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Summary

Research focusing on microalgae is currently experiencing a renaissance due to the potential of 
microalgae for providing biofuels without competing with food crops. Despite this potential, our 
knowledge of neutral and membrane lipid metabolism in microalgae is very limited, and opportunities 
to explore lipid metabolism in microalgae and contrast it to plant lipid metabolism abound. The 
unicellular green alga Chlamydomonas reinhardtii is currently the best genetic and genomic model for 
microalgal lipid research. This chapter summarizes the current knowledge of lipid metabolism in this 
alga. Chlamydomonas lipid metabolism differs in some aspects from that of seed plants. For example, 
Chlamydomonas lacks phosphatidylcholine and has in its place the betaine lipid diacylglyceryl-N,N,N-
trimethylhomoserine. This has important implications for lipid trafficking and lipid modification. 
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I Introduction

Lipid biosynthesis in plants has been studied for 
decades and our current molecular understanding 
of lipid metabolism in plants is substantial. Genes 
encoding enzymes of glycerolipid biosynthesis 
and fatty acid desaturation have been identified 
by genetic and biochemical means (Ohlrogge 
and Browse, 1995; Joyard et al., 1998; Frentzen, 
2004; Benning and Ohta, 2005; Holzl and 
Dörmann, 2007), and the first examples of com-
ponents involved in lipid trafficking between the 
plastid and the endoplasmic reticulum (ER) are 
being discovered (Jouhet et al., 2007; Benning, 
2008). Annotation of the Arabidopsis genome 
sequence (The Arabidopsis Genome Initiative, 
2000) has led to the identification of novel genes, 
which likely encode proteins involved in lipid 
biosynthesis, trafficking, and catabolism (Beis-
son et al., 2003).

Like Arabidopsis, the eukaryotic green alga 
Chlamydomonas reinhardtii is a well estab-
lished model for the study of different processes 
of general relevance, such as photosynthesis 
(Niyogi, 1999) and post-transcriptional gene 
silencing (Wu-Scharf et al., 2000). Beyond these, 
Chlamydomonas research has provided substantial 
insights into processes more specific to unicellular 
algae, e.g., phototaxis and flagellar function (Sil-
flow and Lefebvre, 2001), nutrient acquisition 
(Davies et al., 1994, 1996, 1999), and microalgal 
metabolism (Grossman et al., 2007). The recent 
completion of the Chlamydomonas genome 
sequence (Merchant et al., 2007), as well as the 
development of insertional mutagenesis (Tam 

and Lefebvre, 1993), RNA interference (RNAi) 
methods (Fuhrmann et al., 2001; Sineshchekov 
et al., 2002), and a molecular map (Kathir et al., 
2003) make Chlamydomonas an attractive model 
to study gene function by genetic or direct molec-
ular analysis. Preliminary annotations of lipid 
genes present in the genome of Chlamydomonas 
were recently published (Riekhof et al., 2005b; 
Riekhof and Benning, 2008). Based on these 
attributes, Chlamydomonas has great promise for 
the analysis of the biosynthesis and physiological 
functions of different lipids.

Availability of a suitable microalgal model 
system is timely, as microalgae are increasingly 
discussed as a biomass resource for the produc-
tion of biofuels that does not have to compete 
with the agricultural production of food crops 
(Hu et al., 2008). While Chlamydomonas rein-
hardtii itself is not a candidate species for the 
commercial production of biofuels, it still is 
the best studied microalga at the genetic and 
genomic level. Moreover, Chlamydomonas is 
related to other unicellular green algae that are 
commercially used, e.g., Dunalliella salina, and 
Chlamydomonas has been reported to accumu-
late triacylglycerols (TAGs) under conditions of 
nutrient deprivation (Weers and Gulati, 1997) or 
high light (Picaud et al., 1991). Chlamydomonas 
also synthesizes TAGs from lipids supplied in the 
medium (Grenier et al., 1991). To fill in the gaps 
in knowledge, efforts are currently underway in 
our lab to genetically dissect the biosynthesis of 
TAGs and its regulation in Chlamydomonas, and 
to identify genes that might be useful for the engi-
neering microalgal production strains.

II General Differences in Lipid 
Metabolism between Chlamydomonas 
and Seed Plants

As elaborated below, many aspects of lipid 
metabolism follow common pathways that were 
presumably established during the evolution of 
chloroplasts of green algal and plant ancestors 
(Reyes-Prieto et al., 2007). However, at least 

These distinct aspects of algal lipid metabolism combined with the lower number of genes involved in 
lipid metabolism in Chlamydomonas provide several opportunities for basic research aimed at a more 
in-depth understanding of lipid metabolism in eukaryotic photosynthetic organisms in general.

Abbreviations: ACP – Acyl carrier protein; CDP-DAG – 
CDP-diacylglycerol; DAG – Diacylglycerol; DGTS – Dia-
cylglyceryl-N,N,N-trimethylhomoserine; DGDG – Digalac-
tosyl -diacyl-gly cerol; ER – Endoplasmic reticulum; FAS 
– Fatty acid synthase; MGDG – Monogalactosyldiacylg-
lycerol; PA – Phosphatidic acid; PC – Phosphatidylcholine; 
PE – Phosphatidylethanolamine; PG – Phosphatidylglycerol; 
PI – Phosphatidylinositol; PS – Phosphatidylserine; PUFA – 
Polyunsaturated fatty acid; RNAi – RNA interference; SQDG 
– Sulfoquinovosyldiacylglycerol; TAG – Triacylglycerol. 
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two possibly related aspects of lipid metabolism 
in Chlamydomonas differ from lipid metabo-
lism in seed plants (Fig. 1). Most prominently, 
Chlamydomonas is unable to synthesize the otherwise 
common phosphoglycerolipid phosphatidylcho-
line (PC). Instead, it produces the non-phosphorus 
betaine lipid diacylglyceryl-N,N,N-trimethylho-
moserine (DGTS) (Eichenberger and Boschetti, 
1977). This lipid is similar in structure and func-
tion to PC (Fig. 2) and is thought to substitute for 
PC in Chlamydomonas (Sato and Murata, 1991; 

Sato, 1992; Moore et al., 2001). Interestingly, PC 
is central to lipid metabolism in developing seeds 
or leaves where it serves as substrate for fatty acid 
modifying enzymes, such as desaturases (Browse 
and Somerville, 1991; Ohlrogge and Browse, 
1995; Wallis and Browse, 2002), or possibly as 
the lipid transferred between the ER and the plastid 
(Jouhet et al., 2007; Benning, 2008).

