANN-CCS reported daily std of 8.4 mm, mean of 6.3 mm, and cv
of 134%. Overall, CMORPH tended to underestimate daily rainfall by 32%, while
PERSIANN-CCS underestimated it by 49%. The correlation between the daily
gauge-measured and remotely-sensed rainfall was moderate (0.68), and the lack of
strong correlation likely results from the fact that the precipitable water concentra-
tion measured by remote sensors is not always highly correlated to rainfall reaching
the Earth surface.

To examine in detail the performance of CMORPH and PERSIANN-CCS prod-
ucts for each daily event, we tabulate the daily rainfall values in Table 1, sorting
them in descending order by the rain gauge network values. We also identify in
the Table the heavy events (heaviest daily events which accounted for 50% of the
total rainfall according to the rain gauge network data), moderate events (moder-
ate events accounting for the subsequent 25% of the total rainfall), and light events
(light events accounting for the remaining 25% of the total rainfall). We note the
following observations:

– On heavy (> 25 mm) events:

• CMORPH underestimated all 7 heavy events; the underestimation ranged
from 10% to 90%. PERSIANN-CCS underestimated all 7 heavy events; the
underestimation ranged from 5 to 90%.
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• On average, both CMORPH and PERSIANN-CCS underestimated heavy
events by 50%.

• Both CMORPH and PERSIANN-CCS detected all heavy events.

– On moderate (14–25 mm) events:

• CMORPH overestimated 5 out of 7 medium events, while PERSIANN-CCS
underestimated 6 out of 7 medium events.

• On average, CMORPH underestimated moderate events by 12%, whereas
PERSIANN-CCS underestimated moderate events by 45%.

• The significant overestimation by CMORPH was accompanied by CMORPH
significantly underestimating rainfall either the previous or the next day, indi-
cating that the cloud tracking algorithm used in CMORPH may introduce errors
in distributing rainfall temporally.

• Both CMORPH and PERSIANN-CCS detected all medium events.

– On light (< 14 mm) events:

• CMORPH missed 4 out of 24 lights events, while PERSIANN-CCS missed 12
light events.

• PERSIANN-CCS consistently failed to detect rain under 1.6 mm.

There are a couple of issues that might have influenced the accuracy of the
above comparison. The first issue is that our network of 22 rain gauges did not
adequately represent the four PERSIANN-CCS pixels (P1, P2, P3, and P4) and the
one CMORPH pixel (C1), and this could cause differences between gauge-measured
rainfall and remotely-sensed data, even if they all were perfect. To test the signif-
icance of this issue, we calculated the PERSIANN-CCS value averaged over P3
and P4, since the gauge network represented very well these two pixels (see also
Fig. 2). Shown in the last column of Table 1 are the daily rainfall values obtained
by averaging PERSIANN-CCS values at pixels P3 and P4. The PERSIANN-CCS
values averaged over two pixels P3 and P4 are very similar to those averaged over
four pixels P1, P2, P3, and P4. This suggests that either PERSIANN gives spatially
smoother fields and/or the rain gauge network represents the rainfall field over the
large C1 grid.

The second issue concerns the mismatch in pixels. Due to reasons, such as,
oblique scattering of the microwave signals, CMORPH and PERSIANN-CCS may
contain geolocation errors. To account for possible geolocation errors, we evaluated
the performance of CMORPH and PERSIANN-CCS values at each adjacent grid
with respect to the same rain gauge network comprised of 22 rain gauges. Figure 5
presents the correlation between the daily time series of gauge-measured rainfall and
PERSIANN-CCS value at each adjacent grid. The differences among correlation
values in adjacent boxes were not statistically significant.

It follows therefore that that the CMORPH and PERSIANN-CCS evaluation
statistics reported in this study are fairly robust, and not significantly sensitive to
the misalignment issues discussed above.
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Table 1 Comparison of daily rainfall values obtained from the rain gauge network, CMORPH at
grid C1, PERSIANN-CCS averaged over four grids (P1, P2, P3, and P4), and PERSIANN-CCS
averaged over two grids (P3, and P4), sorted in descending order by the rain gauge network values

Daily rainfall (mm) obtained from

Date Rain gauges CMORPH
PERSIANN-CCS
(P1+P2+P3+P4)/2

PERSIANN-CCS
(P3+P4)/2

Heavy events (> 25 mm) contributing 50% of the total rainfall

25-Jul 48.1 41.6 13.3 13.2
27-Jul 47.7 10.9 5.9 5.4
30-Jul 37.9 20.3 35.9 32.2
9-Aug 29.8 17.9 12.9 12.0
22-Jul 27.8 2.2 22.0 24.2
26-Jul 26.5 11.3 11.8 11.8
12-Jul 26.4 16.7 22.8 22.0

Medium events (14 – 25 mm) contributing 25% of the total rainfall

9-Jul 24.7 10.9 7.7 8.0
28-Jul 22.5 26.8 10.6 10.8
18-Jul 16.5 18.6 11.3 11.3
21-Jul 15.9 16.5 19.1 18.2
23-Jul 14.7 21.2 6.9 6.9
6-Jul 14.3 10.3 3.2 2.1
8-Jul 14.1 32.8 7.6 6.7

Light events (< 14 mm) contributing 25% of the total rainfall

3-Aug 12.0 0 3.5 1.7
11-Jul 10.2 14.4 23.3 21.4
13-Jul 9.7 0 0.0 0.0
7-Aug 9.0 0.8 2.2 2.5
14-Jul 9.0 8.8 7.2 6.9
5-Aug 8.8 3.1 8.0 7.7
29-Jul 7.5 2 1.7 1.7
4-Aug 7.3 2.1 0.0 0.0
3-Jul 5.5 7.2 0.0 0.0
31-Jul 5.1 0.1 0.0 0.0
15-Jul 4.9 0 0.2 0.2
8-Aug 4.7 4.7 0.0 0.0
7-Jul 4.4 2.2 1.2 1.2
20-Jul 4.4 0.3 0.1 0.1
19-Jul 3.9 12.3 1.9 2.0
2-Aug 2.7 4.2 3.9 4.4
6-Aug 2.5 2.8 0.2 0.1
5-Jul 1.6 1.3 0.0 0.0
2-Jul 1.1 0.2 0.0 0
4-Jul 0.7 0.7 0.0 0.0
24-Jul 0.6 1.3 0.0 0.0
10-Jul 0.4 0 0.0 0.0
1-Aug 0.1 0.9 0.0 0.0
16-Jul 0.0 0.3 0.0 0.0
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Fig. 5 Spatial map of daily correlation computed between the rain gauge average values and
satellite values at each of the nine grids around the rain gauge network, for (left) CMORPH, and
(right) PERSIANN-CCS. The standard error of the correlation estimate is 0.17 for all cases

Finally, let us compare our results to those reported for other regions. In a recent
study, Zeweldi and Gebremichael (2009) evaluated the accuracy of CMORPH rain-
fall products over the Little Washita watershed of Oklahoma, US, and found that
CMORPH overestimates rainfall in this region by a factor of 2 in July. A similar
result has been reported for this region by Tian et al. (2007). Note that we reported an
average 32% underestimation by CMORPH for Beressa. Differences in CMORPH
performance between Little Washita and Beressa could be explained by regional dif-
ferences in climate and topography. Compared to Beressa, Little Washita is hotter
in July and therefore has more evaporation below the cloud base that typically leads
to overestimation by the satellite rainfall product. Unlike Little Washita, Beressa is
strongly characterized by orographic rainfall process.

Hong et al. (2007) evaluated the accuracy of PERSIANN-CCS products over the
semiarid and highly mountainous region of Mexico, against the North American
Monsoon Experiment (NAME) Event Rain Gauge Network (NERN) (see Gochis et
al. 2003; Gebremichael et al. 2007). They reported that PERSIANN-CCS tends to
miss light rainfall events at high elevations, which is consistent with our finding.
This suggests that PERSIANN-CCS has difficulty detecting rainfall in compar-
atively shallow convective clouds over topographically complex regions. Hong
et al. (2007) reported a positive bias for PERSIANN-CCS, which disagrees with our
result in Ethiopia. This could be explained by the differences in climate between the
semiarid Mexico and humid Beressa.

4 Conclusions

We evaluated the performance of high-resolution satellite products, particularly
CMORPH and PERSIANN-CCS, in a complex terrain and humid tropical region
in Ethiopia, using an event rain gauge network that we established in June 2008.
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The comparison period (July 2–August 9, 2008) spans a major rainy period in the
region. Our results reveal that both CMORPH and PERSIANN-CCS tend to under-
estimate heavy events by about 50%. Therefore, caution must be exercised when
using CMORPH and PERSIANN-CCS products as inputs for flood forecasting, as
this could underestimate large flood events. As far as monthly accumulations are
concerned, CMORPH underestimated by 32% while PERSIANN-CCS underesti-
mated by 49%. This error level needs to be acknowledged in analyses that require
monthly data. PERSIANN-CCS missed half of the light events, and consistently
those under 1.6 mm/day, clearly indicating that PERSIANN-CCS has difficulty
detecting light rainfall in complex terrain. We note that these results are for the
summer monsoon in complex terrain and tropical humid region. It is important to
recognize the limitations on drawing the above conclusions based on a relatively
short period of data (39 days), indicating that further study using a larger dataset is
necessary.
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Error Propagation of Satellite-Rainfall in Flood
Prediction Applications over Complex Terrain:
A Case Study in Northeastern Italy

Efthymios I. Nikolopoulos, Emmanouil N. Anagnostou, and Faisal Hossain

Abstract The study presented in this chapter evaluates the use of satellite rain-
fall for flood prediction applications in complex terrain basins. It focuses on a major
flood event that occurred in October 1996 in a complex terrain basin of the northeast-
ern region of Italy. A satellite rainfall error model is calibrated and used to generate
rainfall ensembles based on two different satellite products and spatio-temporal res-
olutions. The generated ensembles are propagated through a distributed hydrologic
model to simulate the hydrologic response. The resulted hydrographs are compared
against the hydrograph obtained by using high-resolution radar-rainfall as the “ref-
erence” rainfall input. The error propagation of rainfall to stream runoff is evaluated
for a number of basin scales that range from 100 to 1200 km2. The results from this
study show that (i) use of satellite-rainfall for flood prediction depends strongly on
the scale of application (catchment area) and the satellite product resolution, (ii) dif-
ferent satellite products perform differently in terms of hydrologic error propagation
and (iii) the propagation of error depends on the basin size; for example, this study
shows that small watersheds (<400 km2) exhibit a higher ability in dampening the
error from rainfall-to-runoff than larger size watersheds.

Keywords Satellite rainfall · Flood prediction · Error propagation

1 Introduction

Recent advancements in space-based precipitation observations especially in terms
of sampling frequency and sensor resolutions have opened new horizons in hydro-
logical applications at global scale. Satellite sensors offer unique advantages
because they provide (i) global coverage and (ii) observations in regions where in
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situ data are inexistent or sparse. However, satellite observations are subject to a
number of errors due to instrumental issues (calibration, measurement error) and
the nonlinear and variable relationship between observables (i.e. brightness temper-
ature) and precipitation. These errors introduce uncertainty in the satellite products,
thus it is crucial to assess and quantify this uncertainty in order to make the use of
satellite retrievals more meaningful in hydro-meteorological applications.

This necessity is recognized by the research community and several error stud-
ies have been reported dealing with the characterization of error structure for a
number of global satellite rainfall products. However, as Hossain and Anagnostou
(2006b) pointed out, these studies focus on the uncertainty of rain retrieval asso-
ciated with large spatiotemporal scales, involving error statistics that are relevant
to large scale meteorological phenomena, but do not provide insight towards the
dynamic surface hydrologic processes such as floods (see for example, Griffith et al.,
1978; Arkin and Meisner, 1987; Huffman et al., 2001; Steiner et al., 2003, among
others). Highlighting this inherent complexity in the error structure of precipitation
fields derived from space-based observations Hossain and Anagnostou (2006a) and
Bellerby and Sun (2005) developed error models to provide explicit characterization
of the complex stochastic nature of the satellite sensor derived rainfall fields. Both
models use ensemble rainfall fields to represent scenarios of satellite sensor retrieval
uncertainty.

As we now stand at the doorstep of a global scale mission, named Global
Precipitation Measurement (GPM, http://gpm.gsfc.nasa.gov/), it is essential and
most beneficial to investigate and evaluate the effective use of current satellite
products in hydrologic studies. GPM is anticipated to create new potential on the
use of satellite rainfall retrievals for the prediction of floods over ungauged basins
worldwide, which is mainly due to the enhanced revisit frequency and global cover-
age (Smith et al., 2007; Hossain et al., 2004). Thus, a comprehensive investigation
on the flood prediction uncertainties associated with current and upcoming (GPM
era) satellite rain retrieval appears mandatory and can also serve as an important
reference for highlighting the usefulness of GPM mission to the society.

Evaluating the error propagation of satellite-rainfall through the prism of sur-
face hydrology is a very challenging task because it relates to many factors which
include, among others, (i) specifications of the satellite-rainfall product, (ii) scale of
the basin, (iii) spatio-temporal scale of the hydrologic variable of interest, (iv) the
level of complexity and physical processes represented by the hydrologic model
used and (v) regional characteristics. Researchers have identified and addressed
several of those issues. Geuter et al. (1996) found that the propagation of satel-
lite retrieval errors through a hydrologic model affected differently the streamflow
error for different basin scales. Hossain et al. (2004) showed that the combined
retrieval and sampling error from current satellite passive microwave (PM) sensors
magnifies when it is transformed to flood prediction of a medium size (140 km2)
mountainous basin, and Hossain and Anagnostou (2004) quantified that flood pre-
diction uncertainty to be up to 100% higher than the uncertainty associated with
a hypothetical 3-hourly satellite sampling scenario (as planned for GPM) for a
medium size watershed. Wilk et al. (2006) used passive microwave datasets and
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achieved reasonable estimates for the water balance over the Okavango River basin
(165,000 km2). Collischonn et al. (2008) used TRMM (Tropical Rainfall Measuring
Mission) 3B42 dataset to estimate daily streamflow in the Amazon basin, using a
distributed hydrologic model, and found that the results compared well with the
raingauge driven streamflow simulations. Harris and Hossain (2008) showed using
simple hydrological models that for a given satellite-rainfall product (3B41RT), the
hydrologic model’s representativeness of the rainfall-runoff processes can affect the
uncertainty of flood prediction. A compelling evidence from summarizing findings
from studies so far is that due to the multidimensionality of the problem, there is
no specific answer to the question “how effective is the use of satellite-rainfall for
hydrologic applications?” and we can only have specific answers for questions such
as “what is the expected error propagation of a given satellite-rainfall product for a
given basin scales and for a specific hydrologic application and model setup”.

The scope of this chapter is to enlighten the reader as to how satellite-rainfall
error propagates, for a specific hydrological setup and application. A distinct feature
of this work is its focus on complex terrain environment and a range of basin scales
from small to medium size. The reason is, as mentioned above, that space based
observations are usually the only source of information for regions with complex
terrain. The study will present results on precipitation error propagation in terms of
flood prediction and its dependence on basin-size and satellite product resolution.

Section 2 describes the concept and methodology followed in this study and pro-
vides a brief description of the study area, data and models used. The results are pre-
sented and discussed in Section 3 and the conclusions are summarized in Section 4.

2 Methodology

Characterization of uncertainty in flood prediction forced with satellite-rainfall esti-
mates is achieved in this study through an integrative data-modeling experiment.
Ensemble satellite-rainfall fields generated from a satellite error model (hereafter
named SREM2D out of Satellite Rainfall Error Model-2 Dimensional; Hossain and
Anagnostou, 2006a), propagated through a distributed hydrologic model (hereafter
named as tRIBS out of triangulated irregular network Integrated Basin Simulator,
Ivanov et al., 2004) and the resulted simulated hydrographs are compared with
the simulated hydrographs obtained by using radar data as the reference rainfall
input. This comparison is carried out for a range of basin scales (100–1200 km2)
and for two satellite-rainfall products with different spatial resolutions and retrieval
characteristics.

2.1 Study Area and Data

The basin chosen for this study (Bacchiglione basin) is located in the Veneto region,
northeastern Italy (Fig. 1). With a drainage area of approximately 1200 km2, the
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Fig. 1 Map showing the locations of the Posina and Bacchiglione basins in the northeastern Italian
Alps. Note that the thin and thick grid corresponds to the 4 and 25 km scales

basin extends from the lowlands of the region (southern part), with an elevation of
30 m at the outlet, to the highlands (northern part) which are part of the eastern
Italian Alps and reach a maximum elevation greater than 2000 m. The northern part
is covered predominately by conifer and broadleaved forests while the southern part
consists mainly of croplands. The high precipitation amounts in the area (>1000 mm
annually), along with the very steep irregular terrain (slopes greater than 30◦ in the
highlands) make the region prone to the generation of floods that makes it suitable
for hydrologic investigations.

This study utilizes both in situ and remote sensing data. The in situ data include
observations from rain and stream gauges while the remote sensing data include
radar and satellite derived rainfall fields. The rain gauges, located in the region
(see Fig. 1), provided half-hourly rainfall accumulations that were used for (i) bias
adjustment of radar-rainfall fields and (ii) the calibration of the satellite-rainfall error
model. Streamflow data were available at half-hourly scale and only for one sub-
basin (called Posina, see Fig. 1), and were used to calibrate the hydrologic model
parameters. The radar data were obtained from a C-band Doppler weather radar
located at Mt. Grande, approximately 10 km southeast of the basin’s outlet, and
were available at 1 km spatial and 1 h temporal resolution. Two different satel-
lite products were used, the TRMM 3B42 version 6 (see Huffman et al., 2007 for
details) and another dataset obtained from the calibration of high resolution global
IR data on the basis of available passive microwave satellite rainfall estimates (here-
after called KIDD) and is based on algorithm described in Kidd et al. (2003).
Table 1 summarizes the nominal spatiotemporal resolution of each precipitation
dataset used in this study.
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Table 1 Nominal spatial and temporal resolution of the precipitation data used

Resolution

Data type Product name Temporal (hr) Spatial

Remote
sensing

3B42 3 0.25×0.25◦

KIDD 0.5 ∼ 4×4 km
Radar 1 1 km

In situ Gauge 0.5 Point

2.2 Satellite-Rainfall Ensembles

The generation of satellite-rainfall ensembles was based on the use of a two
Dimensional Satellite Rainfall Error Model (SREM2D) developed by Hossain and
Anagnostou (2006a). SREM2D uses as input “reference” rain fields of higher accu-
racy and resolution representing the “true” surface rainfall process, and stochastic
space-time formulations to characterize the multi-dimensional error structure of
satellite retrievals. The model parameters were calibrated for the region using six
months (June–November, 2002) of gauge and satellite data for the 3B42 and KIDD
satellite-rainfall products. For more details on the model’s algorithmic structure as
well as the calibration procedure and the evaluation of the generated ensembles, the
reader is referred to Chapter 9 of this book.

The high resolution radar-rainfall fields were used as the “reference” to create the
satellite-rainfall ensembles for the two different satellite products. Three sets of 100
realizations each were generated. The first set corresponds to the 3B42 product at its
nominal scale (see Table 1). The second and third set is based on the KIDD product
with corresponding resolution at high (4 km–1 h) and coarse (25 km–3 h) spatiotem-
poral scales, respectively. Due to computational limitations not all realizations from
all sets were used to force the hydrologic model. Instead, ensembles for each set
were ranked based on the total rainfall bias (compared to the reference field) and the
realizations starting at the 5th–100th percentile were selected at step increments of 5
percentiles (i.e. 5th, 10th, 15th etc.). Thus, a total of 20 realizations plus the average
of all 100 realizations from each set was used for the error propagation experiment.

2.3 Hydrologic Simulations

In October 1996 a major flood event occurred in the study area. The rainfall event
that caused the flooding lasted for more than 60 h and resulted in mean areal rainfall
accumulations (based on radar estimates) of 200 mm for the Bacchiglione basin
(∼1200 km2) and approximately 350 mm (see Figs. 2 and 3) for the mountainous
subbasin of Posina ( ∼116 km2). The error propagation experiment presented in this
study is focused on this particular event. However, the reader should keep in mind
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that due to the highly nonlinear relationship of rainfall-to-runoff transformation, the
propagation of error is expected to vary in different flood events.

The hydrologic model used in this study (tRIBS) is a fully distributed model
that can simulate multiple storm events and account for the moisture losses during
interstorm periods (see Ivanov et al., 2004 for more details). The distributed nature
of the model allows retrieving the hydrograph response for several interior nodes
thus providing the ability to compare the error propagation for different scales of
drainage area. In this study we evaluated the error propagation for a number of
basin scales that ranged between 100 and 1200 km2.

For the calibration of the model, the SCE (shuffle complex evolution) optimiza-
tion method (Duan et al., 1992) was used in order to minimize the error between the
observed hydrograph and the simulated hydrograph based on the radar-rainfall input
(reference hydrograph). As mentioned before, the only available discharge obser-
vations were for the Posina basin, thus were used as a reference to calibrate the
parameters for the whole Bacchiglione basin. The total simulation time for the sin-
gle flood event was 160 h and the total number of hydrologic simulations performed
was 64 (1 for the reference rainfall input and 21 for each ensemble set).

3 Results

The results from the satellite-rainfall ensembles propagation through the distributed
hydrologic model are presented and discussed in this section. The selected satellite-
rainfall realizations that were used to force the hydrologic model along with the
resulted simulated hydrographs, are shown in Figs. 2 and 3 for two basins of greatly
different area sizes: Posina ∼116 km2 and Bacchiglione ∼1200 km2, which is
about an order of magnitude scale difference. The differences shown between the
KIDD-4 km and KIDD-25 km product demonstrate the effect of resolution in rain-
fall forcing while the comparison between KIDD-25 km and 3B42 can be used to
assess how significant the differences between products can be in flood simulation.
A point to note is that the satellite-rainfall ensembles consistently underestimate the
total rainfall amount for both basin scales and all products. For the smaller basin, the
high resolution product (KIDD-4 km) performs much better, in terms of bias, than
the same aggregated product (KIDD-25 km) or the 3B42. However, in the case of the
larger basin, the KIDD-4 km and the 3B42 behave similarly, and exhibit improved
statistics compared to the KIDD-25 km.

The error in this study was quantified using the following metrics:

Relative error =

N∑

i=1
Xradar(i) −

N∑

i=1
XSREM2D(i)

N∑

i=1
Xradar(i)

(1)
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Relative RMSE =

√
N∑

i=1
(Xradar(i)−XSREM2D(i))2

N
N∑

i=1
Xradar(i)

N

(2)

where Xradar and XSREM2D corresponds to rainfall (or discharge) obtained from radar
and SREM2D ensembles respectively and N is the total number of data points in
Xradar and XSREM2D.

In order to facilitate the interpretation of the error propagation through the
rainfall-runoff transformation, the error in rainfall versus error in runoff is presented
in Fig. 4 based on the above metrics. A very distinct feature of the results is that the
propagation of error exhibits a strong linear behavior in terms of its relative term.
Especially in the case of Bacchiglione basin (1200 km2), the points are aligned very

Fig. 4 Error propagation metrics: Top panel shows the relative error in total runoff versus relative
error in total rainfall for Bacchiglione (left) and Posina (right) basin. Bottom panel shows relative
RMSE in discharge versus relative RMSE in rainfall, respectively. Errors were calculated between
SREM2D ensembles and the reference (radar). Note that blue black and red triangle corresponds
to the ensemble average of KIDD 4 km, KIDD 25 km and 3B42 respectively
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close to the 1–1 line, which indicates that the relative error in rainfall translates to
an equal relative error in runoff. Another interesting feature apparent from Fig. 4
is that the performance of each satellite product manifests in distinct clusters of the
rainfall-runoff error domain (those clusters are separated by different colors associ-
ated with different satellite products). In the case of Posina, the points of the high
resolution satellite product (KIDD-4 km; blue color) cluster in a distinct (from the
other products) region on the figure that is associated with lower relative error and
higher dampening effect on the propagation of relative RMSE. For the largest size
(Bacchiglione) basin, the two clusters of KIDD-4 km and 3B42 mix in the same
domain since they perform equally as mentioned above.

To further investigate the dependency of error propagation with basin scale, the
same analysis was carried out for a number of subbasins that range in size from
100 to 1200 km2. In Fig. 5, results are presented in terms of the ratio of the error
metric (mean relative error and relative RMSE) in runoff over the corresponding
error metric in rainfall versus basin scale. Ratios equal to one indicate that statistics
of the error in rainfall would translate to an equal statistical measure of the error in
runoff, while ratios lower (higher) than one would indicate that the error dampens
(magnifies) through the rainfall-runoff transformation process. The point to note
from Fig. 5 is that while catchment area increases the average of the mean relative
error ratios increases and approaches a plateau close to the value of one, which
is more pronounced for the KIDD-4 km product. Another point to note is that the
variability around the mean (i.e. error bars) tends to decrease as basin area increases.
Similarly, the average of the relative RMSE ratios increases with catchment area,
and after the size of 400 km2 reaches a plateau around 0.7-0.8. This means that for
smaller scale basins (<400 km2), the dampening effect of the error is greater than in
larger basins. The variability around the mean of the relative RMSE ratios does not
show to vary much with catchment area.

Fig. 5 Ratio of mean relative error (left) and relative RMSE (right) for different basin scales. The
ratio is defined as error in discharge over error in rainfall. Blue, black and red circles correspond to
the average of the 20 realizations for the KIDD 4 km, KIDD 25 km and 3B42 respectively. Error
bars are equal to ±1 standard deviation
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4 Conclusions

This chapter described a numerical investigation devised to evaluate the use of
satellite-rainfall for flood prediction applications. Ensembles of satellite-rainfall
were generated using the satellite error model described in Chapter 9. Those ensem-
bles were used to force a distributed hydrologic model in order to assess the error
propagation of satellite-rainfall in stream flow simulations for a range of basin sizes.
The study was focused on a single flood event and two satellite products of different
resolutions. Satellite rainfall estimates were compared against radar observations
that were used here as the reference rainfall dataset.

The principal conclusions of the study are summarized in the following:

1. Satellite-rainfall consistently underestimates mean areal rainfall of the basin with
relative errors ranging from 10 to 80% depending on the satellite product and the
basin scale. This error in rainfall resulted in predicted runoff with a relative error
of the same order.

2. The high resolution (KIDD-4 km) satellite product performed relatively well
(∼36% relative error of ensemble average) for both the small (Posina) and large
size (Bacchiglione) basins, while the coarser resolution products (KIDD-25 km
and 3B42) performed poorly (>55% relative error of ensemble average) in the
case of the small size basin. In the case of the large size basin the two products
(3B42 and KIDD-4 km) gave similar results. This indicates that the performance
of a given product relates to both its resolution and scale of application.

3. Comparison between 3B42 and KIDD-25 km revealed that different satellite
rainfall products (i.e., different retrieval algorithms) but at the same spatiotem-
poral resolution can give significantly different results in terms of streamflow
simulations. This observation indicates the necessity that each satellite product
must be evaluated separately in order to derive conclusions on its effective use
for hydrologic applications (generalizations cannot apply)

4. The propagation of rainfall error was found to have a definitive dependence on
basin scale. More specifically, catchment areas smaller than 400 km2 exhibit a
higher ability in dampening the error (from rainfall-to-runoff) than larger basins.

