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Abstract  N-Heterocyclic carbene complexes produced on industrial scale are 
presented in this chapter along with a discussion about their production. Details of 
processes employing NHC complexes on pilot to industrial scales are discussed. 
These are frequently oriented towards the synthesis of biologically active mole-
cules, however, examples are given for rubber formation and for 1-octene synthesis, 
a comonomer for polyethylene synthesis.

14.1 � Introduction

The first academic publications introducing the concept of the use of N-heterocyclic 
carbenes as ligands in metal-catalysed applications appeared in the mid 1990s [1]. 
Since then, an increasing number of scientific groups have explored the scope of 
potential applications using NHC ligands (see Chapter 1, Fig. 1.1). Similarly to 
many other catalytic technologies, the time span between the original discovery 
and the entry of related technology in industrial laboratories is ca. 10 years. 
Currently, there only exists a limited number of publications on NHC complexes 

O. Briel (*) 
Umicore AG & Co. KG, Rodenbacher Chaussee 4, P.O. Box 1351, 
63403 Hanau-Wolfgang, Germany 
e-mail: oliver.briel@eu.umicore.com

C. S. J. Cazin (*) 
EaStCHEM, School of Chemistry, University of St Andrews, 
St Andrews, KY16 9ST, UK 
e-mail: cc111@st-andrews.ac.uk

Chapter 14
N-Heterocyclic Carbene Complexes  
in Industrial Processes

Oliver Briel and Catherine S. J. Cazin 

C. S. J. Cazin (ed.), N-Heterocyclic Carbenes in Transition Metal Catalysis  
and Organocatalysis, Catalysis by Metal Complexes 32,
DOI 10.1007/978-90-481-2866-2_14, © Springer Science+Business Media B.V. 2011



316 O. Briel and C. S. J. Cazin

clearly describing large-scale applications. However, an increasing number of 
industrial players are filing process patents claiming and protecting the use of such 
catalysts for their respective applications. This clearly illustrates the great progress 
achieved by this ligand family that still was, not too long ago, a mere laboratory 
curiosity. However, NHC-based technologies are still in their early days in terms 
of industrial uses, and because most companies secure their IP (Intellectual 
Property) position, process information has not yet been, and might never be pub-
licly disclosed. At this point, gathering information on industrial uses of NHCs 
proved to be a real challenge. To the best of our knowledge, to date only NHC 
systems based on ruthenium and palladium [2] have found entries into industrial 
applications.

In this chapter, we have compiled scientific papers, patent applications and other 
publicly available information related to large-scale use/commercial applications of 
ruthenium and palladium NHC complexes. It is not meant to be comprehensive 
with respect to all applications used to date due to the difficulty met when collect-
ing information. However, this chapter provides a taste of what is currently done on 
what scale.

14.2 � Production of NHC Complexes on Industrial Scale

14.2.1 � NHC Complexes Produced on Industrial Scale

As mentioned above, transition metal NHC systems synthesised on industrial scale 
to date are, to the best of our knowledge, limited to palladium, ruthenium and 
recently silver [2]. These are listed in Fig. 14.1. For palladium complexes, four 
types are available: the naphthoquinone-bridged palladium (0) dimers of type 1, 
the divinyldisiloxane adducts 2, the chloride-bridged dimers of type 3, the mono-
meric species of type 4 bearing an h3-alkenic ligand (allyl or cinnamyl) and the 
3-chloropyridine-adduct of dimers 3, the PEPPSI-complexes 5 (PEPPSI: Pyridine-
Enhanced Precatalyst Preparation, Stabilization, and Initiation). With respect to 
ruthenium complexes, there is a wider structural diversity of systems proposed on 
industrial scale: the benzylidene complexes 6 (Grubbs second generation) and 7, 
the butenylidene complex 8, the indenylidene systems 9 and 10, the thienylmethy
lene complexes of type 11, the ether-boomerang systems 12 (Hoveyda-Grubbs 
second generation) and the pyridinyl-propylidene complex 13.
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14.2.2 � Production of NHC Complexes

Organometallic chemistry requires special techniques not only in chemical labora
tories but also at the production scale. The capability of excluding air and moisture 
throughout a complete process is one main feature for the development of viable and 
reproducible synthetic protocols leading to the formation of catalytically active 
species. Whilst in a laboratory, a chemist has much freedom and flexibility in devis-
ing strategies for work-up and purification, manufacturing processes at production 
scale need to exclude any chromatographic purification steps for obvious economic 
reasons. Another manipulation that is not feasible, for economic reasons, is the 
evaporation to dryness for product isolation. Accordingly, all Umicore processes [3] 
are designed to crystallise the product allowing isolation in standard filtration appa-
ratus. Further important aspects of a manufacturing unit for transition metal com-
plexes, particularly when precious metals are involved, are the waste stream/mother 
liquor treatments. The flow scheme employed by Umicore is designed to directly 
treat the mother liquid to recycle precious metals in nearly quantitative yields. This 
ensures cost-efficient procedures for products at any scale. With respect to scale-up 
strategies, the Umicore approach involves statistical methods permitting the identi-
fication of relevant parameters and their optimisation. This allows to determine the 
possibility of scaling-up laboratory size experiments to 10 L scale using production 
process technologies. Once validated, the new process is tested on the pilot plant 
using reactors from 60 to 100 L. Thereafter, the process is transferred to the production 
unit with reactors >1,000 L (Fig. 14.2).