Precursors of thylakoid lipid biosynthesis 
in many plants are derived from two pathways 
(Mongrand et al., 1998), the plastid and the ER 

Fig. 1. Overview of glycerolipid biosynthesis in Chlamydomonas. Endproducts are shown in bold. Abbreviations: ACP, acyl 
carrier protein; AdoMet, S-adenosylmethionine; ASQD, 2′-O-acyl-sulfoquinovosyldiacylglycerol; CDP, cytidine 5′-diphosphate; 
CoA, coenzyme A; CTP, cytidine 5′-triphosphate; DAG, diacylglycerol; DGDG, digalactosyldiacylglycerol; DGTS, diacylglyceryl-
N,N,N-trimethylhomoserine; Etn, ethanolamine; FA, fatty acid; G3-P, glycerol 3-phosphate; Glc, glucose; Ins-3-P, inositol 
3-phosphate; MGDG, monogalactosyldiacylglycerol; P-Etn, phosphoethanolamine; PE, phosphatidylethanolamine; PG, 
phosphatidylglycerol; PGP, phosphatidylglycerolphosphate; PI, phosphatidylinositol; PA, phosphatidic acid; Ser, serine; SQ, 
sulfoquinovose; SQDG, sulfoquinovosyldiacylglycerol; TAG, triacylglycerol; UDP, uridine 5′-diphosphate (modified with 
permission from Fig. 1 in Riekhof et al., 2005b).
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pathways. This two pathway hypothesis was 
formulated by Roughan and coworkers based 
on labeling experiments (Roughan et al., 1980; 
Roughan and Slack, 1982) and later confirmed 
by mutant analysis in Arabidopsis (Browse and 
Somerville, 1991; Wallis and Browse, 2002). 
Thylakoid lipid molecular species derived from 
either of the two pathways can be distinguished 
based on their fatty acid composition (Heinz and 
Roughan, 1983), and fluxes through the two path-
ways have been determined (Browse et al., 1986). 
While a large number of plant species have lost 
the ability to de novo assemble thylakoid lipids, 
such as the dominant galactoglycerolipids in the 
plastid, nearly all reported plant species derive 
at least a fraction of their thylakoid lipids from 
precursors assembled at the ER (Mongrand et al., 
1998) requiring import of lipid precursor into the 
plastid. However, detailed compositional analy-
sis of lipids and labeling studies suggest that in 
Chlamydomonas all thylakoid lipids are assem-
bled de novo in the plastid (Giroud et al., 1988). 
Thus, it is possible that the lack of PC and the 
lack of trafficking of lipid precursors from the 
ER to the plastid in Chlamydomonas are related if 
PC is a critical intermediate in ER-to-plastid lipid 
trafficking. Because in the betaine lipid, DGTS, 
the head group moiety is ether-linked to the 
diacylglyceryl moiety (Fig. 2), Chlamydomonas 

might lack an enzyme to break this ether link-
age. This ether linkage is more stable than the 
phosphate ester linkage in phosphoglycerolipids. 
Therefore, the conversion of DGTS into the galac-
toglycerolipid precursor diacylglycerol might not 
be possible in Chlamydomonas.

Aside from the betaine lipid, Chlamydomonas 
and many other microalgae contain a rich set of 
polyunsaturated fatty acids (Fig. 3) not present 
in most seed plants, which will be discussed in 
detail below.

III Membrane Glycerolipid Biosynthesis

A Fatty Acid Synthesis 
and Incorporation into Glycerolipids

De novo synthesis of fatty acids is localized to 
the chloroplast of Chlamydomonas cells (Sirevag 
and Levine, 1972). The common ancestral ori-
gin of green algal and seed plant plastids is 
particularly apparent in many homologous com-
ponents of the fatty acid biosynthetic machin-
ery. For example, bioinformatic analysis of the 
Chlamydomonas genome has identified genes 
for the full suite of enzymes required for the 
conversion of acetyl-CoA to acylated-acyl car-
rier protein (ACP), including the multimeric 
bacterial-type acetyl-CoA carboxylase and fatty 
acid synthase complexes (Riekhof et al., 2005b; 
Riekhof and Benning, 2008). These enzymes 
are essential for fatty acid biosynthesis in plants 
(and presumably algae), which predominantly 
produce 16:0-ACP and 18:1-ACP as the result of 
desaturation of 18:0-ACP by a soluble stearoyl-
ACP Δ9 desaturase (Browse and Somerville, 
1991; Shanklin and Somerville, 1991). In 
plants, fatty acids are incorporated directly into 
chloroplast membrane glycerolipids by step-
wise acylation of glycerol 3-phosphate to form 
phosphatidic acid (sn1–18:1, sn2–16:0-PA) by 
glycerol 3-phosphate:acyl-ACP acyltransferase 
(GPAT), which shows substrate specificity for 
18:1-ACP, and then by lysophosphatidate:acyl-
ACP acyltransferase (LPAT, 16:0-ACP specific) 
(Kunst et al., 1988; Browse and Somerville, 
1991; Murata and Tasaka, 1997; Kim and Huang, 
2004; Xu et al., 2006).