The study demonstrates that there is definitely potential in the use of satellite-
rainfall in flood simulations. It is noted that to achieve better performance and define
effective real-time flood prediction systems that are based on satellite observations,
the satellite-retrieval community should focus on techniques that would advance
the accuracy and quantify the uncertainty of high resolution rainfall products (at
scales down to 4 km and 1 h). Overall, this study points out some key elements
that can help us answer the question on “how effective is the use of satellites for
flood prediction”. To gain a holistic understanding on the error propagation issue,
a series of similar studies must be carried out that will involve different satellite
products, different satellite-rainfall error and hydrologic models and will be applied
to different regions and for a number of flood events.
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Probabilistic Assessment of the Satellite Rainfall
Retrieval Error Translation to Hydrologic
Response

Hamid Moradkhani and Tadesse T. Meskele

Abstract Satellite-based precipitation retrieval techniques and algorithms have
been developed to estimate precipitation from satellite observation. The realistic
characterization of uncertainty in satellite precipitation estimate and the correspond-
ing uncertain hydrologic response can better aid water resources managers in their
decision making. In this study, the standard error of satellite-based PERSIANN-
CCS rainfall estimates conditioning on the assumed true field (i.e. radar rainfall) is
obtained according to a multivariate function considering the spatial and temporal
scales. Accepting the multiplicative nature of this error, the Monte Carlo simula-
tion is used to generate the ensemble of precipitation and propagate them into a
conceptual hydrologic model to investigate the impact of input error on streamflow
simulation. The statistical assessment of the results through probabilistic measures
explores the more in-depth quality and reliability of the hydrologic response resulted
from input error characterization.

Keywords Radar · Streamflow ensemble · Uncertainty assessment · Probabilistic
verification

1 Introduction

Precipitation is the key hydrologic variable which plays a dominant role in the
climate system and links the atmosphere with land surface processes. Although
considerable advances have been made in data collection and hydrologic models
construction to improve simulation/forecasting accuracy, estimating forcing data
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(input) uncertainty is well-known to impose significant uncertainty into hydro-
logic modeling mainly due to its spatial and temporal variability. In deterministic
hydrologic modeling the uncertainty in precipitation as the main driving force is
neglected. The conventional approach in hydrologic model calibration relies on
the assumption that the translation of uncertainty from input to output is specifi-
cally attributed to parameter uncertainty (Moradkhani, et al., 2005b; Kavetski, et al.,
2006). Such assumption simply ignores the considerable errors in the input and
instead relies on additive error term to attribute these errors to the model struc-
tural inadequacy. Several studies have demonstrated different approaches in explicit
treatment of input uncertainty in a systematic framework particularly using rain
gage data as the main forcing data (Kavetski, et al., 2006; Huard and Mailhot, 2006;
2006; Vrugt, et al., 2008). Rain gages are considered as the main sources of spatial
precipitation estimates although it is acknowledged that they can contain signifi-
cant measurement errors (Margulis, et al., 2006). Even though rain gages are the
conventional techniques to measure rainfall directly, their very sparse network or
no coverage over land or ocean/remote area limits their utility over these regions.
The absence of gages at ocean and remote regions imposes using remotely sensed
(radar and satellite) measurements by which rainfall estimation can be monitored
as well. This provides an advantage of availability of data in real time and com-
plete area coverage irrespective of terrain or climate. Owing to these reasons and
the complex error structure as well as high uncertainty exhibited by intermittent
measurement through sparse rain gages, identifying true rainfall fields has been rec-
ognized to be difficult. To overcome these issues, ground-base radar measurement
adjusted with rain gages was found to be more representative of the true rainfall
field. Also as an alternative, satellite based precipitation retrieval techniques and
algorithms have been developed to estimate precipitation from satellite observation
(Huffman, et al., 2001; Adler et al., 2003; Hsu, et al., 1997; Hong, et al., 2004).
The wide spread availability and easy accessibility of satellite-based precipitation
estimate has enhanced the hydrological modeling and forecasting at the watershed
scale. The current procedure to estimate the precipitation from satellite observation
is to combine infrared (IR) observation from geostationary satellite with passive
microwave measurement from polar orbiting satellites. Satellite based precipitation
measurements may overcome spatial sampling problem involve in measurement in
rain gages (Gebremichael, et al., 2005), however they are indirect estimates of rain-
fall via an algorithm, depending on the properties of the cloud top (in the case of IR
algorithms) and cloud liquid and ice content (in the case of passive microwave algo-
rithms), with considerable error which may limit their applicability in operational
settings.

Quantification of these errors and evaluating their impacts on hydrologic
response is of major interest in the usage of satellite products in high resolution
hydrologic applications. The common approach to assess the impact of remotely
sensed satellite rainfall is to devise an error model and generate realistic ensem-
ble of high resolution satellite rain fields from reference rain fields with higher
accuracy such as dense rain gage network or ground radar data. Deriving the hydro-
logic model with erroneous forcing data will reveal the translation of such error into
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hydrologic model outputs (e.g. streamflow) which play a great importance in assess-
ing the uncertainties related to hydrological applications such as flood risk analysis
and data assimilation (Moradkhani, et al., 2005b).

In the past few years a number of studies have been undertaken assessing the
error tied to satellite rainfall estimates. In particular the use of ensemble approaches
have been found appealing to address the uncertainty in precipitation from remotely-
sensed products (Hossain and Anagnostou, 2006; Hong, et al., 2006; Moradkhani,
et al., 2006; Margulis, et al., 2006; Olson et al., 2006; Forman, et al., 2008). The
main goal of the above studies has been to generate a realistic ensemble of precipi-
tation realization that account for precipitation error that could be used in hydrologic
data assimilation and uncertainty assessment of model states and fluxes. Hossain and
Anagnostou (2005) also studied the uncertainty related to soil moisture prediction
using Land Surface Model (LSM). The main sources of uncertainties considered
in their study were the uncertainties tied to precipitation from the satellite and the
model parametric uncertainties. In later studies, (Hossain and Anagnostou, 2006)
presented a two dimensional satellite rainfall error model (SREM2D) with the
intention of characterizing the multi-dimensional error structure of satellite rain-
fall retrieval. In similar effort (Hong, et al., 2006) analyzed the uncertainties linked
to satellite based rainfall estimates from PERSIANN-CCS model (Hong, et al.,
2004) and assessed the impact of these errors on hydrologic simulation using a
parsimonious Hydrologic Model (HyMOD) (Boyle, et al., 2000). A parallel study
by (Moradkhani, et al., 2006) demonstrated the application of the particle filter
as a sequential data assimilation procedure to investigate the impact of individual
and combined uncertainties connected to satellite rainfall estimates and hydrologic
model states and parameters on streamflow forecasting. The findings from this study
showed that the satellite precipitation error reflects a wide uncertainty range in
streamflow forecasting as opposed to the narrow range ensuing from parameter
uncertainty. It was also discovered that the ensemble filtering through combined
state-parameter updating was capable of reducing the total uncertainty.

2 Methodology

In this study we devise a scheme to generate the satellite rainfall ensemble from
remotely sensed precipitation and identify the impact of satellite rainfall retrieval
error on hydrologic response. The ensemble of hydrologic response in terms
of hydrological states and fluxes are simulated and the results are probabilisti-
cally evaluated. This is done utilizing a conceptual hydrologic model widely used
operationally in the U.S. in all thirteen river forecast centers (RFCs).

3 Generating Satellite Precipitation Ensemble

The ensemble generation of satellite product in this study builds on previous stud-
ies conducted by Steiner, et al., (2003), Hong, et al., (2006) and Moradkhani, et al.,
(2006). As stated earlier, the ground radar rain field is considered as reference (true
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field) and the satellite-based precipitation error is estimated by conditioning the pre-
cipitation realizations of the CCS-PERSIANN satellite estimate on the National
Weather Service WSR-88D stage IV data (see next section). The standard error
associated with satellite precipitation can easily be calculated as follows:

σe

√

Var
(

P̂AT − Pref
AT

)

(1)

Where P̂AT is the satellite-based rainfall averaged over area A for the period of T,
and Pref

AT is the radar estimated rainfall over the same spatial and temporal domain.
Following (Steiner, et al., 2003), the spatial coverage is substituted by spatial scale
L which is the side length of A. After calculating the standard error represented in
(1) the error model is devised by a power law multivariate function where the error
is a function of spatial scale L, temporal coverage T and the precipitation intensity
of P̂ over the spatiotemporal scale of consideration. As illustrated in detail in Hong,
et al., (2006), the error model is given as:

σe = f

(
1

L
,
	t

T
,P

)

= a ·
(

1

L

)b

·
(

	t

T

)c

(P̂)d (2)

Where, 	t = T/N is the satellite sampling frequency assuming that the satellite
makes N visits over area A during the period of T.

Calibrating error model (2) for various spatial and temporal scales and also pre-
cipitation magnitudes yields the parameters a, b, c, and d. As depicted in Hong,
et al., (2006), the spatial scale ranging from 0.04 to 0.96◦ and temporal scale ranging
from hours to days with associated precipitation rate P̂ were used in the calibra-
tion process for the central part of US where our study river basin is located in the
southeast part of the domain.

Considering the multiplicative nature of error in precipitation data, the CCS
satellite product is assumed to be lognormally distributed with mean μX = P̂ and
standard deviation of σX = σe. In other words, the log transformation of CCS data
transforms the data to Gaussian distribution N(μLX,σ LX) where μLX and σ LX are
the mean and standard deviation of the transformed data respectively and can be
calculated as follows:

μLX = ln

⎛

⎝
μ2

X
√

μ2
X + σ 2

X

⎞

⎠ (3)

σLX =
√
√
√
√ln

(

σ 2
X

μ2
X

+ 1

)

(4)

Now, precipitation ensemble can be generated using the lognormal distribution
for a desired ensemble size, n:
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P̂ens = log N(μLX ,σLX ,n) (5)

Which is equal to:

P̂ens = exp (σLX ∗ εi + μLX) and i = 1:n (6)

Where, ε is normally distributed random variable with zero mean and standard
deviation of 1, i.e. ε~N(0,1).

4 Study Basin and Datasets

The study area selected is the Leaf River Basin (1944 Km2) located north of Collins,
Mississippi, United States which has been widely used in various studies (see
Moradkhani and Sorooshian, (2008) for list of references) (Fig. 1).

Fig. 1 The location of Leaf River basin

The satellite-based precipitation data was based on the PERSIANN-CCS
(Precipitation Estimation from Remotely Sensed Information Using Artificial
Neural Networks – Cloud Classification System) product (Hong, et al., 2004). The
PERSIANN is a satellite infrared-based algorithm that produces global estimates
of rainfall based on infrared brightness temperature image provided by geostation-
ary satellites. These data covers 50◦S–50◦N globally and an improved version of
PERSIANN algorithm estimates rainfall at spatial and temporal resolution of 0.04
× 0.04◦ and 30 min respectively. Five years of data from 2001 to 2005 was extracted
and used for this study from (http://hydis8.eng.uci.edu/CCS/).

The other rainfall product used to estimate the error associated with the satellite
product, is the National Weather Service WSR-88D Stage IV radar rainfall data.
The Next generation weather radar (NEXRAD, formally known as the Weather
Surveillance Radar-1988 Doppler -WSR-88D) of the United States provides precip-
itation data are obtained from 158 Weather radar deployed by the Weather Service
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Agency across the country. The data was acquired from NCEP (National Center
for Environmental prediction) for the same period and the spatial domain as that of
PERSIANN-CCS and used here as reference (true) rainfall field.

The other hydrologic data sets used for the study were the rainfall from rain
gages and temperature data extracted from National Climate Data Center (NCDC)
and streamflow data from USGS for the period of 1948–2005. These data were
utilized for calibrating and validating the hydrologic model (see next section).

5 Hydrologic Model and Ensemble Streamflow Simulation

The Sacramento Soil Moisture Accounting Model (SAC-SMA) is the test model
utilized in this study. The model was originally developed at the California-Nevada
River Forecast Center located in Sacramento, California as a “Generalized Stream
flow Simulation System”, (Burnash, et al., 1973; Burnash, 1995) to ameliorate the
region’s operational capability of stream flow prediction. The model passed through
extensive development and testing on the other catchments in United States before
its streamflow simulation capability got adopted as major component of the National
Weather Service River Forecast System (NWSRFS).

The SAC-SMA model is a conceptual hydrologic model consisting of six sate
variables that represents the soil water content of the upper and lower soil mantels
in the form of free and tension water (Burnash, 1995). The soil moisture storages in

Fig. 2 Streamflow ensemble generated by propagating the ensemble of erroneous CCS-
PERSIANN rainfall. The shaded area represents the 95 percentile of the streamflow ensemble.
The solid circle and solid asterisk lines display the synthetic truth and deterministic simulation by
deriving the SAC-SMA model with radar rainfall and CCE data respectively
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both zones vary due to the non linear dynamics of precipitation, percolation, evap-
oration and lateral drainage. The working principle of the model designates that the
precipitation which falls on the impervious area of the catchment produces imme-
diately a direct runoff while the part that falls over pervious area of the catchment
infiltrates to the upper zone of the soil mantel. If there is water deficiency in the
upper zone of the soil, it gets absorbed till the tension water requirement is met and
then starts to flow as free water that percolates to meet the demand of the lower
zone. The model has 17 parameters of which 4 are considered fixed and the rest
are to be calibrated using the Shuffled complex Evolution (SCE-UA) optimization
algorithm developed at University of Arizona (Duan, et al., 1992).

As elaborated earlier, the ensemble of satellite-based precipitation data is gen-
erated over Leaf River Basin, Mississippi using Eq. (6) and the hydrologic model
is derived with this ensemble for the period of 2001–2005. For clarity we display
the ensemble streamflow generation for the portion of last year (2005) of analysis
in Fig. 2.

6 Results with Statistical Ensemble Verification

In this section, we define the criteria used to assess the performance of ensem-
ble model simulations/predictions. The common goal in hydrologic predictions
is to maximize the accuracy and reliability. There exist various qualitative and
quantitative methods to measure the model performance. Root Mean Square Error
(RMSE), Absolute Bias (ABS) and Nash Sutcliffe Estimator (NSE) are commonly
used for evaluating the accuracy (association of the expected value) of determin-
istic predictions with observation. In this study, we employed a number of criteria
including Normalized Root Mean Square Error Ratio (NRR), Ranked Probability
Skill Score (RPSS), Probability of Detection (POD) and False Alarm Ratio (FAR)
to evaluate the model performance probabilistically. In probabilistic predictions,
it is desired that the probability density function (PDF) of the predictions and
observations are consistent.

Model error can be interpreted as model’s failure to accurately fit the observations
(here hydrologic model response where the model derived by radar rainfall). An
ensemble with perfect reliability in an ensemble forecast system is the one that is
statistically consistent with the verifying analysis (observations). In other words, in
a perfectly reliable ensemble system, observations are expected to be statistically
indistinguishable from the forecast members. A useful measure in assessing the
effectiveness of the ensemble method in prediction is a comparison between the
spread of an ensemble and the ensemble mean forecast error. The deficiency in
spread is taken as a measure of the uncertainty associated with the ensemble mean.
The ensemble spread can be diagnosed using rank histograms. Rank histograms
describe the probability that an observation falls within the n+1 intervals defined by
an ordered series of n ensemble members (Toth, et al., 2003). As explained in detail
by Hamill, (2001), the desired situation is that the observation falls in each of the
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n+1 intervals equally likely. A reliable or statistically consistent ensemble is the one
that yields the rank histogram close to flat.

A simpler procedure to investigate the quality of ensemble is by means of NRR.
(Moradkhani, et al., 2006, 2005a) used NRR according to Anderson (2001) to mea-
sure the ensemble dispersion for indicating how confidently the ensemble mean
could be extracted from the ensemble spread. According to this method, the ratio
of the time-averaged RMSE of the ensemble mean, R1 to the mean RMSE of the
ensemble members, R2 is calculated and then the ratio is normalized by E[Ra] =
√

(n+1)
2n . This factor shows if the observation is statistically indistinguishable from n

ensemble members (Anderson, 2001).
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Where, n and T are the ensemble size and length of analysis respectively.
It is desired that the ensemble yields NRR = 1. However, NRR > 1 indicates that

the ensemble has too little spread, and NRR < 1 is an indication of an ensemble
with too much spread. NRR of the streamflow ensemble was obtained annually for
the 5 years of simulation from 2001 to 2005. As seen in Fig. 3 the NRR’s for all
years are above one meaning that the streamflow ensemble is under dispersed. This
could be explained in part as a result of a large number of ensemble members having
zero precipitation creating very narrow ensemble of precipitation resulting in narrow
streamflow ensemble.

Several other forecast verification methods have been reported and are read-
ily available to use (for example see WWRP/WGNE Joint Working Group
on Verification http://www.bom.gov.au/bmrc/wefor/staff/eee/verif/verif_web_page.
htm), however, in this study we put our focus into using few of these methods.
Ranked Probability Score (RPS) is another widely used measure for evaluating the
quality of probabilistic predictions (Wilks, 2006). By definition RPS is the sum of
squared error of the cumulative probability forecasts averaged over multiple events.
In streamflow prediction, the probability forecast is usually expressed using a non-
exceedence probability forecast within pre-specified categories (i.e., 5, 10, 25, 50,
75, 90, 95 and 99% non-exceedence). The observed value for a given threshold
(forecast category) takes on the value of 1 if the observed flow value is less than
the threshold for that category. Otherwise, the observed value is 0. The discrete
expression of RPS is given as:
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Fig. 3 Annual Normalized Root Mean Square Error Ratio (NRR) for the streamflow ensemble
generated by CCS-PERSSIAN Satellite precipitation ensemble. The solid line shows the ideal
NRR=1

RPSt =
∑J

i=1

[

Ft
i − Ot

i

]2 (11)

Where Ft
i is the forecast probability at time t given by P(forecasti < threshi) and Ot

i
is the observed probability given by P(observed < threshi) where i is the probability
category.

The average monthly RPS is shown in Fig. 4. A small value for RPS implies that
the PDF of simulation is sharp and well calibrated. The RPS is a multi-category
extension of the Brier score (BS), which is similar to the RMSE and measures the
difference between a forecast probability of an event (F) and its occurrence (O),
expressed as 0 or 1 depending on if the event has occurred or not.

The average RPSt is calculated across all simulations over a verification period
t = 1: T and is written as:

RPS = 1

T

∑T

t=1
RPSt (12)

Verification statistics such as Root Mean Square Error and RPS are less mean-
ingful when used in absolute terms. Therefore, forecasters prefer to calculate the
relative scores and obtain skill scores which will range between 0 and 1 (Wilks,
2006; Jolliffe and Stephenson, 2003). Skill scores, like Rank Probability Skill Score
(RPSS) are usually computed as the percentage improvement over a reference score
(e.g. climatology) (Bradley, et al., 2004):
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Fig. 4 Average monthly Rank Probability Score for 5 years of ensemble analysis

Fig. 5 Probability of Detection (POD) as a function of non-Exceedence Probability
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Fig. 6 False Alarm Ration (FAR) as a function of non-Exceedence Probability

RPSS =
(

1 − RPS

RPSref

)

× 100 =
(

1 − RPS

RPSclimatology

)

× 100 (13)

Where RPSclimatology is the rank probability score for the observation, i.e. the
synthetic hydrologic response generated from radar rainfall.

Using the above definition, the RPSS was computed as 64.15% meaning that
the forecast (here, ensemble simulation) was 64.15% better than using climatology
(radar generated truth) when simulation is verified with multiple categories.

For categorical verification metrics, contingency tables were made (they are
not shown here) relative to different nonexceedence probability thresholds (pre-
specified multiple probability categories) explained earlier and the probability of
detection (POD) and False Alarm Ratio (FAR) were calculated (Figs. 5 and 6). For
example for the 95% nonexceedence probability which is associated with the flood
level of 39 m3/s, the POD is equal to 59% and the FAR is equal to 48%. Similar
POD and FAR can be extracted from Figs. 5 and 6.

7 Summary and Conclusion

In this chapter, we presented a study on applicability of satellite-based precipitation
estimation at watershed scale and demonstrated how the precipitation ensembles
were generated. The Monte Carlo propagation of precipitation ensemble into a
conceptual hydrologic model was made and the hydrologic response in terms of
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streamflow ensemble was obtained. To assess the usefulness of the product, the
ensemble streamflow simulation was probabilistically evaluated.

We utilized rainfall estimates from PERSIANN-CCS (Hong, et al., 2004) in this
study. PERSIANN-CCS is a high resolution precipitation estimation system cur-
rently operating at near real time mode (http://hydis8.eng.uci.edu/CCS/), and has
been generating precipitation data at 30-min time intervals and 0.04×0.04◦spatial
resolution since 2000. A nonlinear multivariate function (Eq. 2) was used according
to previous study (Hong, et al., 2006) to estimate the error associated with satel-
lite product. The error model was assumed to be dependent on spatial and temporal
resolution of the estimates with the associated rain rate. Using the error model, an
ensemble of satellite precipitation was generated assuming that the precipitation
data error is multiplicative and therefore lognormally distributed.

To assess the impact of this precipitation uncertainty on hydrologic response
in terms of streamflow, the precipitation ensemble was propagated into the SAC-
SMA model (a conceptual model currently operated in National Weather Service in
US). The resultant streamflow ensemble was statistically evaluated through various
probabilistic measures including Normalized RMSE, Rank Probability Skill Score
(RPSS), Probability of Detection (POD) and False Alarm Ratio (FAR).

This study aimed at demonstrating another application of satellite-based precipi-
tation product at the watershed scale streamflow simulation. As discussed earlier and
also seen through other chapters, similar efforts are underway for different satellite
precipitation products and different error models. Considering that one of the major
steps in hydrologic data assimilation efforts is to characterize the uncertainly in
forcing data (here, precipitation), responsible for the model states and fluxes uncer-
tainties, the importance of realistic characterization of forcing data uncertainty is
perceived.
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Applications of TRMM-Based Multi-Satellite
Precipitation Estimation for Global Runoff
Prediction: Prototyping a Global Flood
Modeling System

Yang Hong, Robert F. Adler, George J. Huffman and Harold Pierce

Abstract To offer a cost-effective solution to the ultimate challenge of building
flood alert systems for the data-sparse regions of the world, this chapter describes
a modular-structured Global Flood Monitoring (GFM) framework that incorporates
satellite-based near real-time rainfall flux into a cost-effective hydrological model
for flood modeling quasi-globally. This framework includes four major components:
TRMM-based real-time precipitation, a global land surface database, a distributed
hydrological model, and an open-access web interface. Retrospective simulations
for 1998–2006 demonstrate that the GFM performs consistently at catchment levels.
The interactive GFM website shows close-up maps of the flood risks overlaid on
topography/population or integrated with the Google-Earth visualization tool. One
additional capability, which extends forecast lead-time by assimilating QPF into the
GFM, also will be implemented in the future.

Keywords Flood · Satellite Precipitation · Global flood modeling · TRMM

1 Introduction

Floods impact more people globally than many other type of natural disaster (World
Disasters Report, 2003) and they usually return every year in flood-prone regions. It
has been established by experience that the most effective means to reduce the prop-
erty damage and loss of life caused by floods is the development of flood warning
systems (Negri et al., 2004). However, progress in large scale flood warning has been
constrained by the difficulty of measuring the primary causative factor, i.e. rainfall
fluxes, continuously over space (catchment-, national-, continental-, or even global-
scale areas) and time (hourly to daily), due largely to insufficient ground monitoring
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networks, long delay in data transmission and absence of data sharing protocols
among many geopolitically trans-boundary basins (Hossain, and Lettenmaier, 2006;
Biemans et al., 2009). In addition, in-situ gauging stations are often washed away
by the very floods they are designed to monitor, making reconstruction of gauges a
common post-flood activity around the world (Asante et al., 2007), e.g., Hurricane
Katrina in 2005 and Mozambique flood in 2000.

In contrast, space-borne sensors inherently estimate precipitation across interna-
tional basin boundaries and safe against recurrent flooding. In reality, satellite-based
precipitation estimates may be the only source of rainfall information available over
much of the globe, particularly for developing countries in the tropics where abun-
dant extreme rain storms and severe flooding events repeat every year. For instance,
the Mekong River Commission, a partner in the Asia Flood Network, began down-
loading Tropical Rainfall Measuring Mission (TRMM) real-time data since 2003 to
help calculate rainfall for the international Mekong River basins, located in China,
Cambodia, Laos, Thailand, and Vietnam. These facts highlight the opportunity and
need for researchers to develop alternative satellite-based flood warning systems
that may supplement in-situ infrastructure for uninterrupted monitoring of extreme
rainfall and dissemination of flood alerts when conventional data sources are denied
due to natural or administrative causes (Asante et al., 2007; Hong et al., 2007a).

Today, multi-satellite imagery acquired and processed in real time can now pro-
vide near-real-time rainfall fluxes at relatively fine spatiotemporal scales (kilometers
to tens of kilometers and 30-min to 3-h). These new suites of rainfall products have
the potential for analyzing sub-daily variations and extreme flooding events. Shown
in Fig. 1 is an example of quasi-global “heavy rain” event maps from TRMM web-
site. The map shows the areas (in red) over land that has accumulated rain totals
from a flow of TRMM-based real-time precipitation estimation above a pre-selected
threshold. Using such a simple rainfall threshold-based rain map, researchers and
decision-makers alike can look at the evolution of regional to global scale events on
a daily basis.

While these global heavy rain outlooks on emerging flooding events are poten-
tially useful, this rainfall threshold-based approach has limited implications from a
terrestrial hydrologic perspective. First, they are independent of terrain, soil type,
soil moisture and vegetation. Furthermore, they do not take into consideration the
local/regional hydrologic regimes that determine the pertinent rainfall-runoff rela-
tionships. As a result, such a simple statistical approach of thresholds is inadequate
in capturing the spatiotemporal variability of estimated runoff and consequently,
does not optimally extract valuable hydrologic information contained in rainfall
fluxes estimated by satellites. Improvement is particularly important in anticipating
the planned Global Precipitation Measurement (GPM) mission that beckons hydrol-
ogists as an opportunity to improve flood prediction capability for medium to large
river basins, especially in the underdeveloped world where ground instrumentation
is absent. The GPM mission (http://gpm.gsfc.nasa.gov) is envisioned as a constel-
lation of operational and dedicated research satellites to provide microwave-based
precipitation estimates for the entire globe. Hossain and Lettenmaier (2006) have
argued that before the potential of GPM can be realized, there are a number of hydro-
logic issues that must be addressed prior to the adoption of global satellite rainfall
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datasets in hydrologic models. Accuracy, in particular, will depend on the sensi-
ble use of the spatiotemporally varying rainfall fluxes as derived from satellites and
not on the accumulated rainfall volumes that are currently adopted in thresholding
techniques.

This chapter describes a module-structured framework for Global Flood
Modeling (GFM) system that integrates the TRMM-based multi-satellite forc-
ing data (Huffman et al., 2007) with a cost-effective hydrological model (Hong
et al., 2007b), parameterized by a tailored geospatial database, in an effort to
evolve toward a more hydrologically-relevant flood prediction with direct rainfall
input from real-time satellite nowcasting or quantitative precipitation forecasting
(QPF). The GFM is now running in real-time in an experimental mode with results
being displayed on the TRMM website http://trmm.gsfc.nasa.gov/publications_dir/
potential_flood_hydro.html. A major outcome of this framework is the availabil-
ity of a global overview of flooding conditions that quickly disseminate through
an open-access web-interface. We expect these developments in utilizing satellite
remote sensing technology to offer a practical solution to the challenge of building
a cost-effective early warning system for data-sparse and under-developed areas.
Additionally, through the use of more hydrologically relevant approaches, we hope
this framework will spur meteorologists engaged in satellite rainfall data produc-
tion to communicate more effectively with hydrologic modelers for development
of GPM satellite rainfall algorithms (Hong et al., 2006; Hossain and Lettenmaier,
2006).

Fig. 1 TRMM rainfall threshold-based flood potential Map: red regions show areas that have
received a 24-hour rainfall accumulation (May 2, 2003) > 35 mm

2 A Quasi-Global Flood Modeling Framework

Shown in Fig. 2 is the conceptual framework for the GFM that puts forward a com-
putationally simplified hydrological model to predict floods quasi-globally using a
combination of data from the TRMM-based multi-satellite products, Shuttle Radar
Topography Mission (SRTM), and other global geospatial data sets such as soil
property and land cover types. This framework is modular in design and flexi-
ble that permits changes in the model structure and in the choice of components.
It includes four major components: (1) multi-satellite high-resolution precipitation
products; (2) characteristics of land surface including elevation, topography-derived
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hydrologic parameters such as flow direction, flow accumulation, basin, and river
network; (3) spatially distributed hydrological models to infiltrate rainfall and route
overland runoff; and (4) an implementation interface to relay the input data to the
models and display the flood inundation results on website. The simulation results
must be updated at regular intervals (~3 h), requiring computational efficiency in
transferring space-borne observations into the operational web-based flood map-
ping interface, even at the expense of some loss of detail and accuracy. Another
note is that the flexible module-structured framework also allows for optimal use of
grid-based precipitation flux fields from multiple sources, including in situ, satellite,
and numerical model forecasts.