Fig. 14.2  (a) Pilot plant (b) Kilo-scale laboratory
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While implementing production processes into multi kilogram batch sizes for 
NHC complexes (Fig. 14.1), a complete quality control of the imidazolium or imi-
dazolidinium starting material was required. Therefore, Umicore has implemented 
large-scale manufacturing of the salts in-house, resulting in stable and reproducible 
synthetic protocols for the transition metal complexes.

14.3 � Industrial Applications of Ru–NHC Catalysts

Ruthenium–NHC complexes exhibit activity in a very wide field of applications. 
Due to their unique ability to break and reassemble olefin bonds under reaction 
conditions very favourable to design simple processes, applications in nearly any 
chemical discipline can be foreseen. This field may span from manufacturing of 
specialty polymers and rubbers to pharmaceuticals, pharmaceutical intermediates, 
agrochemicals, fragrances, dyes, specialty chemicals for electronic applications or 
fine chemicals from natural feedstock and many more. Below are described 
Ru–NHC catalysed reactions applied from pilot to full commercial scale.

14.3.1 � Ring Closing Metathesis (RCM) Reactions Used  
in the Pharmaceutical Industry

As a key transformation step, RCM is the most prominent and furthest advanced 
metathesis reaction technology in the pharmaceutical industry. It has been applied 
by several organisations on large scale to build up large rings that cannot be syn-
thesised easily on an economically viable pathway using standard organic synthetic 
protocols. RCM permits these assemblies in fewer steps, thereby rendering a long 
linear synthetic route much less expensive with minimum waste.

14.3.1.1 � Kosan’s Epothilone Derivative KOS-1584

In 2002, Danishefsky and co-workers reported that 9,10-dehydro-12,13-desoxye-
pothilones inhibit the growth of tumour cells, and therefore were promising can-
didates for novel anticancer agents [4]. In a collaboration between Kosan 
Biosciences Inc. and F. Hoffmann-La Roche [5], the drug candidate KOS-1584 
(R-1645) was developed and moved to clinical phase II. The initial Kosan pro-
cess employed a Grubbs second generation catalyst, whilst Roche improved reac-
tion yield by using an indenylidene-based ruthenium NHC catalyst (Fig. 14.1). 
The fact that KOS-1584 is undergoing clinical phase II trials means that large 
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14.3.1.2 � Glaxo Smith Kline SB-462795

The Glaxo Smith Kline (GSK) chemical process development group conducted a 
large-scale RCM reaction leading to the formation of a seven-membered ring. This 
moiety is a fragment of the molecular architecture of cathepsin K inhibitor 
SB-462795 [6], a drug candidate for the treatment of osteoporosis. This impressive 
piece of synthetic and process development work demonstrated the significant influ-
ence of the nature of the substrate on yields and on potential side-reactions while 
conducting RCM reactions. In summary, two synthetic strategies were explored, 
both involving as key-step a RCM of a chiral diallylic substrate. Both appeared 
suitable for further scale-up, one was selected and scaled to an 80 kg batch size 
with a relatively low catalyst loading resulting in nearly quantitative yields of the 
desired product. In this process, the complex employed is a boomerang-type catalyst 
(Fig. 14.4).

quantities (several kg) of the active substance are produced. The process details 
have not yet been reported, however, it is likely that KOS-1584 has been synthe-
sised using one of the mentioned catalysts (Fig. 14.3).
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However, SB-462795 is no longer in the Glaxo Smith Kline development 
pipeline – most likely the reason why the GSK researchers were allowed to publish 
details of this process campaign.