Fatty acids are also assembled into glycer-
olipids at the ER where isoforms of the plastid 

Fig. 2. Structural similarity between phosphatidylcholine 
(PC) and betaine lipid (DGTS).
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acyltransferases are present and have been char-
acterized in Arabidopsis (Zheng et al., 2003; 
Kim et al., 2005). Putative orthologs of the plant 
GPAT and LPAT genes are annotated in the final 
Chlamydomonas genome draft (Riekhof et al., 
2005b; Riekhof and Benning, 2008). Candidates 
for the plastid PA phosphatase, which produces 
the diacylglycerol precursors for the biosynthe-
sis of non-phosphorus lipids in the plastid, have 
been recently identified in Arabidopsis ( Nakamura 
et al., 2007). However, there is currently no good 

candidate in the Chlamydomonas genome pre-
dicted to encode this enzyme (Riekhof et al., 
2005b; Riekhof and Benning, 2008).

B Chloroplast Membrane Lipids

The overall structural organization of membranes 
in the chloroplast of Chlamydomonas and seed 
plant chloroplasts is essentially identical, where the 
inner and outer envelope membranes enclose an 
extensive thylakoid membrane system in which the 

Fig. 3. Overview of acyl-chain desaturation in Chlamydomonas. Glycerolipid abbreviations are the same as those in Fig. 1. 
Fatty acids are referred to by the standard abbreviation “carbon atoms:double bonds.” Fatty acids at the sn-1 and sn-2 positions 
of the glyceryl moiety are indicated. Double bond positions within the fatty acid chain and/or common names of the fatty acids 
are as follows: 16:0, palmitic acid; 16:1�7, plamitoleic acid or 16:1�3t in plastidic PG; 16:2�7,10; 16:3�7,10,13; for 16:4 the double 
bond position is not known; 18:0, stearic acid; 18:1�9, oleic acid or in some lipids 18:1�11, vaccenic acid; α18:2�9,12, αlinoleic 
acid; α18:3�9,12,15, αlinoleic acid; i18:3�5,9,12, pinolenic acid; 18:4�5,9,12,15, coniferonic acid. The predominant molecular species of 
SQDG is 16:0/16:0 (modified with permission from Fig. 2 in Riekhof et al., 2005b).
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photosynthetic apparatus is embedded. Genetic 
studies of Arabidopsis have identified many 
of the genes responsible for the biosynthesis of 
chloroplast membrane lipids, and have revealed 
the essential role that lipid composition plays in 
optimal photosynthetic function (Vijayan et al., 
1998; Dörmann and Benning, 2002; Wallis and 
Browse, 2002; Benning and Ohta, 2005). Though 
the genetic study of glycerolipid metabolism in 
Chlamydomonas has far fewer documented exam-
ples, detailed biochemical analysis of this alga’s 
lipid composition has long confirmed the pres-
ence of the major chloroplast membrane lipids 
found in land plants – including the galactoglyc-
erolipids mono- and digalactosyldiacylglycerol 
(MGDG and DGDG), sulfoquinovosyldiacylg-
lycerol (SQDG), and the phosphoglycerolipid 
phosphatidylglycerol (PG) (Giroud et al., 1988).

As in plants, galactoglycerolipids are the 
predominant membrane glycerolipid class in 
Chlamydomonas, where they make up a major-
ity of the chloroplast membrane lipids (Janero 
and Barrnett, 1981a; Giroud et al., 1988). In Ara-
bidopsis, the bulk of galactolipid biosynthesis 
involves two enzymatic steps, whereby MGDG 
is formed from diacylglycerol (DAG) and UDP-
galactose (UDP-Gal) substrates by MGDG syn-
thase (MGD1), and DGDG is formed from MGDG 
and UDP-Gal by DGDG synthase (DGD1) (Ben-
ning and Ohta, 2005). Genes encoding MGDG 
and DGDG synthases have been identified in 
the Chlamydomonas genome as orthologs of the 
Arabidopsis genes MGD1 and DGD1, respec-
tively (Riekhof et al., 2005b; Riekhof and Ben-
ning, 2008). MGD1 and DGD1 are single-copy 
genes in Chlamydomonas, which differs from 
that of the MGD1, 2, 3 and DGD1, 2 paralogs found 
in the Arabidopsis genome. Molecular analysis of 
the Arabidopsis MGD2, 3 and DGD2 genes has 
revealed their role in a galactolipid biosynthetic 
pathway that is transcriptionally induced during 
phosphate deprivation, and is proposed to provide 
galactolipids for extraplastidic membranes (Härtel 
et al., 2000; Kelly and Dörmann, 2002; Jouhet 
et al., 2004). The apparent lack of this induced 
galactolipid pathway in Chlamydomonas suggests 
a distinct lipid metabolic response to phosphate 
limitation, or a lack of need for one; however, 
to date the galactolipid biosynthetic genes of 
Chlamydomonas have not been studied in detail 
at the molecular level to test these hypotheses.