2.1 Satellite-Based Precipitation Products

Precipitation displays high space-time variability that requires frequent observations
for adequate representation. Such observations are not possible through surface-
based measurements over much of the globe, particularly in oceanic, remote, or
developing regions (Huffman et al., 2007). Continued development in the estima-
tion of precipitation from space has culminated in sophisticated satellite instruments
and techniques to combine information from multiple satellites to produce precip-
itation products at long-term coarse scale (Adler et al., 2003) and short-term finer
time-space scales useful for hydrology including flood analysis (Sorooshian et al.,
2000; Kidd et al., 2003; Joyce et al., 2004; Hong et al., 2004; Turk and Miller,
2005; Huffman et al., 2007). The key data set used in the framework is the TRMM
Multi-satellite Precipitation Analysis (TMPA; Huffman et al., 2007), which provides
a calibration-based sequential scheme for combining precipitation estimates from
multiple satellites, as well as gauge analyses where feasible, at fine scales (0.25 ×
0.25◦ and 3-hourly) over the latitude band 50◦N-S (http://trmm.gsfc.nasa.gov).

The TMPA is a TRMM standard product computed for the entire TRMM period
(January 1998–present) and is available both in real time and retrospectively.
Although Huffman et al. (2007) verified that the TMPA is successful at approxi-
mately reproducing the surface-observation-based histogram of precipitation, as
well as reasonably detecting large daily events, properly characterizing the impact of
the rainfall estimation error structure on hydrological response uncertainty at small
scales remains to be carried out (Voisin et al., 2008).

2.2 A Central Geospatial Database

A central geospatial database describing the land surface (topography, land cover,
and soils etc.) is archived to derive comprehensive parameter sets for linking
the precipitation input with hydrological flood simulation models. The basic
topography data considered in this system include NASA SRTM (http://www2.
jpl.>nasa.gov/srtm/) and US Geological Survey’s GTOPO30 (http://edcdaac.
usgs.gov/gtopo30/gtopo30.html). The 30 m horizontal resolution provided by
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SRTM data is a major breakthrough in digital mapping of the world, particu-
larly for large portions of the developing world. The digital elevation data are
used to derive topographic factors (slope, aspect, curvature etc) and hydrologi-
cal parameters (river network, flow direction, and flow path). Global soil property
data sets are taken from Digital Soil of the World published in 2003 by the Food
and Agriculture Organization of the United Nations (http://www.fao.org/AG/agl/
agll/dsmw.htm) and the International Satellite Land Surface Climatology Project
Initiative II Data Collection (http://www.gewex.org/islscp.html). The soil parame-
ters used in this study are soil property information (including clay mineralogy and
soil depth) and 12 soil texture classes, following the U.S. Department of Agriculture
soil texture classification (including sands, loam, silt, clay, and their fractions). The
Moderate Resolution Imaging Spectroradiometer (MODIS) land classification map
is used as proxy of land cover/uses at its highest (250-m) resolution (Friedl et al.
2002). A large proportion of the supporting data for implementing the hydrological
models is also available from the NASA Goddard Global Land Data Assimilation
System (Rodell et al., 2004).

2.3 A Cost-Effective Hydrological Simulation Model

Many hydrological models have been introduced in the hydrological analysis to
predict runoff (Singh, 1995) but few of these have become common planning or
decision-making tools (Choi et al., 2002), either because the data requirements are
substantial or because the modeling processes are too complicated for operational
application. Our initial pool of candidate hydrological simulation models included
a number of distributed hydrological models (Singh, 1995; Chen et al., 1996; DHI,
1999; Liang et al., 1994; Beven and Kirkby, 1979; Coe, 2000 etc.). However, many
of these models are extremely time-consuming when used to update global flood
simulation results at sub-daily scale. They require not only more parameterization of
the hydrological processes, but additional climate variables such as air temperature
or net radiation, vapor pressure and wind speed, which are not always available in
real time and also introduce uncertainty due to their unknown error characteristics.
Trade-offs between efficiency and complexity in terms of the quantity and quality of
the data available to meet model input requirements and the modeling components
to implement (Choi et al., 2002) argue for a more simplified model in the current
works that:

(1) Treats only the most important processes related to the hydrological problem to
be considered (i.e., flood);

(2) Allows the model to evolve as more data become available or as the modeler
gains insight during the modeling process; and

(3) is ready to use, accepting a certain loss of detail and accuracy.

In fact, such simplification is already an accepted methodology among hydrolo-
gists to allow the hydrologic modeling effort evolve to the global solution through an
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iterative process (Klemes, 1983). Additionally, for rainfall-runoff simulation alone,
parsimonious models often perform as well as sophisticated ones (Jian et al., 2003;
Duan et al., 2003). Hence, we adopt the Hydrologic Engineering Center (HEC)
Hydrologic Modeling System (HMS) developed by US Army Corps of Engineers
(USACE, 2002) for prototyping the Global Flood Model. The HEC-HMS improves
upon the capability of the predecessor HEC-1, providing additional capabilities for
distributed modeling and continuous simulation (USACE, 2002). Its simplicity is
especially critical for the vast un-gauged regions and geopoliticially trans-boundary
basins of the world. The following section briefly describes the major modifica-
tion of the Natural Resource Conservation Services-Curve Number (NRCS-CN)
method in the HEC-HMS for incorporating TRMM-based real-time satellite rainfall
for rainfall-runoff simulation.

Fig. 2 A modular structured framework for global flood monitoring system: (1) precipitation
input; (2) surface geospatial database; (3) hydrological models; and (4) an implementation interface

3 Modified NRCS-CN Method for Global Rainfall-Runoff
Simulation

3.1 Mapping a Spatially Distributed Global NRCS-CN

In a literature review, Choi et al. (2002) concluded that NRCS-CN has useful
skill because it responds to major runoff-generating properties including soil type,
land/use/treatment, and soil moisture conditions. NRCS-CN has been success-
fully applied to situations that include simple runoff calculation (Heaney et al.,
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2001), assessment of long-term hydrological impact on land use change (Harbor,
1994) for tens of years, stream-flow estimation for watersheds with no stream flow
records (Bhaduri et al., 2000), and comprehensive hydrologic/water quality simu-
lation (Srinivasan and Arnold, 1994; Engel, 1997; Burges et al., 1998; Rietz and
Hawkins, 2000). Recently, Curtis et al. (2007) used satellite remote sensing rain-
fall and gauged runoff data to estimate CN for basins in eastern North Carolina.
Harris and Hossain (2008) found that simpler approaches such as the NRCS-CN
method to be more robust than more complicated schemes for the levels of uncer-
tainty that exist in current satellite rainfall data products. As such, we adopt the
NRCS-CN to estimate a first-cut global runoff by taking advantage of the multiple
years of rainfall estimates from the TRMM Multi-satellite Precipitation Analysis
(Huffman et al., 2007).

The NRCS-CN method generates runoff as a function of precipitation, soil
property, land use/cover, and hydrological condition. The later three factors are
empirically approximated by 1 parameter, CN. In this case, the set of Equations
(1) and (2) is used to partition rainfall into runoff and infiltration:

Q = (P − IA)2

(P − IA + PR)
(1)

PR = 25,400

CN
− 254 (2)

where P is rainfall accumulation (mm/day); IA is initial abstraction; Q is runoff
generated by P; PR is potential retention; CN is the runoff curve number, with higher
CN associated with higher runoff potential; and IA was approximated by 0.2 PR.

CN values are approximated from the area’s hydrologic soil group (HSG), land
use/cover, and hydrologic condition, the two former factors being of greatest impor-
tance in determining its value (USDA, 1986). Following methodology adopted from
the standard lookup tables in USDA (1986) and NEH-4 (1997), we derived a global
CN map from infiltration characteristics of soils classified by USDA-NRCS (2005)
and the MODIS land cover classification, at long-term averaged soil wetness condi-
tions (Hong and Adler, 2008). Thus, for a watershed on a coarse grid, a composite
CN can be calculated as:

CNcom =
∑

AiCNi
∑

Ai
(3)

In which CNcom is the composite CN used for runoff volume computations; i = the
index of subgrids or watershed subdivisions. Ai = the drainage area of area i.

3.2 Time-Variant NRCS-CN

Note that the CN values obtained from Equations (1), (2) and (3) are for the “fair”
hydrologic condition from standard lookup tables, which are used primarily for
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design applications. However, for the same rainfall amount there will be more runoff
under wet conditions than dry conditions. In practice, lower and upper enveloping
curves can be computed to determine the range of CN according to the Antecedent
Moisture Conditions (AMC):

CNI
i = CNII

i

2.281 − 0.01281 CNII
i

(4)

CNIII
i = CNII

i

0.427 + 0.00573 CNII
i

(5)

Where upper subscripts indicates the AMC, I being dry, II normal (average), and III
wet (Hawkins, 1993). The change of AMC is closely related to antecedent precip-
itation (NEH-4, 1997). We apply the concept of an Antecedent Precipitation Index
(API) to provide guidance on how to estimate the variation of CN values under dry
or wet antecedent precipitation conditions. Kohler and Linsley (1951) define API
as:

API =
−T
∑

t=−1

Ptk
−t (6)

Where T is the number of antecedent days, k is the decay constant, and P is the pre-
cipitation during day t. The model is also known as “retained rainfall” (Singh 1989).
Decay constant k is the antilog of the slope on a semi-log plot of soil moisture and
time (Heggen, 2001). API practice suggests that k is generally between 0.80 and
0.98 (Viessman and Lewis 1996). Here we use decay constant k as 0.85 for demon-
stration purpose. API generally includes moisture conditions for the previous 5 days
(or pentad; NEH-4, 1997). In order to obtain time-variant CN, the site-specified API
is first normalized as:

NAPI =

−T∑

t=−1
Ptk−t

P
−T∑

t=−1
k−t

(7)

Where T=5 for pentads, the numerator is API, and the denominator is a nor-
malizing operator with two components: average daily precipitation P and the
∑

k−tseries. The “dry” condition is defined as NAPI < 0.33, the “wet” condition
is defined as NAPI>3, and the intermediate range 0.33~3 is the “fair” hydrolog-
ical condition. By definition, the surface moisture conditions are delineated as
dry (or wet) if any pentad API is less than one third (or larger than three times)
of the climatologically averaged pentad API, and fair conditions for all others.
Summarizing, the CN can be converted to dry, fair, or wet condition using Equations
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(4), (5), (6) and (7) according to the moisture conditions approximated by the
pentad NAPI. Using the multi-year (1998–2006) satellite-based precipitation dataset
from NASA TRMM, the 9-year climatological pentad API is shown in Fig. 3a.
Thus, given any date, the pentad NAPI can be determined and thus CN can be
updated with Equations (4), (5), (6) and (7). For example, on August 25, 2005,
the pentad rainfall accumulation, pentad NAPI, resulting hydrological conditions
(dry, fair, or wet), and the updated CN on the same date are shown in Figs. 3b–e,
respectively. Note that part of text in Section 3.2 is from previous publication by
Hong et al., 2007b.

Fig. 3 (a) Climatological
pentad antecedent
precipitation index (API)
averaged over 9 years
(1998–2006). (b) Pentad
antecedent rainfall
accumulation (mm) ending
on August 25, 2005. (c)
Pentadnormalized API
(NAPI) on August 25, 2005.
(d) Hydrological condition,
with –1, 0, 1, and 2
corresponding to no data, dry,
fair, and wet conditions,
respectively, determined by
NAPI as of August 25, 2005.
(e) Updated CN on August,
25 2005. (image source:
Hong et al., 2007b)
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4 Implementation of the GFM

4.1 Retrospective Simulation

The time-variant global CN map enables estimation of runoff by partitioning grid-
ded satellite-based precipitation estimates, particularly useful at places lacking
in-situ gauge data. Surface topography data from the geospatial database are used
to define river networks and sub-catchments on a global basis such as shown in
Fig. 4. Flow directions and flow speed are also calculated from the global DEM,
soil, and land cover databases described in Section 2.2 driven by multiyear remote
sensing rainfall, the NAPI and NRCS-CN methods are first used to compute the sur-
face runoff for each grid independently. The first-order linear differential equation is
used for routing the overland flow to the watershed outlet through downstream cells
(Olivera et al., 2000; US Army Corps of Engineers, 2000). Quasi-global runoff data

Fig. 4 Global Basins and River Networks
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are thus simulated from this framework over the entire time span (1998–2006) of
TMPA dataset at 3-h time scale. The simulated surface runoff is water depth with
unit mm/3h. In general, observed river discharge can be used to evaluate the GFM
simulation by dividing the contributing drainage area (Yilmaz et al., 2008).

The TRMM-simulated runoff (TRMM-CN) is compared with the three sets of
Global Runoff Data Center (GRDC) runoff fields: observed (OBS), water bal-
ance model (WBM)-simulated, and composite (CMP) from the OBS and WBM
(Fekete et al., Global Composite Runoff Data Set (v1.0), 2000). The WBM used
the water balance model of Thornthwaite and Mather [1955] with a modified poten-
tial evaporation scheme from Vorosmarty et al. [1998], driven by input monthly air
temperature and precipitation from Legates and Willmott [1990a, 1990b]. Table 1
shows the TRMM-CN runoff corresponds more closely with the WBM, having a rel-
atively high correlation and low error. An intercomparison with the GRDC runoff
observation demonstrates that the WBM has a moderate advantage over the TRMM-
CN runoff: The correlation and root-mean-square difference (RMSD) between the
GRDC OBS and WBM are 0.81 and 159.7 mm/year (or 0.44 mm/d), respectively,
which is slightly better than the TRMM-CN case (Table 1).

Figure 5a shows the annual mean runoff (mm/year) driven by TRMM daily pre-
cipitation for the same 9-year period in comparison with the GRDC-observed runoff
climatology (Fig. 5b). Note that the gray areas indicate no data or water surface
in Figs. 5a and b. By averaging areas covered by both TRMM-CN and GRDC
runoff data, Fig. 5c shows the TRMM-CN runoff zonal mean profile against the
OBS, WBM, and CMP. In general, the TRMM-CN zonal mean runoff follows more
closely with the three GRDC runoff profiles in the Northern Hemisphere than in the
Southern Hemisphere. We believe that this difference is the result of having many
more samples in the Northern Hemisphere as well as more accurate GRDC data.
Considering the TRMM-CN runoff difference as a function of basin area shows the
TRMM-CN performance deviates more for basins smaller than 10,000 km2, with
significantly better agreement for larger basins (Fig. 6).

Figure 7a shows the locations of GRDC gauge stations, which represents 72%
catchment coverage of actively discharging land surface (excluding Antarctica, the
glaciated portion of Greenland and the Canadian Arctic Archipelago). Figure 7b
provides the scatterplot for all annual mean rainfall and runoff matchups of GRDC

Table 1 TRMM-CN runoff climatology in the latitude band 50S–50N compared to GRDC
observed, water balance model, and the later two composite runoffa

GRDC runoff climatology

Statistics OBS WBM CMP
Corr. Coef. 0.75 0.80 0.79
Bias ratio 1.28 1.12 1.12
RMSD 0.56 mm/day 0.48 mm/day 0.51 mm/day

aAbbreviations are OBS, observed; WBM; water balance model; CMP, com-
posite; and RMSD, root-mean-square difference (Source: Hong et al., 2007b).
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Fig. 5 (a) Annual mean runoff (mm/year) simulated using NRCS-CN methods from TRMM esti-
mates for the period 1998–2006. (b) GRDC-observed runoff (mm/year). (c) Runoff zonal mean
profiles comparing TRMM precipitation (green) and simulated runoff (red) to GRDC runoff (blue)
from the (left) observed, (middle) WBGS, and (right) composite data sets. Note the gray areas in
Figs. 3a and b indicate no data or water surface (image source: adapted from Hong et al., 2007b)

and TMPA. Both the rainfall and runoff scattergrams are quite consistent, with cor-
relation coefficient above 0.8. However, it also indicates that TMPA overestimated
at high range of rainfall and low range of runoff values, causing positive bias of 0.57
and 7.74% comparing to GRDC, respectively. The likely explanation is that a wind
loss correction is applied to the gauge data used in the TMPA, but not to the GRDC.
In contrast to the point comparison in Fig. 7, basin-averaged runoff scattergrams in
Fig. 6 show that TRMM runoff significantly underestimated runoff over small basins
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Fig. 6 TRMM-CN (a) runoff difference distribution and (b) root-mean-square difference (RMSD)
as a function of basin area (image source: adapted from Hong et al., 2007b)

Fig. 7 Comparison of TRMM-CN annual runoff with GRDC gage stations



258 Y. Hong et al.

and increasingly performed better for larger basins. For more evaluation results of
this simulation framework, please refer to Hong et al., 2007b.

4.2 Implementation Interface

Since 2007, the GFM trial version has been operating at near real-time on NASA
TRMM website in an effort to offer a practical cost-effective solution to the
ultimate challenge of building flood early warning systems for the data-sparse
regions of the world. A hydrograph of rainfall-runoff time series is simulated
for each grid and basin; and the hydrograph estimates are the basis for a
web-based interface that displays color-coded maps of flood potentials by com-
paring current surface runoff with a predefined water depth or bankfull flow
value. The interactive GFM website shows close-up maps of the flood risks
overlaid on topography and integrated with the Google-Earth visualization tool
(http://trmm.gsfc.nasa.gov/publications_dir/potential_flood_hydro.html).

Shown in Fig. 8 are examples of flood events detected and displayed by the
framework. As shown in the example in Fig. 8, the GFM diagnosed flooding events
of February 2007 in Mozambique as the result of tropical cyclone Favio. This
event was verified by Reuters News reports: 69+ dead and more than 120,000 lives
affected. The hydrograph estimates are the basis for a Web-based interface that dis-
plays color-coded maps of flood risk by comparing current surface runoff in each
grid box with a predefined water depth. Figure 8c shows a map of excess water
depth due to heavy rainfall from tropical cyclone George that caused widespread
flooding in the northwestern Northern Territory, Australia, on March 5, 2007. This
event is shown as an example of the current Web interface: a quasi-global inter-
active map with flood potential areas highlighted in red and close-up maps of the
flood potential overlaid on topography or integrated with Google-Earth visualization
tools.

Also shown in Fig. 8d is the 9-year rainfall-runoff simulation results over the
Limpopo Basin, Southern Africa. The runoff spikes in February 2000 indicate the
catastrophic Mozambique flood disaster within the TMPA’s limited 9-year span.
On February 27, floods inundated low farmlands in the worst flooding event in
Mozambique for last 55 years (ARPAC, 2000). Two million people were affected
by the floods, 50,000 lost homes, and about 800 were killed. The flood also had
a tremendous effect on agriculture in Mozambique, destroying 1,400 km2 of cul-
tivated and grazing land, leaving 113,000 small farming households with nothing,
and damaging 90% of the country’s functioning irrigation infrastructure. One year
later, another severe flood occurred in late February, 2001, caused by heavy seasonal
rains (Fig. 7d), which killed 52 people and displaced almost 80,000 in the cen-
tral Zambezi Valley (FAO, 2001). Figure 8b shows the 2007 flood in Mozambique,
which worsened when Category 4 Cyclone Favio made landfall on February 22.
The United Nations Office for the Coordination of Humanitarian Affairs reported
approximately 121,000 people displaced. However, US Agency for International
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Development (USAID) cited Mozambique’s response to 2007 flood as a success:
“Deaths from this year’s disasters were kept to a minimum – less than 100 – due
largely to the timely response and efficiency of Mozambican emergency opera-
tions”, according to USAID regional director, Jay Knott in Mozambique. Overall,
US humanitarian and development aid to Mozambique amounted to $150 million in
2006, with $200 million sought by the Bush administration for 2007. The TRMM
website (http://trmm.gsfc.nasa.gov) provides more extreme rainfall and flooding
examples.

Fig. 8 Implementation of GHS-Flood: (a) Example of 7-day accumulation of real-time TMPA
rainfall, and (b–d) examples of GHS-Flood detection/visualization results
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5 Summary and Discussion

5.1 Summary

Satellite rainfall observations acquired in real time are valuable in improving our
understanding of the occurrence of flood hazardous events and in lessening their
impacts on the local economies and reducing injuries around the world. This chap-
ter described a practical modular-structured framework, Global Flood Modeling
(GFM) that predicts surface runoff by incorporating NASA TRMM-based multi-
satellite real-time precipitation estimates into a cost-effective hydrological model
that includes parameters from high-resolution topography and other geospatial
data sets. As shown in Fig. 2, this framework includes four major components:
(1) a real-time satellite-based precipitation measuring system; (2) a geospatial
database containing global land surface characteristics; (3) a spatially distributed
hydrological model; and (4) an open-access web interface.

Given the increasing availability of global geospatial data describing land sur-
face characteristics, we adopt the HEC-HMS developed by US Army Corps of
Engineers (USACE, 2002). The HEC-HMS improves upon the capability of the
predecessor HEC-1, providing additional capabilities for distributed modeling and
continuous simulation. The runoff generation method is the NRCS-CN that deter-
mines runoff as a function of precipitation, soil property, land use/cover, and
hydrological conditions. The later three factors are empirically approximated by
one parameter, the CN. First, this study estimated a global CN map primarily
based on soil property and land use/cover information under the “fair” mois-
ture condition. Then using Antecedent Precipitation Index (API) from TRMM
rainfall as a proxy of initial moisture conditions, this study further estimated
time-variant CN values bounded by dry and wet moisture conditions approxi-
mated by pentad normalized API (Hong et al., 2007b). Finally, driven by 3-h
TMPA precipitation estimates, quasi-global runoff was simulated with this frame-
work for period of 1998–2006. Compared to GRDC runoff, this framework
provides consistent estimation of runoff at both stations and medium-to-large
basins. Currently, the framework operationally runs in near-real-time and updates
flood conditions every 3 hours with the most current satellite-based rainfall maps
(http://trmm.gsfc.nasa.gov/publications_dir/potential_flood_hydro.html).

5.2 Discussion and Directions of Alternative Flood Modeling Work

Our effort is a first approach to understand a challenging problem that lies ahead
in advancing satellite-based global runoff monitoring. Thus, the use of NRCS-CN
should not be construed as a call for replacement of other more advanced methods
for rainfall-runoff simulation. We expect that the successes and limitations revealed
in this study will lay the basis for applying more advanced methods to capture
the dynamic variability of the hydrologic processes for global runoff monitoring
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in real time. Although this study is able to demonstrate the potential of using this
framework for quasi-global flood monitoring when driven by satellite-based rainfall
estimates, there remain several unanswered questions: First, among many methods
to estimate CN values, Hawkins (1993) recognized that remote sensing data may not
be adequate to define the “true” value of a CN. Thus, field surveys of basin character-
istics should be conducted wherever feasible in order to obtain “true” soil and land
cover data. Second, while this study recognized the uncertainty of the estimates of
actual CN values and assumed that they likely fall within the enveloping wet (upper)
and dry (lower) conditions approximated by the 5-day Normalized API, it may be
possible to adjust the CN more precisely to account for local or regional information
given their availability in the future. Finally, one major unaddressed hydrologi-
cal concern for rainfall-runoff applications of remotely sensed precipitation is the
thorough evaluation of satellite-based rainfall estimation error and its nonlinear
influence on rainfall-runoff modeling uncertainty in varying landscapes and climate
regimes (Hong et al., 2006; Hossain and Anagnostou, 2006; Villarini and Krajewski,
2007). Thus, while we conclude that this cost-effective framework seems to provide
a reliable tool when using state-of-the-art satellite precipitation data, we also urge
similar studies using more sophisticated hydrological models, particularly seeking
to serve the vast un-gauged regions and geopolitically trans-boundary basins of the
world. An alternative approach as described by Brakenridge et al. (2005) is also
encouraged to explore by the global flood monitoring community.

As an initial step to evolve toward a more hydrologically-relevant approach that
can make better use of the valuable information contained in the state-of-the-art
satellite precipitation data, the modular-structured framework allows the use of
new components and the integration of locally existing flood management tools
into a global flood alert system. One on-going activity is to continue calibrating
and regionalizing this system with local in-situ data when they become available.
Additionally, more complex hydrological models can be modified and implemented
at regional or local scales by subsetting the TRMM rainfall input data. An impor-
tant improvement to the GFM will be to link it to the NASA Land Information
System (LIS; Peters-Lidard et al., 2004), allowing for use of LIS databases, local
in-situ data, and various hydrological models. Particularly, we will utilize the LIS
platform to improve/regionalize the land surface modeling capability (e.g. VIC)
and the associated meteorological data. The LIS will provide three types of inputs
for local regionalization: (1) Initial conditions, which describe the initial state of
the land surface; (2) Boundary conditions, which describe both the upper (atmo-
spheric) fluxes or states also known as “forcings” and the lower (soil) fluxes or
states; and (3) Parameters, which are a function of soil, vegetation, topography,
etc., for the selected land surface models in order to predict terrestrial rainfall-
runoff processes. Early results of TMPA real-time rainfall application in VIC model
show that the TMPA-driven VIC hydrological model simulations were able to cap-
ture the flooding events and to represent low flows, although peak flows tended
to be biased upward (Su et al., 2008). After the successful launch and operation
of the Regional Visualization and Monitoring System (SERVIR) for Mesoamerica
(www.servir.net), the NASA Applied Science program has again partnered with
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United States Agency for International Development and The Africa Regional
Centre for Mapping of Resources for Development (RCMRD) to implement an
operational flood warning system as part of the SERVIR-Africa project. The ulti-
mate goal of the project is to build up disaster management capacity in East Africa
by providing local governmental officials and international aid organizations a prac-
tical decision-support tool in order to better assess emerging flood impacts and to
quantify spatial extent of flood risk, as well as to respond to such flood emergencies
more expediently. Although the results (Li et al., 2009) suggest that TMPA real-time
data can be acceptably used to drive hydrological models for flood prediction pur-
pose in Nzoia basin at resolution of 1-km grid scale after downscaling, continuous
progress in space-borne rainfall estimation technology toward higher accuracy and
higher spatial resolution is highly appreciated.

The current GFM uses normalized 5-day antecedent precipitation index as a
proxy of antecedent moisture conditions to provide initial soil wetness informa-
tion. In future, we will explore use of daily AMSR-E soil moisture data as initial
soil condition instead of the normalized antecedent precipitation index. One addi-
tional capability of the framework under consideration is to incorporate quantitative
precipitation forecasts (QPF) from NOAA Global Forecast System (GFS) or other
global forecasts to predict runoff within the short to medium ranges of lead time.
The increased lead time provided by this framework will be a major improvement
over in-situ monitoring infrastructures that may have to wait for delayed transmis-
sion of rainfall information from upstream countries and may be defeated by severe
weather. We expect work reported here to become increasingly fruitful and practical
with the advent of GPM-related products and research collaborations.
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Real-Time Hydrology Operations at USDA for
Monitoring Global Soil Moisture and Auditing
National Crop Yield Estimates

Curt A. Reynolds

Abstract Global precipitation, temperature, soil moisture, vegetation health, and
lake water heights data sets are several operational data sets continuously monitored
by crop analysts from the Foreign Agricultural Service (FAS) of USDA to identify
global weather and vegetation health anomalies that may affect national crop yield
and production in foreign countries. Three relatively new satellite-derived precipita-
tion data sets were recently introduced into the USDA/FAS crop monitoring system,
along with two new soil moisture products that utilize passive microwave (PMW).
Comparison results indicate no operational global precipitation data set is correct at
all times for all geographic areas and those that combine station gauge (SG), polar-
orbiting passive microwave and geo-stationary infrared (IR) data tend to perform
better.