14.3.1.3 � Synthesis of HCV Protease Inhibitors

Independently, the Pharmaceutical companies Boehringer Ingelheim (BILN-2091) 
[7], F. Hoffmann-La Roche (ITMN-191) [8] and Tibotec Pharmaceuticals Ltd., a 
Johnson & Johnson company (TMC-435) [9] are or have been developing drug 
candidates  for the treatment of Hepatitis C. While Boehringer Ingelheim was the 
first to successfully scale-up a RCM step to produce >100 kg substrate (using a first 
generation Hoveyda type catalyst i.e. not containing a NHC ligand) both Johnson 
& Johnson and F. Hoffmann-La Roche have been able to advance their drug devel-
opment programmes to clinical phase I. We will remind the readers who are not 
familiar with the pharmaceutical jargon that clinical phase I would require multiple 
kilogram of active drug substance. There was therefore a need, in these campaigns, 
to scale-up the RCM step. Unfortunately, as is too often the case in pharmaceutical 
drug development, the Boehringer Ingelheim drug candidate failed in early clinical 
testing and resulted in a complete stop of the development of this molecule. 
Researchers of all three pharmaceutical companies have published, either in scien-
tific publications or in patents, the details of the process chemistry. This chemistry 
represents a veritable Herculean endeavour, the chemistry evolving from these 
targeted molecules is simply first rate and teaches much about conformation direct-
ing RCM reaction. We strongly encourage the Reader to browse this literature to 
fully appreciate the intricacies associated with what looks on paper like a simple 
RCM transformation [10]. In brief, the main achievements for all drug candidates 
deal with solving the serious initial problem of having to conduct the RCM reaction 
at high dilutions. Considering the space/volumes requirements in an industrial set-
ting, such high dilutions are costly and impractical, but mostly economically costly. 
If the reaction was conducted in high concentrations, undesired oligomers/poly-
mers formed which reduced the valuable starting material into waste side-products. 
High dilution was therefore initially required. The process researchers, after much 
effort, succeeded in conducting RCM reactions (forming macrocycles possessing 
ring size of >12) to acceptable concentration levels of up to 0.5 M. This represents 
a significant advance as the initial Boehringer Ingelheim campaigns required dilu-
tions of 0.01 M. These made use of a first generation metathesis catalyst (non-NHC 
bearing). All along the aim was and is to conduct the RCM reactions at highest 
possible concentration to project manageable throughput and reactor capacity use 
and efficiency. These groups have been able to reduce catalyst loadings signifi-
cantly to levels of below 0.5 mol% ruthenium loading, another significant achieve-
ment, made possible by second generation ruthenium catalysts (NHC-bearing). The 
Roche and Johnson & Johnson drug candidates have entered clinical phase IIb in 
2009 (Fig. 14.5).
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14.3.2 � Cross Metathesis of Nitrile Rubber with 1-Hexene

In a series of patents, Lanxess has described its process for manufacturing 
Hydrogenated Nitrile Butadiene Rubbers (HNBR) with improved properties [11]. 
By a metathetical degradation of the nitrile rubber in a cross metathesis step with 
1-hexene, the resulting HNBR exhibits a lower molecular weight distribution hence 
also a lower viscosity. This new “Therbane AT” (AT = Advanced Technology) 
exhibits improved processability in subsequent moulding practices. With different 
Therbane AT grades, large volume mould with more sophisticated structures can be 
filled in less time. The patents describe the use of NHC–Ru catalysts.

14.4 � Industrial Applications of Pd–NHC Catalysts

Palladium-based homogeneous catalysts are used frequently on large scale in vari-
ous industries. For instance, the Suzuki-Miyaura, Mizoroki-Heck and Sonogashira 
coupling reactions are used to synthesise pharmaceutically active ingredients and 
fine chemicals (see Chapter 6). In the bulk and commodity chemicals sector, there 
exist two major palladium-based processes, namely the synthesis of methyl meth-
acrylate in the recently introduced Alpha Technology process of Lucite [12], and a 
process carried out by Dow Chemical for the synthesis of 1-octene. Both processes 
have an output of > 100,000 metric tons of product annually, both however are 
performed using a palladium catalyst bearing phosphines as ligands, the Old 
Guard. However, the telomerisation of butadiene involved in the 1-octene process 
was demonstrated by Oxeno on pilot-scale with Pd–NHC system [13]. On the pilot-
scale, more than 25 metric tons of product have successfully been produced with 
an extremely low catalyst loading, using [Pd(IMes)(dvds)] as catalyst (Fig. 14.6). 
In spite of these very promising results, the IP (Intellectual Property) owner has not 
yet decided to implement the technology into a running large-scale process.



32314  N-Heterocyclic Carbene Complexes in Industrial Processes

OMe

MeOH
OMe

2 ++ Pd

Si
O

Si

NN
Pd-cat

Pd-cat

Fig. 14.6  Oxeno telomerisation of butadiene

14.5 � Conclusions

The uses of NHC-metal complexes in industrial applications might appear at a 
very early stage by the relatively few examples provided in this chapter. 
However, it is clear that much information has not been publicly disclosed for 
obvious industrial interest reasons. The few examples provided show how effi-
cient the catalysts can be, and how low a catalyst loading can be achieved in 
large-scale production. Many more larger-scale applications are being carried 
out using metathesis reactions in their many incarnations, of that we are certain. 
This initial industrial perspective is hopefully intriguing enough to warrant a 
further description of the area in a few years. The NHCs have so far caused quite 
a stir in industry and we can safely say that more will come of these robust 
ligands.

In view of a future edition, the authors welcome any information that could 
assist to update the field of use of NHC complexes on industrial scale.
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