The sulfolipid sulfoquinovosyldiacylglycerol 
(SQDG) has long been studied in the context of 
its role in photosynthetic membranes, not only 
due to its prevalence in photosynthetic eukaryo-
tes and prokaryotes, but also because of its asso-
ciation with photosynthetic pigment–protein 
complexes (Menke et al., 1976; Gounaris and 
Barber, 1985; Pick et al., 1985; Stroebel et al., 
2003). However, the more recent discovery of 
SQDG and/or the genes and enzymes involved 
in SQDG biosynthesis in non-photosynthetic 
bacteria as summarized in (Cedergren and Holl-
ingsworth, 1994; Benning et al., 2008), has 
clearly indicated that the role of sulfolipids is not 
limited to the function of photosynthetic mem-
branes. The biosynthesis of SQDG is carried 
out in two enzymatic steps in Arabidopsis by 
SQD1, which catalyzes the formation of UDP-
sulfoquinovose from UDP-Glc and sulfite, and 
SQD2, which transfers the sulfoquinovose moi-
ety from UDP-sulfoquinovose to DAG, forming 
SQDG (Essigmann et al., 1998; Sanda et al., 
2001; Yu et al., 2002). A single copy ortholog 
of SQD1 is present in Chlamydomonas, and two 
possible orthologs of Arabidopsis SQD2 are 
found in the genome (Yu et al., 2002; Riekhof 
et al., 2003). Recently, a Chlamydomonas mutant 
deleted in SQD1 (Δsqd1) and completely lacking 
sulfolipid has been studied (Riekhof et al., 2003). 
Phenotypic analysis of Δsqd1 revealed a reduced 
growth rate during phosphate-limiting condi-
tions, under which the SQDG level was found to 
double in wild-type cells. This is similar to what 
has been observed in sulfolipid-deficient mutants 
in other organisms, such as Arabidopsis, which 
showed impaired growth after severe phosphate 
limitation (Yu et al., 2002), and in the photosyn-
thetic purple bacterium Rhodobacter sphaeroides 
(Benning et al., 1993). In both Chlamydomonas 
and Arabidopsis, the increase in SQDG levels 
under phosphate-limiting conditions is accom-
panied by a decrease in PG, resulting in little 
net change in the amount of anionic glyceroli-
pids. These results suggest a role for SQDG in 
partially replacing PG during phosphate limita-
tion in order to maintain thylakoid membrane 
function (Riekhof et al., 2003). However, dur-
ing sulfur (S) limitation a large decrease in 
SQDG and concomitant increase in PG has been 
observed in Chlamydomonas (Sugimoto et al., 
2008), and SQDG was shown to be a major 
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internal S-source for protein synthesis in the 
early phases of the S-starvation response (Sugi-
moto et al., 2007).

In addition, Δsqd1 showed sensitivity to a 
photosystem II inhibitor under normal growth 
conditions (Riekhof et al., 2003). This is consist-
ent with another Chlamydomonas SQDG-defi-
cient mutant, hf-2, which was first discovered 
as a high chlorophyll fluorescence mutant, and 
was later found to be impaired in photosystem 
II stability and showed increased sensitivity to a 
PSII inhibitor, which could be partially restored 
by SQDG addition (Sato et al., 1995a, b; Minoda 
et al., 2002, 2003). However, whether the hf-2 
mutant is impaired in growth during phosphate 
limitation has not been reported, nor has the 
exact molecular defect in this mutant been deter-
mined. Interestingly, detailed biochemical analy-
sis of the Dsqd1 mutant also led to the discovery 
of the novel sulfolipid derivative, 2′-O-acyl-
sulfoquinovosyldiacylglycerol (ASQD), which 
was also not produced in Dsqd1 (Riekhof 
et al., 2003). Due to the loss of both sulfolipids 
in Dsqd1, the specific roles played by SQDG and 
ASQD in Chlamydomonas and phenotypes asso-
ciated with Dsqd1 can only be fully interpreted 
after the identification and characterization of 
the acyltransferase catalyzing ASQD production 
has been undertaken.

Phosphatidylglycerol (PG) is presumably the 
only major phospholipid component in thylakoid 
membranes of seed plants, and biochemical anal-
ysis of thylakoid lipid composition has confirmed 
this to be the case in Chlamydomonas (Janero and 
Barrnett, 1981b; Mendiola-Morgenthaler et al., 
1985). While the gene encoding the final enzyme 
in PG biosynthesis, phosphatidylglycerolphos-
phate (PGP) phosphatase, remains unknown in 
plants and algae (Beisson et al., 2003), the puta-
tive genes encoding the enzymes that catalyze the 
formation of the two intermediates, CDP-DAG 
synthetase and phosphatidylglycerolphosphate 
synthase, have been identified (Riekhof et al., 
2005b; Riekhof and Benning, 2008), but not yet 
confirmed. While neither the single gene encod-
ing the CDP-DAG synthetase or the two putative 
plastid paralogs encoding phosphatidylglycerol-
phosphate synthase have been studied at the 
molecular/genetic level, PG deficient mutants, mf 
1 and mf 2, have been isolated and studied in great 
biochemical detail (Garnier et al., 1987; Maroc 

et al., 1987; Garnier et al., 1990; Maanni et al., 
1998; Dubertret et al., 2002; Pineau et al., 2004). 
The mf 1, 2 mutants were first isolated as low 
fluorescent strains lacking functional Photosys-
tem II (PS II), as well as an oligomeric form of 
the light-harvesting chlorophyll antenna (CPII) 
(Maroc et al., 1987; Dubertret et al., 1994). It 
was also shown that both mf 1 and mf 2 contained 
approximately 30% of wild-type PG levels and 
lacked Δ3-trans-hexadecenoic acid (16:1Δ3trans 
[carbons:double bondsΔpositions]) (Maroc et al., 
1987; Dubertret et al., 1994), a fatty acid that is 
specifically esterified to chloroplastic PG in both 
Arabidopsis and Chlamydomonas (Browse et al., 
1985; Garnier et al., 1987; Giroud et al., 1988). 
Addition of a preparation of spinach leaf PG con-
taining 16:1Δ3trans to mf-2 cells restored the ability 
to form oligomeric CP II, while 18:0 PG additions 
did not, and 16:0 PG did so only weakly so (Gar-
nier et al., 1990; Dubertret et al., 1994). A PG-
deficient mutant in Arabidopsis, pgp1, which is 
defective in the chloroplastid isoform of PGP 
synthase has been found to be photosyntheti-
cally impaired with decreased quantum yield 
through PSII, but did not lack 16:1Δ3trans PG (Xu 
et al., 2002; Hagio et al., 2002; Babiychuk et al., 
2003). Similarly, two Synechocystis PG defi-
cient mutants showed altered PSII activity and 
required exogenous PG for phototropic growth 
(Hagio et al., 2000; Sato et al., 2000).