Keywords Precipitation · Evapotranspiration · Soil moisture · Passive
microwave · Satellite radar altimetry · Crop yield estimates
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CMORPH CPC MORPHed precipitation
CPC Climate Prediction Center (NOAA)
DISC Data and Information Services Center (NASA)
DMSP Defense Meteorological Satellites Program
DSMW Digital Soil Map of the World
DSSAT Decision Support System for Agrotechnology Transfer
ECMWF European Centre for Medium-Range Weather Forecast
EOS Earth Observing System (NASA)
EnKF Ensemble Kalman Filter
ERS Economic Research Service (USDA)
ESSIC Earth System Science Interdisciplinary Center (UMD)
FAS Foreign Agricultural Service (USDA)
FAO Food and Agriculture Organization (UN)
GDA Corp Geospatial Data Analysis Corporation
GIS Geographical Information System
GLAM Global Agriculture Monitoring System (USDA/FAS and NASA)
GMS Geostationary Meteorological Satellites
GOES Geostationary Operational Environmental Satellite
GPM Global Precipitation Mission
GRLM Global Reservoir and Lake Monitor
GSFC Goddard Space Flight Center (NASA)
GTS Global Telecommunication System
HRSL Hydrology and Remote Sensing Laboratory (USDA/ARS)
HSB Hydrological Sciences Branch (NASA/GSFC)
IR Infrared
IPAD International Production Assessment Division (USDA/FAS)
JAWF Joint Agricultural Weather Facility
JRC Joint Research Center
LACIE Large Area Crop Inventory Experiment
MARS Monitoring Agriculture through Remote Sensing techniques
MODIS Moderate Resolution Imaging Spectroradiometer (NASA/EOS)
NASS National Agricultural Statistics Service (USDA)
NASA National Aeronautics and Space Administration
NDVI Normalized Difference Vegetation Index
NDWI Normalized Difference Water Index
NEXRAD Next-Generation Radar
NIR Near Infrared
NOAA National Oceanic and Atmospheric Administration
NPOESS National Polar-orbiting Operational Environmental Satellite System
NWS National Weather Service (NOAA)
OGA Office of Global Analysis
PET Potential evapotranspiration
PMW Passive Microwave
PR Precipitation Radar
PRISM Parameter-elevation Regressions on Independent Slopes Model
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PS&D Production, Supply and Distribution (USDA/FAS)
RFC River Forecast Centers (NOAA/NWS)
RTNEPH Real Time Nephanalysis Cloud Model
SG Station Gauge
SPE Satellite Precipitation Estimates
SSM/I Special Sensor Microwave/Imager
SWIR Shortwave length Infrared
TMI TRMM Microwave Imager
TMPA-RT TRMM Multi-Satellite Precipitation Analysis-Real-Time TRMM

Tropical Rainfall Measuring Mission
UMD University of Maryland (UMD)
WPC WeatherPredict Consulting (Surface Wetness)
USDA United States Department of Agriculture
VI Vegetation Indices
VIIRS Visible Infrared Imager Radiometer Suite (NPOESS)
WAOB World Agricultural Outlook Board
WASDE World Agriculture Supply and Demand Estimates
WASP Weighted Anomaly Standardized Precipitation
WMO World Meteorological Organization
WPC Weather Predict Consulting
WSR-88D Weather Surveillance Radar, 1988, Doppler
3B42RT TRMM Real-Time precipitation product (PMW and IR merged)
3B42(V6) TRMM precipitation product merged with PMW, IR, and SG

1 USDA’s Global Agriculture Economic Information System

The foundation of the US Department of Agriculture’s (USDA) global agricul-
ture economic information system is the monthly World Agricultural Supply and
Demand Estimates (WASDE 2008) report distributed by the World Agricultural
Outlook Board (WAOB 2008) and the Production, Supply and Distribution (PSD
2008) database archived by the USDA’s Foreign Agricultural Service’s (FAS). The
WASDE report is essentially a timely and monthly audit of national crop statistics
collected from around the world and it serves as an objective, reliable, and accurate
benchmark of current global crop supply and demand for use by commodity mar-
kets, traders, producers, and government policy makers. USDA’s monthly WASDE
report and PSD historical archive were established to assist the private market place
in price determination and adjustment, thus minimizing the risk of market manipu-
lation and contributing towards an international pricing mechanism that accurately
reflects real-world circumstances.

To enhance the accuracy and reliability of the monthly crop production fore-
casts and estimates published in WASDE, global weather data and satellite imagery
are monitored by USDA’s Joint Agricultural Weather Facility (JAWF) and USDA’s
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International Production Assessment Division (IPAD) of the Office of Global
Analysis (OGA) within the Foreign Agricultural Service (FAS). The use of global
weather data, satellite imagery, historical crop area/yield data from PSD, and numer-
ous ancillary data, in most cases, can monitor and provide preliminary national crop
production forecasts and estimates required by commodity markets at the beginning
of each month. In addition, monitoring global weather data and satellite imagery
helps to identify current and regional weather impacts on area and yield estimates
in a timely manner and at appropriate national and regional scales.

Official crop statistics from other nations, where available, are critical in form-
ing current crop estimates for the WASDE report, but in practice, not all countries
have crop-estimating agencies capable of making reliable, timely, or objective pro-
duction forecasts. Also, many major producing and trading countries do not publish
crop reports until well after the crop has been harvested (Vogel and Bange 1999).
In the interim, USDA must monitor precipitation, temperature, NDVI (Normalized
Difference Vegetation Index) and other parameters over major crop producing
regions that are economically important to the United States trade, especially for
crops such as wheat, coarse grains, rice, oilseeds, and cotton. By comparing cur-
rent weather and crop conditions with historical weather and crop yield data, the
WASDE report provides American producers and commodity traders with equal
access to global crop supply and demand information which helps to level the
playing field and helps to create potential trade markets.

Crop analysts from FAS are responsible for interpreting all relevant weather,
satellite imagery and ancillary data, and presenting these interpretations as evi-
dence of support for proposed national crop area, yield or production changes
made each month for the WASDE report. The proposed crop production changes
are presented at the beginning of each month at crop production meetings held by
USDA’s Interagency Commodity Estimates Committees (ICEC 2008) and chaired
by USDA’s WAOB. The monthly ICEC meetings conclude with a final monthly
“lockup” meeting and subsequent scheduled release of the WASDE report at 8:30
AM (Eastern Standard Time), on or slightly before the 12th of each month. ICEC
was built upon a consensus or “interagency” approach that utilizes “all available
information sources” (Vogel and Bange 1999), while FAS crop analysts utilize a
“convergence of evidence” methodology for determining national crop area and
yield estimates that minimizes risk of error and maximizes reliability.

Precipitation is the major agrometeorological variable that determines relative
crop yield changes during the growing season, and, obviously, any improvements in
satellite-derived precipitation data sets will help improve USDA’s abilities to audit
relative crop yield estimates and changes each month.

The first section below briefly describes the various precipitation data sets uti-
lized by USDA’s FAS. The next section is the operational soil moisture section and
it describes how global precipitation estimates, potential evapotranspiration (PET),
and soil water-holding capacity are utilized to run a global two-layer soil moisture
model for monitoring potential crop stresses during the growing season. The Global
Agriculture Monitoring (GLAM) section briefly describes how soil moisture and
NDVI data are utilized and translated into monthly crop yield estimates. The final
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outlook section describes near-term global precipitation improvements required to
improve the existing USDA/FAS global crop monitoring system.

2 Operational Precipitation Products Utilized by USDA/FAS

USDA/FAS relies on several different precipitation data sources to monitor global
weather anomalies that affect national crop yield and production for several major
agricultural commodities deemed economically important to the United States. The
precipitation data sets utilized by USDA/FAS are summarized in Table 1 and include
the following:

1. Ground Station (SG) data from the Global Telecommunication System (GTS) of
the World Meteorological Organization (WMO)

2. Agricultural Meteorology (AGRMET) model from the Air Force Weather
Agency (AFWA)

3. Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation
Analysis (TMPA-RT) real-time product from National Aeronautics and Space
Administration (NASA)

4. CPC MORPHed precipitation (CMORPH) product from National Oceanic and
Atmospheric Administration’s (NOAA) Climate Prediction Center (CPC)

5. Next-Generation Radar (NEXRAD) from NOAA’s National Weather Service
(NWS)

6. Other Precipitation Data Sets (National, Regional and Commercial)

It should be noted that both the WMO and AFWA precipitation data sets also
include daily minimum and maximum (min/max) temperatures and these three input
parameters (i.e., precipitation and min/max temperatures) are the only daily input
data used to run several operational crop models by FAS. Only precipitation and
min/max temperatures are utilized as daily input parameters in the operational crop
models in order to keep the global input data minimal and easily operational. These
simple crop models utilized by USDA/FAS were established over 25-years ago and
are still functional, as well as operational today.

The FAS Crop Assessment Data Retrieval and Evaluation (CADRE) system is
the database that stores all the agro-meteorological data used by FAS, including
the daily precipitation data sets listed above. CADRE’s development began in 1979
(Tingley 1988), making it one of the first GIS (Geographic Information Systems)
specifically designed for global agricultural monitoring purposes. CADRE is the
operational outgrowth of the LACIE (Large Area Crop Inventory Experiment) and
AgRISTARS (Agriculture and Resources Inventory Surveys through Aerospace
Remote Sensing) programs which began in 1974 and 1980, respectively (Boatwright
and Whitefield 1986). The main cooperating agencies for the LACIE and



272 C.A. Reynolds

Table 1 Summary of precipitation products utilized by USDA/FAS and displayed every 10-days
in crop explorer

Product/
sourcea

Spatial
resolution Coverage

Infrared
geostationary
satellites (IR)

Passive
microwave
(PMW)

Active
radar

Ground
station gauge
(SG)

GTS/WMO
and
NOAA/NWS
(for USA)

Approx.
7500 stations
report daily

Global No No No Yes

AGRMET/
AFWA

47-km at 60◦
latitude (true)
and 25-km at
the equator

Global
60◦ N-S

Yes SSM/I No Yes,
GTS/WMO,
NOAA/NWS,
and others

CMORPH/
NOAA-CPC

8-km at
equator

Global
60◦ N-S

Yes SSM/I,TMI,
AMSR-E,
AMSU-B

No No

TMPA-RT
(3B42RT)/
NASA-DISC

0.25◦ or
approx.
28-km

Global/50◦
N-S

Yes SSM/I,TMI,
AMSR-E,
AMSU-B

No Nob

NEXRAD/
NOAA-NWS

4-km USA/lower
48

Yesc No Ground
doppler

Yes,
NOAA/NWS

aUSDA/FAS’ CADRE receives daily all precipitation products listed and CADRE aggregates the
daily products into 10-day time periods for agricultural monitoring within Crop Explorer.
bStation gauges (SG) are added more than one month later to the 3B42RT product to produce an
after real-time global precipitation product called 3B42 (V6).
cSatellite precipitation estimates (SPE) are incorporated in regions where there is limited or no
radar coverage.

AgRISTARS programs were the National Oceanic and Atmospheric Administration
(NOAA), National Aeronautics and Space Administration (NASA), and USDA.

CADRE stores other baseline data sets such as global soil water holding capaci-
ties (Reynolds, et al., 2000) and long-term climate normals (New, et al., 2002) so that
weather anomalies and soil moisture model results can be monitored and displayed
in Crop Explorer. Some of the value-added monitoring tools CADRE provides to
Crop Explorer are the following maps and time-series charts:
1. Decadal precipitation (in mm) and temperature (in ◦C) departures from long-

term normals for both WMO station data and AFWA grid cells.
2. Cumulative seasonal precipitation (in mm) with calculations beginning near the

start of the crop’s growing season.
3. Seasonal percent normal of precipitation (in %).
4. Number of Days since a Rain Day (in the past 30-days) and Maximum

Consecutive Dry Days (in the past 30-days).
5. Daily snow cover and decadal departure from long-term average.
6. Daily snow depth (in cm) based on AGRMET output from AFWA.
7. Monthly Weighted Anomaly Standardized Precipitation (WASP).
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8. Daily surface and sub-surface soil moisture (in mm).
9. Daily percent soil moisture storage when assuming a root depth of 1-m.

In summary, the following five daily precipitation data sets are downloaded
daily into the CADRE database: GTS/WMO, AGRMET/AFWA, TMPA-RT/NASA,
CMOPRH/NOAA-CPC and NEXRAD/NOAA-NWS. Daily precipitation data from
these data sets are then processed into 10-day time sets and compared to 10-day
climatology data sets stored in CADRE. Automated outputs from CADRE are dis-
played every 10-days in Crop Explorer in the form of weather maps and time-series
graphs compared to climate long-term normals. The 10-day (or decadal) maps and
graphs displayed in Crop Explorer are specifically designed to monitor and identify
adverse weather conditions over the main agriculture regions within the world.

USDA/FAS crop analysts also have the ability to interactively query and extract
all spatial and time-series data from CADRE for more detailed regional analy-
sis, as required. These interactive CADRE data extractions and import tools have
been developed to interface with ArcView and ArcMap GIS software. Both Crop
Explorer and the CADRE spatial data extraction tools were developed by Arctic
Slope Regional Corporation (ASRC 2008), who are the primary private contractors
serving USDA/FAS crop analysts with spatial products.

In 2002, the FAS Crop Explorer web site was launched so that WMO and AFWA
precipitation and temperature data sets, as well as decadal vegetation index (VI)
data from several satellite sensors, could be viewed by the public and by commod-
ity traders at 10-day intervals (Crop Explorer 2008). Before 2002, only USDA/FAS
crop analysts viewed the WMO and AFWA global data sets for crop monitoring pur-
poses, whereby analysts manually or interactively “pulled” limited amounts of data
from CADRE rather than viewing larger volumes of data via automated “pushed”
maps and time series charts produced every 10-days in Crop Explorer (Reynolds
and Doorn 2001).

Soon after Crop Explorer was launched, it was decided that FAS should test
other operational global precipitation data sets produced by other US government
agencies such as NOAA and NASA. FAS crop analysts also wanted the ability to
view several global precipitation data sets at once, reduce reliance on one particular
global precipitation data set at any one time, and ensure they were receiving the best
precipitation data available. For example, in some cases, WMO station data may
adequately cover a country, while in other countries the WMO station network is
sparse or the WMO stations do not consistently report. In these cases, AFWA data
may have better spatial coverage or the crop analysts may have to rely on global
VI data sets if the global satellite precipitation product had obvious errors. In addi-
tion, running five daily precipitation data streams in tandem also allowed FAS to
operationally test each precipitation data set for reliability and accuracy for many
different regions around the world.

Currently, the relatively new precipitation data sets behind Crop Explorer’s fire-
wall are CMORPH, TMPA-RT and NEXRAD products and currently these spatial
precipitation products are not available to the public. However, there are plans to dis-
play within Crop Explorer the CMORPH, TMPA-RT, and NEXRAD precipitation
data sets to the public by the end of 2009.
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2.1 Ground Station Data From the World Meteorological
Organization (WMO)

A global daily ground station data file with GTS/WMO station data is received
by FAS from USDA’s Joint Agricultural Weather Facility (JAWF) every morn-
ing and downloaded into CADRE every day. The original ground station data file
received from JAWF is from NOAA, and NOAA merges daily GTS/WMO station
data with additional station data reported within the United States. The merged
global GTS/WMO and US station file from NOAA includes the following daily
information:
1. Minimum and maximum temperature
2. Precipitation
3. Several data quality flags of unknown reliability

The GTS/WMO data has more than 6000 stations but many of the 6000 sta-
tions do not report to the GTS daily, with approximately 3800 GTS/WMO stations
reporting each day. In addition, the global NOAA station file contains more than
7000 daily reporting stations after the reported stations from the United States are
included.

2.2 AGRMET From the Air Force Weather Agency (AFWA)

The Agricultural Meteorology (AGRMET) model by AFWA was first developed
in 1981 (Cochrane 1981). The AGRMET algorithms have evolved over several
decades of work and these algorithms are constantly changing (AFWA 2002). The
current global precipitation data set from AFWA is estimated by blending four
different data sources together:
1. Special Sensor Microwave/Imager satellite (SSM/I) and rain rates are formulated

from the brightness temperatures (Hollinger 1989).
2. Geostationary satellites: such as Geostationary Operational Environmental

Satellite (GOES) over North and South America; METEOSAT over Europe,
Africa and Middle East; and Geostationary Meteorological Satellites (GMS)
over Asia and Australia.

3. Real Time Nephanalysis Cloud Model (RTNEPH) (Kiess and Cox 1988).
4. GTS/WMO ground station data and some additional ground station data from

other countries.

AGRMET also provides FAS with the following global agrometeorology data
sets which are downloaded daily into CADRE:
1. Minimum and maximum temperature
2. Precipitation
3. Snow depth
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4. Solar and longwave radiation
5. Potential and actual evapotranspiration

FAS crop analysts find the global AGRMET/AFWA products useful for moni-
toring global precipitation and temperature anomalies; for determining the start of
season based on an arrival of rains algorithm; for determining if start of season (or
arrival of rains) was earlier or later than average; for determining how many days a
region has not received rain, etc.

2.3 TMPA-RT From National Aeronautics and Space
Administration (NASA)

The Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation
Analysis (TMPA) product from NASA is described by Huffman, et al., (2007),
where the reader can obtain more detail information.

The TMPA dataset covers the latitude band between 50-degree North-South for
the period from 1998 to present and TMPA-RT precipitation estimates are produced
in four stages:

1. Passive microwave (PMW) precipitation estimates are calibrated and combined,
2. Infrared (IR) precipitation estimates are created using the calibrated microwave

precipitation,
3. PMW and IR estimates are combined, and
4. Rain station gauge (SG) data are incorporated.

Several TMPA-RT products are available from NASA but FAS only imports the
daily 3B42RT product into CADRE. It should be noted that the 3B42RT product
does not incorporate SG measurements until more than one month after satellite
data was acquired. SG data added more than one month later to the 3B42RT product
is called the called 3B42 (V6) product, or the after real-time global precipitation
product.

The technical documentation for 3B42RT product states it represents a new
initiative and should be considered experimental. Formal validation studies are
underway but are not yet available. NASA’s technical documentation states that
TMPA does reasonably well in detecting large daily events, but TMPA has lower
skill in correctly specifying moderate and light event amounts on short time
intervals.

FAS/OGA aggregates the daily data from 3B42RT into 10-day (or decadal) peri-
ods for agriculture monitoring. FAS crop analysts find NASA’s 3B42RT product
useful to compare with WMO and AFWA global data sets, but lack of SG data
within the 3B42RT product is a great weakness. In addition, FAS staff has noticed
that daily bias errors from the lack of SG data tend to accumulate over a growing
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period of 4-months or more and these accumulated errors become very large artifacts
over several months of time.

2.4 CMORPH From National Oceanic and Atmospheric
Administration (NOAA)

A high-resolution global precipitation analysis technique called “CMORPH” (CPC
MORPHed precipitation) is described by Joyce, et al., (2004), where the reader can
obtain more detail information.

CMORPH was developed at NOAA’s Climate Prediction Center (CPC) for the
real-time monitoring of global precipitation. CMORPH provides precipitation esti-
mates on an 8 km latitude/longitude grid (at the equator) from 60◦N-60◦S with
a temporal resolution of 30 min. Daily precipitation products are then produced by
using the CPC MORPHing technique on a global basis and accumulating the 30-min
segments into a 24-h time period.

The satellite data inputs from CMORPH include half-hourly geostationary satel-
lite infrared (IR) temperature fields and polar orbiting passive microwave (PMW)
brightness temperature retrievals with irregular-intervals. The morphing process
involves using the relatively poor temporal resolution of passive microwave (PMW)
precipitation estimate data and interpolating its movement between retrieval peri-
ods. The motivation for developing such precipitation products stem from the fact
that passive microwave observations yield more direct information about precipita-
tion than is available from infrared data, but PMW-derived precipitation estimates
have poor spatial and temporal sampling characteristics due to their polar orbits.
Conversely, while the IR data provide relatively poor estimates of precipitation, they
provide extremely good spatial and temporal sampling. Therefore, CPC combines or
morphs the data from these two disparate sensors to take advantage of the strengths
that each has to offer (Joyce, et al., 2004).

Correspondingly, FAS/OGA aggregates daily CMORPH data into 10-day (or
decadal) periods for agriculture monitoring. The CMORPH data is currently dis-
played behind Crop Explorer’s firewall and it is not displayed in the original 8-km
spatial resolution.

It should be noted that the CMOPRH product does not blend SG data into its
estimates although studies have shown that algorithms which combine both satellite
and SG data tend to provide more accurate precipitation estimates than those precip-
itation products that rely only on satellite sensors without SG data. The lack of SG
data in the CMORPH product is a weakness and CMOPRH comparisons with the
other rainfall products utilized by FAS tend to show positive biases when compared
to daily SG data. In addition, for crop monitoring during the growing season of four
months or more, these daily positive bias errors accumulate and make the CMOPRH
product not very useful for crop monitoring purposes. However, the improved spa-
tial resolution of 8-kilometer by CMORPH is greatly desired by FAS crop analysts
and it is hoped the NOAA CPC developers will consider integrating SG data into
the CMOPRH product to remove biases and improve daily rainfall estimates.
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2.5 NEXRAD From National Weather Service (NWS)

NEXRAD or Nexrad (Next-Generation Radar) is a network of 158 high-resolution
Doppler weather radars operated by the National Weather Service, an agency of
the National Oceanic and Atmospheric Administration (NOAA) within the United
States Department of Commerce. Its technical name is WSR-88D, which stands for
Weather Surveillance Radar, 1988, Doppler. NEXRAD detects precipitation and
atmospheric movement or wind.

The daily NEXRAD precipitation data are quality-controlled, multi-sensor (radar
and rain gauge) precipitation estimates obtained from National Weather Service
(NWS) River Forecast Centers (RFCs). The “observed” precipitation data is a
byproduct of the National Weather Service (NWS) operations at the 12 RFCs, and
is displayed as a gridded field with a spatial resolution of 4x4 kilometers over a 24-h
time period (NWS 2008).

East of the Continental Divide, the RFCs derive the “observed” precipitation
field using a multisensor approach. Hourly precipitation estimates from WSR-88D
NEXRAD are compared to ground rainfall gauge reports, and a bias (correction
factor) is calculated and applied to the radar field. The radar and gauge fields are
combined into a “multisensor field”, which is quality controlled on an hourly basis.
In areas where there is limited or no radar coverage, satellite precipitation estimates
(SPE) can be incorporated into this multisensor field. The SPE can also be biased
against rain gauge reports (NWS 2008).

In mountainous areas west of the Continental Divide, a different method is used
to derive the “observed” data. Gauge reports are plotted against long term clima-
tologic precipitation (PRISM data), and derived amounts are interpolated between
gauge locations (NWS 2008).

Studies have shown that algorithms which combine several sensor inputs such
as radar, gauge, and satellite data yield more accurate precipitation estimates than
those which rely on a single sensor such as radar-only, gauge-only, or satellite-only.
Although the NEXRAD precipitation product is not perfect, this dataset covers
the lower 48 states and it is one of the best sources of timely, high resolution
precipitation information available (NWS 2008).

NEXRAD data was first introduced behind Crop Explorer’s firewall in early 2008
and FAS crop analysts have noticed that it truly has superior data quality compared
to the other global precipitation data sets that cover the United States. FAS crop
analysts also greatly appreciate this state-of-the-art product.

2.6 Other Precipitation Data Sets (National, Regional
and Commercial)

Global, regional, and national precipitation data is available from both public and
private sources. However, at the moment, there are no indications that commer-
cial systems provide more reliable global precipitation results than public sources,
largely because satellite technology and coverage is the main limitation in producing
better global precipitation data sets.
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For example, MDA Federal produces a global precipitation data set of good qual-
ity through MDA EarthSat Weather. This product has been developed and improved
for the past 20-years, and the developers also admit they have experienced the same
technical limitations as experienced by precipitation products produced by differ-
ent US government agencies as described in the previous sections. MDA Federal
also provides crop monitoring services to subscribers with their Ag On-Demand
Global Weather Interface product. (MDA Federal 2008). FAS crop analysts have
been given limited complimentary service to MDA’s precipitation product and ini-
tial impressions were good with respect to MDA’s global precipitation product and
quality.

Another satellite based crop monitoring project is the MARS Project (Monitoring
Agriculture through Remote Sensing techniques) which is funded by the Joint
Research Center (JRC) of the European Commission. The MARS project uses satel-
lites and spatial crop monitoring products with global coverage but they do not
report on crop conditions in North America, Southeast Asia and Australia. Besides
not reporting on crop conditions worldwide, the MARS project is also slightly dif-
ferent than FAS because they do not release a global monthly report similar to
USDA’s WASDE that serves global commodity markets. However, MARS receives
daily, 10-day and monthly meteorological information produced by Meteoconsult,
and the global precipitation data utilized by the MARS project is derived from
the ECMWF (European Centre for Medium-Range Weather Forecast) model at
Reading, United Kingdom. In addition, MARS receives 10-day crop condition
indicators and vegetation data derived from satellites by two European private com-
panies called Alterra and VITO. All global weather, crop indicators, and vegetation
data from satellites is available from the MARS interactive web site listed at MARS
(2008). FAS crop analysts also utilize the MARS web site for weather and crop
model data comparisons to weather maps displayed in Crop Explorer and crop
models displayed behind Crop Explorer’s firewall.

Many national meteorology departments have also developed web sites that dis-
play rainfall and temperature maps based on national station data, which may have
greater station density than the global WMO station data currently used by FAS
crop analysts. These national meteorological web sites vary in quality and function-
ality from country-to-country, while many countries still keep their meteorology
data virtually hidden from the public. However, for countries with national meteo-
rology web sites, FAS crop analysts often compare the national weather maps (with
better ground station density or coverage) to global precipitation maps displayed in
Crop Explorer and derived from GTS/WMO, AGRMET/AFWA, TMPA-RT/NASA,
CMOPRH/NOAA-CPC and NEXRAD/NOAA-NWS.

3 Operational Soil Moisture Products Utilized by USDA/FAS

The LACIE and AgRISTARS programs were the first joint effort by the U.S. govern-
ment to use satellite imagery and operational crop models to continuously monitor
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and assess crop production over selected areas of the world. The Cold War pro-
vided the motivation for the LACIE and AgRISTARS programs to monitor crop
conditions via satellite imagery over the Former Soviet Union (FSU) and China dur-
ing the 1970’s and 1980’s. Many of the spatial crop models from the AgRISTARS
program were later expanded in CADRE during the late 1990’s to cover most
countries worldwide rather than only for the FSU countries and China (Reynolds
2001).

FAS inherited the operational soil moisture, crop stage, and relative-yield mod-
els developed by the AgRISTARS program and many of these same models are
utilized by FAS worldwide today with some minor model modifications and major
database expansion within CADRE. The CADRE database is the heart of the oper-
ation and CADRE was originally developed by the AgRISTARS program. The
original AgRISTARS crop model codes and soil moisture algorithms utilized by
CADRE today were written by an assortment of personnel from the USDA, NOAA,
NASA and private contractors.

The two-layer soil moisture algorithm developed by the AgRISTARS program
is the backbone algorithm that runs the crop calendar (growth stage) and crop
stress (alarm) models. The original crop model code used by CADRE and devel-
oped by the AgRISTARS program were early versions of the DSSAT (Decision
Support System for Agrotechnology Transfer) suite of crop models (Ritchie 1991,
and Ritchie et al. 1998). However, crop varieties parameters were later generalized
or re-classified into short, medium, or long-season varieties.

The crop calendar models utilized by DSSAT and CADRE are accretion models
that model the crop growth incrementally, based on growing degree-days (or ther-
mal units) for several different crop types and varieties. The growing degree-day
algorithm uses daily minimum and maximum temperature measurements, as well
as threshold temperatures defined by the particular crop type. The crop calendar
models are initialized by average start of season data derived from national crop
reports.

Crop-stress models developed by the AgRISTARS programs serve as agromete-
orological data filters by alerting crop analysts of abnormal temperature or moisture
stresses that may affect yields. Both soil moisture and crop calendar algorithms are
used, as well as hazard algorithms. The hazard algorithms are based on tempera-
ture and soil moisture thresholds known to be outside the optimal range of growing
conditions and which may cause crop damage at various crop stages. For example,
optimal growing conditions for corn is critical during the reproductive phase and
the soil moisture and temperature thresholds are most sensitive during this stage.
Therefore, if the plant experiences extreme water deficits or temperature conditions
during the reproductive phase, the alarm model alerts the analysts of the crop stress
in the region.