Taken together with the contrasting find-
ings from analyses of the Arabidopsis fad4 
mutant, which lacks 16:1Δ3trans, but is other-
wise not affected in chloroplast PG content and 
also shows no apparent photosynthetic defects 
(Browse et al., 1985), it can currently only be 
concluded that in general PG plays an important 
role in photosynthetic membrane biogenesis and 
function, and it seems possible that the 16:1Δ3trans 
PG form could be essential in some organisms 
(e.g., Chlamydomonas), but is of conditional 
importance or dispensable in others. It is cer-
tain however, that the elucidation of the exact 
molecular defects in the Chlamydomonas mf 
1, 2 mutants, and the identification of the genes 
encoding FAD4 activity as well as the elusive 
plant/algal PGP phosphatase that catalyzes the 
final step in PG biosynthesis, will be prereq-
uisite to gaining a better understanding of the 
roles PG plays in the photosynthetic membranes 
in various species.
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C Extrachloroplastic Membrane Lipid 
Metabolism

In eukaryotic photoautotrophs the bulk of extra-
plastidic membrane glycerolipids is assembled 
in the ER from acyl-CoA thioesters, which are 
formed from free fatty acids after their libera-
tion from acyl-ACPs in the plastid (see Fig. 1). 
While other extraplastidic sites for lipid synthe-
sis are known (e.g., mitochondria), the ER local-
ized pathway is predominant, and in most plants 
the ER lipid assembly pathway significantly 
contributes to thylakoid membrane biogenesis. 
As such, a discussion of the analogous pathways 
in Chlamydomonas is merited. As mentioned 
above, Chlamydomonas lacks the capability for 
PC biosynthesis (Giroud et al., 1988) and genes 
predicted to encode enzymes involved in PC bio-
synthesis are not present in its genome (Riekhof et 
al., 2005b; Riekhof and Benning, 2008). Instead, it 
contains the non-phosphorous zwitterionic betaine 
lipid DGTS (Fig. 2) in its membranes (Eichen-
berger and Boschetti, 1977; Janero and Barrnett, 
1982), which has similar biophysical properties 
to PC (Sato and Murata, 1991). DGTS has also 
been found in other algal species, e.g. (Eichen-
berger, 1982), prokaryotes like the purple bac-
terium Rhodobacter sphaeroides, e.g. (Benning 
et al., 1995; Hofmann and Eichenberger, 1996), 
and in non-seed plants, such as ferns, e.g. (Sato and 
Furuya, 1983; Eichenberger, 1993), but appears 
to be absent in seed plants. Labeling studies sug-
gest that the biosynthesis of DGTS is similar in 
all organisms studied (Sato, 1988, 1991; Sato and 
Kato, 1988; Vogel and Eichenberger, 1992; Hof-
mann and Eichenberger, 1996). It begins with the 
transfer of the 3-amino 3-carboxypropyl residue 
from S-adenosylmethionine (AdoMet) to DAG 
catalyzed by AdoMet:DAG 3-amino-3-carboxy-
propyltransferase activity followed by successive 
methylation of the amino group by an AdoMet-
dependent N-methyltransferase (Fig. 1). The two 
genes encoding these catalytic activities, btaA 
and btaB, were first identified in R. sphaeroides 
(Klug and Benning, 2001; Riekhof et al., 2005a).

More recently, a single gene sufficient for 
DGTS biosynthesis in Chlamydomonas, Bta1, 
was identified in the genome (Riekhof et al., 
2005b). The encoded protein Bta1 is similar in 
its N-terminal domain to bacterial BtaB and in 
its C-terminal domain to BtaA and the predicted 

catalytic function of each Bta1 domain was con-
firmed by mutagenesis (Riekhof et al., 2005b). 
The bifunctionality observed in Bta1 as a fusion 
of two prokaryotic enzymes active in the same 
pathway into a single polypeptide is a common 
theme in plants (Moore, 2004), and could repre-
sent an improvement in DGTS biosynthesis by 
eliminating the need for coordinated regulation 
of two independent gene products or permitting 
substrate channeling. In addition, the presence of 
DGTS and concomitant lack of PC are perhaps 
related to the absence of additional galactolipid 
biosynthetic pathways seen in seed plants, e.g., 
MGD2, MGD3 and DGD2 in Arabidopsis (Ben-
ning and Ohta, 2005). As this alternative galac-
tolipid pathway is believed to be involved in 
replacing phospholipids in extraplastidic mem-
branes with DGDG during phosphate depriva-
tion, the constitutive replacement of PC with the 
non-phosphorous DGTS has perhaps obviated 
the need to replace PC by extraplastidic DGDG. 
Interestingly, DGTS was tentatively identified as 
a component of purified Chlamydomonas thy-
lakoids (Janero and Barrnett, 1981b, 1982) and 
chloroplast envelope membranes (Mendiola-
Morgenthaler et al., 1985). However, whether 
DGTS is indeed present in the chloroplast membranes 
of Chlamydomonas or plays a specific function in 
thylakoids remains to be confirmed.