The FAS-CADRE crop calendar and crop stress model results described above
are not displayed to the public but are displayed behind Crop Explorer’s firewall
for use by FAS crop analysts. The operational two-layer soil moisture algorithm,
which is available in Crop Explorer, is described in more detail in the next
section.
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3.1 Modified Palmer Two-Layer Soil Moisture Model

The two-layer soil moisture model is a bookkeeping method that accounts for the
water gained or lost in the soil profile by recording the amount of water withdrawn
by evapotranspiration and replenished by precipitation. The final aim of the soil
moisture model is to estimate if soil moisture storage between dry spells was ade-
quate for maximum plant growth. The two-layer soil moisture model used by FAS
was first described by Palmer (1965).

The Palmer soil moisture model for two soil layers is calculated in daily time
increments (mm/day of precipitation and evapotranspiration). The top-layer soil
moisture is assumed to hold a maximum of one inch (or 25-mm) of available water,
and the sub-layer soil moisture may hold 0–400 mm/m of water depending on the
soil’s water-holding capacity for the grid cell (i.e., based on soil texture and soil
depth).

The soil moisture model assumes precipitation enters the two soil layers by first
filling the top surface soil layer and then filling the lower soil layer. Moisture is
extracted from the two soil layers by evapotranspiration, whereby water is first
depleted from the top layer and then extracted from the sub-surface layer. When
the water-holding capacity of both soil layers is reached, excess precipitation is lost
from the model and treated as runoff or deep percolation.

The original Palmer (1965) two-layer soil moisture model was later modified
over the years by FAS personnel and contractors by:

1. Allowing more gradual and realistic depletion of the top surface layer.
2. Allowing moisture to be depleted from the lower layer before the surface layer

is completely dry as a better way to describe water extraction by plants.
3. Estimating potential evapotranspiration with the modified FAO Penman-

Monteith equation described by Allen, et al., (1998) and not using the
Thornthwaite (1948) equation proposed by Palmer. PET is therefore calculated
from daily min/max temperature data sets and the location of each WMO station
(i.e., latitude, longitude, and elevation) and AFWA grid cell.

4. Utilizing FAO’s (1996) Digital Soil Map of the World (DSMW) to determine
soil type, soil depth, and soil’s water-holding capacity.

5. Assuming maximum root depth is one meter (or less depending on impermeable
soil layers) for calculating total water-holding capacity. From these assumptions,
water holding capacity for both layers normally range from 125–200 mm/meter
of water depending on soil texture (ranging from sand to clay) and soil depth
(one meter or less).

A summary of the global soil moisture products utilized by USDA/FAS are
presented in Table 2.

3.2 Surface Wetness

The surface wetness product utilized by FAS is shown in Fig. 1, and it is avail-
able to subscribers from Weather Predict Consulting (WPC 2008). The surface
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Fig. 1 The surface wetness anomaly product for South America is derived from the SMM/I sensor
and produced by Weather Predict Consulting (WPC 2008)

wetness product is delivered to FAS every Monday morning. USDA/FAS crop
analysts learned that real-time products delivered on Monday morning are more
useful than delivering products every 10-days. Decadal, or 10-day products, is a
common time frame used by agro-meteorologists but is not a useful delivery sched-
ule for government agricultural economists at FAS or for commodity traders who
need summary weather information early Monday morning when their work week
begins.

The surface wetness product is derived from the Special Sensor Microwave
Imager (SSM/I), which is a PMW sensor with global coverage, and is flown on
polar orbiting satellites as part of the Defense Meteorological Satellite Program
(DMSP). The frequencies observed by the SSM/I are sensitive to liquid water near
the earth’s surface. The surface water index quantifies the magnitude of the near
surface wetness from precipitation, snow-melt, and irrigation. The signature of liq-
uid water can originate from water: intercepted by the canopy, stored in the leaves,
pooled on the surface, melting snow, and/or in the upper few centimeters of the soil.
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The product represents an integration of all of these sources of liquid water, and is
based on variation from a mean value with no smoothing performed (Basist, et al.,
2001).

Surface wetness estimates are derived at 1/3-degree resolution (i.e., approxi-
mately 37-km), and have been has been calibrated and validated using independent
high resolution in situ observations. A 20-year climatology (1988–2008) serves as
the base period for monthly and weekly anomalies and the climatology is updated
at the beginning of every year. Basist, et al., (2001) indicates the wetness product
assumes the data have a gamma distribution and uses a pixel specific standard-
ized cumulative probability (in %) to represent the anomalies. Basist, et al., (2001)
also indicate the standardization procedure accounts for variation in surface fea-
tures around a region (i.e. forest, lakes, farm land, mountains), time of year (i.e. wet
versus dry season), and soil type (i.e. clay versus sandy soil).

FAS crop analysts find the surface wetness anomaly product useful for:

1. Comparing with global precipitation and vegetation indices data sets.
2. Determining if start of season rains arrived earlier or later than average.
3. Determining early signs of drought stress after the crop has been planted.
4. Determining if rains were excessive at time of harvest or if rains possibly caused

damage when crop is in the field and has not yet been harvested.
5. Determining if rains were excessive during time of planting or harvesting and if

heavy machinery was not able to enter the fields due to waterlogged soils.
6. Monitoring the entire crop season and observing when (i.e. during crop

stage) cumulative surface wetness anomalies are above or below the seasonal
average.

4 Global Agriculture Monitoring (GLAM) System

The National Aeronautics and Space Administration (NASA) and the USDA/FAS
jointly fund a project called the Global Agriculture Monitoring (GLAM) project,
which aims to:

1. Develop and improve FAS abilities for making operational quantitative estimates
for crop area and yield based on satellite-derived data.

2. Improve global hydrologic data flows for FAS by integrating more satellite-
derived products from NASA into the existing operational DSS at FAS and
USDA’s lockup process.

The GLAM project also provided a partnership with NASA’s Hydrological
Sciences Branch (HSB) at the Goddard Space Flight Center (GSFC); Hydrology
and Remote Sensing Laboratory (HRSL) of USDA’s Agricultural Research
Service (ARS); and the University of Maryland’s (UMD) Earth System Science
Interdisciplinary Center (ESSIC). These new partnerships enabled FAS to:
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1. Utilize AMRS-E or PMW data to improve the FAS two-layer soil moisture
model by correcting for errors in the global precipitation data sets.

2. Utilize satellite radar altimetry for monitoring surface water levels for more than
70 global reservoirs and lakes.

These two new operational hydrologic data systems from PMW satellites and
satellite radar altimetry are described below in separate sections.

4.1 Corrected Soil Moisture Model With Passive
Microwave (PMW)

The GLAM project created another new hydrologic data stream for FAS by intro-
ducing NASA’s EOS Advanced Microwave Scanning Radiometer (AMSR-E) data
into the FAS two-layer soil moisture algorithm. This work was conducted in coop-
eration with NASA’s HSB/GSFC at Greenbelt, Maryland and USDA’s ARS/ HRSL
at Beltsville, Maryland.

AMSR-E is a microwave radiometer launched in 2002 aboard the NASA-EOS
Aqua satellite and measures vertically and horizontally polarized brightness tem-
peratures at six frequencies: 6.92, 10.65, 18.7, 23.8, 36.5, and 89.0 GHz; and global
coverage is possible every 2–3 days. At a fixed incidence angle of 54.8◦ and an
altitude of 705 km, AMSR-E provides a conically scanning footprint pattern with
a swath width of 1445 km. The mean footprint diameter ranges from 56 km at
6.92 GHz to 5 km at 89 GHz.

HRSL-USDA/ARS helped to improve FAS soil moisture estimates in CADRE
by merging PMW satellite data from the AMSR-E sensor. The improved temporal
resolution and spatial coverage of AMSR-E helped to provide a better character-
ization of regional-scale surface wetness and enable more accurate soil moisture
monitoring in key agricultural areas. An operational data assimilation system and
delivery system was developed that utilized Ensemble Kalman filtering (EnKF) and
was calibrated using a suite of synthetic experiments and in situ validation sites. In
this way, AMSR-E soil moisture retrievals are able to effectively compensate mod-
eled soil moisture for the impact of poorly observed rainfall patterns (Bolten, et al.,
2008a and 2008b).

The new and improved soil moisture system with AMSR-E data is currently oper-
ational and delivered to the FAS’ CADRE in near real-time. For this system, the
gridded AMSR-E Level-3 soil moisture product is used (Njoku 2004). The Level-
3 product is a gridded data product using global cylindrical 25 km Equal-Area
Scalable Earth Grid (EASE-Grid) cell spacing. Observations of soil moisture are
calculated from Polarization Ratios of 10.7 and 18.7 GHz, plus three empirical coef-
ficients to compute a vegetation/roughness parameter for each grid cell. Deviations
from 18.7 GHZ polarization ratio baseline value for each grid cell are used to calcu-
late daily soil moisture estimates for each grid cell (Njoku, et al., 2003). These soil
moisture estimates represent a soil depth comparable to the first layer soil moisture
used by the FAS/OGA/IPAD (Bolten, et al., 2009 and 2008).
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Although there are several operational satellites providing multi-frequency
brightness temperature observations, AMSR-E is the first satellite-based remote
sensing instrument designed specifically for soil moisture retrieval. The launch
of AMSR-E has improved the spatial resolution and frequency range of earlier
satellite-based passive microwave instruments.

In addition, HSB-GSFC and HRSL-ARS are continuously assessing the dif-
ference between the different US government global precipitation data sets and
updating FAS/OGA/IPAD with their latest findings (Tian and Peters-Lidard 2007,
and Crow, et al., 2005). If one US Government precipitation data set should later
be found to consistently out perform the AFWA precipitation data set, then arrange-
ments would be made to introduce this data into the modified Palmer two-layer soil
moisture model. However, to date, none of the US Government global precipita-
tion data sets from NASA or NOAA have outperformed the AFWA precipitation to
warrant such a change in FAS/OGA/IPAD’s CADRE system.

4.2 Operational Surface Water Heights From Satellite
Radar Altimetry

The GLAM project created another new hydrologic data stream for FAS by utilizing
satellite radar altimetry to monitor changes in surface water levels for reservoirs
and lakes located worldwide. The Global Reservoir and Lake Monitor (GRLM)
system was developed in partnership with NASA’s HSB/GSFC and the University
of Maryland’s ESSIC.

The GRLM was launched within Crop Eexplorer at the end of 2003, and the
program focuses on the delivery of near-real time surface water elevation products
within an operational framework for FAS and USDA’s DSS. Phase 1 of GRLM
recorded variations in surface water height for approximately 70 lakes worldwide
using a combination of satellite radar altimetry data sets from the NASA/CNES
TOPEX/Poseidon mission (1992–2002), NASA/CNES Jason-1 mission data (2002–
current), and the US Naval Research Lab’s GFO mission (2000–2008). Validation
exercises show the products range in accuracy from a few centimeters to several tens
of centimeters depending on target size and surface wave conditions (Birkett, et al.,
2009).

The GRLM retrieves satellite radar altimetry data, converts it to relative sur-
face water heights and updates the surface water heights on a weekly basis. Output
is in the form of graphs and text files with web links to other imaging and
information resources. The USDA/FAS utilize the products for irrigation potential
considerations and as general indicators of drought and high-water conditions.

Phase 2 of GRLM will incorporate satellite radar altimetry products from the
ESA ERS missions (1994–2002), the ESA ENVISAT mission (2002–current), and
the NASA/Jason-2 mission (post 2009 and near real time). Figure 2 shows how
ENVISAT’s longer repeat time cycle has better spatial coverage and Fig. 3 illustrates
the location of new potential lakes and reservoirs which can be monitored worldwide
by ENVISAT.
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Fig. 2 More lakes can be monitored by ENVISAT than by Jason-1 due to ENVISAT having more
orbits between longer (35-days) repeat cycles

Fig. 3 More potential lakes are envisaged to be monitored during Phase 2 of the Global Reservoir
and Lake Monitor (GRLM) project which will utilize ENVISAT radar altimeter data. The blue
triangles indicate lakes monitored by Phase 1 (with Jason-1 data) and the red triangles indicate
potential lakes to be monitored during Phase 2 (with ENVISAT data)
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Fig. 4 Surface water levels of the Aral Sea have been decreasing from 1993 through 2008, and
starting in 2008 the satellite radar altimeter started to lose the surface water as the Areal Sea dried
up and separated into different water bodies

Examples of the surface water heights for the Aral Sea and Lake Victoria are
shown in Figs. 4 and 5, respectively. The GRLM received international attention
when Lake Victoria water levels dropped to historic lows and caused numerous
environmental problems and economic losses to many businesses such as mar-
itime trade, fisheries, tourism, etc. The Lake Victoria “drought” turned out to be
a man-made drought because water was withdrawn from Lake Victoria’s only out-
let at Owens Falls Dam during 2000–2006 at rates greater than the Agreed Curve
(Sutcliffe and Petersen 2007). The excessive water withdrawals from 2000 to 2006
dropped the lake’s water level to the lowest levels since 1923. Lake Victoria’s man-
made “drought” caused lots of human suffering along shorelines of Lake Victoria
where the population density is very high and the entire region is one the poorest in
the world.

4.3 Operational Yield-Regression and Analog-Year Analysis

Operational quantitative crop yield estimates have been developed from NASA’s
Moderate Resolution Imaging Spectroradiometer (MODIS) data and NDVI prod-
ucts with 250-m spatial resolution. The improved spatial resolution of MODIS
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Fig. 5 Satellite radar altimeter data for Lake Victoria (in east Africa) was merged with elevation
gauge data to create a historical water level record greater than 100-years. Excessive lake with-
drawals during 2000–2006 at Jinja, Uganda (the lake’s only outlet) caused the lake’s water level to
drop to its lowest level since 1923

data and products (with 250-m) helps to improve FAS abilities to monitor veg-
etation changes (i.e., crop yield) in the key agricultural areas in a more timely
fashion, than previously possible with NOAA-AVHRR (8-km spatial resolution)
and SPOT-VEGETATION (1-km spatial resolution) time-series satellite data.

NASA’s MODIS sensor is onboard two platforms of the Earth Observing System
(EOS), which was designed in part to monitor subtle vegetation responses to stress,
vegetation production and land cover with regional-to-global coverage. Although
MODIS is a NASA experimental mission, the instrument’s capabilities will be
extended by the launch of the Visible Infrared Imager Radiometer Suite (VIIRS),
which will be part of the National Polar Orbiting Environmental Satellite System
(NPOESS) and NPOESS Preparatory Project (NPP). Thus, the MODIS methods
and system developed through GLAM will be easily transitioned into the fully
operational VIIRS sensor onboard the NPP and NPOESS missions.

The GLAM project developed a new operational quantitative crop yield system
for FAS that uses a MODIS (250-m) time-series database from 2000 to present
for the red, near infrared (NIR) and shortwave length infrared (SWIR) bandwidths.
The MODIS (250-m) time-series database enables FAS crop analysts to track the
evolution of the growing season and make inter-annual comparisons of seasonal
vegetation dynamics (i.e., green-up, peak greenness, and green-down) between
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individual years as well as relative to reference long-term mean conditions. The
FAS methodology tracks vegetation “greenness” by utilizing VI (vegetation indices)
such as NDVI (Normalized Difference Vegetation Index) and NDWI (Normalized
Difference Water Index).

These NDVI time series curves are then used to operationally estimate quan-
titative yields (i.e. tons/hectare) from mid-season to end of season at national and
sub-national levels. The rapid yield estimating system was initially designed to oper-
ate with MODIS-NDVI/NDWI time-series databases but later can be transferred to
CADRE to perform similar yield-regression analysis for several agrometeorological
variables stored within CADRE (such as percent soil moisture, cumulative seasonal
rainfall, cumulative crop evapotranspiration, etc.). The operational yield estimates
for the MODIS-NDVI system are made a few days after the first of each month
so that the NDVI-derived yield maps can be used by FAS crop analysts for their
monthly pre-lockup meetings with ICEC.

The heart of the rapid yield estimating MODIS-NDVI system is the historical
sub-national yield database (from 2000 to current) which was constructed by the
Geospatial Data Analysis Corporation (Hulina and Varlyguin 2008). The histori-
cal sub-national yield database from 2000 to present is used to perform a series of
NDVI-yield regressions whereby the NDVI regressions comprise of several differ-
ent seasonal crop metric parameters. The NDVI seasonal metric parameters are first
derived by first smoothing the NDVI time-series data to obtain the critical seasonal
metrics. The critical seasonal metrics include start of the season, end of the season,
end of green-up, start of senescence, peak of the growing season, mid-senescence,
length of season, rate of green-up, and rate of senescence. These seasonal metrics
and several different areas under the NDVI time-series curves are used to estimate
yields from NDVI-yield regressions.

In addition, an analog-year analysis is performed for MODIS-NDVI (250-meter)
time series data from 2000 to present because even the best NDVI-regression model
will under estimate yields during bumper crop years and over-estimate yields during
drought years. Therefore, an analog-year analysis is performed to indentify which
historical year best simulates the current NDVI time-series curve or “regime”. The
technology trend yield is then calculated and added to the yield of the analog-
year to provide a current yield estimate. The analog-year analysis is expected to
be better than yield-regression analysis, especially during extreme weather years
(with high deviations from the mean) that produce bumper or drought-reduced
crops.

In short, the GLAM project recognizes that monitoring global vegetation changes
in tandem with global precipitation is essential for maintaining the “convergence
of evidence” methodology used by FAS to determine regional weather anomalies
worldwide and corresponding impacts on national crop yields. In addition, FAS
crop analysts cannot rely exclusively on a single remote sensing data source due to
limitations in temporal and spatial coverage, timeliness, accuracy, data quality, and
life expectancy of satellite sensors.

NDVI also has it limitations in cloudy regions which implies agrometeoro-
logical crop models are probably more suitable for cloudy regions in the tropics
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and NDVI time-series analysis more suitable in temperate regions with less clouds.
For example, the high-producing soybean region of Mato Grosso, Brazil (which
borders the Amazon forest in the south), receives excessive rainfall and MODIS-
NDVI time-series curves indicate great NDVI variability during the mid-season due
to increased cloud-cover near the forest. In addition, the highest number of rain
days in Mato Grosso (or south of the Amazon Forest) occurs during the mid-season
which is when the NDVI signal is most important for estimating relative crop yields.
Therefore, NDVI time-series analysis is not ideal for high rainfall regions because
numerous clouds during mid-season lowers NDVI data quality during critical grow-
ing periods, making agrometeorological crop models more suitable for analysis in
high rainfall regions in the tropics. In addition, vegetation response to excess/deficit
precipitation lags behind rainfall events by 10–30 days, which makes NDVI yield
analysis 10–30 days behind crop models or soil moisture models.

In contrast, the spatial resolution of 250-m is better for estimating relative crop
yields from vegetation indices (VI) products rather than global rainfall products
because the best spatial resolution for global precipitation products is 8-km resolu-
tion from CMORPH. However, unfortunately CMOPRH does not remove satellite
data biases by merging global SG data with IR satellite imagery which prevents it
from being used more intensively by crop monitoring systems.

5 Future Outlook

For daily global precipitation data, USDA/FAS essentially is dependent on three
U.S. government agencies (i.e., AFWA, NOAA, and NASA) for developing and
improving their daily global precipitation products. All three global precipitation
products vary in the methods used to merge data from SG, PMW, and IR sources.

The AFWA global precipitation product has been serving FAS the longest, or
more than 25-years, and it currently is the only global precipitation product that
merges SG, PMW, and IR at near real-time. Studies have also shown that merg-
ing SG, PMW, and IR data helps to improve reliability and accuracy (Gruber and
Levizzani 2008).

Summary future developments for global precipitation products from US
Government agencies need to work on better data assimilation methods for
improving spatial resolution, better retrieval algorithms for improved precipitation
estimates, and introduction of new observation data or platforms, whenever possible.

Concerning better spatial resolution, AFWA global precipitation data set plans
to improve their spatial resolution from 47- to 24-km in the very near future
(Eylander 2008). This improvement in spatial resolution should greatly improve the
two-layer soil moisture model maintained by USDA/FAS. In addition, the best spa-
tial resolution for global precipitation products is CMOPRH with 8-km resolution,
but unfortunately CMOPRH does not remove biases by merging global SG data
with satellite imagery. It is hoped that CMORPH developers at NOAA will consider
integrating SG data into their algorithms.
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Concerning better retrieval algorithms, bias systematic errors must be removed
from SPE products by integrating SG data because SPE products tend to generate
false artifacts for agricultural monitoring during 4-month or longer growing seasons,
as FAS has found with the CMORPH product. Also, better retrieval algorithms need
to be improved near water bodies and in mountainous regions where most of IR
satellite-derived precipitation products tend to have larger errors.

Concerning new observation platforms, satellite precipitation radar (PR) has
great potential and ideally future generation precipitation products will have global
PR coverage. Fortunately, NASA’s Global Precipitation Mission (GPM 2008) has
plans to address this issue by launching in 2013 their core precipitation monitoring
satellite with two radars onboard.

In summary, FAS crop analysts have for more than 25-years utilized AWFA and
WMO data sets, and during the past several years FAS began utilizing relatively
new global precipitation data products from NASA and NOAA’s CPC and NWS.
These three new precipitation data sources provide additional data to USDA’s “all
sources data approach” for auditing national crop estimates each month. However,
data quality for these global satellite-derived precipitation products need to be
improved, which in turn should directly improve USDA’s DSS systems for audit-
ing and estimating crop yields in foreign countries. It also is envisaged that USDA
will always need to monitor several global daily precipitation data streams in tan-
dem, just as several global VI data streams are currently monitored in tandem
with AVHRR, MODIS, and SPOT-VEGETATION sensors onboard three different
satellite platforms.
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Real-Time Decision Support Systems: The
Famine Early Warning System Network

Chris Funk and James P. Verdin

Abstract A multi-institutional partnership, the US Agency for International
Development’s Famine Early Warning System Network (FEWS NET) provides rou-
tine monitoring of climatic, agricultural, market, and socioeconomic conditions in
over 20 countries. FEWS NET supports and informs disaster relief decisions that
impact millions of people and involve billions of dollars. In this chapter, we focus
on some of FEWS NET’s hydrologic monitoring tools, with a specific emphasis on
combining “low frequency” and “high frequency” assessment tools. Low frequency
assessment tools, tied to water and food balance estimates, enable us to evaluate
and map long-term tendencies in food security. High frequency assessments are
supported by agrohydrologic models driven by satellite rainfall estimates, such as
the Water Requirement Satisfaction Index (WRSI). Focusing on eastern Africa, we
suggest that both these high and low frequency approaches are necessary to capture
the interaction of slow variations in vulnerability and the relatively rapid onset of
climatic shocks.

Keywords Early warning · Drought · Food security · Climate change · Crop
modeling · Hydrology

1 Introduction

The rhythms of plant emergence, vegetative increase, reproduction, and grain filling
still dominate and organize the activities of half the world. Cycles of good, bad, and
intermediate harvests continue to help shape the fate of nations. Cycles of recurrent
bad harvests punctuated by a few seasons with good harvest continue to aggravate
the fate of developing countries. In many developing nations, coping with hydro-
logic extremes is equivalent in cost and potential outcome to war (Kates 2000). The
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impacts of drought are not limited to the poorest nations. Even though only 2% of
the Republic of South Africa’s GDP is based on agriculture, season rainfall totals
are tightly coupled to economic growth, with a correlation of 0.7 (Jury 2002). In
the United States, severe drought years, such as 2002, may result in billion dollar
losses. Global per capita water supplies will likely drop by a third over the next
20 years (WWD 2003), and 2 to 7 billion people may face chronic water short-
ages by 2050. Food crises (Natsios and Doley 2009) will continue to emerge as
the world’s population grows faster than crop yields (Funk and Brown 2009); per
capita cereal production peaked in 1986 and will likely decline by 14% over the next
20 years. In Kenya, it’s estimated that arable land is declining by 2% per year due
to population growth and human settlements in key agricultural areas. This figure is
very likely to increase with declining rainfall trends and associated land degradation
(personal communication). At present, 1 billion people in 50 nations face chronic
food shortages, with 20% or more of that population undernourished (FAO 2007).
Food security early warning systems seek to mitigate shocks to these vulnerable
populations. This chapter briefly discusses the work of one such system: the US
Agency for International Development’s Famine Early Warning Systems Network
(FEWS NET).

Fig. 1 FEWS NET contingency planning and response schema. Preseason, midseason, and
postseason opportunities of hydrologic early warning
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1.1 The Three Components of the FEWS NET Planning Process

Most food, especially in the developing world, is produced and consumed on a fairly
local scale. Local food deficits related to agricultural and pastoral drought can have
devastating impacts. Drought, however, is a “slow onset disaster” and, as such, is
amenable to early warning applications tied to hydrologic monitoring and modeling.
“Droughts,” however, must be understood as a water deficit defined against a given
human need. Thus, effective hydrologic early warning must evaluate changes in both
demand and supply. Supply and demand will change at seasonal and decadal time
scales, and effective monitoring requires modeling at both these temporal horizons.

The FEWS NET process can be conceptually divided into three components
(Fig. 1). In the first process, “vulnerability identification,” at-risk populations are
mapped and trends in food insecurity are analyzed (Fig. 1a). This process is
informed both by water and food availability studies and more detailed food
economy studies focused on markets, prices, and livelihoods. The vulnerability
identification stage guides long-term decision making and planning by aid agencies.

The second FEWS NET process involves the development of food security
contingency plans (Fig. 1b). These contingency plans, supported by food security
outlooks and forecasts, enable disaster response planners to initiate strategic plan-
ning. Seasonal rainfall forecasts and Water Requirement Satisfaction Index (WRSI)
imagery play an important role in supporting agrohydrologic modeling and mon-
itoring. The third and final FEWS NET planning process (Fig. 1c) supports and
informs the design and implementation of timely and appropriate disaster relief
packages. USGS FEWS NET scientists primarily support these three activities
by studying trends in rainfall, food, and water availability by providing seasonal
rainfall forecasts, midseason crop water assessments, and postseason crop produc-
tion assessments based on Normalized Difference Vegetation Index imagery (Funk
and Budde 2009). This chapter discusses our contributions to the Vulnerability
Identification and Contingency Planning (Shaded boxes 1–4 in Fig. 1a and b).

1.2 Focus on Eastern African Food Insecurity in 2009

As of February 2009, 17 million eastern Africans face extremely high levels of
food insecurity. These individuals live primarily in the water insecure eastern parts
of these countries. These food insecurity crises have arisen through a combination
of both non-climatic and climatic underlying factors, such as increasing population
pressure, hyperinflation, trans-boundary human and livestock diseases, conflicts and
civil insecurity, climatic constraints on water availability, anomalous climate condi-
tions in the Indian and Pacific Oceans, and a recurrence of drought over the past
several years. The “real-time” applications discussed and presented in this chap-
ter are therefore germane to a current and grave food security crisis. After a brief
discussion of the background of FEWS NET (Section 2), we describe approaches
for modeling agro-hydrologic risk (Section 3) use these tools to analyze Kenyan
agricultural hydrologic conditions (Section 4), and summarize our approach
(Section 5).



298 C. Funk and J.P. Verdin

2 Background

2.1 A Brief History of FEWS NET

In 1984–1985, catastrophic droughts hit Ethiopia and Sudan, leading to more than a
million deaths. These large-scale famines shocked the world. Famine is a slow onset
disaster. The tragic lack of timely information and intervention led to widespread
human suffering. Responding to concerned citizens, the US Congress called on
USAID to create the Famine Early Warning System (FEWS) in 1985.

FEWS has been implemented in roughly 5-year phases since its inception. The
prime contract for implementation in each phase is awarded by USAID to a pri-
vate sector firm through a competitive procurement process. Support in the form of
remote sensing, modeling, forecasting, geographic information systems (GIS), data
archive, training, and product dissemination is provided by US Government sci-
ence agencies: The US Geological Survey (USGS), National Aeronautics and Space
Administration (NASA), the National Oceanic and Atmospheric Administration
(NOAA), and the US Department of Agriculture (USDA) were engaged as sci-
entific implementing partners through interagency agreements with USAID. Since
the late 1980s, FEWS has steadily evolved from being a Washington-based
activity with a few expatriates in the field to one that is primarily African-
based, with African professionals composing the majority of the staff. The latest
phase of the activity places an emphasis on networking among individuals and
institutions (governmental, inter-governmental, and non-governmental) across dis-
ciplines at the local, national, regional, and continental levels, hence the new
name: FEWS NET.

USGS participation has evolved in step with the overall shift to African-based
analyses. Regional scientists have been recruited for West Africa, the Greater Horn
of Africa (GHA), and southern Africa. These experienced scientists are African
nationals with expertise in drought monitoring, remote sensing, and GIS. They
work closely with food security analysts to interpret the nature of drought and
flood threats to livelihood systems (especially subsistence agriculture) and articulate
their findings in bulletins and reports disseminated to the international commu-
nity. The field scientists devote significant time to technical capacity building
through formal and informal training on remote sensing, GIS, hydrology, agrocli-
matology, and other topics. They work with the following African regional insti-
tutions: Agronomy-Hydrology-Meteorology Regional Center in Niamey, Niger;
IGAD Climate Predictions and Applications Centre (ICPAC) Intergovernmental
Authority on Development in Nairobi, Kenya; the Regional Center for Mapping of
Resources for Development (RCMRD) in Nairobi, Kenya; and the Southern Africa
Development Community’s Regional Remote Sensing Unit in Harare, Zimbabwe.
They play a central role in research to improve techniques, algorithms, and meth-
ods of geospatial hydroclimatology. They are well positioned to provide scientific
insights and local data that complement the work of US-based colleagues. They also
have invaluable links to African institutions of higher education.
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In 2002, USAID reorganized and moved FEWS NET out of the Bureau for
Africa and into the Bureau for Democracy, Conflict, and Humanitarian Assistance.
The scope of activity was expanded beyond Africa to include Afghanistan, Haiti,
and four countries of Central America. The global price shocks of 2007 and 2008
have spread food security concerns across a broad swath of developing nations, and
the geographic scope of FEWS NET activities is expanding as well, in synch with
these spreading concerns. The twenty first century will require the effective remote
monitoring of agriculture and pastoral conditions. Without a doubt, satellite rainfall
estimates will play a critical role in achieving this goal.

Fig. 2 The FEWS NET science network

2.2 The FEWS NET Early Warning System

The FEWS NET early warning system combines information from multiple sources
into coherent food security outlooks, alerts, and briefs for decision makers. These
products support decision making by the USAID Office of Food for Peace, the
USAID Office of US Foreign Disaster Assistance, and the United Nation’s World
Food Programme (WFP) that is critical to protecting lives and livelihoods. The
national governments of food insecure countries often use this information as well.
Early warning can help mitigate the political and humanitarian impacts of food
shortages by triggering food, health, and market-related interventions. Satellite
observations can contribute substantially to both the contingency planning and dis-
aster response planning phases of FEWS NET (Fig. 1), supporting decisions that
save lives and livelihoods, and lessen the impacts of climate extremes – droughts
and floods During the contingency planning phase, relatively uncertain informa-
tion, such as climate forecasts (Funk, et al., 2006b; Brown, et al., 2007) and climate
indicators (Box A in Fig. 1), can help guide scenario building and food security
outlooks. This typically occurs before or during the early phase of the crop growing
season. In the middle of the season (Box B in Fig. 1), satellite rainfall fields are
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used to monitor crop growing conditions. These simple water balance models use
grids of rainfall and potential evapotranspiration (Verdin and Klaver 2002; Senay
and Verdin 2003) to estimate the sufficiency of soil moisture for crop growth. At
the close of the crop growing season (Box C in Fig. 1), satellite-observed vegetation
is used to estimate crop production and/or yield (Funk and Budde 2009). In this
report, we focus on early-to-mid-season analysis of conditions in Zimbabwe and
Kenya/Somalia. While improved monitoring tools cannot make up for inadequate
agricultural inputs (seeds and fertilizer) or rainfall, they can help guide the early
identification of agricultural drought, which can lead to more timely and effective
response to dangerous food insecurity.

The FEWS decision support system DSS process can be seen as an inter-
active filtering process by which enormous amounts of data are transformed
into fair, objective, reproducible, and defensible analyses. For physical observa-
tions, FEWS NET relies primarily on satellite rainfall retrievals provided by the
Climate Prediction Center (CPC) and the Tropical Rainfall Monitoring Mission
(TRMM) a NASA product, augmented by in situ observations from the Global
Telecommunications System (GTS). Other important inputs include satellite-
observed Normalized Difference Vegetation Index (NDVI), snow extent, prevailing
global climate conditions, and local soil and topography. Such information is
used by experienced early warning analysts from USGS, NOAA, NASA, USDA,
University of California, Santa Barbara UCSB, and Africa (Fig. 2) to monitor agro-
hydrologic conditions. A critical component of the FEWS NET DSS is its network
of in-country food security analysts. In Africa, Central America, and Afghanistan,
these experts track market, vulnerability, livelihood, and agricultural conditions.
These extensive analyses are compiled by a team of experts in Washington, DC (cur-
rently led by Chemonics International), who also maintain the primary FEWS NET
Web portal (http://www.fews.net). Interactions between the physical and social com-
ponents are vital. For example, in an area where people depend on export cash crop
employment (e.g., coffee) rather than subsistence agriculture, global price shocks
may be much more harmful than local drought. Availability of agricultural inputs,
such as the distribution of seeds, can moderate or amplify the effects of growing sea-
son moisture deficits. Effective early warning combines a successful blend of earth
observations, hydrologic modeling, food economics, weather and climate modeling,
and much more. The remainder of this chapter, however, will focus on applications
of satellite remote sensing to agrohydrologic early warning.

2.3 A Synopsis of USGS FEWS NET Early Warning Research

Early Warning Systems can help mitigate the political and humanitarian impacts
of food shortages by supporting food, health, and market-related interventions.
Satellite observations can contribute substantially to both the contingency planning
and disaster response planning phases of FEWS NET (Fig. 1), supporting decisions
that save lives and lessen the impacts of drought. A broad suite of early warning
products (Rowland, et al., 2005) can be viewed at http://earlywarning.usgs.gov.
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These products are primarily driven by satellite rainfall estimates (RFE) provided
by the NOAA CPC (Xie and Arkin 1997) or the NASA TRMM multisatellite pre-
cipitation analysis (TMPA, Huffman, et al., 2007). Early work by the USGS science
team involved using remotely sensed rainfall estimates to monitor the onset of rains
(Verdin and Senay 2002) and generate WRSI maps (Verdin and Klaver 2002; Senay
and Verdin 2003). These simple water balance models use grids of rainfall and
potential evapotranspiration to estimate whether sufficient soil moisture is available
for crop growth. A stand-alone version of the Geospatial WRSI (Magadzire 2009)
is available from the Climate Hazard Group at the University of California, Santa
Barbara (UCSB).1 The USGS team has also developed early warning tools based
on NDVI (Funk and Budde 2009).

Beginning in the late 1990s (Verdin, et al., 1999), the USGS FEWS NET team
has also evaluated the impact of El Niño and Indian Ocean climate variations (Funk,
et al., 2002, 2006a; Brown, et al., 2007; Funk 2009), occasionally producing ad hoc
forecasts as needed to support early warning.

2.4 A Synopsis of FEWS NET-Related Climate Change and Food
Security Research

One focus of our FEWS NET research has been the evaluation of climate change and
vulnerability trends in food insecure eastern and southern Africa. This work began
with the creation of historical rainfall time series for Africa (Funk, et al., 2003b;
Funk and Michaelsen 2004). In 2003, FEWS NET evaluated the predictive potential
of early growing season rainfall in Ethiopia and provided USAID with food balance
projections (Funk, et al., 2003a). That analysis revealed two disturbing tendencies.
First, agriculturally critical regions of Ethiopia had experienced substantial precip-
itation declines. Second, population growth and food balance analyses suggested
that Ethiopia faces chronic and increasing food deficits.

FEWS NET followed up on this study with a careful study of thousands of
eastern African rainfall gauge observations. The analysis suggested that a warm-
ing Indian Ocean was likely to produce increasing dryness in extremely vulnerable
areas of eastern and southern Africa. These results were presented in an extensive
FEWS NET report (Funk, et al., 2005). The work was also published by the United
Kingdom’s Royal Society (Verdin, et al., 2005) and presented in 2005 at its meeting
on Climate Change and Agriculture. Lord May, the President of the Royal Society,
referred to this work in an open letter to the G8 Ministers, asking them to “recog-
nize the impacts of increasing drought conditions in Ethiopia . . . that may already
be occurring due to climate change, and to agree to further action to combat green-
house gas emissions.”2 Satellite observations of vegetation greenness also reveal
these declines (Funk and Brown 2005).

1 http://chg.geog.ucsb.edu/wb/geowrsi.php
2 http://www.royalsociety.ac.uk/news.asp?id=3833
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Over the past several years, FEWS NET has continued multidisciplinary research
on this topic. Reporting in the Proceedings of the National Academy of Sciences
(Funk, et al., 2008) suggests that the dangerous warming in the Indian Ocean is
likely to be at least partially caused by anthropogenic greenhouse gas emissions.
Thus, further rainfall declines across parts of eastern and southern Africa appear
likely. These drought projections run counter to the recent 4th Intergovernmental
Panel for Climate Change (IPCC) assessment. The authors have suggested in
Science that climate change assessments, based on inaccurate global climate pre-
cipitation fields, probably understate the agricultural risks of the warming Pacific
and Indian Oceans (Brown and Funk 2008). The interaction of growing populations
and limited potential water and cultivated areas increases food and water insecu-
rity, amplifying the impacts of drought. A more recent paper, for the new journal
Food Security, focuses on global risks implied by these tendencies (Funk and Brown
2009).

3 Techniques for Evaluating Hydrologic Risk

3.1 Low Frequency and High Frequency Models for Food Security
Risk Monitoring

In general terms, we can represent the risk of food insecurity (r) as a function of
shocks (s) and vulnerabilities (v).

r = F(s,v) (1)

In this equation, shocks represent any serious disruption of food availability or
access. Shocks may be related to global price increases, fertilizer shortages, political
instability, or outbreaks of epizootic diseases such as Rift Valley Fever. For many
semiarid areas dependent on rainfed agriculture, however, soil moisture deficits are
commonly a potential shock. Shocks alone, however, do not create risks. The under-
lying vulnerability of livelihoods determines the impact of a given shock, such as
agricultural drought. Complex economies, integrated into world markets, have the
means to transport food (virtual water), making up for local rainfall deficits. In many
parts of Africa, Asia, and Central and South America, where most people still subsist
by farming, local rainfall deficits often translate into local food shortages.

In examining food security risks, it is important to consider both low frequency
(years-to-decades) and high frequency (weeks-to-seasons) changes in shocks and
risks. Theoretically, we can write a somewhat more complicated equation for risk.

r = F(slow + shigh,vlow + vhigh) (2)

In this revised formula, hydrologic shocks might arise as a function of both
weather and slowly varying changes in growing conditions. This latter category
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might include deleterious tendencies of declining rainfall and increasing temper-
atures, or degrading soil conditions. Shifts in agricultural practices (crop selection,
fertilizer use, water retention, and harvesting practices) will also modify a shock.
In a similar fashion, globalization, urbanization, biofuel usage, economic develop-
ment and growth, and the burden of diseases such as HIV/AIDS and malaria act to
slowly change baseline vulnerability patterns. We discuss techniques for evaluating
the patterns in the next two Sections 4.1 and 4.2.

3.2 Evaluating Low Frequency Changes in Food Security
Risks with Food and Water Balance Models

While they can often miss the complexity of individual food or water insecu-
rity crises, at low frequencies, simple water and food balance calculations can
usefully represent the slow evolution of risk, especially in less economically devel-
oped societies. It often holds, both in space and in time, that food and water
vulnerability are strongly coupled to per capita supply. This is especially true in
landlocked, poor, semiarid countries with nominal food and water transport infras-
tructures. Most food is used near where it is produced, and most rainfall is used
near where it falls. Understanding this fact allows us to relate low frequency spatial
and temporal variations in vulnerability (vlow) to basic per capita food and water
balances.

vlow ∞ supply · person−1 (3)

In this equation, supply may typically be cereal grain production, total caloric
production, or available water. While these balance equations clearly miss a great
deal of the local variations between societies and governments, they do help define
significant variations in the geography of food and water insecurity. Insecurity often
arises from limited food and water availability, and balance equations provide a first
order approximation of vulnerability.

Figure 3 shows an example drawn from an updated version of a 2003 FEWS NET
analysis. This report provided USAID with historical and projected estimates of a
“theoretical number of people without food” based on an assumed per capita cereal
requirement. Historical trends in this food balance (Fig. 3.a) indicated increasing
levels of food insecurity. Projections based on flat production trends and a popula-
tion growth of 1.8 million people per year (Fig. 3.b) suggested that the theoretical
number of people in Ethiopia without food would increase by some 1.5 million per
year. In fact, since 2003, the number of people in Ethiopia has increased from 7 to
12 million, an increase of about 1 million per year.

Spatial per capita water availability measures can also provide useful guidance.
In 2005 (Funk, et al., 2005), runoff built on the water harvest potential mapping
work of Senay and Verdin (2004) was used to evaluate per capita water availability
for Ethiopia. This work used the SCS Curve Number method to estimate annual
runoff. The derivation of the curve numbers can be found in Artan, et al., (2001).
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Fig. 3 Theoretical food balance results from our 2003 FEWS NET report (1995–2008, left axis),
superimposed with actual FEWS NET food insecurity estimates (2002–2008, right axis). Historical
population without food estimates (a) were based on observed crop production and population data.
Projected population without food estimates (b) assumed constant crop production and a growing
population. The dashed line (c) shows actual FEWS NET estimates of acutely food insecure peo-
ple. These FEWS NET estimates are based on extensive in-country analysis, and are one important
basis for international food aid requests

Daily RFE2 data were used to derive annual mean runoff values for 10 km grid cells.
This mean runoff was divided by gridded population (Dobson, et al., 2000) to esti-
mate spatial patterns of household water availability (Fig. 4). This map is presented
with a reference unit volume of 1000 m3 of water, after considering evaporation
and seepage losses from reservoirs. The 1000 m3 is suggested based on the amount
of water that can be used to grow enough grain and biomass to support an average
farm family in Africa. Taking into account system inefficiencies, regions with two
or fewer units may be labeled as highly vulnerable. Areas with 2–4 units may be
considered vulnerable. In general, Ethiopia may be roughly partitioned into three
sections: water insecure areas with low rainfall (Fig. 4a), relatively wet areas with
high population densities (Fig. 4b), and relatively wet areas with water surpluses
(Fig. 4c).

Spatially, there is a very strong correspondence between areas of low rainfall
and water availability (Fig. 4a) and areas in eastern Ethiopia currently experiencing
chronic food insecurity (red areas in Fig. 5). These food insecure conditions have
arisen through a combination of increasing population pressure (Fig. 3), climatic
constraints on water availability (Fig. 4), and recurrent drought. The next section
evaluates this latter tendency using a combination of downscaled 2.5◦ long-term
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Fig. 4 Volume of potentially available annual surface water per family in 1,000 m3 units (assumes
7 persons per family)

Fig. 5 FEWS NET estimated
food security conditions,
October–December 2008.
Image obtained from
http://www.fews.net

(1979–2005) Global Precipitation Climatology Project (GPCP, Adler, et al., 2003)
monthly rainfall fields and RFE2 precipitation.

3.3 Combining Long-Term and Real-Time Satellite Rainfall
Records

While extremely useful for crop modeling and early warning applications, high res-
olution satellite products, such as the RFE2 (Xie and Arkin 1997) and the TMPA
(Huffman, et al., 2007), have relatively short periods of record. To overcome this
limitation, we have developed two analogs to the satellite estimates: the 1960–1996
Collaborative Historical African Rainfall Model (CHARM) time series (Funk, et al.,
2003b) and a gauge-enhanced downscaled version of the GPCP (Funk, et al., 2008).
The CHARM time series used a reanalysis-driven model of orographic rainfall
(Funk and Michaelsen 2004). Unfortunately, the reanalysis model data can produce
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spurious trends in the resulting CHARM data. For this reason, our new work focuses
on the enhanced GPCP product. We describe this product here, evaluate its accuracy
in Kenya, and use the combination of enhanced GPCP and RFE2 data to examine
recent rainfall trends and anomalies in Kenya, where the station support for both
products is quite high, and current food insecurity is very substantial, with more
than 10 million people at risk.

The GPCP enhancement procedure began with the creation of a set of high qual-
ity, monthly 0.1◦ resolution long-term mean fields. These orographically enhanced
mean fields were produced by combining three sources of information: (i) 0.1◦ long-
term average monthly satellite rainfall estimate (RFE2, Xie and Arkin 1997) grids
p̄, (ii) 0.1◦ grids of elevation e and slope s, and (iii) observations (ō) of long term
mean rainfall measured at a large number of stations. The use of satellite rain-
fall averages as a basis for deriving improved gridded climatologies, as far as we
know, is new. This innovation grows naturally out of the fact that there are strong
local regressions between station normals and monthly mean satellite precipitation
(p̄). Because variations in infrared and microwave emissions covary in space with
rainfall, these estimates represent well large scale precipitation gradients. Local vari-
ations within these large scale climate gradients are often induced by topography,
and strongly related to the product of p̄ and the local elevation e and slope s. The
term p̄s describes the multiplicative interaction of local slopes and satellite rainfall
estimates. The term p̄e describes the interaction of elevation and mean satellite rain-
fall. The observed station normals (ō) can be reasonably fit by local regressions of
the form ō ≈ bo + b1p̄ + b2p̄e + b3p̄s.

Because these models use long term monthly mean rainfall p̄ and the interaction
of these rainfall mean fields with topography (p̄e, p̄s), they benefit from the ability of
satellite rainfall estimates to capture spatial gradients in rainfall. These models were
fit as described in Funk and Michaelsen (2004), except that a series of moving spa-
tial windows with a 7◦ radius (~770 km) were used to develop localized regression
models, based on distance-weighted subsets of 6965 FAOCLIM2.0 precipitation.
The period represented by these climate normals varies by station but typically cor-
responds to the 1950–1980 era. These moving window regressions produced 12
monthly 0.1◦ grids of average rainfall. Block kriging was then used to interpolate
the 6,965 at-station differences (residuals) between the FAOCLIM2.0 climate nor-
mals and regression estimate grids. The regression estimates and kriged anomalies
were combined yielding 12 monthly FEWS NET climatology fields (FCLIM). The
at-station accuracy of the FCLIM monthly long-term mean fields was evaluated
numerically by comparing the regression estimates at each of the 6965 points to the
observed value for each month. The error statistics were promising, with a coef-
ficient of determination of 0.9, a mean bias error of 0.06 mm month–1, and mean
absolute error of 18 mm month–1. As a reference, the mean monthly rainfall in sub-
Saharan Africa is 80 mm month–1, and typically ranges between 0 and 200 mm
month–1.

In the second step of the GPCP enhancement procedure, the monthly, 0.1◦,
African (20◦W-55◦E, 40◦S-40◦N) FCLIM fields were used to downscale the 2.5◦
1979–2005 GPCP dataset. Monthly GPCP data were translated into fractions of their
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long-term means, downscaled to 0.1◦ degree fields via cubic convolution interpola-
tion, and multisplied against the corresponding 0.1◦ FCLIM grids. This produced
monthly, 1979–2005, 0.1◦ downscaled GPCP fields. The second stage of the GPCP
enhancement used a modified inverse distance weighting procedure to blend a mod-
erately dense, quality controlled set of rain gauge observations with the downscaled
GPCP fields. Some of these gauges would have been included in the 2.5◦ GPCP esti-
mates. We will refer to the blended gauge-GPCP-FCLIM dataset as the “enhanced
GPCP.”

Figures 6 and 7-top panel show March-April-May validation results for the
enhanced GPCP dataset. The validation is based on 22 years (1979–1998) of a large
number (73) of high-quality daily gauge observations located the western edge of
Kenya between 34.15◦E and 35.55◦E and 1◦S and 1◦N. While the study site has
an area equal to 45% of a GPCP grid cell, the downscaled enhanced GPCP means
correspond fairly well at 0.1◦ resolution (Fig. 6), and the spatial R 2 of these fields
is about 0.65. Temporally, the enhanced GPCP and validation data track very well
(Fig. 7), with a seasonal R2 of 0.87. The monthly 0.1◦ mean absolute error of the
data is 14 mm month–1, and the mean bias is 0 mm month–1. This compares favor-
ably with error statistics from the first set of rainfall estimates used by FEWS NET
(the RFE1, Herman et al. 1997). Previous analysis for this area found monthly 0.1◦
mean absolute errors of 20 mm month–1, and mean bias values of 15 mm month–1,
Funk and Verdin 2003).

Fig. 6 Monthly March–April-May mean 1979–1998 high density gauge and enhanced GPCP
rainfall estimates over the Kenya test site



308 C. Funk and J.P. Verdin

Fig. 7 Regionally averaged 1979–1998 March–May rainfall over the western Kenya test site. The
first three boxes represent 3 months from 1979 (March–May). Each consecutive set of three boxes
represents one of the following years. The top panel shows high density gauge observations and
enhanced GPCP time series. The bottom panel shows the GPCP data and enhanced GPCP time
series

Comparison between the enhance GPCP and raw GPCP data (Fig. 7, bottom
panel) show substantial discrepancies between the two data sets: the GPCP tends to
be substantially lower than the enhanced GPCP data, especially after 1986. This
shift in performance is likely due to the degradation of the publically available
station data sets over the past 20 years.

Further validation can be achieved by comparing the enhanced GPCP and RFE2
data. These results, evaluated across provinces in Kenya, are shown in Table 1
for the two main growing seasons. The long rains are centered on March–May.
The short rains are centered on October–December. In general, the correlations are
high (over 0.8), especially during the short rains. A very small province (Nairobi)
has a low correlation (0.49) during March–May. This is likely due to a differ-
ence in spatial scale and underlying station support. The low correlation for the
coastal province’s March–May time series may be attributable to the low station
density here in the RFE2 and the known difficulty with rainfall retrievals near the
coast.
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Table 1 Correlations between 2001 and 2005 enhanced GPCP and RFE2

Province
Correlation
March–May

Correlation
October–December

Correlation with
long rains yields

Eastern 0.81 0.97 0.66
North Eastern 0.83 0.86 NA
Coast 0.61 0.97 0.38
Nairobi 0.49 0.98 0.12
Central 0.85 0.85 0.60
Rift Valley 0.91 0.97 0.58
Nyanza 0.93 0.99 0.87
Western 0.98 0.94 0.95

3.4 Monitoring High Frequency Shocks Using Water Requirement
Satisfaction Index Maps

The primary agrohydrologic monitoring tool used by USGS FEWS NET is a gridded
version of the WRSI.3 Originally developed by the FAO (1977, 1979, 1986), the
WRSI is a measure of how much moisture is available to a crop relative to the crop’s
phenologically changing demands. The USGS FEWS NET team (Verdin and Klaver
2002; Senay and Verdin 2003) has created a spatially explicit version of the WRSI,
driven by gridded estimates of satellite rainfall (Xie and Arkin 1997; Huffman, et al.,
2007) and potential evapotranspiration (PET) derived using the Penman-Monteith
equation (Shuttleworth 1992; Verdin and Klaver 2002; Senay, et al., 2008) which
uses numerical weather prediction model data. In addition to rainfall and PET, the
WRSI also uses grids of soil parameters and length of the crop growing season
(Senay and Verdin 2003). This last parameter is determined by examining the ratio
of rainfall and PET and may vary from 60 days for very fast maturing crops in arid
zones to 180 days in moist high-altitude locations. In addition to these grids of data,
the WRSI requires crop-specific water demand coefficients (Kc) as a function of the
current phenology of the crop.

Before looking at the specifics of the WRSI calculation, it is worth a quick review
of crop phenology. To represent this, we show time-series data from an early study
(Tucker 1979) of vegetation index observations of a cornfield in the United States
(Fig. 8). As the plants mature, plant height, percent cover, vegetation index values,
and the crop coefficient increase linearly out to about 80 days. At this time, the
first tassels appear, and the plants go from the vegetative to reproductive stage. The
mass of cereal grains increases during the reproductive stage, so this transition is
important. Soil water deficits during this critical grain filling period are the most

3 This section builds strongly on the FEWS NET readme (http://earlywarning.usgs.gov/adds/
readme.php?symbol=ws), written by Gabriel Senay, as well as the GeoWRSI technical manual,
written by Tamuka Magadzire.
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Fig. 8 Crop phenology for a maize plot, modified from Tucker (1979)

damaging. Conversely, late season soil water deficits, after the grain biomass accu-
mulation is complete, may actually lead to higher yields by protecting the grains
from loss due to disease, insects, and mold.

Because of the different water needs of the plant at different phenological
stages, timing is critical to the successful calculation of the WRSI, which mea-
sures the relative crop water availability from the Start of the Season (SOS) to
the End of the Season (EOS). This time period corresponds to the typical phe-
nological curve shown in Fig. 8. Standard FEWS NET WRSI modeling is done
using ~10 day (dekadal) accumulations. Each month’s rainfall is divided into the
sum of the first 10 days, the middle 10 days, and the remaining 8–11 days. The
SOS date is then determined by finding the first dekad with more than 25 mm
of rain, followed by two dekads with a total rainfall of at least 20 mm. This
threshold is linked to the necessary moisture availability triggering the crop’s
emergence. The EOS date is a function of the length of growing period, LGP
(EOS=SOS+LGP).

For a given grid cell, calculation of the WRSI initializes several months
before the SOS date with a standard water balance calculation. Once at SOS
dekad, the WRSI calculation begins. At this, and each following dekad d, up to
the EOS, the WRSI estimates the running ratio of actual plant evapotranspiration
(AETc) to the full plant water requirement (WR).

WRSI = 100

∑d
t=SOS AETc
∑d

t=SOS WR
(4)
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Fig. 9 WRSI soil water
balance

The WR value is a function of the PET and the phenologically dependent crop
coefficient (Kc), and the WRSI index is accumulated from the SOS to a given
dekad (d).

WR = PET · Kc (5)

The Kc parameter peaks during the reproductive stage of the crop (Fig. 8). The
WR is a measure of how much water the crop would need under ideal growing
conditions. Full satisfaction of WR constitutes growing conditions without water
stress, that is, WRSI values of 100. When WRSI falls below 50, a crop is considered
to have failed. This threshold of 50 is based on empirical analysis (FAO 1986, Senay
and Verdin 2003).

AETc is determined by a modified water balance calculation, with the AETc

value representing the water withdrawn from the soil water reservoir (Fig. 9) at
each time step. Depending on the soil water level, root depth, and WR, AETc may
be equivalent, or less, than WR. Please refer to Senay and Verdin (2003) for details.
Each time AETc is less than WR, the WRSI value lowers, indicating increasing
water stress. It is standard practice to produce “extended WRSI” predictions. These
extended WRSI maps continue integrating the WRSI value forward in time from
dekad d using long-term average rainfall and PET. This provides an approximation
of the final crop water status of the crop. These projections will become increasingly
accurate as the EOS date approaches and are typically quite stable by the middle to
the end of the reproductive stage. Since this date is typically several months before
the crops are harvested, the WRSI provides a valuable early warning tool.
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Operational WRSI runs are hosted at the USGS early warning portal.4 A stand-
alone version of the GeoWRSI (Magadzire 2009) has been created for PCs and is
available at the Climate Hazard Group Web site: http://chg.geog.ucsb.edu.