Phosphatidylserine (PS) is a minor component 
of extraplastidic membranes of plants and can be 
decarboxylated to phosphatidylethanolamine (PE) 
in plants and other organisms (Vance and Steen-
bergen, 2005; Nerlich et al., 2007). However, PS 
is absent in Chlamydomonas membranes (Gir-
oud et al., 1988) and genes encoding the phos-
phatidylserine synthase or relevant phospholipid 
base exchange enzymes were not detected in the 
genome (Riekhof et al., 2005b; Riekhof and Ben-
ning, 2008). As such, the biosynthesis of PE, 
which is a known component of extraplastidic 
membranes in Chlamydomonas, is likely only 
carried out by a single pathway (Fig. 1). Genes 
encoding a serine decarboxylase which pro-
duces ethanolamine, an ethanolamine kinase and 
CTP:phosphoethanolamine cytidylyltransferase 
the combined activities of which produce CDP-
ethanolamine, and a CDP-ethanolamine:DAG 
ethanolamine phosphotransferase, which produces
PE, have been identified in the genome (Riekhof 
et al., 2005b; Riekhof and Benning, 2008). 
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Recently, the gene encoding the CTP: phospho-
ethanolamine cytidylyltransferase has been charac-
terized by heterologous expression in Escherichia 
coli, and the expression of the respective gene was 
found to be up-regulated during the reflagella-
tion of Chlamydomonas cells (Yang et al., 2004). 
Phosphatidylinositol (PI) is a minor component of 
Chlamydomonas membranes, and genes required 
for its biosynthesis, including inositol-3-phos-
phate synthase and CDP-DAG:inositol phospho-
transferase, are present in the genome (Riekhof 
et al., 2005b; Riekhof and Benning, 2008). The 
PI biosynthetic enzymes of Chlamydomonas have 
been studied at the biochemical level, and PI syn-
thesis was found to be highest in the microsomal 
fraction, suggesting its association with the ER 
(Blouin et al., 2003).

Extraplastidic PG biosynthesis is known to be 
associated with both the ER and mitochondria, 
and three isoforms of phosphatidylglycerolphos-
phate synthase are encoded in the genome, each 
with differential targeting prediction probabilities 
for subcellular localization to the mitochondria, 
chloroplast or cytosol (Riekhof et al., 2005b; 
Riekhof and Benning, 2008). However, a detailed 
analysis of these proteins and their respective 
genes is not yet available in Chlamydomonas. An 
extraplastidic candidate for CDP-DAG synthase, 
which provides one of the substrates for phos-
phatidylglycerolphosphate synthase, has been 
identified in the genome (Riekhof et al., 2005b). 
However, as in the case of chloroplast PG bio-
synthesis, no gene encoding an extraplastidic 
phosphatidylglycerolphosphate phosphatase is 
currently known.

IV Fatty Acid Desaturation

Biochemical studies in Chlamydomonas have 
indicated that further desaturation of 16:0 and 
18:1 acyl groups occurs after the production of 
the major glycerolipids, in a manner similar to 
plants (Giroud et al., 1988). Furthermore, the 
Chlamydomonas fatty acid profile is known to 
change markedly in response to various environ-
mental conditions, including CO2 concentration, 
as well as nitrogen and phosphorous limitation 
(Tsuzuki et al., 1990; Weers and Gulati, 1997). 
The elucidation of fatty acid desaturase (FAD) 
genes in Arabidopsis is a classic example of 

the power of genetic and molecular biological 
approaches in solving biological problems, which 
prove to be largely intractable through a strictly 
biochemical approach (Browse and Somerville, 
1991; Wallis and Browse, 2002). The identifica-
tion of many of the Chlamydomonas desaturase 
gene candidates by their similarity to Arabidopsis 
orthologs, combined with a handful of studies of 
Chlamydomonas desaturase mutants and charac-
terization of cloned FAD genes, has provided a 
reasonable picture of the fatty acid desaturation 
pathways in this alga (Fig. 3).

Putative orthologs for the plastidic desaturases 
encoded by Arabidopsis FAD5 (MGDG palmitate-
Δ7-desaturase), FAD6 (ω6-desaturase), and FAD7 
or FAD8 (encoding ω3-desaturase isozymes) are 
present in the Chlamydomonas genome (Riekhof 
et al., 2005b; Riekhof and Benning, 2008). Of 
these, only the Chlamydomonas FAD6 gene has 
been studied to date at the molecular/genetic 
level (Sato et al., 1995b, 1997). The hf-9 mutant 
was first isolated by its high chlorophyll fluo-
rescence phenotype, and detailed lipid analysis 
revealed an apparent defect in ω6-desaturase 
activity as it showed marked decreases in both 
16- and 18-carbon polyunsaturated fatty acyl 
groups, with concomitant increases in 16:1Δ7 
and 18:1Δ9 (Sato et al., 1995b). The hf-9 mutant 
had an increased doubling time and showed 
reduced photosynthetic O2 evolution as well as 
an altered chloroplast ultrastructure (Sato et al., 
1995b). The Chlamydomonas FAD6 gene (first 
described as DES6) was subsequently cloned 
and found to be highly similar to cyanobacterial 
Δ12- and seed plant ω6-desaturases, and was also 
shown to complement the hf-9 mutant desatura-
tion defects (Sato et al., 1997). However, it did 
not restore the photosynthetic defects, suggest-
ing that these phenotypes arose from a mutation 
in another gene (or possibly from multiple loci). 
As such, the roles of polyunsaturated fatty acids 
(PUFAs) in the assembly or maintenance of opti-
mally functioning photosynthetic membranes in 
Chlamydomonas cannot be easily deduced from 
analysis of hf-9. The function of PUFAs in this 
regard have been studied and found to differ in 
mutants of both plants and cyanobacteria. The 
Arabidopsis fad6 fad2 double mutant, which 
lacks both plastidic and ER ω6-desaturases 
exhibited severe growth and photosynthetic 
defects (McConn and Browse, 1998). In contrast, 
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a mutant of Synechocystis sp. PC 6,803 lacking 
PUFAs had no observable photosynthetic defects 
under normal growth conditions (Gombos et al., 
1992). Thus, it still remains to be determined 
whether the importance of PUFAs in photosyn-
thetic membrane function in Chlamydomonas is 
more similar to that of seed plants or cyanobacteria. 
Other plastidic desaturases still have no gene can-
didates in Chlamydomonas. As noted above, the 
desaturase producing 16:1Δ3trans specifically on 
plastidic PG is still not identified at the molecular 
level in plants or algae, although mutants lacking 
this fatty acid have been obtained in Arabidopsis 
and Chlamydomonas (Browse et al., 1985; Maroc 
et al., 1987). Likewise, a gene encoding Δ4 desat-
urase activity, which is specific for MGDG-ester-
ified 16-carbon acyl groups based on biochemical 
studies (Giroud et al., 1988), and presumably 
produces both the 16:3Δ4,7,10 and 16:4Δ4,7,10,13 found 
in Chlamydomonas is currently unidentified.