4 Analysis of Kenyan Agricultural Hydrologic Conditions

4.1 WRSI Anomalies for the 2007 and 2008 Long and Short Rains

Using 2nd generation satellite rainfall estimates (RFE2) from NOAA CPC, Penman-
Montieth PET (Shuttleworth 1992, Senay, et al., 2008) fields from the USGS,4 and
the stand-alone GeoWRSI tool obtained from the Climate Hazard Group Web site,

Fig. 10 GeoWRSI end-of-season maize percent anomalies for the long rains (March–September)
and short rains (October–February)

4http://earlywarning.usgs.gov
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we have calculated the 2007 and 2008 maize WRSI anomalies for the long (March–
September) and short (October–December) rainfall seasons (Fig. 10). These figures
show the end of season WRSI, expressed as percent deviations from the long-term
mean (2001–2007). In general, the arid northern parts of Kenya depend on pastoral
livelihoods. These areas are masked in the WRSI runs and shown in white in Fig.
10. Across the southern two-thirds of the country, the western parts rely more upon
the long rains, and the eastern parts depend more upon the less reliable short rainy
season. In general, the rainfall performance for the 2007 long, 2008 long, and 2008
short seasons was very poor across the entire eastern half of the country. Many
areas never received sufficient moisture to even initialize the WRSI model with an
“onset of rains” signal. This could indicate that the 25 mm SOS-threshold, originally
developed for the Sahel during the 1970s, might not be appropriate in eastern Kenya.
More research into this component of the model seems warranted.

The 2007 short rainy season provided some relief near the coast, but not fur-
ther inland. Substantial agrohydrologic shortages have contributed significantly to
the current food insecurity (Fig. 5). Using 2001–2006 long rains maize FEWS
NET yield data pooled across the eastern provinces, we can establish a reason-
able relationship to the log of seasonal March–May rainfall (R2=0.63). This simple
relationship, in turn, can be used to make estimates of very low long rain yields
across the eastern provinces (Fig. 11). Because the main rainy season ends sev-
eral months before the actual harvest, satellite rainfall can be a good early warning
trigger. In February 2009, maize prices in Kenya are almost twice the 2003–2008
average. Without assistance, the food security situation there is likely to degrade
substantially.

4.2 The 2007 and 2008 Seasons in Historical Context

How uncommon is the multiseason combination of crop water deficits presented in
Fig. 10? To address this question, we extracted long (March-April-May) and short

Fig. 11 Actual yields and
estimated long rain maize
yields for the eastern
provinces of Kenya (the area
shaded in the map above).
Actual 2001–2006 yields
(y-axis) were obtained from
FEWS NET collaborators in
Kenya. Yield estimates
(x-axis) based on the log of
March–May rainfall
(R2=0.63). No yield
estimates were available for
2007 and 2008 – the values
shown are estimated from
rainfall
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Fig. 12 Combined rainfall
performance for last four
seasons (2007 MAM, 2007
OND, 2008 MAM, 2008
OND), measured as standard
deviations over the
1979–2008 era

(October–December) province-scale rainfall time series. The well-correlated RFE2
data (Table 1) were bias corrected using the period of overlap (2001–2005) and the
2006–2008 seasons to produce a complete 1979–2008 record. For each season, and
for each province, the ratio of the 3-year (2002–2005) enhanced GPCP and RFE2
average was estimated. The 2006–2008 RFE2 values were multiplied by this scalar,
and added to the end of the enhanced GPCP time series.

The rainfall data were next transformed into ranks, which minimized the impact
of a few extremely wet short rainy seasons associated with El Niño years. Time
series of 4-season averages were then calculated and expressed as standard devi-
ations from the average. These sigma (σ) values range from about –2 to +2, with
values above ±1 denoting exceptional 4-season groupings. Figure 12 shows the
sigma values for the combined 2007 long, 2007 short, 2008 long, and 2008 short
seasons. In the middle of Kenya (the Eastern, Central and Nairobi provinces),
four-season rainfall performance has been extremely poor, compared to 1979–2008
records, with sigma values of less than –1.5. The Rift Valley province, by far
Kenya’s most productive crop growing region, is not far behind, with a sigma of
–1.4. In the arid pastoral North Eastern province and in the tropical Western
province, four-season rainfall performance has been near normal. The Coast
Province received modestly below normal rainfall in each of the four 2007 and 2008
seasons, resulting in a 4-season sigma of –0.8.

4.3 1979–2008 Trends in Kenyan Rainfall and WRSI

We can use the enhanced GPCP and RFE2 rainfall grids to examine trends in rain-
fall and WRSI. These results are presented in Figs. 13 and 14. In order to run
the GeoWRSI over the 1979–2001 era, dekadal rainfall estimates were derived by
equally dividing each months total into three dekadal estimates. Correlation analysis
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Fig. 13 Long-term rainfall and WRSI analysis for Central-Eastern Kenya. The area analyzed is
shaded in the map of Kenya

of the seasonal provincial rainfall time series indicated strong homogeneity (1979–
2008 correlations of > 0.8) among the Rift Valley, Nairobi, Central, Eastern, and
North Eastern provinces. Hence, these regions have been pooled (Fig. 13). Coastal
Kenya displayed different interannual variations, so it is presented alone (Fig. 14).
The humid Western and Nyanza provinces displayed little decadal variation, so
results for these provinces are not displayed here.

Both the central-eastern and coastal areas exhibit substantial shifts in seasonality,
with long rains decreasing (panel a) and short rains increasing (panel b) by 20–30%.
This shift has been previously noted by the regional FEWS NET scientist (Galu
2008), who has also suggested that the intraseasonal variability of the rainfall has
increased in recent years, leading to less reliable crop performance. We test this
hypothesis by estimating the 3-month standard deviation for each long and short
rain season. The standard deviation estimated from the monthly 1979 rainfall for
March, April, and May represents the variability for that season. These values,
broken out by region, decade, and season, are shown in panels c and d in Figs. 13
and 14. For the March-April-May season, no increase in variability is apparent.
For the October–December rains, on the other hand, there does appear to be a large
(>30%) increase in the intraseasonal rainfall variability, from about 38 mm month–1

in 1979–1988 to about 50 mm month–1 in the 10 years between 1999 and 2008. The
combination of panels b and d suggests that while October-November-December
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Fig. 14 Long-term rainfall and WRSI analysis for the Coastal Province of Kenya. The area
analyzed is shaded in the map of Kenya

rainfall has been increasing, on average this rainfall tends to arrive poorly dis-
tributed throughout the season (again, as suggested by Gideon Galu, 2008). We can
examine the impacts of intraseasonal rainfall variations by running the WRSI model
over the 1979–2008 era, expressing the end-of-season WRSI values as standard
deviations (σ), and estimating decadal averages. As expected, long rain WRSI
values (panel e in Figs. 13 and 14) appear to have dropped substantially across both
Central-Eastern and Coastal Kenya. In Central-Eastern Kenya, short rain WRSI
(Fig. 13f) has increased, in line with recent rainfall increases (panel Fig. 13d). The
case in coastal Kenya, however, appears quite different. While both the short and
WRSI seem to have increased by a small amount, the increase in variability appears
much more substantial.

Figures 13 and 14 also show time series displaying successive 2-year combina-
tions of long and short rainy season. The first bar on the left in panel g represents
the combined performance of the 1979 long and short rains together with the 2008
long and short rains. The last bar on the right represents the most recent 4 seasons:
the 2007 long and short rains and 2008 long and short rains. The intervening dry
seasons are not included. The data have been ranked to minimize the effect of a few
extremely wet El Niño October–December seasons. For each season, ranks for the
past 30 years have been calculated from lowest to highest and offset by 15. A value
of –15 indicates the worst season on record, 0 a median season, and 15 the best



Famine Early Warning System 317

on record. For the areas analyzed, these individual ranks were then averaged, pro-
ducing values between –8 (very low 4-season rainfall) and 8 (very good 4-season
rainfall). For central and eastern Kenya (i.e., most of the country), the tendency
toward poorer rainfall is apparent. In the early 2000s, rainfall performance was quite
good, but the combined 2007–2008 long-short rains appear to be the worst over the
period analyzed. Coastal Kenya also exhibits a downward tendency, again driven
by the decreasing long rains. Except for a few positive years, linked to wet 2006
long and short rains, the average rainfall performance for Coastal Kenya has been
substantially below normal.

5 Summary and Discussion

In Africa, 90% of farmers are smallholders, reliant on small plots of land, lim-
ited technological inputs, and rainfed agriculture (Rockstrom 2000). These farmers
and their societies are tightly coupled to the environment and climate. This makes
them vulnerable to hydrologic extremes. Satellite rainfall estimates, especially when
linked to agrohydrologic models, such as the WRSI, can provide valuable early
indication of weather-induced shocks. The WRSI filters the rainfall data in space
and time. The particular impact of midseason rainfall receipts will vary by the
soil characteristics, the length of growing period, the crop type, antecedent rain-
fall and PET, and the phenological stage of the plant. The most damaging crop
water deficits arise during the reproductive stage of the crop (Fig. 8), when the
cereal plants switch from growing leaves to growing grains. Late planting (Funk and
Budde 2009) or midseason water deficits (Senay and Verdin 2003) can dramatically
reduce yields. The WRSI allows these disruptions to be identified months before the
actual harvest date, providing early warning and time to develop disaster response
strategies (Fig. 1).

Food security responses by USAID and partner agencies are saving thousands
of lives. A good example would be the 2002–2003 food crisis in Ethiopia. Rainfall
performance was very poor (Funk, et al., 2003a, 2005), perhaps analogous to con-
ditions accompanying the devastating 1984–1985 famine. This dryness, combined
with low planted area due to low cereal prices, produced a large spike in food inse-
curity (Fig. 3). This food crisis provided a benchmark test for the international food
security organizations, and effective response prevented widespread hunger, disease,
and social disruption. These responses were enhanced substantially by real-time
satellite rainfall applications.

In addition to effective early warning, agrohydrologic modeling can also inform
long-term food security decision making through water and food budget analysis.
This perspective helps explain, in part, the increasingly chronic food insecurity in
eastern Africa. The Ethiopian 2002–2003 food crisis in Ethiopia was associated with
about 15 million food insecure individuals. Recent food insecurity levels appear to
be trending toward this amount at a rate of about 1 million people per year. Growing
population and stagnant yields help create this problem (Fig. 3), as has the low water
availability across the more arid parts of eastern Africa (Fig. 4).
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Focusing on Kenya, we have shown that the WRSI model, driven by satellite
rainfall fields, can effectively monitor anomalous hydrologic conditions (Fig. 10).
Across most of Kenya, hydrologic growing conditions for the 2007 and 2008
long rains and the 2008 short rains were very poor, indicating failure or near-
failure of maize crops, as suggested by our empirical estimation of yields (Fig. 11).
Performance of the 2008 short rains was mixed but poor in the center of the country.

The combination of these 4 seasons appears unusually bad, indicating that a
rare and intense multiyear drought has impacted most of the country (Fig. 12).
Examination of pooled enhanced GPCP/RFE2 data support the assertion (Galu
2008) that a shift in seasonality may be occurring. Consistent with our previous
research (Funk, et al., 2005; Verdin, et al., 2005; Funk, et al., 2008), March–May
rainfall appears to be decreasing by almost 10% a decade (Figs. 13 and 14), pro-
ducing a –0.5σ reduction in WRSI over the 1979–2008 era over both coastal and
central-eastern Kenya.

The October–December short rains, on the other hand, appear to be increas-
ing. There appears to have been a substantial increase in intraseasonal variability
in the October–December short rains across central-eastern and coastal Kenya, and
the March–May long rains in coastal Kenya. Increasing intraseasonal variability
tends to reduce crop performance due to the occurrence of midseason dry spells.
WRSI analysis suggests that this increasing variability may be reducing the benefi-
cial impact of rainfall increases in coastal Kenya (Fig. 13f), consistent with reports
coming from Kenya (Galu 2008).

We suggest that satellite observations can contribute to both short- and long-term
monitoring of food security in Africa. Furthermore, we believe that both these per-
spectives are necessary. As the number of urban poor rises rapidly and global food
prices soar due to increased consumption by biofuels and livestock, there has been a
broad increase in three classic coping mechanisms (Natsios and Doley 2009): food
hoarding, migration, and increased banditry. This expanding food stress disrupts
societies and creates political unrest; over the next decade we are likely to see “food
coups” emerge as modern counterparts to the famines of the past. We have shown
that agricultural development can help reduce these impacts (Funk, et al., 2008;
Brown and Funk 2008; Funk and Brown 2009). Without addressing the key issues
of resource scarcity, short-term food aid responses may in fact act to create future
risk, moving African societies into imbalance and helping to create greater need.
More analysis of the shift in seasonality, discussed briefly here, could help guide
future agricultural development strategy.

References

Adler RF, Huffman GJ, Chang A, Ferraro R, Xie P-P, Janowiak J, Rudolf B, Schneider U, Curtis
S, Bolvin D, Gruber A, Susskind J, Arkin P, Nelkin E (2003) The version-2 global precipi-
tation climatology project (GPCP) monthly precipitation analysis (1979–Present). Journal of
Hydrometeorology 4:1147–1167

Artan G, Verdin J, Asante K (2001) A wide-area flood risk monitoring model. Proc of the Fifth
International Workshop on Applications of Remote Sensing in Hydrology. Montpelier, France



Famine Early Warning System 319

Brown M, Funk C (2008) Food security under climate change. Science 319:580–581
Brown ME, Funk CC, Galu G, Choularton R (2007) Earlier famine warning possible using remote

sensing and models. EOS, Transactions of the American Geophysical Union 88(39):381–382
Dobson JE, Bright EA, Coleman PR, Durfee RC, Worley BA (2000) Landscan: global popu-

lation for estimating population at risk. Photogrammetric Engineering and Remote Sensing
66(7):849–857

FAO (1977) Crop water requirements. FAO Irrigation and Drainage Paper No. 24, by Doorenbos J
and W.O. Pruitt. FAO, Rome, Italy

FAO (1979) Agrometeorological crop monitoring and forecasting. FAO Plant Production and
Protection Paper No. 17, by M. Frère and G.F. Popov. FAO, Rome, Italy

FAO (1986) Early agrometeorological crop yield forecasting. FAO Plant Production and Protection
Paper No. 73, by M. Frère and G.F. Popov. FAO, Rome, Italy

FAO (2007) The State of Food and Agriculture. United Nations Food and Agriculture Organization,
Rome

Funk C (2009) New satellite observations and rainfall forecasts help provide earlier warn-
ing of drought in Africa. The Earth Observer http://earlywarning.usgs.gov/adds/pubs/
Funk_EarthObserver_Jan_Feb09.pdf. Accessed 17 March 2009

Funk C, Asfaw A, Steffen P, Senay G, Rowland J, Verdin J (2003) Estimating Meher
Crop Production Using Rainfall in the ‘Long Cycle’ Region of Ethiopia. FEWS NET
Special Report.http://earlywarning.usgs.gov/adds/pubs/EthProductionOutlook.pdf. Accessed
17 March 2009

Funk C, Brown M (2005) A maximum-to-minimum technique for making projections of NDVI
in semi-arid Africa for food security early warning. Rem Sens Environment 101:249–256.
http://earlywarning.usgs.gov/adds/pubs/ndvi_projections.pdf. Accessed 17 March 2009

Funk C, Brown M (2009) Emerging threats to globalfood security. Food Security 1(3):271
Funk C, Budde M (2009) Phenologically-tuned MODIS NDVI-based production anomaly esti-

mates for Zimbabwe. Remote Sensing of Environment 113(1):115–125
Funk C, Dettinger MD, Brown ME, Michaelsen JC, Verdin JP, Barlow M, Hoell A (2008)

Warming of the Indian Ocean threatens eastern and southern Africa, but could be mitigated by
agricultural development. Proceedings of the National Academy of Sciences 105:11081–11086

Funk C, Magadzire T, Husak G, Verdin J, Michaelsen J, Rowland J (2002) Forecasts of 2002/2003
Southern Africa Maize Growing Conditions Based on October 2002 Sea Surface Temperature
and Climate Fields. FEWS NET Special Report

Funk C, Michaelsen J (2004) A simplified diagnostic model of orographic rainfall for enhanc-
ing satellite-based rainfall estimates in data poor regions. Journal of Applied Meteorology
43:1366–1378

Funk C, Michaelsen J, Verdin J, Artan G, Husak G, Senay G, Gadain H, Magadzire T (2003) The
collaborative historical African rainfall model: description and evaluation. International Journal
of Climatology 23:47–66

Funk C, Schmitt C, LeComte D (2006) El Niño and Indian Ocean Dipole conditions likely into
early 2007, with drought and flooding implications for Southern and Eastern Africa. FEWS
NET Special Report

Funk C, Senay G, Asfaw A, Verdin J, Rowland J, Michaelsen J, Eilerts G, Korecha D,
Choularton R (2005) Recent Drought Tendencies in Ethiopia and equatorial-subtropical
eastern Africa. FEWS NET Special Report. http://chg.geog.ucsb.edu/pub/pubs/
RecentDroughtTendenciesInEthiopia.pdf. Accessed 17 March 2009

Funk C, Verdin J (2003) Comparing satellite rainfall estimates and reanalysis precipitation
fields with station data for western Kenya. Proceedings of the International Workshop on
Crop Monitoring for Food Security in Africa, European Joint Research Centre/UN Food and
Agriculture Organization, Nairobi, Kenya, January 28–30

Funk C, Verdin J, Husak G (2006) Integrating observation and statistical forecasts over sub-
Saharan Africa to support Famine Early Warning. American Meteorological Society Meeting,
Nov. 2006, Extended Abstract



320 C. Funk and J.P. Verdin

Galu G (2008) Recent changes in seasonal rainfall patterns in the Greater Horn of Africa. FEWS
NET Internal Report

Herman A, Kumar VB, Arkin PA, Kousky JV (1997) Objectively determined 10-day African
rainfall estimates created for famine early warning. International Journal of Remote Sensing
18:2147–2159

Huffman G, Adler RF, Bolvin DT, Gu G, Nelkin EJ, Bowman KP, Hong Y, Stocker EF, Wolff
DB (2007) The TRMM Multisatellite Precipitation Analysis (TMPA): quasi-global, multi-
year, combined-sensor precipitation estimates at fine scales. Journal of Hydrometeorology
8(1):38–55

Jury MR (2002) Economic impacts of climate variability in South Africa and development of
resource prediction models. Journal of Applied Meteorology 41:46–55

Kates RW (2000) Cautionary tales: adaptation and the global poor. Climatic Change 45:5–17
Magadzire T (2009) The Geospatial Water Requirement Satisfaction Index Tool, TechnicalManual.

USGS Open-File Report. In Review
Natsios AS, Doley KW (2009) The coming food coups. The Washington Quarterly 32(1):7–25
Rockstrom J (2000) Water resources management in smallholder farms in Eastern and Southern

Africa: an overview. Physics and Chemistry of the Earth (B) 25:275–283
Rowland J, Verdin J, Adoum A, Senay G (2005) Drought monitoring techniques for famine early

warning systems in Africa. Chapter 19 in Monitoring and Predicting Agricultural Droughts:
A Global Study, Boken VK, Cracknell AP, Heathcote RL(Eds.), Oxford University Press,
New York

Senay G, Verdin J (2003) Characterization of yield reduction in Ethiopia using a GIS-based crop
water balance model. Canadian Journal of Remote Sensing 29(6):687–692

Senay G, Verdin J (2004) Developing index maps of water-harvest potential in Africa. Applied
Engineering in Agriculture, American Society of Agricultural Engineers 20(6):789–799

Senay G, Verdin J, Lietzow R, Melesse A (2008) Global daily reference evapotranspiration
modeling and validation. Journal of the American Water Resources Association 44(4):969–979

Shuttleworth J (1992) Evaporation. In: Maidment D (Ed.) Handbook of Hydrology. McGraw-Hill,
New York

Tucker CJ (1979) Red and photographic infrared linear combinations for monitoring vegetation.
Remote Sensing of Environment 8:127–150

Verdin J, Funk C, Klaver J, Roberts D (1999) Exploring the correlation between Southern African
NDVI and ENSO sea surface temperatures: results for the 1998 growing season. International
Journal of Remote Sensing 20(10):2117–2124

Verdin J, Funk C, Senay G, Choularton R (2005) Climate science and famine early warning.
Philosophical Transactions of the Royal Society B 360:2155–2168 http://earlywarning.usgs.
gov/adds/pubs/Climate%20Science%20and%20Famine%20EW.pdf. Accessed 17 March 2009

Verdin J, Klaver R (2002) Grid cell based crop water accounting for the famine early warning
system. Hydrological Processes 16:1617–1630

Verdin J, Senay G (2002). Evaluating the performance of a crop water balance model in estimating
regional crop production. Proceedings of the Pecora 15 Symposium, Denver CO

WWD (2003) UN World Water Development Report, Water for People, Water for Life. UNESCO.
http://www.unesco.org/water/wwap/wwdr/table_contents.shtml. Accessed 17 March 2009

Xie P, Arkin PA (1997) A 17-year monthly analysis based on gauge observations, satellite
estimates, and numerical model outputs. Bulletin of the American Meteorological Society
78(11):2539–2558



Index

A
Advanced Infrared Sounder (AIRS), 20
Advanced Microwave Scanning Radiometer

(AMSR), 5, 6, 7, 9, 10, 19, 25, 26, 27,
28, 33, 71, 86, 87, 94, 108, 112, 113,
114, 198, 262, 272, 281, 284, 285

Advanced Microwave Sounding Unit (AMSU),
6, 25, 41, 71, 86, 198

Advanced Microwave Sounding Unit B
(AMSU-B), 6, 7, 25, 26, 27, 33, 41, 71,
86, 182, 198, 272

Advanced TOVS (ATOVS), 20
Advanced Very High Resolution Radiometer

(AVHRR), 288, 291
Agricultural Meteorology Model (AFWA)

(AGRMET), 271, 272, 273, 274, 275,
278, 281

Agricultural Research Service (USDA) (ARS),
281, 283, 284

Agriculture, 95, 127, 249, 258, 269–271, 273,
275, 276, 278, 283–290, 296, 298, 299,
300, 301, 302, 317

Agriculture and Resources Inventory Surveys
through Aerospace (AgRISTARS), 271,
272, 278, 279

Air Force Weather Agency (AFWA), 271, 272,
274–275, 280, 285, 290

Albedo, 39
Algorithm, 4, 5, 6, 7, 9, 10, 11–13, 14, 20, 25,

26, 27, 29, 33, 40, 41, 42, 43–45, 46,
49–65, 69–81, 93, 107, 108, 109, 112,
113, 114, 115, 119, 120, 121, 129, 137,
154, 161, 173, 175, 194, 195, 198, 199,
201, 202, 203, 207, 211, 218, 219, 225,
230, 233, 235, 247, 274, 275, 276, 277,
279, 284, 290, 291, 298

AMSR-E–GPROF, 5
AMSR for EOS (AMSR-E), 108, 284
AMSU–NESDIS, 5

Antecedent precipitation index (API), 252,
253, 254, 260, 261, 262

Aqua, 6, 25, 86, 87, 94, 99, 108, 113, 284
Aral Sea, 287
Arctic Slope Regional Corporation (Crop

Explorer) (ASRC), 273
Arkansas, 96, 98
Artificial neural networks, 40, 50, 71, 86, 171,

207, 233
Australia, 13, 34, 78, 79, 92, 114, 120, 129,

133, 135, 137, 138, 172, 258, 274, 278

B
3B43, 11, 12, 19
Bacchiglione, 217, 218, 219, 221, 222, 223,

224, 225
Baiu, 117
Basins, 14, 50, 52, 76, 96, 98, 99, 154, 162,

172, 216, 217, 218, 219, 220, 221, 222,
223, 224, 225, 232, 233, 235, 246, 248,
250, 251, 254, 255, 256, 257, 258, 260,
261, 262

Beressa watershed, 206, 207
Bicubic interpolation, 88
Bilinear interpolation, 29
Brier score, 130, 237
Brightness temperature, 7, 24, 39, 41, 42, 43,

50, 51, 54, 87, 107, 108, 109, 110, 111,
216, 233, 274, 276, 284, 285

3B40RT, 12
3B41RT, 12, 153, 156, 157, 158, 159, 160,

162, 163, 164, 217
3B42RT, 12, 15, 19, 36, 76, 77, 78, 120, 121,

137, 155, 156, 157, 158, 159, 160, 171,
173, 198, 199, 201, 272, 275

M. Gebremichael, F. Hossain (eds.), Satellite Rainfall Applications for Surface
Hydrology, DOI 10.1007/978-90-481-2915-7,
C© Springer Science+Business Media B.V. 2010

321



322 Index

C
Calibration, 5, 7, 8, 9, 10, 11, 12, 13, 14,

15–18, 20, 24, 27, 33, 40, 41, 42, 43,
44, 45, 55, 71, 72, 73, 74, 75, 76, 80,
81, 147, 150, 151, 154–159, 162, 163,
165, 198, 202, 216, 218, 219, 222, 230,
232, 248

Canopy, 96, 282
Climate Assessment and Monitoring System

(CAMS), 8
Climate Prediction Center (NOAA) (CPC), 7,

8, 10, 20, 34, 35, 65, 72, 86, 93, 107,
108, 113, 171, 174, 175, 177, 182, 183,
184, 185, 186, 188, 189, 198, 207, 271,
276, 300

Climatology, 5, 8, 9, 10, 12, 13, 14, 15–18, 20,
70, 71, 72, 74, 76, 98, 106, 117, 154,
195, 237, 239, 249, 252, 253, 255, 273,
277, 281, 283, 298, 305, 306

Cloud patch, 50, 51, 52, 53, 54, 55
Colombia, 194, 195, 196, 197, 200
Complex terrain, 15, 94, 205–214, 215–225
Continental United States (CONUS), 13, 40,

42, 54, 93, 95
Convective, 13, 26, 32, 33, 40, 43, 45, 52, 55,

56, 71, 75, 76, 78, 91, 92, 116, 155,
171, 172, 173, 176, 179, 180, 181, 190,
194, 213

Correlation length, 149, 150, 151–152, 154,
158, 161, 163

Correlogram, 154, 160
CPC Morphing algorithm (CMORPH), 20,

23–36, 65, 71, 76, 77, 78, 80, 86, 91,
106, 107, 109, 111, 120, 121, 128, 129,
133–140, 155, 156, 157, 158, 159, 160,
171, 172, 173, 178, 179, 180, 181, 182,
186, 193–203, 207, 208, 209, 210, 211,
212, 213, 214, 271, 272, 273, 276, 290,
291

precipitation, 271, 276
Crop Condition Data Retrieval and Evaluation

(CADRE), 271, 272, 273, 274, 275,
279, 284, 285, 289

Crop yield, 267–291, 296
Curve number, 250, 251, 303

D
Data and Information Services Center (NASA)

(DISC), 272
Decision Support System for Agrotechnology

Transfer (DSSAT), 279
Defense Meteorological Satellite Program

(DMSP), 4, 6, 25, 71, 72, 81, 86, 87,
102, 108, 112, 113, 282

Digital Soil Map of the World (DSMW), 280
Discriminant analysis, 40, 42
Drift, 4, 87
Drought, 91, 146, 283, 285, 287, 289, 296,

297, 298, 299, 300, 301, 302, 304, 318

E
Earth Observing System (NASA) (EOS), 6, 25,

86, 198, 284, 288
Earth System Science Interdisciplinary Center

(UMD) (ESSIC), 283, 285
East African Rift Valley, 195
Economic Research Service (USDA) (ERS),

285
Ensemble, 94, 147, 161, 162, 216, 217, 219,

220, 222, 223, 225, 230, 231–233,
234–239, 240, 284

Ensemble Kalman filter (EnKF), 284
ENVISAT, 285, 286
Equitable threat score (ETS), 93, 94, 102, 134,

135, 136, 138
Error

metric, 129, 134, 140, 147, 148, 149,
150–154, 155–159, 161, 162–165, 166,
224

propagation, 147, 215–225
Ethiopia, 194, 195, 196, 197, 200, 201, 202,

205–214, 298, 301, 303, 304, 317
European Centre for Medium-Range Weather

Forecast (ECMWF), 278
European Operational Meteorological (MetOp)

satellite, 4, 6, 19, 86, 87
Evaporation, 70, 98, 99, 182, 185, 213, 235,

255, 304
Evapotranspiration, 270, 275, 280, 289, 300,

301, 309, 310

F
False alarm, 93, 94, 131, 132, 134, 136, 137,

138, 140, 148, 149, 150, 151, 157, 159,
163, 172, 199, 200, 235, 239, 240

Famine, 295–318
Famine Early Warning System (FEWS),

295–318
Flash flood, 40, 106, 127, 152
Food and Agriculture Organization (UN)