The extraplastidic ω6- and ω3-desaturases, 
which produce 18:2Δ9,12 and 18:3Δ9,12,15, are encoded 
by FAD2 and FAD3, respectively, in Arabidop-
sis, and putative orthologs of these genes have 
been identified in the Chlamydomonas genome 
(Riekhof et al., 2005b; Riekhof and Benning, 
2008). The extraplastidic Chlamydomonas lipids 
DGTS and PE have been shown to contain signif-
icant amounts of 18:3Δ5,9,12 and 18:4Δ5,9,12,15 esteri-
fied to the respective sn-2 positions of the glycerol 
back bone (Giroud et al., 1988); these Δ5-unsatu-
rated fatty acids are also found in gymnosperms 
(Mongrand et al., 2001; Wolff and Christie, 
2002). Recently a Chlamydomonas gene, CrDES, 
encoding a “front-end” type Δ5-desaturase was 
identified by a bioinformatics approach through 
its similarity to a known Δ5-desaturase from the 
liverwort Marchantia polymorpha (Kajikawa 
et al., 2006). Heterologous expression of CrDES in 
Pichia pastoris and analysis of desaturase activity 
indicated that while the primary substrates were 
18:2Δ9,12 and 18:3Δ9,12,15, low but detectable lev-
els of endogenous 18:1Δ9 desaturation were also 
observed (Kajikawa et al., 2006). Transgenic 
tobacco plants constitutively expressing the 
CrDES gene exhibited strikingly high levels of 
18:3Δ5,9,12 and 18:4Δ5,9,12,15 (which are normally 
absent), with the highest combined yield reach-
ing ~ 45% of leaf total fatty acids, and no apparent 
morphological phenotypes (Kajikawa et al., 
2006). The biological roles of these Δ5-unsaturated 

fatty acids in the organisms which produce them 
are largely unknown, and the identification of 
the CrDES gene responsible for 18:3Δ5,9,12 and 
18:4Δ5,9,12,15 production in Chlamydomonas will 
allow for this gene to be targeted for suppression 
through RNAi technology.

V Neutral Lipid Metabolism

To date, little research has been done on neutral 
glycerolipid synthesis in Chlamydomonas. How-
ever, there is an increasing focus on oil production 
in microalgae due to its potential role as a feed-
stock for biodiesel or jet fuels (Hu et al., 2008), 
and as a source of commercial oils and fatty 
acids (Spolaore et al., 2006). Beginning in the 
late 1970s, the Department of Energy initiated a 
two decade-spanning research effort, the Aquatic 
Species Program, to investigate the possibility of 
obtaining biodiesel from microalgae (Sheehan 
et al., 1998). Researchers screened numerous 
algal strains for oil production, and found many 
that accumulated oil up to 75% dry weight (Benamotz 
and Tornabene, 1985; Bigogno et al., 2002; 
Chisti, 2007). Chlamydomonas also accumulates 
oil in the form of triacylglycerol under certain 
conditions, as already mentioned above (Weers 
and Gulati, 1997).

In most algae species, oil production is trig-
gered by environmental stress, suggesting that 
triacylglycerol plays a role in microalgae beyond 
energy storage. One of the main stresses inves-
tigated is nutrient deprivation, with nitrogen 
deprivation being the most common condition 
used. Growing the chlorophyte Neochloris oleo-
abundans in growth media limited for nitrogen 
resulted in lipids being accumulated up to 56% 
of the total dry weight, with 80% of that being 
triacylglycerol (TAG) (Tornabene et al., 1983). 
The eustigmatophyte Nannochloropsis gave 
similar results (Suen et al., 1987) as did the chlo-
rophyte Parietochloris incise (Merzlyak et al., 
2007). Growing the chlorophyte Haematococcus 
pluvialis in nitrogen-free medium led not only to an 
increase in total lipid content, but also to a change 
in fatty acid composition, with an increase in oleic 
acid (Zhekisheva et al., 2002). Other nutrient defi-
ciencies can trigger lipid accumulation. For exam-
ple, silicon deficiency leads to increased lipid 
content (mainly in the form of TAG) in the diatom 
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Cyclotella cryptica (Roessler, 1988). Phosphate 
limitation leads to an increase in TAG and overall 
lipid levels in some green algae, and to a decrease 
in lipid content in others (Khozin-Goldberg and 
Cohen, 2006).

Other factors, such as light, temperature and 
growth phase also affect oil accumulation in 
microalgae. The effect of temperature on lipid 
accumulation varies between strains, with some 
reporting increases in lipid levels, and others 
decreases (Richardson et al., 1983; Dempster and 
Sommerfeld, 1998; de Swaaf et al., 1999). Inhibi-
tion of cell cycle in the chlorophyte Chlorella by 
high pH leads to an accumulation of TAG simi-
lar to that due to nutrient deprivation, suggesting 
that environmental stress may indirectly trigger 
TAG synthesis by inhibiting growth, rather than 
directly (Guckert and Cooksey, 1990). High light 
intensity has been shown to increase the ratio of 
TAG to total lipids, although the total lipid level 
can remain the same or decrease (Zhekisheva 
et al., 2002; Khotimchenko and Yakovleva, 2004, 
2005). In the chlorophyte Dunaliella bardawil, 
the accumulation of TAG under high-light stress 
is linked to an accumulation of β-carotene, which 
suggests that TAG accumulation may help to pro-
tect the chloroplasts from photooxidative damage 
(Benamotz et al., 1989; Rabbani et al., 1998).

The biochemistry of TAGs in microalgae has 
not been studied, including that in the genetic 
model Chlamydomonas. Previous research has 
indicated that lipid synthesis in Chlamydomonas 
is homologous to that in plants (Fig. 1), and 
possibly simpler (Riekhof et al., 2005b; Riekhof 
and Benning, 2008). Therefore, it is likely 
that many general aspects of TAG synthesis 
in Chlamydomonas follow that of plants. One 
common path for TAG synthesis in seed plants 
is the Kennedy pathway, which involves the step-
wise addition of fatty-acyl groups to a glycerol-
3-phosphate to form PA, which is converted to 
DAG by phosphatidic acid phosphatase; DAG is 
further acylated by diacylglycerol acyltransferase 
to form TAG, as discussed further below 
(Kennedy, 1961). Two genes encoding putative 
extraplastidic phosphatidic acid phosphatases 
have been identified in the Chlamydomonas 
genome, but have not yet been studied in 
molecular detail (Riekhof et al., 2005b). Several 
studies in many different plant species have also 
indicated that DAG derived from the PC pool also 

contributes substantially to TAG biosynthesis 
(Ohlrogge and Browse, 1995). Clearly, PC plays 
no role in TAG biosynthesis in Chlamydomonas, 
and its role in plants is not universal, as studies of 
mesocarp microsomes in avocado indicated that 
only the Kennedy pathway was active (Stobart 
and Stymne, 1985). It may be possible that the 
assumed functional analog of PC in Chlamyd-
omonas, DGTS, is an intermediate in the 
biosynthesis of TAG. However, no biochemical 
studies to determine this have been undertaken 
to date, and utilization of the DGTS pool to 
provide DAG precursors would require an as yet 
unidentified enzyme to remove the ether-linked 
trimethylhomoserine head group. Regardless of 
the precursors used in forming DAG, the final 
step is catalyzed by diacylglycerol acyltrans-
ferases, or DGATs, which transfer a fatty acid 
from acyl-CoA to diacylglycerol. DGATs have 
been isolated and characterized from several plant 
species, including Arabidopsis (Routaboul et al., 
1999; Zou et al., 1999; Hobbs et al., 1999), maize 
(Zheng et al., 2008) and castor beans (Kroon 
et al., 2006). The Chlamydomonas genome 
contains a number of putative DGAT isoforms 
yet to be studied in molecular detail (Riekhof 
and Benning, 2008; R. Miller and C. Benning, 
unpublished, 2009).

Chlamydomonas may not only utilize the 
Kennedy pathway for TAG synthesis. Indeed, 
an alternate pathway for TAG synthesis involves 
phospholipid: diacylglycerol acyltransferases, or 
PDATs, to generate TAG using a phospholipid as a 
fatty acid donor, rather than acyl-CoA. PDATs have 
also been found in plants (Dahlqvist et al., 2000) 
and represent a possible second type of enzyme 
that is also present in Chlamydomonas (Riekhof 
and Benning, 2008). Given the induction of TAG 
biosynthesis by different stresses, it is likely that 
the mechanism for the regulation of TAG synthesis 
differs in Chlamydomonas from that in seed plants, 
which often produce oil during a specific phase of 
their life cycle and in specialized tissues.

VI Perspectives

The study of lipid metabolism in microalgae is 
experiencing a renaissance due to their potential 
for the production of large quantities of biomass 
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in general, and specifically due to their ability to 
accumulate neutral lipids following nutrient dep-
rivation. However, during the past decade much 
of basic research on lipid metabolism in photo-
synthetic organisms was focused on cyanobacte-
ria and seed plants, in particular, the genetic and 
genomic model Arabidopsis. Chlamydomonas 
has been developed over the years as an excellent 
genetic model as well, however, not necessarily 
for the study of lipid metabolism. The availabil-
ity of the Chlamydomonas genomic sequence 
(Merchant et al., 2007) has made the applica-
tion of knowledge on well studied lipid metabo-
lism in seed plants to this model alga relatively 
facile using comparative genomics. The result 
is a testable hypothesis of lipid metabolism in 
Chlamydomonas (Fig. 1) based on genome 
annotation (Riekhof et al., 2005b; Riekhof and 
Benning, 2008), which provides a wealth of 
opportunities to students of lipid metabolism. 
Those researchers interested in studying basic 
lipid metabolism in photosynthetic organisms 
might wonder what novel concepts research 
on Chlamydomonas could contribute beyond 
research on Arabidopsis. The answer lies in the 
fact that lipid metabolism in Chlamydomonas 
appears simpler and in some aspects drastically 
different from that in seed plants as discussed 
in detail above. The reduced redundancy in 
Chlamydomonas versus Arabidopsis permits 
testing of hypotheses on the function of parallel 
pathways, e.g., galactoglycerolipid biosynthe-
sis (Härtel et al., 2000), present in Arabidop-
sis. Moreover, the unicellular organization of 
Chlamydomonas and its resulting lifestyle 
requires completely different input for the regu-
lation of TAG biosynthesis (Hu et al., 2008) than 
the developmental regulation of storage lipid 
metabolism in developing seeds of Arabidop-
sis (Santos-Mendoza et al., 2008). The absence 
of PC in Chlamydomonas challenges concepts 
about the role of this lipid as a central metabo-
lite in lipid trafficking and lipid modification in 
plants. How widespread the replacement of PC 
by the betaine lipid DGTS in microalgae is not 
known at this time, but it would be important 
to explore, if Chlamydomonas is to become the 
model for the engineering of microalgal biofuel-
producing strains.
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