(FAO), 249, 258, 280, 296, 309, 311
Food security, 95, 296, 297, 298, 299, 300,

301–305, 313, 317, 318
Foreign Agricultural Service (USDA) (FAS),

269, 270, 271, 272, 273, 275, 278–283,
284, 285, 290



Index 323

Fractions skill score (FSS), 130, 131, 132, 133,
135, 136, 137, 138, 140, 141

Frequency bias score (FBS), 130, 131, 138,
139, 199, 200, 201

G
Gauge data, 5, 8, 11, 32, 34, 35, 72, 76, 78, 79,

172, 178, 197–198, 200, 201, 202, 208,
254, 256, 288

Gaussian filter, 74
Geographical information system (GIS), 64,

271, 273, 298
Geospatial Data Abstraction Library (GDAL),

61
Geospatial Data Analysis Corporation (GDA

Corp), 289
Geostationary Meteorological Satellites

(GMS), 24, 86, 274
Geosynchronous (GEO), 5, 6, 28, 50, 54, 65,

85, 86, 87–88, 89, 107, 113, 114, 194
Geosynchronous Operational Environmental

Satellite (GOES), 5, 7, 24, 26, 40, 41,
42, 43, 44, 45, 46, 52, 65, 70, 72, 86,
112, 113, 114, 274

Global Agriculture Monitoring System
(USDA/FAS and NASA) (GLAM),
270, 283–290

Global flood monitoring, 250, 261
Global Forecast System (GFS), 173, 262
Global Precipitation Climatology Project

(GPCP), 4, 5, 7, 10, 11, 70, 71, 106,
107, 154, 305, 306, 307, 308, 309, 314,
318

Global Precipitation Measurement (GPM), 20,
106, 107, 115, 216, 246, 247, 262, 291

Global Precipitation Mission (GPM), 81, 92,
93, 95, 97, 98, 100, 102, 103, 115, 116,
216, 246, 291

Global Reservoir and Lake Monitor (GRLM),
285, 286, 287

Global Runoff Data Center (GRDC), 255, 256,
257, 260

Global Satellite Map of Precipitation (GSMap),
20, 24, 36, 105–122

Global Telecommunication System (GTS),
195, 196, 197, 198, 200, 201, 271, 272,
273, 274, 278, 281, 300

Goddard Profiling Algorithm (GPROF), 5, 6,
7, 14, 15, 19, 27

Goddard Space Flight Center (NASA) (GSFC),
113, 283, 284, 285

GOES Multispectral Rainfall Algorithm
(GMSRA), 70

Ground validation (GV), 91–95, 148, 149, 150,
154, 155, 156, 165, 205

H
Hanssen and Kuipers discriminant (HK), 131,

132, 136, 140
HEC-HMS, 250, 260
Heidke Skill Score (HSS), 42, 181, 199, 200,

201
High Resolution Precipitation Products

(HRPP), 85–91, 92, 93, 94, 95, 102,
107, 120, 127–142, 155, 165, 247

Hurricane
Ernesto, 56–58, 65
Katrina, 49, 58–60, 65, 246

Hydro-Estimator, 45, 46, 80, 171, 173, 176,
178, 179, 180, 181, 182

Hydrological Sciences Branch (NASA/GSFC)
(HSB), 283, 284, 285

Hydrologic Engineering Center (HEC), 250,
260

Hydrologic model (HyMOD), 216, 217, 218,
219, 222, 225, 229, 230, 231, 234–235,
239, 247, 249, 250, 297, 300, 317

Hydrologic Modeling System (HMS), 250, 260
Hydrology, 9, 46, 72, 85–103, 146, 147, 150,

165, 216, 248, 267–291, 298
Hydrology and Remote Sensing Laboratory

(USDA/ARS) (HRSL), 281, 283, 284,
285

I
Ice water path (IWP), 7, 26
Infrared (IR), 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,

19, 20, 23, 24–25, 26, 28, 29, 33, 39,
40, 41, 42, 43, 50, 51, 52, 54, 57, 65,
69–81, 86, 87, 88, 90, 106, 107, 108,
109, 110, 111, 112, 113, 115, 116, 162,
171, 172, 193, 207, 230, 233, 272, 275,
276, 281, 288, 306

Intermittency, 145, 148
International Geoshpere Biosphere Programme

(IGBP), 62, 63
International Precipitation Working Group

(IPWG), 13, 78, 79, 80, 92, 114, 120,
172, 173–178

International Production Assessment Division
(USDA/FAS) (IPAD), 270, 284, 285

Inter Tropical Convergence Zone (ITCZ), 117,
195, 196, 197, 206

Italy, 153, 154, 162, 163, 164, 165, 215–225



324 Index

J
Japan, 16, 24, 106, 107, 112, 114, 115, 116,

117, 119, 120
Joint Agricultural Weather Facility (JAWF),

269, 274
Joint Research Center (JRC), 278

K
Kalman filter, 24, 33–34, 105–122, 284
Kansas, 173, 178
Kenya, 296, 298, 300, 306, 307, 308, 312, 313,

314–317, 318
Kuril Islands, 117

L
Lagrangian, 20, 65, 148
Lake Victoria, 287, 288
Land Information System (LIS), 95, 97, 103,

261
Landslide monitoring, 146
Land surface model (LSM), 95–102, 103, 231,

261
Large Area Crop Inventory Experiment

(LACIE), 271, 278, 279
Latency, 12, 29, 30, 39–47
Leaf River Basin, 233, 235
Look up tables (LUT), 25, 43, 87, 88, 89, 114,

151
Low earth orbit (LEO), 4, 23, 40, 50, 54, 85,

86, 87–88, 89, 92, 93, 106, 107, 108,
116

M
Mesoscale model, 7
Meteorological satellites (Meteosat), 24, 26,

65, 81, 86, 112, 113, 114, 274
MHS–NESDIS, 5
Microwave, 4, 5, 6, 7, 8–11, 12, 13, 14, 19, 20,

23, 25–26, 28, 30, 33, 40, 41, 43, 50,
65, 69–81, 85, 86, 87, 91, 93, 99, 101,
102, 103, 106, 107, 108, 109, 110, 111,
112, 113, 114, 115, 118, 119, 120, 121,
128, 171, 173, 193, 198, 207, 211, 216,
218, 230, 246, 272, 274, 275, 276, 281,
282, 284–285, 306

Microwave Humidity Sounders (MHS), 6, 7, 9,
10, 19, 86, 87, 93

Modeling, 56, 65, 87, 95, 105, 146, 147,
148–150, 151, 154, 155, 158, 159, 161,
165, 166, 217, 230, 245–262, 297, 298,
300, 305, 310, 317

Moderate Resolution Imaging Spectroradiome-
ter (MODIS), 62, 249, 251, 281, 287,
288, 289, 290, 291

Monitoring Agriculture through Remote
Sensing techniques (MARS), 278

Monte Carlo, 239
Mosaic, 35, 36, 71, 95, 96, 97, 98, 99, 100,

101, 102, 103
Motion vector, 28, 65, 80, 107, 108, 109, 171,

198
Multi-event contingency table (MECT), 131,

133, 136, 137, 140, 141
Multi-Function Transport Satellite (MTSAT),

24, 86, 112, 113, 114

N
Nash-Sutcliffe efficiency, 135
National Aeronautics and Space Administra-

tion (NASA), 20, 72, 198, 271, 272,
275–276, 283, 298

National Agricultural Statistics Service
(NASS) (USDA), 268

National Centers for Environmental Prediction
(NCEP), 29, 32, 34, 35, 173, 178, 182,
234

National Environmental Satellite Data and
Information Service (NESDIS), 5, 7, 9,
26, 28, 43, 45

National Oceanic and Atmospheric
Administration (NOAA), 6, 7, 8, 19, 25,
26, 28, 34, 45, 46, 49, 86, 87, 93, 102,
112, 113, 194, 198, 271, 272, 276, 277,
298

National Polar-orbiting Operational
Environmental Satellite System
(NPOESS), 288

National Weather Service (NOAA) (NWS), 7,
34, 49, 232, 233, 234, 240, 271, 272,
273, 277, 278, 281, 291

Natural Resources Conservation Service
(NRCS), 250–253, 254, 256, 260

Navy Operational Global Atmospheric
Prediction System (NOGAPS), 77, 78,
79, 88, 90, 91, 92, 94, 173, 178

Navy Research Laboratory (NRL), 77, 78, 79,
80, 85–103, 106, 107, 128, 171, 178,
179, 180, 181

NCEP GFS, 178, 182
Near Infrared (NIR), 288
Neighborhood verification, 127–142
Neighborhood verification score, 135, 137
Next-Generation Radar (NEXRAD), 155, 156,

157, 158, 233, 271, 272, 273, 277, 278
Noah, 95, 96, 97, 98, 99, 100, 101, 102, 103
Normalized Difference Vegetation Index

(NDVI), 270, 287, 289, 290, 297, 300,
301



Index 325

Normalized Difference Water Index (NDWI),
289

North America Land Data Assimilation System
(NLDAS), 97

North American Monsoon Experiment
(NAME), 173, 181–188, 189, 213

Northern hemisphere, 17, 75, 77, 105, 255
NRL-Blended, 171, 178, 179, 180, 181
Numerical weather prediction (NWP), 77, 86,

88, 90–91, 92, 93, 94, 127, 172, 190,
309

O
Ocean, 7, 8, 9, 10, 13, 17, 18, 19, 25, 26, 27,

69, 77, 91, 92, 113, 117, 119, 197, 230,
301, 302

Oceanic rainfall, 33
Office of Global Analysis (OGA), 270, 275,

276, 284, 285
Oklahoma, 147, 155, 156, 157, 158, 159, 172,

173, 178, 213
Optimization, 157, 222, 235
Orographic rain, 194, 213, 305

P
Parameter-elevation Regressions on

Independent Slopes Model (PRISM),
277

Passive Microwave-Infrared (PMIR), 69–81
Passive microwave (PMW), 7, 23, 24, 25–26,

27, 28, 29, 30, 33, 34, 35, 69–81, 85,
86, 87, 89, 91, 92, 94, 102, 107, 113,
115, 128, 171, 172, 173, 182, 183, 188,
193, 198, 216, 218, 230, 272, 275, 276,
281, 282, 284–285, 290

Pilot Evaluation of the High Resolution
Precipitation Products (PEHRPP), 92,
107, 120

Posina, 218, 219, 220, 222, 223, 224, 225
Potential evapotranspiration (PET), 270, 280,

281, 300, 301, 309, 311, 312, 317
Precipitation Estimation from Remotely

Sensed Information using Artificial
Neural Networks (PERSIANN), 24, 35,
49–65, 71, 86, 106, 107, 128, 155, 156,
157, 158, 159, 160, 171, 172, 173, 178,
179, 180, 181, 182, 183, 186, 207, 208,
209, 210, 211, 212, 213, 214, 231, 232,
233, 234, 240

Precipitation Processing System (PPS), 7, 11,
12

Precipitation radar (PR), 7, 41, 81, 87, 115,
116, 199, 291

Probability of detection (POD), 93, 94, 102,
131, 140, 149, 150, 151, 156, 157, 158,
161, 162, 163, 165, 172, 199, 200, 201,
235, 238, 239, 240

Probability matching, 8, 10, 55, 199
Production, Supply and Distribution

(USDA/FAS) (PS&D/PSD), 269, 270

Q
QMORPH, 29, 30

R
Radar, 7, 14, 28, 30, 31, 34, 36, 39, 41, 45, 46,

54, 56, 57, 58, 59, 60, 65, 69, 73, 79,
81, 85, 86, 87, 95, 107, 114, 115, 116,
119, 120, 121, 128, 129, 130, 133, 134,
135, 137, 146, 155, 169, 170, 171, 172,
176, 178, 179, 182, 185, 199, 217, 218,
219, 220, 222, 223, 225, 230, 231, 232,
233, 234, 235, 239, 247, 271, 272, 277,
284, 285–287, 288, 291

Rainfall estimation (RFE), 27, 50, 51, 54, 65,
70, 193, 194, 198, 201, 230, 248, 261,
262, 301

Real Time Nephanalysis Cloud Model
(RTNEPH), 274

Red River, 96, 98
Remote sensing, 50, 61, 113, 146, 165, 218,

219, 247, 251, 254, 261, 271, 278, 283,
285, 289, 298, 300

Retrieval, 14, 26, 39–47, 50, 65, 70, 71, 80,
102, 103, 112, 114, 121, 128, 148, 149,
150, 151, 152, 154, 157, 158, 160, 161,
162, 163, 166, 194, 195, 198, 201, 207,
216, 217, 219, 225, 229–240, 271, 276,
284, 285, 290, 291, 300, 308

RFE1, 201, 307
RFE2, 201, 304, 305, 306, 308, 309, 312, 314,

318
River forecast centers (NOAA/NWS) (RFC),

231, 234, 277
River network, 248, 249, 254

S
Sacramento, 234
Satellite precipitation estimates (SPE), 34, 95,

99, 128, 129, 188, 205, 208, 272, 277,
291

Self-Calibrating Multivariate Precipitation
Retrieval (SCaMPR), 39–47

Self-Organizing Feature Map (SOFM), 53, 54,
55

Shortwave length Infrared (SWIR), 288



326 Index

Shuttle Radar Topography Mission (SRTM),
247, 248, 249

Skewness, 152
Soil moisture, 95, 96, 97, 99, 102, 103, 146,

231, 234, 246, 250, 252, 262, 267–291,
300, 301, 302

Soil water content (SWC), 97–102, 103, 234
Somali jet, 206
Southern Great Plains, 178
Special Sensor Microwave/Imager (SSM/I), 5,

6, 7, 8, 10, 19, 25, 26, 40, 41, 43, 71,
72, 74, 81, 86, 108, 112, 113, 114, 198,
272, 274, 281, 282

Spinning Enhanced Visible/InfraRed Imager
(SEVIRI), 43, 44, 65

SSM/I–GPROF, 5
Station gauge (SG), 272, 275
Stream flow, 127, 146, 225, 234, 251

T
TAMSAT, 202
Television Infrared Observation Satellite

(TIROS), 20
Temporal correlation, 148, 149, 154, 175
Thermal infrared (TIR), 193, 194, 198, 199,

201
TIROS Operational Vertical Sounder (TOVS),

20
TMI–GPROF, 5
TOGA-COARE, 75
Total column precipitable water (TPW), 88
Triangulated irregular network Integrated

Basin Simulator, (tRIBS), 217, 222
TRMM combined instrument (TCI), 5, 8, 10,

11, 12, 14, 199
TRMM On-line Visualizations and Analysis

System (TOVAS), 13
TRMM Microwave Imager (TMI), 6, 25, 41,

71, 87, 108, 115, 198
TRMM Multi-Satellite Precipitation

Analysis-Real-Time (TMPA-RT), 18,
106, 128, 129, 137, 138, 139, 140, 271,
272, 273, 275–276, 278

TRMM Multi-Satellite Precipitation Analysis
(TMPA), 3–20, 24, 36, 86, 106, 107,
133–140, 171, 172, 178, 179, 180, 181,
194, 203, 248, 255, 256, 258, 259, 260,
261, 262, 271, 272, 273, 275–276, 278,
301, 305

TRMM precipitation product merged with
PMW, IR, and SG (3B42(V6)), 15, 16,
153, 162, 164

TRMM precipitation radar (PR), 5, 7, 8, 41,
43, 73, 87, 88, 94, 99, 115, 116, 199,
251, 291

TRMM Real-Time precipitation product
(PMW and IR merged) (3B42RT), 246

Tropical Rainfall Measuring Mission (TRMM),
3–20, 25, 27, 41, 43, 71, 73, 86, 87, 88,
92, 94, 106, 108, 112, 113, 115, 116,
129, 171, 193–203, 217, 218, 245–262,
271, 275, 300, 301

Two dimensional histograms, 16, 18
Two dimensional satellite rainfall error model

(SREM2D), 146, 147–165, 166, 217,
219, 220, 222, 223, 231

Typhoon Nabi, 117, 118

U
Uncertainty, 13, 14, 15, 110, 146, 148, 161,

165, 205, 216, 217, 225, 230, 231, 235,
240, 248, 249, 251, 261

UNESCO, 50
UNESCO’s International Hydrological

Program (IHP), 61
University of Maryland (UMD), 114, 283, 285
Upscaling, 129, 130, 132, 133, 134, 136, 137,

138, 139, 141
US Agency for International Development

(USAID), 258–259, 262, 296, 298, 299,
301, 303, 317

US Army Corps of Engineers (USACE), 250,
254, 260

US Department of Agriculture (USDA), 251,
267–291, 298, 300

V
Validation, 13, 40, 72, 78, 79, 80, 91–95, 99,

102, 103, 114, 119–121, 128, 130, 148,
165, 169, 171, 172, 173–181, 188, 194,
195, 196, 197, 198, 199, 200, 203, 205,
275, 284, 285, 307, 308

Vegetation indices (VI), 270, 273, 283, 289,
290, 291, 297, 300, 309

Version 5 (MM5), 7, 26
Visible Infrared Imager Radiometer Suite

(NPOESS/VIIRS), 288
Visible (VIS), 39, 40, 41, 43, 45, 50, 65, 70,

86, 87, 116, 288

W
Warm rain, 7, 14, 75, 194, 201
Warm season, 15, 34, 171, 172, 173, 175, 176,

178, 179, 180, 181–188, 190
Water balance model (WBM), 255, 300, 301,

303–305



Index 327

Water And Development Information for Arid
Lands-A global Network (G-WADI),
50, 62, 65

Water Requirement Satisfaction Index (WRSI),
297, 301, 309–313, 314–317, 318

WeatherPredict Consulting (Surface Wetness)
(WPC), 281

Weather Predict Consulting (WPC), 280, 282
Weather Surveillance Radar, 1988, Doppler

(WSR-88D), 233, 277
Weighted Anomaly Standardized Precipitation

(WASP), 272

World Agricultural Outlook Board (WAOB),
269, 270

World Agriculture Supply and Demand
Estimates (WASDE), 269, 270, 278

World Food Programme (WFP), 299
World Meteorological Organization (WMO),

271, 272, 273, 274, 275, 278, 280, 281,
291

Z
Zenith angle, 7, 10, 44, 46
Zimbabwe, 200, 201, 298, 300


	Preface
	Contents
	Contributors
	Part I Evolution of High Resolution Precipitation Products
	The TRMM Multi-Satellite Precipitation Analysis (TMPA)
	1 Introduction
	2 Instruments and Input Datasets
	3 General Methodology
	3.1 Combined Microwave Estimates
	3.2 Microwave-Calibrated IR Estimates
	3.3 Merged Microwave and IR Estimates
	3.4 Rescaling to Monthly Data
	3.5 RT Algorithm Adjustments

	4 Current Status on Algorithm Development
	5 Comparisons and Examples
	5.1 Prior Results
	5.2 Climatological Calibration of the RT

	6 Future Plans/Conclusions
	References

	CMORPH: A Morphing Approach for High Resolution Precipitation Product Generation
	1 Introduction
	2 Description of the CMORPH Data and Methodology
	2.1 Infrared Data
	2.2 Passive Microwave Data
	2.3 Rainfall Mapping
	2.4 Intercalibration of the Various PMW-Derived Precipitation Estimates
	2.5 CMORPH Methodology

	3 Applications
	4 CMORPH Improvements
	4.1 Backward Extension and Reprocessing
	4.2 Backward Extension of the CMORPH Period of Record
	4.3 Kalman Filter
	4.4 Bias Reduction

	5 CMORPH Data Availability and Performance
	References

	The Self-Calibrating Multivariate Precipitation Retrieval (SCaMPR) for High-Resolution, Low-Latency Satellite-Based Rainfall Estimates
	1 Introduction
	2 Instruments and Input Datasets
	3 General Methodology
	4 Current Status on Algorithm Development
	5 Comparisons and Examples
	6 Future Plans and Conclusions
	References

	Extreme Precipitation Estimation Using Satellite-Based PERSIANN-CCS Algorithm
	1 Introduction
	2 Methodology
	2.1 Cloud Image Segmentation
	2.2 Input Feature Extraction
	2.3 Image Classification
	2.4 Mapping Patch to Pixel Rainfall

	3 Application Examples
	3.1 Hurricane Ernesto
	3.2 Hurricane Katrina

	4 Real-Time High Resolution Global Precipitation Server
	4.1 Map Navigation
	4.2 Query Functions
	4.3 Data Access

	5 Conclusions and Future Directions
	References

	The Combined Passive Microwave-Infrared (PMIR) Algorithm
	1 Background
	2 Algorithm Description
	2.1 Data Ingest and Preparation
	2.2 Database Management
	2.3 Results Generation

	3 Application and Results
	4 Conclusions
	References

	The NRL-Blend High Resolution Precipitation Product and its Application to Land Surface Hydrology
	1 High Resolution Precipitation Products (HRPP)
	2 NRL-Blend HRPP Technique
	2.1 Time-Space Colocation of LEO and GEO Datasets
	2.2 Instantaneous Rainrate Adjustment
	2.3 Accumulations Procedure
	2.4 Comparisons with Numerical Weather Prediction Models

	3 Ground Validation
	3.1 Verification Efforts of the International Precipitation Working Group (IPWG)
	3.2 Satellite Omission Experiments

	4 Sensitivity of Land Surface Parameters
	5 Land Surface Model Response
	5.1 Configuration of Land Surface Models
	5.2 Soil Water Content Sensitivity

	6 Conclusions
	References

	Kalman Filtering Applications for Global Satellite Mapping of Precipitation (GSMaP)
	1 Introduction
	2 Data
	3 Methodology
	4 Current Status of the System
	5 Comparisons and Examples
	5.1 Example
	5.2 Comparison and Validation

	6 Future Plans and Conclusions
	References


	Part II Evaluation of High Resolution Precipitation Products
	Neighborhood Verification of High Resolution Precipitation Products
	1 Introduction
	2 Neighborhood Verification Methods
	3 Neighborhood Verification of CMORPH and TMPA Precipitation Estimates
	4 Discussion
	References

	A Practical Guide to a Space-Time Stochastic Error Model for Simulation of High Resolution Satellite Rainfall Data
	1 Introduction
	2 Why SREM2D?
	3 General Modeling Structure Of SREM2D
	4 Formulation of SREM2D Error Metrics
	4.1 Probabilities of Detection (Rain and No-Rain) (Metrics 1 and 2)
	4.2 False Alarm Rain Rate Distribution (Metric 3)
	4.3 Correlation Lengths (Metrics 4, 5 and 8)
	4.4 Conditional Rain Rate Distribution (Metrics 6 and 7)
	4.5 Lag-One Temporal Correlation (Metric 9)

	5 Data QA/QC and Calibration of Metrics for SREM2D
	5.1 Quality Assessment and Quality Control
	5.2 Error Metric Calibration

	6 SREM2D Simulation And Reproducibility Of Error Statistics
	6.1 Simulation Issues
	6.2 Reproducibility of SREM2D Error Statistics
	6.2.1 Checking the Consistency of Ensemble of Cumulative Hyetograph Against Actual Satellite Rainfall Data
	6.2.2 Checking Reproducibility of Error Metrics


	7 Conclusions
	References

	Regional Evaluation Through Independent Precipitation Measurements: USA
	1 Introduction
	2 Results From IPWG Daily US Validation Site
	3 Sub-Daily Validation
	4 Evaluation of Warm Season US Precipitation Using Gauges From NAME
	5 Discussion
	References

	Comparison of CMORPH and TRMM-3B42 over Mountainous Regions of Africa and  South America
	1 Introduction
	2 Study Regions and Data
	2.1 Study Region
	2.2 Gauge Data
	2.3 Satellite Data

	3 Comparison of the Satellite Rainfall Products
	4 Conclusion
	References

	Evaluation Through Independent Measurements: Complex Terrain and Humid Tropical Region in Ethiopia
	1 Introduction
	2 Data and Methods
	2.1 Study Region
	2.2 Types of High-Resolution Satellite Products Used
	2.3 Rainfall Field Experiment
	2.4 Method of Analysis

	3 Results and Discussion
	4 Conclusions
	References

	Error Propagation of Satellite-Rainfall in Flood Prediction Applications over Complex Terrain: A Case Study in Northeastern Italy
	1 Introduction
	2 Methodology
	2.1 Study Area and Data
	2.2 Satellite-Rainfall Ensembles
	2.3 Hydrologic Simulations

	3 Results
	4 Conclusions
	References

	Probabilistic Assessment of the Satellite Rainfall Retrieval Error Translation to Hydrologic Response
	1 Introduction
	2 Methodology
	3 Generating Satellite Precipitation Ensemble
	4 Study Basin and Datasets
	5 Hydrologic Model and Ensemble Streamflow Simulation
	6 Results with Statistical Ensemble Verification
	7 Summary and Conclusion
	References


	Part III Real Time Operations for Decision Support Systems
	Applications of TRMM-Based Multi-Satellite Precipitation Estimation for Global Runoff Prediction: Prototyping a Global Flood Modeling System
	1 Introduction
	2 A Quasi-Global Flood Modeling Framework
	2.1 Satellite-Based Precipitation Products
	2.2 A Central Geospatial Database
	2.3 A Cost-Effective Hydrological Simulation Model

	3 Modified NRCS-CN Method for Global Rainfall-Runoff Simulation
	3.1 Mapping a Spatially Distributed Global NRCS-CN
	3.2 Time-Variant NRCS-CN

	4 Implementation of the GFM
	4.1 Retrospective Simulation
	4.2 Implementation Interface

	5 Summary and Discussion
	5.1 Summary
	5.2 Discussion and Directions of Alternative Flood Modeling Work

	Refernces

	Real-Time Hydrology Operations at USDA for Monitoring Global Soil Moisture and Auditing National Crop Yield Estimates
	1 USDAs Global Agriculture Economic Information System
	2 Operational Precipitation Products Utilized by USDA/FAS
	2.1 Ground Station Data From the World Meteorological Organization (WMO)
	2.2 AGRMET From the Air Force Weather Agency (AFWA)
	2.3 TMPA-RT From National Aeronautics and Space Administration (NASA)
	2.4 CMORPH From National Oceanic and Atmospheric Administration (NOAA)
	2.5 NEXRAD From National Weather Service (NWS)
	2.6 Other Precipitation Data Sets (National, Regional and Commercial)

	3 Operational Soil Moisture Products Utilized by USDA/FAS
	3.1 Modified Palmer Two-Layer Soil Moisture Model
	3.2 Surface Wetness

	4 Global Agriculture Monitoring (GLAM) System
	4.1 Corrected Soil Moisture Model With Passive Microwave (PMW)
	4.2 Operational Surface Water Heights From Satellite Radar Altimetry
	4.3 Operational Yield-Regression and Analog-Year Analysis

	5 Future Outlook
	References

	Real-Time Decision Support Systems: The Famine Early Warning System Network
	1 Introduction
	1.1 The Three Components of the FEWS NET Planning Process
	1.2 Focus on Eastern African Food Insecurity in 2009

	2 Background
	2.1 A Brief History of FEWS NET
	2.2 The FEWS NET Early Warning System
	2.3 A Synopsis of USGS FEWS NET Early Warning Research
	2.4 A Synopsis of FEWS NET-Related Climate Change and Food Security Research

	3 Techniques for Evaluating Hydrologic Risk
	3.1 Low Frequency and High Frequency Models for Food Security Risk Monitoring
	3.2 Evaluating Low Frequency Changes in Food Security Risks with Food and Water Balance Models
	3.3 Combining Long-Term and Real-Time Satellite Rainfall Records
	3.4 Monitoring High Frequency Shocks Using Water Requirement Satisfaction Index Maps

	4 Analysis of Kenyan Agricultural Hydrologic Conditions
	4.1 WRSI Anomalies for the 2007 and 2008 Long and Short Rains
	4.2 The 2007 and 2008 Seasons in Historical Context
	4.3 1979--2008 Trends in Kenyan Rainfall and WRSI

	5 Summary and Discussion
	References

	Index



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice




